1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved. 26 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 27 */ 28 29 /* 30 * DVA-based Adjustable Replacement Cache 31 * 32 * While much of the theory of operation used here is 33 * based on the self-tuning, low overhead replacement cache 34 * presented by Megiddo and Modha at FAST 2003, there are some 35 * significant differences: 36 * 37 * 1. The Megiddo and Modha model assumes any page is evictable. 38 * Pages in its cache cannot be "locked" into memory. This makes 39 * the eviction algorithm simple: evict the last page in the list. 40 * This also make the performance characteristics easy to reason 41 * about. Our cache is not so simple. At any given moment, some 42 * subset of the blocks in the cache are un-evictable because we 43 * have handed out a reference to them. Blocks are only evictable 44 * when there are no external references active. This makes 45 * eviction far more problematic: we choose to evict the evictable 46 * blocks that are the "lowest" in the list. 47 * 48 * There are times when it is not possible to evict the requested 49 * space. In these circumstances we are unable to adjust the cache 50 * size. To prevent the cache growing unbounded at these times we 51 * implement a "cache throttle" that slows the flow of new data 52 * into the cache until we can make space available. 53 * 54 * 2. The Megiddo and Modha model assumes a fixed cache size. 55 * Pages are evicted when the cache is full and there is a cache 56 * miss. Our model has a variable sized cache. It grows with 57 * high use, but also tries to react to memory pressure from the 58 * operating system: decreasing its size when system memory is 59 * tight. 60 * 61 * 3. The Megiddo and Modha model assumes a fixed page size. All 62 * elements of the cache are therefore exactly the same size. So 63 * when adjusting the cache size following a cache miss, its simply 64 * a matter of choosing a single page to evict. In our model, we 65 * have variable sized cache blocks (rangeing from 512 bytes to 66 * 128K bytes). We therefore choose a set of blocks to evict to make 67 * space for a cache miss that approximates as closely as possible 68 * the space used by the new block. 69 * 70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 71 * by N. Megiddo & D. Modha, FAST 2003 72 */ 73 74 /* 75 * The locking model: 76 * 77 * A new reference to a cache buffer can be obtained in two 78 * ways: 1) via a hash table lookup using the DVA as a key, 79 * or 2) via one of the ARC lists. The arc_read() interface 80 * uses method 1, while the internal arc algorithms for 81 * adjusting the cache use method 2. We therefore provide two 82 * types of locks: 1) the hash table lock array, and 2) the 83 * arc list locks. 84 * 85 * Buffers do not have their own mutexes, rather they rely on the 86 * hash table mutexes for the bulk of their protection (i.e. most 87 * fields in the arc_buf_hdr_t are protected by these mutexes). 88 * 89 * buf_hash_find() returns the appropriate mutex (held) when it 90 * locates the requested buffer in the hash table. It returns 91 * NULL for the mutex if the buffer was not in the table. 92 * 93 * buf_hash_remove() expects the appropriate hash mutex to be 94 * already held before it is invoked. 95 * 96 * Each arc state also has a mutex which is used to protect the 97 * buffer list associated with the state. When attempting to 98 * obtain a hash table lock while holding an arc list lock you 99 * must use: mutex_tryenter() to avoid deadlock. Also note that 100 * the active state mutex must be held before the ghost state mutex. 101 * 102 * Arc buffers may have an associated eviction callback function. 103 * This function will be invoked prior to removing the buffer (e.g. 104 * in arc_do_user_evicts()). Note however that the data associated 105 * with the buffer may be evicted prior to the callback. The callback 106 * must be made with *no locks held* (to prevent deadlock). Additionally, 107 * the users of callbacks must ensure that their private data is 108 * protected from simultaneous callbacks from arc_buf_evict() 109 * and arc_do_user_evicts(). 110 * 111 * Note that the majority of the performance stats are manipulated 112 * with atomic operations. 113 * 114 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 115 * 116 * - L2ARC buflist creation 117 * - L2ARC buflist eviction 118 * - L2ARC write completion, which walks L2ARC buflists 119 * - ARC header destruction, as it removes from L2ARC buflists 120 * - ARC header release, as it removes from L2ARC buflists 121 */ 122 123 #include <sys/spa.h> 124 #include <sys/zio.h> 125 #include <sys/zio_compress.h> 126 #include <sys/zfs_context.h> 127 #include <sys/arc.h> 128 #include <sys/refcount.h> 129 #include <sys/vdev.h> 130 #include <sys/vdev_impl.h> 131 #include <sys/dsl_pool.h> 132 #ifdef _KERNEL 133 #include <sys/vmsystm.h> 134 #include <vm/anon.h> 135 #include <sys/fs/swapnode.h> 136 #include <sys/dnlc.h> 137 #endif 138 #include <sys/callb.h> 139 #include <sys/kstat.h> 140 #include <zfs_fletcher.h> 141 142 #ifndef _KERNEL 143 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 144 boolean_t arc_watch = B_FALSE; 145 int arc_procfd; 146 #endif 147 148 static kmutex_t arc_reclaim_thr_lock; 149 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 150 static uint8_t arc_thread_exit; 151 152 #define ARC_REDUCE_DNLC_PERCENT 3 153 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 154 155 typedef enum arc_reclaim_strategy { 156 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 157 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 158 } arc_reclaim_strategy_t; 159 160 /* 161 * The number of iterations through arc_evict_*() before we 162 * drop & reacquire the lock. 163 */ 164 int arc_evict_iterations = 100; 165 166 /* number of seconds before growing cache again */ 167 static int arc_grow_retry = 60; 168 169 /* shift of arc_c for calculating both min and max arc_p */ 170 static int arc_p_min_shift = 4; 171 172 /* log2(fraction of arc to reclaim) */ 173 static int arc_shrink_shift = 5; 174 175 /* 176 * minimum lifespan of a prefetch block in clock ticks 177 * (initialized in arc_init()) 178 */ 179 static int arc_min_prefetch_lifespan; 180 181 /* 182 * If this percent of memory is free, don't throttle. 183 */ 184 int arc_lotsfree_percent = 10; 185 186 static int arc_dead; 187 188 /* 189 * The arc has filled available memory and has now warmed up. 190 */ 191 static boolean_t arc_warm; 192 193 /* 194 * These tunables are for performance analysis. 195 */ 196 uint64_t zfs_arc_max; 197 uint64_t zfs_arc_min; 198 uint64_t zfs_arc_meta_limit = 0; 199 int zfs_arc_grow_retry = 0; 200 int zfs_arc_shrink_shift = 0; 201 int zfs_arc_p_min_shift = 0; 202 int zfs_disable_dup_eviction = 0; 203 204 /* 205 * Note that buffers can be in one of 6 states: 206 * ARC_anon - anonymous (discussed below) 207 * ARC_mru - recently used, currently cached 208 * ARC_mru_ghost - recentely used, no longer in cache 209 * ARC_mfu - frequently used, currently cached 210 * ARC_mfu_ghost - frequently used, no longer in cache 211 * ARC_l2c_only - exists in L2ARC but not other states 212 * When there are no active references to the buffer, they are 213 * are linked onto a list in one of these arc states. These are 214 * the only buffers that can be evicted or deleted. Within each 215 * state there are multiple lists, one for meta-data and one for 216 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 217 * etc.) is tracked separately so that it can be managed more 218 * explicitly: favored over data, limited explicitly. 219 * 220 * Anonymous buffers are buffers that are not associated with 221 * a DVA. These are buffers that hold dirty block copies 222 * before they are written to stable storage. By definition, 223 * they are "ref'd" and are considered part of arc_mru 224 * that cannot be freed. Generally, they will aquire a DVA 225 * as they are written and migrate onto the arc_mru list. 226 * 227 * The ARC_l2c_only state is for buffers that are in the second 228 * level ARC but no longer in any of the ARC_m* lists. The second 229 * level ARC itself may also contain buffers that are in any of 230 * the ARC_m* states - meaning that a buffer can exist in two 231 * places. The reason for the ARC_l2c_only state is to keep the 232 * buffer header in the hash table, so that reads that hit the 233 * second level ARC benefit from these fast lookups. 234 */ 235 236 typedef struct arc_state { 237 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 238 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 239 uint64_t arcs_size; /* total amount of data in this state */ 240 kmutex_t arcs_mtx; 241 } arc_state_t; 242 243 /* The 6 states: */ 244 static arc_state_t ARC_anon; 245 static arc_state_t ARC_mru; 246 static arc_state_t ARC_mru_ghost; 247 static arc_state_t ARC_mfu; 248 static arc_state_t ARC_mfu_ghost; 249 static arc_state_t ARC_l2c_only; 250 251 typedef struct arc_stats { 252 kstat_named_t arcstat_hits; 253 kstat_named_t arcstat_misses; 254 kstat_named_t arcstat_demand_data_hits; 255 kstat_named_t arcstat_demand_data_misses; 256 kstat_named_t arcstat_demand_metadata_hits; 257 kstat_named_t arcstat_demand_metadata_misses; 258 kstat_named_t arcstat_prefetch_data_hits; 259 kstat_named_t arcstat_prefetch_data_misses; 260 kstat_named_t arcstat_prefetch_metadata_hits; 261 kstat_named_t arcstat_prefetch_metadata_misses; 262 kstat_named_t arcstat_mru_hits; 263 kstat_named_t arcstat_mru_ghost_hits; 264 kstat_named_t arcstat_mfu_hits; 265 kstat_named_t arcstat_mfu_ghost_hits; 266 kstat_named_t arcstat_deleted; 267 kstat_named_t arcstat_recycle_miss; 268 /* 269 * Number of buffers that could not be evicted because the hash lock 270 * was held by another thread. The lock may not necessarily be held 271 * by something using the same buffer, since hash locks are shared 272 * by multiple buffers. 273 */ 274 kstat_named_t arcstat_mutex_miss; 275 /* 276 * Number of buffers skipped because they have I/O in progress, are 277 * indrect prefetch buffers that have not lived long enough, or are 278 * not from the spa we're trying to evict from. 279 */ 280 kstat_named_t arcstat_evict_skip; 281 kstat_named_t arcstat_evict_l2_cached; 282 kstat_named_t arcstat_evict_l2_eligible; 283 kstat_named_t arcstat_evict_l2_ineligible; 284 kstat_named_t arcstat_hash_elements; 285 kstat_named_t arcstat_hash_elements_max; 286 kstat_named_t arcstat_hash_collisions; 287 kstat_named_t arcstat_hash_chains; 288 kstat_named_t arcstat_hash_chain_max; 289 kstat_named_t arcstat_p; 290 kstat_named_t arcstat_c; 291 kstat_named_t arcstat_c_min; 292 kstat_named_t arcstat_c_max; 293 kstat_named_t arcstat_size; 294 kstat_named_t arcstat_hdr_size; 295 kstat_named_t arcstat_data_size; 296 kstat_named_t arcstat_other_size; 297 kstat_named_t arcstat_l2_hits; 298 kstat_named_t arcstat_l2_misses; 299 kstat_named_t arcstat_l2_feeds; 300 kstat_named_t arcstat_l2_rw_clash; 301 kstat_named_t arcstat_l2_read_bytes; 302 kstat_named_t arcstat_l2_write_bytes; 303 kstat_named_t arcstat_l2_writes_sent; 304 kstat_named_t arcstat_l2_writes_done; 305 kstat_named_t arcstat_l2_writes_error; 306 kstat_named_t arcstat_l2_writes_hdr_miss; 307 kstat_named_t arcstat_l2_evict_lock_retry; 308 kstat_named_t arcstat_l2_evict_reading; 309 kstat_named_t arcstat_l2_free_on_write; 310 kstat_named_t arcstat_l2_abort_lowmem; 311 kstat_named_t arcstat_l2_cksum_bad; 312 kstat_named_t arcstat_l2_io_error; 313 kstat_named_t arcstat_l2_size; 314 kstat_named_t arcstat_l2_asize; 315 kstat_named_t arcstat_l2_hdr_size; 316 kstat_named_t arcstat_l2_compress_successes; 317 kstat_named_t arcstat_l2_compress_zeros; 318 kstat_named_t arcstat_l2_compress_failures; 319 kstat_named_t arcstat_memory_throttle_count; 320 kstat_named_t arcstat_duplicate_buffers; 321 kstat_named_t arcstat_duplicate_buffers_size; 322 kstat_named_t arcstat_duplicate_reads; 323 kstat_named_t arcstat_meta_used; 324 kstat_named_t arcstat_meta_limit; 325 kstat_named_t arcstat_meta_max; 326 } arc_stats_t; 327 328 static arc_stats_t arc_stats = { 329 { "hits", KSTAT_DATA_UINT64 }, 330 { "misses", KSTAT_DATA_UINT64 }, 331 { "demand_data_hits", KSTAT_DATA_UINT64 }, 332 { "demand_data_misses", KSTAT_DATA_UINT64 }, 333 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 334 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 335 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 336 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 337 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 338 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 339 { "mru_hits", KSTAT_DATA_UINT64 }, 340 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 341 { "mfu_hits", KSTAT_DATA_UINT64 }, 342 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 343 { "deleted", KSTAT_DATA_UINT64 }, 344 { "recycle_miss", KSTAT_DATA_UINT64 }, 345 { "mutex_miss", KSTAT_DATA_UINT64 }, 346 { "evict_skip", KSTAT_DATA_UINT64 }, 347 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 348 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 349 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 350 { "hash_elements", KSTAT_DATA_UINT64 }, 351 { "hash_elements_max", KSTAT_DATA_UINT64 }, 352 { "hash_collisions", KSTAT_DATA_UINT64 }, 353 { "hash_chains", KSTAT_DATA_UINT64 }, 354 { "hash_chain_max", KSTAT_DATA_UINT64 }, 355 { "p", KSTAT_DATA_UINT64 }, 356 { "c", KSTAT_DATA_UINT64 }, 357 { "c_min", KSTAT_DATA_UINT64 }, 358 { "c_max", KSTAT_DATA_UINT64 }, 359 { "size", KSTAT_DATA_UINT64 }, 360 { "hdr_size", KSTAT_DATA_UINT64 }, 361 { "data_size", KSTAT_DATA_UINT64 }, 362 { "other_size", KSTAT_DATA_UINT64 }, 363 { "l2_hits", KSTAT_DATA_UINT64 }, 364 { "l2_misses", KSTAT_DATA_UINT64 }, 365 { "l2_feeds", KSTAT_DATA_UINT64 }, 366 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 367 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 368 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 369 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 370 { "l2_writes_done", KSTAT_DATA_UINT64 }, 371 { "l2_writes_error", KSTAT_DATA_UINT64 }, 372 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 373 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 374 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 375 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 376 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 377 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 378 { "l2_io_error", KSTAT_DATA_UINT64 }, 379 { "l2_size", KSTAT_DATA_UINT64 }, 380 { "l2_asize", KSTAT_DATA_UINT64 }, 381 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 382 { "l2_compress_successes", KSTAT_DATA_UINT64 }, 383 { "l2_compress_zeros", KSTAT_DATA_UINT64 }, 384 { "l2_compress_failures", KSTAT_DATA_UINT64 }, 385 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 386 { "duplicate_buffers", KSTAT_DATA_UINT64 }, 387 { "duplicate_buffers_size", KSTAT_DATA_UINT64 }, 388 { "duplicate_reads", KSTAT_DATA_UINT64 }, 389 { "arc_meta_used", KSTAT_DATA_UINT64 }, 390 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 391 { "arc_meta_max", KSTAT_DATA_UINT64 } 392 }; 393 394 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 395 396 #define ARCSTAT_INCR(stat, val) \ 397 atomic_add_64(&arc_stats.stat.value.ui64, (val)) 398 399 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 400 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 401 402 #define ARCSTAT_MAX(stat, val) { \ 403 uint64_t m; \ 404 while ((val) > (m = arc_stats.stat.value.ui64) && \ 405 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 406 continue; \ 407 } 408 409 #define ARCSTAT_MAXSTAT(stat) \ 410 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 411 412 /* 413 * We define a macro to allow ARC hits/misses to be easily broken down by 414 * two separate conditions, giving a total of four different subtypes for 415 * each of hits and misses (so eight statistics total). 416 */ 417 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 418 if (cond1) { \ 419 if (cond2) { \ 420 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 421 } else { \ 422 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 423 } \ 424 } else { \ 425 if (cond2) { \ 426 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 427 } else { \ 428 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 429 } \ 430 } 431 432 kstat_t *arc_ksp; 433 static arc_state_t *arc_anon; 434 static arc_state_t *arc_mru; 435 static arc_state_t *arc_mru_ghost; 436 static arc_state_t *arc_mfu; 437 static arc_state_t *arc_mfu_ghost; 438 static arc_state_t *arc_l2c_only; 439 440 /* 441 * There are several ARC variables that are critical to export as kstats -- 442 * but we don't want to have to grovel around in the kstat whenever we wish to 443 * manipulate them. For these variables, we therefore define them to be in 444 * terms of the statistic variable. This assures that we are not introducing 445 * the possibility of inconsistency by having shadow copies of the variables, 446 * while still allowing the code to be readable. 447 */ 448 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 449 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 450 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 451 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 452 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 453 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 454 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */ 455 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 456 457 #define L2ARC_IS_VALID_COMPRESS(_c_) \ 458 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY) 459 460 static int arc_no_grow; /* Don't try to grow cache size */ 461 static uint64_t arc_tempreserve; 462 static uint64_t arc_loaned_bytes; 463 464 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 465 466 typedef struct arc_callback arc_callback_t; 467 468 struct arc_callback { 469 void *acb_private; 470 arc_done_func_t *acb_done; 471 arc_buf_t *acb_buf; 472 zio_t *acb_zio_dummy; 473 arc_callback_t *acb_next; 474 }; 475 476 typedef struct arc_write_callback arc_write_callback_t; 477 478 struct arc_write_callback { 479 void *awcb_private; 480 arc_done_func_t *awcb_ready; 481 arc_done_func_t *awcb_physdone; 482 arc_done_func_t *awcb_done; 483 arc_buf_t *awcb_buf; 484 }; 485 486 struct arc_buf_hdr { 487 /* protected by hash lock */ 488 dva_t b_dva; 489 uint64_t b_birth; 490 uint64_t b_cksum0; 491 492 kmutex_t b_freeze_lock; 493 zio_cksum_t *b_freeze_cksum; 494 void *b_thawed; 495 496 arc_buf_hdr_t *b_hash_next; 497 arc_buf_t *b_buf; 498 uint32_t b_flags; 499 uint32_t b_datacnt; 500 501 arc_callback_t *b_acb; 502 kcondvar_t b_cv; 503 504 /* immutable */ 505 arc_buf_contents_t b_type; 506 uint64_t b_size; 507 uint64_t b_spa; 508 509 /* protected by arc state mutex */ 510 arc_state_t *b_state; 511 list_node_t b_arc_node; 512 513 /* updated atomically */ 514 clock_t b_arc_access; 515 516 /* self protecting */ 517 refcount_t b_refcnt; 518 519 l2arc_buf_hdr_t *b_l2hdr; 520 list_node_t b_l2node; 521 }; 522 523 static arc_buf_t *arc_eviction_list; 524 static kmutex_t arc_eviction_mtx; 525 static arc_buf_hdr_t arc_eviction_hdr; 526 static void arc_get_data_buf(arc_buf_t *buf); 527 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 528 static int arc_evict_needed(arc_buf_contents_t type); 529 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 530 static void arc_buf_watch(arc_buf_t *buf); 531 532 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 533 534 #define GHOST_STATE(state) \ 535 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 536 (state) == arc_l2c_only) 537 538 /* 539 * Private ARC flags. These flags are private ARC only flags that will show up 540 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 541 * be passed in as arc_flags in things like arc_read. However, these flags 542 * should never be passed and should only be set by ARC code. When adding new 543 * public flags, make sure not to smash the private ones. 544 */ 545 546 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 547 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 548 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 549 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 550 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 551 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 552 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 553 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 554 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 555 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 556 557 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 558 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 559 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 560 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 561 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 562 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 563 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 564 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 565 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 566 (hdr)->b_l2hdr != NULL) 567 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 568 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 569 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 570 571 /* 572 * Other sizes 573 */ 574 575 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 576 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 577 578 /* 579 * Hash table routines 580 */ 581 582 #define HT_LOCK_PAD 64 583 584 struct ht_lock { 585 kmutex_t ht_lock; 586 #ifdef _KERNEL 587 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 588 #endif 589 }; 590 591 #define BUF_LOCKS 256 592 typedef struct buf_hash_table { 593 uint64_t ht_mask; 594 arc_buf_hdr_t **ht_table; 595 struct ht_lock ht_locks[BUF_LOCKS]; 596 } buf_hash_table_t; 597 598 static buf_hash_table_t buf_hash_table; 599 600 #define BUF_HASH_INDEX(spa, dva, birth) \ 601 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 602 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 603 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 604 #define HDR_LOCK(hdr) \ 605 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 606 607 uint64_t zfs_crc64_table[256]; 608 609 /* 610 * Level 2 ARC 611 */ 612 613 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 614 #define L2ARC_HEADROOM 2 /* num of writes */ 615 /* 616 * If we discover during ARC scan any buffers to be compressed, we boost 617 * our headroom for the next scanning cycle by this percentage multiple. 618 */ 619 #define L2ARC_HEADROOM_BOOST 200 620 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 621 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 622 623 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 624 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 625 626 /* L2ARC Performance Tunables */ 627 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 628 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 629 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 630 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 631 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 632 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 633 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 634 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 635 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 636 637 /* 638 * L2ARC Internals 639 */ 640 typedef struct l2arc_dev { 641 vdev_t *l2ad_vdev; /* vdev */ 642 spa_t *l2ad_spa; /* spa */ 643 uint64_t l2ad_hand; /* next write location */ 644 uint64_t l2ad_start; /* first addr on device */ 645 uint64_t l2ad_end; /* last addr on device */ 646 uint64_t l2ad_evict; /* last addr eviction reached */ 647 boolean_t l2ad_first; /* first sweep through */ 648 boolean_t l2ad_writing; /* currently writing */ 649 list_t *l2ad_buflist; /* buffer list */ 650 list_node_t l2ad_node; /* device list node */ 651 } l2arc_dev_t; 652 653 static list_t L2ARC_dev_list; /* device list */ 654 static list_t *l2arc_dev_list; /* device list pointer */ 655 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 656 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 657 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 658 static list_t L2ARC_free_on_write; /* free after write buf list */ 659 static list_t *l2arc_free_on_write; /* free after write list ptr */ 660 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 661 static uint64_t l2arc_ndev; /* number of devices */ 662 663 typedef struct l2arc_read_callback { 664 arc_buf_t *l2rcb_buf; /* read buffer */ 665 spa_t *l2rcb_spa; /* spa */ 666 blkptr_t l2rcb_bp; /* original blkptr */ 667 zbookmark_t l2rcb_zb; /* original bookmark */ 668 int l2rcb_flags; /* original flags */ 669 enum zio_compress l2rcb_compress; /* applied compress */ 670 } l2arc_read_callback_t; 671 672 typedef struct l2arc_write_callback { 673 l2arc_dev_t *l2wcb_dev; /* device info */ 674 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 675 } l2arc_write_callback_t; 676 677 struct l2arc_buf_hdr { 678 /* protected by arc_buf_hdr mutex */ 679 l2arc_dev_t *b_dev; /* L2ARC device */ 680 uint64_t b_daddr; /* disk address, offset byte */ 681 /* compression applied to buffer data */ 682 enum zio_compress b_compress; 683 /* real alloc'd buffer size depending on b_compress applied */ 684 int b_asize; 685 /* temporary buffer holder for in-flight compressed data */ 686 void *b_tmp_cdata; 687 }; 688 689 typedef struct l2arc_data_free { 690 /* protected by l2arc_free_on_write_mtx */ 691 void *l2df_data; 692 size_t l2df_size; 693 void (*l2df_func)(void *, size_t); 694 list_node_t l2df_list_node; 695 } l2arc_data_free_t; 696 697 static kmutex_t l2arc_feed_thr_lock; 698 static kcondvar_t l2arc_feed_thr_cv; 699 static uint8_t l2arc_thread_exit; 700 701 static void l2arc_read_done(zio_t *zio); 702 static void l2arc_hdr_stat_add(void); 703 static void l2arc_hdr_stat_remove(void); 704 705 static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr); 706 static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, 707 enum zio_compress c); 708 static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab); 709 710 static uint64_t 711 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 712 { 713 uint8_t *vdva = (uint8_t *)dva; 714 uint64_t crc = -1ULL; 715 int i; 716 717 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 718 719 for (i = 0; i < sizeof (dva_t); i++) 720 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 721 722 crc ^= (spa>>8) ^ birth; 723 724 return (crc); 725 } 726 727 #define BUF_EMPTY(buf) \ 728 ((buf)->b_dva.dva_word[0] == 0 && \ 729 (buf)->b_dva.dva_word[1] == 0 && \ 730 (buf)->b_cksum0 == 0) 731 732 #define BUF_EQUAL(spa, dva, birth, buf) \ 733 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 734 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 735 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 736 737 static void 738 buf_discard_identity(arc_buf_hdr_t *hdr) 739 { 740 hdr->b_dva.dva_word[0] = 0; 741 hdr->b_dva.dva_word[1] = 0; 742 hdr->b_birth = 0; 743 hdr->b_cksum0 = 0; 744 } 745 746 static arc_buf_hdr_t * 747 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 748 { 749 const dva_t *dva = BP_IDENTITY(bp); 750 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 751 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 752 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 753 arc_buf_hdr_t *buf; 754 755 mutex_enter(hash_lock); 756 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 757 buf = buf->b_hash_next) { 758 if (BUF_EQUAL(spa, dva, birth, buf)) { 759 *lockp = hash_lock; 760 return (buf); 761 } 762 } 763 mutex_exit(hash_lock); 764 *lockp = NULL; 765 return (NULL); 766 } 767 768 /* 769 * Insert an entry into the hash table. If there is already an element 770 * equal to elem in the hash table, then the already existing element 771 * will be returned and the new element will not be inserted. 772 * Otherwise returns NULL. 773 */ 774 static arc_buf_hdr_t * 775 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 776 { 777 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 778 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 779 arc_buf_hdr_t *fbuf; 780 uint32_t i; 781 782 ASSERT(!DVA_IS_EMPTY(&buf->b_dva)); 783 ASSERT(buf->b_birth != 0); 784 ASSERT(!HDR_IN_HASH_TABLE(buf)); 785 *lockp = hash_lock; 786 mutex_enter(hash_lock); 787 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 788 fbuf = fbuf->b_hash_next, i++) { 789 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 790 return (fbuf); 791 } 792 793 buf->b_hash_next = buf_hash_table.ht_table[idx]; 794 buf_hash_table.ht_table[idx] = buf; 795 buf->b_flags |= ARC_IN_HASH_TABLE; 796 797 /* collect some hash table performance data */ 798 if (i > 0) { 799 ARCSTAT_BUMP(arcstat_hash_collisions); 800 if (i == 1) 801 ARCSTAT_BUMP(arcstat_hash_chains); 802 803 ARCSTAT_MAX(arcstat_hash_chain_max, i); 804 } 805 806 ARCSTAT_BUMP(arcstat_hash_elements); 807 ARCSTAT_MAXSTAT(arcstat_hash_elements); 808 809 return (NULL); 810 } 811 812 static void 813 buf_hash_remove(arc_buf_hdr_t *buf) 814 { 815 arc_buf_hdr_t *fbuf, **bufp; 816 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 817 818 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 819 ASSERT(HDR_IN_HASH_TABLE(buf)); 820 821 bufp = &buf_hash_table.ht_table[idx]; 822 while ((fbuf = *bufp) != buf) { 823 ASSERT(fbuf != NULL); 824 bufp = &fbuf->b_hash_next; 825 } 826 *bufp = buf->b_hash_next; 827 buf->b_hash_next = NULL; 828 buf->b_flags &= ~ARC_IN_HASH_TABLE; 829 830 /* collect some hash table performance data */ 831 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 832 833 if (buf_hash_table.ht_table[idx] && 834 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 835 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 836 } 837 838 /* 839 * Global data structures and functions for the buf kmem cache. 840 */ 841 static kmem_cache_t *hdr_cache; 842 static kmem_cache_t *buf_cache; 843 844 static void 845 buf_fini(void) 846 { 847 int i; 848 849 kmem_free(buf_hash_table.ht_table, 850 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 851 for (i = 0; i < BUF_LOCKS; i++) 852 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 853 kmem_cache_destroy(hdr_cache); 854 kmem_cache_destroy(buf_cache); 855 } 856 857 /* 858 * Constructor callback - called when the cache is empty 859 * and a new buf is requested. 860 */ 861 /* ARGSUSED */ 862 static int 863 hdr_cons(void *vbuf, void *unused, int kmflag) 864 { 865 arc_buf_hdr_t *buf = vbuf; 866 867 bzero(buf, sizeof (arc_buf_hdr_t)); 868 refcount_create(&buf->b_refcnt); 869 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 870 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 871 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 872 873 return (0); 874 } 875 876 /* ARGSUSED */ 877 static int 878 buf_cons(void *vbuf, void *unused, int kmflag) 879 { 880 arc_buf_t *buf = vbuf; 881 882 bzero(buf, sizeof (arc_buf_t)); 883 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 884 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 885 886 return (0); 887 } 888 889 /* 890 * Destructor callback - called when a cached buf is 891 * no longer required. 892 */ 893 /* ARGSUSED */ 894 static void 895 hdr_dest(void *vbuf, void *unused) 896 { 897 arc_buf_hdr_t *buf = vbuf; 898 899 ASSERT(BUF_EMPTY(buf)); 900 refcount_destroy(&buf->b_refcnt); 901 cv_destroy(&buf->b_cv); 902 mutex_destroy(&buf->b_freeze_lock); 903 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 904 } 905 906 /* ARGSUSED */ 907 static void 908 buf_dest(void *vbuf, void *unused) 909 { 910 arc_buf_t *buf = vbuf; 911 912 mutex_destroy(&buf->b_evict_lock); 913 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 914 } 915 916 /* 917 * Reclaim callback -- invoked when memory is low. 918 */ 919 /* ARGSUSED */ 920 static void 921 hdr_recl(void *unused) 922 { 923 dprintf("hdr_recl called\n"); 924 /* 925 * umem calls the reclaim func when we destroy the buf cache, 926 * which is after we do arc_fini(). 927 */ 928 if (!arc_dead) 929 cv_signal(&arc_reclaim_thr_cv); 930 } 931 932 static void 933 buf_init(void) 934 { 935 uint64_t *ct; 936 uint64_t hsize = 1ULL << 12; 937 int i, j; 938 939 /* 940 * The hash table is big enough to fill all of physical memory 941 * with an average 64K block size. The table will take up 942 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 943 */ 944 while (hsize * 65536 < physmem * PAGESIZE) 945 hsize <<= 1; 946 retry: 947 buf_hash_table.ht_mask = hsize - 1; 948 buf_hash_table.ht_table = 949 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 950 if (buf_hash_table.ht_table == NULL) { 951 ASSERT(hsize > (1ULL << 8)); 952 hsize >>= 1; 953 goto retry; 954 } 955 956 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 957 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 958 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 959 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 960 961 for (i = 0; i < 256; i++) 962 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 963 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 964 965 for (i = 0; i < BUF_LOCKS; i++) { 966 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 967 NULL, MUTEX_DEFAULT, NULL); 968 } 969 } 970 971 #define ARC_MINTIME (hz>>4) /* 62 ms */ 972 973 static void 974 arc_cksum_verify(arc_buf_t *buf) 975 { 976 zio_cksum_t zc; 977 978 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 979 return; 980 981 mutex_enter(&buf->b_hdr->b_freeze_lock); 982 if (buf->b_hdr->b_freeze_cksum == NULL || 983 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 984 mutex_exit(&buf->b_hdr->b_freeze_lock); 985 return; 986 } 987 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 988 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 989 panic("buffer modified while frozen!"); 990 mutex_exit(&buf->b_hdr->b_freeze_lock); 991 } 992 993 static int 994 arc_cksum_equal(arc_buf_t *buf) 995 { 996 zio_cksum_t zc; 997 int equal; 998 999 mutex_enter(&buf->b_hdr->b_freeze_lock); 1000 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 1001 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 1002 mutex_exit(&buf->b_hdr->b_freeze_lock); 1003 1004 return (equal); 1005 } 1006 1007 static void 1008 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 1009 { 1010 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 1011 return; 1012 1013 mutex_enter(&buf->b_hdr->b_freeze_lock); 1014 if (buf->b_hdr->b_freeze_cksum != NULL) { 1015 mutex_exit(&buf->b_hdr->b_freeze_lock); 1016 return; 1017 } 1018 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 1019 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 1020 buf->b_hdr->b_freeze_cksum); 1021 mutex_exit(&buf->b_hdr->b_freeze_lock); 1022 arc_buf_watch(buf); 1023 } 1024 1025 #ifndef _KERNEL 1026 typedef struct procctl { 1027 long cmd; 1028 prwatch_t prwatch; 1029 } procctl_t; 1030 #endif 1031 1032 /* ARGSUSED */ 1033 static void 1034 arc_buf_unwatch(arc_buf_t *buf) 1035 { 1036 #ifndef _KERNEL 1037 if (arc_watch) { 1038 int result; 1039 procctl_t ctl; 1040 ctl.cmd = PCWATCH; 1041 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1042 ctl.prwatch.pr_size = 0; 1043 ctl.prwatch.pr_wflags = 0; 1044 result = write(arc_procfd, &ctl, sizeof (ctl)); 1045 ASSERT3U(result, ==, sizeof (ctl)); 1046 } 1047 #endif 1048 } 1049 1050 /* ARGSUSED */ 1051 static void 1052 arc_buf_watch(arc_buf_t *buf) 1053 { 1054 #ifndef _KERNEL 1055 if (arc_watch) { 1056 int result; 1057 procctl_t ctl; 1058 ctl.cmd = PCWATCH; 1059 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data; 1060 ctl.prwatch.pr_size = buf->b_hdr->b_size; 1061 ctl.prwatch.pr_wflags = WA_WRITE; 1062 result = write(arc_procfd, &ctl, sizeof (ctl)); 1063 ASSERT3U(result, ==, sizeof (ctl)); 1064 } 1065 #endif 1066 } 1067 1068 void 1069 arc_buf_thaw(arc_buf_t *buf) 1070 { 1071 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1072 if (buf->b_hdr->b_state != arc_anon) 1073 panic("modifying non-anon buffer!"); 1074 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 1075 panic("modifying buffer while i/o in progress!"); 1076 arc_cksum_verify(buf); 1077 } 1078 1079 mutex_enter(&buf->b_hdr->b_freeze_lock); 1080 if (buf->b_hdr->b_freeze_cksum != NULL) { 1081 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1082 buf->b_hdr->b_freeze_cksum = NULL; 1083 } 1084 1085 if (zfs_flags & ZFS_DEBUG_MODIFY) { 1086 if (buf->b_hdr->b_thawed) 1087 kmem_free(buf->b_hdr->b_thawed, 1); 1088 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 1089 } 1090 1091 mutex_exit(&buf->b_hdr->b_freeze_lock); 1092 1093 arc_buf_unwatch(buf); 1094 } 1095 1096 void 1097 arc_buf_freeze(arc_buf_t *buf) 1098 { 1099 kmutex_t *hash_lock; 1100 1101 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1102 return; 1103 1104 hash_lock = HDR_LOCK(buf->b_hdr); 1105 mutex_enter(hash_lock); 1106 1107 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 1108 buf->b_hdr->b_state == arc_anon); 1109 arc_cksum_compute(buf, B_FALSE); 1110 mutex_exit(hash_lock); 1111 1112 } 1113 1114 static void 1115 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1116 { 1117 ASSERT(MUTEX_HELD(hash_lock)); 1118 1119 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1120 (ab->b_state != arc_anon)) { 1121 uint64_t delta = ab->b_size * ab->b_datacnt; 1122 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1123 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1124 1125 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1126 mutex_enter(&ab->b_state->arcs_mtx); 1127 ASSERT(list_link_active(&ab->b_arc_node)); 1128 list_remove(list, ab); 1129 if (GHOST_STATE(ab->b_state)) { 1130 ASSERT0(ab->b_datacnt); 1131 ASSERT3P(ab->b_buf, ==, NULL); 1132 delta = ab->b_size; 1133 } 1134 ASSERT(delta > 0); 1135 ASSERT3U(*size, >=, delta); 1136 atomic_add_64(size, -delta); 1137 mutex_exit(&ab->b_state->arcs_mtx); 1138 /* remove the prefetch flag if we get a reference */ 1139 if (ab->b_flags & ARC_PREFETCH) 1140 ab->b_flags &= ~ARC_PREFETCH; 1141 } 1142 } 1143 1144 static int 1145 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1146 { 1147 int cnt; 1148 arc_state_t *state = ab->b_state; 1149 1150 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1151 ASSERT(!GHOST_STATE(state)); 1152 1153 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1154 (state != arc_anon)) { 1155 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1156 1157 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1158 mutex_enter(&state->arcs_mtx); 1159 ASSERT(!list_link_active(&ab->b_arc_node)); 1160 list_insert_head(&state->arcs_list[ab->b_type], ab); 1161 ASSERT(ab->b_datacnt > 0); 1162 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1163 mutex_exit(&state->arcs_mtx); 1164 } 1165 return (cnt); 1166 } 1167 1168 /* 1169 * Move the supplied buffer to the indicated state. The mutex 1170 * for the buffer must be held by the caller. 1171 */ 1172 static void 1173 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1174 { 1175 arc_state_t *old_state = ab->b_state; 1176 int64_t refcnt = refcount_count(&ab->b_refcnt); 1177 uint64_t from_delta, to_delta; 1178 1179 ASSERT(MUTEX_HELD(hash_lock)); 1180 ASSERT3P(new_state, !=, old_state); 1181 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1182 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1183 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1184 1185 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1186 1187 /* 1188 * If this buffer is evictable, transfer it from the 1189 * old state list to the new state list. 1190 */ 1191 if (refcnt == 0) { 1192 if (old_state != arc_anon) { 1193 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1194 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1195 1196 if (use_mutex) 1197 mutex_enter(&old_state->arcs_mtx); 1198 1199 ASSERT(list_link_active(&ab->b_arc_node)); 1200 list_remove(&old_state->arcs_list[ab->b_type], ab); 1201 1202 /* 1203 * If prefetching out of the ghost cache, 1204 * we will have a non-zero datacnt. 1205 */ 1206 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1207 /* ghost elements have a ghost size */ 1208 ASSERT(ab->b_buf == NULL); 1209 from_delta = ab->b_size; 1210 } 1211 ASSERT3U(*size, >=, from_delta); 1212 atomic_add_64(size, -from_delta); 1213 1214 if (use_mutex) 1215 mutex_exit(&old_state->arcs_mtx); 1216 } 1217 if (new_state != arc_anon) { 1218 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1219 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1220 1221 if (use_mutex) 1222 mutex_enter(&new_state->arcs_mtx); 1223 1224 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1225 1226 /* ghost elements have a ghost size */ 1227 if (GHOST_STATE(new_state)) { 1228 ASSERT(ab->b_datacnt == 0); 1229 ASSERT(ab->b_buf == NULL); 1230 to_delta = ab->b_size; 1231 } 1232 atomic_add_64(size, to_delta); 1233 1234 if (use_mutex) 1235 mutex_exit(&new_state->arcs_mtx); 1236 } 1237 } 1238 1239 ASSERT(!BUF_EMPTY(ab)); 1240 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1241 buf_hash_remove(ab); 1242 1243 /* adjust state sizes */ 1244 if (to_delta) 1245 atomic_add_64(&new_state->arcs_size, to_delta); 1246 if (from_delta) { 1247 ASSERT3U(old_state->arcs_size, >=, from_delta); 1248 atomic_add_64(&old_state->arcs_size, -from_delta); 1249 } 1250 ab->b_state = new_state; 1251 1252 /* adjust l2arc hdr stats */ 1253 if (new_state == arc_l2c_only) 1254 l2arc_hdr_stat_add(); 1255 else if (old_state == arc_l2c_only) 1256 l2arc_hdr_stat_remove(); 1257 } 1258 1259 void 1260 arc_space_consume(uint64_t space, arc_space_type_t type) 1261 { 1262 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1263 1264 switch (type) { 1265 case ARC_SPACE_DATA: 1266 ARCSTAT_INCR(arcstat_data_size, space); 1267 break; 1268 case ARC_SPACE_OTHER: 1269 ARCSTAT_INCR(arcstat_other_size, space); 1270 break; 1271 case ARC_SPACE_HDRS: 1272 ARCSTAT_INCR(arcstat_hdr_size, space); 1273 break; 1274 case ARC_SPACE_L2HDRS: 1275 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1276 break; 1277 } 1278 1279 ARCSTAT_INCR(arcstat_meta_used, space); 1280 atomic_add_64(&arc_size, space); 1281 } 1282 1283 void 1284 arc_space_return(uint64_t space, arc_space_type_t type) 1285 { 1286 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1287 1288 switch (type) { 1289 case ARC_SPACE_DATA: 1290 ARCSTAT_INCR(arcstat_data_size, -space); 1291 break; 1292 case ARC_SPACE_OTHER: 1293 ARCSTAT_INCR(arcstat_other_size, -space); 1294 break; 1295 case ARC_SPACE_HDRS: 1296 ARCSTAT_INCR(arcstat_hdr_size, -space); 1297 break; 1298 case ARC_SPACE_L2HDRS: 1299 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1300 break; 1301 } 1302 1303 ASSERT(arc_meta_used >= space); 1304 if (arc_meta_max < arc_meta_used) 1305 arc_meta_max = arc_meta_used; 1306 ARCSTAT_INCR(arcstat_meta_used, -space); 1307 ASSERT(arc_size >= space); 1308 atomic_add_64(&arc_size, -space); 1309 } 1310 1311 void * 1312 arc_data_buf_alloc(uint64_t size) 1313 { 1314 if (arc_evict_needed(ARC_BUFC_DATA)) 1315 cv_signal(&arc_reclaim_thr_cv); 1316 atomic_add_64(&arc_size, size); 1317 return (zio_data_buf_alloc(size)); 1318 } 1319 1320 void 1321 arc_data_buf_free(void *buf, uint64_t size) 1322 { 1323 zio_data_buf_free(buf, size); 1324 ASSERT(arc_size >= size); 1325 atomic_add_64(&arc_size, -size); 1326 } 1327 1328 arc_buf_t * 1329 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1330 { 1331 arc_buf_hdr_t *hdr; 1332 arc_buf_t *buf; 1333 1334 ASSERT3U(size, >, 0); 1335 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1336 ASSERT(BUF_EMPTY(hdr)); 1337 hdr->b_size = size; 1338 hdr->b_type = type; 1339 hdr->b_spa = spa_load_guid(spa); 1340 hdr->b_state = arc_anon; 1341 hdr->b_arc_access = 0; 1342 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1343 buf->b_hdr = hdr; 1344 buf->b_data = NULL; 1345 buf->b_efunc = NULL; 1346 buf->b_private = NULL; 1347 buf->b_next = NULL; 1348 hdr->b_buf = buf; 1349 arc_get_data_buf(buf); 1350 hdr->b_datacnt = 1; 1351 hdr->b_flags = 0; 1352 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1353 (void) refcount_add(&hdr->b_refcnt, tag); 1354 1355 return (buf); 1356 } 1357 1358 static char *arc_onloan_tag = "onloan"; 1359 1360 /* 1361 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1362 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1363 * buffers must be returned to the arc before they can be used by the DMU or 1364 * freed. 1365 */ 1366 arc_buf_t * 1367 arc_loan_buf(spa_t *spa, int size) 1368 { 1369 arc_buf_t *buf; 1370 1371 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1372 1373 atomic_add_64(&arc_loaned_bytes, size); 1374 return (buf); 1375 } 1376 1377 /* 1378 * Return a loaned arc buffer to the arc. 1379 */ 1380 void 1381 arc_return_buf(arc_buf_t *buf, void *tag) 1382 { 1383 arc_buf_hdr_t *hdr = buf->b_hdr; 1384 1385 ASSERT(buf->b_data != NULL); 1386 (void) refcount_add(&hdr->b_refcnt, tag); 1387 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1388 1389 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1390 } 1391 1392 /* Detach an arc_buf from a dbuf (tag) */ 1393 void 1394 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1395 { 1396 arc_buf_hdr_t *hdr; 1397 1398 ASSERT(buf->b_data != NULL); 1399 hdr = buf->b_hdr; 1400 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1401 (void) refcount_remove(&hdr->b_refcnt, tag); 1402 buf->b_efunc = NULL; 1403 buf->b_private = NULL; 1404 1405 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1406 } 1407 1408 static arc_buf_t * 1409 arc_buf_clone(arc_buf_t *from) 1410 { 1411 arc_buf_t *buf; 1412 arc_buf_hdr_t *hdr = from->b_hdr; 1413 uint64_t size = hdr->b_size; 1414 1415 ASSERT(hdr->b_state != arc_anon); 1416 1417 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1418 buf->b_hdr = hdr; 1419 buf->b_data = NULL; 1420 buf->b_efunc = NULL; 1421 buf->b_private = NULL; 1422 buf->b_next = hdr->b_buf; 1423 hdr->b_buf = buf; 1424 arc_get_data_buf(buf); 1425 bcopy(from->b_data, buf->b_data, size); 1426 1427 /* 1428 * This buffer already exists in the arc so create a duplicate 1429 * copy for the caller. If the buffer is associated with user data 1430 * then track the size and number of duplicates. These stats will be 1431 * updated as duplicate buffers are created and destroyed. 1432 */ 1433 if (hdr->b_type == ARC_BUFC_DATA) { 1434 ARCSTAT_BUMP(arcstat_duplicate_buffers); 1435 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size); 1436 } 1437 hdr->b_datacnt += 1; 1438 return (buf); 1439 } 1440 1441 void 1442 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1443 { 1444 arc_buf_hdr_t *hdr; 1445 kmutex_t *hash_lock; 1446 1447 /* 1448 * Check to see if this buffer is evicted. Callers 1449 * must verify b_data != NULL to know if the add_ref 1450 * was successful. 1451 */ 1452 mutex_enter(&buf->b_evict_lock); 1453 if (buf->b_data == NULL) { 1454 mutex_exit(&buf->b_evict_lock); 1455 return; 1456 } 1457 hash_lock = HDR_LOCK(buf->b_hdr); 1458 mutex_enter(hash_lock); 1459 hdr = buf->b_hdr; 1460 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1461 mutex_exit(&buf->b_evict_lock); 1462 1463 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1464 add_reference(hdr, hash_lock, tag); 1465 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1466 arc_access(hdr, hash_lock); 1467 mutex_exit(hash_lock); 1468 ARCSTAT_BUMP(arcstat_hits); 1469 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1470 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1471 data, metadata, hits); 1472 } 1473 1474 /* 1475 * Free the arc data buffer. If it is an l2arc write in progress, 1476 * the buffer is placed on l2arc_free_on_write to be freed later. 1477 */ 1478 static void 1479 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t)) 1480 { 1481 arc_buf_hdr_t *hdr = buf->b_hdr; 1482 1483 if (HDR_L2_WRITING(hdr)) { 1484 l2arc_data_free_t *df; 1485 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1486 df->l2df_data = buf->b_data; 1487 df->l2df_size = hdr->b_size; 1488 df->l2df_func = free_func; 1489 mutex_enter(&l2arc_free_on_write_mtx); 1490 list_insert_head(l2arc_free_on_write, df); 1491 mutex_exit(&l2arc_free_on_write_mtx); 1492 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1493 } else { 1494 free_func(buf->b_data, hdr->b_size); 1495 } 1496 } 1497 1498 static void 1499 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1500 { 1501 arc_buf_t **bufp; 1502 1503 /* free up data associated with the buf */ 1504 if (buf->b_data) { 1505 arc_state_t *state = buf->b_hdr->b_state; 1506 uint64_t size = buf->b_hdr->b_size; 1507 arc_buf_contents_t type = buf->b_hdr->b_type; 1508 1509 arc_cksum_verify(buf); 1510 arc_buf_unwatch(buf); 1511 1512 if (!recycle) { 1513 if (type == ARC_BUFC_METADATA) { 1514 arc_buf_data_free(buf, zio_buf_free); 1515 arc_space_return(size, ARC_SPACE_DATA); 1516 } else { 1517 ASSERT(type == ARC_BUFC_DATA); 1518 arc_buf_data_free(buf, zio_data_buf_free); 1519 ARCSTAT_INCR(arcstat_data_size, -size); 1520 atomic_add_64(&arc_size, -size); 1521 } 1522 } 1523 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1524 uint64_t *cnt = &state->arcs_lsize[type]; 1525 1526 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1527 ASSERT(state != arc_anon); 1528 1529 ASSERT3U(*cnt, >=, size); 1530 atomic_add_64(cnt, -size); 1531 } 1532 ASSERT3U(state->arcs_size, >=, size); 1533 atomic_add_64(&state->arcs_size, -size); 1534 buf->b_data = NULL; 1535 1536 /* 1537 * If we're destroying a duplicate buffer make sure 1538 * that the appropriate statistics are updated. 1539 */ 1540 if (buf->b_hdr->b_datacnt > 1 && 1541 buf->b_hdr->b_type == ARC_BUFC_DATA) { 1542 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 1543 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size); 1544 } 1545 ASSERT(buf->b_hdr->b_datacnt > 0); 1546 buf->b_hdr->b_datacnt -= 1; 1547 } 1548 1549 /* only remove the buf if requested */ 1550 if (!all) 1551 return; 1552 1553 /* remove the buf from the hdr list */ 1554 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1555 continue; 1556 *bufp = buf->b_next; 1557 buf->b_next = NULL; 1558 1559 ASSERT(buf->b_efunc == NULL); 1560 1561 /* clean up the buf */ 1562 buf->b_hdr = NULL; 1563 kmem_cache_free(buf_cache, buf); 1564 } 1565 1566 static void 1567 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1568 { 1569 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1570 ASSERT3P(hdr->b_state, ==, arc_anon); 1571 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1572 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1573 1574 if (l2hdr != NULL) { 1575 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1576 /* 1577 * To prevent arc_free() and l2arc_evict() from 1578 * attempting to free the same buffer at the same time, 1579 * a FREE_IN_PROGRESS flag is given to arc_free() to 1580 * give it priority. l2arc_evict() can't destroy this 1581 * header while we are waiting on l2arc_buflist_mtx. 1582 * 1583 * The hdr may be removed from l2ad_buflist before we 1584 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1585 */ 1586 if (!buflist_held) { 1587 mutex_enter(&l2arc_buflist_mtx); 1588 l2hdr = hdr->b_l2hdr; 1589 } 1590 1591 if (l2hdr != NULL) { 1592 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1593 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1594 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 1595 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1596 if (hdr->b_state == arc_l2c_only) 1597 l2arc_hdr_stat_remove(); 1598 hdr->b_l2hdr = NULL; 1599 } 1600 1601 if (!buflist_held) 1602 mutex_exit(&l2arc_buflist_mtx); 1603 } 1604 1605 if (!BUF_EMPTY(hdr)) { 1606 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1607 buf_discard_identity(hdr); 1608 } 1609 while (hdr->b_buf) { 1610 arc_buf_t *buf = hdr->b_buf; 1611 1612 if (buf->b_efunc) { 1613 mutex_enter(&arc_eviction_mtx); 1614 mutex_enter(&buf->b_evict_lock); 1615 ASSERT(buf->b_hdr != NULL); 1616 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1617 hdr->b_buf = buf->b_next; 1618 buf->b_hdr = &arc_eviction_hdr; 1619 buf->b_next = arc_eviction_list; 1620 arc_eviction_list = buf; 1621 mutex_exit(&buf->b_evict_lock); 1622 mutex_exit(&arc_eviction_mtx); 1623 } else { 1624 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1625 } 1626 } 1627 if (hdr->b_freeze_cksum != NULL) { 1628 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1629 hdr->b_freeze_cksum = NULL; 1630 } 1631 if (hdr->b_thawed) { 1632 kmem_free(hdr->b_thawed, 1); 1633 hdr->b_thawed = NULL; 1634 } 1635 1636 ASSERT(!list_link_active(&hdr->b_arc_node)); 1637 ASSERT3P(hdr->b_hash_next, ==, NULL); 1638 ASSERT3P(hdr->b_acb, ==, NULL); 1639 kmem_cache_free(hdr_cache, hdr); 1640 } 1641 1642 void 1643 arc_buf_free(arc_buf_t *buf, void *tag) 1644 { 1645 arc_buf_hdr_t *hdr = buf->b_hdr; 1646 int hashed = hdr->b_state != arc_anon; 1647 1648 ASSERT(buf->b_efunc == NULL); 1649 ASSERT(buf->b_data != NULL); 1650 1651 if (hashed) { 1652 kmutex_t *hash_lock = HDR_LOCK(hdr); 1653 1654 mutex_enter(hash_lock); 1655 hdr = buf->b_hdr; 1656 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1657 1658 (void) remove_reference(hdr, hash_lock, tag); 1659 if (hdr->b_datacnt > 1) { 1660 arc_buf_destroy(buf, FALSE, TRUE); 1661 } else { 1662 ASSERT(buf == hdr->b_buf); 1663 ASSERT(buf->b_efunc == NULL); 1664 hdr->b_flags |= ARC_BUF_AVAILABLE; 1665 } 1666 mutex_exit(hash_lock); 1667 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1668 int destroy_hdr; 1669 /* 1670 * We are in the middle of an async write. Don't destroy 1671 * this buffer unless the write completes before we finish 1672 * decrementing the reference count. 1673 */ 1674 mutex_enter(&arc_eviction_mtx); 1675 (void) remove_reference(hdr, NULL, tag); 1676 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1677 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1678 mutex_exit(&arc_eviction_mtx); 1679 if (destroy_hdr) 1680 arc_hdr_destroy(hdr); 1681 } else { 1682 if (remove_reference(hdr, NULL, tag) > 0) 1683 arc_buf_destroy(buf, FALSE, TRUE); 1684 else 1685 arc_hdr_destroy(hdr); 1686 } 1687 } 1688 1689 boolean_t 1690 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1691 { 1692 arc_buf_hdr_t *hdr = buf->b_hdr; 1693 kmutex_t *hash_lock = HDR_LOCK(hdr); 1694 boolean_t no_callback = (buf->b_efunc == NULL); 1695 1696 if (hdr->b_state == arc_anon) { 1697 ASSERT(hdr->b_datacnt == 1); 1698 arc_buf_free(buf, tag); 1699 return (no_callback); 1700 } 1701 1702 mutex_enter(hash_lock); 1703 hdr = buf->b_hdr; 1704 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1705 ASSERT(hdr->b_state != arc_anon); 1706 ASSERT(buf->b_data != NULL); 1707 1708 (void) remove_reference(hdr, hash_lock, tag); 1709 if (hdr->b_datacnt > 1) { 1710 if (no_callback) 1711 arc_buf_destroy(buf, FALSE, TRUE); 1712 } else if (no_callback) { 1713 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1714 ASSERT(buf->b_efunc == NULL); 1715 hdr->b_flags |= ARC_BUF_AVAILABLE; 1716 } 1717 ASSERT(no_callback || hdr->b_datacnt > 1 || 1718 refcount_is_zero(&hdr->b_refcnt)); 1719 mutex_exit(hash_lock); 1720 return (no_callback); 1721 } 1722 1723 int 1724 arc_buf_size(arc_buf_t *buf) 1725 { 1726 return (buf->b_hdr->b_size); 1727 } 1728 1729 /* 1730 * Called from the DMU to determine if the current buffer should be 1731 * evicted. In order to ensure proper locking, the eviction must be initiated 1732 * from the DMU. Return true if the buffer is associated with user data and 1733 * duplicate buffers still exist. 1734 */ 1735 boolean_t 1736 arc_buf_eviction_needed(arc_buf_t *buf) 1737 { 1738 arc_buf_hdr_t *hdr; 1739 boolean_t evict_needed = B_FALSE; 1740 1741 if (zfs_disable_dup_eviction) 1742 return (B_FALSE); 1743 1744 mutex_enter(&buf->b_evict_lock); 1745 hdr = buf->b_hdr; 1746 if (hdr == NULL) { 1747 /* 1748 * We are in arc_do_user_evicts(); let that function 1749 * perform the eviction. 1750 */ 1751 ASSERT(buf->b_data == NULL); 1752 mutex_exit(&buf->b_evict_lock); 1753 return (B_FALSE); 1754 } else if (buf->b_data == NULL) { 1755 /* 1756 * We have already been added to the arc eviction list; 1757 * recommend eviction. 1758 */ 1759 ASSERT3P(hdr, ==, &arc_eviction_hdr); 1760 mutex_exit(&buf->b_evict_lock); 1761 return (B_TRUE); 1762 } 1763 1764 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA) 1765 evict_needed = B_TRUE; 1766 1767 mutex_exit(&buf->b_evict_lock); 1768 return (evict_needed); 1769 } 1770 1771 /* 1772 * Evict buffers from list until we've removed the specified number of 1773 * bytes. Move the removed buffers to the appropriate evict state. 1774 * If the recycle flag is set, then attempt to "recycle" a buffer: 1775 * - look for a buffer to evict that is `bytes' long. 1776 * - return the data block from this buffer rather than freeing it. 1777 * This flag is used by callers that are trying to make space for a 1778 * new buffer in a full arc cache. 1779 * 1780 * This function makes a "best effort". It skips over any buffers 1781 * it can't get a hash_lock on, and so may not catch all candidates. 1782 * It may also return without evicting as much space as requested. 1783 */ 1784 static void * 1785 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1786 arc_buf_contents_t type) 1787 { 1788 arc_state_t *evicted_state; 1789 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1790 arc_buf_hdr_t *ab, *ab_prev = NULL; 1791 list_t *list = &state->arcs_list[type]; 1792 kmutex_t *hash_lock; 1793 boolean_t have_lock; 1794 void *stolen = NULL; 1795 arc_buf_hdr_t marker = { 0 }; 1796 int count = 0; 1797 1798 ASSERT(state == arc_mru || state == arc_mfu); 1799 1800 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1801 1802 mutex_enter(&state->arcs_mtx); 1803 mutex_enter(&evicted_state->arcs_mtx); 1804 1805 for (ab = list_tail(list); ab; ab = ab_prev) { 1806 ab_prev = list_prev(list, ab); 1807 /* prefetch buffers have a minimum lifespan */ 1808 if (HDR_IO_IN_PROGRESS(ab) || 1809 (spa && ab->b_spa != spa) || 1810 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1811 ddi_get_lbolt() - ab->b_arc_access < 1812 arc_min_prefetch_lifespan)) { 1813 skipped++; 1814 continue; 1815 } 1816 /* "lookahead" for better eviction candidate */ 1817 if (recycle && ab->b_size != bytes && 1818 ab_prev && ab_prev->b_size == bytes) 1819 continue; 1820 1821 /* ignore markers */ 1822 if (ab->b_spa == 0) 1823 continue; 1824 1825 /* 1826 * It may take a long time to evict all the bufs requested. 1827 * To avoid blocking all arc activity, periodically drop 1828 * the arcs_mtx and give other threads a chance to run 1829 * before reacquiring the lock. 1830 * 1831 * If we are looking for a buffer to recycle, we are in 1832 * the hot code path, so don't sleep. 1833 */ 1834 if (!recycle && count++ > arc_evict_iterations) { 1835 list_insert_after(list, ab, &marker); 1836 mutex_exit(&evicted_state->arcs_mtx); 1837 mutex_exit(&state->arcs_mtx); 1838 kpreempt(KPREEMPT_SYNC); 1839 mutex_enter(&state->arcs_mtx); 1840 mutex_enter(&evicted_state->arcs_mtx); 1841 ab_prev = list_prev(list, &marker); 1842 list_remove(list, &marker); 1843 count = 0; 1844 continue; 1845 } 1846 1847 hash_lock = HDR_LOCK(ab); 1848 have_lock = MUTEX_HELD(hash_lock); 1849 if (have_lock || mutex_tryenter(hash_lock)) { 1850 ASSERT0(refcount_count(&ab->b_refcnt)); 1851 ASSERT(ab->b_datacnt > 0); 1852 while (ab->b_buf) { 1853 arc_buf_t *buf = ab->b_buf; 1854 if (!mutex_tryenter(&buf->b_evict_lock)) { 1855 missed += 1; 1856 break; 1857 } 1858 if (buf->b_data) { 1859 bytes_evicted += ab->b_size; 1860 if (recycle && ab->b_type == type && 1861 ab->b_size == bytes && 1862 !HDR_L2_WRITING(ab)) { 1863 stolen = buf->b_data; 1864 recycle = FALSE; 1865 } 1866 } 1867 if (buf->b_efunc) { 1868 mutex_enter(&arc_eviction_mtx); 1869 arc_buf_destroy(buf, 1870 buf->b_data == stolen, FALSE); 1871 ab->b_buf = buf->b_next; 1872 buf->b_hdr = &arc_eviction_hdr; 1873 buf->b_next = arc_eviction_list; 1874 arc_eviction_list = buf; 1875 mutex_exit(&arc_eviction_mtx); 1876 mutex_exit(&buf->b_evict_lock); 1877 } else { 1878 mutex_exit(&buf->b_evict_lock); 1879 arc_buf_destroy(buf, 1880 buf->b_data == stolen, TRUE); 1881 } 1882 } 1883 1884 if (ab->b_l2hdr) { 1885 ARCSTAT_INCR(arcstat_evict_l2_cached, 1886 ab->b_size); 1887 } else { 1888 if (l2arc_write_eligible(ab->b_spa, ab)) { 1889 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1890 ab->b_size); 1891 } else { 1892 ARCSTAT_INCR( 1893 arcstat_evict_l2_ineligible, 1894 ab->b_size); 1895 } 1896 } 1897 1898 if (ab->b_datacnt == 0) { 1899 arc_change_state(evicted_state, ab, hash_lock); 1900 ASSERT(HDR_IN_HASH_TABLE(ab)); 1901 ab->b_flags |= ARC_IN_HASH_TABLE; 1902 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1903 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1904 } 1905 if (!have_lock) 1906 mutex_exit(hash_lock); 1907 if (bytes >= 0 && bytes_evicted >= bytes) 1908 break; 1909 } else { 1910 missed += 1; 1911 } 1912 } 1913 1914 mutex_exit(&evicted_state->arcs_mtx); 1915 mutex_exit(&state->arcs_mtx); 1916 1917 if (bytes_evicted < bytes) 1918 dprintf("only evicted %lld bytes from %x", 1919 (longlong_t)bytes_evicted, state); 1920 1921 if (skipped) 1922 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1923 1924 if (missed) 1925 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1926 1927 /* 1928 * Note: we have just evicted some data into the ghost state, 1929 * potentially putting the ghost size over the desired size. Rather 1930 * that evicting from the ghost list in this hot code path, leave 1931 * this chore to the arc_reclaim_thread(). 1932 */ 1933 1934 return (stolen); 1935 } 1936 1937 /* 1938 * Remove buffers from list until we've removed the specified number of 1939 * bytes. Destroy the buffers that are removed. 1940 */ 1941 static void 1942 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1943 { 1944 arc_buf_hdr_t *ab, *ab_prev; 1945 arc_buf_hdr_t marker = { 0 }; 1946 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1947 kmutex_t *hash_lock; 1948 uint64_t bytes_deleted = 0; 1949 uint64_t bufs_skipped = 0; 1950 int count = 0; 1951 1952 ASSERT(GHOST_STATE(state)); 1953 top: 1954 mutex_enter(&state->arcs_mtx); 1955 for (ab = list_tail(list); ab; ab = ab_prev) { 1956 ab_prev = list_prev(list, ab); 1957 if (ab->b_type > ARC_BUFC_NUMTYPES) 1958 panic("invalid ab=%p", (void *)ab); 1959 if (spa && ab->b_spa != spa) 1960 continue; 1961 1962 /* ignore markers */ 1963 if (ab->b_spa == 0) 1964 continue; 1965 1966 hash_lock = HDR_LOCK(ab); 1967 /* caller may be trying to modify this buffer, skip it */ 1968 if (MUTEX_HELD(hash_lock)) 1969 continue; 1970 1971 /* 1972 * It may take a long time to evict all the bufs requested. 1973 * To avoid blocking all arc activity, periodically drop 1974 * the arcs_mtx and give other threads a chance to run 1975 * before reacquiring the lock. 1976 */ 1977 if (count++ > arc_evict_iterations) { 1978 list_insert_after(list, ab, &marker); 1979 mutex_exit(&state->arcs_mtx); 1980 kpreempt(KPREEMPT_SYNC); 1981 mutex_enter(&state->arcs_mtx); 1982 ab_prev = list_prev(list, &marker); 1983 list_remove(list, &marker); 1984 count = 0; 1985 continue; 1986 } 1987 if (mutex_tryenter(hash_lock)) { 1988 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1989 ASSERT(ab->b_buf == NULL); 1990 ARCSTAT_BUMP(arcstat_deleted); 1991 bytes_deleted += ab->b_size; 1992 1993 if (ab->b_l2hdr != NULL) { 1994 /* 1995 * This buffer is cached on the 2nd Level ARC; 1996 * don't destroy the header. 1997 */ 1998 arc_change_state(arc_l2c_only, ab, hash_lock); 1999 mutex_exit(hash_lock); 2000 } else { 2001 arc_change_state(arc_anon, ab, hash_lock); 2002 mutex_exit(hash_lock); 2003 arc_hdr_destroy(ab); 2004 } 2005 2006 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 2007 if (bytes >= 0 && bytes_deleted >= bytes) 2008 break; 2009 } else if (bytes < 0) { 2010 /* 2011 * Insert a list marker and then wait for the 2012 * hash lock to become available. Once its 2013 * available, restart from where we left off. 2014 */ 2015 list_insert_after(list, ab, &marker); 2016 mutex_exit(&state->arcs_mtx); 2017 mutex_enter(hash_lock); 2018 mutex_exit(hash_lock); 2019 mutex_enter(&state->arcs_mtx); 2020 ab_prev = list_prev(list, &marker); 2021 list_remove(list, &marker); 2022 } else { 2023 bufs_skipped += 1; 2024 } 2025 2026 } 2027 mutex_exit(&state->arcs_mtx); 2028 2029 if (list == &state->arcs_list[ARC_BUFC_DATA] && 2030 (bytes < 0 || bytes_deleted < bytes)) { 2031 list = &state->arcs_list[ARC_BUFC_METADATA]; 2032 goto top; 2033 } 2034 2035 if (bufs_skipped) { 2036 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 2037 ASSERT(bytes >= 0); 2038 } 2039 2040 if (bytes_deleted < bytes) 2041 dprintf("only deleted %lld bytes from %p", 2042 (longlong_t)bytes_deleted, state); 2043 } 2044 2045 static void 2046 arc_adjust(void) 2047 { 2048 int64_t adjustment, delta; 2049 2050 /* 2051 * Adjust MRU size 2052 */ 2053 2054 adjustment = MIN((int64_t)(arc_size - arc_c), 2055 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - 2056 arc_p)); 2057 2058 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 2059 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 2060 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 2061 adjustment -= delta; 2062 } 2063 2064 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2065 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 2066 (void) arc_evict(arc_mru, NULL, delta, FALSE, 2067 ARC_BUFC_METADATA); 2068 } 2069 2070 /* 2071 * Adjust MFU size 2072 */ 2073 2074 adjustment = arc_size - arc_c; 2075 2076 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 2077 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 2078 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 2079 adjustment -= delta; 2080 } 2081 2082 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 2083 int64_t delta = MIN(adjustment, 2084 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 2085 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 2086 ARC_BUFC_METADATA); 2087 } 2088 2089 /* 2090 * Adjust ghost lists 2091 */ 2092 2093 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 2094 2095 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 2096 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 2097 arc_evict_ghost(arc_mru_ghost, NULL, delta); 2098 } 2099 2100 adjustment = 2101 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 2102 2103 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 2104 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 2105 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 2106 } 2107 } 2108 2109 static void 2110 arc_do_user_evicts(void) 2111 { 2112 mutex_enter(&arc_eviction_mtx); 2113 while (arc_eviction_list != NULL) { 2114 arc_buf_t *buf = arc_eviction_list; 2115 arc_eviction_list = buf->b_next; 2116 mutex_enter(&buf->b_evict_lock); 2117 buf->b_hdr = NULL; 2118 mutex_exit(&buf->b_evict_lock); 2119 mutex_exit(&arc_eviction_mtx); 2120 2121 if (buf->b_efunc != NULL) 2122 VERIFY(buf->b_efunc(buf) == 0); 2123 2124 buf->b_efunc = NULL; 2125 buf->b_private = NULL; 2126 kmem_cache_free(buf_cache, buf); 2127 mutex_enter(&arc_eviction_mtx); 2128 } 2129 mutex_exit(&arc_eviction_mtx); 2130 } 2131 2132 /* 2133 * Flush all *evictable* data from the cache for the given spa. 2134 * NOTE: this will not touch "active" (i.e. referenced) data. 2135 */ 2136 void 2137 arc_flush(spa_t *spa) 2138 { 2139 uint64_t guid = 0; 2140 2141 if (spa) 2142 guid = spa_load_guid(spa); 2143 2144 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 2145 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 2146 if (spa) 2147 break; 2148 } 2149 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 2150 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 2151 if (spa) 2152 break; 2153 } 2154 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 2155 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 2156 if (spa) 2157 break; 2158 } 2159 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 2160 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 2161 if (spa) 2162 break; 2163 } 2164 2165 arc_evict_ghost(arc_mru_ghost, guid, -1); 2166 arc_evict_ghost(arc_mfu_ghost, guid, -1); 2167 2168 mutex_enter(&arc_reclaim_thr_lock); 2169 arc_do_user_evicts(); 2170 mutex_exit(&arc_reclaim_thr_lock); 2171 ASSERT(spa || arc_eviction_list == NULL); 2172 } 2173 2174 void 2175 arc_shrink(void) 2176 { 2177 if (arc_c > arc_c_min) { 2178 uint64_t to_free; 2179 2180 #ifdef _KERNEL 2181 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 2182 #else 2183 to_free = arc_c >> arc_shrink_shift; 2184 #endif 2185 if (arc_c > arc_c_min + to_free) 2186 atomic_add_64(&arc_c, -to_free); 2187 else 2188 arc_c = arc_c_min; 2189 2190 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 2191 if (arc_c > arc_size) 2192 arc_c = MAX(arc_size, arc_c_min); 2193 if (arc_p > arc_c) 2194 arc_p = (arc_c >> 1); 2195 ASSERT(arc_c >= arc_c_min); 2196 ASSERT((int64_t)arc_p >= 0); 2197 } 2198 2199 if (arc_size > arc_c) 2200 arc_adjust(); 2201 } 2202 2203 /* 2204 * Determine if the system is under memory pressure and is asking 2205 * to reclaim memory. A return value of 1 indicates that the system 2206 * is under memory pressure and that the arc should adjust accordingly. 2207 */ 2208 static int 2209 arc_reclaim_needed(void) 2210 { 2211 uint64_t extra; 2212 2213 #ifdef _KERNEL 2214 2215 if (needfree) 2216 return (1); 2217 2218 /* 2219 * take 'desfree' extra pages, so we reclaim sooner, rather than later 2220 */ 2221 extra = desfree; 2222 2223 /* 2224 * check that we're out of range of the pageout scanner. It starts to 2225 * schedule paging if freemem is less than lotsfree and needfree. 2226 * lotsfree is the high-water mark for pageout, and needfree is the 2227 * number of needed free pages. We add extra pages here to make sure 2228 * the scanner doesn't start up while we're freeing memory. 2229 */ 2230 if (freemem < lotsfree + needfree + extra) 2231 return (1); 2232 2233 /* 2234 * check to make sure that swapfs has enough space so that anon 2235 * reservations can still succeed. anon_resvmem() checks that the 2236 * availrmem is greater than swapfs_minfree, and the number of reserved 2237 * swap pages. We also add a bit of extra here just to prevent 2238 * circumstances from getting really dire. 2239 */ 2240 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2241 return (1); 2242 2243 /* 2244 * Check that we have enough availrmem that memory locking (e.g., via 2245 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum 2246 * stores the number of pages that cannot be locked; when availrmem 2247 * drops below pages_pp_maximum, page locking mechanisms such as 2248 * page_pp_lock() will fail.) 2249 */ 2250 if (availrmem <= pages_pp_maximum) 2251 return (1); 2252 2253 #if defined(__i386) 2254 /* 2255 * If we're on an i386 platform, it's possible that we'll exhaust the 2256 * kernel heap space before we ever run out of available physical 2257 * memory. Most checks of the size of the heap_area compare against 2258 * tune.t_minarmem, which is the minimum available real memory that we 2259 * can have in the system. However, this is generally fixed at 25 pages 2260 * which is so low that it's useless. In this comparison, we seek to 2261 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2262 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2263 * free) 2264 */ 2265 if (vmem_size(heap_arena, VMEM_FREE) < 2266 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2)) 2267 return (1); 2268 #endif 2269 2270 /* 2271 * If zio data pages are being allocated out of a separate heap segment, 2272 * then enforce that the size of available vmem for this arena remains 2273 * above about 1/16th free. 2274 * 2275 * Note: The 1/16th arena free requirement was put in place 2276 * to aggressively evict memory from the arc in order to avoid 2277 * memory fragmentation issues. 2278 */ 2279 if (zio_arena != NULL && 2280 vmem_size(zio_arena, VMEM_FREE) < 2281 (vmem_size(zio_arena, VMEM_ALLOC) >> 4)) 2282 return (1); 2283 #else 2284 if (spa_get_random(100) == 0) 2285 return (1); 2286 #endif 2287 return (0); 2288 } 2289 2290 static void 2291 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2292 { 2293 size_t i; 2294 kmem_cache_t *prev_cache = NULL; 2295 kmem_cache_t *prev_data_cache = NULL; 2296 extern kmem_cache_t *zio_buf_cache[]; 2297 extern kmem_cache_t *zio_data_buf_cache[]; 2298 2299 #ifdef _KERNEL 2300 if (arc_meta_used >= arc_meta_limit) { 2301 /* 2302 * We are exceeding our meta-data cache limit. 2303 * Purge some DNLC entries to release holds on meta-data. 2304 */ 2305 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2306 } 2307 #if defined(__i386) 2308 /* 2309 * Reclaim unused memory from all kmem caches. 2310 */ 2311 kmem_reap(); 2312 #endif 2313 #endif 2314 2315 /* 2316 * An aggressive reclamation will shrink the cache size as well as 2317 * reap free buffers from the arc kmem caches. 2318 */ 2319 if (strat == ARC_RECLAIM_AGGR) 2320 arc_shrink(); 2321 2322 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2323 if (zio_buf_cache[i] != prev_cache) { 2324 prev_cache = zio_buf_cache[i]; 2325 kmem_cache_reap_now(zio_buf_cache[i]); 2326 } 2327 if (zio_data_buf_cache[i] != prev_data_cache) { 2328 prev_data_cache = zio_data_buf_cache[i]; 2329 kmem_cache_reap_now(zio_data_buf_cache[i]); 2330 } 2331 } 2332 kmem_cache_reap_now(buf_cache); 2333 kmem_cache_reap_now(hdr_cache); 2334 2335 /* 2336 * Ask the vmem areana to reclaim unused memory from its 2337 * quantum caches. 2338 */ 2339 if (zio_arena != NULL && strat == ARC_RECLAIM_AGGR) 2340 vmem_qcache_reap(zio_arena); 2341 } 2342 2343 static void 2344 arc_reclaim_thread(void) 2345 { 2346 clock_t growtime = 0; 2347 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2348 callb_cpr_t cpr; 2349 2350 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2351 2352 mutex_enter(&arc_reclaim_thr_lock); 2353 while (arc_thread_exit == 0) { 2354 if (arc_reclaim_needed()) { 2355 2356 if (arc_no_grow) { 2357 if (last_reclaim == ARC_RECLAIM_CONS) { 2358 last_reclaim = ARC_RECLAIM_AGGR; 2359 } else { 2360 last_reclaim = ARC_RECLAIM_CONS; 2361 } 2362 } else { 2363 arc_no_grow = TRUE; 2364 last_reclaim = ARC_RECLAIM_AGGR; 2365 membar_producer(); 2366 } 2367 2368 /* reset the growth delay for every reclaim */ 2369 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2370 2371 arc_kmem_reap_now(last_reclaim); 2372 arc_warm = B_TRUE; 2373 2374 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2375 arc_no_grow = FALSE; 2376 } 2377 2378 arc_adjust(); 2379 2380 if (arc_eviction_list != NULL) 2381 arc_do_user_evicts(); 2382 2383 /* block until needed, or one second, whichever is shorter */ 2384 CALLB_CPR_SAFE_BEGIN(&cpr); 2385 (void) cv_timedwait(&arc_reclaim_thr_cv, 2386 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2387 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2388 } 2389 2390 arc_thread_exit = 0; 2391 cv_broadcast(&arc_reclaim_thr_cv); 2392 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2393 thread_exit(); 2394 } 2395 2396 /* 2397 * Adapt arc info given the number of bytes we are trying to add and 2398 * the state that we are comming from. This function is only called 2399 * when we are adding new content to the cache. 2400 */ 2401 static void 2402 arc_adapt(int bytes, arc_state_t *state) 2403 { 2404 int mult; 2405 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2406 2407 if (state == arc_l2c_only) 2408 return; 2409 2410 ASSERT(bytes > 0); 2411 /* 2412 * Adapt the target size of the MRU list: 2413 * - if we just hit in the MRU ghost list, then increase 2414 * the target size of the MRU list. 2415 * - if we just hit in the MFU ghost list, then increase 2416 * the target size of the MFU list by decreasing the 2417 * target size of the MRU list. 2418 */ 2419 if (state == arc_mru_ghost) { 2420 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2421 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2422 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 2423 2424 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2425 } else if (state == arc_mfu_ghost) { 2426 uint64_t delta; 2427 2428 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2429 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2430 mult = MIN(mult, 10); 2431 2432 delta = MIN(bytes * mult, arc_p); 2433 arc_p = MAX(arc_p_min, arc_p - delta); 2434 } 2435 ASSERT((int64_t)arc_p >= 0); 2436 2437 if (arc_reclaim_needed()) { 2438 cv_signal(&arc_reclaim_thr_cv); 2439 return; 2440 } 2441 2442 if (arc_no_grow) 2443 return; 2444 2445 if (arc_c >= arc_c_max) 2446 return; 2447 2448 /* 2449 * If we're within (2 * maxblocksize) bytes of the target 2450 * cache size, increment the target cache size 2451 */ 2452 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2453 atomic_add_64(&arc_c, (int64_t)bytes); 2454 if (arc_c > arc_c_max) 2455 arc_c = arc_c_max; 2456 else if (state == arc_anon) 2457 atomic_add_64(&arc_p, (int64_t)bytes); 2458 if (arc_p > arc_c) 2459 arc_p = arc_c; 2460 } 2461 ASSERT((int64_t)arc_p >= 0); 2462 } 2463 2464 /* 2465 * Check if the cache has reached its limits and eviction is required 2466 * prior to insert. 2467 */ 2468 static int 2469 arc_evict_needed(arc_buf_contents_t type) 2470 { 2471 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2472 return (1); 2473 2474 if (arc_reclaim_needed()) 2475 return (1); 2476 2477 return (arc_size > arc_c); 2478 } 2479 2480 /* 2481 * The buffer, supplied as the first argument, needs a data block. 2482 * So, if we are at cache max, determine which cache should be victimized. 2483 * We have the following cases: 2484 * 2485 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2486 * In this situation if we're out of space, but the resident size of the MFU is 2487 * under the limit, victimize the MFU cache to satisfy this insertion request. 2488 * 2489 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2490 * Here, we've used up all of the available space for the MRU, so we need to 2491 * evict from our own cache instead. Evict from the set of resident MRU 2492 * entries. 2493 * 2494 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2495 * c minus p represents the MFU space in the cache, since p is the size of the 2496 * cache that is dedicated to the MRU. In this situation there's still space on 2497 * the MFU side, so the MRU side needs to be victimized. 2498 * 2499 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2500 * MFU's resident set is consuming more space than it has been allotted. In 2501 * this situation, we must victimize our own cache, the MFU, for this insertion. 2502 */ 2503 static void 2504 arc_get_data_buf(arc_buf_t *buf) 2505 { 2506 arc_state_t *state = buf->b_hdr->b_state; 2507 uint64_t size = buf->b_hdr->b_size; 2508 arc_buf_contents_t type = buf->b_hdr->b_type; 2509 2510 arc_adapt(size, state); 2511 2512 /* 2513 * We have not yet reached cache maximum size, 2514 * just allocate a new buffer. 2515 */ 2516 if (!arc_evict_needed(type)) { 2517 if (type == ARC_BUFC_METADATA) { 2518 buf->b_data = zio_buf_alloc(size); 2519 arc_space_consume(size, ARC_SPACE_DATA); 2520 } else { 2521 ASSERT(type == ARC_BUFC_DATA); 2522 buf->b_data = zio_data_buf_alloc(size); 2523 ARCSTAT_INCR(arcstat_data_size, size); 2524 atomic_add_64(&arc_size, size); 2525 } 2526 goto out; 2527 } 2528 2529 /* 2530 * If we are prefetching from the mfu ghost list, this buffer 2531 * will end up on the mru list; so steal space from there. 2532 */ 2533 if (state == arc_mfu_ghost) 2534 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2535 else if (state == arc_mru_ghost) 2536 state = arc_mru; 2537 2538 if (state == arc_mru || state == arc_anon) { 2539 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2540 state = (arc_mfu->arcs_lsize[type] >= size && 2541 arc_p > mru_used) ? arc_mfu : arc_mru; 2542 } else { 2543 /* MFU cases */ 2544 uint64_t mfu_space = arc_c - arc_p; 2545 state = (arc_mru->arcs_lsize[type] >= size && 2546 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2547 } 2548 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2549 if (type == ARC_BUFC_METADATA) { 2550 buf->b_data = zio_buf_alloc(size); 2551 arc_space_consume(size, ARC_SPACE_DATA); 2552 } else { 2553 ASSERT(type == ARC_BUFC_DATA); 2554 buf->b_data = zio_data_buf_alloc(size); 2555 ARCSTAT_INCR(arcstat_data_size, size); 2556 atomic_add_64(&arc_size, size); 2557 } 2558 ARCSTAT_BUMP(arcstat_recycle_miss); 2559 } 2560 ASSERT(buf->b_data != NULL); 2561 out: 2562 /* 2563 * Update the state size. Note that ghost states have a 2564 * "ghost size" and so don't need to be updated. 2565 */ 2566 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2567 arc_buf_hdr_t *hdr = buf->b_hdr; 2568 2569 atomic_add_64(&hdr->b_state->arcs_size, size); 2570 if (list_link_active(&hdr->b_arc_node)) { 2571 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2572 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2573 } 2574 /* 2575 * If we are growing the cache, and we are adding anonymous 2576 * data, and we have outgrown arc_p, update arc_p 2577 */ 2578 if (arc_size < arc_c && hdr->b_state == arc_anon && 2579 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2580 arc_p = MIN(arc_c, arc_p + size); 2581 } 2582 } 2583 2584 /* 2585 * This routine is called whenever a buffer is accessed. 2586 * NOTE: the hash lock is dropped in this function. 2587 */ 2588 static void 2589 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2590 { 2591 clock_t now; 2592 2593 ASSERT(MUTEX_HELD(hash_lock)); 2594 2595 if (buf->b_state == arc_anon) { 2596 /* 2597 * This buffer is not in the cache, and does not 2598 * appear in our "ghost" list. Add the new buffer 2599 * to the MRU state. 2600 */ 2601 2602 ASSERT(buf->b_arc_access == 0); 2603 buf->b_arc_access = ddi_get_lbolt(); 2604 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2605 arc_change_state(arc_mru, buf, hash_lock); 2606 2607 } else if (buf->b_state == arc_mru) { 2608 now = ddi_get_lbolt(); 2609 2610 /* 2611 * If this buffer is here because of a prefetch, then either: 2612 * - clear the flag if this is a "referencing" read 2613 * (any subsequent access will bump this into the MFU state). 2614 * or 2615 * - move the buffer to the head of the list if this is 2616 * another prefetch (to make it less likely to be evicted). 2617 */ 2618 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2619 if (refcount_count(&buf->b_refcnt) == 0) { 2620 ASSERT(list_link_active(&buf->b_arc_node)); 2621 } else { 2622 buf->b_flags &= ~ARC_PREFETCH; 2623 ARCSTAT_BUMP(arcstat_mru_hits); 2624 } 2625 buf->b_arc_access = now; 2626 return; 2627 } 2628 2629 /* 2630 * This buffer has been "accessed" only once so far, 2631 * but it is still in the cache. Move it to the MFU 2632 * state. 2633 */ 2634 if (now > buf->b_arc_access + ARC_MINTIME) { 2635 /* 2636 * More than 125ms have passed since we 2637 * instantiated this buffer. Move it to the 2638 * most frequently used state. 2639 */ 2640 buf->b_arc_access = now; 2641 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2642 arc_change_state(arc_mfu, buf, hash_lock); 2643 } 2644 ARCSTAT_BUMP(arcstat_mru_hits); 2645 } else if (buf->b_state == arc_mru_ghost) { 2646 arc_state_t *new_state; 2647 /* 2648 * This buffer has been "accessed" recently, but 2649 * was evicted from the cache. Move it to the 2650 * MFU state. 2651 */ 2652 2653 if (buf->b_flags & ARC_PREFETCH) { 2654 new_state = arc_mru; 2655 if (refcount_count(&buf->b_refcnt) > 0) 2656 buf->b_flags &= ~ARC_PREFETCH; 2657 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2658 } else { 2659 new_state = arc_mfu; 2660 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2661 } 2662 2663 buf->b_arc_access = ddi_get_lbolt(); 2664 arc_change_state(new_state, buf, hash_lock); 2665 2666 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2667 } else if (buf->b_state == arc_mfu) { 2668 /* 2669 * This buffer has been accessed more than once and is 2670 * still in the cache. Keep it in the MFU state. 2671 * 2672 * NOTE: an add_reference() that occurred when we did 2673 * the arc_read() will have kicked this off the list. 2674 * If it was a prefetch, we will explicitly move it to 2675 * the head of the list now. 2676 */ 2677 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2678 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2679 ASSERT(list_link_active(&buf->b_arc_node)); 2680 } 2681 ARCSTAT_BUMP(arcstat_mfu_hits); 2682 buf->b_arc_access = ddi_get_lbolt(); 2683 } else if (buf->b_state == arc_mfu_ghost) { 2684 arc_state_t *new_state = arc_mfu; 2685 /* 2686 * This buffer has been accessed more than once but has 2687 * been evicted from the cache. Move it back to the 2688 * MFU state. 2689 */ 2690 2691 if (buf->b_flags & ARC_PREFETCH) { 2692 /* 2693 * This is a prefetch access... 2694 * move this block back to the MRU state. 2695 */ 2696 ASSERT0(refcount_count(&buf->b_refcnt)); 2697 new_state = arc_mru; 2698 } 2699 2700 buf->b_arc_access = ddi_get_lbolt(); 2701 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2702 arc_change_state(new_state, buf, hash_lock); 2703 2704 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2705 } else if (buf->b_state == arc_l2c_only) { 2706 /* 2707 * This buffer is on the 2nd Level ARC. 2708 */ 2709 2710 buf->b_arc_access = ddi_get_lbolt(); 2711 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2712 arc_change_state(arc_mfu, buf, hash_lock); 2713 } else { 2714 ASSERT(!"invalid arc state"); 2715 } 2716 } 2717 2718 /* a generic arc_done_func_t which you can use */ 2719 /* ARGSUSED */ 2720 void 2721 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2722 { 2723 if (zio == NULL || zio->io_error == 0) 2724 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2725 VERIFY(arc_buf_remove_ref(buf, arg)); 2726 } 2727 2728 /* a generic arc_done_func_t */ 2729 void 2730 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2731 { 2732 arc_buf_t **bufp = arg; 2733 if (zio && zio->io_error) { 2734 VERIFY(arc_buf_remove_ref(buf, arg)); 2735 *bufp = NULL; 2736 } else { 2737 *bufp = buf; 2738 ASSERT(buf->b_data); 2739 } 2740 } 2741 2742 static void 2743 arc_read_done(zio_t *zio) 2744 { 2745 arc_buf_hdr_t *hdr; 2746 arc_buf_t *buf; 2747 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2748 kmutex_t *hash_lock = NULL; 2749 arc_callback_t *callback_list, *acb; 2750 int freeable = FALSE; 2751 2752 buf = zio->io_private; 2753 hdr = buf->b_hdr; 2754 2755 /* 2756 * The hdr was inserted into hash-table and removed from lists 2757 * prior to starting I/O. We should find this header, since 2758 * it's in the hash table, and it should be legit since it's 2759 * not possible to evict it during the I/O. The only possible 2760 * reason for it not to be found is if we were freed during the 2761 * read. 2762 */ 2763 if (HDR_IN_HASH_TABLE(hdr)) { 2764 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 2765 ASSERT3U(hdr->b_dva.dva_word[0], ==, 2766 BP_IDENTITY(zio->io_bp)->dva_word[0]); 2767 ASSERT3U(hdr->b_dva.dva_word[1], ==, 2768 BP_IDENTITY(zio->io_bp)->dva_word[1]); 2769 2770 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp, 2771 &hash_lock); 2772 2773 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && 2774 hash_lock == NULL) || 2775 (found == hdr && 2776 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2777 (found == hdr && HDR_L2_READING(hdr))); 2778 } 2779 2780 hdr->b_flags &= ~ARC_L2_EVICTED; 2781 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2782 hdr->b_flags &= ~ARC_L2CACHE; 2783 2784 /* byteswap if necessary */ 2785 callback_list = hdr->b_acb; 2786 ASSERT(callback_list != NULL); 2787 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2788 dmu_object_byteswap_t bswap = 2789 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 2790 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2791 byteswap_uint64_array : 2792 dmu_ot_byteswap[bswap].ob_func; 2793 func(buf->b_data, hdr->b_size); 2794 } 2795 2796 arc_cksum_compute(buf, B_FALSE); 2797 arc_buf_watch(buf); 2798 2799 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2800 /* 2801 * Only call arc_access on anonymous buffers. This is because 2802 * if we've issued an I/O for an evicted buffer, we've already 2803 * called arc_access (to prevent any simultaneous readers from 2804 * getting confused). 2805 */ 2806 arc_access(hdr, hash_lock); 2807 } 2808 2809 /* create copies of the data buffer for the callers */ 2810 abuf = buf; 2811 for (acb = callback_list; acb; acb = acb->acb_next) { 2812 if (acb->acb_done) { 2813 if (abuf == NULL) { 2814 ARCSTAT_BUMP(arcstat_duplicate_reads); 2815 abuf = arc_buf_clone(buf); 2816 } 2817 acb->acb_buf = abuf; 2818 abuf = NULL; 2819 } 2820 } 2821 hdr->b_acb = NULL; 2822 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2823 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2824 if (abuf == buf) { 2825 ASSERT(buf->b_efunc == NULL); 2826 ASSERT(hdr->b_datacnt == 1); 2827 hdr->b_flags |= ARC_BUF_AVAILABLE; 2828 } 2829 2830 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2831 2832 if (zio->io_error != 0) { 2833 hdr->b_flags |= ARC_IO_ERROR; 2834 if (hdr->b_state != arc_anon) 2835 arc_change_state(arc_anon, hdr, hash_lock); 2836 if (HDR_IN_HASH_TABLE(hdr)) 2837 buf_hash_remove(hdr); 2838 freeable = refcount_is_zero(&hdr->b_refcnt); 2839 } 2840 2841 /* 2842 * Broadcast before we drop the hash_lock to avoid the possibility 2843 * that the hdr (and hence the cv) might be freed before we get to 2844 * the cv_broadcast(). 2845 */ 2846 cv_broadcast(&hdr->b_cv); 2847 2848 if (hash_lock) { 2849 mutex_exit(hash_lock); 2850 } else { 2851 /* 2852 * This block was freed while we waited for the read to 2853 * complete. It has been removed from the hash table and 2854 * moved to the anonymous state (so that it won't show up 2855 * in the cache). 2856 */ 2857 ASSERT3P(hdr->b_state, ==, arc_anon); 2858 freeable = refcount_is_zero(&hdr->b_refcnt); 2859 } 2860 2861 /* execute each callback and free its structure */ 2862 while ((acb = callback_list) != NULL) { 2863 if (acb->acb_done) 2864 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2865 2866 if (acb->acb_zio_dummy != NULL) { 2867 acb->acb_zio_dummy->io_error = zio->io_error; 2868 zio_nowait(acb->acb_zio_dummy); 2869 } 2870 2871 callback_list = acb->acb_next; 2872 kmem_free(acb, sizeof (arc_callback_t)); 2873 } 2874 2875 if (freeable) 2876 arc_hdr_destroy(hdr); 2877 } 2878 2879 /* 2880 * "Read" the block at the specified DVA (in bp) via the 2881 * cache. If the block is found in the cache, invoke the provided 2882 * callback immediately and return. Note that the `zio' parameter 2883 * in the callback will be NULL in this case, since no IO was 2884 * required. If the block is not in the cache pass the read request 2885 * on to the spa with a substitute callback function, so that the 2886 * requested block will be added to the cache. 2887 * 2888 * If a read request arrives for a block that has a read in-progress, 2889 * either wait for the in-progress read to complete (and return the 2890 * results); or, if this is a read with a "done" func, add a record 2891 * to the read to invoke the "done" func when the read completes, 2892 * and return; or just return. 2893 * 2894 * arc_read_done() will invoke all the requested "done" functions 2895 * for readers of this block. 2896 */ 2897 int 2898 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, 2899 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags, 2900 const zbookmark_t *zb) 2901 { 2902 arc_buf_hdr_t *hdr = NULL; 2903 arc_buf_t *buf = NULL; 2904 kmutex_t *hash_lock = NULL; 2905 zio_t *rzio; 2906 uint64_t guid = spa_load_guid(spa); 2907 2908 ASSERT(!BP_IS_EMBEDDED(bp) || 2909 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 2910 2911 top: 2912 if (!BP_IS_EMBEDDED(bp)) { 2913 /* 2914 * Embedded BP's have no DVA and require no I/O to "read". 2915 * Create an anonymous arc buf to back it. 2916 */ 2917 hdr = buf_hash_find(guid, bp, &hash_lock); 2918 } 2919 2920 if (hdr != NULL && hdr->b_datacnt > 0) { 2921 2922 *arc_flags |= ARC_CACHED; 2923 2924 if (HDR_IO_IN_PROGRESS(hdr)) { 2925 2926 if (*arc_flags & ARC_WAIT) { 2927 cv_wait(&hdr->b_cv, hash_lock); 2928 mutex_exit(hash_lock); 2929 goto top; 2930 } 2931 ASSERT(*arc_flags & ARC_NOWAIT); 2932 2933 if (done) { 2934 arc_callback_t *acb = NULL; 2935 2936 acb = kmem_zalloc(sizeof (arc_callback_t), 2937 KM_SLEEP); 2938 acb->acb_done = done; 2939 acb->acb_private = private; 2940 if (pio != NULL) 2941 acb->acb_zio_dummy = zio_null(pio, 2942 spa, NULL, NULL, NULL, zio_flags); 2943 2944 ASSERT(acb->acb_done != NULL); 2945 acb->acb_next = hdr->b_acb; 2946 hdr->b_acb = acb; 2947 add_reference(hdr, hash_lock, private); 2948 mutex_exit(hash_lock); 2949 return (0); 2950 } 2951 mutex_exit(hash_lock); 2952 return (0); 2953 } 2954 2955 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2956 2957 if (done) { 2958 add_reference(hdr, hash_lock, private); 2959 /* 2960 * If this block is already in use, create a new 2961 * copy of the data so that we will be guaranteed 2962 * that arc_release() will always succeed. 2963 */ 2964 buf = hdr->b_buf; 2965 ASSERT(buf); 2966 ASSERT(buf->b_data); 2967 if (HDR_BUF_AVAILABLE(hdr)) { 2968 ASSERT(buf->b_efunc == NULL); 2969 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2970 } else { 2971 buf = arc_buf_clone(buf); 2972 } 2973 2974 } else if (*arc_flags & ARC_PREFETCH && 2975 refcount_count(&hdr->b_refcnt) == 0) { 2976 hdr->b_flags |= ARC_PREFETCH; 2977 } 2978 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2979 arc_access(hdr, hash_lock); 2980 if (*arc_flags & ARC_L2CACHE) 2981 hdr->b_flags |= ARC_L2CACHE; 2982 if (*arc_flags & ARC_L2COMPRESS) 2983 hdr->b_flags |= ARC_L2COMPRESS; 2984 mutex_exit(hash_lock); 2985 ARCSTAT_BUMP(arcstat_hits); 2986 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2987 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2988 data, metadata, hits); 2989 2990 if (done) 2991 done(NULL, buf, private); 2992 } else { 2993 uint64_t size = BP_GET_LSIZE(bp); 2994 arc_callback_t *acb; 2995 vdev_t *vd = NULL; 2996 uint64_t addr = 0; 2997 boolean_t devw = B_FALSE; 2998 enum zio_compress b_compress = ZIO_COMPRESS_OFF; 2999 uint64_t b_asize = 0; 3000 3001 if (hdr == NULL) { 3002 /* this block is not in the cache */ 3003 arc_buf_hdr_t *exists = NULL; 3004 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 3005 buf = arc_buf_alloc(spa, size, private, type); 3006 hdr = buf->b_hdr; 3007 if (!BP_IS_EMBEDDED(bp)) { 3008 hdr->b_dva = *BP_IDENTITY(bp); 3009 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 3010 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 3011 exists = buf_hash_insert(hdr, &hash_lock); 3012 } 3013 if (exists != NULL) { 3014 /* somebody beat us to the hash insert */ 3015 mutex_exit(hash_lock); 3016 buf_discard_identity(hdr); 3017 (void) arc_buf_remove_ref(buf, private); 3018 goto top; /* restart the IO request */ 3019 } 3020 /* if this is a prefetch, we don't have a reference */ 3021 if (*arc_flags & ARC_PREFETCH) { 3022 (void) remove_reference(hdr, hash_lock, 3023 private); 3024 hdr->b_flags |= ARC_PREFETCH; 3025 } 3026 if (*arc_flags & ARC_L2CACHE) 3027 hdr->b_flags |= ARC_L2CACHE; 3028 if (*arc_flags & ARC_L2COMPRESS) 3029 hdr->b_flags |= ARC_L2COMPRESS; 3030 if (BP_GET_LEVEL(bp) > 0) 3031 hdr->b_flags |= ARC_INDIRECT; 3032 } else { 3033 /* this block is in the ghost cache */ 3034 ASSERT(GHOST_STATE(hdr->b_state)); 3035 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3036 ASSERT0(refcount_count(&hdr->b_refcnt)); 3037 ASSERT(hdr->b_buf == NULL); 3038 3039 /* if this is a prefetch, we don't have a reference */ 3040 if (*arc_flags & ARC_PREFETCH) 3041 hdr->b_flags |= ARC_PREFETCH; 3042 else 3043 add_reference(hdr, hash_lock, private); 3044 if (*arc_flags & ARC_L2CACHE) 3045 hdr->b_flags |= ARC_L2CACHE; 3046 if (*arc_flags & ARC_L2COMPRESS) 3047 hdr->b_flags |= ARC_L2COMPRESS; 3048 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 3049 buf->b_hdr = hdr; 3050 buf->b_data = NULL; 3051 buf->b_efunc = NULL; 3052 buf->b_private = NULL; 3053 buf->b_next = NULL; 3054 hdr->b_buf = buf; 3055 ASSERT(hdr->b_datacnt == 0); 3056 hdr->b_datacnt = 1; 3057 arc_get_data_buf(buf); 3058 arc_access(hdr, hash_lock); 3059 } 3060 3061 ASSERT(!GHOST_STATE(hdr->b_state)); 3062 3063 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 3064 acb->acb_done = done; 3065 acb->acb_private = private; 3066 3067 ASSERT(hdr->b_acb == NULL); 3068 hdr->b_acb = acb; 3069 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3070 3071 if (hdr->b_l2hdr != NULL && 3072 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 3073 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 3074 addr = hdr->b_l2hdr->b_daddr; 3075 b_compress = hdr->b_l2hdr->b_compress; 3076 b_asize = hdr->b_l2hdr->b_asize; 3077 /* 3078 * Lock out device removal. 3079 */ 3080 if (vdev_is_dead(vd) || 3081 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 3082 vd = NULL; 3083 } 3084 3085 if (hash_lock != NULL) 3086 mutex_exit(hash_lock); 3087 3088 /* 3089 * At this point, we have a level 1 cache miss. Try again in 3090 * L2ARC if possible. 3091 */ 3092 ASSERT3U(hdr->b_size, ==, size); 3093 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 3094 uint64_t, size, zbookmark_t *, zb); 3095 ARCSTAT_BUMP(arcstat_misses); 3096 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 3097 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 3098 data, metadata, misses); 3099 3100 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 3101 /* 3102 * Read from the L2ARC if the following are true: 3103 * 1. The L2ARC vdev was previously cached. 3104 * 2. This buffer still has L2ARC metadata. 3105 * 3. This buffer isn't currently writing to the L2ARC. 3106 * 4. The L2ARC entry wasn't evicted, which may 3107 * also have invalidated the vdev. 3108 * 5. This isn't prefetch and l2arc_noprefetch is set. 3109 */ 3110 if (hdr->b_l2hdr != NULL && 3111 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 3112 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 3113 l2arc_read_callback_t *cb; 3114 3115 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 3116 ARCSTAT_BUMP(arcstat_l2_hits); 3117 3118 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 3119 KM_SLEEP); 3120 cb->l2rcb_buf = buf; 3121 cb->l2rcb_spa = spa; 3122 cb->l2rcb_bp = *bp; 3123 cb->l2rcb_zb = *zb; 3124 cb->l2rcb_flags = zio_flags; 3125 cb->l2rcb_compress = b_compress; 3126 3127 ASSERT(addr >= VDEV_LABEL_START_SIZE && 3128 addr + size < vd->vdev_psize - 3129 VDEV_LABEL_END_SIZE); 3130 3131 /* 3132 * l2arc read. The SCL_L2ARC lock will be 3133 * released by l2arc_read_done(). 3134 * Issue a null zio if the underlying buffer 3135 * was squashed to zero size by compression. 3136 */ 3137 if (b_compress == ZIO_COMPRESS_EMPTY) { 3138 rzio = zio_null(pio, spa, vd, 3139 l2arc_read_done, cb, 3140 zio_flags | ZIO_FLAG_DONT_CACHE | 3141 ZIO_FLAG_CANFAIL | 3142 ZIO_FLAG_DONT_PROPAGATE | 3143 ZIO_FLAG_DONT_RETRY); 3144 } else { 3145 rzio = zio_read_phys(pio, vd, addr, 3146 b_asize, buf->b_data, 3147 ZIO_CHECKSUM_OFF, 3148 l2arc_read_done, cb, priority, 3149 zio_flags | ZIO_FLAG_DONT_CACHE | 3150 ZIO_FLAG_CANFAIL | 3151 ZIO_FLAG_DONT_PROPAGATE | 3152 ZIO_FLAG_DONT_RETRY, B_FALSE); 3153 } 3154 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 3155 zio_t *, rzio); 3156 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize); 3157 3158 if (*arc_flags & ARC_NOWAIT) { 3159 zio_nowait(rzio); 3160 return (0); 3161 } 3162 3163 ASSERT(*arc_flags & ARC_WAIT); 3164 if (zio_wait(rzio) == 0) 3165 return (0); 3166 3167 /* l2arc read error; goto zio_read() */ 3168 } else { 3169 DTRACE_PROBE1(l2arc__miss, 3170 arc_buf_hdr_t *, hdr); 3171 ARCSTAT_BUMP(arcstat_l2_misses); 3172 if (HDR_L2_WRITING(hdr)) 3173 ARCSTAT_BUMP(arcstat_l2_rw_clash); 3174 spa_config_exit(spa, SCL_L2ARC, vd); 3175 } 3176 } else { 3177 if (vd != NULL) 3178 spa_config_exit(spa, SCL_L2ARC, vd); 3179 if (l2arc_ndev != 0) { 3180 DTRACE_PROBE1(l2arc__miss, 3181 arc_buf_hdr_t *, hdr); 3182 ARCSTAT_BUMP(arcstat_l2_misses); 3183 } 3184 } 3185 3186 rzio = zio_read(pio, spa, bp, buf->b_data, size, 3187 arc_read_done, buf, priority, zio_flags, zb); 3188 3189 if (*arc_flags & ARC_WAIT) 3190 return (zio_wait(rzio)); 3191 3192 ASSERT(*arc_flags & ARC_NOWAIT); 3193 zio_nowait(rzio); 3194 } 3195 return (0); 3196 } 3197 3198 void 3199 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 3200 { 3201 ASSERT(buf->b_hdr != NULL); 3202 ASSERT(buf->b_hdr->b_state != arc_anon); 3203 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 3204 ASSERT(buf->b_efunc == NULL); 3205 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 3206 3207 buf->b_efunc = func; 3208 buf->b_private = private; 3209 } 3210 3211 /* 3212 * Notify the arc that a block was freed, and thus will never be used again. 3213 */ 3214 void 3215 arc_freed(spa_t *spa, const blkptr_t *bp) 3216 { 3217 arc_buf_hdr_t *hdr; 3218 kmutex_t *hash_lock; 3219 uint64_t guid = spa_load_guid(spa); 3220 3221 ASSERT(!BP_IS_EMBEDDED(bp)); 3222 3223 hdr = buf_hash_find(guid, bp, &hash_lock); 3224 if (hdr == NULL) 3225 return; 3226 if (HDR_BUF_AVAILABLE(hdr)) { 3227 arc_buf_t *buf = hdr->b_buf; 3228 add_reference(hdr, hash_lock, FTAG); 3229 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3230 mutex_exit(hash_lock); 3231 3232 arc_release(buf, FTAG); 3233 (void) arc_buf_remove_ref(buf, FTAG); 3234 } else { 3235 mutex_exit(hash_lock); 3236 } 3237 3238 } 3239 3240 /* 3241 * This is used by the DMU to let the ARC know that a buffer is 3242 * being evicted, so the ARC should clean up. If this arc buf 3243 * is not yet in the evicted state, it will be put there. 3244 */ 3245 int 3246 arc_buf_evict(arc_buf_t *buf) 3247 { 3248 arc_buf_hdr_t *hdr; 3249 kmutex_t *hash_lock; 3250 arc_buf_t **bufp; 3251 3252 mutex_enter(&buf->b_evict_lock); 3253 hdr = buf->b_hdr; 3254 if (hdr == NULL) { 3255 /* 3256 * We are in arc_do_user_evicts(). 3257 */ 3258 ASSERT(buf->b_data == NULL); 3259 mutex_exit(&buf->b_evict_lock); 3260 return (0); 3261 } else if (buf->b_data == NULL) { 3262 arc_buf_t copy = *buf; /* structure assignment */ 3263 /* 3264 * We are on the eviction list; process this buffer now 3265 * but let arc_do_user_evicts() do the reaping. 3266 */ 3267 buf->b_efunc = NULL; 3268 mutex_exit(&buf->b_evict_lock); 3269 VERIFY(copy.b_efunc(©) == 0); 3270 return (1); 3271 } 3272 hash_lock = HDR_LOCK(hdr); 3273 mutex_enter(hash_lock); 3274 hdr = buf->b_hdr; 3275 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3276 3277 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 3278 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 3279 3280 /* 3281 * Pull this buffer off of the hdr 3282 */ 3283 bufp = &hdr->b_buf; 3284 while (*bufp != buf) 3285 bufp = &(*bufp)->b_next; 3286 *bufp = buf->b_next; 3287 3288 ASSERT(buf->b_data != NULL); 3289 arc_buf_destroy(buf, FALSE, FALSE); 3290 3291 if (hdr->b_datacnt == 0) { 3292 arc_state_t *old_state = hdr->b_state; 3293 arc_state_t *evicted_state; 3294 3295 ASSERT(hdr->b_buf == NULL); 3296 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 3297 3298 evicted_state = 3299 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3300 3301 mutex_enter(&old_state->arcs_mtx); 3302 mutex_enter(&evicted_state->arcs_mtx); 3303 3304 arc_change_state(evicted_state, hdr, hash_lock); 3305 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3306 hdr->b_flags |= ARC_IN_HASH_TABLE; 3307 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 3308 3309 mutex_exit(&evicted_state->arcs_mtx); 3310 mutex_exit(&old_state->arcs_mtx); 3311 } 3312 mutex_exit(hash_lock); 3313 mutex_exit(&buf->b_evict_lock); 3314 3315 VERIFY(buf->b_efunc(buf) == 0); 3316 buf->b_efunc = NULL; 3317 buf->b_private = NULL; 3318 buf->b_hdr = NULL; 3319 buf->b_next = NULL; 3320 kmem_cache_free(buf_cache, buf); 3321 return (1); 3322 } 3323 3324 /* 3325 * Release this buffer from the cache, making it an anonymous buffer. This 3326 * must be done after a read and prior to modifying the buffer contents. 3327 * If the buffer has more than one reference, we must make 3328 * a new hdr for the buffer. 3329 */ 3330 void 3331 arc_release(arc_buf_t *buf, void *tag) 3332 { 3333 arc_buf_hdr_t *hdr; 3334 kmutex_t *hash_lock = NULL; 3335 l2arc_buf_hdr_t *l2hdr; 3336 uint64_t buf_size; 3337 3338 /* 3339 * It would be nice to assert that if it's DMU metadata (level > 3340 * 0 || it's the dnode file), then it must be syncing context. 3341 * But we don't know that information at this level. 3342 */ 3343 3344 mutex_enter(&buf->b_evict_lock); 3345 hdr = buf->b_hdr; 3346 3347 /* this buffer is not on any list */ 3348 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3349 3350 if (hdr->b_state == arc_anon) { 3351 /* this buffer is already released */ 3352 ASSERT(buf->b_efunc == NULL); 3353 } else { 3354 hash_lock = HDR_LOCK(hdr); 3355 mutex_enter(hash_lock); 3356 hdr = buf->b_hdr; 3357 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3358 } 3359 3360 l2hdr = hdr->b_l2hdr; 3361 if (l2hdr) { 3362 mutex_enter(&l2arc_buflist_mtx); 3363 hdr->b_l2hdr = NULL; 3364 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3365 } 3366 buf_size = hdr->b_size; 3367 3368 /* 3369 * Do we have more than one buf? 3370 */ 3371 if (hdr->b_datacnt > 1) { 3372 arc_buf_hdr_t *nhdr; 3373 arc_buf_t **bufp; 3374 uint64_t blksz = hdr->b_size; 3375 uint64_t spa = hdr->b_spa; 3376 arc_buf_contents_t type = hdr->b_type; 3377 uint32_t flags = hdr->b_flags; 3378 3379 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3380 /* 3381 * Pull the data off of this hdr and attach it to 3382 * a new anonymous hdr. 3383 */ 3384 (void) remove_reference(hdr, hash_lock, tag); 3385 bufp = &hdr->b_buf; 3386 while (*bufp != buf) 3387 bufp = &(*bufp)->b_next; 3388 *bufp = buf->b_next; 3389 buf->b_next = NULL; 3390 3391 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3392 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3393 if (refcount_is_zero(&hdr->b_refcnt)) { 3394 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3395 ASSERT3U(*size, >=, hdr->b_size); 3396 atomic_add_64(size, -hdr->b_size); 3397 } 3398 3399 /* 3400 * We're releasing a duplicate user data buffer, update 3401 * our statistics accordingly. 3402 */ 3403 if (hdr->b_type == ARC_BUFC_DATA) { 3404 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers); 3405 ARCSTAT_INCR(arcstat_duplicate_buffers_size, 3406 -hdr->b_size); 3407 } 3408 hdr->b_datacnt -= 1; 3409 arc_cksum_verify(buf); 3410 arc_buf_unwatch(buf); 3411 3412 mutex_exit(hash_lock); 3413 3414 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3415 nhdr->b_size = blksz; 3416 nhdr->b_spa = spa; 3417 nhdr->b_type = type; 3418 nhdr->b_buf = buf; 3419 nhdr->b_state = arc_anon; 3420 nhdr->b_arc_access = 0; 3421 nhdr->b_flags = flags & ARC_L2_WRITING; 3422 nhdr->b_l2hdr = NULL; 3423 nhdr->b_datacnt = 1; 3424 nhdr->b_freeze_cksum = NULL; 3425 (void) refcount_add(&nhdr->b_refcnt, tag); 3426 buf->b_hdr = nhdr; 3427 mutex_exit(&buf->b_evict_lock); 3428 atomic_add_64(&arc_anon->arcs_size, blksz); 3429 } else { 3430 mutex_exit(&buf->b_evict_lock); 3431 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3432 ASSERT(!list_link_active(&hdr->b_arc_node)); 3433 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3434 if (hdr->b_state != arc_anon) 3435 arc_change_state(arc_anon, hdr, hash_lock); 3436 hdr->b_arc_access = 0; 3437 if (hash_lock) 3438 mutex_exit(hash_lock); 3439 3440 buf_discard_identity(hdr); 3441 arc_buf_thaw(buf); 3442 } 3443 buf->b_efunc = NULL; 3444 buf->b_private = NULL; 3445 3446 if (l2hdr) { 3447 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize); 3448 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3449 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3450 mutex_exit(&l2arc_buflist_mtx); 3451 } 3452 } 3453 3454 int 3455 arc_released(arc_buf_t *buf) 3456 { 3457 int released; 3458 3459 mutex_enter(&buf->b_evict_lock); 3460 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3461 mutex_exit(&buf->b_evict_lock); 3462 return (released); 3463 } 3464 3465 int 3466 arc_has_callback(arc_buf_t *buf) 3467 { 3468 int callback; 3469 3470 mutex_enter(&buf->b_evict_lock); 3471 callback = (buf->b_efunc != NULL); 3472 mutex_exit(&buf->b_evict_lock); 3473 return (callback); 3474 } 3475 3476 #ifdef ZFS_DEBUG 3477 int 3478 arc_referenced(arc_buf_t *buf) 3479 { 3480 int referenced; 3481 3482 mutex_enter(&buf->b_evict_lock); 3483 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3484 mutex_exit(&buf->b_evict_lock); 3485 return (referenced); 3486 } 3487 #endif 3488 3489 static void 3490 arc_write_ready(zio_t *zio) 3491 { 3492 arc_write_callback_t *callback = zio->io_private; 3493 arc_buf_t *buf = callback->awcb_buf; 3494 arc_buf_hdr_t *hdr = buf->b_hdr; 3495 3496 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3497 callback->awcb_ready(zio, buf, callback->awcb_private); 3498 3499 /* 3500 * If the IO is already in progress, then this is a re-write 3501 * attempt, so we need to thaw and re-compute the cksum. 3502 * It is the responsibility of the callback to handle the 3503 * accounting for any re-write attempt. 3504 */ 3505 if (HDR_IO_IN_PROGRESS(hdr)) { 3506 mutex_enter(&hdr->b_freeze_lock); 3507 if (hdr->b_freeze_cksum != NULL) { 3508 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3509 hdr->b_freeze_cksum = NULL; 3510 } 3511 mutex_exit(&hdr->b_freeze_lock); 3512 } 3513 arc_cksum_compute(buf, B_FALSE); 3514 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3515 } 3516 3517 /* 3518 * The SPA calls this callback for each physical write that happens on behalf 3519 * of a logical write. See the comment in dbuf_write_physdone() for details. 3520 */ 3521 static void 3522 arc_write_physdone(zio_t *zio) 3523 { 3524 arc_write_callback_t *cb = zio->io_private; 3525 if (cb->awcb_physdone != NULL) 3526 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 3527 } 3528 3529 static void 3530 arc_write_done(zio_t *zio) 3531 { 3532 arc_write_callback_t *callback = zio->io_private; 3533 arc_buf_t *buf = callback->awcb_buf; 3534 arc_buf_hdr_t *hdr = buf->b_hdr; 3535 3536 ASSERT(hdr->b_acb == NULL); 3537 3538 if (zio->io_error == 0) { 3539 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 3540 buf_discard_identity(hdr); 3541 } else { 3542 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3543 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3544 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3545 } 3546 } else { 3547 ASSERT(BUF_EMPTY(hdr)); 3548 } 3549 3550 /* 3551 * If the block to be written was all-zero or compressed enough to be 3552 * embedded in the BP, no write was performed so there will be no 3553 * dva/birth/checksum. The buffer must therefore remain anonymous 3554 * (and uncached). 3555 */ 3556 if (!BUF_EMPTY(hdr)) { 3557 arc_buf_hdr_t *exists; 3558 kmutex_t *hash_lock; 3559 3560 ASSERT(zio->io_error == 0); 3561 3562 arc_cksum_verify(buf); 3563 3564 exists = buf_hash_insert(hdr, &hash_lock); 3565 if (exists) { 3566 /* 3567 * This can only happen if we overwrite for 3568 * sync-to-convergence, because we remove 3569 * buffers from the hash table when we arc_free(). 3570 */ 3571 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3572 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3573 panic("bad overwrite, hdr=%p exists=%p", 3574 (void *)hdr, (void *)exists); 3575 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3576 arc_change_state(arc_anon, exists, hash_lock); 3577 mutex_exit(hash_lock); 3578 arc_hdr_destroy(exists); 3579 exists = buf_hash_insert(hdr, &hash_lock); 3580 ASSERT3P(exists, ==, NULL); 3581 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 3582 /* nopwrite */ 3583 ASSERT(zio->io_prop.zp_nopwrite); 3584 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3585 panic("bad nopwrite, hdr=%p exists=%p", 3586 (void *)hdr, (void *)exists); 3587 } else { 3588 /* Dedup */ 3589 ASSERT(hdr->b_datacnt == 1); 3590 ASSERT(hdr->b_state == arc_anon); 3591 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3592 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3593 } 3594 } 3595 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3596 /* if it's not anon, we are doing a scrub */ 3597 if (!exists && hdr->b_state == arc_anon) 3598 arc_access(hdr, hash_lock); 3599 mutex_exit(hash_lock); 3600 } else { 3601 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3602 } 3603 3604 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3605 callback->awcb_done(zio, buf, callback->awcb_private); 3606 3607 kmem_free(callback, sizeof (arc_write_callback_t)); 3608 } 3609 3610 zio_t * 3611 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3612 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress, 3613 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone, 3614 arc_done_func_t *done, void *private, zio_priority_t priority, 3615 int zio_flags, const zbookmark_t *zb) 3616 { 3617 arc_buf_hdr_t *hdr = buf->b_hdr; 3618 arc_write_callback_t *callback; 3619 zio_t *zio; 3620 3621 ASSERT(ready != NULL); 3622 ASSERT(done != NULL); 3623 ASSERT(!HDR_IO_ERROR(hdr)); 3624 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3625 ASSERT(hdr->b_acb == NULL); 3626 if (l2arc) 3627 hdr->b_flags |= ARC_L2CACHE; 3628 if (l2arc_compress) 3629 hdr->b_flags |= ARC_L2COMPRESS; 3630 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3631 callback->awcb_ready = ready; 3632 callback->awcb_physdone = physdone; 3633 callback->awcb_done = done; 3634 callback->awcb_private = private; 3635 callback->awcb_buf = buf; 3636 3637 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3638 arc_write_ready, arc_write_physdone, arc_write_done, callback, 3639 priority, zio_flags, zb); 3640 3641 return (zio); 3642 } 3643 3644 static int 3645 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3646 { 3647 #ifdef _KERNEL 3648 uint64_t available_memory = ptob(freemem); 3649 static uint64_t page_load = 0; 3650 static uint64_t last_txg = 0; 3651 3652 #if defined(__i386) 3653 available_memory = 3654 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3655 #endif 3656 3657 if (freemem > physmem * arc_lotsfree_percent / 100) 3658 return (0); 3659 3660 if (txg > last_txg) { 3661 last_txg = txg; 3662 page_load = 0; 3663 } 3664 /* 3665 * If we are in pageout, we know that memory is already tight, 3666 * the arc is already going to be evicting, so we just want to 3667 * continue to let page writes occur as quickly as possible. 3668 */ 3669 if (curproc == proc_pageout) { 3670 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3671 return (SET_ERROR(ERESTART)); 3672 /* Note: reserve is inflated, so we deflate */ 3673 page_load += reserve / 8; 3674 return (0); 3675 } else if (page_load > 0 && arc_reclaim_needed()) { 3676 /* memory is low, delay before restarting */ 3677 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3678 return (SET_ERROR(EAGAIN)); 3679 } 3680 page_load = 0; 3681 #endif 3682 return (0); 3683 } 3684 3685 void 3686 arc_tempreserve_clear(uint64_t reserve) 3687 { 3688 atomic_add_64(&arc_tempreserve, -reserve); 3689 ASSERT((int64_t)arc_tempreserve >= 0); 3690 } 3691 3692 int 3693 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3694 { 3695 int error; 3696 uint64_t anon_size; 3697 3698 if (reserve > arc_c/4 && !arc_no_grow) 3699 arc_c = MIN(arc_c_max, reserve * 4); 3700 if (reserve > arc_c) 3701 return (SET_ERROR(ENOMEM)); 3702 3703 /* 3704 * Don't count loaned bufs as in flight dirty data to prevent long 3705 * network delays from blocking transactions that are ready to be 3706 * assigned to a txg. 3707 */ 3708 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3709 3710 /* 3711 * Writes will, almost always, require additional memory allocations 3712 * in order to compress/encrypt/etc the data. We therefore need to 3713 * make sure that there is sufficient available memory for this. 3714 */ 3715 error = arc_memory_throttle(reserve, txg); 3716 if (error != 0) 3717 return (error); 3718 3719 /* 3720 * Throttle writes when the amount of dirty data in the cache 3721 * gets too large. We try to keep the cache less than half full 3722 * of dirty blocks so that our sync times don't grow too large. 3723 * Note: if two requests come in concurrently, we might let them 3724 * both succeed, when one of them should fail. Not a huge deal. 3725 */ 3726 3727 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3728 anon_size > arc_c / 4) { 3729 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3730 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3731 arc_tempreserve>>10, 3732 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3733 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3734 reserve>>10, arc_c>>10); 3735 return (SET_ERROR(ERESTART)); 3736 } 3737 atomic_add_64(&arc_tempreserve, reserve); 3738 return (0); 3739 } 3740 3741 void 3742 arc_init(void) 3743 { 3744 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3745 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3746 3747 /* Convert seconds to clock ticks */ 3748 arc_min_prefetch_lifespan = 1 * hz; 3749 3750 /* Start out with 1/8 of all memory */ 3751 arc_c = physmem * PAGESIZE / 8; 3752 3753 #ifdef _KERNEL 3754 /* 3755 * On architectures where the physical memory can be larger 3756 * than the addressable space (intel in 32-bit mode), we may 3757 * need to limit the cache to 1/8 of VM size. 3758 */ 3759 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3760 #endif 3761 3762 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3763 arc_c_min = MAX(arc_c / 4, 64<<20); 3764 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3765 if (arc_c * 8 >= 1<<30) 3766 arc_c_max = (arc_c * 8) - (1<<30); 3767 else 3768 arc_c_max = arc_c_min; 3769 arc_c_max = MAX(arc_c * 6, arc_c_max); 3770 3771 /* 3772 * Allow the tunables to override our calculations if they are 3773 * reasonable (ie. over 64MB) 3774 */ 3775 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3776 arc_c_max = zfs_arc_max; 3777 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3778 arc_c_min = zfs_arc_min; 3779 3780 arc_c = arc_c_max; 3781 arc_p = (arc_c >> 1); 3782 3783 /* limit meta-data to 1/4 of the arc capacity */ 3784 arc_meta_limit = arc_c_max / 4; 3785 3786 /* Allow the tunable to override if it is reasonable */ 3787 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3788 arc_meta_limit = zfs_arc_meta_limit; 3789 3790 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3791 arc_c_min = arc_meta_limit / 2; 3792 3793 if (zfs_arc_grow_retry > 0) 3794 arc_grow_retry = zfs_arc_grow_retry; 3795 3796 if (zfs_arc_shrink_shift > 0) 3797 arc_shrink_shift = zfs_arc_shrink_shift; 3798 3799 if (zfs_arc_p_min_shift > 0) 3800 arc_p_min_shift = zfs_arc_p_min_shift; 3801 3802 /* if kmem_flags are set, lets try to use less memory */ 3803 if (kmem_debugging()) 3804 arc_c = arc_c / 2; 3805 if (arc_c < arc_c_min) 3806 arc_c = arc_c_min; 3807 3808 arc_anon = &ARC_anon; 3809 arc_mru = &ARC_mru; 3810 arc_mru_ghost = &ARC_mru_ghost; 3811 arc_mfu = &ARC_mfu; 3812 arc_mfu_ghost = &ARC_mfu_ghost; 3813 arc_l2c_only = &ARC_l2c_only; 3814 arc_size = 0; 3815 3816 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3817 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3818 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3819 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3820 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3821 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3822 3823 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3824 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3825 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3826 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3827 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3828 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3829 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3830 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3831 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3832 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3833 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3834 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3835 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3836 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3837 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3838 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3839 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3840 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3841 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3842 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3843 3844 buf_init(); 3845 3846 arc_thread_exit = 0; 3847 arc_eviction_list = NULL; 3848 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3849 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3850 3851 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3852 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3853 3854 if (arc_ksp != NULL) { 3855 arc_ksp->ks_data = &arc_stats; 3856 kstat_install(arc_ksp); 3857 } 3858 3859 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3860 TS_RUN, minclsyspri); 3861 3862 arc_dead = FALSE; 3863 arc_warm = B_FALSE; 3864 3865 /* 3866 * Calculate maximum amount of dirty data per pool. 3867 * 3868 * If it has been set by /etc/system, take that. 3869 * Otherwise, use a percentage of physical memory defined by 3870 * zfs_dirty_data_max_percent (default 10%) with a cap at 3871 * zfs_dirty_data_max_max (default 4GB). 3872 */ 3873 if (zfs_dirty_data_max == 0) { 3874 zfs_dirty_data_max = physmem * PAGESIZE * 3875 zfs_dirty_data_max_percent / 100; 3876 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 3877 zfs_dirty_data_max_max); 3878 } 3879 } 3880 3881 void 3882 arc_fini(void) 3883 { 3884 mutex_enter(&arc_reclaim_thr_lock); 3885 arc_thread_exit = 1; 3886 while (arc_thread_exit != 0) 3887 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3888 mutex_exit(&arc_reclaim_thr_lock); 3889 3890 arc_flush(NULL); 3891 3892 arc_dead = TRUE; 3893 3894 if (arc_ksp != NULL) { 3895 kstat_delete(arc_ksp); 3896 arc_ksp = NULL; 3897 } 3898 3899 mutex_destroy(&arc_eviction_mtx); 3900 mutex_destroy(&arc_reclaim_thr_lock); 3901 cv_destroy(&arc_reclaim_thr_cv); 3902 3903 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3904 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3905 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3906 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3907 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3908 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3909 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3910 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3911 3912 mutex_destroy(&arc_anon->arcs_mtx); 3913 mutex_destroy(&arc_mru->arcs_mtx); 3914 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3915 mutex_destroy(&arc_mfu->arcs_mtx); 3916 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3917 mutex_destroy(&arc_l2c_only->arcs_mtx); 3918 3919 buf_fini(); 3920 3921 ASSERT(arc_loaned_bytes == 0); 3922 } 3923 3924 /* 3925 * Level 2 ARC 3926 * 3927 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3928 * It uses dedicated storage devices to hold cached data, which are populated 3929 * using large infrequent writes. The main role of this cache is to boost 3930 * the performance of random read workloads. The intended L2ARC devices 3931 * include short-stroked disks, solid state disks, and other media with 3932 * substantially faster read latency than disk. 3933 * 3934 * +-----------------------+ 3935 * | ARC | 3936 * +-----------------------+ 3937 * | ^ ^ 3938 * | | | 3939 * l2arc_feed_thread() arc_read() 3940 * | | | 3941 * | l2arc read | 3942 * V | | 3943 * +---------------+ | 3944 * | L2ARC | | 3945 * +---------------+ | 3946 * | ^ | 3947 * l2arc_write() | | 3948 * | | | 3949 * V | | 3950 * +-------+ +-------+ 3951 * | vdev | | vdev | 3952 * | cache | | cache | 3953 * +-------+ +-------+ 3954 * +=========+ .-----. 3955 * : L2ARC : |-_____-| 3956 * : devices : | Disks | 3957 * +=========+ `-_____-' 3958 * 3959 * Read requests are satisfied from the following sources, in order: 3960 * 3961 * 1) ARC 3962 * 2) vdev cache of L2ARC devices 3963 * 3) L2ARC devices 3964 * 4) vdev cache of disks 3965 * 5) disks 3966 * 3967 * Some L2ARC device types exhibit extremely slow write performance. 3968 * To accommodate for this there are some significant differences between 3969 * the L2ARC and traditional cache design: 3970 * 3971 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3972 * the ARC behave as usual, freeing buffers and placing headers on ghost 3973 * lists. The ARC does not send buffers to the L2ARC during eviction as 3974 * this would add inflated write latencies for all ARC memory pressure. 3975 * 3976 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3977 * It does this by periodically scanning buffers from the eviction-end of 3978 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3979 * not already there. It scans until a headroom of buffers is satisfied, 3980 * which itself is a buffer for ARC eviction. If a compressible buffer is 3981 * found during scanning and selected for writing to an L2ARC device, we 3982 * temporarily boost scanning headroom during the next scan cycle to make 3983 * sure we adapt to compression effects (which might significantly reduce 3984 * the data volume we write to L2ARC). The thread that does this is 3985 * l2arc_feed_thread(), illustrated below; example sizes are included to 3986 * provide a better sense of ratio than this diagram: 3987 * 3988 * head --> tail 3989 * +---------------------+----------+ 3990 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3991 * +---------------------+----------+ | o L2ARC eligible 3992 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3993 * +---------------------+----------+ | 3994 * 15.9 Gbytes ^ 32 Mbytes | 3995 * headroom | 3996 * l2arc_feed_thread() 3997 * | 3998 * l2arc write hand <--[oooo]--' 3999 * | 8 Mbyte 4000 * | write max 4001 * V 4002 * +==============================+ 4003 * L2ARC dev |####|#|###|###| |####| ... | 4004 * +==============================+ 4005 * 32 Gbytes 4006 * 4007 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 4008 * evicted, then the L2ARC has cached a buffer much sooner than it probably 4009 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 4010 * safe to say that this is an uncommon case, since buffers at the end of 4011 * the ARC lists have moved there due to inactivity. 4012 * 4013 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 4014 * then the L2ARC simply misses copying some buffers. This serves as a 4015 * pressure valve to prevent heavy read workloads from both stalling the ARC 4016 * with waits and clogging the L2ARC with writes. This also helps prevent 4017 * the potential for the L2ARC to churn if it attempts to cache content too 4018 * quickly, such as during backups of the entire pool. 4019 * 4020 * 5. After system boot and before the ARC has filled main memory, there are 4021 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 4022 * lists can remain mostly static. Instead of searching from tail of these 4023 * lists as pictured, the l2arc_feed_thread() will search from the list heads 4024 * for eligible buffers, greatly increasing its chance of finding them. 4025 * 4026 * The L2ARC device write speed is also boosted during this time so that 4027 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 4028 * there are no L2ARC reads, and no fear of degrading read performance 4029 * through increased writes. 4030 * 4031 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 4032 * the vdev queue can aggregate them into larger and fewer writes. Each 4033 * device is written to in a rotor fashion, sweeping writes through 4034 * available space then repeating. 4035 * 4036 * 7. The L2ARC does not store dirty content. It never needs to flush 4037 * write buffers back to disk based storage. 4038 * 4039 * 8. If an ARC buffer is written (and dirtied) which also exists in the 4040 * L2ARC, the now stale L2ARC buffer is immediately dropped. 4041 * 4042 * The performance of the L2ARC can be tweaked by a number of tunables, which 4043 * may be necessary for different workloads: 4044 * 4045 * l2arc_write_max max write bytes per interval 4046 * l2arc_write_boost extra write bytes during device warmup 4047 * l2arc_noprefetch skip caching prefetched buffers 4048 * l2arc_headroom number of max device writes to precache 4049 * l2arc_headroom_boost when we find compressed buffers during ARC 4050 * scanning, we multiply headroom by this 4051 * percentage factor for the next scan cycle, 4052 * since more compressed buffers are likely to 4053 * be present 4054 * l2arc_feed_secs seconds between L2ARC writing 4055 * 4056 * Tunables may be removed or added as future performance improvements are 4057 * integrated, and also may become zpool properties. 4058 * 4059 * There are three key functions that control how the L2ARC warms up: 4060 * 4061 * l2arc_write_eligible() check if a buffer is eligible to cache 4062 * l2arc_write_size() calculate how much to write 4063 * l2arc_write_interval() calculate sleep delay between writes 4064 * 4065 * These three functions determine what to write, how much, and how quickly 4066 * to send writes. 4067 */ 4068 4069 static boolean_t 4070 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 4071 { 4072 /* 4073 * A buffer is *not* eligible for the L2ARC if it: 4074 * 1. belongs to a different spa. 4075 * 2. is already cached on the L2ARC. 4076 * 3. has an I/O in progress (it may be an incomplete read). 4077 * 4. is flagged not eligible (zfs property). 4078 */ 4079 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 4080 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 4081 return (B_FALSE); 4082 4083 return (B_TRUE); 4084 } 4085 4086 static uint64_t 4087 l2arc_write_size(void) 4088 { 4089 uint64_t size; 4090 4091 /* 4092 * Make sure our globals have meaningful values in case the user 4093 * altered them. 4094 */ 4095 size = l2arc_write_max; 4096 if (size == 0) { 4097 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 4098 "be greater than zero, resetting it to the default (%d)", 4099 L2ARC_WRITE_SIZE); 4100 size = l2arc_write_max = L2ARC_WRITE_SIZE; 4101 } 4102 4103 if (arc_warm == B_FALSE) 4104 size += l2arc_write_boost; 4105 4106 return (size); 4107 4108 } 4109 4110 static clock_t 4111 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 4112 { 4113 clock_t interval, next, now; 4114 4115 /* 4116 * If the ARC lists are busy, increase our write rate; if the 4117 * lists are stale, idle back. This is achieved by checking 4118 * how much we previously wrote - if it was more than half of 4119 * what we wanted, schedule the next write much sooner. 4120 */ 4121 if (l2arc_feed_again && wrote > (wanted / 2)) 4122 interval = (hz * l2arc_feed_min_ms) / 1000; 4123 else 4124 interval = hz * l2arc_feed_secs; 4125 4126 now = ddi_get_lbolt(); 4127 next = MAX(now, MIN(now + interval, began + interval)); 4128 4129 return (next); 4130 } 4131 4132 static void 4133 l2arc_hdr_stat_add(void) 4134 { 4135 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 4136 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 4137 } 4138 4139 static void 4140 l2arc_hdr_stat_remove(void) 4141 { 4142 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 4143 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 4144 } 4145 4146 /* 4147 * Cycle through L2ARC devices. This is how L2ARC load balances. 4148 * If a device is returned, this also returns holding the spa config lock. 4149 */ 4150 static l2arc_dev_t * 4151 l2arc_dev_get_next(void) 4152 { 4153 l2arc_dev_t *first, *next = NULL; 4154 4155 /* 4156 * Lock out the removal of spas (spa_namespace_lock), then removal 4157 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 4158 * both locks will be dropped and a spa config lock held instead. 4159 */ 4160 mutex_enter(&spa_namespace_lock); 4161 mutex_enter(&l2arc_dev_mtx); 4162 4163 /* if there are no vdevs, there is nothing to do */ 4164 if (l2arc_ndev == 0) 4165 goto out; 4166 4167 first = NULL; 4168 next = l2arc_dev_last; 4169 do { 4170 /* loop around the list looking for a non-faulted vdev */ 4171 if (next == NULL) { 4172 next = list_head(l2arc_dev_list); 4173 } else { 4174 next = list_next(l2arc_dev_list, next); 4175 if (next == NULL) 4176 next = list_head(l2arc_dev_list); 4177 } 4178 4179 /* if we have come back to the start, bail out */ 4180 if (first == NULL) 4181 first = next; 4182 else if (next == first) 4183 break; 4184 4185 } while (vdev_is_dead(next->l2ad_vdev)); 4186 4187 /* if we were unable to find any usable vdevs, return NULL */ 4188 if (vdev_is_dead(next->l2ad_vdev)) 4189 next = NULL; 4190 4191 l2arc_dev_last = next; 4192 4193 out: 4194 mutex_exit(&l2arc_dev_mtx); 4195 4196 /* 4197 * Grab the config lock to prevent the 'next' device from being 4198 * removed while we are writing to it. 4199 */ 4200 if (next != NULL) 4201 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 4202 mutex_exit(&spa_namespace_lock); 4203 4204 return (next); 4205 } 4206 4207 /* 4208 * Free buffers that were tagged for destruction. 4209 */ 4210 static void 4211 l2arc_do_free_on_write() 4212 { 4213 list_t *buflist; 4214 l2arc_data_free_t *df, *df_prev; 4215 4216 mutex_enter(&l2arc_free_on_write_mtx); 4217 buflist = l2arc_free_on_write; 4218 4219 for (df = list_tail(buflist); df; df = df_prev) { 4220 df_prev = list_prev(buflist, df); 4221 ASSERT(df->l2df_data != NULL); 4222 ASSERT(df->l2df_func != NULL); 4223 df->l2df_func(df->l2df_data, df->l2df_size); 4224 list_remove(buflist, df); 4225 kmem_free(df, sizeof (l2arc_data_free_t)); 4226 } 4227 4228 mutex_exit(&l2arc_free_on_write_mtx); 4229 } 4230 4231 /* 4232 * A write to a cache device has completed. Update all headers to allow 4233 * reads from these buffers to begin. 4234 */ 4235 static void 4236 l2arc_write_done(zio_t *zio) 4237 { 4238 l2arc_write_callback_t *cb; 4239 l2arc_dev_t *dev; 4240 list_t *buflist; 4241 arc_buf_hdr_t *head, *ab, *ab_prev; 4242 l2arc_buf_hdr_t *abl2; 4243 kmutex_t *hash_lock; 4244 4245 cb = zio->io_private; 4246 ASSERT(cb != NULL); 4247 dev = cb->l2wcb_dev; 4248 ASSERT(dev != NULL); 4249 head = cb->l2wcb_head; 4250 ASSERT(head != NULL); 4251 buflist = dev->l2ad_buflist; 4252 ASSERT(buflist != NULL); 4253 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 4254 l2arc_write_callback_t *, cb); 4255 4256 if (zio->io_error != 0) 4257 ARCSTAT_BUMP(arcstat_l2_writes_error); 4258 4259 mutex_enter(&l2arc_buflist_mtx); 4260 4261 /* 4262 * All writes completed, or an error was hit. 4263 */ 4264 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 4265 ab_prev = list_prev(buflist, ab); 4266 abl2 = ab->b_l2hdr; 4267 4268 /* 4269 * Release the temporary compressed buffer as soon as possible. 4270 */ 4271 if (abl2->b_compress != ZIO_COMPRESS_OFF) 4272 l2arc_release_cdata_buf(ab); 4273 4274 hash_lock = HDR_LOCK(ab); 4275 if (!mutex_tryenter(hash_lock)) { 4276 /* 4277 * This buffer misses out. It may be in a stage 4278 * of eviction. Its ARC_L2_WRITING flag will be 4279 * left set, denying reads to this buffer. 4280 */ 4281 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 4282 continue; 4283 } 4284 4285 if (zio->io_error != 0) { 4286 /* 4287 * Error - drop L2ARC entry. 4288 */ 4289 list_remove(buflist, ab); 4290 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4291 ab->b_l2hdr = NULL; 4292 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4293 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4294 } 4295 4296 /* 4297 * Allow ARC to begin reads to this L2ARC entry. 4298 */ 4299 ab->b_flags &= ~ARC_L2_WRITING; 4300 4301 mutex_exit(hash_lock); 4302 } 4303 4304 atomic_inc_64(&l2arc_writes_done); 4305 list_remove(buflist, head); 4306 kmem_cache_free(hdr_cache, head); 4307 mutex_exit(&l2arc_buflist_mtx); 4308 4309 l2arc_do_free_on_write(); 4310 4311 kmem_free(cb, sizeof (l2arc_write_callback_t)); 4312 } 4313 4314 /* 4315 * A read to a cache device completed. Validate buffer contents before 4316 * handing over to the regular ARC routines. 4317 */ 4318 static void 4319 l2arc_read_done(zio_t *zio) 4320 { 4321 l2arc_read_callback_t *cb; 4322 arc_buf_hdr_t *hdr; 4323 arc_buf_t *buf; 4324 kmutex_t *hash_lock; 4325 int equal; 4326 4327 ASSERT(zio->io_vd != NULL); 4328 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 4329 4330 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 4331 4332 cb = zio->io_private; 4333 ASSERT(cb != NULL); 4334 buf = cb->l2rcb_buf; 4335 ASSERT(buf != NULL); 4336 4337 hash_lock = HDR_LOCK(buf->b_hdr); 4338 mutex_enter(hash_lock); 4339 hdr = buf->b_hdr; 4340 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 4341 4342 /* 4343 * If the buffer was compressed, decompress it first. 4344 */ 4345 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF) 4346 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress); 4347 ASSERT(zio->io_data != NULL); 4348 4349 /* 4350 * Check this survived the L2ARC journey. 4351 */ 4352 equal = arc_cksum_equal(buf); 4353 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 4354 mutex_exit(hash_lock); 4355 zio->io_private = buf; 4356 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 4357 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4358 arc_read_done(zio); 4359 } else { 4360 mutex_exit(hash_lock); 4361 /* 4362 * Buffer didn't survive caching. Increment stats and 4363 * reissue to the original storage device. 4364 */ 4365 if (zio->io_error != 0) { 4366 ARCSTAT_BUMP(arcstat_l2_io_error); 4367 } else { 4368 zio->io_error = SET_ERROR(EIO); 4369 } 4370 if (!equal) 4371 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4372 4373 /* 4374 * If there's no waiter, issue an async i/o to the primary 4375 * storage now. If there *is* a waiter, the caller must 4376 * issue the i/o in a context where it's OK to block. 4377 */ 4378 if (zio->io_waiter == NULL) { 4379 zio_t *pio = zio_unique_parent(zio); 4380 4381 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4382 4383 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4384 buf->b_data, zio->io_size, arc_read_done, buf, 4385 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4386 } 4387 } 4388 4389 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4390 } 4391 4392 /* 4393 * This is the list priority from which the L2ARC will search for pages to 4394 * cache. This is used within loops (0..3) to cycle through lists in the 4395 * desired order. This order can have a significant effect on cache 4396 * performance. 4397 * 4398 * Currently the metadata lists are hit first, MFU then MRU, followed by 4399 * the data lists. This function returns a locked list, and also returns 4400 * the lock pointer. 4401 */ 4402 static list_t * 4403 l2arc_list_locked(int list_num, kmutex_t **lock) 4404 { 4405 list_t *list = NULL; 4406 4407 ASSERT(list_num >= 0 && list_num <= 3); 4408 4409 switch (list_num) { 4410 case 0: 4411 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4412 *lock = &arc_mfu->arcs_mtx; 4413 break; 4414 case 1: 4415 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4416 *lock = &arc_mru->arcs_mtx; 4417 break; 4418 case 2: 4419 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4420 *lock = &arc_mfu->arcs_mtx; 4421 break; 4422 case 3: 4423 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4424 *lock = &arc_mru->arcs_mtx; 4425 break; 4426 } 4427 4428 ASSERT(!(MUTEX_HELD(*lock))); 4429 mutex_enter(*lock); 4430 return (list); 4431 } 4432 4433 /* 4434 * Evict buffers from the device write hand to the distance specified in 4435 * bytes. This distance may span populated buffers, it may span nothing. 4436 * This is clearing a region on the L2ARC device ready for writing. 4437 * If the 'all' boolean is set, every buffer is evicted. 4438 */ 4439 static void 4440 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4441 { 4442 list_t *buflist; 4443 l2arc_buf_hdr_t *abl2; 4444 arc_buf_hdr_t *ab, *ab_prev; 4445 kmutex_t *hash_lock; 4446 uint64_t taddr; 4447 4448 buflist = dev->l2ad_buflist; 4449 4450 if (buflist == NULL) 4451 return; 4452 4453 if (!all && dev->l2ad_first) { 4454 /* 4455 * This is the first sweep through the device. There is 4456 * nothing to evict. 4457 */ 4458 return; 4459 } 4460 4461 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4462 /* 4463 * When nearing the end of the device, evict to the end 4464 * before the device write hand jumps to the start. 4465 */ 4466 taddr = dev->l2ad_end; 4467 } else { 4468 taddr = dev->l2ad_hand + distance; 4469 } 4470 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4471 uint64_t, taddr, boolean_t, all); 4472 4473 top: 4474 mutex_enter(&l2arc_buflist_mtx); 4475 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4476 ab_prev = list_prev(buflist, ab); 4477 4478 hash_lock = HDR_LOCK(ab); 4479 if (!mutex_tryenter(hash_lock)) { 4480 /* 4481 * Missed the hash lock. Retry. 4482 */ 4483 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4484 mutex_exit(&l2arc_buflist_mtx); 4485 mutex_enter(hash_lock); 4486 mutex_exit(hash_lock); 4487 goto top; 4488 } 4489 4490 if (HDR_L2_WRITE_HEAD(ab)) { 4491 /* 4492 * We hit a write head node. Leave it for 4493 * l2arc_write_done(). 4494 */ 4495 list_remove(buflist, ab); 4496 mutex_exit(hash_lock); 4497 continue; 4498 } 4499 4500 if (!all && ab->b_l2hdr != NULL && 4501 (ab->b_l2hdr->b_daddr > taddr || 4502 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4503 /* 4504 * We've evicted to the target address, 4505 * or the end of the device. 4506 */ 4507 mutex_exit(hash_lock); 4508 break; 4509 } 4510 4511 if (HDR_FREE_IN_PROGRESS(ab)) { 4512 /* 4513 * Already on the path to destruction. 4514 */ 4515 mutex_exit(hash_lock); 4516 continue; 4517 } 4518 4519 if (ab->b_state == arc_l2c_only) { 4520 ASSERT(!HDR_L2_READING(ab)); 4521 /* 4522 * This doesn't exist in the ARC. Destroy. 4523 * arc_hdr_destroy() will call list_remove() 4524 * and decrement arcstat_l2_size. 4525 */ 4526 arc_change_state(arc_anon, ab, hash_lock); 4527 arc_hdr_destroy(ab); 4528 } else { 4529 /* 4530 * Invalidate issued or about to be issued 4531 * reads, since we may be about to write 4532 * over this location. 4533 */ 4534 if (HDR_L2_READING(ab)) { 4535 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4536 ab->b_flags |= ARC_L2_EVICTED; 4537 } 4538 4539 /* 4540 * Tell ARC this no longer exists in L2ARC. 4541 */ 4542 if (ab->b_l2hdr != NULL) { 4543 abl2 = ab->b_l2hdr; 4544 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize); 4545 ab->b_l2hdr = NULL; 4546 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4547 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4548 } 4549 list_remove(buflist, ab); 4550 4551 /* 4552 * This may have been leftover after a 4553 * failed write. 4554 */ 4555 ab->b_flags &= ~ARC_L2_WRITING; 4556 } 4557 mutex_exit(hash_lock); 4558 } 4559 mutex_exit(&l2arc_buflist_mtx); 4560 4561 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4562 dev->l2ad_evict = taddr; 4563 } 4564 4565 /* 4566 * Find and write ARC buffers to the L2ARC device. 4567 * 4568 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4569 * for reading until they have completed writing. 4570 * The headroom_boost is an in-out parameter used to maintain headroom boost 4571 * state between calls to this function. 4572 * 4573 * Returns the number of bytes actually written (which may be smaller than 4574 * the delta by which the device hand has changed due to alignment). 4575 */ 4576 static uint64_t 4577 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz, 4578 boolean_t *headroom_boost) 4579 { 4580 arc_buf_hdr_t *ab, *ab_prev, *head; 4581 list_t *list; 4582 uint64_t write_asize, write_psize, write_sz, headroom, 4583 buf_compress_minsz; 4584 void *buf_data; 4585 kmutex_t *list_lock; 4586 boolean_t full; 4587 l2arc_write_callback_t *cb; 4588 zio_t *pio, *wzio; 4589 uint64_t guid = spa_load_guid(spa); 4590 const boolean_t do_headroom_boost = *headroom_boost; 4591 4592 ASSERT(dev->l2ad_vdev != NULL); 4593 4594 /* Lower the flag now, we might want to raise it again later. */ 4595 *headroom_boost = B_FALSE; 4596 4597 pio = NULL; 4598 write_sz = write_asize = write_psize = 0; 4599 full = B_FALSE; 4600 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4601 head->b_flags |= ARC_L2_WRITE_HEAD; 4602 4603 /* 4604 * We will want to try to compress buffers that are at least 2x the 4605 * device sector size. 4606 */ 4607 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift; 4608 4609 /* 4610 * Copy buffers for L2ARC writing. 4611 */ 4612 mutex_enter(&l2arc_buflist_mtx); 4613 for (int try = 0; try <= 3; try++) { 4614 uint64_t passed_sz = 0; 4615 4616 list = l2arc_list_locked(try, &list_lock); 4617 4618 /* 4619 * L2ARC fast warmup. 4620 * 4621 * Until the ARC is warm and starts to evict, read from the 4622 * head of the ARC lists rather than the tail. 4623 */ 4624 if (arc_warm == B_FALSE) 4625 ab = list_head(list); 4626 else 4627 ab = list_tail(list); 4628 4629 headroom = target_sz * l2arc_headroom; 4630 if (do_headroom_boost) 4631 headroom = (headroom * l2arc_headroom_boost) / 100; 4632 4633 for (; ab; ab = ab_prev) { 4634 l2arc_buf_hdr_t *l2hdr; 4635 kmutex_t *hash_lock; 4636 uint64_t buf_sz; 4637 4638 if (arc_warm == B_FALSE) 4639 ab_prev = list_next(list, ab); 4640 else 4641 ab_prev = list_prev(list, ab); 4642 4643 hash_lock = HDR_LOCK(ab); 4644 if (!mutex_tryenter(hash_lock)) { 4645 /* 4646 * Skip this buffer rather than waiting. 4647 */ 4648 continue; 4649 } 4650 4651 passed_sz += ab->b_size; 4652 if (passed_sz > headroom) { 4653 /* 4654 * Searched too far. 4655 */ 4656 mutex_exit(hash_lock); 4657 break; 4658 } 4659 4660 if (!l2arc_write_eligible(guid, ab)) { 4661 mutex_exit(hash_lock); 4662 continue; 4663 } 4664 4665 if ((write_sz + ab->b_size) > target_sz) { 4666 full = B_TRUE; 4667 mutex_exit(hash_lock); 4668 break; 4669 } 4670 4671 if (pio == NULL) { 4672 /* 4673 * Insert a dummy header on the buflist so 4674 * l2arc_write_done() can find where the 4675 * write buffers begin without searching. 4676 */ 4677 list_insert_head(dev->l2ad_buflist, head); 4678 4679 cb = kmem_alloc( 4680 sizeof (l2arc_write_callback_t), KM_SLEEP); 4681 cb->l2wcb_dev = dev; 4682 cb->l2wcb_head = head; 4683 pio = zio_root(spa, l2arc_write_done, cb, 4684 ZIO_FLAG_CANFAIL); 4685 } 4686 4687 /* 4688 * Create and add a new L2ARC header. 4689 */ 4690 l2hdr = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4691 l2hdr->b_dev = dev; 4692 ab->b_flags |= ARC_L2_WRITING; 4693 4694 /* 4695 * Temporarily stash the data buffer in b_tmp_cdata. 4696 * The subsequent write step will pick it up from 4697 * there. This is because can't access ab->b_buf 4698 * without holding the hash_lock, which we in turn 4699 * can't access without holding the ARC list locks 4700 * (which we want to avoid during compression/writing). 4701 */ 4702 l2hdr->b_compress = ZIO_COMPRESS_OFF; 4703 l2hdr->b_asize = ab->b_size; 4704 l2hdr->b_tmp_cdata = ab->b_buf->b_data; 4705 4706 buf_sz = ab->b_size; 4707 ab->b_l2hdr = l2hdr; 4708 4709 list_insert_head(dev->l2ad_buflist, ab); 4710 4711 /* 4712 * Compute and store the buffer cksum before 4713 * writing. On debug the cksum is verified first. 4714 */ 4715 arc_cksum_verify(ab->b_buf); 4716 arc_cksum_compute(ab->b_buf, B_TRUE); 4717 4718 mutex_exit(hash_lock); 4719 4720 write_sz += buf_sz; 4721 } 4722 4723 mutex_exit(list_lock); 4724 4725 if (full == B_TRUE) 4726 break; 4727 } 4728 4729 /* No buffers selected for writing? */ 4730 if (pio == NULL) { 4731 ASSERT0(write_sz); 4732 mutex_exit(&l2arc_buflist_mtx); 4733 kmem_cache_free(hdr_cache, head); 4734 return (0); 4735 } 4736 4737 /* 4738 * Now start writing the buffers. We're starting at the write head 4739 * and work backwards, retracing the course of the buffer selector 4740 * loop above. 4741 */ 4742 for (ab = list_prev(dev->l2ad_buflist, head); ab; 4743 ab = list_prev(dev->l2ad_buflist, ab)) { 4744 l2arc_buf_hdr_t *l2hdr; 4745 uint64_t buf_sz; 4746 4747 /* 4748 * We shouldn't need to lock the buffer here, since we flagged 4749 * it as ARC_L2_WRITING in the previous step, but we must take 4750 * care to only access its L2 cache parameters. In particular, 4751 * ab->b_buf may be invalid by now due to ARC eviction. 4752 */ 4753 l2hdr = ab->b_l2hdr; 4754 l2hdr->b_daddr = dev->l2ad_hand; 4755 4756 if ((ab->b_flags & ARC_L2COMPRESS) && 4757 l2hdr->b_asize >= buf_compress_minsz) { 4758 if (l2arc_compress_buf(l2hdr)) { 4759 /* 4760 * If compression succeeded, enable headroom 4761 * boost on the next scan cycle. 4762 */ 4763 *headroom_boost = B_TRUE; 4764 } 4765 } 4766 4767 /* 4768 * Pick up the buffer data we had previously stashed away 4769 * (and now potentially also compressed). 4770 */ 4771 buf_data = l2hdr->b_tmp_cdata; 4772 buf_sz = l2hdr->b_asize; 4773 4774 /* Compression may have squashed the buffer to zero length. */ 4775 if (buf_sz != 0) { 4776 uint64_t buf_p_sz; 4777 4778 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4779 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4780 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4781 ZIO_FLAG_CANFAIL, B_FALSE); 4782 4783 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4784 zio_t *, wzio); 4785 (void) zio_nowait(wzio); 4786 4787 write_asize += buf_sz; 4788 /* 4789 * Keep the clock hand suitably device-aligned. 4790 */ 4791 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4792 write_psize += buf_p_sz; 4793 dev->l2ad_hand += buf_p_sz; 4794 } 4795 } 4796 4797 mutex_exit(&l2arc_buflist_mtx); 4798 4799 ASSERT3U(write_asize, <=, target_sz); 4800 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4801 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize); 4802 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4803 ARCSTAT_INCR(arcstat_l2_asize, write_asize); 4804 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0); 4805 4806 /* 4807 * Bump device hand to the device start if it is approaching the end. 4808 * l2arc_evict() will already have evicted ahead for this case. 4809 */ 4810 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4811 vdev_space_update(dev->l2ad_vdev, 4812 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4813 dev->l2ad_hand = dev->l2ad_start; 4814 dev->l2ad_evict = dev->l2ad_start; 4815 dev->l2ad_first = B_FALSE; 4816 } 4817 4818 dev->l2ad_writing = B_TRUE; 4819 (void) zio_wait(pio); 4820 dev->l2ad_writing = B_FALSE; 4821 4822 return (write_asize); 4823 } 4824 4825 /* 4826 * Compresses an L2ARC buffer. 4827 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its 4828 * size in l2hdr->b_asize. This routine tries to compress the data and 4829 * depending on the compression result there are three possible outcomes: 4830 * *) The buffer was incompressible. The original l2hdr contents were left 4831 * untouched and are ready for writing to an L2 device. 4832 * *) The buffer was all-zeros, so there is no need to write it to an L2 4833 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is 4834 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY. 4835 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary 4836 * data buffer which holds the compressed data to be written, and b_asize 4837 * tells us how much data there is. b_compress is set to the appropriate 4838 * compression algorithm. Once writing is done, invoke 4839 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer. 4840 * 4841 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the 4842 * buffer was incompressible). 4843 */ 4844 static boolean_t 4845 l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr) 4846 { 4847 void *cdata; 4848 size_t csize, len, rounded; 4849 4850 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF); 4851 ASSERT(l2hdr->b_tmp_cdata != NULL); 4852 4853 len = l2hdr->b_asize; 4854 cdata = zio_data_buf_alloc(len); 4855 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata, 4856 cdata, l2hdr->b_asize); 4857 4858 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE); 4859 if (rounded > csize) { 4860 bzero((char *)cdata + csize, rounded - csize); 4861 csize = rounded; 4862 } 4863 4864 if (csize == 0) { 4865 /* zero block, indicate that there's nothing to write */ 4866 zio_data_buf_free(cdata, len); 4867 l2hdr->b_compress = ZIO_COMPRESS_EMPTY; 4868 l2hdr->b_asize = 0; 4869 l2hdr->b_tmp_cdata = NULL; 4870 ARCSTAT_BUMP(arcstat_l2_compress_zeros); 4871 return (B_TRUE); 4872 } else if (csize > 0 && csize < len) { 4873 /* 4874 * Compression succeeded, we'll keep the cdata around for 4875 * writing and release it afterwards. 4876 */ 4877 l2hdr->b_compress = ZIO_COMPRESS_LZ4; 4878 l2hdr->b_asize = csize; 4879 l2hdr->b_tmp_cdata = cdata; 4880 ARCSTAT_BUMP(arcstat_l2_compress_successes); 4881 return (B_TRUE); 4882 } else { 4883 /* 4884 * Compression failed, release the compressed buffer. 4885 * l2hdr will be left unmodified. 4886 */ 4887 zio_data_buf_free(cdata, len); 4888 ARCSTAT_BUMP(arcstat_l2_compress_failures); 4889 return (B_FALSE); 4890 } 4891 } 4892 4893 /* 4894 * Decompresses a zio read back from an l2arc device. On success, the 4895 * underlying zio's io_data buffer is overwritten by the uncompressed 4896 * version. On decompression error (corrupt compressed stream), the 4897 * zio->io_error value is set to signal an I/O error. 4898 * 4899 * Please note that the compressed data stream is not checksummed, so 4900 * if the underlying device is experiencing data corruption, we may feed 4901 * corrupt data to the decompressor, so the decompressor needs to be 4902 * able to handle this situation (LZ4 does). 4903 */ 4904 static void 4905 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c) 4906 { 4907 ASSERT(L2ARC_IS_VALID_COMPRESS(c)); 4908 4909 if (zio->io_error != 0) { 4910 /* 4911 * An io error has occured, just restore the original io 4912 * size in preparation for a main pool read. 4913 */ 4914 zio->io_orig_size = zio->io_size = hdr->b_size; 4915 return; 4916 } 4917 4918 if (c == ZIO_COMPRESS_EMPTY) { 4919 /* 4920 * An empty buffer results in a null zio, which means we 4921 * need to fill its io_data after we're done restoring the 4922 * buffer's contents. 4923 */ 4924 ASSERT(hdr->b_buf != NULL); 4925 bzero(hdr->b_buf->b_data, hdr->b_size); 4926 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data; 4927 } else { 4928 ASSERT(zio->io_data != NULL); 4929 /* 4930 * We copy the compressed data from the start of the arc buffer 4931 * (the zio_read will have pulled in only what we need, the 4932 * rest is garbage which we will overwrite at decompression) 4933 * and then decompress back to the ARC data buffer. This way we 4934 * can minimize copying by simply decompressing back over the 4935 * original compressed data (rather than decompressing to an 4936 * aux buffer and then copying back the uncompressed buffer, 4937 * which is likely to be much larger). 4938 */ 4939 uint64_t csize; 4940 void *cdata; 4941 4942 csize = zio->io_size; 4943 cdata = zio_data_buf_alloc(csize); 4944 bcopy(zio->io_data, cdata, csize); 4945 if (zio_decompress_data(c, cdata, zio->io_data, csize, 4946 hdr->b_size) != 0) 4947 zio->io_error = EIO; 4948 zio_data_buf_free(cdata, csize); 4949 } 4950 4951 /* Restore the expected uncompressed IO size. */ 4952 zio->io_orig_size = zio->io_size = hdr->b_size; 4953 } 4954 4955 /* 4956 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure. 4957 * This buffer serves as a temporary holder of compressed data while 4958 * the buffer entry is being written to an l2arc device. Once that is 4959 * done, we can dispose of it. 4960 */ 4961 static void 4962 l2arc_release_cdata_buf(arc_buf_hdr_t *ab) 4963 { 4964 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr; 4965 4966 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) { 4967 /* 4968 * If the data was compressed, then we've allocated a 4969 * temporary buffer for it, so now we need to release it. 4970 */ 4971 ASSERT(l2hdr->b_tmp_cdata != NULL); 4972 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size); 4973 } 4974 l2hdr->b_tmp_cdata = NULL; 4975 } 4976 4977 /* 4978 * This thread feeds the L2ARC at regular intervals. This is the beating 4979 * heart of the L2ARC. 4980 */ 4981 static void 4982 l2arc_feed_thread(void) 4983 { 4984 callb_cpr_t cpr; 4985 l2arc_dev_t *dev; 4986 spa_t *spa; 4987 uint64_t size, wrote; 4988 clock_t begin, next = ddi_get_lbolt(); 4989 boolean_t headroom_boost = B_FALSE; 4990 4991 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4992 4993 mutex_enter(&l2arc_feed_thr_lock); 4994 4995 while (l2arc_thread_exit == 0) { 4996 CALLB_CPR_SAFE_BEGIN(&cpr); 4997 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4998 next); 4999 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 5000 next = ddi_get_lbolt() + hz; 5001 5002 /* 5003 * Quick check for L2ARC devices. 5004 */ 5005 mutex_enter(&l2arc_dev_mtx); 5006 if (l2arc_ndev == 0) { 5007 mutex_exit(&l2arc_dev_mtx); 5008 continue; 5009 } 5010 mutex_exit(&l2arc_dev_mtx); 5011 begin = ddi_get_lbolt(); 5012 5013 /* 5014 * This selects the next l2arc device to write to, and in 5015 * doing so the next spa to feed from: dev->l2ad_spa. This 5016 * will return NULL if there are now no l2arc devices or if 5017 * they are all faulted. 5018 * 5019 * If a device is returned, its spa's config lock is also 5020 * held to prevent device removal. l2arc_dev_get_next() 5021 * will grab and release l2arc_dev_mtx. 5022 */ 5023 if ((dev = l2arc_dev_get_next()) == NULL) 5024 continue; 5025 5026 spa = dev->l2ad_spa; 5027 ASSERT(spa != NULL); 5028 5029 /* 5030 * If the pool is read-only then force the feed thread to 5031 * sleep a little longer. 5032 */ 5033 if (!spa_writeable(spa)) { 5034 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 5035 spa_config_exit(spa, SCL_L2ARC, dev); 5036 continue; 5037 } 5038 5039 /* 5040 * Avoid contributing to memory pressure. 5041 */ 5042 if (arc_reclaim_needed()) { 5043 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 5044 spa_config_exit(spa, SCL_L2ARC, dev); 5045 continue; 5046 } 5047 5048 ARCSTAT_BUMP(arcstat_l2_feeds); 5049 5050 size = l2arc_write_size(); 5051 5052 /* 5053 * Evict L2ARC buffers that will be overwritten. 5054 */ 5055 l2arc_evict(dev, size, B_FALSE); 5056 5057 /* 5058 * Write ARC buffers. 5059 */ 5060 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost); 5061 5062 /* 5063 * Calculate interval between writes. 5064 */ 5065 next = l2arc_write_interval(begin, size, wrote); 5066 spa_config_exit(spa, SCL_L2ARC, dev); 5067 } 5068 5069 l2arc_thread_exit = 0; 5070 cv_broadcast(&l2arc_feed_thr_cv); 5071 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 5072 thread_exit(); 5073 } 5074 5075 boolean_t 5076 l2arc_vdev_present(vdev_t *vd) 5077 { 5078 l2arc_dev_t *dev; 5079 5080 mutex_enter(&l2arc_dev_mtx); 5081 for (dev = list_head(l2arc_dev_list); dev != NULL; 5082 dev = list_next(l2arc_dev_list, dev)) { 5083 if (dev->l2ad_vdev == vd) 5084 break; 5085 } 5086 mutex_exit(&l2arc_dev_mtx); 5087 5088 return (dev != NULL); 5089 } 5090 5091 /* 5092 * Add a vdev for use by the L2ARC. By this point the spa has already 5093 * validated the vdev and opened it. 5094 */ 5095 void 5096 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 5097 { 5098 l2arc_dev_t *adddev; 5099 5100 ASSERT(!l2arc_vdev_present(vd)); 5101 5102 /* 5103 * Create a new l2arc device entry. 5104 */ 5105 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 5106 adddev->l2ad_spa = spa; 5107 adddev->l2ad_vdev = vd; 5108 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 5109 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 5110 adddev->l2ad_hand = adddev->l2ad_start; 5111 adddev->l2ad_evict = adddev->l2ad_start; 5112 adddev->l2ad_first = B_TRUE; 5113 adddev->l2ad_writing = B_FALSE; 5114 5115 /* 5116 * This is a list of all ARC buffers that are still valid on the 5117 * device. 5118 */ 5119 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 5120 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 5121 offsetof(arc_buf_hdr_t, b_l2node)); 5122 5123 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 5124 5125 /* 5126 * Add device to global list 5127 */ 5128 mutex_enter(&l2arc_dev_mtx); 5129 list_insert_head(l2arc_dev_list, adddev); 5130 atomic_inc_64(&l2arc_ndev); 5131 mutex_exit(&l2arc_dev_mtx); 5132 } 5133 5134 /* 5135 * Remove a vdev from the L2ARC. 5136 */ 5137 void 5138 l2arc_remove_vdev(vdev_t *vd) 5139 { 5140 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 5141 5142 /* 5143 * Find the device by vdev 5144 */ 5145 mutex_enter(&l2arc_dev_mtx); 5146 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 5147 nextdev = list_next(l2arc_dev_list, dev); 5148 if (vd == dev->l2ad_vdev) { 5149 remdev = dev; 5150 break; 5151 } 5152 } 5153 ASSERT(remdev != NULL); 5154 5155 /* 5156 * Remove device from global list 5157 */ 5158 list_remove(l2arc_dev_list, remdev); 5159 l2arc_dev_last = NULL; /* may have been invalidated */ 5160 atomic_dec_64(&l2arc_ndev); 5161 mutex_exit(&l2arc_dev_mtx); 5162 5163 /* 5164 * Clear all buflists and ARC references. L2ARC device flush. 5165 */ 5166 l2arc_evict(remdev, 0, B_TRUE); 5167 list_destroy(remdev->l2ad_buflist); 5168 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 5169 kmem_free(remdev, sizeof (l2arc_dev_t)); 5170 } 5171 5172 void 5173 l2arc_init(void) 5174 { 5175 l2arc_thread_exit = 0; 5176 l2arc_ndev = 0; 5177 l2arc_writes_sent = 0; 5178 l2arc_writes_done = 0; 5179 5180 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 5181 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 5182 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 5183 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 5184 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 5185 5186 l2arc_dev_list = &L2ARC_dev_list; 5187 l2arc_free_on_write = &L2ARC_free_on_write; 5188 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 5189 offsetof(l2arc_dev_t, l2ad_node)); 5190 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 5191 offsetof(l2arc_data_free_t, l2df_list_node)); 5192 } 5193 5194 void 5195 l2arc_fini(void) 5196 { 5197 /* 5198 * This is called from dmu_fini(), which is called from spa_fini(); 5199 * Because of this, we can assume that all l2arc devices have 5200 * already been removed when the pools themselves were removed. 5201 */ 5202 5203 l2arc_do_free_on_write(); 5204 5205 mutex_destroy(&l2arc_feed_thr_lock); 5206 cv_destroy(&l2arc_feed_thr_cv); 5207 mutex_destroy(&l2arc_dev_mtx); 5208 mutex_destroy(&l2arc_buflist_mtx); 5209 mutex_destroy(&l2arc_free_on_write_mtx); 5210 5211 list_destroy(l2arc_dev_list); 5212 list_destroy(l2arc_free_on_write); 5213 } 5214 5215 void 5216 l2arc_start(void) 5217 { 5218 if (!(spa_mode_global & FWRITE)) 5219 return; 5220 5221 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 5222 TS_RUN, minclsyspri); 5223 } 5224 5225 void 5226 l2arc_stop(void) 5227 { 5228 if (!(spa_mode_global & FWRITE)) 5229 return; 5230 5231 mutex_enter(&l2arc_feed_thr_lock); 5232 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 5233 l2arc_thread_exit = 1; 5234 while (l2arc_thread_exit != 0) 5235 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 5236 mutex_exit(&l2arc_feed_thr_lock); 5237 } 5238