xref: /titanic_41/usr/src/uts/common/fs/zfs/arc.c (revision d24234c24aeaca4ca56ee3ac2794507968f274c4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zfs_context.h>
123 #include <sys/arc.h>
124 #include <sys/refcount.h>
125 #include <sys/vdev.h>
126 #include <sys/vdev_impl.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
135 #include <zfs_fletcher.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 extern int zfs_write_limit_shift;
142 extern uint64_t zfs_write_limit_max;
143 extern kmutex_t zfs_write_limit_lock;
144 
145 #define	ARC_REDUCE_DNLC_PERCENT	3
146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147 
148 typedef enum arc_reclaim_strategy {
149 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
150 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
151 } arc_reclaim_strategy_t;
152 
153 /* number of seconds before growing cache again */
154 static int		arc_grow_retry = 60;
155 
156 /* shift of arc_c for calculating both min and max arc_p */
157 static int		arc_p_min_shift = 4;
158 
159 /* log2(fraction of arc to reclaim) */
160 static int		arc_shrink_shift = 5;
161 
162 /*
163  * minimum lifespan of a prefetch block in clock ticks
164  * (initialized in arc_init())
165  */
166 static int		arc_min_prefetch_lifespan;
167 
168 static int arc_dead;
169 
170 /*
171  * The arc has filled available memory and has now warmed up.
172  */
173 static boolean_t arc_warm;
174 
175 /*
176  * These tunables are for performance analysis.
177  */
178 uint64_t zfs_arc_max;
179 uint64_t zfs_arc_min;
180 uint64_t zfs_arc_meta_limit = 0;
181 int zfs_arc_grow_retry = 0;
182 int zfs_arc_shrink_shift = 0;
183 int zfs_arc_p_min_shift = 0;
184 
185 /*
186  * Note that buffers can be in one of 6 states:
187  *	ARC_anon	- anonymous (discussed below)
188  *	ARC_mru		- recently used, currently cached
189  *	ARC_mru_ghost	- recentely used, no longer in cache
190  *	ARC_mfu		- frequently used, currently cached
191  *	ARC_mfu_ghost	- frequently used, no longer in cache
192  *	ARC_l2c_only	- exists in L2ARC but not other states
193  * When there are no active references to the buffer, they are
194  * are linked onto a list in one of these arc states.  These are
195  * the only buffers that can be evicted or deleted.  Within each
196  * state there are multiple lists, one for meta-data and one for
197  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
198  * etc.) is tracked separately so that it can be managed more
199  * explicitly: favored over data, limited explicitly.
200  *
201  * Anonymous buffers are buffers that are not associated with
202  * a DVA.  These are buffers that hold dirty block copies
203  * before they are written to stable storage.  By definition,
204  * they are "ref'd" and are considered part of arc_mru
205  * that cannot be freed.  Generally, they will aquire a DVA
206  * as they are written and migrate onto the arc_mru list.
207  *
208  * The ARC_l2c_only state is for buffers that are in the second
209  * level ARC but no longer in any of the ARC_m* lists.  The second
210  * level ARC itself may also contain buffers that are in any of
211  * the ARC_m* states - meaning that a buffer can exist in two
212  * places.  The reason for the ARC_l2c_only state is to keep the
213  * buffer header in the hash table, so that reads that hit the
214  * second level ARC benefit from these fast lookups.
215  */
216 
217 typedef struct arc_state {
218 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
219 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
220 	uint64_t arcs_size;	/* total amount of data in this state */
221 	kmutex_t arcs_mtx;
222 } arc_state_t;
223 
224 /* The 6 states: */
225 static arc_state_t ARC_anon;
226 static arc_state_t ARC_mru;
227 static arc_state_t ARC_mru_ghost;
228 static arc_state_t ARC_mfu;
229 static arc_state_t ARC_mfu_ghost;
230 static arc_state_t ARC_l2c_only;
231 
232 typedef struct arc_stats {
233 	kstat_named_t arcstat_hits;
234 	kstat_named_t arcstat_misses;
235 	kstat_named_t arcstat_demand_data_hits;
236 	kstat_named_t arcstat_demand_data_misses;
237 	kstat_named_t arcstat_demand_metadata_hits;
238 	kstat_named_t arcstat_demand_metadata_misses;
239 	kstat_named_t arcstat_prefetch_data_hits;
240 	kstat_named_t arcstat_prefetch_data_misses;
241 	kstat_named_t arcstat_prefetch_metadata_hits;
242 	kstat_named_t arcstat_prefetch_metadata_misses;
243 	kstat_named_t arcstat_mru_hits;
244 	kstat_named_t arcstat_mru_ghost_hits;
245 	kstat_named_t arcstat_mfu_hits;
246 	kstat_named_t arcstat_mfu_ghost_hits;
247 	kstat_named_t arcstat_deleted;
248 	kstat_named_t arcstat_recycle_miss;
249 	kstat_named_t arcstat_mutex_miss;
250 	kstat_named_t arcstat_evict_skip;
251 	kstat_named_t arcstat_evict_l2_cached;
252 	kstat_named_t arcstat_evict_l2_eligible;
253 	kstat_named_t arcstat_evict_l2_ineligible;
254 	kstat_named_t arcstat_hash_elements;
255 	kstat_named_t arcstat_hash_elements_max;
256 	kstat_named_t arcstat_hash_collisions;
257 	kstat_named_t arcstat_hash_chains;
258 	kstat_named_t arcstat_hash_chain_max;
259 	kstat_named_t arcstat_p;
260 	kstat_named_t arcstat_c;
261 	kstat_named_t arcstat_c_min;
262 	kstat_named_t arcstat_c_max;
263 	kstat_named_t arcstat_size;
264 	kstat_named_t arcstat_hdr_size;
265 	kstat_named_t arcstat_data_size;
266 	kstat_named_t arcstat_other_size;
267 	kstat_named_t arcstat_l2_hits;
268 	kstat_named_t arcstat_l2_misses;
269 	kstat_named_t arcstat_l2_feeds;
270 	kstat_named_t arcstat_l2_rw_clash;
271 	kstat_named_t arcstat_l2_read_bytes;
272 	kstat_named_t arcstat_l2_write_bytes;
273 	kstat_named_t arcstat_l2_writes_sent;
274 	kstat_named_t arcstat_l2_writes_done;
275 	kstat_named_t arcstat_l2_writes_error;
276 	kstat_named_t arcstat_l2_writes_hdr_miss;
277 	kstat_named_t arcstat_l2_evict_lock_retry;
278 	kstat_named_t arcstat_l2_evict_reading;
279 	kstat_named_t arcstat_l2_free_on_write;
280 	kstat_named_t arcstat_l2_abort_lowmem;
281 	kstat_named_t arcstat_l2_cksum_bad;
282 	kstat_named_t arcstat_l2_io_error;
283 	kstat_named_t arcstat_l2_size;
284 	kstat_named_t arcstat_l2_hdr_size;
285 	kstat_named_t arcstat_memory_throttle_count;
286 } arc_stats_t;
287 
288 static arc_stats_t arc_stats = {
289 	{ "hits",			KSTAT_DATA_UINT64 },
290 	{ "misses",			KSTAT_DATA_UINT64 },
291 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
292 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
293 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
294 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
295 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
296 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
297 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
298 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
299 	{ "mru_hits",			KSTAT_DATA_UINT64 },
300 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
301 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
302 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
303 	{ "deleted",			KSTAT_DATA_UINT64 },
304 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
305 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
306 	{ "evict_skip",			KSTAT_DATA_UINT64 },
307 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
308 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
309 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
310 	{ "hash_elements",		KSTAT_DATA_UINT64 },
311 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
312 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
313 	{ "hash_chains",		KSTAT_DATA_UINT64 },
314 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
315 	{ "p",				KSTAT_DATA_UINT64 },
316 	{ "c",				KSTAT_DATA_UINT64 },
317 	{ "c_min",			KSTAT_DATA_UINT64 },
318 	{ "c_max",			KSTAT_DATA_UINT64 },
319 	{ "size",			KSTAT_DATA_UINT64 },
320 	{ "hdr_size",			KSTAT_DATA_UINT64 },
321 	{ "data_size",			KSTAT_DATA_UINT64 },
322 	{ "other_size",			KSTAT_DATA_UINT64 },
323 	{ "l2_hits",			KSTAT_DATA_UINT64 },
324 	{ "l2_misses",			KSTAT_DATA_UINT64 },
325 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
326 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
327 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
328 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
329 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
332 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
333 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
334 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
335 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
336 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
337 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
338 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
339 	{ "l2_size",			KSTAT_DATA_UINT64 },
340 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
341 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
342 };
343 
344 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
345 
346 #define	ARCSTAT_INCR(stat, val) \
347 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
348 
349 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
350 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
351 
352 #define	ARCSTAT_MAX(stat, val) {					\
353 	uint64_t m;							\
354 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
355 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
356 		continue;						\
357 }
358 
359 #define	ARCSTAT_MAXSTAT(stat) \
360 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
361 
362 /*
363  * We define a macro to allow ARC hits/misses to be easily broken down by
364  * two separate conditions, giving a total of four different subtypes for
365  * each of hits and misses (so eight statistics total).
366  */
367 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
368 	if (cond1) {							\
369 		if (cond2) {						\
370 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
371 		} else {						\
372 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
373 		}							\
374 	} else {							\
375 		if (cond2) {						\
376 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
377 		} else {						\
378 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
379 		}							\
380 	}
381 
382 kstat_t			*arc_ksp;
383 static arc_state_t	*arc_anon;
384 static arc_state_t	*arc_mru;
385 static arc_state_t	*arc_mru_ghost;
386 static arc_state_t	*arc_mfu;
387 static arc_state_t	*arc_mfu_ghost;
388 static arc_state_t	*arc_l2c_only;
389 
390 /*
391  * There are several ARC variables that are critical to export as kstats --
392  * but we don't want to have to grovel around in the kstat whenever we wish to
393  * manipulate them.  For these variables, we therefore define them to be in
394  * terms of the statistic variable.  This assures that we are not introducing
395  * the possibility of inconsistency by having shadow copies of the variables,
396  * while still allowing the code to be readable.
397  */
398 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
399 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
400 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
401 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
402 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
403 
404 static int		arc_no_grow;	/* Don't try to grow cache size */
405 static uint64_t		arc_tempreserve;
406 static uint64_t		arc_loaned_bytes;
407 static uint64_t		arc_meta_used;
408 static uint64_t		arc_meta_limit;
409 static uint64_t		arc_meta_max = 0;
410 
411 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
412 
413 typedef struct arc_callback arc_callback_t;
414 
415 struct arc_callback {
416 	void			*acb_private;
417 	arc_done_func_t		*acb_done;
418 	arc_buf_t		*acb_buf;
419 	zio_t			*acb_zio_dummy;
420 	arc_callback_t		*acb_next;
421 };
422 
423 typedef struct arc_write_callback arc_write_callback_t;
424 
425 struct arc_write_callback {
426 	void		*awcb_private;
427 	arc_done_func_t	*awcb_ready;
428 	arc_done_func_t	*awcb_done;
429 	arc_buf_t	*awcb_buf;
430 };
431 
432 struct arc_buf_hdr {
433 	/* protected by hash lock */
434 	dva_t			b_dva;
435 	uint64_t		b_birth;
436 	uint64_t		b_cksum0;
437 
438 	kmutex_t		b_freeze_lock;
439 	zio_cksum_t		*b_freeze_cksum;
440 
441 	arc_buf_hdr_t		*b_hash_next;
442 	arc_buf_t		*b_buf;
443 	uint32_t		b_flags;
444 	uint32_t		b_datacnt;
445 
446 	arc_callback_t		*b_acb;
447 	kcondvar_t		b_cv;
448 
449 	/* immutable */
450 	arc_buf_contents_t	b_type;
451 	uint64_t		b_size;
452 	uint64_t		b_spa;
453 
454 	/* protected by arc state mutex */
455 	arc_state_t		*b_state;
456 	list_node_t		b_arc_node;
457 
458 	/* updated atomically */
459 	clock_t			b_arc_access;
460 
461 	/* self protecting */
462 	refcount_t		b_refcnt;
463 
464 	l2arc_buf_hdr_t		*b_l2hdr;
465 	list_node_t		b_l2node;
466 };
467 
468 static arc_buf_t *arc_eviction_list;
469 static kmutex_t arc_eviction_mtx;
470 static arc_buf_hdr_t arc_eviction_hdr;
471 static void arc_get_data_buf(arc_buf_t *buf);
472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473 static int arc_evict_needed(arc_buf_contents_t type);
474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
475 
476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477 
478 #define	GHOST_STATE(state)	\
479 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
480 	(state) == arc_l2c_only)
481 
482 /*
483  * Private ARC flags.  These flags are private ARC only flags that will show up
484  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
485  * be passed in as arc_flags in things like arc_read.  However, these flags
486  * should never be passed and should only be set by ARC code.  When adding new
487  * public flags, make sure not to smash the private ones.
488  */
489 
490 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
491 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
492 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
493 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
494 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
495 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
496 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
497 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
498 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
499 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
500 
501 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
502 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
504 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
505 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
506 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
507 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
508 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
509 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
510 				    (hdr)->b_l2hdr != NULL)
511 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
512 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
513 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514 
515 /*
516  * Other sizes
517  */
518 
519 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521 
522 /*
523  * Hash table routines
524  */
525 
526 #define	HT_LOCK_PAD	64
527 
528 struct ht_lock {
529 	kmutex_t	ht_lock;
530 #ifdef _KERNEL
531 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532 #endif
533 };
534 
535 #define	BUF_LOCKS 256
536 typedef struct buf_hash_table {
537 	uint64_t ht_mask;
538 	arc_buf_hdr_t **ht_table;
539 	struct ht_lock ht_locks[BUF_LOCKS];
540 } buf_hash_table_t;
541 
542 static buf_hash_table_t buf_hash_table;
543 
544 #define	BUF_HASH_INDEX(spa, dva, birth) \
545 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
548 #define	HDR_LOCK(buf) \
549 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
550 
551 uint64_t zfs_crc64_table[256];
552 
553 /*
554  * Level 2 ARC
555  */
556 
557 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
558 #define	L2ARC_HEADROOM		2		/* num of writes */
559 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
560 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
561 
562 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
563 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
564 
565 /*
566  * L2ARC Performance Tunables
567  */
568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
570 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
573 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
574 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
575 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
576 
577 /*
578  * L2ARC Internals
579  */
580 typedef struct l2arc_dev {
581 	vdev_t			*l2ad_vdev;	/* vdev */
582 	spa_t			*l2ad_spa;	/* spa */
583 	uint64_t		l2ad_hand;	/* next write location */
584 	uint64_t		l2ad_write;	/* desired write size, bytes */
585 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
586 	uint64_t		l2ad_start;	/* first addr on device */
587 	uint64_t		l2ad_end;	/* last addr on device */
588 	uint64_t		l2ad_evict;	/* last addr eviction reached */
589 	boolean_t		l2ad_first;	/* first sweep through */
590 	boolean_t		l2ad_writing;	/* currently writing */
591 	list_t			*l2ad_buflist;	/* buffer list */
592 	list_node_t		l2ad_node;	/* device list node */
593 } l2arc_dev_t;
594 
595 static list_t L2ARC_dev_list;			/* device list */
596 static list_t *l2arc_dev_list;			/* device list pointer */
597 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
598 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
599 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
600 static list_t L2ARC_free_on_write;		/* free after write buf list */
601 static list_t *l2arc_free_on_write;		/* free after write list ptr */
602 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
603 static uint64_t l2arc_ndev;			/* number of devices */
604 
605 typedef struct l2arc_read_callback {
606 	arc_buf_t	*l2rcb_buf;		/* read buffer */
607 	spa_t		*l2rcb_spa;		/* spa */
608 	blkptr_t	l2rcb_bp;		/* original blkptr */
609 	zbookmark_t	l2rcb_zb;		/* original bookmark */
610 	int		l2rcb_flags;		/* original flags */
611 } l2arc_read_callback_t;
612 
613 typedef struct l2arc_write_callback {
614 	l2arc_dev_t	*l2wcb_dev;		/* device info */
615 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
616 } l2arc_write_callback_t;
617 
618 struct l2arc_buf_hdr {
619 	/* protected by arc_buf_hdr  mutex */
620 	l2arc_dev_t	*b_dev;			/* L2ARC device */
621 	uint64_t	b_daddr;		/* disk address, offset byte */
622 };
623 
624 typedef struct l2arc_data_free {
625 	/* protected by l2arc_free_on_write_mtx */
626 	void		*l2df_data;
627 	size_t		l2df_size;
628 	void		(*l2df_func)(void *, size_t);
629 	list_node_t	l2df_list_node;
630 } l2arc_data_free_t;
631 
632 static kmutex_t l2arc_feed_thr_lock;
633 static kcondvar_t l2arc_feed_thr_cv;
634 static uint8_t l2arc_thread_exit;
635 
636 static void l2arc_read_done(zio_t *zio);
637 static void l2arc_hdr_stat_add(void);
638 static void l2arc_hdr_stat_remove(void);
639 
640 static uint64_t
641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
642 {
643 	uint8_t *vdva = (uint8_t *)dva;
644 	uint64_t crc = -1ULL;
645 	int i;
646 
647 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648 
649 	for (i = 0; i < sizeof (dva_t); i++)
650 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651 
652 	crc ^= (spa>>8) ^ birth;
653 
654 	return (crc);
655 }
656 
657 #define	BUF_EMPTY(buf)						\
658 	((buf)->b_dva.dva_word[0] == 0 &&			\
659 	(buf)->b_dva.dva_word[1] == 0 &&			\
660 	(buf)->b_birth == 0)
661 
662 #define	BUF_EQUAL(spa, dva, birth, buf)				\
663 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
664 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
665 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666 
667 static arc_buf_hdr_t *
668 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
669 {
670 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
671 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
672 	arc_buf_hdr_t *buf;
673 
674 	mutex_enter(hash_lock);
675 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
676 	    buf = buf->b_hash_next) {
677 		if (BUF_EQUAL(spa, dva, birth, buf)) {
678 			*lockp = hash_lock;
679 			return (buf);
680 		}
681 	}
682 	mutex_exit(hash_lock);
683 	*lockp = NULL;
684 	return (NULL);
685 }
686 
687 /*
688  * Insert an entry into the hash table.  If there is already an element
689  * equal to elem in the hash table, then the already existing element
690  * will be returned and the new element will not be inserted.
691  * Otherwise returns NULL.
692  */
693 static arc_buf_hdr_t *
694 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
695 {
696 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
697 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 	arc_buf_hdr_t *fbuf;
699 	uint32_t i;
700 
701 	ASSERT(!HDR_IN_HASH_TABLE(buf));
702 	*lockp = hash_lock;
703 	mutex_enter(hash_lock);
704 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
705 	    fbuf = fbuf->b_hash_next, i++) {
706 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
707 			return (fbuf);
708 	}
709 
710 	buf->b_hash_next = buf_hash_table.ht_table[idx];
711 	buf_hash_table.ht_table[idx] = buf;
712 	buf->b_flags |= ARC_IN_HASH_TABLE;
713 
714 	/* collect some hash table performance data */
715 	if (i > 0) {
716 		ARCSTAT_BUMP(arcstat_hash_collisions);
717 		if (i == 1)
718 			ARCSTAT_BUMP(arcstat_hash_chains);
719 
720 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
721 	}
722 
723 	ARCSTAT_BUMP(arcstat_hash_elements);
724 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
725 
726 	return (NULL);
727 }
728 
729 static void
730 buf_hash_remove(arc_buf_hdr_t *buf)
731 {
732 	arc_buf_hdr_t *fbuf, **bufp;
733 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
734 
735 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
736 	ASSERT(HDR_IN_HASH_TABLE(buf));
737 
738 	bufp = &buf_hash_table.ht_table[idx];
739 	while ((fbuf = *bufp) != buf) {
740 		ASSERT(fbuf != NULL);
741 		bufp = &fbuf->b_hash_next;
742 	}
743 	*bufp = buf->b_hash_next;
744 	buf->b_hash_next = NULL;
745 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
746 
747 	/* collect some hash table performance data */
748 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
749 
750 	if (buf_hash_table.ht_table[idx] &&
751 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
752 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
753 }
754 
755 /*
756  * Global data structures and functions for the buf kmem cache.
757  */
758 static kmem_cache_t *hdr_cache;
759 static kmem_cache_t *buf_cache;
760 
761 static void
762 buf_fini(void)
763 {
764 	int i;
765 
766 	kmem_free(buf_hash_table.ht_table,
767 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
768 	for (i = 0; i < BUF_LOCKS; i++)
769 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
770 	kmem_cache_destroy(hdr_cache);
771 	kmem_cache_destroy(buf_cache);
772 }
773 
774 /*
775  * Constructor callback - called when the cache is empty
776  * and a new buf is requested.
777  */
778 /* ARGSUSED */
779 static int
780 hdr_cons(void *vbuf, void *unused, int kmflag)
781 {
782 	arc_buf_hdr_t *buf = vbuf;
783 
784 	bzero(buf, sizeof (arc_buf_hdr_t));
785 	refcount_create(&buf->b_refcnt);
786 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
787 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
788 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static int
795 buf_cons(void *vbuf, void *unused, int kmflag)
796 {
797 	arc_buf_t *buf = vbuf;
798 
799 	bzero(buf, sizeof (arc_buf_t));
800 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
801 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
802 
803 	return (0);
804 }
805 
806 /*
807  * Destructor callback - called when a cached buf is
808  * no longer required.
809  */
810 /* ARGSUSED */
811 static void
812 hdr_dest(void *vbuf, void *unused)
813 {
814 	arc_buf_hdr_t *buf = vbuf;
815 
816 	ASSERT(BUF_EMPTY(buf));
817 	refcount_destroy(&buf->b_refcnt);
818 	cv_destroy(&buf->b_cv);
819 	mutex_destroy(&buf->b_freeze_lock);
820 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
821 }
822 
823 /* ARGSUSED */
824 static void
825 buf_dest(void *vbuf, void *unused)
826 {
827 	arc_buf_t *buf = vbuf;
828 
829 	rw_destroy(&buf->b_lock);
830 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
831 }
832 
833 /*
834  * Reclaim callback -- invoked when memory is low.
835  */
836 /* ARGSUSED */
837 static void
838 hdr_recl(void *unused)
839 {
840 	dprintf("hdr_recl called\n");
841 	/*
842 	 * umem calls the reclaim func when we destroy the buf cache,
843 	 * which is after we do arc_fini().
844 	 */
845 	if (!arc_dead)
846 		cv_signal(&arc_reclaim_thr_cv);
847 }
848 
849 static void
850 buf_init(void)
851 {
852 	uint64_t *ct;
853 	uint64_t hsize = 1ULL << 12;
854 	int i, j;
855 
856 	/*
857 	 * The hash table is big enough to fill all of physical memory
858 	 * with an average 64K block size.  The table will take up
859 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
860 	 */
861 	while (hsize * 65536 < physmem * PAGESIZE)
862 		hsize <<= 1;
863 retry:
864 	buf_hash_table.ht_mask = hsize - 1;
865 	buf_hash_table.ht_table =
866 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
867 	if (buf_hash_table.ht_table == NULL) {
868 		ASSERT(hsize > (1ULL << 8));
869 		hsize >>= 1;
870 		goto retry;
871 	}
872 
873 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
874 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
875 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
876 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
877 
878 	for (i = 0; i < 256; i++)
879 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
880 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
881 
882 	for (i = 0; i < BUF_LOCKS; i++) {
883 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
884 		    NULL, MUTEX_DEFAULT, NULL);
885 	}
886 }
887 
888 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
889 
890 static void
891 arc_cksum_verify(arc_buf_t *buf)
892 {
893 	zio_cksum_t zc;
894 
895 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
896 		return;
897 
898 	mutex_enter(&buf->b_hdr->b_freeze_lock);
899 	if (buf->b_hdr->b_freeze_cksum == NULL ||
900 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
901 		mutex_exit(&buf->b_hdr->b_freeze_lock);
902 		return;
903 	}
904 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
905 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
906 		panic("buffer modified while frozen!");
907 	mutex_exit(&buf->b_hdr->b_freeze_lock);
908 }
909 
910 static int
911 arc_cksum_equal(arc_buf_t *buf)
912 {
913 	zio_cksum_t zc;
914 	int equal;
915 
916 	mutex_enter(&buf->b_hdr->b_freeze_lock);
917 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
918 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
919 	mutex_exit(&buf->b_hdr->b_freeze_lock);
920 
921 	return (equal);
922 }
923 
924 static void
925 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
926 {
927 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
928 		return;
929 
930 	mutex_enter(&buf->b_hdr->b_freeze_lock);
931 	if (buf->b_hdr->b_freeze_cksum != NULL) {
932 		mutex_exit(&buf->b_hdr->b_freeze_lock);
933 		return;
934 	}
935 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
936 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
937 	    buf->b_hdr->b_freeze_cksum);
938 	mutex_exit(&buf->b_hdr->b_freeze_lock);
939 }
940 
941 void
942 arc_buf_thaw(arc_buf_t *buf)
943 {
944 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
945 		if (buf->b_hdr->b_state != arc_anon)
946 			panic("modifying non-anon buffer!");
947 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
948 			panic("modifying buffer while i/o in progress!");
949 		arc_cksum_verify(buf);
950 	}
951 
952 	mutex_enter(&buf->b_hdr->b_freeze_lock);
953 	if (buf->b_hdr->b_freeze_cksum != NULL) {
954 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
955 		buf->b_hdr->b_freeze_cksum = NULL;
956 	}
957 	mutex_exit(&buf->b_hdr->b_freeze_lock);
958 }
959 
960 void
961 arc_buf_freeze(arc_buf_t *buf)
962 {
963 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
964 		return;
965 
966 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
967 	    buf->b_hdr->b_state == arc_anon);
968 	arc_cksum_compute(buf, B_FALSE);
969 }
970 
971 static void
972 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
973 {
974 	ASSERT(MUTEX_HELD(hash_lock));
975 
976 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
977 	    (ab->b_state != arc_anon)) {
978 		uint64_t delta = ab->b_size * ab->b_datacnt;
979 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
980 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
981 
982 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
983 		mutex_enter(&ab->b_state->arcs_mtx);
984 		ASSERT(list_link_active(&ab->b_arc_node));
985 		list_remove(list, ab);
986 		if (GHOST_STATE(ab->b_state)) {
987 			ASSERT3U(ab->b_datacnt, ==, 0);
988 			ASSERT3P(ab->b_buf, ==, NULL);
989 			delta = ab->b_size;
990 		}
991 		ASSERT(delta > 0);
992 		ASSERT3U(*size, >=, delta);
993 		atomic_add_64(size, -delta);
994 		mutex_exit(&ab->b_state->arcs_mtx);
995 		/* remove the prefetch flag if we get a reference */
996 		if (ab->b_flags & ARC_PREFETCH)
997 			ab->b_flags &= ~ARC_PREFETCH;
998 	}
999 }
1000 
1001 static int
1002 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1003 {
1004 	int cnt;
1005 	arc_state_t *state = ab->b_state;
1006 
1007 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1008 	ASSERT(!GHOST_STATE(state));
1009 
1010 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1011 	    (state != arc_anon)) {
1012 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1013 
1014 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1015 		mutex_enter(&state->arcs_mtx);
1016 		ASSERT(!list_link_active(&ab->b_arc_node));
1017 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1018 		ASSERT(ab->b_datacnt > 0);
1019 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1020 		mutex_exit(&state->arcs_mtx);
1021 	}
1022 	return (cnt);
1023 }
1024 
1025 /*
1026  * Move the supplied buffer to the indicated state.  The mutex
1027  * for the buffer must be held by the caller.
1028  */
1029 static void
1030 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1031 {
1032 	arc_state_t *old_state = ab->b_state;
1033 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1034 	uint64_t from_delta, to_delta;
1035 
1036 	ASSERT(MUTEX_HELD(hash_lock));
1037 	ASSERT(new_state != old_state);
1038 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1039 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1040 	ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon);
1041 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1042 
1043 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1044 
1045 	/*
1046 	 * If this buffer is evictable, transfer it from the
1047 	 * old state list to the new state list.
1048 	 */
1049 	if (refcnt == 0) {
1050 		if (old_state != arc_anon) {
1051 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1052 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1053 
1054 			if (use_mutex)
1055 				mutex_enter(&old_state->arcs_mtx);
1056 
1057 			ASSERT(list_link_active(&ab->b_arc_node));
1058 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1059 
1060 			/*
1061 			 * If prefetching out of the ghost cache,
1062 			 * we will have a non-null datacnt.
1063 			 */
1064 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1065 				/* ghost elements have a ghost size */
1066 				ASSERT(ab->b_buf == NULL);
1067 				from_delta = ab->b_size;
1068 			}
1069 			ASSERT3U(*size, >=, from_delta);
1070 			atomic_add_64(size, -from_delta);
1071 
1072 			if (use_mutex)
1073 				mutex_exit(&old_state->arcs_mtx);
1074 		}
1075 		if (new_state != arc_anon) {
1076 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1077 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1078 
1079 			if (use_mutex)
1080 				mutex_enter(&new_state->arcs_mtx);
1081 
1082 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1083 
1084 			/* ghost elements have a ghost size */
1085 			if (GHOST_STATE(new_state)) {
1086 				ASSERT(ab->b_datacnt == 0);
1087 				ASSERT(ab->b_buf == NULL);
1088 				to_delta = ab->b_size;
1089 			}
1090 			atomic_add_64(size, to_delta);
1091 
1092 			if (use_mutex)
1093 				mutex_exit(&new_state->arcs_mtx);
1094 		}
1095 	}
1096 
1097 	ASSERT(!BUF_EMPTY(ab));
1098 	if (new_state == arc_anon) {
1099 		buf_hash_remove(ab);
1100 	}
1101 
1102 	/* adjust state sizes */
1103 	if (to_delta)
1104 		atomic_add_64(&new_state->arcs_size, to_delta);
1105 	if (from_delta) {
1106 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1107 		atomic_add_64(&old_state->arcs_size, -from_delta);
1108 	}
1109 	ab->b_state = new_state;
1110 
1111 	/* adjust l2arc hdr stats */
1112 	if (new_state == arc_l2c_only)
1113 		l2arc_hdr_stat_add();
1114 	else if (old_state == arc_l2c_only)
1115 		l2arc_hdr_stat_remove();
1116 }
1117 
1118 void
1119 arc_space_consume(uint64_t space, arc_space_type_t type)
1120 {
1121 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1122 
1123 	switch (type) {
1124 	case ARC_SPACE_DATA:
1125 		ARCSTAT_INCR(arcstat_data_size, space);
1126 		break;
1127 	case ARC_SPACE_OTHER:
1128 		ARCSTAT_INCR(arcstat_other_size, space);
1129 		break;
1130 	case ARC_SPACE_HDRS:
1131 		ARCSTAT_INCR(arcstat_hdr_size, space);
1132 		break;
1133 	case ARC_SPACE_L2HDRS:
1134 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1135 		break;
1136 	}
1137 
1138 	atomic_add_64(&arc_meta_used, space);
1139 	atomic_add_64(&arc_size, space);
1140 }
1141 
1142 void
1143 arc_space_return(uint64_t space, arc_space_type_t type)
1144 {
1145 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1146 
1147 	switch (type) {
1148 	case ARC_SPACE_DATA:
1149 		ARCSTAT_INCR(arcstat_data_size, -space);
1150 		break;
1151 	case ARC_SPACE_OTHER:
1152 		ARCSTAT_INCR(arcstat_other_size, -space);
1153 		break;
1154 	case ARC_SPACE_HDRS:
1155 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1156 		break;
1157 	case ARC_SPACE_L2HDRS:
1158 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1159 		break;
1160 	}
1161 
1162 	ASSERT(arc_meta_used >= space);
1163 	if (arc_meta_max < arc_meta_used)
1164 		arc_meta_max = arc_meta_used;
1165 	atomic_add_64(&arc_meta_used, -space);
1166 	ASSERT(arc_size >= space);
1167 	atomic_add_64(&arc_size, -space);
1168 }
1169 
1170 void *
1171 arc_data_buf_alloc(uint64_t size)
1172 {
1173 	if (arc_evict_needed(ARC_BUFC_DATA))
1174 		cv_signal(&arc_reclaim_thr_cv);
1175 	atomic_add_64(&arc_size, size);
1176 	return (zio_data_buf_alloc(size));
1177 }
1178 
1179 void
1180 arc_data_buf_free(void *buf, uint64_t size)
1181 {
1182 	zio_data_buf_free(buf, size);
1183 	ASSERT(arc_size >= size);
1184 	atomic_add_64(&arc_size, -size);
1185 }
1186 
1187 arc_buf_t *
1188 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1189 {
1190 	arc_buf_hdr_t *hdr;
1191 	arc_buf_t *buf;
1192 
1193 	ASSERT3U(size, >, 0);
1194 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1195 	ASSERT(BUF_EMPTY(hdr));
1196 	hdr->b_size = size;
1197 	hdr->b_type = type;
1198 	hdr->b_spa = spa_guid(spa);
1199 	hdr->b_state = arc_anon;
1200 	hdr->b_arc_access = 0;
1201 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1202 	buf->b_hdr = hdr;
1203 	buf->b_data = NULL;
1204 	buf->b_efunc = NULL;
1205 	buf->b_private = NULL;
1206 	buf->b_next = NULL;
1207 	hdr->b_buf = buf;
1208 	arc_get_data_buf(buf);
1209 	hdr->b_datacnt = 1;
1210 	hdr->b_flags = 0;
1211 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1212 	(void) refcount_add(&hdr->b_refcnt, tag);
1213 
1214 	return (buf);
1215 }
1216 
1217 static char *arc_onloan_tag = "onloan";
1218 
1219 /*
1220  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1221  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1222  * buffers must be returned to the arc before they can be used by the DMU or
1223  * freed.
1224  */
1225 arc_buf_t *
1226 arc_loan_buf(spa_t *spa, int size)
1227 {
1228 	arc_buf_t *buf;
1229 
1230 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1231 
1232 	atomic_add_64(&arc_loaned_bytes, size);
1233 	return (buf);
1234 }
1235 
1236 /*
1237  * Return a loaned arc buffer to the arc.
1238  */
1239 void
1240 arc_return_buf(arc_buf_t *buf, void *tag)
1241 {
1242 	arc_buf_hdr_t *hdr = buf->b_hdr;
1243 
1244 	ASSERT(hdr->b_state == arc_anon);
1245 	ASSERT(buf->b_data != NULL);
1246 	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1247 	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1248 
1249 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1250 }
1251 
1252 static arc_buf_t *
1253 arc_buf_clone(arc_buf_t *from)
1254 {
1255 	arc_buf_t *buf;
1256 	arc_buf_hdr_t *hdr = from->b_hdr;
1257 	uint64_t size = hdr->b_size;
1258 
1259 	ASSERT(hdr->b_state != arc_anon);
1260 
1261 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1262 	buf->b_hdr = hdr;
1263 	buf->b_data = NULL;
1264 	buf->b_efunc = NULL;
1265 	buf->b_private = NULL;
1266 	buf->b_next = hdr->b_buf;
1267 	hdr->b_buf = buf;
1268 	arc_get_data_buf(buf);
1269 	bcopy(from->b_data, buf->b_data, size);
1270 	hdr->b_datacnt += 1;
1271 	return (buf);
1272 }
1273 
1274 void
1275 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1276 {
1277 	arc_buf_hdr_t *hdr;
1278 	kmutex_t *hash_lock;
1279 
1280 	/*
1281 	 * Check to see if this buffer is evicted.  Callers
1282 	 * must verify b_data != NULL to know if the add_ref
1283 	 * was successful.
1284 	 */
1285 	rw_enter(&buf->b_lock, RW_READER);
1286 	if (buf->b_data == NULL) {
1287 		rw_exit(&buf->b_lock);
1288 		return;
1289 	}
1290 	hdr = buf->b_hdr;
1291 	ASSERT(hdr != NULL);
1292 	hash_lock = HDR_LOCK(hdr);
1293 	mutex_enter(hash_lock);
1294 	rw_exit(&buf->b_lock);
1295 
1296 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1297 	add_reference(hdr, hash_lock, tag);
1298 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1299 	arc_access(hdr, hash_lock);
1300 	mutex_exit(hash_lock);
1301 	ARCSTAT_BUMP(arcstat_hits);
1302 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1303 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1304 	    data, metadata, hits);
1305 }
1306 
1307 /*
1308  * Free the arc data buffer.  If it is an l2arc write in progress,
1309  * the buffer is placed on l2arc_free_on_write to be freed later.
1310  */
1311 static void
1312 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1313     void *data, size_t size)
1314 {
1315 	if (HDR_L2_WRITING(hdr)) {
1316 		l2arc_data_free_t *df;
1317 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1318 		df->l2df_data = data;
1319 		df->l2df_size = size;
1320 		df->l2df_func = free_func;
1321 		mutex_enter(&l2arc_free_on_write_mtx);
1322 		list_insert_head(l2arc_free_on_write, df);
1323 		mutex_exit(&l2arc_free_on_write_mtx);
1324 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1325 	} else {
1326 		free_func(data, size);
1327 	}
1328 }
1329 
1330 static void
1331 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1332 {
1333 	arc_buf_t **bufp;
1334 
1335 	/* free up data associated with the buf */
1336 	if (buf->b_data) {
1337 		arc_state_t *state = buf->b_hdr->b_state;
1338 		uint64_t size = buf->b_hdr->b_size;
1339 		arc_buf_contents_t type = buf->b_hdr->b_type;
1340 
1341 		arc_cksum_verify(buf);
1342 
1343 		if (!recycle) {
1344 			if (type == ARC_BUFC_METADATA) {
1345 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1346 				    buf->b_data, size);
1347 				arc_space_return(size, ARC_SPACE_DATA);
1348 			} else {
1349 				ASSERT(type == ARC_BUFC_DATA);
1350 				arc_buf_data_free(buf->b_hdr,
1351 				    zio_data_buf_free, buf->b_data, size);
1352 				ARCSTAT_INCR(arcstat_data_size, -size);
1353 				atomic_add_64(&arc_size, -size);
1354 			}
1355 		}
1356 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1357 			uint64_t *cnt = &state->arcs_lsize[type];
1358 
1359 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1360 			ASSERT(state != arc_anon);
1361 
1362 			ASSERT3U(*cnt, >=, size);
1363 			atomic_add_64(cnt, -size);
1364 		}
1365 		ASSERT3U(state->arcs_size, >=, size);
1366 		atomic_add_64(&state->arcs_size, -size);
1367 		buf->b_data = NULL;
1368 		ASSERT(buf->b_hdr->b_datacnt > 0);
1369 		buf->b_hdr->b_datacnt -= 1;
1370 	}
1371 
1372 	/* only remove the buf if requested */
1373 	if (!all)
1374 		return;
1375 
1376 	/* remove the buf from the hdr list */
1377 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1378 		continue;
1379 	*bufp = buf->b_next;
1380 
1381 	ASSERT(buf->b_efunc == NULL);
1382 
1383 	/* clean up the buf */
1384 	buf->b_hdr = NULL;
1385 	kmem_cache_free(buf_cache, buf);
1386 }
1387 
1388 static void
1389 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1390 {
1391 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1392 	ASSERT3P(hdr->b_state, ==, arc_anon);
1393 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1394 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1395 
1396 	if (l2hdr != NULL) {
1397 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1398 		/*
1399 		 * To prevent arc_free() and l2arc_evict() from
1400 		 * attempting to free the same buffer at the same time,
1401 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1402 		 * give it priority.  l2arc_evict() can't destroy this
1403 		 * header while we are waiting on l2arc_buflist_mtx.
1404 		 *
1405 		 * The hdr may be removed from l2ad_buflist before we
1406 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1407 		 */
1408 		if (!buflist_held) {
1409 			mutex_enter(&l2arc_buflist_mtx);
1410 			l2hdr = hdr->b_l2hdr;
1411 		}
1412 
1413 		if (l2hdr != NULL) {
1414 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1415 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1416 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1417 			if (hdr->b_state == arc_l2c_only)
1418 				l2arc_hdr_stat_remove();
1419 			hdr->b_l2hdr = NULL;
1420 		}
1421 
1422 		if (!buflist_held)
1423 			mutex_exit(&l2arc_buflist_mtx);
1424 	}
1425 
1426 	if (!BUF_EMPTY(hdr)) {
1427 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1428 		bzero(&hdr->b_dva, sizeof (dva_t));
1429 		hdr->b_birth = 0;
1430 		hdr->b_cksum0 = 0;
1431 	}
1432 	while (hdr->b_buf) {
1433 		arc_buf_t *buf = hdr->b_buf;
1434 
1435 		if (buf->b_efunc) {
1436 			mutex_enter(&arc_eviction_mtx);
1437 			rw_enter(&buf->b_lock, RW_WRITER);
1438 			ASSERT(buf->b_hdr != NULL);
1439 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1440 			hdr->b_buf = buf->b_next;
1441 			buf->b_hdr = &arc_eviction_hdr;
1442 			buf->b_next = arc_eviction_list;
1443 			arc_eviction_list = buf;
1444 			rw_exit(&buf->b_lock);
1445 			mutex_exit(&arc_eviction_mtx);
1446 		} else {
1447 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1448 		}
1449 	}
1450 	if (hdr->b_freeze_cksum != NULL) {
1451 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1452 		hdr->b_freeze_cksum = NULL;
1453 	}
1454 
1455 	ASSERT(!list_link_active(&hdr->b_arc_node));
1456 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1457 	ASSERT3P(hdr->b_acb, ==, NULL);
1458 	kmem_cache_free(hdr_cache, hdr);
1459 }
1460 
1461 void
1462 arc_buf_free(arc_buf_t *buf, void *tag)
1463 {
1464 	arc_buf_hdr_t *hdr = buf->b_hdr;
1465 	int hashed = hdr->b_state != arc_anon;
1466 
1467 	ASSERT(buf->b_efunc == NULL);
1468 	ASSERT(buf->b_data != NULL);
1469 
1470 	if (hashed) {
1471 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1472 
1473 		mutex_enter(hash_lock);
1474 		(void) remove_reference(hdr, hash_lock, tag);
1475 		if (hdr->b_datacnt > 1) {
1476 			arc_buf_destroy(buf, FALSE, TRUE);
1477 		} else {
1478 			ASSERT(buf == hdr->b_buf);
1479 			ASSERT(buf->b_efunc == NULL);
1480 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1481 		}
1482 		mutex_exit(hash_lock);
1483 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1484 		int destroy_hdr;
1485 		/*
1486 		 * We are in the middle of an async write.  Don't destroy
1487 		 * this buffer unless the write completes before we finish
1488 		 * decrementing the reference count.
1489 		 */
1490 		mutex_enter(&arc_eviction_mtx);
1491 		(void) remove_reference(hdr, NULL, tag);
1492 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1493 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1494 		mutex_exit(&arc_eviction_mtx);
1495 		if (destroy_hdr)
1496 			arc_hdr_destroy(hdr);
1497 	} else {
1498 		if (remove_reference(hdr, NULL, tag) > 0) {
1499 			ASSERT(HDR_IO_ERROR(hdr));
1500 			arc_buf_destroy(buf, FALSE, TRUE);
1501 		} else {
1502 			arc_hdr_destroy(hdr);
1503 		}
1504 	}
1505 }
1506 
1507 int
1508 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1509 {
1510 	arc_buf_hdr_t *hdr = buf->b_hdr;
1511 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1512 	int no_callback = (buf->b_efunc == NULL);
1513 
1514 	if (hdr->b_state == arc_anon) {
1515 		ASSERT(hdr->b_datacnt == 1);
1516 		arc_buf_free(buf, tag);
1517 		return (no_callback);
1518 	}
1519 
1520 	mutex_enter(hash_lock);
1521 	ASSERT(hdr->b_state != arc_anon);
1522 	ASSERT(buf->b_data != NULL);
1523 
1524 	(void) remove_reference(hdr, hash_lock, tag);
1525 	if (hdr->b_datacnt > 1) {
1526 		if (no_callback)
1527 			arc_buf_destroy(buf, FALSE, TRUE);
1528 	} else if (no_callback) {
1529 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1530 		ASSERT(buf->b_efunc == NULL);
1531 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1532 	}
1533 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1534 	    refcount_is_zero(&hdr->b_refcnt));
1535 	mutex_exit(hash_lock);
1536 	return (no_callback);
1537 }
1538 
1539 int
1540 arc_buf_size(arc_buf_t *buf)
1541 {
1542 	return (buf->b_hdr->b_size);
1543 }
1544 
1545 /*
1546  * Evict buffers from list until we've removed the specified number of
1547  * bytes.  Move the removed buffers to the appropriate evict state.
1548  * If the recycle flag is set, then attempt to "recycle" a buffer:
1549  * - look for a buffer to evict that is `bytes' long.
1550  * - return the data block from this buffer rather than freeing it.
1551  * This flag is used by callers that are trying to make space for a
1552  * new buffer in a full arc cache.
1553  *
1554  * This function makes a "best effort".  It skips over any buffers
1555  * it can't get a hash_lock on, and so may not catch all candidates.
1556  * It may also return without evicting as much space as requested.
1557  */
1558 static void *
1559 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1560     arc_buf_contents_t type)
1561 {
1562 	arc_state_t *evicted_state;
1563 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1564 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1565 	list_t *list = &state->arcs_list[type];
1566 	kmutex_t *hash_lock;
1567 	boolean_t have_lock;
1568 	void *stolen = NULL;
1569 
1570 	ASSERT(state == arc_mru || state == arc_mfu);
1571 
1572 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1573 
1574 	mutex_enter(&state->arcs_mtx);
1575 	mutex_enter(&evicted_state->arcs_mtx);
1576 
1577 	for (ab = list_tail(list); ab; ab = ab_prev) {
1578 		ab_prev = list_prev(list, ab);
1579 		/* prefetch buffers have a minimum lifespan */
1580 		if (HDR_IO_IN_PROGRESS(ab) ||
1581 		    (spa && ab->b_spa != spa) ||
1582 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1583 		    ddi_get_lbolt() - ab->b_arc_access <
1584 		    arc_min_prefetch_lifespan)) {
1585 			skipped++;
1586 			continue;
1587 		}
1588 		/* "lookahead" for better eviction candidate */
1589 		if (recycle && ab->b_size != bytes &&
1590 		    ab_prev && ab_prev->b_size == bytes)
1591 			continue;
1592 		hash_lock = HDR_LOCK(ab);
1593 		have_lock = MUTEX_HELD(hash_lock);
1594 		if (have_lock || mutex_tryenter(hash_lock)) {
1595 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1596 			ASSERT(ab->b_datacnt > 0);
1597 			while (ab->b_buf) {
1598 				arc_buf_t *buf = ab->b_buf;
1599 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1600 					missed += 1;
1601 					break;
1602 				}
1603 				if (buf->b_data) {
1604 					bytes_evicted += ab->b_size;
1605 					if (recycle && ab->b_type == type &&
1606 					    ab->b_size == bytes &&
1607 					    !HDR_L2_WRITING(ab)) {
1608 						stolen = buf->b_data;
1609 						recycle = FALSE;
1610 					}
1611 				}
1612 				if (buf->b_efunc) {
1613 					mutex_enter(&arc_eviction_mtx);
1614 					arc_buf_destroy(buf,
1615 					    buf->b_data == stolen, FALSE);
1616 					ab->b_buf = buf->b_next;
1617 					buf->b_hdr = &arc_eviction_hdr;
1618 					buf->b_next = arc_eviction_list;
1619 					arc_eviction_list = buf;
1620 					mutex_exit(&arc_eviction_mtx);
1621 					rw_exit(&buf->b_lock);
1622 				} else {
1623 					rw_exit(&buf->b_lock);
1624 					arc_buf_destroy(buf,
1625 					    buf->b_data == stolen, TRUE);
1626 				}
1627 			}
1628 
1629 			if (ab->b_l2hdr) {
1630 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1631 				    ab->b_size);
1632 			} else {
1633 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1634 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1635 					    ab->b_size);
1636 				} else {
1637 					ARCSTAT_INCR(
1638 					    arcstat_evict_l2_ineligible,
1639 					    ab->b_size);
1640 				}
1641 			}
1642 
1643 			if (ab->b_datacnt == 0) {
1644 				arc_change_state(evicted_state, ab, hash_lock);
1645 				ASSERT(HDR_IN_HASH_TABLE(ab));
1646 				ab->b_flags |= ARC_IN_HASH_TABLE;
1647 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1648 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1649 			}
1650 			if (!have_lock)
1651 				mutex_exit(hash_lock);
1652 			if (bytes >= 0 && bytes_evicted >= bytes)
1653 				break;
1654 		} else {
1655 			missed += 1;
1656 		}
1657 	}
1658 
1659 	mutex_exit(&evicted_state->arcs_mtx);
1660 	mutex_exit(&state->arcs_mtx);
1661 
1662 	if (bytes_evicted < bytes)
1663 		dprintf("only evicted %lld bytes from %x",
1664 		    (longlong_t)bytes_evicted, state);
1665 
1666 	if (skipped)
1667 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1668 
1669 	if (missed)
1670 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1671 
1672 	/*
1673 	 * We have just evicted some date into the ghost state, make
1674 	 * sure we also adjust the ghost state size if necessary.
1675 	 */
1676 	if (arc_no_grow &&
1677 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1678 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1679 		    arc_mru_ghost->arcs_size - arc_c;
1680 
1681 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1682 			int64_t todelete =
1683 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1684 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1685 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1686 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1687 			    arc_mru_ghost->arcs_size +
1688 			    arc_mfu_ghost->arcs_size - arc_c);
1689 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1690 		}
1691 	}
1692 
1693 	return (stolen);
1694 }
1695 
1696 /*
1697  * Remove buffers from list until we've removed the specified number of
1698  * bytes.  Destroy the buffers that are removed.
1699  */
1700 static void
1701 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1702 {
1703 	arc_buf_hdr_t *ab, *ab_prev;
1704 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1705 	kmutex_t *hash_lock;
1706 	uint64_t bytes_deleted = 0;
1707 	uint64_t bufs_skipped = 0;
1708 
1709 	ASSERT(GHOST_STATE(state));
1710 top:
1711 	mutex_enter(&state->arcs_mtx);
1712 	for (ab = list_tail(list); ab; ab = ab_prev) {
1713 		ab_prev = list_prev(list, ab);
1714 		if (spa && ab->b_spa != spa)
1715 			continue;
1716 		hash_lock = HDR_LOCK(ab);
1717 		if (mutex_tryenter(hash_lock)) {
1718 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1719 			ASSERT(ab->b_buf == NULL);
1720 			ARCSTAT_BUMP(arcstat_deleted);
1721 			bytes_deleted += ab->b_size;
1722 
1723 			if (ab->b_l2hdr != NULL) {
1724 				/*
1725 				 * This buffer is cached on the 2nd Level ARC;
1726 				 * don't destroy the header.
1727 				 */
1728 				arc_change_state(arc_l2c_only, ab, hash_lock);
1729 				mutex_exit(hash_lock);
1730 			} else {
1731 				arc_change_state(arc_anon, ab, hash_lock);
1732 				mutex_exit(hash_lock);
1733 				arc_hdr_destroy(ab);
1734 			}
1735 
1736 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1737 			if (bytes >= 0 && bytes_deleted >= bytes)
1738 				break;
1739 		} else {
1740 			if (bytes < 0) {
1741 				mutex_exit(&state->arcs_mtx);
1742 				mutex_enter(hash_lock);
1743 				mutex_exit(hash_lock);
1744 				goto top;
1745 			}
1746 			bufs_skipped += 1;
1747 		}
1748 	}
1749 	mutex_exit(&state->arcs_mtx);
1750 
1751 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1752 	    (bytes < 0 || bytes_deleted < bytes)) {
1753 		list = &state->arcs_list[ARC_BUFC_METADATA];
1754 		goto top;
1755 	}
1756 
1757 	if (bufs_skipped) {
1758 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1759 		ASSERT(bytes >= 0);
1760 	}
1761 
1762 	if (bytes_deleted < bytes)
1763 		dprintf("only deleted %lld bytes from %p",
1764 		    (longlong_t)bytes_deleted, state);
1765 }
1766 
1767 static void
1768 arc_adjust(void)
1769 {
1770 	int64_t adjustment, delta;
1771 
1772 	/*
1773 	 * Adjust MRU size
1774 	 */
1775 
1776 	adjustment = MIN(arc_size - arc_c,
1777 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1778 
1779 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1780 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1781 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1782 		adjustment -= delta;
1783 	}
1784 
1785 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1786 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1787 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1788 		    ARC_BUFC_METADATA);
1789 	}
1790 
1791 	/*
1792 	 * Adjust MFU size
1793 	 */
1794 
1795 	adjustment = arc_size - arc_c;
1796 
1797 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1798 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1799 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1800 		adjustment -= delta;
1801 	}
1802 
1803 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1804 		int64_t delta = MIN(adjustment,
1805 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1806 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1807 		    ARC_BUFC_METADATA);
1808 	}
1809 
1810 	/*
1811 	 * Adjust ghost lists
1812 	 */
1813 
1814 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1815 
1816 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1817 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1818 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1819 	}
1820 
1821 	adjustment =
1822 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1823 
1824 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1825 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1826 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1827 	}
1828 }
1829 
1830 static void
1831 arc_do_user_evicts(void)
1832 {
1833 	mutex_enter(&arc_eviction_mtx);
1834 	while (arc_eviction_list != NULL) {
1835 		arc_buf_t *buf = arc_eviction_list;
1836 		arc_eviction_list = buf->b_next;
1837 		rw_enter(&buf->b_lock, RW_WRITER);
1838 		buf->b_hdr = NULL;
1839 		rw_exit(&buf->b_lock);
1840 		mutex_exit(&arc_eviction_mtx);
1841 
1842 		if (buf->b_efunc != NULL)
1843 			VERIFY(buf->b_efunc(buf) == 0);
1844 
1845 		buf->b_efunc = NULL;
1846 		buf->b_private = NULL;
1847 		kmem_cache_free(buf_cache, buf);
1848 		mutex_enter(&arc_eviction_mtx);
1849 	}
1850 	mutex_exit(&arc_eviction_mtx);
1851 }
1852 
1853 /*
1854  * Flush all *evictable* data from the cache for the given spa.
1855  * NOTE: this will not touch "active" (i.e. referenced) data.
1856  */
1857 void
1858 arc_flush(spa_t *spa)
1859 {
1860 	uint64_t guid = 0;
1861 
1862 	if (spa)
1863 		guid = spa_guid(spa);
1864 
1865 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1866 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1867 		if (spa)
1868 			break;
1869 	}
1870 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1871 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1872 		if (spa)
1873 			break;
1874 	}
1875 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1876 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1877 		if (spa)
1878 			break;
1879 	}
1880 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1881 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1882 		if (spa)
1883 			break;
1884 	}
1885 
1886 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1887 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1888 
1889 	mutex_enter(&arc_reclaim_thr_lock);
1890 	arc_do_user_evicts();
1891 	mutex_exit(&arc_reclaim_thr_lock);
1892 	ASSERT(spa || arc_eviction_list == NULL);
1893 }
1894 
1895 void
1896 arc_shrink(void)
1897 {
1898 	if (arc_c > arc_c_min) {
1899 		uint64_t to_free;
1900 
1901 #ifdef _KERNEL
1902 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1903 #else
1904 		to_free = arc_c >> arc_shrink_shift;
1905 #endif
1906 		if (arc_c > arc_c_min + to_free)
1907 			atomic_add_64(&arc_c, -to_free);
1908 		else
1909 			arc_c = arc_c_min;
1910 
1911 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1912 		if (arc_c > arc_size)
1913 			arc_c = MAX(arc_size, arc_c_min);
1914 		if (arc_p > arc_c)
1915 			arc_p = (arc_c >> 1);
1916 		ASSERT(arc_c >= arc_c_min);
1917 		ASSERT((int64_t)arc_p >= 0);
1918 	}
1919 
1920 	if (arc_size > arc_c)
1921 		arc_adjust();
1922 }
1923 
1924 static int
1925 arc_reclaim_needed(void)
1926 {
1927 	uint64_t extra;
1928 
1929 #ifdef _KERNEL
1930 
1931 	if (needfree)
1932 		return (1);
1933 
1934 	/*
1935 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1936 	 */
1937 	extra = desfree;
1938 
1939 	/*
1940 	 * check that we're out of range of the pageout scanner.  It starts to
1941 	 * schedule paging if freemem is less than lotsfree and needfree.
1942 	 * lotsfree is the high-water mark for pageout, and needfree is the
1943 	 * number of needed free pages.  We add extra pages here to make sure
1944 	 * the scanner doesn't start up while we're freeing memory.
1945 	 */
1946 	if (freemem < lotsfree + needfree + extra)
1947 		return (1);
1948 
1949 	/*
1950 	 * check to make sure that swapfs has enough space so that anon
1951 	 * reservations can still succeed. anon_resvmem() checks that the
1952 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1953 	 * swap pages.  We also add a bit of extra here just to prevent
1954 	 * circumstances from getting really dire.
1955 	 */
1956 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1957 		return (1);
1958 
1959 #if defined(__i386)
1960 	/*
1961 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1962 	 * kernel heap space before we ever run out of available physical
1963 	 * memory.  Most checks of the size of the heap_area compare against
1964 	 * tune.t_minarmem, which is the minimum available real memory that we
1965 	 * can have in the system.  However, this is generally fixed at 25 pages
1966 	 * which is so low that it's useless.  In this comparison, we seek to
1967 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1968 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1969 	 * free)
1970 	 */
1971 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1972 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1973 		return (1);
1974 #endif
1975 
1976 #else
1977 	if (spa_get_random(100) == 0)
1978 		return (1);
1979 #endif
1980 	return (0);
1981 }
1982 
1983 static void
1984 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1985 {
1986 	size_t			i;
1987 	kmem_cache_t		*prev_cache = NULL;
1988 	kmem_cache_t		*prev_data_cache = NULL;
1989 	extern kmem_cache_t	*zio_buf_cache[];
1990 	extern kmem_cache_t	*zio_data_buf_cache[];
1991 
1992 #ifdef _KERNEL
1993 	if (arc_meta_used >= arc_meta_limit) {
1994 		/*
1995 		 * We are exceeding our meta-data cache limit.
1996 		 * Purge some DNLC entries to release holds on meta-data.
1997 		 */
1998 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1999 	}
2000 #if defined(__i386)
2001 	/*
2002 	 * Reclaim unused memory from all kmem caches.
2003 	 */
2004 	kmem_reap();
2005 #endif
2006 #endif
2007 
2008 	/*
2009 	 * An aggressive reclamation will shrink the cache size as well as
2010 	 * reap free buffers from the arc kmem caches.
2011 	 */
2012 	if (strat == ARC_RECLAIM_AGGR)
2013 		arc_shrink();
2014 
2015 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2016 		if (zio_buf_cache[i] != prev_cache) {
2017 			prev_cache = zio_buf_cache[i];
2018 			kmem_cache_reap_now(zio_buf_cache[i]);
2019 		}
2020 		if (zio_data_buf_cache[i] != prev_data_cache) {
2021 			prev_data_cache = zio_data_buf_cache[i];
2022 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2023 		}
2024 	}
2025 	kmem_cache_reap_now(buf_cache);
2026 	kmem_cache_reap_now(hdr_cache);
2027 }
2028 
2029 static void
2030 arc_reclaim_thread(void)
2031 {
2032 	clock_t			growtime = 0;
2033 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2034 	callb_cpr_t		cpr;
2035 
2036 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2037 
2038 	mutex_enter(&arc_reclaim_thr_lock);
2039 	while (arc_thread_exit == 0) {
2040 		if (arc_reclaim_needed()) {
2041 
2042 			if (arc_no_grow) {
2043 				if (last_reclaim == ARC_RECLAIM_CONS) {
2044 					last_reclaim = ARC_RECLAIM_AGGR;
2045 				} else {
2046 					last_reclaim = ARC_RECLAIM_CONS;
2047 				}
2048 			} else {
2049 				arc_no_grow = TRUE;
2050 				last_reclaim = ARC_RECLAIM_AGGR;
2051 				membar_producer();
2052 			}
2053 
2054 			/* reset the growth delay for every reclaim */
2055 			growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
2056 
2057 			arc_kmem_reap_now(last_reclaim);
2058 			arc_warm = B_TRUE;
2059 
2060 		} else if (arc_no_grow && ddi_get_lbolt() >= growtime) {
2061 			arc_no_grow = FALSE;
2062 		}
2063 
2064 		if (2 * arc_c < arc_size +
2065 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2066 			arc_adjust();
2067 
2068 		if (arc_eviction_list != NULL)
2069 			arc_do_user_evicts();
2070 
2071 		/* block until needed, or one second, whichever is shorter */
2072 		CALLB_CPR_SAFE_BEGIN(&cpr);
2073 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2074 		    &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
2075 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2076 	}
2077 
2078 	arc_thread_exit = 0;
2079 	cv_broadcast(&arc_reclaim_thr_cv);
2080 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2081 	thread_exit();
2082 }
2083 
2084 /*
2085  * Adapt arc info given the number of bytes we are trying to add and
2086  * the state that we are comming from.  This function is only called
2087  * when we are adding new content to the cache.
2088  */
2089 static void
2090 arc_adapt(int bytes, arc_state_t *state)
2091 {
2092 	int mult;
2093 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2094 
2095 	if (state == arc_l2c_only)
2096 		return;
2097 
2098 	ASSERT(bytes > 0);
2099 	/*
2100 	 * Adapt the target size of the MRU list:
2101 	 *	- if we just hit in the MRU ghost list, then increase
2102 	 *	  the target size of the MRU list.
2103 	 *	- if we just hit in the MFU ghost list, then increase
2104 	 *	  the target size of the MFU list by decreasing the
2105 	 *	  target size of the MRU list.
2106 	 */
2107 	if (state == arc_mru_ghost) {
2108 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2109 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2110 
2111 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2112 	} else if (state == arc_mfu_ghost) {
2113 		uint64_t delta;
2114 
2115 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2116 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2117 
2118 		delta = MIN(bytes * mult, arc_p);
2119 		arc_p = MAX(arc_p_min, arc_p - delta);
2120 	}
2121 	ASSERT((int64_t)arc_p >= 0);
2122 
2123 	if (arc_reclaim_needed()) {
2124 		cv_signal(&arc_reclaim_thr_cv);
2125 		return;
2126 	}
2127 
2128 	if (arc_no_grow)
2129 		return;
2130 
2131 	if (arc_c >= arc_c_max)
2132 		return;
2133 
2134 	/*
2135 	 * If we're within (2 * maxblocksize) bytes of the target
2136 	 * cache size, increment the target cache size
2137 	 */
2138 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2139 		atomic_add_64(&arc_c, (int64_t)bytes);
2140 		if (arc_c > arc_c_max)
2141 			arc_c = arc_c_max;
2142 		else if (state == arc_anon)
2143 			atomic_add_64(&arc_p, (int64_t)bytes);
2144 		if (arc_p > arc_c)
2145 			arc_p = arc_c;
2146 	}
2147 	ASSERT((int64_t)arc_p >= 0);
2148 }
2149 
2150 /*
2151  * Check if the cache has reached its limits and eviction is required
2152  * prior to insert.
2153  */
2154 static int
2155 arc_evict_needed(arc_buf_contents_t type)
2156 {
2157 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2158 		return (1);
2159 
2160 #ifdef _KERNEL
2161 	/*
2162 	 * If zio data pages are being allocated out of a separate heap segment,
2163 	 * then enforce that the size of available vmem for this area remains
2164 	 * above about 1/32nd free.
2165 	 */
2166 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2167 	    vmem_size(zio_arena, VMEM_FREE) <
2168 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2169 		return (1);
2170 #endif
2171 
2172 	if (arc_reclaim_needed())
2173 		return (1);
2174 
2175 	return (arc_size > arc_c);
2176 }
2177 
2178 /*
2179  * The buffer, supplied as the first argument, needs a data block.
2180  * So, if we are at cache max, determine which cache should be victimized.
2181  * We have the following cases:
2182  *
2183  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2184  * In this situation if we're out of space, but the resident size of the MFU is
2185  * under the limit, victimize the MFU cache to satisfy this insertion request.
2186  *
2187  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2188  * Here, we've used up all of the available space for the MRU, so we need to
2189  * evict from our own cache instead.  Evict from the set of resident MRU
2190  * entries.
2191  *
2192  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2193  * c minus p represents the MFU space in the cache, since p is the size of the
2194  * cache that is dedicated to the MRU.  In this situation there's still space on
2195  * the MFU side, so the MRU side needs to be victimized.
2196  *
2197  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2198  * MFU's resident set is consuming more space than it has been allotted.  In
2199  * this situation, we must victimize our own cache, the MFU, for this insertion.
2200  */
2201 static void
2202 arc_get_data_buf(arc_buf_t *buf)
2203 {
2204 	arc_state_t		*state = buf->b_hdr->b_state;
2205 	uint64_t		size = buf->b_hdr->b_size;
2206 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2207 
2208 	arc_adapt(size, state);
2209 
2210 	/*
2211 	 * We have not yet reached cache maximum size,
2212 	 * just allocate a new buffer.
2213 	 */
2214 	if (!arc_evict_needed(type)) {
2215 		if (type == ARC_BUFC_METADATA) {
2216 			buf->b_data = zio_buf_alloc(size);
2217 			arc_space_consume(size, ARC_SPACE_DATA);
2218 		} else {
2219 			ASSERT(type == ARC_BUFC_DATA);
2220 			buf->b_data = zio_data_buf_alloc(size);
2221 			ARCSTAT_INCR(arcstat_data_size, size);
2222 			atomic_add_64(&arc_size, size);
2223 		}
2224 		goto out;
2225 	}
2226 
2227 	/*
2228 	 * If we are prefetching from the mfu ghost list, this buffer
2229 	 * will end up on the mru list; so steal space from there.
2230 	 */
2231 	if (state == arc_mfu_ghost)
2232 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2233 	else if (state == arc_mru_ghost)
2234 		state = arc_mru;
2235 
2236 	if (state == arc_mru || state == arc_anon) {
2237 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2238 		state = (arc_mfu->arcs_lsize[type] >= size &&
2239 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2240 	} else {
2241 		/* MFU cases */
2242 		uint64_t mfu_space = arc_c - arc_p;
2243 		state =  (arc_mru->arcs_lsize[type] >= size &&
2244 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2245 	}
2246 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2247 		if (type == ARC_BUFC_METADATA) {
2248 			buf->b_data = zio_buf_alloc(size);
2249 			arc_space_consume(size, ARC_SPACE_DATA);
2250 		} else {
2251 			ASSERT(type == ARC_BUFC_DATA);
2252 			buf->b_data = zio_data_buf_alloc(size);
2253 			ARCSTAT_INCR(arcstat_data_size, size);
2254 			atomic_add_64(&arc_size, size);
2255 		}
2256 		ARCSTAT_BUMP(arcstat_recycle_miss);
2257 	}
2258 	ASSERT(buf->b_data != NULL);
2259 out:
2260 	/*
2261 	 * Update the state size.  Note that ghost states have a
2262 	 * "ghost size" and so don't need to be updated.
2263 	 */
2264 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2265 		arc_buf_hdr_t *hdr = buf->b_hdr;
2266 
2267 		atomic_add_64(&hdr->b_state->arcs_size, size);
2268 		if (list_link_active(&hdr->b_arc_node)) {
2269 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2270 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2271 		}
2272 		/*
2273 		 * If we are growing the cache, and we are adding anonymous
2274 		 * data, and we have outgrown arc_p, update arc_p
2275 		 */
2276 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2277 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2278 			arc_p = MIN(arc_c, arc_p + size);
2279 	}
2280 }
2281 
2282 /*
2283  * This routine is called whenever a buffer is accessed.
2284  * NOTE: the hash lock is dropped in this function.
2285  */
2286 static void
2287 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2288 {
2289 	clock_t now;
2290 
2291 	ASSERT(MUTEX_HELD(hash_lock));
2292 
2293 	if (buf->b_state == arc_anon) {
2294 		/*
2295 		 * This buffer is not in the cache, and does not
2296 		 * appear in our "ghost" list.  Add the new buffer
2297 		 * to the MRU state.
2298 		 */
2299 
2300 		ASSERT(buf->b_arc_access == 0);
2301 		buf->b_arc_access = ddi_get_lbolt();
2302 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2303 		arc_change_state(arc_mru, buf, hash_lock);
2304 
2305 	} else if (buf->b_state == arc_mru) {
2306 		now = ddi_get_lbolt();
2307 
2308 		/*
2309 		 * If this buffer is here because of a prefetch, then either:
2310 		 * - clear the flag if this is a "referencing" read
2311 		 *   (any subsequent access will bump this into the MFU state).
2312 		 * or
2313 		 * - move the buffer to the head of the list if this is
2314 		 *   another prefetch (to make it less likely to be evicted).
2315 		 */
2316 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2317 			if (refcount_count(&buf->b_refcnt) == 0) {
2318 				ASSERT(list_link_active(&buf->b_arc_node));
2319 			} else {
2320 				buf->b_flags &= ~ARC_PREFETCH;
2321 				ARCSTAT_BUMP(arcstat_mru_hits);
2322 			}
2323 			buf->b_arc_access = now;
2324 			return;
2325 		}
2326 
2327 		/*
2328 		 * This buffer has been "accessed" only once so far,
2329 		 * but it is still in the cache. Move it to the MFU
2330 		 * state.
2331 		 */
2332 		if (now > buf->b_arc_access + ARC_MINTIME) {
2333 			/*
2334 			 * More than 125ms have passed since we
2335 			 * instantiated this buffer.  Move it to the
2336 			 * most frequently used state.
2337 			 */
2338 			buf->b_arc_access = now;
2339 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2340 			arc_change_state(arc_mfu, buf, hash_lock);
2341 		}
2342 		ARCSTAT_BUMP(arcstat_mru_hits);
2343 	} else if (buf->b_state == arc_mru_ghost) {
2344 		arc_state_t	*new_state;
2345 		/*
2346 		 * This buffer has been "accessed" recently, but
2347 		 * was evicted from the cache.  Move it to the
2348 		 * MFU state.
2349 		 */
2350 
2351 		if (buf->b_flags & ARC_PREFETCH) {
2352 			new_state = arc_mru;
2353 			if (refcount_count(&buf->b_refcnt) > 0)
2354 				buf->b_flags &= ~ARC_PREFETCH;
2355 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2356 		} else {
2357 			new_state = arc_mfu;
2358 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2359 		}
2360 
2361 		buf->b_arc_access = ddi_get_lbolt();
2362 		arc_change_state(new_state, buf, hash_lock);
2363 
2364 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2365 	} else if (buf->b_state == arc_mfu) {
2366 		/*
2367 		 * This buffer has been accessed more than once and is
2368 		 * still in the cache.  Keep it in the MFU state.
2369 		 *
2370 		 * NOTE: an add_reference() that occurred when we did
2371 		 * the arc_read() will have kicked this off the list.
2372 		 * If it was a prefetch, we will explicitly move it to
2373 		 * the head of the list now.
2374 		 */
2375 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2376 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2377 			ASSERT(list_link_active(&buf->b_arc_node));
2378 		}
2379 		ARCSTAT_BUMP(arcstat_mfu_hits);
2380 		buf->b_arc_access = ddi_get_lbolt();
2381 	} else if (buf->b_state == arc_mfu_ghost) {
2382 		arc_state_t	*new_state = arc_mfu;
2383 		/*
2384 		 * This buffer has been accessed more than once but has
2385 		 * been evicted from the cache.  Move it back to the
2386 		 * MFU state.
2387 		 */
2388 
2389 		if (buf->b_flags & ARC_PREFETCH) {
2390 			/*
2391 			 * This is a prefetch access...
2392 			 * move this block back to the MRU state.
2393 			 */
2394 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2395 			new_state = arc_mru;
2396 		}
2397 
2398 		buf->b_arc_access = ddi_get_lbolt();
2399 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2400 		arc_change_state(new_state, buf, hash_lock);
2401 
2402 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2403 	} else if (buf->b_state == arc_l2c_only) {
2404 		/*
2405 		 * This buffer is on the 2nd Level ARC.
2406 		 */
2407 
2408 		buf->b_arc_access = ddi_get_lbolt();
2409 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2410 		arc_change_state(arc_mfu, buf, hash_lock);
2411 	} else {
2412 		ASSERT(!"invalid arc state");
2413 	}
2414 }
2415 
2416 /* a generic arc_done_func_t which you can use */
2417 /* ARGSUSED */
2418 void
2419 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2420 {
2421 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2422 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2423 }
2424 
2425 /* a generic arc_done_func_t */
2426 void
2427 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2428 {
2429 	arc_buf_t **bufp = arg;
2430 	if (zio && zio->io_error) {
2431 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2432 		*bufp = NULL;
2433 	} else {
2434 		*bufp = buf;
2435 	}
2436 }
2437 
2438 static void
2439 arc_read_done(zio_t *zio)
2440 {
2441 	arc_buf_hdr_t	*hdr, *found;
2442 	arc_buf_t	*buf;
2443 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2444 	kmutex_t	*hash_lock;
2445 	arc_callback_t	*callback_list, *acb;
2446 	int		freeable = FALSE;
2447 
2448 	buf = zio->io_private;
2449 	hdr = buf->b_hdr;
2450 
2451 	/*
2452 	 * The hdr was inserted into hash-table and removed from lists
2453 	 * prior to starting I/O.  We should find this header, since
2454 	 * it's in the hash table, and it should be legit since it's
2455 	 * not possible to evict it during the I/O.  The only possible
2456 	 * reason for it not to be found is if we were freed during the
2457 	 * read.
2458 	 */
2459 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2460 	    &hash_lock);
2461 
2462 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2463 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2464 	    (found == hdr && HDR_L2_READING(hdr)));
2465 
2466 	hdr->b_flags &= ~ARC_L2_EVICTED;
2467 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2468 		hdr->b_flags &= ~ARC_L2CACHE;
2469 
2470 	/* byteswap if necessary */
2471 	callback_list = hdr->b_acb;
2472 	ASSERT(callback_list != NULL);
2473 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2474 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2475 		    byteswap_uint64_array :
2476 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2477 		func(buf->b_data, hdr->b_size);
2478 	}
2479 
2480 	arc_cksum_compute(buf, B_FALSE);
2481 
2482 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2483 		/*
2484 		 * Only call arc_access on anonymous buffers.  This is because
2485 		 * if we've issued an I/O for an evicted buffer, we've already
2486 		 * called arc_access (to prevent any simultaneous readers from
2487 		 * getting confused).
2488 		 */
2489 		arc_access(hdr, hash_lock);
2490 	}
2491 
2492 	/* create copies of the data buffer for the callers */
2493 	abuf = buf;
2494 	for (acb = callback_list; acb; acb = acb->acb_next) {
2495 		if (acb->acb_done) {
2496 			if (abuf == NULL)
2497 				abuf = arc_buf_clone(buf);
2498 			acb->acb_buf = abuf;
2499 			abuf = NULL;
2500 		}
2501 	}
2502 	hdr->b_acb = NULL;
2503 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2504 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2505 	if (abuf == buf) {
2506 		ASSERT(buf->b_efunc == NULL);
2507 		ASSERT(hdr->b_datacnt == 1);
2508 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2509 	}
2510 
2511 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2512 
2513 	if (zio->io_error != 0) {
2514 		hdr->b_flags |= ARC_IO_ERROR;
2515 		if (hdr->b_state != arc_anon)
2516 			arc_change_state(arc_anon, hdr, hash_lock);
2517 		if (HDR_IN_HASH_TABLE(hdr))
2518 			buf_hash_remove(hdr);
2519 		freeable = refcount_is_zero(&hdr->b_refcnt);
2520 	}
2521 
2522 	/*
2523 	 * Broadcast before we drop the hash_lock to avoid the possibility
2524 	 * that the hdr (and hence the cv) might be freed before we get to
2525 	 * the cv_broadcast().
2526 	 */
2527 	cv_broadcast(&hdr->b_cv);
2528 
2529 	if (hash_lock) {
2530 		mutex_exit(hash_lock);
2531 	} else {
2532 		/*
2533 		 * This block was freed while we waited for the read to
2534 		 * complete.  It has been removed from the hash table and
2535 		 * moved to the anonymous state (so that it won't show up
2536 		 * in the cache).
2537 		 */
2538 		ASSERT3P(hdr->b_state, ==, arc_anon);
2539 		freeable = refcount_is_zero(&hdr->b_refcnt);
2540 	}
2541 
2542 	/* execute each callback and free its structure */
2543 	while ((acb = callback_list) != NULL) {
2544 		if (acb->acb_done)
2545 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2546 
2547 		if (acb->acb_zio_dummy != NULL) {
2548 			acb->acb_zio_dummy->io_error = zio->io_error;
2549 			zio_nowait(acb->acb_zio_dummy);
2550 		}
2551 
2552 		callback_list = acb->acb_next;
2553 		kmem_free(acb, sizeof (arc_callback_t));
2554 	}
2555 
2556 	if (freeable)
2557 		arc_hdr_destroy(hdr);
2558 }
2559 
2560 /*
2561  * "Read" the block block at the specified DVA (in bp) via the
2562  * cache.  If the block is found in the cache, invoke the provided
2563  * callback immediately and return.  Note that the `zio' parameter
2564  * in the callback will be NULL in this case, since no IO was
2565  * required.  If the block is not in the cache pass the read request
2566  * on to the spa with a substitute callback function, so that the
2567  * requested block will be added to the cache.
2568  *
2569  * If a read request arrives for a block that has a read in-progress,
2570  * either wait for the in-progress read to complete (and return the
2571  * results); or, if this is a read with a "done" func, add a record
2572  * to the read to invoke the "done" func when the read completes,
2573  * and return; or just return.
2574  *
2575  * arc_read_done() will invoke all the requested "done" functions
2576  * for readers of this block.
2577  *
2578  * Normal callers should use arc_read and pass the arc buffer and offset
2579  * for the bp.  But if you know you don't need locking, you can use
2580  * arc_read_bp.
2581  */
2582 int
2583 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2584     arc_done_func_t *done, void *private, int priority, int zio_flags,
2585     uint32_t *arc_flags, const zbookmark_t *zb)
2586 {
2587 	int err;
2588 
2589 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2590 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2591 	rw_enter(&pbuf->b_lock, RW_READER);
2592 
2593 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2594 	    zio_flags, arc_flags, zb);
2595 	rw_exit(&pbuf->b_lock);
2596 
2597 	return (err);
2598 }
2599 
2600 int
2601 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2602     arc_done_func_t *done, void *private, int priority, int zio_flags,
2603     uint32_t *arc_flags, const zbookmark_t *zb)
2604 {
2605 	arc_buf_hdr_t *hdr;
2606 	arc_buf_t *buf;
2607 	kmutex_t *hash_lock;
2608 	zio_t *rzio;
2609 	uint64_t guid = spa_guid(spa);
2610 
2611 top:
2612 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2613 	    &hash_lock);
2614 	if (hdr && hdr->b_datacnt > 0) {
2615 
2616 		*arc_flags |= ARC_CACHED;
2617 
2618 		if (HDR_IO_IN_PROGRESS(hdr)) {
2619 
2620 			if (*arc_flags & ARC_WAIT) {
2621 				cv_wait(&hdr->b_cv, hash_lock);
2622 				mutex_exit(hash_lock);
2623 				goto top;
2624 			}
2625 			ASSERT(*arc_flags & ARC_NOWAIT);
2626 
2627 			if (done) {
2628 				arc_callback_t	*acb = NULL;
2629 
2630 				acb = kmem_zalloc(sizeof (arc_callback_t),
2631 				    KM_SLEEP);
2632 				acb->acb_done = done;
2633 				acb->acb_private = private;
2634 				if (pio != NULL)
2635 					acb->acb_zio_dummy = zio_null(pio,
2636 					    spa, NULL, NULL, NULL, zio_flags);
2637 
2638 				ASSERT(acb->acb_done != NULL);
2639 				acb->acb_next = hdr->b_acb;
2640 				hdr->b_acb = acb;
2641 				add_reference(hdr, hash_lock, private);
2642 				mutex_exit(hash_lock);
2643 				return (0);
2644 			}
2645 			mutex_exit(hash_lock);
2646 			return (0);
2647 		}
2648 
2649 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2650 
2651 		if (done) {
2652 			add_reference(hdr, hash_lock, private);
2653 			/*
2654 			 * If this block is already in use, create a new
2655 			 * copy of the data so that we will be guaranteed
2656 			 * that arc_release() will always succeed.
2657 			 */
2658 			buf = hdr->b_buf;
2659 			ASSERT(buf);
2660 			ASSERT(buf->b_data);
2661 			if (HDR_BUF_AVAILABLE(hdr)) {
2662 				ASSERT(buf->b_efunc == NULL);
2663 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2664 			} else {
2665 				buf = arc_buf_clone(buf);
2666 			}
2667 
2668 		} else if (*arc_flags & ARC_PREFETCH &&
2669 		    refcount_count(&hdr->b_refcnt) == 0) {
2670 			hdr->b_flags |= ARC_PREFETCH;
2671 		}
2672 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2673 		arc_access(hdr, hash_lock);
2674 		if (*arc_flags & ARC_L2CACHE)
2675 			hdr->b_flags |= ARC_L2CACHE;
2676 		mutex_exit(hash_lock);
2677 		ARCSTAT_BUMP(arcstat_hits);
2678 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2679 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2680 		    data, metadata, hits);
2681 
2682 		if (done)
2683 			done(NULL, buf, private);
2684 	} else {
2685 		uint64_t size = BP_GET_LSIZE(bp);
2686 		arc_callback_t	*acb;
2687 		vdev_t *vd = NULL;
2688 		uint64_t addr;
2689 		boolean_t devw = B_FALSE;
2690 
2691 		if (hdr == NULL) {
2692 			/* this block is not in the cache */
2693 			arc_buf_hdr_t	*exists;
2694 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2695 			buf = arc_buf_alloc(spa, size, private, type);
2696 			hdr = buf->b_hdr;
2697 			hdr->b_dva = *BP_IDENTITY(bp);
2698 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2699 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2700 			exists = buf_hash_insert(hdr, &hash_lock);
2701 			if (exists) {
2702 				/* somebody beat us to the hash insert */
2703 				mutex_exit(hash_lock);
2704 				bzero(&hdr->b_dva, sizeof (dva_t));
2705 				hdr->b_birth = 0;
2706 				hdr->b_cksum0 = 0;
2707 				(void) arc_buf_remove_ref(buf, private);
2708 				goto top; /* restart the IO request */
2709 			}
2710 			/* if this is a prefetch, we don't have a reference */
2711 			if (*arc_flags & ARC_PREFETCH) {
2712 				(void) remove_reference(hdr, hash_lock,
2713 				    private);
2714 				hdr->b_flags |= ARC_PREFETCH;
2715 			}
2716 			if (*arc_flags & ARC_L2CACHE)
2717 				hdr->b_flags |= ARC_L2CACHE;
2718 			if (BP_GET_LEVEL(bp) > 0)
2719 				hdr->b_flags |= ARC_INDIRECT;
2720 		} else {
2721 			/* this block is in the ghost cache */
2722 			ASSERT(GHOST_STATE(hdr->b_state));
2723 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2724 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2725 			ASSERT(hdr->b_buf == NULL);
2726 
2727 			/* if this is a prefetch, we don't have a reference */
2728 			if (*arc_flags & ARC_PREFETCH)
2729 				hdr->b_flags |= ARC_PREFETCH;
2730 			else
2731 				add_reference(hdr, hash_lock, private);
2732 			if (*arc_flags & ARC_L2CACHE)
2733 				hdr->b_flags |= ARC_L2CACHE;
2734 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2735 			buf->b_hdr = hdr;
2736 			buf->b_data = NULL;
2737 			buf->b_efunc = NULL;
2738 			buf->b_private = NULL;
2739 			buf->b_next = NULL;
2740 			hdr->b_buf = buf;
2741 			arc_get_data_buf(buf);
2742 			ASSERT(hdr->b_datacnt == 0);
2743 			hdr->b_datacnt = 1;
2744 		}
2745 
2746 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2747 		acb->acb_done = done;
2748 		acb->acb_private = private;
2749 
2750 		ASSERT(hdr->b_acb == NULL);
2751 		hdr->b_acb = acb;
2752 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2753 
2754 		/*
2755 		 * If the buffer has been evicted, migrate it to a present state
2756 		 * before issuing the I/O.  Once we drop the hash-table lock,
2757 		 * the header will be marked as I/O in progress and have an
2758 		 * attached buffer.  At this point, anybody who finds this
2759 		 * buffer ought to notice that it's legit but has a pending I/O.
2760 		 */
2761 
2762 		if (GHOST_STATE(hdr->b_state))
2763 			arc_access(hdr, hash_lock);
2764 
2765 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2766 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2767 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2768 			addr = hdr->b_l2hdr->b_daddr;
2769 			/*
2770 			 * Lock out device removal.
2771 			 */
2772 			if (vdev_is_dead(vd) ||
2773 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2774 				vd = NULL;
2775 		}
2776 
2777 		mutex_exit(hash_lock);
2778 
2779 		ASSERT3U(hdr->b_size, ==, size);
2780 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2781 		    uint64_t, size, zbookmark_t *, zb);
2782 		ARCSTAT_BUMP(arcstat_misses);
2783 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2784 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2785 		    data, metadata, misses);
2786 
2787 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2788 			/*
2789 			 * Read from the L2ARC if the following are true:
2790 			 * 1. The L2ARC vdev was previously cached.
2791 			 * 2. This buffer still has L2ARC metadata.
2792 			 * 3. This buffer isn't currently writing to the L2ARC.
2793 			 * 4. The L2ARC entry wasn't evicted, which may
2794 			 *    also have invalidated the vdev.
2795 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2796 			 */
2797 			if (hdr->b_l2hdr != NULL &&
2798 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2799 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2800 				l2arc_read_callback_t *cb;
2801 
2802 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2803 				ARCSTAT_BUMP(arcstat_l2_hits);
2804 
2805 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2806 				    KM_SLEEP);
2807 				cb->l2rcb_buf = buf;
2808 				cb->l2rcb_spa = spa;
2809 				cb->l2rcb_bp = *bp;
2810 				cb->l2rcb_zb = *zb;
2811 				cb->l2rcb_flags = zio_flags;
2812 
2813 				/*
2814 				 * l2arc read.  The SCL_L2ARC lock will be
2815 				 * released by l2arc_read_done().
2816 				 */
2817 				rzio = zio_read_phys(pio, vd, addr, size,
2818 				    buf->b_data, ZIO_CHECKSUM_OFF,
2819 				    l2arc_read_done, cb, priority, zio_flags |
2820 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2821 				    ZIO_FLAG_DONT_PROPAGATE |
2822 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2823 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2824 				    zio_t *, rzio);
2825 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2826 
2827 				if (*arc_flags & ARC_NOWAIT) {
2828 					zio_nowait(rzio);
2829 					return (0);
2830 				}
2831 
2832 				ASSERT(*arc_flags & ARC_WAIT);
2833 				if (zio_wait(rzio) == 0)
2834 					return (0);
2835 
2836 				/* l2arc read error; goto zio_read() */
2837 			} else {
2838 				DTRACE_PROBE1(l2arc__miss,
2839 				    arc_buf_hdr_t *, hdr);
2840 				ARCSTAT_BUMP(arcstat_l2_misses);
2841 				if (HDR_L2_WRITING(hdr))
2842 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2843 				spa_config_exit(spa, SCL_L2ARC, vd);
2844 			}
2845 		} else {
2846 			if (vd != NULL)
2847 				spa_config_exit(spa, SCL_L2ARC, vd);
2848 			if (l2arc_ndev != 0) {
2849 				DTRACE_PROBE1(l2arc__miss,
2850 				    arc_buf_hdr_t *, hdr);
2851 				ARCSTAT_BUMP(arcstat_l2_misses);
2852 			}
2853 		}
2854 
2855 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2856 		    arc_read_done, buf, priority, zio_flags, zb);
2857 
2858 		if (*arc_flags & ARC_WAIT)
2859 			return (zio_wait(rzio));
2860 
2861 		ASSERT(*arc_flags & ARC_NOWAIT);
2862 		zio_nowait(rzio);
2863 	}
2864 	return (0);
2865 }
2866 
2867 void
2868 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2869 {
2870 	ASSERT(buf->b_hdr != NULL);
2871 	ASSERT(buf->b_hdr->b_state != arc_anon);
2872 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2873 	ASSERT(buf->b_efunc == NULL);
2874 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2875 
2876 	buf->b_efunc = func;
2877 	buf->b_private = private;
2878 }
2879 
2880 /*
2881  * This is used by the DMU to let the ARC know that a buffer is
2882  * being evicted, so the ARC should clean up.  If this arc buf
2883  * is not yet in the evicted state, it will be put there.
2884  */
2885 int
2886 arc_buf_evict(arc_buf_t *buf)
2887 {
2888 	arc_buf_hdr_t *hdr;
2889 	kmutex_t *hash_lock;
2890 	arc_buf_t **bufp;
2891 
2892 	rw_enter(&buf->b_lock, RW_WRITER);
2893 	hdr = buf->b_hdr;
2894 	if (hdr == NULL) {
2895 		/*
2896 		 * We are in arc_do_user_evicts().
2897 		 */
2898 		ASSERT(buf->b_data == NULL);
2899 		rw_exit(&buf->b_lock);
2900 		return (0);
2901 	} else if (buf->b_data == NULL) {
2902 		arc_buf_t copy = *buf; /* structure assignment */
2903 		/*
2904 		 * We are on the eviction list; process this buffer now
2905 		 * but let arc_do_user_evicts() do the reaping.
2906 		 */
2907 		buf->b_efunc = NULL;
2908 		rw_exit(&buf->b_lock);
2909 		VERIFY(copy.b_efunc(&copy) == 0);
2910 		return (1);
2911 	}
2912 	hash_lock = HDR_LOCK(hdr);
2913 	mutex_enter(hash_lock);
2914 
2915 	ASSERT(buf->b_hdr == hdr);
2916 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2917 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2918 
2919 	/*
2920 	 * Pull this buffer off of the hdr
2921 	 */
2922 	bufp = &hdr->b_buf;
2923 	while (*bufp != buf)
2924 		bufp = &(*bufp)->b_next;
2925 	*bufp = buf->b_next;
2926 
2927 	ASSERT(buf->b_data != NULL);
2928 	arc_buf_destroy(buf, FALSE, FALSE);
2929 
2930 	if (hdr->b_datacnt == 0) {
2931 		arc_state_t *old_state = hdr->b_state;
2932 		arc_state_t *evicted_state;
2933 
2934 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2935 
2936 		evicted_state =
2937 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2938 
2939 		mutex_enter(&old_state->arcs_mtx);
2940 		mutex_enter(&evicted_state->arcs_mtx);
2941 
2942 		arc_change_state(evicted_state, hdr, hash_lock);
2943 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2944 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2945 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2946 
2947 		mutex_exit(&evicted_state->arcs_mtx);
2948 		mutex_exit(&old_state->arcs_mtx);
2949 	}
2950 	mutex_exit(hash_lock);
2951 	rw_exit(&buf->b_lock);
2952 
2953 	VERIFY(buf->b_efunc(buf) == 0);
2954 	buf->b_efunc = NULL;
2955 	buf->b_private = NULL;
2956 	buf->b_hdr = NULL;
2957 	kmem_cache_free(buf_cache, buf);
2958 	return (1);
2959 }
2960 
2961 /*
2962  * Release this buffer from the cache.  This must be done
2963  * after a read and prior to modifying the buffer contents.
2964  * If the buffer has more than one reference, we must make
2965  * a new hdr for the buffer.
2966  */
2967 void
2968 arc_release(arc_buf_t *buf, void *tag)
2969 {
2970 	arc_buf_hdr_t *hdr;
2971 	kmutex_t *hash_lock;
2972 	l2arc_buf_hdr_t *l2hdr;
2973 	uint64_t buf_size;
2974 	boolean_t released = B_FALSE;
2975 
2976 	rw_enter(&buf->b_lock, RW_WRITER);
2977 	hdr = buf->b_hdr;
2978 
2979 	/* this buffer is not on any list */
2980 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2981 
2982 	if (hdr->b_state == arc_anon) {
2983 		/* this buffer is already released */
2984 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2985 		ASSERT(BUF_EMPTY(hdr));
2986 		ASSERT(buf->b_efunc == NULL);
2987 		arc_buf_thaw(buf);
2988 		rw_exit(&buf->b_lock);
2989 		released = B_TRUE;
2990 	} else {
2991 		hash_lock = HDR_LOCK(hdr);
2992 		mutex_enter(hash_lock);
2993 	}
2994 
2995 	l2hdr = hdr->b_l2hdr;
2996 	if (l2hdr) {
2997 		mutex_enter(&l2arc_buflist_mtx);
2998 		hdr->b_l2hdr = NULL;
2999 		buf_size = hdr->b_size;
3000 	}
3001 
3002 	if (released)
3003 		goto out;
3004 
3005 	/*
3006 	 * Do we have more than one buf?
3007 	 */
3008 	if (hdr->b_datacnt > 1) {
3009 		arc_buf_hdr_t *nhdr;
3010 		arc_buf_t **bufp;
3011 		uint64_t blksz = hdr->b_size;
3012 		uint64_t spa = hdr->b_spa;
3013 		arc_buf_contents_t type = hdr->b_type;
3014 		uint32_t flags = hdr->b_flags;
3015 
3016 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3017 		/*
3018 		 * Pull the data off of this buf and attach it to
3019 		 * a new anonymous buf.
3020 		 */
3021 		(void) remove_reference(hdr, hash_lock, tag);
3022 		bufp = &hdr->b_buf;
3023 		while (*bufp != buf)
3024 			bufp = &(*bufp)->b_next;
3025 		*bufp = (*bufp)->b_next;
3026 		buf->b_next = NULL;
3027 
3028 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3029 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3030 		if (refcount_is_zero(&hdr->b_refcnt)) {
3031 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3032 			ASSERT3U(*size, >=, hdr->b_size);
3033 			atomic_add_64(size, -hdr->b_size);
3034 		}
3035 		hdr->b_datacnt -= 1;
3036 		arc_cksum_verify(buf);
3037 
3038 		mutex_exit(hash_lock);
3039 
3040 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3041 		nhdr->b_size = blksz;
3042 		nhdr->b_spa = spa;
3043 		nhdr->b_type = type;
3044 		nhdr->b_buf = buf;
3045 		nhdr->b_state = arc_anon;
3046 		nhdr->b_arc_access = 0;
3047 		nhdr->b_flags = flags & ARC_L2_WRITING;
3048 		nhdr->b_l2hdr = NULL;
3049 		nhdr->b_datacnt = 1;
3050 		nhdr->b_freeze_cksum = NULL;
3051 		(void) refcount_add(&nhdr->b_refcnt, tag);
3052 		buf->b_hdr = nhdr;
3053 		rw_exit(&buf->b_lock);
3054 		atomic_add_64(&arc_anon->arcs_size, blksz);
3055 	} else {
3056 		rw_exit(&buf->b_lock);
3057 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3058 		ASSERT(!list_link_active(&hdr->b_arc_node));
3059 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3060 		arc_change_state(arc_anon, hdr, hash_lock);
3061 		hdr->b_arc_access = 0;
3062 		mutex_exit(hash_lock);
3063 
3064 		bzero(&hdr->b_dva, sizeof (dva_t));
3065 		hdr->b_birth = 0;
3066 		hdr->b_cksum0 = 0;
3067 		arc_buf_thaw(buf);
3068 	}
3069 	buf->b_efunc = NULL;
3070 	buf->b_private = NULL;
3071 
3072 out:
3073 	if (l2hdr) {
3074 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3075 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3076 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3077 		mutex_exit(&l2arc_buflist_mtx);
3078 	}
3079 }
3080 
3081 int
3082 arc_released(arc_buf_t *buf)
3083 {
3084 	int released;
3085 
3086 	rw_enter(&buf->b_lock, RW_READER);
3087 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3088 	rw_exit(&buf->b_lock);
3089 	return (released);
3090 }
3091 
3092 int
3093 arc_has_callback(arc_buf_t *buf)
3094 {
3095 	int callback;
3096 
3097 	rw_enter(&buf->b_lock, RW_READER);
3098 	callback = (buf->b_efunc != NULL);
3099 	rw_exit(&buf->b_lock);
3100 	return (callback);
3101 }
3102 
3103 #ifdef ZFS_DEBUG
3104 int
3105 arc_referenced(arc_buf_t *buf)
3106 {
3107 	int referenced;
3108 
3109 	rw_enter(&buf->b_lock, RW_READER);
3110 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3111 	rw_exit(&buf->b_lock);
3112 	return (referenced);
3113 }
3114 #endif
3115 
3116 static void
3117 arc_write_ready(zio_t *zio)
3118 {
3119 	arc_write_callback_t *callback = zio->io_private;
3120 	arc_buf_t *buf = callback->awcb_buf;
3121 	arc_buf_hdr_t *hdr = buf->b_hdr;
3122 
3123 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3124 	callback->awcb_ready(zio, buf, callback->awcb_private);
3125 
3126 	/*
3127 	 * If the IO is already in progress, then this is a re-write
3128 	 * attempt, so we need to thaw and re-compute the cksum.
3129 	 * It is the responsibility of the callback to handle the
3130 	 * accounting for any re-write attempt.
3131 	 */
3132 	if (HDR_IO_IN_PROGRESS(hdr)) {
3133 		mutex_enter(&hdr->b_freeze_lock);
3134 		if (hdr->b_freeze_cksum != NULL) {
3135 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3136 			hdr->b_freeze_cksum = NULL;
3137 		}
3138 		mutex_exit(&hdr->b_freeze_lock);
3139 	}
3140 	arc_cksum_compute(buf, B_FALSE);
3141 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3142 }
3143 
3144 static void
3145 arc_write_done(zio_t *zio)
3146 {
3147 	arc_write_callback_t *callback = zio->io_private;
3148 	arc_buf_t *buf = callback->awcb_buf;
3149 	arc_buf_hdr_t *hdr = buf->b_hdr;
3150 
3151 	ASSERT(hdr->b_acb == NULL);
3152 
3153 	if (zio->io_error == 0) {
3154 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3155 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3156 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3157 	} else {
3158 		ASSERT(BUF_EMPTY(hdr));
3159 	}
3160 
3161 	/*
3162 	 * If the block to be written was all-zero, we may have
3163 	 * compressed it away.  In this case no write was performed
3164 	 * so there will be no dva/birth-date/checksum.  The buffer
3165 	 * must therefor remain anonymous (and uncached).
3166 	 */
3167 	if (!BUF_EMPTY(hdr)) {
3168 		arc_buf_hdr_t *exists;
3169 		kmutex_t *hash_lock;
3170 
3171 		ASSERT(zio->io_error == 0);
3172 
3173 		arc_cksum_verify(buf);
3174 
3175 		exists = buf_hash_insert(hdr, &hash_lock);
3176 		if (exists) {
3177 			/*
3178 			 * This can only happen if we overwrite for
3179 			 * sync-to-convergence, because we remove
3180 			 * buffers from the hash table when we arc_free().
3181 			 */
3182 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3183 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3184 					panic("bad overwrite, hdr=%p exists=%p",
3185 					    (void *)hdr, (void *)exists);
3186 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3187 				arc_change_state(arc_anon, exists, hash_lock);
3188 				mutex_exit(hash_lock);
3189 				arc_hdr_destroy(exists);
3190 				exists = buf_hash_insert(hdr, &hash_lock);
3191 				ASSERT3P(exists, ==, NULL);
3192 			} else {
3193 				/* Dedup */
3194 				ASSERT(hdr->b_datacnt == 1);
3195 				ASSERT(hdr->b_state == arc_anon);
3196 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3197 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3198 			}
3199 		}
3200 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3201 		/* if it's not anon, we are doing a scrub */
3202 		if (!exists && hdr->b_state == arc_anon)
3203 			arc_access(hdr, hash_lock);
3204 		mutex_exit(hash_lock);
3205 	} else {
3206 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3207 	}
3208 
3209 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3210 	callback->awcb_done(zio, buf, callback->awcb_private);
3211 
3212 	kmem_free(callback, sizeof (arc_write_callback_t));
3213 }
3214 
3215 zio_t *
3216 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3217     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3218     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3219     int priority, int zio_flags, const zbookmark_t *zb)
3220 {
3221 	arc_buf_hdr_t *hdr = buf->b_hdr;
3222 	arc_write_callback_t *callback;
3223 	zio_t *zio;
3224 
3225 	ASSERT(ready != NULL);
3226 	ASSERT(done != NULL);
3227 	ASSERT(!HDR_IO_ERROR(hdr));
3228 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3229 	ASSERT(hdr->b_acb == NULL);
3230 	if (l2arc)
3231 		hdr->b_flags |= ARC_L2CACHE;
3232 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3233 	callback->awcb_ready = ready;
3234 	callback->awcb_done = done;
3235 	callback->awcb_private = private;
3236 	callback->awcb_buf = buf;
3237 
3238 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3239 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3240 
3241 	return (zio);
3242 }
3243 
3244 void
3245 arc_free(spa_t *spa, const blkptr_t *bp)
3246 {
3247 	arc_buf_hdr_t *ab;
3248 	kmutex_t *hash_lock;
3249 	uint64_t guid = spa_guid(spa);
3250 
3251 	/*
3252 	 * If this buffer is in the cache, release it, so it can be re-used.
3253 	 */
3254 	ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3255 	    &hash_lock);
3256 	if (ab != NULL) {
3257 		if (ab->b_state != arc_anon)
3258 			arc_change_state(arc_anon, ab, hash_lock);
3259 		if (HDR_IO_IN_PROGRESS(ab)) {
3260 			/*
3261 			 * This should only happen when we prefetch.
3262 			 */
3263 			ASSERT(ab->b_flags & ARC_PREFETCH);
3264 			ASSERT3U(ab->b_datacnt, ==, 1);
3265 			ab->b_flags |= ARC_FREED_IN_READ;
3266 			if (HDR_IN_HASH_TABLE(ab))
3267 				buf_hash_remove(ab);
3268 			ab->b_arc_access = 0;
3269 			bzero(&ab->b_dva, sizeof (dva_t));
3270 			ab->b_birth = 0;
3271 			ab->b_cksum0 = 0;
3272 			ab->b_buf->b_efunc = NULL;
3273 			ab->b_buf->b_private = NULL;
3274 			mutex_exit(hash_lock);
3275 		} else {
3276 			ASSERT(refcount_is_zero(&ab->b_refcnt));
3277 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3278 			mutex_exit(hash_lock);
3279 			arc_hdr_destroy(ab);
3280 			ARCSTAT_BUMP(arcstat_deleted);
3281 		}
3282 	}
3283 }
3284 
3285 static int
3286 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3287 {
3288 #ifdef _KERNEL
3289 	uint64_t available_memory = ptob(freemem);
3290 	static uint64_t page_load = 0;
3291 	static uint64_t last_txg = 0;
3292 
3293 #if defined(__i386)
3294 	available_memory =
3295 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3296 #endif
3297 	if (available_memory >= zfs_write_limit_max)
3298 		return (0);
3299 
3300 	if (txg > last_txg) {
3301 		last_txg = txg;
3302 		page_load = 0;
3303 	}
3304 	/*
3305 	 * If we are in pageout, we know that memory is already tight,
3306 	 * the arc is already going to be evicting, so we just want to
3307 	 * continue to let page writes occur as quickly as possible.
3308 	 */
3309 	if (curproc == proc_pageout) {
3310 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3311 			return (ERESTART);
3312 		/* Note: reserve is inflated, so we deflate */
3313 		page_load += reserve / 8;
3314 		return (0);
3315 	} else if (page_load > 0 && arc_reclaim_needed()) {
3316 		/* memory is low, delay before restarting */
3317 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3318 		return (EAGAIN);
3319 	}
3320 	page_load = 0;
3321 
3322 	if (arc_size > arc_c_min) {
3323 		uint64_t evictable_memory =
3324 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3325 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3326 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3327 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3328 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3329 	}
3330 
3331 	if (inflight_data > available_memory / 4) {
3332 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3333 		return (ERESTART);
3334 	}
3335 #endif
3336 	return (0);
3337 }
3338 
3339 void
3340 arc_tempreserve_clear(uint64_t reserve)
3341 {
3342 	atomic_add_64(&arc_tempreserve, -reserve);
3343 	ASSERT((int64_t)arc_tempreserve >= 0);
3344 }
3345 
3346 int
3347 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3348 {
3349 	int error;
3350 	uint64_t anon_size;
3351 
3352 #ifdef ZFS_DEBUG
3353 	/*
3354 	 * Once in a while, fail for no reason.  Everything should cope.
3355 	 */
3356 	if (spa_get_random(10000) == 0) {
3357 		dprintf("forcing random failure\n");
3358 		return (ERESTART);
3359 	}
3360 #endif
3361 	if (reserve > arc_c/4 && !arc_no_grow)
3362 		arc_c = MIN(arc_c_max, reserve * 4);
3363 	if (reserve > arc_c)
3364 		return (ENOMEM);
3365 
3366 	/*
3367 	 * Don't count loaned bufs as in flight dirty data to prevent long
3368 	 * network delays from blocking transactions that are ready to be
3369 	 * assigned to a txg.
3370 	 */
3371 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3372 
3373 	/*
3374 	 * Writes will, almost always, require additional memory allocations
3375 	 * in order to compress/encrypt/etc the data.  We therefor need to
3376 	 * make sure that there is sufficient available memory for this.
3377 	 */
3378 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3379 		return (error);
3380 
3381 	/*
3382 	 * Throttle writes when the amount of dirty data in the cache
3383 	 * gets too large.  We try to keep the cache less than half full
3384 	 * of dirty blocks so that our sync times don't grow too large.
3385 	 * Note: if two requests come in concurrently, we might let them
3386 	 * both succeed, when one of them should fail.  Not a huge deal.
3387 	 */
3388 
3389 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3390 	    anon_size > arc_c / 4) {
3391 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3392 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3393 		    arc_tempreserve>>10,
3394 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3395 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3396 		    reserve>>10, arc_c>>10);
3397 		return (ERESTART);
3398 	}
3399 	atomic_add_64(&arc_tempreserve, reserve);
3400 	return (0);
3401 }
3402 
3403 void
3404 arc_init(void)
3405 {
3406 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3407 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3408 
3409 	/* Convert seconds to clock ticks */
3410 	arc_min_prefetch_lifespan = 1 * hz;
3411 
3412 	/* Start out with 1/8 of all memory */
3413 	arc_c = physmem * PAGESIZE / 8;
3414 
3415 #ifdef _KERNEL
3416 	/*
3417 	 * On architectures where the physical memory can be larger
3418 	 * than the addressable space (intel in 32-bit mode), we may
3419 	 * need to limit the cache to 1/8 of VM size.
3420 	 */
3421 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3422 #endif
3423 
3424 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3425 	arc_c_min = MAX(arc_c / 4, 64<<20);
3426 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3427 	if (arc_c * 8 >= 1<<30)
3428 		arc_c_max = (arc_c * 8) - (1<<30);
3429 	else
3430 		arc_c_max = arc_c_min;
3431 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3432 
3433 	/*
3434 	 * Allow the tunables to override our calculations if they are
3435 	 * reasonable (ie. over 64MB)
3436 	 */
3437 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3438 		arc_c_max = zfs_arc_max;
3439 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3440 		arc_c_min = zfs_arc_min;
3441 
3442 	arc_c = arc_c_max;
3443 	arc_p = (arc_c >> 1);
3444 
3445 	/* limit meta-data to 1/4 of the arc capacity */
3446 	arc_meta_limit = arc_c_max / 4;
3447 
3448 	/* Allow the tunable to override if it is reasonable */
3449 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3450 		arc_meta_limit = zfs_arc_meta_limit;
3451 
3452 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3453 		arc_c_min = arc_meta_limit / 2;
3454 
3455 	if (zfs_arc_grow_retry > 0)
3456 		arc_grow_retry = zfs_arc_grow_retry;
3457 
3458 	if (zfs_arc_shrink_shift > 0)
3459 		arc_shrink_shift = zfs_arc_shrink_shift;
3460 
3461 	if (zfs_arc_p_min_shift > 0)
3462 		arc_p_min_shift = zfs_arc_p_min_shift;
3463 
3464 	/* if kmem_flags are set, lets try to use less memory */
3465 	if (kmem_debugging())
3466 		arc_c = arc_c / 2;
3467 	if (arc_c < arc_c_min)
3468 		arc_c = arc_c_min;
3469 
3470 	arc_anon = &ARC_anon;
3471 	arc_mru = &ARC_mru;
3472 	arc_mru_ghost = &ARC_mru_ghost;
3473 	arc_mfu = &ARC_mfu;
3474 	arc_mfu_ghost = &ARC_mfu_ghost;
3475 	arc_l2c_only = &ARC_l2c_only;
3476 	arc_size = 0;
3477 
3478 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3479 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3480 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3481 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3482 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3483 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3484 
3485 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3486 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3487 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3488 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3489 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3490 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3491 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3492 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3493 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3494 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3495 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3496 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3497 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3498 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3499 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3500 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3501 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3502 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3503 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3504 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3505 
3506 	buf_init();
3507 
3508 	arc_thread_exit = 0;
3509 	arc_eviction_list = NULL;
3510 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3511 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3512 
3513 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3514 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3515 
3516 	if (arc_ksp != NULL) {
3517 		arc_ksp->ks_data = &arc_stats;
3518 		kstat_install(arc_ksp);
3519 	}
3520 
3521 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3522 	    TS_RUN, minclsyspri);
3523 
3524 	arc_dead = FALSE;
3525 	arc_warm = B_FALSE;
3526 
3527 	if (zfs_write_limit_max == 0)
3528 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3529 	else
3530 		zfs_write_limit_shift = 0;
3531 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3532 }
3533 
3534 void
3535 arc_fini(void)
3536 {
3537 	mutex_enter(&arc_reclaim_thr_lock);
3538 	arc_thread_exit = 1;
3539 	while (arc_thread_exit != 0)
3540 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3541 	mutex_exit(&arc_reclaim_thr_lock);
3542 
3543 	arc_flush(NULL);
3544 
3545 	arc_dead = TRUE;
3546 
3547 	if (arc_ksp != NULL) {
3548 		kstat_delete(arc_ksp);
3549 		arc_ksp = NULL;
3550 	}
3551 
3552 	mutex_destroy(&arc_eviction_mtx);
3553 	mutex_destroy(&arc_reclaim_thr_lock);
3554 	cv_destroy(&arc_reclaim_thr_cv);
3555 
3556 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3557 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3558 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3559 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3560 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3561 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3562 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3563 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3564 
3565 	mutex_destroy(&arc_anon->arcs_mtx);
3566 	mutex_destroy(&arc_mru->arcs_mtx);
3567 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3568 	mutex_destroy(&arc_mfu->arcs_mtx);
3569 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3570 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3571 
3572 	mutex_destroy(&zfs_write_limit_lock);
3573 
3574 	buf_fini();
3575 
3576 	ASSERT(arc_loaned_bytes == 0);
3577 }
3578 
3579 /*
3580  * Level 2 ARC
3581  *
3582  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3583  * It uses dedicated storage devices to hold cached data, which are populated
3584  * using large infrequent writes.  The main role of this cache is to boost
3585  * the performance of random read workloads.  The intended L2ARC devices
3586  * include short-stroked disks, solid state disks, and other media with
3587  * substantially faster read latency than disk.
3588  *
3589  *                 +-----------------------+
3590  *                 |         ARC           |
3591  *                 +-----------------------+
3592  *                    |         ^     ^
3593  *                    |         |     |
3594  *      l2arc_feed_thread()    arc_read()
3595  *                    |         |     |
3596  *                    |  l2arc read   |
3597  *                    V         |     |
3598  *               +---------------+    |
3599  *               |     L2ARC     |    |
3600  *               +---------------+    |
3601  *                   |    ^           |
3602  *          l2arc_write() |           |
3603  *                   |    |           |
3604  *                   V    |           |
3605  *                 +-------+      +-------+
3606  *                 | vdev  |      | vdev  |
3607  *                 | cache |      | cache |
3608  *                 +-------+      +-------+
3609  *                 +=========+     .-----.
3610  *                 :  L2ARC  :    |-_____-|
3611  *                 : devices :    | Disks |
3612  *                 +=========+    `-_____-'
3613  *
3614  * Read requests are satisfied from the following sources, in order:
3615  *
3616  *	1) ARC
3617  *	2) vdev cache of L2ARC devices
3618  *	3) L2ARC devices
3619  *	4) vdev cache of disks
3620  *	5) disks
3621  *
3622  * Some L2ARC device types exhibit extremely slow write performance.
3623  * To accommodate for this there are some significant differences between
3624  * the L2ARC and traditional cache design:
3625  *
3626  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3627  * the ARC behave as usual, freeing buffers and placing headers on ghost
3628  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3629  * this would add inflated write latencies for all ARC memory pressure.
3630  *
3631  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3632  * It does this by periodically scanning buffers from the eviction-end of
3633  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3634  * not already there.  It scans until a headroom of buffers is satisfied,
3635  * which itself is a buffer for ARC eviction.  The thread that does this is
3636  * l2arc_feed_thread(), illustrated below; example sizes are included to
3637  * provide a better sense of ratio than this diagram:
3638  *
3639  *	       head -->                        tail
3640  *	        +---------------------+----------+
3641  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3642  *	        +---------------------+----------+   |   o L2ARC eligible
3643  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3644  *	        +---------------------+----------+   |
3645  *	             15.9 Gbytes      ^ 32 Mbytes    |
3646  *	                           headroom          |
3647  *	                                      l2arc_feed_thread()
3648  *	                                             |
3649  *	                 l2arc write hand <--[oooo]--'
3650  *	                         |           8 Mbyte
3651  *	                         |          write max
3652  *	                         V
3653  *		  +==============================+
3654  *	L2ARC dev |####|#|###|###|    |####| ... |
3655  *	          +==============================+
3656  *	                     32 Gbytes
3657  *
3658  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3659  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3660  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3661  * safe to say that this is an uncommon case, since buffers at the end of
3662  * the ARC lists have moved there due to inactivity.
3663  *
3664  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3665  * then the L2ARC simply misses copying some buffers.  This serves as a
3666  * pressure valve to prevent heavy read workloads from both stalling the ARC
3667  * with waits and clogging the L2ARC with writes.  This also helps prevent
3668  * the potential for the L2ARC to churn if it attempts to cache content too
3669  * quickly, such as during backups of the entire pool.
3670  *
3671  * 5. After system boot and before the ARC has filled main memory, there are
3672  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3673  * lists can remain mostly static.  Instead of searching from tail of these
3674  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3675  * for eligible buffers, greatly increasing its chance of finding them.
3676  *
3677  * The L2ARC device write speed is also boosted during this time so that
3678  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3679  * there are no L2ARC reads, and no fear of degrading read performance
3680  * through increased writes.
3681  *
3682  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3683  * the vdev queue can aggregate them into larger and fewer writes.  Each
3684  * device is written to in a rotor fashion, sweeping writes through
3685  * available space then repeating.
3686  *
3687  * 7. The L2ARC does not store dirty content.  It never needs to flush
3688  * write buffers back to disk based storage.
3689  *
3690  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3691  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3692  *
3693  * The performance of the L2ARC can be tweaked by a number of tunables, which
3694  * may be necessary for different workloads:
3695  *
3696  *	l2arc_write_max		max write bytes per interval
3697  *	l2arc_write_boost	extra write bytes during device warmup
3698  *	l2arc_noprefetch	skip caching prefetched buffers
3699  *	l2arc_headroom		number of max device writes to precache
3700  *	l2arc_feed_secs		seconds between L2ARC writing
3701  *
3702  * Tunables may be removed or added as future performance improvements are
3703  * integrated, and also may become zpool properties.
3704  *
3705  * There are three key functions that control how the L2ARC warms up:
3706  *
3707  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3708  *	l2arc_write_size()	calculate how much to write
3709  *	l2arc_write_interval()	calculate sleep delay between writes
3710  *
3711  * These three functions determine what to write, how much, and how quickly
3712  * to send writes.
3713  */
3714 
3715 static boolean_t
3716 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3717 {
3718 	/*
3719 	 * A buffer is *not* eligible for the L2ARC if it:
3720 	 * 1. belongs to a different spa.
3721 	 * 2. is already cached on the L2ARC.
3722 	 * 3. has an I/O in progress (it may be an incomplete read).
3723 	 * 4. is flagged not eligible (zfs property).
3724 	 */
3725 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3726 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3727 		return (B_FALSE);
3728 
3729 	return (B_TRUE);
3730 }
3731 
3732 static uint64_t
3733 l2arc_write_size(l2arc_dev_t *dev)
3734 {
3735 	uint64_t size;
3736 
3737 	size = dev->l2ad_write;
3738 
3739 	if (arc_warm == B_FALSE)
3740 		size += dev->l2ad_boost;
3741 
3742 	return (size);
3743 
3744 }
3745 
3746 static clock_t
3747 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3748 {
3749 	clock_t interval, next, now;
3750 
3751 	/*
3752 	 * If the ARC lists are busy, increase our write rate; if the
3753 	 * lists are stale, idle back.  This is achieved by checking
3754 	 * how much we previously wrote - if it was more than half of
3755 	 * what we wanted, schedule the next write much sooner.
3756 	 */
3757 	if (l2arc_feed_again && wrote > (wanted / 2))
3758 		interval = (hz * l2arc_feed_min_ms) / 1000;
3759 	else
3760 		interval = hz * l2arc_feed_secs;
3761 
3762 	now = ddi_get_lbolt();
3763 	next = MAX(now, MIN(now + interval, began + interval));
3764 
3765 	return (next);
3766 }
3767 
3768 static void
3769 l2arc_hdr_stat_add(void)
3770 {
3771 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3772 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3773 }
3774 
3775 static void
3776 l2arc_hdr_stat_remove(void)
3777 {
3778 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3779 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3780 }
3781 
3782 /*
3783  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3784  * If a device is returned, this also returns holding the spa config lock.
3785  */
3786 static l2arc_dev_t *
3787 l2arc_dev_get_next(void)
3788 {
3789 	l2arc_dev_t *first, *next = NULL;
3790 
3791 	/*
3792 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3793 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3794 	 * both locks will be dropped and a spa config lock held instead.
3795 	 */
3796 	mutex_enter(&spa_namespace_lock);
3797 	mutex_enter(&l2arc_dev_mtx);
3798 
3799 	/* if there are no vdevs, there is nothing to do */
3800 	if (l2arc_ndev == 0)
3801 		goto out;
3802 
3803 	first = NULL;
3804 	next = l2arc_dev_last;
3805 	do {
3806 		/* loop around the list looking for a non-faulted vdev */
3807 		if (next == NULL) {
3808 			next = list_head(l2arc_dev_list);
3809 		} else {
3810 			next = list_next(l2arc_dev_list, next);
3811 			if (next == NULL)
3812 				next = list_head(l2arc_dev_list);
3813 		}
3814 
3815 		/* if we have come back to the start, bail out */
3816 		if (first == NULL)
3817 			first = next;
3818 		else if (next == first)
3819 			break;
3820 
3821 	} while (vdev_is_dead(next->l2ad_vdev));
3822 
3823 	/* if we were unable to find any usable vdevs, return NULL */
3824 	if (vdev_is_dead(next->l2ad_vdev))
3825 		next = NULL;
3826 
3827 	l2arc_dev_last = next;
3828 
3829 out:
3830 	mutex_exit(&l2arc_dev_mtx);
3831 
3832 	/*
3833 	 * Grab the config lock to prevent the 'next' device from being
3834 	 * removed while we are writing to it.
3835 	 */
3836 	if (next != NULL)
3837 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3838 	mutex_exit(&spa_namespace_lock);
3839 
3840 	return (next);
3841 }
3842 
3843 /*
3844  * Free buffers that were tagged for destruction.
3845  */
3846 static void
3847 l2arc_do_free_on_write()
3848 {
3849 	list_t *buflist;
3850 	l2arc_data_free_t *df, *df_prev;
3851 
3852 	mutex_enter(&l2arc_free_on_write_mtx);
3853 	buflist = l2arc_free_on_write;
3854 
3855 	for (df = list_tail(buflist); df; df = df_prev) {
3856 		df_prev = list_prev(buflist, df);
3857 		ASSERT(df->l2df_data != NULL);
3858 		ASSERT(df->l2df_func != NULL);
3859 		df->l2df_func(df->l2df_data, df->l2df_size);
3860 		list_remove(buflist, df);
3861 		kmem_free(df, sizeof (l2arc_data_free_t));
3862 	}
3863 
3864 	mutex_exit(&l2arc_free_on_write_mtx);
3865 }
3866 
3867 /*
3868  * A write to a cache device has completed.  Update all headers to allow
3869  * reads from these buffers to begin.
3870  */
3871 static void
3872 l2arc_write_done(zio_t *zio)
3873 {
3874 	l2arc_write_callback_t *cb;
3875 	l2arc_dev_t *dev;
3876 	list_t *buflist;
3877 	arc_buf_hdr_t *head, *ab, *ab_prev;
3878 	l2arc_buf_hdr_t *abl2;
3879 	kmutex_t *hash_lock;
3880 
3881 	cb = zio->io_private;
3882 	ASSERT(cb != NULL);
3883 	dev = cb->l2wcb_dev;
3884 	ASSERT(dev != NULL);
3885 	head = cb->l2wcb_head;
3886 	ASSERT(head != NULL);
3887 	buflist = dev->l2ad_buflist;
3888 	ASSERT(buflist != NULL);
3889 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3890 	    l2arc_write_callback_t *, cb);
3891 
3892 	if (zio->io_error != 0)
3893 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3894 
3895 	mutex_enter(&l2arc_buflist_mtx);
3896 
3897 	/*
3898 	 * All writes completed, or an error was hit.
3899 	 */
3900 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3901 		ab_prev = list_prev(buflist, ab);
3902 
3903 		hash_lock = HDR_LOCK(ab);
3904 		if (!mutex_tryenter(hash_lock)) {
3905 			/*
3906 			 * This buffer misses out.  It may be in a stage
3907 			 * of eviction.  Its ARC_L2_WRITING flag will be
3908 			 * left set, denying reads to this buffer.
3909 			 */
3910 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3911 			continue;
3912 		}
3913 
3914 		if (zio->io_error != 0) {
3915 			/*
3916 			 * Error - drop L2ARC entry.
3917 			 */
3918 			list_remove(buflist, ab);
3919 			abl2 = ab->b_l2hdr;
3920 			ab->b_l2hdr = NULL;
3921 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3922 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3923 		}
3924 
3925 		/*
3926 		 * Allow ARC to begin reads to this L2ARC entry.
3927 		 */
3928 		ab->b_flags &= ~ARC_L2_WRITING;
3929 
3930 		mutex_exit(hash_lock);
3931 	}
3932 
3933 	atomic_inc_64(&l2arc_writes_done);
3934 	list_remove(buflist, head);
3935 	kmem_cache_free(hdr_cache, head);
3936 	mutex_exit(&l2arc_buflist_mtx);
3937 
3938 	l2arc_do_free_on_write();
3939 
3940 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3941 }
3942 
3943 /*
3944  * A read to a cache device completed.  Validate buffer contents before
3945  * handing over to the regular ARC routines.
3946  */
3947 static void
3948 l2arc_read_done(zio_t *zio)
3949 {
3950 	l2arc_read_callback_t *cb;
3951 	arc_buf_hdr_t *hdr;
3952 	arc_buf_t *buf;
3953 	kmutex_t *hash_lock;
3954 	int equal;
3955 
3956 	ASSERT(zio->io_vd != NULL);
3957 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3958 
3959 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3960 
3961 	cb = zio->io_private;
3962 	ASSERT(cb != NULL);
3963 	buf = cb->l2rcb_buf;
3964 	ASSERT(buf != NULL);
3965 	hdr = buf->b_hdr;
3966 	ASSERT(hdr != NULL);
3967 
3968 	hash_lock = HDR_LOCK(hdr);
3969 	mutex_enter(hash_lock);
3970 
3971 	/*
3972 	 * Check this survived the L2ARC journey.
3973 	 */
3974 	equal = arc_cksum_equal(buf);
3975 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3976 		mutex_exit(hash_lock);
3977 		zio->io_private = buf;
3978 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
3979 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
3980 		arc_read_done(zio);
3981 	} else {
3982 		mutex_exit(hash_lock);
3983 		/*
3984 		 * Buffer didn't survive caching.  Increment stats and
3985 		 * reissue to the original storage device.
3986 		 */
3987 		if (zio->io_error != 0) {
3988 			ARCSTAT_BUMP(arcstat_l2_io_error);
3989 		} else {
3990 			zio->io_error = EIO;
3991 		}
3992 		if (!equal)
3993 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3994 
3995 		/*
3996 		 * If there's no waiter, issue an async i/o to the primary
3997 		 * storage now.  If there *is* a waiter, the caller must
3998 		 * issue the i/o in a context where it's OK to block.
3999 		 */
4000 		if (zio->io_waiter == NULL) {
4001 			zio_t *pio = zio_unique_parent(zio);
4002 
4003 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4004 
4005 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4006 			    buf->b_data, zio->io_size, arc_read_done, buf,
4007 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4008 		}
4009 	}
4010 
4011 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4012 }
4013 
4014 /*
4015  * This is the list priority from which the L2ARC will search for pages to
4016  * cache.  This is used within loops (0..3) to cycle through lists in the
4017  * desired order.  This order can have a significant effect on cache
4018  * performance.
4019  *
4020  * Currently the metadata lists are hit first, MFU then MRU, followed by
4021  * the data lists.  This function returns a locked list, and also returns
4022  * the lock pointer.
4023  */
4024 static list_t *
4025 l2arc_list_locked(int list_num, kmutex_t **lock)
4026 {
4027 	list_t *list;
4028 
4029 	ASSERT(list_num >= 0 && list_num <= 3);
4030 
4031 	switch (list_num) {
4032 	case 0:
4033 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4034 		*lock = &arc_mfu->arcs_mtx;
4035 		break;
4036 	case 1:
4037 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4038 		*lock = &arc_mru->arcs_mtx;
4039 		break;
4040 	case 2:
4041 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4042 		*lock = &arc_mfu->arcs_mtx;
4043 		break;
4044 	case 3:
4045 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4046 		*lock = &arc_mru->arcs_mtx;
4047 		break;
4048 	}
4049 
4050 	ASSERT(!(MUTEX_HELD(*lock)));
4051 	mutex_enter(*lock);
4052 	return (list);
4053 }
4054 
4055 /*
4056  * Evict buffers from the device write hand to the distance specified in
4057  * bytes.  This distance may span populated buffers, it may span nothing.
4058  * This is clearing a region on the L2ARC device ready for writing.
4059  * If the 'all' boolean is set, every buffer is evicted.
4060  */
4061 static void
4062 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4063 {
4064 	list_t *buflist;
4065 	l2arc_buf_hdr_t *abl2;
4066 	arc_buf_hdr_t *ab, *ab_prev;
4067 	kmutex_t *hash_lock;
4068 	uint64_t taddr;
4069 
4070 	buflist = dev->l2ad_buflist;
4071 
4072 	if (buflist == NULL)
4073 		return;
4074 
4075 	if (!all && dev->l2ad_first) {
4076 		/*
4077 		 * This is the first sweep through the device.  There is
4078 		 * nothing to evict.
4079 		 */
4080 		return;
4081 	}
4082 
4083 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4084 		/*
4085 		 * When nearing the end of the device, evict to the end
4086 		 * before the device write hand jumps to the start.
4087 		 */
4088 		taddr = dev->l2ad_end;
4089 	} else {
4090 		taddr = dev->l2ad_hand + distance;
4091 	}
4092 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4093 	    uint64_t, taddr, boolean_t, all);
4094 
4095 top:
4096 	mutex_enter(&l2arc_buflist_mtx);
4097 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4098 		ab_prev = list_prev(buflist, ab);
4099 
4100 		hash_lock = HDR_LOCK(ab);
4101 		if (!mutex_tryenter(hash_lock)) {
4102 			/*
4103 			 * Missed the hash lock.  Retry.
4104 			 */
4105 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4106 			mutex_exit(&l2arc_buflist_mtx);
4107 			mutex_enter(hash_lock);
4108 			mutex_exit(hash_lock);
4109 			goto top;
4110 		}
4111 
4112 		if (HDR_L2_WRITE_HEAD(ab)) {
4113 			/*
4114 			 * We hit a write head node.  Leave it for
4115 			 * l2arc_write_done().
4116 			 */
4117 			list_remove(buflist, ab);
4118 			mutex_exit(hash_lock);
4119 			continue;
4120 		}
4121 
4122 		if (!all && ab->b_l2hdr != NULL &&
4123 		    (ab->b_l2hdr->b_daddr > taddr ||
4124 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4125 			/*
4126 			 * We've evicted to the target address,
4127 			 * or the end of the device.
4128 			 */
4129 			mutex_exit(hash_lock);
4130 			break;
4131 		}
4132 
4133 		if (HDR_FREE_IN_PROGRESS(ab)) {
4134 			/*
4135 			 * Already on the path to destruction.
4136 			 */
4137 			mutex_exit(hash_lock);
4138 			continue;
4139 		}
4140 
4141 		if (ab->b_state == arc_l2c_only) {
4142 			ASSERT(!HDR_L2_READING(ab));
4143 			/*
4144 			 * This doesn't exist in the ARC.  Destroy.
4145 			 * arc_hdr_destroy() will call list_remove()
4146 			 * and decrement arcstat_l2_size.
4147 			 */
4148 			arc_change_state(arc_anon, ab, hash_lock);
4149 			arc_hdr_destroy(ab);
4150 		} else {
4151 			/*
4152 			 * Invalidate issued or about to be issued
4153 			 * reads, since we may be about to write
4154 			 * over this location.
4155 			 */
4156 			if (HDR_L2_READING(ab)) {
4157 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4158 				ab->b_flags |= ARC_L2_EVICTED;
4159 			}
4160 
4161 			/*
4162 			 * Tell ARC this no longer exists in L2ARC.
4163 			 */
4164 			if (ab->b_l2hdr != NULL) {
4165 				abl2 = ab->b_l2hdr;
4166 				ab->b_l2hdr = NULL;
4167 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4168 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4169 			}
4170 			list_remove(buflist, ab);
4171 
4172 			/*
4173 			 * This may have been leftover after a
4174 			 * failed write.
4175 			 */
4176 			ab->b_flags &= ~ARC_L2_WRITING;
4177 		}
4178 		mutex_exit(hash_lock);
4179 	}
4180 	mutex_exit(&l2arc_buflist_mtx);
4181 
4182 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4183 	dev->l2ad_evict = taddr;
4184 }
4185 
4186 /*
4187  * Find and write ARC buffers to the L2ARC device.
4188  *
4189  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4190  * for reading until they have completed writing.
4191  */
4192 static uint64_t
4193 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4194 {
4195 	arc_buf_hdr_t *ab, *ab_prev, *head;
4196 	l2arc_buf_hdr_t *hdrl2;
4197 	list_t *list;
4198 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4199 	void *buf_data;
4200 	kmutex_t *hash_lock, *list_lock;
4201 	boolean_t have_lock, full;
4202 	l2arc_write_callback_t *cb;
4203 	zio_t *pio, *wzio;
4204 	uint64_t guid = spa_guid(spa);
4205 
4206 	ASSERT(dev->l2ad_vdev != NULL);
4207 
4208 	pio = NULL;
4209 	write_sz = 0;
4210 	full = B_FALSE;
4211 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4212 	head->b_flags |= ARC_L2_WRITE_HEAD;
4213 
4214 	/*
4215 	 * Copy buffers for L2ARC writing.
4216 	 */
4217 	mutex_enter(&l2arc_buflist_mtx);
4218 	for (int try = 0; try <= 3; try++) {
4219 		list = l2arc_list_locked(try, &list_lock);
4220 		passed_sz = 0;
4221 
4222 		/*
4223 		 * L2ARC fast warmup.
4224 		 *
4225 		 * Until the ARC is warm and starts to evict, read from the
4226 		 * head of the ARC lists rather than the tail.
4227 		 */
4228 		headroom = target_sz * l2arc_headroom;
4229 		if (arc_warm == B_FALSE)
4230 			ab = list_head(list);
4231 		else
4232 			ab = list_tail(list);
4233 
4234 		for (; ab; ab = ab_prev) {
4235 			if (arc_warm == B_FALSE)
4236 				ab_prev = list_next(list, ab);
4237 			else
4238 				ab_prev = list_prev(list, ab);
4239 
4240 			hash_lock = HDR_LOCK(ab);
4241 			have_lock = MUTEX_HELD(hash_lock);
4242 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4243 				/*
4244 				 * Skip this buffer rather than waiting.
4245 				 */
4246 				continue;
4247 			}
4248 
4249 			passed_sz += ab->b_size;
4250 			if (passed_sz > headroom) {
4251 				/*
4252 				 * Searched too far.
4253 				 */
4254 				mutex_exit(hash_lock);
4255 				break;
4256 			}
4257 
4258 			if (!l2arc_write_eligible(guid, ab)) {
4259 				mutex_exit(hash_lock);
4260 				continue;
4261 			}
4262 
4263 			if ((write_sz + ab->b_size) > target_sz) {
4264 				full = B_TRUE;
4265 				mutex_exit(hash_lock);
4266 				break;
4267 			}
4268 
4269 			if (pio == NULL) {
4270 				/*
4271 				 * Insert a dummy header on the buflist so
4272 				 * l2arc_write_done() can find where the
4273 				 * write buffers begin without searching.
4274 				 */
4275 				list_insert_head(dev->l2ad_buflist, head);
4276 
4277 				cb = kmem_alloc(
4278 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4279 				cb->l2wcb_dev = dev;
4280 				cb->l2wcb_head = head;
4281 				pio = zio_root(spa, l2arc_write_done, cb,
4282 				    ZIO_FLAG_CANFAIL);
4283 			}
4284 
4285 			/*
4286 			 * Create and add a new L2ARC header.
4287 			 */
4288 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4289 			hdrl2->b_dev = dev;
4290 			hdrl2->b_daddr = dev->l2ad_hand;
4291 
4292 			ab->b_flags |= ARC_L2_WRITING;
4293 			ab->b_l2hdr = hdrl2;
4294 			list_insert_head(dev->l2ad_buflist, ab);
4295 			buf_data = ab->b_buf->b_data;
4296 			buf_sz = ab->b_size;
4297 
4298 			/*
4299 			 * Compute and store the buffer cksum before
4300 			 * writing.  On debug the cksum is verified first.
4301 			 */
4302 			arc_cksum_verify(ab->b_buf);
4303 			arc_cksum_compute(ab->b_buf, B_TRUE);
4304 
4305 			mutex_exit(hash_lock);
4306 
4307 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4308 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4309 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4310 			    ZIO_FLAG_CANFAIL, B_FALSE);
4311 
4312 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4313 			    zio_t *, wzio);
4314 			(void) zio_nowait(wzio);
4315 
4316 			/*
4317 			 * Keep the clock hand suitably device-aligned.
4318 			 */
4319 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4320 
4321 			write_sz += buf_sz;
4322 			dev->l2ad_hand += buf_sz;
4323 		}
4324 
4325 		mutex_exit(list_lock);
4326 
4327 		if (full == B_TRUE)
4328 			break;
4329 	}
4330 	mutex_exit(&l2arc_buflist_mtx);
4331 
4332 	if (pio == NULL) {
4333 		ASSERT3U(write_sz, ==, 0);
4334 		kmem_cache_free(hdr_cache, head);
4335 		return (0);
4336 	}
4337 
4338 	ASSERT3U(write_sz, <=, target_sz);
4339 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4340 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4341 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4342 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4343 
4344 	/*
4345 	 * Bump device hand to the device start if it is approaching the end.
4346 	 * l2arc_evict() will already have evicted ahead for this case.
4347 	 */
4348 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4349 		vdev_space_update(dev->l2ad_vdev,
4350 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4351 		dev->l2ad_hand = dev->l2ad_start;
4352 		dev->l2ad_evict = dev->l2ad_start;
4353 		dev->l2ad_first = B_FALSE;
4354 	}
4355 
4356 	dev->l2ad_writing = B_TRUE;
4357 	(void) zio_wait(pio);
4358 	dev->l2ad_writing = B_FALSE;
4359 
4360 	return (write_sz);
4361 }
4362 
4363 /*
4364  * This thread feeds the L2ARC at regular intervals.  This is the beating
4365  * heart of the L2ARC.
4366  */
4367 static void
4368 l2arc_feed_thread(void)
4369 {
4370 	callb_cpr_t cpr;
4371 	l2arc_dev_t *dev;
4372 	spa_t *spa;
4373 	uint64_t size, wrote;
4374 	clock_t begin, next = ddi_get_lbolt();
4375 
4376 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4377 
4378 	mutex_enter(&l2arc_feed_thr_lock);
4379 
4380 	while (l2arc_thread_exit == 0) {
4381 		CALLB_CPR_SAFE_BEGIN(&cpr);
4382 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4383 		    next);
4384 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4385 		next = ddi_get_lbolt() + hz;
4386 
4387 		/*
4388 		 * Quick check for L2ARC devices.
4389 		 */
4390 		mutex_enter(&l2arc_dev_mtx);
4391 		if (l2arc_ndev == 0) {
4392 			mutex_exit(&l2arc_dev_mtx);
4393 			continue;
4394 		}
4395 		mutex_exit(&l2arc_dev_mtx);
4396 		begin = ddi_get_lbolt();
4397 
4398 		/*
4399 		 * This selects the next l2arc device to write to, and in
4400 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4401 		 * will return NULL if there are now no l2arc devices or if
4402 		 * they are all faulted.
4403 		 *
4404 		 * If a device is returned, its spa's config lock is also
4405 		 * held to prevent device removal.  l2arc_dev_get_next()
4406 		 * will grab and release l2arc_dev_mtx.
4407 		 */
4408 		if ((dev = l2arc_dev_get_next()) == NULL)
4409 			continue;
4410 
4411 		spa = dev->l2ad_spa;
4412 		ASSERT(spa != NULL);
4413 
4414 		/*
4415 		 * Avoid contributing to memory pressure.
4416 		 */
4417 		if (arc_reclaim_needed()) {
4418 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4419 			spa_config_exit(spa, SCL_L2ARC, dev);
4420 			continue;
4421 		}
4422 
4423 		ARCSTAT_BUMP(arcstat_l2_feeds);
4424 
4425 		size = l2arc_write_size(dev);
4426 
4427 		/*
4428 		 * Evict L2ARC buffers that will be overwritten.
4429 		 */
4430 		l2arc_evict(dev, size, B_FALSE);
4431 
4432 		/*
4433 		 * Write ARC buffers.
4434 		 */
4435 		wrote = l2arc_write_buffers(spa, dev, size);
4436 
4437 		/*
4438 		 * Calculate interval between writes.
4439 		 */
4440 		next = l2arc_write_interval(begin, size, wrote);
4441 		spa_config_exit(spa, SCL_L2ARC, dev);
4442 	}
4443 
4444 	l2arc_thread_exit = 0;
4445 	cv_broadcast(&l2arc_feed_thr_cv);
4446 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4447 	thread_exit();
4448 }
4449 
4450 boolean_t
4451 l2arc_vdev_present(vdev_t *vd)
4452 {
4453 	l2arc_dev_t *dev;
4454 
4455 	mutex_enter(&l2arc_dev_mtx);
4456 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4457 	    dev = list_next(l2arc_dev_list, dev)) {
4458 		if (dev->l2ad_vdev == vd)
4459 			break;
4460 	}
4461 	mutex_exit(&l2arc_dev_mtx);
4462 
4463 	return (dev != NULL);
4464 }
4465 
4466 /*
4467  * Add a vdev for use by the L2ARC.  By this point the spa has already
4468  * validated the vdev and opened it.
4469  */
4470 void
4471 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4472 {
4473 	l2arc_dev_t *adddev;
4474 
4475 	ASSERT(!l2arc_vdev_present(vd));
4476 
4477 	/*
4478 	 * Create a new l2arc device entry.
4479 	 */
4480 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4481 	adddev->l2ad_spa = spa;
4482 	adddev->l2ad_vdev = vd;
4483 	adddev->l2ad_write = l2arc_write_max;
4484 	adddev->l2ad_boost = l2arc_write_boost;
4485 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4486 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4487 	adddev->l2ad_hand = adddev->l2ad_start;
4488 	adddev->l2ad_evict = adddev->l2ad_start;
4489 	adddev->l2ad_first = B_TRUE;
4490 	adddev->l2ad_writing = B_FALSE;
4491 	ASSERT3U(adddev->l2ad_write, >, 0);
4492 
4493 	/*
4494 	 * This is a list of all ARC buffers that are still valid on the
4495 	 * device.
4496 	 */
4497 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4498 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4499 	    offsetof(arc_buf_hdr_t, b_l2node));
4500 
4501 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4502 
4503 	/*
4504 	 * Add device to global list
4505 	 */
4506 	mutex_enter(&l2arc_dev_mtx);
4507 	list_insert_head(l2arc_dev_list, adddev);
4508 	atomic_inc_64(&l2arc_ndev);
4509 	mutex_exit(&l2arc_dev_mtx);
4510 }
4511 
4512 /*
4513  * Remove a vdev from the L2ARC.
4514  */
4515 void
4516 l2arc_remove_vdev(vdev_t *vd)
4517 {
4518 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4519 
4520 	/*
4521 	 * Find the device by vdev
4522 	 */
4523 	mutex_enter(&l2arc_dev_mtx);
4524 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4525 		nextdev = list_next(l2arc_dev_list, dev);
4526 		if (vd == dev->l2ad_vdev) {
4527 			remdev = dev;
4528 			break;
4529 		}
4530 	}
4531 	ASSERT(remdev != NULL);
4532 
4533 	/*
4534 	 * Remove device from global list
4535 	 */
4536 	list_remove(l2arc_dev_list, remdev);
4537 	l2arc_dev_last = NULL;		/* may have been invalidated */
4538 	atomic_dec_64(&l2arc_ndev);
4539 	mutex_exit(&l2arc_dev_mtx);
4540 
4541 	/*
4542 	 * Clear all buflists and ARC references.  L2ARC device flush.
4543 	 */
4544 	l2arc_evict(remdev, 0, B_TRUE);
4545 	list_destroy(remdev->l2ad_buflist);
4546 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4547 	kmem_free(remdev, sizeof (l2arc_dev_t));
4548 }
4549 
4550 void
4551 l2arc_init(void)
4552 {
4553 	l2arc_thread_exit = 0;
4554 	l2arc_ndev = 0;
4555 	l2arc_writes_sent = 0;
4556 	l2arc_writes_done = 0;
4557 
4558 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4559 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4560 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4561 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4562 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4563 
4564 	l2arc_dev_list = &L2ARC_dev_list;
4565 	l2arc_free_on_write = &L2ARC_free_on_write;
4566 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4567 	    offsetof(l2arc_dev_t, l2ad_node));
4568 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4569 	    offsetof(l2arc_data_free_t, l2df_list_node));
4570 }
4571 
4572 void
4573 l2arc_fini(void)
4574 {
4575 	/*
4576 	 * This is called from dmu_fini(), which is called from spa_fini();
4577 	 * Because of this, we can assume that all l2arc devices have
4578 	 * already been removed when the pools themselves were removed.
4579 	 */
4580 
4581 	l2arc_do_free_on_write();
4582 
4583 	mutex_destroy(&l2arc_feed_thr_lock);
4584 	cv_destroy(&l2arc_feed_thr_cv);
4585 	mutex_destroy(&l2arc_dev_mtx);
4586 	mutex_destroy(&l2arc_buflist_mtx);
4587 	mutex_destroy(&l2arc_free_on_write_mtx);
4588 
4589 	list_destroy(l2arc_dev_list);
4590 	list_destroy(l2arc_free_on_write);
4591 }
4592 
4593 void
4594 l2arc_start(void)
4595 {
4596 	if (!(spa_mode_global & FWRITE))
4597 		return;
4598 
4599 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4600 	    TS_RUN, minclsyspri);
4601 }
4602 
4603 void
4604 l2arc_stop(void)
4605 {
4606 	if (!(spa_mode_global & FWRITE))
4607 		return;
4608 
4609 	mutex_enter(&l2arc_feed_thr_lock);
4610 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4611 	l2arc_thread_exit = 1;
4612 	while (l2arc_thread_exit != 0)
4613 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4614 	mutex_exit(&l2arc_feed_thr_lock);
4615 }
4616