1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * DVA-based Adjustable Replacement Cache 28 * 29 * While much of the theory of operation used here is 30 * based on the self-tuning, low overhead replacement cache 31 * presented by Megiddo and Modha at FAST 2003, there are some 32 * significant differences: 33 * 34 * 1. The Megiddo and Modha model assumes any page is evictable. 35 * Pages in its cache cannot be "locked" into memory. This makes 36 * the eviction algorithm simple: evict the last page in the list. 37 * This also make the performance characteristics easy to reason 38 * about. Our cache is not so simple. At any given moment, some 39 * subset of the blocks in the cache are un-evictable because we 40 * have handed out a reference to them. Blocks are only evictable 41 * when there are no external references active. This makes 42 * eviction far more problematic: we choose to evict the evictable 43 * blocks that are the "lowest" in the list. 44 * 45 * There are times when it is not possible to evict the requested 46 * space. In these circumstances we are unable to adjust the cache 47 * size. To prevent the cache growing unbounded at these times we 48 * implement a "cache throttle" that slows the flow of new data 49 * into the cache until we can make space available. 50 * 51 * 2. The Megiddo and Modha model assumes a fixed cache size. 52 * Pages are evicted when the cache is full and there is a cache 53 * miss. Our model has a variable sized cache. It grows with 54 * high use, but also tries to react to memory pressure from the 55 * operating system: decreasing its size when system memory is 56 * tight. 57 * 58 * 3. The Megiddo and Modha model assumes a fixed page size. All 59 * elements of the cache are therefor exactly the same size. So 60 * when adjusting the cache size following a cache miss, its simply 61 * a matter of choosing a single page to evict. In our model, we 62 * have variable sized cache blocks (rangeing from 512 bytes to 63 * 128K bytes). We therefor choose a set of blocks to evict to make 64 * space for a cache miss that approximates as closely as possible 65 * the space used by the new block. 66 * 67 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 68 * by N. Megiddo & D. Modha, FAST 2003 69 */ 70 71 /* 72 * The locking model: 73 * 74 * A new reference to a cache buffer can be obtained in two 75 * ways: 1) via a hash table lookup using the DVA as a key, 76 * or 2) via one of the ARC lists. The arc_read() interface 77 * uses method 1, while the internal arc algorithms for 78 * adjusting the cache use method 2. We therefor provide two 79 * types of locks: 1) the hash table lock array, and 2) the 80 * arc list locks. 81 * 82 * Buffers do not have their own mutexs, rather they rely on the 83 * hash table mutexs for the bulk of their protection (i.e. most 84 * fields in the arc_buf_hdr_t are protected by these mutexs). 85 * 86 * buf_hash_find() returns the appropriate mutex (held) when it 87 * locates the requested buffer in the hash table. It returns 88 * NULL for the mutex if the buffer was not in the table. 89 * 90 * buf_hash_remove() expects the appropriate hash mutex to be 91 * already held before it is invoked. 92 * 93 * Each arc state also has a mutex which is used to protect the 94 * buffer list associated with the state. When attempting to 95 * obtain a hash table lock while holding an arc list lock you 96 * must use: mutex_tryenter() to avoid deadlock. Also note that 97 * the active state mutex must be held before the ghost state mutex. 98 * 99 * Arc buffers may have an associated eviction callback function. 100 * This function will be invoked prior to removing the buffer (e.g. 101 * in arc_do_user_evicts()). Note however that the data associated 102 * with the buffer may be evicted prior to the callback. The callback 103 * must be made with *no locks held* (to prevent deadlock). Additionally, 104 * the users of callbacks must ensure that their private data is 105 * protected from simultaneous callbacks from arc_buf_evict() 106 * and arc_do_user_evicts(). 107 * 108 * Note that the majority of the performance stats are manipulated 109 * with atomic operations. 110 * 111 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 112 * 113 * - L2ARC buflist creation 114 * - L2ARC buflist eviction 115 * - L2ARC write completion, which walks L2ARC buflists 116 * - ARC header destruction, as it removes from L2ARC buflists 117 * - ARC header release, as it removes from L2ARC buflists 118 */ 119 120 #include <sys/spa.h> 121 #include <sys/zio.h> 122 #include <sys/zio_checksum.h> 123 #include <sys/zfs_context.h> 124 #include <sys/arc.h> 125 #include <sys/refcount.h> 126 #include <sys/vdev.h> 127 #ifdef _KERNEL 128 #include <sys/vmsystm.h> 129 #include <vm/anon.h> 130 #include <sys/fs/swapnode.h> 131 #include <sys/dnlc.h> 132 #endif 133 #include <sys/callb.h> 134 #include <sys/kstat.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* 156 * minimum lifespan of a prefetch block in clock ticks 157 * (initialized in arc_init()) 158 */ 159 static int arc_min_prefetch_lifespan; 160 161 static int arc_dead; 162 163 /* 164 * The arc has filled available memory and has now warmed up. 165 */ 166 static boolean_t arc_warm; 167 168 /* 169 * These tunables are for performance analysis. 170 */ 171 uint64_t zfs_arc_max; 172 uint64_t zfs_arc_min; 173 uint64_t zfs_arc_meta_limit = 0; 174 int zfs_mdcomp_disable = 0; 175 176 /* 177 * Note that buffers can be in one of 6 states: 178 * ARC_anon - anonymous (discussed below) 179 * ARC_mru - recently used, currently cached 180 * ARC_mru_ghost - recentely used, no longer in cache 181 * ARC_mfu - frequently used, currently cached 182 * ARC_mfu_ghost - frequently used, no longer in cache 183 * ARC_l2c_only - exists in L2ARC but not other states 184 * When there are no active references to the buffer, they are 185 * are linked onto a list in one of these arc states. These are 186 * the only buffers that can be evicted or deleted. Within each 187 * state there are multiple lists, one for meta-data and one for 188 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 189 * etc.) is tracked separately so that it can be managed more 190 * explicitly: favored over data, limited explicitly. 191 * 192 * Anonymous buffers are buffers that are not associated with 193 * a DVA. These are buffers that hold dirty block copies 194 * before they are written to stable storage. By definition, 195 * they are "ref'd" and are considered part of arc_mru 196 * that cannot be freed. Generally, they will aquire a DVA 197 * as they are written and migrate onto the arc_mru list. 198 * 199 * The ARC_l2c_only state is for buffers that are in the second 200 * level ARC but no longer in any of the ARC_m* lists. The second 201 * level ARC itself may also contain buffers that are in any of 202 * the ARC_m* states - meaning that a buffer can exist in two 203 * places. The reason for the ARC_l2c_only state is to keep the 204 * buffer header in the hash table, so that reads that hit the 205 * second level ARC benefit from these fast lookups. 206 */ 207 208 typedef struct arc_state { 209 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 210 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 211 uint64_t arcs_size; /* total amount of data in this state */ 212 kmutex_t arcs_mtx; 213 } arc_state_t; 214 215 /* The 6 states: */ 216 static arc_state_t ARC_anon; 217 static arc_state_t ARC_mru; 218 static arc_state_t ARC_mru_ghost; 219 static arc_state_t ARC_mfu; 220 static arc_state_t ARC_mfu_ghost; 221 static arc_state_t ARC_l2c_only; 222 223 typedef struct arc_stats { 224 kstat_named_t arcstat_hits; 225 kstat_named_t arcstat_misses; 226 kstat_named_t arcstat_demand_data_hits; 227 kstat_named_t arcstat_demand_data_misses; 228 kstat_named_t arcstat_demand_metadata_hits; 229 kstat_named_t arcstat_demand_metadata_misses; 230 kstat_named_t arcstat_prefetch_data_hits; 231 kstat_named_t arcstat_prefetch_data_misses; 232 kstat_named_t arcstat_prefetch_metadata_hits; 233 kstat_named_t arcstat_prefetch_metadata_misses; 234 kstat_named_t arcstat_mru_hits; 235 kstat_named_t arcstat_mru_ghost_hits; 236 kstat_named_t arcstat_mfu_hits; 237 kstat_named_t arcstat_mfu_ghost_hits; 238 kstat_named_t arcstat_deleted; 239 kstat_named_t arcstat_recycle_miss; 240 kstat_named_t arcstat_mutex_miss; 241 kstat_named_t arcstat_evict_skip; 242 kstat_named_t arcstat_hash_elements; 243 kstat_named_t arcstat_hash_elements_max; 244 kstat_named_t arcstat_hash_collisions; 245 kstat_named_t arcstat_hash_chains; 246 kstat_named_t arcstat_hash_chain_max; 247 kstat_named_t arcstat_p; 248 kstat_named_t arcstat_c; 249 kstat_named_t arcstat_c_min; 250 kstat_named_t arcstat_c_max; 251 kstat_named_t arcstat_size; 252 kstat_named_t arcstat_hdr_size; 253 kstat_named_t arcstat_l2_hits; 254 kstat_named_t arcstat_l2_misses; 255 kstat_named_t arcstat_l2_feeds; 256 kstat_named_t arcstat_l2_rw_clash; 257 kstat_named_t arcstat_l2_writes_sent; 258 kstat_named_t arcstat_l2_writes_done; 259 kstat_named_t arcstat_l2_writes_error; 260 kstat_named_t arcstat_l2_writes_hdr_miss; 261 kstat_named_t arcstat_l2_evict_lock_retry; 262 kstat_named_t arcstat_l2_evict_reading; 263 kstat_named_t arcstat_l2_free_on_write; 264 kstat_named_t arcstat_l2_abort_lowmem; 265 kstat_named_t arcstat_l2_cksum_bad; 266 kstat_named_t arcstat_l2_io_error; 267 kstat_named_t arcstat_l2_size; 268 kstat_named_t arcstat_l2_hdr_size; 269 kstat_named_t arcstat_memory_throttle_count; 270 } arc_stats_t; 271 272 static arc_stats_t arc_stats = { 273 { "hits", KSTAT_DATA_UINT64 }, 274 { "misses", KSTAT_DATA_UINT64 }, 275 { "demand_data_hits", KSTAT_DATA_UINT64 }, 276 { "demand_data_misses", KSTAT_DATA_UINT64 }, 277 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 278 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 279 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 280 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 281 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 282 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 283 { "mru_hits", KSTAT_DATA_UINT64 }, 284 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 285 { "mfu_hits", KSTAT_DATA_UINT64 }, 286 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 287 { "deleted", KSTAT_DATA_UINT64 }, 288 { "recycle_miss", KSTAT_DATA_UINT64 }, 289 { "mutex_miss", KSTAT_DATA_UINT64 }, 290 { "evict_skip", KSTAT_DATA_UINT64 }, 291 { "hash_elements", KSTAT_DATA_UINT64 }, 292 { "hash_elements_max", KSTAT_DATA_UINT64 }, 293 { "hash_collisions", KSTAT_DATA_UINT64 }, 294 { "hash_chains", KSTAT_DATA_UINT64 }, 295 { "hash_chain_max", KSTAT_DATA_UINT64 }, 296 { "p", KSTAT_DATA_UINT64 }, 297 { "c", KSTAT_DATA_UINT64 }, 298 { "c_min", KSTAT_DATA_UINT64 }, 299 { "c_max", KSTAT_DATA_UINT64 }, 300 { "size", KSTAT_DATA_UINT64 }, 301 { "hdr_size", KSTAT_DATA_UINT64 }, 302 { "l2_hits", KSTAT_DATA_UINT64 }, 303 { "l2_misses", KSTAT_DATA_UINT64 }, 304 { "l2_feeds", KSTAT_DATA_UINT64 }, 305 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 306 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 307 { "l2_writes_done", KSTAT_DATA_UINT64 }, 308 { "l2_writes_error", KSTAT_DATA_UINT64 }, 309 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 310 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 311 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 312 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 313 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 314 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 315 { "l2_io_error", KSTAT_DATA_UINT64 }, 316 { "l2_size", KSTAT_DATA_UINT64 }, 317 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 318 { "memory_throttle_count", KSTAT_DATA_UINT64 } 319 }; 320 321 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 322 323 #define ARCSTAT_INCR(stat, val) \ 324 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 325 326 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 327 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 328 329 #define ARCSTAT_MAX(stat, val) { \ 330 uint64_t m; \ 331 while ((val) > (m = arc_stats.stat.value.ui64) && \ 332 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 333 continue; \ 334 } 335 336 #define ARCSTAT_MAXSTAT(stat) \ 337 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 338 339 /* 340 * We define a macro to allow ARC hits/misses to be easily broken down by 341 * two separate conditions, giving a total of four different subtypes for 342 * each of hits and misses (so eight statistics total). 343 */ 344 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 345 if (cond1) { \ 346 if (cond2) { \ 347 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 348 } else { \ 349 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 350 } \ 351 } else { \ 352 if (cond2) { \ 353 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 354 } else { \ 355 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 356 } \ 357 } 358 359 kstat_t *arc_ksp; 360 static arc_state_t *arc_anon; 361 static arc_state_t *arc_mru; 362 static arc_state_t *arc_mru_ghost; 363 static arc_state_t *arc_mfu; 364 static arc_state_t *arc_mfu_ghost; 365 static arc_state_t *arc_l2c_only; 366 367 /* 368 * There are several ARC variables that are critical to export as kstats -- 369 * but we don't want to have to grovel around in the kstat whenever we wish to 370 * manipulate them. For these variables, we therefore define them to be in 371 * terms of the statistic variable. This assures that we are not introducing 372 * the possibility of inconsistency by having shadow copies of the variables, 373 * while still allowing the code to be readable. 374 */ 375 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 376 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 377 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 378 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 379 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 380 381 static int arc_no_grow; /* Don't try to grow cache size */ 382 static uint64_t arc_tempreserve; 383 static uint64_t arc_meta_used; 384 static uint64_t arc_meta_limit; 385 static uint64_t arc_meta_max = 0; 386 387 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 388 389 typedef struct arc_callback arc_callback_t; 390 391 struct arc_callback { 392 void *acb_private; 393 arc_done_func_t *acb_done; 394 arc_buf_t *acb_buf; 395 zio_t *acb_zio_dummy; 396 arc_callback_t *acb_next; 397 }; 398 399 typedef struct arc_write_callback arc_write_callback_t; 400 401 struct arc_write_callback { 402 void *awcb_private; 403 arc_done_func_t *awcb_ready; 404 arc_done_func_t *awcb_done; 405 arc_buf_t *awcb_buf; 406 }; 407 408 struct arc_buf_hdr { 409 /* protected by hash lock */ 410 dva_t b_dva; 411 uint64_t b_birth; 412 uint64_t b_cksum0; 413 414 kmutex_t b_freeze_lock; 415 zio_cksum_t *b_freeze_cksum; 416 417 arc_buf_hdr_t *b_hash_next; 418 arc_buf_t *b_buf; 419 uint32_t b_flags; 420 uint32_t b_datacnt; 421 422 arc_callback_t *b_acb; 423 kcondvar_t b_cv; 424 425 /* immutable */ 426 arc_buf_contents_t b_type; 427 uint64_t b_size; 428 spa_t *b_spa; 429 430 /* protected by arc state mutex */ 431 arc_state_t *b_state; 432 list_node_t b_arc_node; 433 434 /* updated atomically */ 435 clock_t b_arc_access; 436 437 /* self protecting */ 438 refcount_t b_refcnt; 439 440 l2arc_buf_hdr_t *b_l2hdr; 441 list_node_t b_l2node; 442 }; 443 444 static arc_buf_t *arc_eviction_list; 445 static kmutex_t arc_eviction_mtx; 446 static arc_buf_hdr_t arc_eviction_hdr; 447 static void arc_get_data_buf(arc_buf_t *buf); 448 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 449 static int arc_evict_needed(arc_buf_contents_t type); 450 static void arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes); 451 452 #define GHOST_STATE(state) \ 453 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 454 (state) == arc_l2c_only) 455 456 /* 457 * Private ARC flags. These flags are private ARC only flags that will show up 458 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 459 * be passed in as arc_flags in things like arc_read. However, these flags 460 * should never be passed and should only be set by ARC code. When adding new 461 * public flags, make sure not to smash the private ones. 462 */ 463 464 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 465 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 466 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 467 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 468 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 469 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 470 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 471 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 472 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 473 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 474 #define ARC_STORED (1 << 19) /* has been store()d to */ 475 476 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 477 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 478 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 479 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 480 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 481 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 482 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 483 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 484 (hdr)->b_l2hdr != NULL) 485 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 486 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 487 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 488 489 /* 490 * Other sizes 491 */ 492 493 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 494 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 495 496 /* 497 * Hash table routines 498 */ 499 500 #define HT_LOCK_PAD 64 501 502 struct ht_lock { 503 kmutex_t ht_lock; 504 #ifdef _KERNEL 505 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 506 #endif 507 }; 508 509 #define BUF_LOCKS 256 510 typedef struct buf_hash_table { 511 uint64_t ht_mask; 512 arc_buf_hdr_t **ht_table; 513 struct ht_lock ht_locks[BUF_LOCKS]; 514 } buf_hash_table_t; 515 516 static buf_hash_table_t buf_hash_table; 517 518 #define BUF_HASH_INDEX(spa, dva, birth) \ 519 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 520 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 521 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 522 #define HDR_LOCK(buf) \ 523 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 524 525 uint64_t zfs_crc64_table[256]; 526 527 /* 528 * Level 2 ARC 529 */ 530 531 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 532 #define L2ARC_HEADROOM 4 /* num of writes */ 533 #define L2ARC_FEED_SECS 1 /* caching interval */ 534 535 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 536 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 537 538 /* 539 * L2ARC Performance Tunables 540 */ 541 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 542 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 543 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 544 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 545 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 546 547 /* 548 * L2ARC Internals 549 */ 550 typedef struct l2arc_dev { 551 vdev_t *l2ad_vdev; /* vdev */ 552 spa_t *l2ad_spa; /* spa */ 553 uint64_t l2ad_hand; /* next write location */ 554 uint64_t l2ad_write; /* desired write size, bytes */ 555 uint64_t l2ad_boost; /* warmup write boost, bytes */ 556 uint64_t l2ad_start; /* first addr on device */ 557 uint64_t l2ad_end; /* last addr on device */ 558 uint64_t l2ad_evict; /* last addr eviction reached */ 559 boolean_t l2ad_first; /* first sweep through */ 560 list_t *l2ad_buflist; /* buffer list */ 561 list_node_t l2ad_node; /* device list node */ 562 } l2arc_dev_t; 563 564 static list_t L2ARC_dev_list; /* device list */ 565 static list_t *l2arc_dev_list; /* device list pointer */ 566 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 567 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 568 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 569 static list_t L2ARC_free_on_write; /* free after write buf list */ 570 static list_t *l2arc_free_on_write; /* free after write list ptr */ 571 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 572 static uint64_t l2arc_ndev; /* number of devices */ 573 574 typedef struct l2arc_read_callback { 575 arc_buf_t *l2rcb_buf; /* read buffer */ 576 spa_t *l2rcb_spa; /* spa */ 577 blkptr_t l2rcb_bp; /* original blkptr */ 578 zbookmark_t l2rcb_zb; /* original bookmark */ 579 int l2rcb_flags; /* original flags */ 580 } l2arc_read_callback_t; 581 582 typedef struct l2arc_write_callback { 583 l2arc_dev_t *l2wcb_dev; /* device info */ 584 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 585 } l2arc_write_callback_t; 586 587 struct l2arc_buf_hdr { 588 /* protected by arc_buf_hdr mutex */ 589 l2arc_dev_t *b_dev; /* L2ARC device */ 590 daddr_t b_daddr; /* disk address, offset byte */ 591 }; 592 593 typedef struct l2arc_data_free { 594 /* protected by l2arc_free_on_write_mtx */ 595 void *l2df_data; 596 size_t l2df_size; 597 void (*l2df_func)(void *, size_t); 598 list_node_t l2df_list_node; 599 } l2arc_data_free_t; 600 601 static kmutex_t l2arc_feed_thr_lock; 602 static kcondvar_t l2arc_feed_thr_cv; 603 static uint8_t l2arc_thread_exit; 604 605 static void l2arc_read_done(zio_t *zio); 606 static void l2arc_hdr_stat_add(void); 607 static void l2arc_hdr_stat_remove(void); 608 609 static uint64_t 610 buf_hash(spa_t *spa, const dva_t *dva, uint64_t birth) 611 { 612 uintptr_t spav = (uintptr_t)spa; 613 uint8_t *vdva = (uint8_t *)dva; 614 uint64_t crc = -1ULL; 615 int i; 616 617 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 618 619 for (i = 0; i < sizeof (dva_t); i++) 620 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 621 622 crc ^= (spav>>8) ^ birth; 623 624 return (crc); 625 } 626 627 #define BUF_EMPTY(buf) \ 628 ((buf)->b_dva.dva_word[0] == 0 && \ 629 (buf)->b_dva.dva_word[1] == 0 && \ 630 (buf)->b_birth == 0) 631 632 #define BUF_EQUAL(spa, dva, birth, buf) \ 633 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 634 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 635 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 636 637 static arc_buf_hdr_t * 638 buf_hash_find(spa_t *spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 639 { 640 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 641 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 642 arc_buf_hdr_t *buf; 643 644 mutex_enter(hash_lock); 645 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 646 buf = buf->b_hash_next) { 647 if (BUF_EQUAL(spa, dva, birth, buf)) { 648 *lockp = hash_lock; 649 return (buf); 650 } 651 } 652 mutex_exit(hash_lock); 653 *lockp = NULL; 654 return (NULL); 655 } 656 657 /* 658 * Insert an entry into the hash table. If there is already an element 659 * equal to elem in the hash table, then the already existing element 660 * will be returned and the new element will not be inserted. 661 * Otherwise returns NULL. 662 */ 663 static arc_buf_hdr_t * 664 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 665 { 666 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 667 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 668 arc_buf_hdr_t *fbuf; 669 uint32_t i; 670 671 ASSERT(!HDR_IN_HASH_TABLE(buf)); 672 *lockp = hash_lock; 673 mutex_enter(hash_lock); 674 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 675 fbuf = fbuf->b_hash_next, i++) { 676 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 677 return (fbuf); 678 } 679 680 buf->b_hash_next = buf_hash_table.ht_table[idx]; 681 buf_hash_table.ht_table[idx] = buf; 682 buf->b_flags |= ARC_IN_HASH_TABLE; 683 684 /* collect some hash table performance data */ 685 if (i > 0) { 686 ARCSTAT_BUMP(arcstat_hash_collisions); 687 if (i == 1) 688 ARCSTAT_BUMP(arcstat_hash_chains); 689 690 ARCSTAT_MAX(arcstat_hash_chain_max, i); 691 } 692 693 ARCSTAT_BUMP(arcstat_hash_elements); 694 ARCSTAT_MAXSTAT(arcstat_hash_elements); 695 696 return (NULL); 697 } 698 699 static void 700 buf_hash_remove(arc_buf_hdr_t *buf) 701 { 702 arc_buf_hdr_t *fbuf, **bufp; 703 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 704 705 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 706 ASSERT(HDR_IN_HASH_TABLE(buf)); 707 708 bufp = &buf_hash_table.ht_table[idx]; 709 while ((fbuf = *bufp) != buf) { 710 ASSERT(fbuf != NULL); 711 bufp = &fbuf->b_hash_next; 712 } 713 *bufp = buf->b_hash_next; 714 buf->b_hash_next = NULL; 715 buf->b_flags &= ~ARC_IN_HASH_TABLE; 716 717 /* collect some hash table performance data */ 718 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 719 720 if (buf_hash_table.ht_table[idx] && 721 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 722 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 723 } 724 725 /* 726 * Global data structures and functions for the buf kmem cache. 727 */ 728 static kmem_cache_t *hdr_cache; 729 static kmem_cache_t *buf_cache; 730 731 static void 732 buf_fini(void) 733 { 734 int i; 735 736 kmem_free(buf_hash_table.ht_table, 737 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 738 for (i = 0; i < BUF_LOCKS; i++) 739 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 740 kmem_cache_destroy(hdr_cache); 741 kmem_cache_destroy(buf_cache); 742 } 743 744 /* 745 * Constructor callback - called when the cache is empty 746 * and a new buf is requested. 747 */ 748 /* ARGSUSED */ 749 static int 750 hdr_cons(void *vbuf, void *unused, int kmflag) 751 { 752 arc_buf_hdr_t *buf = vbuf; 753 754 bzero(buf, sizeof (arc_buf_hdr_t)); 755 refcount_create(&buf->b_refcnt); 756 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 757 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 758 759 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 760 return (0); 761 } 762 763 /* ARGSUSED */ 764 static int 765 buf_cons(void *vbuf, void *unused, int kmflag) 766 { 767 arc_buf_t *buf = vbuf; 768 769 bzero(buf, sizeof (arc_buf_t)); 770 rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL); 771 return (0); 772 } 773 774 /* 775 * Destructor callback - called when a cached buf is 776 * no longer required. 777 */ 778 /* ARGSUSED */ 779 static void 780 hdr_dest(void *vbuf, void *unused) 781 { 782 arc_buf_hdr_t *buf = vbuf; 783 784 refcount_destroy(&buf->b_refcnt); 785 cv_destroy(&buf->b_cv); 786 mutex_destroy(&buf->b_freeze_lock); 787 788 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 789 } 790 791 /* ARGSUSED */ 792 static void 793 buf_dest(void *vbuf, void *unused) 794 { 795 arc_buf_t *buf = vbuf; 796 797 rw_destroy(&buf->b_lock); 798 } 799 800 /* 801 * Reclaim callback -- invoked when memory is low. 802 */ 803 /* ARGSUSED */ 804 static void 805 hdr_recl(void *unused) 806 { 807 dprintf("hdr_recl called\n"); 808 /* 809 * umem calls the reclaim func when we destroy the buf cache, 810 * which is after we do arc_fini(). 811 */ 812 if (!arc_dead) 813 cv_signal(&arc_reclaim_thr_cv); 814 } 815 816 static void 817 buf_init(void) 818 { 819 uint64_t *ct; 820 uint64_t hsize = 1ULL << 12; 821 int i, j; 822 823 /* 824 * The hash table is big enough to fill all of physical memory 825 * with an average 64K block size. The table will take up 826 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 827 */ 828 while (hsize * 65536 < physmem * PAGESIZE) 829 hsize <<= 1; 830 retry: 831 buf_hash_table.ht_mask = hsize - 1; 832 buf_hash_table.ht_table = 833 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 834 if (buf_hash_table.ht_table == NULL) { 835 ASSERT(hsize > (1ULL << 8)); 836 hsize >>= 1; 837 goto retry; 838 } 839 840 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 841 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 842 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 843 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 844 845 for (i = 0; i < 256; i++) 846 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 847 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 848 849 for (i = 0; i < BUF_LOCKS; i++) { 850 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 851 NULL, MUTEX_DEFAULT, NULL); 852 } 853 } 854 855 #define ARC_MINTIME (hz>>4) /* 62 ms */ 856 857 static void 858 arc_cksum_verify(arc_buf_t *buf) 859 { 860 zio_cksum_t zc; 861 862 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 863 return; 864 865 mutex_enter(&buf->b_hdr->b_freeze_lock); 866 if (buf->b_hdr->b_freeze_cksum == NULL || 867 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 868 mutex_exit(&buf->b_hdr->b_freeze_lock); 869 return; 870 } 871 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 872 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 873 panic("buffer modified while frozen!"); 874 mutex_exit(&buf->b_hdr->b_freeze_lock); 875 } 876 877 static int 878 arc_cksum_equal(arc_buf_t *buf) 879 { 880 zio_cksum_t zc; 881 int equal; 882 883 mutex_enter(&buf->b_hdr->b_freeze_lock); 884 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 885 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 886 mutex_exit(&buf->b_hdr->b_freeze_lock); 887 888 return (equal); 889 } 890 891 static void 892 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 893 { 894 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 895 return; 896 897 mutex_enter(&buf->b_hdr->b_freeze_lock); 898 if (buf->b_hdr->b_freeze_cksum != NULL) { 899 mutex_exit(&buf->b_hdr->b_freeze_lock); 900 return; 901 } 902 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 903 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 904 buf->b_hdr->b_freeze_cksum); 905 mutex_exit(&buf->b_hdr->b_freeze_lock); 906 } 907 908 void 909 arc_buf_thaw(arc_buf_t *buf) 910 { 911 if (zfs_flags & ZFS_DEBUG_MODIFY) { 912 if (buf->b_hdr->b_state != arc_anon) 913 panic("modifying non-anon buffer!"); 914 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 915 panic("modifying buffer while i/o in progress!"); 916 arc_cksum_verify(buf); 917 } 918 919 mutex_enter(&buf->b_hdr->b_freeze_lock); 920 if (buf->b_hdr->b_freeze_cksum != NULL) { 921 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 922 buf->b_hdr->b_freeze_cksum = NULL; 923 } 924 mutex_exit(&buf->b_hdr->b_freeze_lock); 925 } 926 927 void 928 arc_buf_freeze(arc_buf_t *buf) 929 { 930 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 931 return; 932 933 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 934 buf->b_hdr->b_state == arc_anon); 935 arc_cksum_compute(buf, B_FALSE); 936 } 937 938 static void 939 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 940 { 941 ASSERT(MUTEX_HELD(hash_lock)); 942 943 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 944 (ab->b_state != arc_anon)) { 945 uint64_t delta = ab->b_size * ab->b_datacnt; 946 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 947 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 948 949 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 950 mutex_enter(&ab->b_state->arcs_mtx); 951 ASSERT(list_link_active(&ab->b_arc_node)); 952 list_remove(list, ab); 953 if (GHOST_STATE(ab->b_state)) { 954 ASSERT3U(ab->b_datacnt, ==, 0); 955 ASSERT3P(ab->b_buf, ==, NULL); 956 delta = ab->b_size; 957 } 958 ASSERT(delta > 0); 959 ASSERT3U(*size, >=, delta); 960 atomic_add_64(size, -delta); 961 mutex_exit(&ab->b_state->arcs_mtx); 962 /* remove the prefetch flag if we get a reference */ 963 if (ab->b_flags & ARC_PREFETCH) 964 ab->b_flags &= ~ARC_PREFETCH; 965 } 966 } 967 968 static int 969 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 970 { 971 int cnt; 972 arc_state_t *state = ab->b_state; 973 974 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 975 ASSERT(!GHOST_STATE(state)); 976 977 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 978 (state != arc_anon)) { 979 uint64_t *size = &state->arcs_lsize[ab->b_type]; 980 981 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 982 mutex_enter(&state->arcs_mtx); 983 ASSERT(!list_link_active(&ab->b_arc_node)); 984 list_insert_head(&state->arcs_list[ab->b_type], ab); 985 ASSERT(ab->b_datacnt > 0); 986 atomic_add_64(size, ab->b_size * ab->b_datacnt); 987 mutex_exit(&state->arcs_mtx); 988 } 989 return (cnt); 990 } 991 992 /* 993 * Move the supplied buffer to the indicated state. The mutex 994 * for the buffer must be held by the caller. 995 */ 996 static void 997 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 998 { 999 arc_state_t *old_state = ab->b_state; 1000 int64_t refcnt = refcount_count(&ab->b_refcnt); 1001 uint64_t from_delta, to_delta; 1002 1003 ASSERT(MUTEX_HELD(hash_lock)); 1004 ASSERT(new_state != old_state); 1005 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1006 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1007 1008 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1009 1010 /* 1011 * If this buffer is evictable, transfer it from the 1012 * old state list to the new state list. 1013 */ 1014 if (refcnt == 0) { 1015 if (old_state != arc_anon) { 1016 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1017 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1018 1019 if (use_mutex) 1020 mutex_enter(&old_state->arcs_mtx); 1021 1022 ASSERT(list_link_active(&ab->b_arc_node)); 1023 list_remove(&old_state->arcs_list[ab->b_type], ab); 1024 1025 /* 1026 * If prefetching out of the ghost cache, 1027 * we will have a non-null datacnt. 1028 */ 1029 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1030 /* ghost elements have a ghost size */ 1031 ASSERT(ab->b_buf == NULL); 1032 from_delta = ab->b_size; 1033 } 1034 ASSERT3U(*size, >=, from_delta); 1035 atomic_add_64(size, -from_delta); 1036 1037 if (use_mutex) 1038 mutex_exit(&old_state->arcs_mtx); 1039 } 1040 if (new_state != arc_anon) { 1041 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1042 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1043 1044 if (use_mutex) 1045 mutex_enter(&new_state->arcs_mtx); 1046 1047 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1048 1049 /* ghost elements have a ghost size */ 1050 if (GHOST_STATE(new_state)) { 1051 ASSERT(ab->b_datacnt == 0); 1052 ASSERT(ab->b_buf == NULL); 1053 to_delta = ab->b_size; 1054 } 1055 atomic_add_64(size, to_delta); 1056 1057 if (use_mutex) 1058 mutex_exit(&new_state->arcs_mtx); 1059 } 1060 } 1061 1062 ASSERT(!BUF_EMPTY(ab)); 1063 if (new_state == arc_anon) { 1064 buf_hash_remove(ab); 1065 } 1066 1067 /* adjust state sizes */ 1068 if (to_delta) 1069 atomic_add_64(&new_state->arcs_size, to_delta); 1070 if (from_delta) { 1071 ASSERT3U(old_state->arcs_size, >=, from_delta); 1072 atomic_add_64(&old_state->arcs_size, -from_delta); 1073 } 1074 ab->b_state = new_state; 1075 1076 /* adjust l2arc hdr stats */ 1077 if (new_state == arc_l2c_only) 1078 l2arc_hdr_stat_add(); 1079 else if (old_state == arc_l2c_only) 1080 l2arc_hdr_stat_remove(); 1081 } 1082 1083 void 1084 arc_space_consume(uint64_t space) 1085 { 1086 atomic_add_64(&arc_meta_used, space); 1087 atomic_add_64(&arc_size, space); 1088 } 1089 1090 void 1091 arc_space_return(uint64_t space) 1092 { 1093 ASSERT(arc_meta_used >= space); 1094 if (arc_meta_max < arc_meta_used) 1095 arc_meta_max = arc_meta_used; 1096 atomic_add_64(&arc_meta_used, -space); 1097 ASSERT(arc_size >= space); 1098 atomic_add_64(&arc_size, -space); 1099 } 1100 1101 void * 1102 arc_data_buf_alloc(uint64_t size) 1103 { 1104 if (arc_evict_needed(ARC_BUFC_DATA)) 1105 cv_signal(&arc_reclaim_thr_cv); 1106 atomic_add_64(&arc_size, size); 1107 return (zio_data_buf_alloc(size)); 1108 } 1109 1110 void 1111 arc_data_buf_free(void *buf, uint64_t size) 1112 { 1113 zio_data_buf_free(buf, size); 1114 ASSERT(arc_size >= size); 1115 atomic_add_64(&arc_size, -size); 1116 } 1117 1118 arc_buf_t * 1119 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1120 { 1121 arc_buf_hdr_t *hdr; 1122 arc_buf_t *buf; 1123 1124 ASSERT3U(size, >, 0); 1125 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1126 ASSERT(BUF_EMPTY(hdr)); 1127 hdr->b_size = size; 1128 hdr->b_type = type; 1129 hdr->b_spa = spa; 1130 hdr->b_state = arc_anon; 1131 hdr->b_arc_access = 0; 1132 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1133 buf->b_hdr = hdr; 1134 buf->b_data = NULL; 1135 buf->b_efunc = NULL; 1136 buf->b_private = NULL; 1137 buf->b_next = NULL; 1138 hdr->b_buf = buf; 1139 arc_get_data_buf(buf); 1140 hdr->b_datacnt = 1; 1141 hdr->b_flags = 0; 1142 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1143 (void) refcount_add(&hdr->b_refcnt, tag); 1144 1145 return (buf); 1146 } 1147 1148 static arc_buf_t * 1149 arc_buf_clone(arc_buf_t *from) 1150 { 1151 arc_buf_t *buf; 1152 arc_buf_hdr_t *hdr = from->b_hdr; 1153 uint64_t size = hdr->b_size; 1154 1155 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1156 buf->b_hdr = hdr; 1157 buf->b_data = NULL; 1158 buf->b_efunc = NULL; 1159 buf->b_private = NULL; 1160 buf->b_next = hdr->b_buf; 1161 hdr->b_buf = buf; 1162 arc_get_data_buf(buf); 1163 bcopy(from->b_data, buf->b_data, size); 1164 hdr->b_datacnt += 1; 1165 return (buf); 1166 } 1167 1168 void 1169 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1170 { 1171 arc_buf_hdr_t *hdr; 1172 kmutex_t *hash_lock; 1173 1174 /* 1175 * Check to see if this buffer is evicted. Callers 1176 * must verify b_data != NULL to know if the add_ref 1177 * was successful. 1178 */ 1179 rw_enter(&buf->b_lock, RW_READER); 1180 if (buf->b_data == NULL) { 1181 rw_exit(&buf->b_lock); 1182 return; 1183 } 1184 hdr = buf->b_hdr; 1185 ASSERT(hdr != NULL); 1186 hash_lock = HDR_LOCK(hdr); 1187 mutex_enter(hash_lock); 1188 rw_exit(&buf->b_lock); 1189 1190 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1191 add_reference(hdr, hash_lock, tag); 1192 arc_access(hdr, hash_lock); 1193 mutex_exit(hash_lock); 1194 ARCSTAT_BUMP(arcstat_hits); 1195 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1196 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1197 data, metadata, hits); 1198 } 1199 1200 /* 1201 * Free the arc data buffer. If it is an l2arc write in progress, 1202 * the buffer is placed on l2arc_free_on_write to be freed later. 1203 */ 1204 static void 1205 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1206 void *data, size_t size) 1207 { 1208 if (HDR_L2_WRITING(hdr)) { 1209 l2arc_data_free_t *df; 1210 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1211 df->l2df_data = data; 1212 df->l2df_size = size; 1213 df->l2df_func = free_func; 1214 mutex_enter(&l2arc_free_on_write_mtx); 1215 list_insert_head(l2arc_free_on_write, df); 1216 mutex_exit(&l2arc_free_on_write_mtx); 1217 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1218 } else { 1219 free_func(data, size); 1220 } 1221 } 1222 1223 static void 1224 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1225 { 1226 arc_buf_t **bufp; 1227 1228 /* free up data associated with the buf */ 1229 if (buf->b_data) { 1230 arc_state_t *state = buf->b_hdr->b_state; 1231 uint64_t size = buf->b_hdr->b_size; 1232 arc_buf_contents_t type = buf->b_hdr->b_type; 1233 1234 arc_cksum_verify(buf); 1235 if (!recycle) { 1236 if (type == ARC_BUFC_METADATA) { 1237 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1238 buf->b_data, size); 1239 arc_space_return(size); 1240 } else { 1241 ASSERT(type == ARC_BUFC_DATA); 1242 arc_buf_data_free(buf->b_hdr, 1243 zio_data_buf_free, buf->b_data, size); 1244 atomic_add_64(&arc_size, -size); 1245 } 1246 } 1247 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1248 uint64_t *cnt = &state->arcs_lsize[type]; 1249 1250 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1251 ASSERT(state != arc_anon); 1252 1253 ASSERT3U(*cnt, >=, size); 1254 atomic_add_64(cnt, -size); 1255 } 1256 ASSERT3U(state->arcs_size, >=, size); 1257 atomic_add_64(&state->arcs_size, -size); 1258 buf->b_data = NULL; 1259 ASSERT(buf->b_hdr->b_datacnt > 0); 1260 buf->b_hdr->b_datacnt -= 1; 1261 } 1262 1263 /* only remove the buf if requested */ 1264 if (!all) 1265 return; 1266 1267 /* remove the buf from the hdr list */ 1268 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1269 continue; 1270 *bufp = buf->b_next; 1271 1272 ASSERT(buf->b_efunc == NULL); 1273 1274 /* clean up the buf */ 1275 buf->b_hdr = NULL; 1276 kmem_cache_free(buf_cache, buf); 1277 } 1278 1279 static void 1280 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1281 { 1282 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1283 ASSERT3P(hdr->b_state, ==, arc_anon); 1284 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1285 ASSERT(!(hdr->b_flags & ARC_STORED)); 1286 1287 if (hdr->b_l2hdr != NULL) { 1288 if (!MUTEX_HELD(&l2arc_buflist_mtx)) { 1289 /* 1290 * To prevent arc_free() and l2arc_evict() from 1291 * attempting to free the same buffer at the same time, 1292 * a FREE_IN_PROGRESS flag is given to arc_free() to 1293 * give it priority. l2arc_evict() can't destroy this 1294 * header while we are waiting on l2arc_buflist_mtx. 1295 * 1296 * The hdr may be removed from l2ad_buflist before we 1297 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1298 */ 1299 mutex_enter(&l2arc_buflist_mtx); 1300 if (hdr->b_l2hdr != NULL) { 1301 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, 1302 hdr); 1303 } 1304 mutex_exit(&l2arc_buflist_mtx); 1305 } else { 1306 list_remove(hdr->b_l2hdr->b_dev->l2ad_buflist, hdr); 1307 } 1308 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1309 kmem_free(hdr->b_l2hdr, sizeof (l2arc_buf_hdr_t)); 1310 if (hdr->b_state == arc_l2c_only) 1311 l2arc_hdr_stat_remove(); 1312 hdr->b_l2hdr = NULL; 1313 } 1314 1315 if (!BUF_EMPTY(hdr)) { 1316 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1317 bzero(&hdr->b_dva, sizeof (dva_t)); 1318 hdr->b_birth = 0; 1319 hdr->b_cksum0 = 0; 1320 } 1321 while (hdr->b_buf) { 1322 arc_buf_t *buf = hdr->b_buf; 1323 1324 if (buf->b_efunc) { 1325 mutex_enter(&arc_eviction_mtx); 1326 rw_enter(&buf->b_lock, RW_WRITER); 1327 ASSERT(buf->b_hdr != NULL); 1328 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1329 hdr->b_buf = buf->b_next; 1330 buf->b_hdr = &arc_eviction_hdr; 1331 buf->b_next = arc_eviction_list; 1332 arc_eviction_list = buf; 1333 rw_exit(&buf->b_lock); 1334 mutex_exit(&arc_eviction_mtx); 1335 } else { 1336 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1337 } 1338 } 1339 if (hdr->b_freeze_cksum != NULL) { 1340 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1341 hdr->b_freeze_cksum = NULL; 1342 } 1343 1344 ASSERT(!list_link_active(&hdr->b_arc_node)); 1345 ASSERT3P(hdr->b_hash_next, ==, NULL); 1346 ASSERT3P(hdr->b_acb, ==, NULL); 1347 kmem_cache_free(hdr_cache, hdr); 1348 } 1349 1350 void 1351 arc_buf_free(arc_buf_t *buf, void *tag) 1352 { 1353 arc_buf_hdr_t *hdr = buf->b_hdr; 1354 int hashed = hdr->b_state != arc_anon; 1355 1356 ASSERT(buf->b_efunc == NULL); 1357 ASSERT(buf->b_data != NULL); 1358 1359 if (hashed) { 1360 kmutex_t *hash_lock = HDR_LOCK(hdr); 1361 1362 mutex_enter(hash_lock); 1363 (void) remove_reference(hdr, hash_lock, tag); 1364 if (hdr->b_datacnt > 1) 1365 arc_buf_destroy(buf, FALSE, TRUE); 1366 else 1367 hdr->b_flags |= ARC_BUF_AVAILABLE; 1368 mutex_exit(hash_lock); 1369 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1370 int destroy_hdr; 1371 /* 1372 * We are in the middle of an async write. Don't destroy 1373 * this buffer unless the write completes before we finish 1374 * decrementing the reference count. 1375 */ 1376 mutex_enter(&arc_eviction_mtx); 1377 (void) remove_reference(hdr, NULL, tag); 1378 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1379 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1380 mutex_exit(&arc_eviction_mtx); 1381 if (destroy_hdr) 1382 arc_hdr_destroy(hdr); 1383 } else { 1384 if (remove_reference(hdr, NULL, tag) > 0) { 1385 ASSERT(HDR_IO_ERROR(hdr)); 1386 arc_buf_destroy(buf, FALSE, TRUE); 1387 } else { 1388 arc_hdr_destroy(hdr); 1389 } 1390 } 1391 } 1392 1393 int 1394 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1395 { 1396 arc_buf_hdr_t *hdr = buf->b_hdr; 1397 kmutex_t *hash_lock = HDR_LOCK(hdr); 1398 int no_callback = (buf->b_efunc == NULL); 1399 1400 if (hdr->b_state == arc_anon) { 1401 arc_buf_free(buf, tag); 1402 return (no_callback); 1403 } 1404 1405 mutex_enter(hash_lock); 1406 ASSERT(hdr->b_state != arc_anon); 1407 ASSERT(buf->b_data != NULL); 1408 1409 (void) remove_reference(hdr, hash_lock, tag); 1410 if (hdr->b_datacnt > 1) { 1411 if (no_callback) 1412 arc_buf_destroy(buf, FALSE, TRUE); 1413 } else if (no_callback) { 1414 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1415 hdr->b_flags |= ARC_BUF_AVAILABLE; 1416 } 1417 ASSERT(no_callback || hdr->b_datacnt > 1 || 1418 refcount_is_zero(&hdr->b_refcnt)); 1419 mutex_exit(hash_lock); 1420 return (no_callback); 1421 } 1422 1423 int 1424 arc_buf_size(arc_buf_t *buf) 1425 { 1426 return (buf->b_hdr->b_size); 1427 } 1428 1429 /* 1430 * Evict buffers from list until we've removed the specified number of 1431 * bytes. Move the removed buffers to the appropriate evict state. 1432 * If the recycle flag is set, then attempt to "recycle" a buffer: 1433 * - look for a buffer to evict that is `bytes' long. 1434 * - return the data block from this buffer rather than freeing it. 1435 * This flag is used by callers that are trying to make space for a 1436 * new buffer in a full arc cache. 1437 * 1438 * This function makes a "best effort". It skips over any buffers 1439 * it can't get a hash_lock on, and so may not catch all candidates. 1440 * It may also return without evicting as much space as requested. 1441 */ 1442 static void * 1443 arc_evict(arc_state_t *state, spa_t *spa, int64_t bytes, boolean_t recycle, 1444 arc_buf_contents_t type) 1445 { 1446 arc_state_t *evicted_state; 1447 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1448 arc_buf_hdr_t *ab, *ab_prev = NULL; 1449 list_t *list = &state->arcs_list[type]; 1450 kmutex_t *hash_lock; 1451 boolean_t have_lock; 1452 void *stolen = NULL; 1453 1454 ASSERT(state == arc_mru || state == arc_mfu); 1455 1456 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1457 1458 mutex_enter(&state->arcs_mtx); 1459 mutex_enter(&evicted_state->arcs_mtx); 1460 1461 for (ab = list_tail(list); ab; ab = ab_prev) { 1462 ab_prev = list_prev(list, ab); 1463 /* prefetch buffers have a minimum lifespan */ 1464 if (HDR_IO_IN_PROGRESS(ab) || 1465 (spa && ab->b_spa != spa) || 1466 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1467 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) { 1468 skipped++; 1469 continue; 1470 } 1471 /* "lookahead" for better eviction candidate */ 1472 if (recycle && ab->b_size != bytes && 1473 ab_prev && ab_prev->b_size == bytes) 1474 continue; 1475 hash_lock = HDR_LOCK(ab); 1476 have_lock = MUTEX_HELD(hash_lock); 1477 if (have_lock || mutex_tryenter(hash_lock)) { 1478 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1479 ASSERT(ab->b_datacnt > 0); 1480 while (ab->b_buf) { 1481 arc_buf_t *buf = ab->b_buf; 1482 if (!rw_tryenter(&buf->b_lock, RW_WRITER)) { 1483 missed += 1; 1484 break; 1485 } 1486 if (buf->b_data) { 1487 bytes_evicted += ab->b_size; 1488 if (recycle && ab->b_type == type && 1489 ab->b_size == bytes && 1490 !HDR_L2_WRITING(ab)) { 1491 stolen = buf->b_data; 1492 recycle = FALSE; 1493 } 1494 } 1495 if (buf->b_efunc) { 1496 mutex_enter(&arc_eviction_mtx); 1497 arc_buf_destroy(buf, 1498 buf->b_data == stolen, FALSE); 1499 ab->b_buf = buf->b_next; 1500 buf->b_hdr = &arc_eviction_hdr; 1501 buf->b_next = arc_eviction_list; 1502 arc_eviction_list = buf; 1503 mutex_exit(&arc_eviction_mtx); 1504 rw_exit(&buf->b_lock); 1505 } else { 1506 rw_exit(&buf->b_lock); 1507 arc_buf_destroy(buf, 1508 buf->b_data == stolen, TRUE); 1509 } 1510 } 1511 if (ab->b_datacnt == 0) { 1512 arc_change_state(evicted_state, ab, hash_lock); 1513 ASSERT(HDR_IN_HASH_TABLE(ab)); 1514 ab->b_flags |= ARC_IN_HASH_TABLE; 1515 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1516 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1517 } 1518 if (!have_lock) 1519 mutex_exit(hash_lock); 1520 if (bytes >= 0 && bytes_evicted >= bytes) 1521 break; 1522 } else { 1523 missed += 1; 1524 } 1525 } 1526 1527 mutex_exit(&evicted_state->arcs_mtx); 1528 mutex_exit(&state->arcs_mtx); 1529 1530 if (bytes_evicted < bytes) 1531 dprintf("only evicted %lld bytes from %x", 1532 (longlong_t)bytes_evicted, state); 1533 1534 if (skipped) 1535 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1536 1537 if (missed) 1538 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1539 1540 /* 1541 * We have just evicted some date into the ghost state, make 1542 * sure we also adjust the ghost state size if necessary. 1543 */ 1544 if (arc_no_grow && 1545 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1546 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1547 arc_mru_ghost->arcs_size - arc_c; 1548 1549 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1550 int64_t todelete = 1551 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1552 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1553 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1554 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1555 arc_mru_ghost->arcs_size + 1556 arc_mfu_ghost->arcs_size - arc_c); 1557 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1558 } 1559 } 1560 1561 return (stolen); 1562 } 1563 1564 /* 1565 * Remove buffers from list until we've removed the specified number of 1566 * bytes. Destroy the buffers that are removed. 1567 */ 1568 static void 1569 arc_evict_ghost(arc_state_t *state, spa_t *spa, int64_t bytes) 1570 { 1571 arc_buf_hdr_t *ab, *ab_prev; 1572 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1573 kmutex_t *hash_lock; 1574 uint64_t bytes_deleted = 0; 1575 uint64_t bufs_skipped = 0; 1576 1577 ASSERT(GHOST_STATE(state)); 1578 top: 1579 mutex_enter(&state->arcs_mtx); 1580 for (ab = list_tail(list); ab; ab = ab_prev) { 1581 ab_prev = list_prev(list, ab); 1582 if (spa && ab->b_spa != spa) 1583 continue; 1584 hash_lock = HDR_LOCK(ab); 1585 if (mutex_tryenter(hash_lock)) { 1586 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1587 ASSERT(ab->b_buf == NULL); 1588 ARCSTAT_BUMP(arcstat_deleted); 1589 bytes_deleted += ab->b_size; 1590 1591 if (ab->b_l2hdr != NULL) { 1592 /* 1593 * This buffer is cached on the 2nd Level ARC; 1594 * don't destroy the header. 1595 */ 1596 arc_change_state(arc_l2c_only, ab, hash_lock); 1597 mutex_exit(hash_lock); 1598 } else { 1599 arc_change_state(arc_anon, ab, hash_lock); 1600 mutex_exit(hash_lock); 1601 arc_hdr_destroy(ab); 1602 } 1603 1604 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1605 if (bytes >= 0 && bytes_deleted >= bytes) 1606 break; 1607 } else { 1608 if (bytes < 0) { 1609 mutex_exit(&state->arcs_mtx); 1610 mutex_enter(hash_lock); 1611 mutex_exit(hash_lock); 1612 goto top; 1613 } 1614 bufs_skipped += 1; 1615 } 1616 } 1617 mutex_exit(&state->arcs_mtx); 1618 1619 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1620 (bytes < 0 || bytes_deleted < bytes)) { 1621 list = &state->arcs_list[ARC_BUFC_METADATA]; 1622 goto top; 1623 } 1624 1625 if (bufs_skipped) { 1626 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1627 ASSERT(bytes >= 0); 1628 } 1629 1630 if (bytes_deleted < bytes) 1631 dprintf("only deleted %lld bytes from %p", 1632 (longlong_t)bytes_deleted, state); 1633 } 1634 1635 static void 1636 arc_adjust(void) 1637 { 1638 int64_t top_sz, mru_over, arc_over, todelete; 1639 1640 top_sz = arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used; 1641 1642 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1643 int64_t toevict = 1644 MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], top_sz - arc_p); 1645 (void) arc_evict(arc_mru, NULL, toevict, FALSE, ARC_BUFC_DATA); 1646 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1647 } 1648 1649 if (top_sz > arc_p && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1650 int64_t toevict = 1651 MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], top_sz - arc_p); 1652 (void) arc_evict(arc_mru, NULL, toevict, FALSE, 1653 ARC_BUFC_METADATA); 1654 top_sz = arc_anon->arcs_size + arc_mru->arcs_size; 1655 } 1656 1657 mru_over = top_sz + arc_mru_ghost->arcs_size - arc_c; 1658 1659 if (mru_over > 0) { 1660 if (arc_mru_ghost->arcs_size > 0) { 1661 todelete = MIN(arc_mru_ghost->arcs_size, mru_over); 1662 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1663 } 1664 } 1665 1666 if ((arc_over = arc_size - arc_c) > 0) { 1667 int64_t tbl_over; 1668 1669 if (arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1670 int64_t toevict = 1671 MIN(arc_mfu->arcs_lsize[ARC_BUFC_DATA], arc_over); 1672 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1673 ARC_BUFC_DATA); 1674 arc_over = arc_size - arc_c; 1675 } 1676 1677 if (arc_over > 0 && 1678 arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1679 int64_t toevict = 1680 MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], 1681 arc_over); 1682 (void) arc_evict(arc_mfu, NULL, toevict, FALSE, 1683 ARC_BUFC_METADATA); 1684 } 1685 1686 tbl_over = arc_size + arc_mru_ghost->arcs_size + 1687 arc_mfu_ghost->arcs_size - arc_c * 2; 1688 1689 if (tbl_over > 0 && arc_mfu_ghost->arcs_size > 0) { 1690 todelete = MIN(arc_mfu_ghost->arcs_size, tbl_over); 1691 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1692 } 1693 } 1694 } 1695 1696 static void 1697 arc_do_user_evicts(void) 1698 { 1699 mutex_enter(&arc_eviction_mtx); 1700 while (arc_eviction_list != NULL) { 1701 arc_buf_t *buf = arc_eviction_list; 1702 arc_eviction_list = buf->b_next; 1703 rw_enter(&buf->b_lock, RW_WRITER); 1704 buf->b_hdr = NULL; 1705 rw_exit(&buf->b_lock); 1706 mutex_exit(&arc_eviction_mtx); 1707 1708 if (buf->b_efunc != NULL) 1709 VERIFY(buf->b_efunc(buf) == 0); 1710 1711 buf->b_efunc = NULL; 1712 buf->b_private = NULL; 1713 kmem_cache_free(buf_cache, buf); 1714 mutex_enter(&arc_eviction_mtx); 1715 } 1716 mutex_exit(&arc_eviction_mtx); 1717 } 1718 1719 /* 1720 * Flush all *evictable* data from the cache for the given spa. 1721 * NOTE: this will not touch "active" (i.e. referenced) data. 1722 */ 1723 void 1724 arc_flush(spa_t *spa) 1725 { 1726 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1727 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_DATA); 1728 if (spa) 1729 break; 1730 } 1731 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1732 (void) arc_evict(arc_mru, spa, -1, FALSE, ARC_BUFC_METADATA); 1733 if (spa) 1734 break; 1735 } 1736 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1737 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_DATA); 1738 if (spa) 1739 break; 1740 } 1741 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1742 (void) arc_evict(arc_mfu, spa, -1, FALSE, ARC_BUFC_METADATA); 1743 if (spa) 1744 break; 1745 } 1746 1747 arc_evict_ghost(arc_mru_ghost, spa, -1); 1748 arc_evict_ghost(arc_mfu_ghost, spa, -1); 1749 1750 mutex_enter(&arc_reclaim_thr_lock); 1751 arc_do_user_evicts(); 1752 mutex_exit(&arc_reclaim_thr_lock); 1753 ASSERT(spa || arc_eviction_list == NULL); 1754 } 1755 1756 int arc_shrink_shift = 5; /* log2(fraction of arc to reclaim) */ 1757 1758 void 1759 arc_shrink(void) 1760 { 1761 if (arc_c > arc_c_min) { 1762 uint64_t to_free; 1763 1764 #ifdef _KERNEL 1765 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1766 #else 1767 to_free = arc_c >> arc_shrink_shift; 1768 #endif 1769 if (arc_c > arc_c_min + to_free) 1770 atomic_add_64(&arc_c, -to_free); 1771 else 1772 arc_c = arc_c_min; 1773 1774 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1775 if (arc_c > arc_size) 1776 arc_c = MAX(arc_size, arc_c_min); 1777 if (arc_p > arc_c) 1778 arc_p = (arc_c >> 1); 1779 ASSERT(arc_c >= arc_c_min); 1780 ASSERT((int64_t)arc_p >= 0); 1781 } 1782 1783 if (arc_size > arc_c) 1784 arc_adjust(); 1785 } 1786 1787 static int 1788 arc_reclaim_needed(void) 1789 { 1790 uint64_t extra; 1791 1792 #ifdef _KERNEL 1793 1794 if (needfree) 1795 return (1); 1796 1797 /* 1798 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1799 */ 1800 extra = desfree; 1801 1802 /* 1803 * check that we're out of range of the pageout scanner. It starts to 1804 * schedule paging if freemem is less than lotsfree and needfree. 1805 * lotsfree is the high-water mark for pageout, and needfree is the 1806 * number of needed free pages. We add extra pages here to make sure 1807 * the scanner doesn't start up while we're freeing memory. 1808 */ 1809 if (freemem < lotsfree + needfree + extra) 1810 return (1); 1811 1812 /* 1813 * check to make sure that swapfs has enough space so that anon 1814 * reservations can still succeed. anon_resvmem() checks that the 1815 * availrmem is greater than swapfs_minfree, and the number of reserved 1816 * swap pages. We also add a bit of extra here just to prevent 1817 * circumstances from getting really dire. 1818 */ 1819 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1820 return (1); 1821 1822 #if defined(__i386) 1823 /* 1824 * If we're on an i386 platform, it's possible that we'll exhaust the 1825 * kernel heap space before we ever run out of available physical 1826 * memory. Most checks of the size of the heap_area compare against 1827 * tune.t_minarmem, which is the minimum available real memory that we 1828 * can have in the system. However, this is generally fixed at 25 pages 1829 * which is so low that it's useless. In this comparison, we seek to 1830 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1831 * heap is allocated. (Or, in the calculation, if less than 1/4th is 1832 * free) 1833 */ 1834 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1835 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1836 return (1); 1837 #endif 1838 1839 #else 1840 if (spa_get_random(100) == 0) 1841 return (1); 1842 #endif 1843 return (0); 1844 } 1845 1846 static void 1847 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1848 { 1849 size_t i; 1850 kmem_cache_t *prev_cache = NULL; 1851 kmem_cache_t *prev_data_cache = NULL; 1852 extern kmem_cache_t *zio_buf_cache[]; 1853 extern kmem_cache_t *zio_data_buf_cache[]; 1854 1855 #ifdef _KERNEL 1856 if (arc_meta_used >= arc_meta_limit) { 1857 /* 1858 * We are exceeding our meta-data cache limit. 1859 * Purge some DNLC entries to release holds on meta-data. 1860 */ 1861 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1862 } 1863 #if defined(__i386) 1864 /* 1865 * Reclaim unused memory from all kmem caches. 1866 */ 1867 kmem_reap(); 1868 #endif 1869 #endif 1870 1871 /* 1872 * An aggressive reclamation will shrink the cache size as well as 1873 * reap free buffers from the arc kmem caches. 1874 */ 1875 if (strat == ARC_RECLAIM_AGGR) 1876 arc_shrink(); 1877 1878 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1879 if (zio_buf_cache[i] != prev_cache) { 1880 prev_cache = zio_buf_cache[i]; 1881 kmem_cache_reap_now(zio_buf_cache[i]); 1882 } 1883 if (zio_data_buf_cache[i] != prev_data_cache) { 1884 prev_data_cache = zio_data_buf_cache[i]; 1885 kmem_cache_reap_now(zio_data_buf_cache[i]); 1886 } 1887 } 1888 kmem_cache_reap_now(buf_cache); 1889 kmem_cache_reap_now(hdr_cache); 1890 } 1891 1892 static void 1893 arc_reclaim_thread(void) 1894 { 1895 clock_t growtime = 0; 1896 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1897 callb_cpr_t cpr; 1898 1899 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1900 1901 mutex_enter(&arc_reclaim_thr_lock); 1902 while (arc_thread_exit == 0) { 1903 if (arc_reclaim_needed()) { 1904 1905 if (arc_no_grow) { 1906 if (last_reclaim == ARC_RECLAIM_CONS) { 1907 last_reclaim = ARC_RECLAIM_AGGR; 1908 } else { 1909 last_reclaim = ARC_RECLAIM_CONS; 1910 } 1911 } else { 1912 arc_no_grow = TRUE; 1913 last_reclaim = ARC_RECLAIM_AGGR; 1914 membar_producer(); 1915 } 1916 1917 /* reset the growth delay for every reclaim */ 1918 growtime = lbolt + (arc_grow_retry * hz); 1919 1920 arc_kmem_reap_now(last_reclaim); 1921 arc_warm = B_TRUE; 1922 1923 } else if (arc_no_grow && lbolt >= growtime) { 1924 arc_no_grow = FALSE; 1925 } 1926 1927 if (2 * arc_c < arc_size + 1928 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 1929 arc_adjust(); 1930 1931 if (arc_eviction_list != NULL) 1932 arc_do_user_evicts(); 1933 1934 /* block until needed, or one second, whichever is shorter */ 1935 CALLB_CPR_SAFE_BEGIN(&cpr); 1936 (void) cv_timedwait(&arc_reclaim_thr_cv, 1937 &arc_reclaim_thr_lock, (lbolt + hz)); 1938 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1939 } 1940 1941 arc_thread_exit = 0; 1942 cv_broadcast(&arc_reclaim_thr_cv); 1943 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1944 thread_exit(); 1945 } 1946 1947 /* 1948 * Adapt arc info given the number of bytes we are trying to add and 1949 * the state that we are comming from. This function is only called 1950 * when we are adding new content to the cache. 1951 */ 1952 static void 1953 arc_adapt(int bytes, arc_state_t *state) 1954 { 1955 int mult; 1956 1957 if (state == arc_l2c_only) 1958 return; 1959 1960 ASSERT(bytes > 0); 1961 /* 1962 * Adapt the target size of the MRU list: 1963 * - if we just hit in the MRU ghost list, then increase 1964 * the target size of the MRU list. 1965 * - if we just hit in the MFU ghost list, then increase 1966 * the target size of the MFU list by decreasing the 1967 * target size of the MRU list. 1968 */ 1969 if (state == arc_mru_ghost) { 1970 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1971 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 1972 1973 arc_p = MIN(arc_c, arc_p + bytes * mult); 1974 } else if (state == arc_mfu_ghost) { 1975 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1976 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 1977 1978 arc_p = MAX(0, (int64_t)arc_p - bytes * mult); 1979 } 1980 ASSERT((int64_t)arc_p >= 0); 1981 1982 if (arc_reclaim_needed()) { 1983 cv_signal(&arc_reclaim_thr_cv); 1984 return; 1985 } 1986 1987 if (arc_no_grow) 1988 return; 1989 1990 if (arc_c >= arc_c_max) 1991 return; 1992 1993 /* 1994 * If we're within (2 * maxblocksize) bytes of the target 1995 * cache size, increment the target cache size 1996 */ 1997 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1998 atomic_add_64(&arc_c, (int64_t)bytes); 1999 if (arc_c > arc_c_max) 2000 arc_c = arc_c_max; 2001 else if (state == arc_anon) 2002 atomic_add_64(&arc_p, (int64_t)bytes); 2003 if (arc_p > arc_c) 2004 arc_p = arc_c; 2005 } 2006 ASSERT((int64_t)arc_p >= 0); 2007 } 2008 2009 /* 2010 * Check if the cache has reached its limits and eviction is required 2011 * prior to insert. 2012 */ 2013 static int 2014 arc_evict_needed(arc_buf_contents_t type) 2015 { 2016 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2017 return (1); 2018 2019 #ifdef _KERNEL 2020 /* 2021 * If zio data pages are being allocated out of a separate heap segment, 2022 * then enforce that the size of available vmem for this area remains 2023 * above about 1/32nd free. 2024 */ 2025 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2026 vmem_size(zio_arena, VMEM_FREE) < 2027 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2028 return (1); 2029 #endif 2030 2031 if (arc_reclaim_needed()) 2032 return (1); 2033 2034 return (arc_size > arc_c); 2035 } 2036 2037 /* 2038 * The buffer, supplied as the first argument, needs a data block. 2039 * So, if we are at cache max, determine which cache should be victimized. 2040 * We have the following cases: 2041 * 2042 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2043 * In this situation if we're out of space, but the resident size of the MFU is 2044 * under the limit, victimize the MFU cache to satisfy this insertion request. 2045 * 2046 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2047 * Here, we've used up all of the available space for the MRU, so we need to 2048 * evict from our own cache instead. Evict from the set of resident MRU 2049 * entries. 2050 * 2051 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2052 * c minus p represents the MFU space in the cache, since p is the size of the 2053 * cache that is dedicated to the MRU. In this situation there's still space on 2054 * the MFU side, so the MRU side needs to be victimized. 2055 * 2056 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2057 * MFU's resident set is consuming more space than it has been allotted. In 2058 * this situation, we must victimize our own cache, the MFU, for this insertion. 2059 */ 2060 static void 2061 arc_get_data_buf(arc_buf_t *buf) 2062 { 2063 arc_state_t *state = buf->b_hdr->b_state; 2064 uint64_t size = buf->b_hdr->b_size; 2065 arc_buf_contents_t type = buf->b_hdr->b_type; 2066 2067 arc_adapt(size, state); 2068 2069 /* 2070 * We have not yet reached cache maximum size, 2071 * just allocate a new buffer. 2072 */ 2073 if (!arc_evict_needed(type)) { 2074 if (type == ARC_BUFC_METADATA) { 2075 buf->b_data = zio_buf_alloc(size); 2076 arc_space_consume(size); 2077 } else { 2078 ASSERT(type == ARC_BUFC_DATA); 2079 buf->b_data = zio_data_buf_alloc(size); 2080 atomic_add_64(&arc_size, size); 2081 } 2082 goto out; 2083 } 2084 2085 /* 2086 * If we are prefetching from the mfu ghost list, this buffer 2087 * will end up on the mru list; so steal space from there. 2088 */ 2089 if (state == arc_mfu_ghost) 2090 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2091 else if (state == arc_mru_ghost) 2092 state = arc_mru; 2093 2094 if (state == arc_mru || state == arc_anon) { 2095 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2096 state = (arc_mfu->arcs_lsize[type] > 0 && 2097 arc_p > mru_used) ? arc_mfu : arc_mru; 2098 } else { 2099 /* MFU cases */ 2100 uint64_t mfu_space = arc_c - arc_p; 2101 state = (arc_mru->arcs_lsize[type] > 0 && 2102 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2103 } 2104 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2105 if (type == ARC_BUFC_METADATA) { 2106 buf->b_data = zio_buf_alloc(size); 2107 arc_space_consume(size); 2108 } else { 2109 ASSERT(type == ARC_BUFC_DATA); 2110 buf->b_data = zio_data_buf_alloc(size); 2111 atomic_add_64(&arc_size, size); 2112 } 2113 ARCSTAT_BUMP(arcstat_recycle_miss); 2114 } 2115 ASSERT(buf->b_data != NULL); 2116 out: 2117 /* 2118 * Update the state size. Note that ghost states have a 2119 * "ghost size" and so don't need to be updated. 2120 */ 2121 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2122 arc_buf_hdr_t *hdr = buf->b_hdr; 2123 2124 atomic_add_64(&hdr->b_state->arcs_size, size); 2125 if (list_link_active(&hdr->b_arc_node)) { 2126 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2127 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2128 } 2129 /* 2130 * If we are growing the cache, and we are adding anonymous 2131 * data, and we have outgrown arc_p, update arc_p 2132 */ 2133 if (arc_size < arc_c && hdr->b_state == arc_anon && 2134 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2135 arc_p = MIN(arc_c, arc_p + size); 2136 } 2137 } 2138 2139 /* 2140 * This routine is called whenever a buffer is accessed. 2141 * NOTE: the hash lock is dropped in this function. 2142 */ 2143 static void 2144 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2145 { 2146 ASSERT(MUTEX_HELD(hash_lock)); 2147 2148 if (buf->b_state == arc_anon) { 2149 /* 2150 * This buffer is not in the cache, and does not 2151 * appear in our "ghost" list. Add the new buffer 2152 * to the MRU state. 2153 */ 2154 2155 ASSERT(buf->b_arc_access == 0); 2156 buf->b_arc_access = lbolt; 2157 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2158 arc_change_state(arc_mru, buf, hash_lock); 2159 2160 } else if (buf->b_state == arc_mru) { 2161 /* 2162 * If this buffer is here because of a prefetch, then either: 2163 * - clear the flag if this is a "referencing" read 2164 * (any subsequent access will bump this into the MFU state). 2165 * or 2166 * - move the buffer to the head of the list if this is 2167 * another prefetch (to make it less likely to be evicted). 2168 */ 2169 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2170 if (refcount_count(&buf->b_refcnt) == 0) { 2171 ASSERT(list_link_active(&buf->b_arc_node)); 2172 } else { 2173 buf->b_flags &= ~ARC_PREFETCH; 2174 ARCSTAT_BUMP(arcstat_mru_hits); 2175 } 2176 buf->b_arc_access = lbolt; 2177 return; 2178 } 2179 2180 /* 2181 * This buffer has been "accessed" only once so far, 2182 * but it is still in the cache. Move it to the MFU 2183 * state. 2184 */ 2185 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 2186 /* 2187 * More than 125ms have passed since we 2188 * instantiated this buffer. Move it to the 2189 * most frequently used state. 2190 */ 2191 buf->b_arc_access = lbolt; 2192 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2193 arc_change_state(arc_mfu, buf, hash_lock); 2194 } 2195 ARCSTAT_BUMP(arcstat_mru_hits); 2196 } else if (buf->b_state == arc_mru_ghost) { 2197 arc_state_t *new_state; 2198 /* 2199 * This buffer has been "accessed" recently, but 2200 * was evicted from the cache. Move it to the 2201 * MFU state. 2202 */ 2203 2204 if (buf->b_flags & ARC_PREFETCH) { 2205 new_state = arc_mru; 2206 if (refcount_count(&buf->b_refcnt) > 0) 2207 buf->b_flags &= ~ARC_PREFETCH; 2208 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2209 } else { 2210 new_state = arc_mfu; 2211 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2212 } 2213 2214 buf->b_arc_access = lbolt; 2215 arc_change_state(new_state, buf, hash_lock); 2216 2217 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2218 } else if (buf->b_state == arc_mfu) { 2219 /* 2220 * This buffer has been accessed more than once and is 2221 * still in the cache. Keep it in the MFU state. 2222 * 2223 * NOTE: an add_reference() that occurred when we did 2224 * the arc_read() will have kicked this off the list. 2225 * If it was a prefetch, we will explicitly move it to 2226 * the head of the list now. 2227 */ 2228 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2229 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2230 ASSERT(list_link_active(&buf->b_arc_node)); 2231 } 2232 ARCSTAT_BUMP(arcstat_mfu_hits); 2233 buf->b_arc_access = lbolt; 2234 } else if (buf->b_state == arc_mfu_ghost) { 2235 arc_state_t *new_state = arc_mfu; 2236 /* 2237 * This buffer has been accessed more than once but has 2238 * been evicted from the cache. Move it back to the 2239 * MFU state. 2240 */ 2241 2242 if (buf->b_flags & ARC_PREFETCH) { 2243 /* 2244 * This is a prefetch access... 2245 * move this block back to the MRU state. 2246 */ 2247 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2248 new_state = arc_mru; 2249 } 2250 2251 buf->b_arc_access = lbolt; 2252 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2253 arc_change_state(new_state, buf, hash_lock); 2254 2255 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2256 } else if (buf->b_state == arc_l2c_only) { 2257 /* 2258 * This buffer is on the 2nd Level ARC. 2259 */ 2260 2261 buf->b_arc_access = lbolt; 2262 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2263 arc_change_state(arc_mfu, buf, hash_lock); 2264 } else { 2265 ASSERT(!"invalid arc state"); 2266 } 2267 } 2268 2269 /* a generic arc_done_func_t which you can use */ 2270 /* ARGSUSED */ 2271 void 2272 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2273 { 2274 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2275 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2276 } 2277 2278 /* a generic arc_done_func_t */ 2279 void 2280 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2281 { 2282 arc_buf_t **bufp = arg; 2283 if (zio && zio->io_error) { 2284 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2285 *bufp = NULL; 2286 } else { 2287 *bufp = buf; 2288 } 2289 } 2290 2291 static void 2292 arc_read_done(zio_t *zio) 2293 { 2294 arc_buf_hdr_t *hdr, *found; 2295 arc_buf_t *buf; 2296 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2297 kmutex_t *hash_lock; 2298 arc_callback_t *callback_list, *acb; 2299 int freeable = FALSE; 2300 2301 buf = zio->io_private; 2302 hdr = buf->b_hdr; 2303 2304 /* 2305 * The hdr was inserted into hash-table and removed from lists 2306 * prior to starting I/O. We should find this header, since 2307 * it's in the hash table, and it should be legit since it's 2308 * not possible to evict it during the I/O. The only possible 2309 * reason for it not to be found is if we were freed during the 2310 * read. 2311 */ 2312 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 2313 &hash_lock); 2314 2315 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2316 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2317 (found == hdr && HDR_L2_READING(hdr))); 2318 2319 hdr->b_flags &= ~ARC_L2_EVICTED; 2320 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2321 hdr->b_flags &= ~ARC_L2CACHE; 2322 2323 /* byteswap if necessary */ 2324 callback_list = hdr->b_acb; 2325 ASSERT(callback_list != NULL); 2326 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 2327 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2328 byteswap_uint64_array : 2329 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2330 func(buf->b_data, hdr->b_size); 2331 } 2332 2333 arc_cksum_compute(buf, B_FALSE); 2334 2335 /* create copies of the data buffer for the callers */ 2336 abuf = buf; 2337 for (acb = callback_list; acb; acb = acb->acb_next) { 2338 if (acb->acb_done) { 2339 if (abuf == NULL) 2340 abuf = arc_buf_clone(buf); 2341 acb->acb_buf = abuf; 2342 abuf = NULL; 2343 } 2344 } 2345 hdr->b_acb = NULL; 2346 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2347 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2348 if (abuf == buf) 2349 hdr->b_flags |= ARC_BUF_AVAILABLE; 2350 2351 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2352 2353 if (zio->io_error != 0) { 2354 hdr->b_flags |= ARC_IO_ERROR; 2355 if (hdr->b_state != arc_anon) 2356 arc_change_state(arc_anon, hdr, hash_lock); 2357 if (HDR_IN_HASH_TABLE(hdr)) 2358 buf_hash_remove(hdr); 2359 freeable = refcount_is_zero(&hdr->b_refcnt); 2360 } 2361 2362 /* 2363 * Broadcast before we drop the hash_lock to avoid the possibility 2364 * that the hdr (and hence the cv) might be freed before we get to 2365 * the cv_broadcast(). 2366 */ 2367 cv_broadcast(&hdr->b_cv); 2368 2369 if (hash_lock) { 2370 /* 2371 * Only call arc_access on anonymous buffers. This is because 2372 * if we've issued an I/O for an evicted buffer, we've already 2373 * called arc_access (to prevent any simultaneous readers from 2374 * getting confused). 2375 */ 2376 if (zio->io_error == 0 && hdr->b_state == arc_anon) 2377 arc_access(hdr, hash_lock); 2378 mutex_exit(hash_lock); 2379 } else { 2380 /* 2381 * This block was freed while we waited for the read to 2382 * complete. It has been removed from the hash table and 2383 * moved to the anonymous state (so that it won't show up 2384 * in the cache). 2385 */ 2386 ASSERT3P(hdr->b_state, ==, arc_anon); 2387 freeable = refcount_is_zero(&hdr->b_refcnt); 2388 } 2389 2390 /* execute each callback and free its structure */ 2391 while ((acb = callback_list) != NULL) { 2392 if (acb->acb_done) 2393 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2394 2395 if (acb->acb_zio_dummy != NULL) { 2396 acb->acb_zio_dummy->io_error = zio->io_error; 2397 zio_nowait(acb->acb_zio_dummy); 2398 } 2399 2400 callback_list = acb->acb_next; 2401 kmem_free(acb, sizeof (arc_callback_t)); 2402 } 2403 2404 if (freeable) 2405 arc_hdr_destroy(hdr); 2406 } 2407 2408 /* 2409 * "Read" the block block at the specified DVA (in bp) via the 2410 * cache. If the block is found in the cache, invoke the provided 2411 * callback immediately and return. Note that the `zio' parameter 2412 * in the callback will be NULL in this case, since no IO was 2413 * required. If the block is not in the cache pass the read request 2414 * on to the spa with a substitute callback function, so that the 2415 * requested block will be added to the cache. 2416 * 2417 * If a read request arrives for a block that has a read in-progress, 2418 * either wait for the in-progress read to complete (and return the 2419 * results); or, if this is a read with a "done" func, add a record 2420 * to the read to invoke the "done" func when the read completes, 2421 * and return; or just return. 2422 * 2423 * arc_read_done() will invoke all the requested "done" functions 2424 * for readers of this block. 2425 * 2426 * Normal callers should use arc_read and pass the arc buffer and offset 2427 * for the bp. But if you know you don't need locking, you can use 2428 * arc_read_bp. 2429 */ 2430 int 2431 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_buf_t *pbuf, 2432 arc_done_func_t *done, void *private, int priority, int zio_flags, 2433 uint32_t *arc_flags, const zbookmark_t *zb) 2434 { 2435 int err; 2436 arc_buf_hdr_t *hdr = pbuf->b_hdr; 2437 2438 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2439 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2440 rw_enter(&pbuf->b_lock, RW_READER); 2441 2442 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2443 zio_flags, arc_flags, zb); 2444 2445 ASSERT3P(hdr, ==, pbuf->b_hdr); 2446 rw_exit(&pbuf->b_lock); 2447 return (err); 2448 } 2449 2450 int 2451 arc_read_nolock(zio_t *pio, spa_t *spa, blkptr_t *bp, 2452 arc_done_func_t *done, void *private, int priority, int zio_flags, 2453 uint32_t *arc_flags, const zbookmark_t *zb) 2454 { 2455 arc_buf_hdr_t *hdr; 2456 arc_buf_t *buf; 2457 kmutex_t *hash_lock; 2458 zio_t *rzio; 2459 2460 top: 2461 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2462 if (hdr && hdr->b_datacnt > 0) { 2463 2464 *arc_flags |= ARC_CACHED; 2465 2466 if (HDR_IO_IN_PROGRESS(hdr)) { 2467 2468 if (*arc_flags & ARC_WAIT) { 2469 cv_wait(&hdr->b_cv, hash_lock); 2470 mutex_exit(hash_lock); 2471 goto top; 2472 } 2473 ASSERT(*arc_flags & ARC_NOWAIT); 2474 2475 if (done) { 2476 arc_callback_t *acb = NULL; 2477 2478 acb = kmem_zalloc(sizeof (arc_callback_t), 2479 KM_SLEEP); 2480 acb->acb_done = done; 2481 acb->acb_private = private; 2482 if (pio != NULL) 2483 acb->acb_zio_dummy = zio_null(pio, 2484 spa, NULL, NULL, zio_flags); 2485 2486 ASSERT(acb->acb_done != NULL); 2487 acb->acb_next = hdr->b_acb; 2488 hdr->b_acb = acb; 2489 add_reference(hdr, hash_lock, private); 2490 mutex_exit(hash_lock); 2491 return (0); 2492 } 2493 mutex_exit(hash_lock); 2494 return (0); 2495 } 2496 2497 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2498 2499 if (done) { 2500 add_reference(hdr, hash_lock, private); 2501 /* 2502 * If this block is already in use, create a new 2503 * copy of the data so that we will be guaranteed 2504 * that arc_release() will always succeed. 2505 */ 2506 buf = hdr->b_buf; 2507 ASSERT(buf); 2508 ASSERT(buf->b_data); 2509 if (HDR_BUF_AVAILABLE(hdr)) { 2510 ASSERT(buf->b_efunc == NULL); 2511 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2512 } else { 2513 buf = arc_buf_clone(buf); 2514 } 2515 } else if (*arc_flags & ARC_PREFETCH && 2516 refcount_count(&hdr->b_refcnt) == 0) { 2517 hdr->b_flags |= ARC_PREFETCH; 2518 } 2519 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2520 arc_access(hdr, hash_lock); 2521 if (*arc_flags & ARC_L2CACHE) 2522 hdr->b_flags |= ARC_L2CACHE; 2523 mutex_exit(hash_lock); 2524 ARCSTAT_BUMP(arcstat_hits); 2525 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2526 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2527 data, metadata, hits); 2528 2529 if (done) 2530 done(NULL, buf, private); 2531 } else { 2532 uint64_t size = BP_GET_LSIZE(bp); 2533 arc_callback_t *acb; 2534 vdev_t *vd = NULL; 2535 daddr_t addr; 2536 2537 if (hdr == NULL) { 2538 /* this block is not in the cache */ 2539 arc_buf_hdr_t *exists; 2540 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2541 buf = arc_buf_alloc(spa, size, private, type); 2542 hdr = buf->b_hdr; 2543 hdr->b_dva = *BP_IDENTITY(bp); 2544 hdr->b_birth = bp->blk_birth; 2545 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2546 exists = buf_hash_insert(hdr, &hash_lock); 2547 if (exists) { 2548 /* somebody beat us to the hash insert */ 2549 mutex_exit(hash_lock); 2550 bzero(&hdr->b_dva, sizeof (dva_t)); 2551 hdr->b_birth = 0; 2552 hdr->b_cksum0 = 0; 2553 (void) arc_buf_remove_ref(buf, private); 2554 goto top; /* restart the IO request */ 2555 } 2556 /* if this is a prefetch, we don't have a reference */ 2557 if (*arc_flags & ARC_PREFETCH) { 2558 (void) remove_reference(hdr, hash_lock, 2559 private); 2560 hdr->b_flags |= ARC_PREFETCH; 2561 } 2562 if (*arc_flags & ARC_L2CACHE) 2563 hdr->b_flags |= ARC_L2CACHE; 2564 if (BP_GET_LEVEL(bp) > 0) 2565 hdr->b_flags |= ARC_INDIRECT; 2566 } else { 2567 /* this block is in the ghost cache */ 2568 ASSERT(GHOST_STATE(hdr->b_state)); 2569 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2570 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2571 ASSERT(hdr->b_buf == NULL); 2572 2573 /* if this is a prefetch, we don't have a reference */ 2574 if (*arc_flags & ARC_PREFETCH) 2575 hdr->b_flags |= ARC_PREFETCH; 2576 else 2577 add_reference(hdr, hash_lock, private); 2578 if (*arc_flags & ARC_L2CACHE) 2579 hdr->b_flags |= ARC_L2CACHE; 2580 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2581 buf->b_hdr = hdr; 2582 buf->b_data = NULL; 2583 buf->b_efunc = NULL; 2584 buf->b_private = NULL; 2585 buf->b_next = NULL; 2586 hdr->b_buf = buf; 2587 arc_get_data_buf(buf); 2588 ASSERT(hdr->b_datacnt == 0); 2589 hdr->b_datacnt = 1; 2590 2591 } 2592 2593 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2594 acb->acb_done = done; 2595 acb->acb_private = private; 2596 2597 ASSERT(hdr->b_acb == NULL); 2598 hdr->b_acb = acb; 2599 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2600 2601 /* 2602 * If the buffer has been evicted, migrate it to a present state 2603 * before issuing the I/O. Once we drop the hash-table lock, 2604 * the header will be marked as I/O in progress and have an 2605 * attached buffer. At this point, anybody who finds this 2606 * buffer ought to notice that it's legit but has a pending I/O. 2607 */ 2608 2609 if (GHOST_STATE(hdr->b_state)) 2610 arc_access(hdr, hash_lock); 2611 2612 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2613 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2614 addr = hdr->b_l2hdr->b_daddr; 2615 /* 2616 * Lock out device removal. 2617 */ 2618 if (vdev_is_dead(vd) || 2619 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2620 vd = NULL; 2621 } 2622 2623 mutex_exit(hash_lock); 2624 2625 ASSERT3U(hdr->b_size, ==, size); 2626 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 2627 zbookmark_t *, zb); 2628 ARCSTAT_BUMP(arcstat_misses); 2629 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2630 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2631 data, metadata, misses); 2632 2633 if (vd != NULL) { 2634 /* 2635 * Read from the L2ARC if the following are true: 2636 * 1. The L2ARC vdev was previously cached. 2637 * 2. This buffer still has L2ARC metadata. 2638 * 3. This buffer isn't currently writing to the L2ARC. 2639 * 4. The L2ARC entry wasn't evicted, which may 2640 * also have invalidated the vdev. 2641 */ 2642 if (hdr->b_l2hdr != NULL && 2643 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) { 2644 l2arc_read_callback_t *cb; 2645 2646 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2647 ARCSTAT_BUMP(arcstat_l2_hits); 2648 2649 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2650 KM_SLEEP); 2651 cb->l2rcb_buf = buf; 2652 cb->l2rcb_spa = spa; 2653 cb->l2rcb_bp = *bp; 2654 cb->l2rcb_zb = *zb; 2655 cb->l2rcb_flags = zio_flags; 2656 2657 /* 2658 * l2arc read. The SCL_L2ARC lock will be 2659 * released by l2arc_read_done(). 2660 */ 2661 rzio = zio_read_phys(pio, vd, addr, size, 2662 buf->b_data, ZIO_CHECKSUM_OFF, 2663 l2arc_read_done, cb, priority, zio_flags | 2664 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2665 ZIO_FLAG_DONT_PROPAGATE | 2666 ZIO_FLAG_DONT_RETRY, B_FALSE); 2667 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2668 zio_t *, rzio); 2669 2670 if (*arc_flags & ARC_NOWAIT) { 2671 zio_nowait(rzio); 2672 return (0); 2673 } 2674 2675 ASSERT(*arc_flags & ARC_WAIT); 2676 if (zio_wait(rzio) == 0) 2677 return (0); 2678 2679 /* l2arc read error; goto zio_read() */ 2680 } else { 2681 DTRACE_PROBE1(l2arc__miss, 2682 arc_buf_hdr_t *, hdr); 2683 ARCSTAT_BUMP(arcstat_l2_misses); 2684 if (HDR_L2_WRITING(hdr)) 2685 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2686 spa_config_exit(spa, SCL_L2ARC, vd); 2687 } 2688 } 2689 2690 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2691 arc_read_done, buf, priority, zio_flags, zb); 2692 2693 if (*arc_flags & ARC_WAIT) 2694 return (zio_wait(rzio)); 2695 2696 ASSERT(*arc_flags & ARC_NOWAIT); 2697 zio_nowait(rzio); 2698 } 2699 return (0); 2700 } 2701 2702 /* 2703 * arc_read() variant to support pool traversal. If the block is already 2704 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 2705 * The idea is that we don't want pool traversal filling up memory, but 2706 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 2707 */ 2708 int 2709 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 2710 { 2711 arc_buf_hdr_t *hdr; 2712 kmutex_t *hash_mtx; 2713 int rc = 0; 2714 2715 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 2716 2717 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 2718 arc_buf_t *buf = hdr->b_buf; 2719 2720 ASSERT(buf); 2721 while (buf->b_data == NULL) { 2722 buf = buf->b_next; 2723 ASSERT(buf); 2724 } 2725 bcopy(buf->b_data, data, hdr->b_size); 2726 } else { 2727 rc = ENOENT; 2728 } 2729 2730 if (hash_mtx) 2731 mutex_exit(hash_mtx); 2732 2733 return (rc); 2734 } 2735 2736 void 2737 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2738 { 2739 ASSERT(buf->b_hdr != NULL); 2740 ASSERT(buf->b_hdr->b_state != arc_anon); 2741 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2742 buf->b_efunc = func; 2743 buf->b_private = private; 2744 } 2745 2746 /* 2747 * This is used by the DMU to let the ARC know that a buffer is 2748 * being evicted, so the ARC should clean up. If this arc buf 2749 * is not yet in the evicted state, it will be put there. 2750 */ 2751 int 2752 arc_buf_evict(arc_buf_t *buf) 2753 { 2754 arc_buf_hdr_t *hdr; 2755 kmutex_t *hash_lock; 2756 arc_buf_t **bufp; 2757 2758 rw_enter(&buf->b_lock, RW_WRITER); 2759 hdr = buf->b_hdr; 2760 if (hdr == NULL) { 2761 /* 2762 * We are in arc_do_user_evicts(). 2763 */ 2764 ASSERT(buf->b_data == NULL); 2765 rw_exit(&buf->b_lock); 2766 return (0); 2767 } else if (buf->b_data == NULL) { 2768 arc_buf_t copy = *buf; /* structure assignment */ 2769 /* 2770 * We are on the eviction list; process this buffer now 2771 * but let arc_do_user_evicts() do the reaping. 2772 */ 2773 buf->b_efunc = NULL; 2774 rw_exit(&buf->b_lock); 2775 VERIFY(copy.b_efunc(©) == 0); 2776 return (1); 2777 } 2778 hash_lock = HDR_LOCK(hdr); 2779 mutex_enter(hash_lock); 2780 2781 ASSERT(buf->b_hdr == hdr); 2782 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2783 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2784 2785 /* 2786 * Pull this buffer off of the hdr 2787 */ 2788 bufp = &hdr->b_buf; 2789 while (*bufp != buf) 2790 bufp = &(*bufp)->b_next; 2791 *bufp = buf->b_next; 2792 2793 ASSERT(buf->b_data != NULL); 2794 arc_buf_destroy(buf, FALSE, FALSE); 2795 2796 if (hdr->b_datacnt == 0) { 2797 arc_state_t *old_state = hdr->b_state; 2798 arc_state_t *evicted_state; 2799 2800 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2801 2802 evicted_state = 2803 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2804 2805 mutex_enter(&old_state->arcs_mtx); 2806 mutex_enter(&evicted_state->arcs_mtx); 2807 2808 arc_change_state(evicted_state, hdr, hash_lock); 2809 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2810 hdr->b_flags |= ARC_IN_HASH_TABLE; 2811 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2812 2813 mutex_exit(&evicted_state->arcs_mtx); 2814 mutex_exit(&old_state->arcs_mtx); 2815 } 2816 mutex_exit(hash_lock); 2817 rw_exit(&buf->b_lock); 2818 2819 VERIFY(buf->b_efunc(buf) == 0); 2820 buf->b_efunc = NULL; 2821 buf->b_private = NULL; 2822 buf->b_hdr = NULL; 2823 kmem_cache_free(buf_cache, buf); 2824 return (1); 2825 } 2826 2827 /* 2828 * Release this buffer from the cache. This must be done 2829 * after a read and prior to modifying the buffer contents. 2830 * If the buffer has more than one reference, we must make 2831 * a new hdr for the buffer. 2832 */ 2833 void 2834 arc_release(arc_buf_t *buf, void *tag) 2835 { 2836 arc_buf_hdr_t *hdr; 2837 kmutex_t *hash_lock; 2838 l2arc_buf_hdr_t *l2hdr; 2839 uint64_t buf_size; 2840 2841 rw_enter(&buf->b_lock, RW_WRITER); 2842 hdr = buf->b_hdr; 2843 2844 /* this buffer is not on any list */ 2845 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2846 ASSERT(!(hdr->b_flags & ARC_STORED)); 2847 2848 if (hdr->b_state == arc_anon) { 2849 /* this buffer is already released */ 2850 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2851 ASSERT(BUF_EMPTY(hdr)); 2852 ASSERT(buf->b_efunc == NULL); 2853 arc_buf_thaw(buf); 2854 rw_exit(&buf->b_lock); 2855 return; 2856 } 2857 2858 hash_lock = HDR_LOCK(hdr); 2859 mutex_enter(hash_lock); 2860 2861 l2hdr = hdr->b_l2hdr; 2862 if (l2hdr) { 2863 mutex_enter(&l2arc_buflist_mtx); 2864 hdr->b_l2hdr = NULL; 2865 buf_size = hdr->b_size; 2866 } 2867 2868 /* 2869 * Do we have more than one buf? 2870 */ 2871 if (hdr->b_datacnt > 1) { 2872 arc_buf_hdr_t *nhdr; 2873 arc_buf_t **bufp; 2874 uint64_t blksz = hdr->b_size; 2875 spa_t *spa = hdr->b_spa; 2876 arc_buf_contents_t type = hdr->b_type; 2877 uint32_t flags = hdr->b_flags; 2878 2879 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 2880 /* 2881 * Pull the data off of this buf and attach it to 2882 * a new anonymous buf. 2883 */ 2884 (void) remove_reference(hdr, hash_lock, tag); 2885 bufp = &hdr->b_buf; 2886 while (*bufp != buf) 2887 bufp = &(*bufp)->b_next; 2888 *bufp = (*bufp)->b_next; 2889 buf->b_next = NULL; 2890 2891 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 2892 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 2893 if (refcount_is_zero(&hdr->b_refcnt)) { 2894 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 2895 ASSERT3U(*size, >=, hdr->b_size); 2896 atomic_add_64(size, -hdr->b_size); 2897 } 2898 hdr->b_datacnt -= 1; 2899 arc_cksum_verify(buf); 2900 2901 mutex_exit(hash_lock); 2902 2903 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 2904 nhdr->b_size = blksz; 2905 nhdr->b_spa = spa; 2906 nhdr->b_type = type; 2907 nhdr->b_buf = buf; 2908 nhdr->b_state = arc_anon; 2909 nhdr->b_arc_access = 0; 2910 nhdr->b_flags = flags & ARC_L2_WRITING; 2911 nhdr->b_l2hdr = NULL; 2912 nhdr->b_datacnt = 1; 2913 nhdr->b_freeze_cksum = NULL; 2914 (void) refcount_add(&nhdr->b_refcnt, tag); 2915 buf->b_hdr = nhdr; 2916 rw_exit(&buf->b_lock); 2917 atomic_add_64(&arc_anon->arcs_size, blksz); 2918 } else { 2919 rw_exit(&buf->b_lock); 2920 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2921 ASSERT(!list_link_active(&hdr->b_arc_node)); 2922 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2923 arc_change_state(arc_anon, hdr, hash_lock); 2924 hdr->b_arc_access = 0; 2925 mutex_exit(hash_lock); 2926 2927 bzero(&hdr->b_dva, sizeof (dva_t)); 2928 hdr->b_birth = 0; 2929 hdr->b_cksum0 = 0; 2930 arc_buf_thaw(buf); 2931 } 2932 buf->b_efunc = NULL; 2933 buf->b_private = NULL; 2934 2935 if (l2hdr) { 2936 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 2937 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 2938 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 2939 mutex_exit(&l2arc_buflist_mtx); 2940 } 2941 } 2942 2943 int 2944 arc_released(arc_buf_t *buf) 2945 { 2946 int released; 2947 2948 rw_enter(&buf->b_lock, RW_READER); 2949 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 2950 rw_exit(&buf->b_lock); 2951 return (released); 2952 } 2953 2954 int 2955 arc_has_callback(arc_buf_t *buf) 2956 { 2957 int callback; 2958 2959 rw_enter(&buf->b_lock, RW_READER); 2960 callback = (buf->b_efunc != NULL); 2961 rw_exit(&buf->b_lock); 2962 return (callback); 2963 } 2964 2965 #ifdef ZFS_DEBUG 2966 int 2967 arc_referenced(arc_buf_t *buf) 2968 { 2969 int referenced; 2970 2971 rw_enter(&buf->b_lock, RW_READER); 2972 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 2973 rw_exit(&buf->b_lock); 2974 return (referenced); 2975 } 2976 #endif 2977 2978 static void 2979 arc_write_ready(zio_t *zio) 2980 { 2981 arc_write_callback_t *callback = zio->io_private; 2982 arc_buf_t *buf = callback->awcb_buf; 2983 arc_buf_hdr_t *hdr = buf->b_hdr; 2984 2985 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 2986 callback->awcb_ready(zio, buf, callback->awcb_private); 2987 2988 /* 2989 * If the IO is already in progress, then this is a re-write 2990 * attempt, so we need to thaw and re-compute the cksum. 2991 * It is the responsibility of the callback to handle the 2992 * accounting for any re-write attempt. 2993 */ 2994 if (HDR_IO_IN_PROGRESS(hdr)) { 2995 mutex_enter(&hdr->b_freeze_lock); 2996 if (hdr->b_freeze_cksum != NULL) { 2997 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 2998 hdr->b_freeze_cksum = NULL; 2999 } 3000 mutex_exit(&hdr->b_freeze_lock); 3001 } 3002 arc_cksum_compute(buf, B_FALSE); 3003 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3004 } 3005 3006 static void 3007 arc_write_done(zio_t *zio) 3008 { 3009 arc_write_callback_t *callback = zio->io_private; 3010 arc_buf_t *buf = callback->awcb_buf; 3011 arc_buf_hdr_t *hdr = buf->b_hdr; 3012 3013 hdr->b_acb = NULL; 3014 3015 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3016 hdr->b_birth = zio->io_bp->blk_birth; 3017 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3018 /* 3019 * If the block to be written was all-zero, we may have 3020 * compressed it away. In this case no write was performed 3021 * so there will be no dva/birth-date/checksum. The buffer 3022 * must therefor remain anonymous (and uncached). 3023 */ 3024 if (!BUF_EMPTY(hdr)) { 3025 arc_buf_hdr_t *exists; 3026 kmutex_t *hash_lock; 3027 3028 arc_cksum_verify(buf); 3029 3030 exists = buf_hash_insert(hdr, &hash_lock); 3031 if (exists) { 3032 /* 3033 * This can only happen if we overwrite for 3034 * sync-to-convergence, because we remove 3035 * buffers from the hash table when we arc_free(). 3036 */ 3037 ASSERT(zio->io_flags & ZIO_FLAG_IO_REWRITE); 3038 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 3039 BP_IDENTITY(zio->io_bp))); 3040 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 3041 zio->io_bp->blk_birth); 3042 3043 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3044 arc_change_state(arc_anon, exists, hash_lock); 3045 mutex_exit(hash_lock); 3046 arc_hdr_destroy(exists); 3047 exists = buf_hash_insert(hdr, &hash_lock); 3048 ASSERT3P(exists, ==, NULL); 3049 } 3050 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3051 /* if it's not anon, we are doing a scrub */ 3052 if (hdr->b_state == arc_anon) 3053 arc_access(hdr, hash_lock); 3054 mutex_exit(hash_lock); 3055 } else if (callback->awcb_done == NULL) { 3056 int destroy_hdr; 3057 /* 3058 * This is an anonymous buffer with no user callback, 3059 * destroy it if there are no active references. 3060 */ 3061 mutex_enter(&arc_eviction_mtx); 3062 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 3063 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3064 mutex_exit(&arc_eviction_mtx); 3065 if (destroy_hdr) 3066 arc_hdr_destroy(hdr); 3067 } else { 3068 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3069 } 3070 hdr->b_flags &= ~ARC_STORED; 3071 3072 if (callback->awcb_done) { 3073 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3074 callback->awcb_done(zio, buf, callback->awcb_private); 3075 } 3076 3077 kmem_free(callback, sizeof (arc_write_callback_t)); 3078 } 3079 3080 static void 3081 write_policy(spa_t *spa, const writeprops_t *wp, zio_prop_t *zp) 3082 { 3083 boolean_t ismd = (wp->wp_level > 0 || dmu_ot[wp->wp_type].ot_metadata); 3084 3085 /* Determine checksum setting */ 3086 if (ismd) { 3087 /* 3088 * Metadata always gets checksummed. If the data 3089 * checksum is multi-bit correctable, and it's not a 3090 * ZBT-style checksum, then it's suitable for metadata 3091 * as well. Otherwise, the metadata checksum defaults 3092 * to fletcher4. 3093 */ 3094 if (zio_checksum_table[wp->wp_oschecksum].ci_correctable && 3095 !zio_checksum_table[wp->wp_oschecksum].ci_zbt) 3096 zp->zp_checksum = wp->wp_oschecksum; 3097 else 3098 zp->zp_checksum = ZIO_CHECKSUM_FLETCHER_4; 3099 } else { 3100 zp->zp_checksum = zio_checksum_select(wp->wp_dnchecksum, 3101 wp->wp_oschecksum); 3102 } 3103 3104 /* Determine compression setting */ 3105 if (ismd) { 3106 /* 3107 * XXX -- we should design a compression algorithm 3108 * that specializes in arrays of bps. 3109 */ 3110 zp->zp_compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 3111 ZIO_COMPRESS_LZJB; 3112 } else { 3113 zp->zp_compress = zio_compress_select(wp->wp_dncompress, 3114 wp->wp_oscompress); 3115 } 3116 3117 zp->zp_type = wp->wp_type; 3118 zp->zp_level = wp->wp_level; 3119 zp->zp_ndvas = MIN(wp->wp_copies + ismd, spa_max_replication(spa)); 3120 } 3121 3122 zio_t * 3123 arc_write(zio_t *pio, spa_t *spa, const writeprops_t *wp, 3124 boolean_t l2arc, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 3125 arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, 3126 int zio_flags, const zbookmark_t *zb) 3127 { 3128 arc_buf_hdr_t *hdr = buf->b_hdr; 3129 arc_write_callback_t *callback; 3130 zio_t *zio; 3131 zio_prop_t zp; 3132 3133 ASSERT(ready != NULL); 3134 ASSERT(!HDR_IO_ERROR(hdr)); 3135 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3136 ASSERT(hdr->b_acb == 0); 3137 if (l2arc) 3138 hdr->b_flags |= ARC_L2CACHE; 3139 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3140 callback->awcb_ready = ready; 3141 callback->awcb_done = done; 3142 callback->awcb_private = private; 3143 callback->awcb_buf = buf; 3144 3145 write_policy(spa, wp, &zp); 3146 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, &zp, 3147 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3148 3149 return (zio); 3150 } 3151 3152 int 3153 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 3154 zio_done_func_t *done, void *private, uint32_t arc_flags) 3155 { 3156 arc_buf_hdr_t *ab; 3157 kmutex_t *hash_lock; 3158 zio_t *zio; 3159 3160 /* 3161 * If this buffer is in the cache, release it, so it 3162 * can be re-used. 3163 */ 3164 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 3165 if (ab != NULL) { 3166 /* 3167 * The checksum of blocks to free is not always 3168 * preserved (eg. on the deadlist). However, if it is 3169 * nonzero, it should match what we have in the cache. 3170 */ 3171 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 3172 bp->blk_cksum.zc_word[0] == ab->b_cksum0 || 3173 bp->blk_fill == BLK_FILL_ALREADY_FREED); 3174 3175 if (ab->b_state != arc_anon) 3176 arc_change_state(arc_anon, ab, hash_lock); 3177 if (HDR_IO_IN_PROGRESS(ab)) { 3178 /* 3179 * This should only happen when we prefetch. 3180 */ 3181 ASSERT(ab->b_flags & ARC_PREFETCH); 3182 ASSERT3U(ab->b_datacnt, ==, 1); 3183 ab->b_flags |= ARC_FREED_IN_READ; 3184 if (HDR_IN_HASH_TABLE(ab)) 3185 buf_hash_remove(ab); 3186 ab->b_arc_access = 0; 3187 bzero(&ab->b_dva, sizeof (dva_t)); 3188 ab->b_birth = 0; 3189 ab->b_cksum0 = 0; 3190 ab->b_buf->b_efunc = NULL; 3191 ab->b_buf->b_private = NULL; 3192 mutex_exit(hash_lock); 3193 } else if (refcount_is_zero(&ab->b_refcnt)) { 3194 ab->b_flags |= ARC_FREE_IN_PROGRESS; 3195 mutex_exit(hash_lock); 3196 arc_hdr_destroy(ab); 3197 ARCSTAT_BUMP(arcstat_deleted); 3198 } else { 3199 /* 3200 * We still have an active reference on this 3201 * buffer. This can happen, e.g., from 3202 * dbuf_unoverride(). 3203 */ 3204 ASSERT(!HDR_IN_HASH_TABLE(ab)); 3205 ab->b_arc_access = 0; 3206 bzero(&ab->b_dva, sizeof (dva_t)); 3207 ab->b_birth = 0; 3208 ab->b_cksum0 = 0; 3209 ab->b_buf->b_efunc = NULL; 3210 ab->b_buf->b_private = NULL; 3211 mutex_exit(hash_lock); 3212 } 3213 } 3214 3215 zio = zio_free(pio, spa, txg, bp, done, private, ZIO_FLAG_MUSTSUCCEED); 3216 3217 if (arc_flags & ARC_WAIT) 3218 return (zio_wait(zio)); 3219 3220 ASSERT(arc_flags & ARC_NOWAIT); 3221 zio_nowait(zio); 3222 3223 return (0); 3224 } 3225 3226 static int 3227 arc_memory_throttle(uint64_t reserve, uint64_t txg) 3228 { 3229 #ifdef _KERNEL 3230 uint64_t inflight_data = arc_anon->arcs_size; 3231 uint64_t available_memory = ptob(freemem); 3232 static uint64_t page_load = 0; 3233 static uint64_t last_txg = 0; 3234 3235 #if defined(__i386) 3236 available_memory = 3237 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3238 #endif 3239 if (available_memory >= zfs_write_limit_max) 3240 return (0); 3241 3242 if (txg > last_txg) { 3243 last_txg = txg; 3244 page_load = 0; 3245 } 3246 /* 3247 * If we are in pageout, we know that memory is already tight, 3248 * the arc is already going to be evicting, so we just want to 3249 * continue to let page writes occur as quickly as possible. 3250 */ 3251 if (curproc == proc_pageout) { 3252 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3253 return (ERESTART); 3254 /* Note: reserve is inflated, so we deflate */ 3255 page_load += reserve / 8; 3256 return (0); 3257 } else if (page_load > 0 && arc_reclaim_needed()) { 3258 /* memory is low, delay before restarting */ 3259 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3260 return (EAGAIN); 3261 } 3262 page_load = 0; 3263 3264 if (arc_size > arc_c_min) { 3265 uint64_t evictable_memory = 3266 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3267 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3268 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3269 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3270 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3271 } 3272 3273 if (inflight_data > available_memory / 4) { 3274 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3275 return (ERESTART); 3276 } 3277 #endif 3278 return (0); 3279 } 3280 3281 void 3282 arc_tempreserve_clear(uint64_t reserve) 3283 { 3284 atomic_add_64(&arc_tempreserve, -reserve); 3285 ASSERT((int64_t)arc_tempreserve >= 0); 3286 } 3287 3288 int 3289 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3290 { 3291 int error; 3292 3293 #ifdef ZFS_DEBUG 3294 /* 3295 * Once in a while, fail for no reason. Everything should cope. 3296 */ 3297 if (spa_get_random(10000) == 0) { 3298 dprintf("forcing random failure\n"); 3299 return (ERESTART); 3300 } 3301 #endif 3302 if (reserve > arc_c/4 && !arc_no_grow) 3303 arc_c = MIN(arc_c_max, reserve * 4); 3304 if (reserve > arc_c) 3305 return (ENOMEM); 3306 3307 /* 3308 * Writes will, almost always, require additional memory allocations 3309 * in order to compress/encrypt/etc the data. We therefor need to 3310 * make sure that there is sufficient available memory for this. 3311 */ 3312 if (error = arc_memory_throttle(reserve, txg)) 3313 return (error); 3314 3315 /* 3316 * Throttle writes when the amount of dirty data in the cache 3317 * gets too large. We try to keep the cache less than half full 3318 * of dirty blocks so that our sync times don't grow too large. 3319 * Note: if two requests come in concurrently, we might let them 3320 * both succeed, when one of them should fail. Not a huge deal. 3321 */ 3322 if (reserve + arc_tempreserve + arc_anon->arcs_size > arc_c / 2 && 3323 arc_anon->arcs_size > arc_c / 4) { 3324 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3325 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3326 arc_tempreserve>>10, 3327 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3328 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3329 reserve>>10, arc_c>>10); 3330 return (ERESTART); 3331 } 3332 atomic_add_64(&arc_tempreserve, reserve); 3333 return (0); 3334 } 3335 3336 void 3337 arc_init(void) 3338 { 3339 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3340 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3341 3342 /* Convert seconds to clock ticks */ 3343 arc_min_prefetch_lifespan = 1 * hz; 3344 3345 /* Start out with 1/8 of all memory */ 3346 arc_c = physmem * PAGESIZE / 8; 3347 3348 #ifdef _KERNEL 3349 /* 3350 * On architectures where the physical memory can be larger 3351 * than the addressable space (intel in 32-bit mode), we may 3352 * need to limit the cache to 1/8 of VM size. 3353 */ 3354 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3355 #endif 3356 3357 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3358 arc_c_min = MAX(arc_c / 4, 64<<20); 3359 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3360 if (arc_c * 8 >= 1<<30) 3361 arc_c_max = (arc_c * 8) - (1<<30); 3362 else 3363 arc_c_max = arc_c_min; 3364 arc_c_max = MAX(arc_c * 6, arc_c_max); 3365 3366 /* 3367 * Allow the tunables to override our calculations if they are 3368 * reasonable (ie. over 64MB) 3369 */ 3370 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3371 arc_c_max = zfs_arc_max; 3372 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3373 arc_c_min = zfs_arc_min; 3374 3375 arc_c = arc_c_max; 3376 arc_p = (arc_c >> 1); 3377 3378 /* limit meta-data to 1/4 of the arc capacity */ 3379 arc_meta_limit = arc_c_max / 4; 3380 3381 /* Allow the tunable to override if it is reasonable */ 3382 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3383 arc_meta_limit = zfs_arc_meta_limit; 3384 3385 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3386 arc_c_min = arc_meta_limit / 2; 3387 3388 /* if kmem_flags are set, lets try to use less memory */ 3389 if (kmem_debugging()) 3390 arc_c = arc_c / 2; 3391 if (arc_c < arc_c_min) 3392 arc_c = arc_c_min; 3393 3394 arc_anon = &ARC_anon; 3395 arc_mru = &ARC_mru; 3396 arc_mru_ghost = &ARC_mru_ghost; 3397 arc_mfu = &ARC_mfu; 3398 arc_mfu_ghost = &ARC_mfu_ghost; 3399 arc_l2c_only = &ARC_l2c_only; 3400 arc_size = 0; 3401 3402 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3403 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3404 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3405 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3406 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3407 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3408 3409 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3410 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3411 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3412 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3413 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3414 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3415 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3416 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3417 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3418 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3419 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3420 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3421 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3422 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3423 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3424 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3425 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3426 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3427 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3428 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3429 3430 buf_init(); 3431 3432 arc_thread_exit = 0; 3433 arc_eviction_list = NULL; 3434 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3435 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3436 3437 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3438 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3439 3440 if (arc_ksp != NULL) { 3441 arc_ksp->ks_data = &arc_stats; 3442 kstat_install(arc_ksp); 3443 } 3444 3445 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3446 TS_RUN, minclsyspri); 3447 3448 arc_dead = FALSE; 3449 arc_warm = B_FALSE; 3450 3451 if (zfs_write_limit_max == 0) 3452 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3453 else 3454 zfs_write_limit_shift = 0; 3455 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3456 } 3457 3458 void 3459 arc_fini(void) 3460 { 3461 mutex_enter(&arc_reclaim_thr_lock); 3462 arc_thread_exit = 1; 3463 while (arc_thread_exit != 0) 3464 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3465 mutex_exit(&arc_reclaim_thr_lock); 3466 3467 arc_flush(NULL); 3468 3469 arc_dead = TRUE; 3470 3471 if (arc_ksp != NULL) { 3472 kstat_delete(arc_ksp); 3473 arc_ksp = NULL; 3474 } 3475 3476 mutex_destroy(&arc_eviction_mtx); 3477 mutex_destroy(&arc_reclaim_thr_lock); 3478 cv_destroy(&arc_reclaim_thr_cv); 3479 3480 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3481 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3482 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3483 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3484 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3485 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3486 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3487 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3488 3489 mutex_destroy(&arc_anon->arcs_mtx); 3490 mutex_destroy(&arc_mru->arcs_mtx); 3491 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3492 mutex_destroy(&arc_mfu->arcs_mtx); 3493 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3494 3495 mutex_destroy(&zfs_write_limit_lock); 3496 3497 buf_fini(); 3498 } 3499 3500 /* 3501 * Level 2 ARC 3502 * 3503 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3504 * It uses dedicated storage devices to hold cached data, which are populated 3505 * using large infrequent writes. The main role of this cache is to boost 3506 * the performance of random read workloads. The intended L2ARC devices 3507 * include short-stroked disks, solid state disks, and other media with 3508 * substantially faster read latency than disk. 3509 * 3510 * +-----------------------+ 3511 * | ARC | 3512 * +-----------------------+ 3513 * | ^ ^ 3514 * | | | 3515 * l2arc_feed_thread() arc_read() 3516 * | | | 3517 * | l2arc read | 3518 * V | | 3519 * +---------------+ | 3520 * | L2ARC | | 3521 * +---------------+ | 3522 * | ^ | 3523 * l2arc_write() | | 3524 * | | | 3525 * V | | 3526 * +-------+ +-------+ 3527 * | vdev | | vdev | 3528 * | cache | | cache | 3529 * +-------+ +-------+ 3530 * +=========+ .-----. 3531 * : L2ARC : |-_____-| 3532 * : devices : | Disks | 3533 * +=========+ `-_____-' 3534 * 3535 * Read requests are satisfied from the following sources, in order: 3536 * 3537 * 1) ARC 3538 * 2) vdev cache of L2ARC devices 3539 * 3) L2ARC devices 3540 * 4) vdev cache of disks 3541 * 5) disks 3542 * 3543 * Some L2ARC device types exhibit extremely slow write performance. 3544 * To accommodate for this there are some significant differences between 3545 * the L2ARC and traditional cache design: 3546 * 3547 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3548 * the ARC behave as usual, freeing buffers and placing headers on ghost 3549 * lists. The ARC does not send buffers to the L2ARC during eviction as 3550 * this would add inflated write latencies for all ARC memory pressure. 3551 * 3552 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3553 * It does this by periodically scanning buffers from the eviction-end of 3554 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3555 * not already there. It scans until a headroom of buffers is satisfied, 3556 * which itself is a buffer for ARC eviction. The thread that does this is 3557 * l2arc_feed_thread(), illustrated below; example sizes are included to 3558 * provide a better sense of ratio than this diagram: 3559 * 3560 * head --> tail 3561 * +---------------------+----------+ 3562 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3563 * +---------------------+----------+ | o L2ARC eligible 3564 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3565 * +---------------------+----------+ | 3566 * 15.9 Gbytes ^ 32 Mbytes | 3567 * headroom | 3568 * l2arc_feed_thread() 3569 * | 3570 * l2arc write hand <--[oooo]--' 3571 * | 8 Mbyte 3572 * | write max 3573 * V 3574 * +==============================+ 3575 * L2ARC dev |####|#|###|###| |####| ... | 3576 * +==============================+ 3577 * 32 Gbytes 3578 * 3579 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3580 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3581 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3582 * safe to say that this is an uncommon case, since buffers at the end of 3583 * the ARC lists have moved there due to inactivity. 3584 * 3585 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3586 * then the L2ARC simply misses copying some buffers. This serves as a 3587 * pressure valve to prevent heavy read workloads from both stalling the ARC 3588 * with waits and clogging the L2ARC with writes. This also helps prevent 3589 * the potential for the L2ARC to churn if it attempts to cache content too 3590 * quickly, such as during backups of the entire pool. 3591 * 3592 * 5. After system boot and before the ARC has filled main memory, there are 3593 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3594 * lists can remain mostly static. Instead of searching from tail of these 3595 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3596 * for eligible buffers, greatly increasing its chance of finding them. 3597 * 3598 * The L2ARC device write speed is also boosted during this time so that 3599 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3600 * there are no L2ARC reads, and no fear of degrading read performance 3601 * through increased writes. 3602 * 3603 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3604 * the vdev queue can aggregate them into larger and fewer writes. Each 3605 * device is written to in a rotor fashion, sweeping writes through 3606 * available space then repeating. 3607 * 3608 * 7. The L2ARC does not store dirty content. It never needs to flush 3609 * write buffers back to disk based storage. 3610 * 3611 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3612 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3613 * 3614 * The performance of the L2ARC can be tweaked by a number of tunables, which 3615 * may be necessary for different workloads: 3616 * 3617 * l2arc_write_max max write bytes per interval 3618 * l2arc_write_boost extra write bytes during device warmup 3619 * l2arc_noprefetch skip caching prefetched buffers 3620 * l2arc_headroom number of max device writes to precache 3621 * l2arc_feed_secs seconds between L2ARC writing 3622 * 3623 * Tunables may be removed or added as future performance improvements are 3624 * integrated, and also may become zpool properties. 3625 */ 3626 3627 static void 3628 l2arc_hdr_stat_add(void) 3629 { 3630 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3631 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3632 } 3633 3634 static void 3635 l2arc_hdr_stat_remove(void) 3636 { 3637 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3638 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3639 } 3640 3641 /* 3642 * Cycle through L2ARC devices. This is how L2ARC load balances. 3643 * If a device is returned, this also returns holding the spa config lock. 3644 */ 3645 static l2arc_dev_t * 3646 l2arc_dev_get_next(void) 3647 { 3648 l2arc_dev_t *first, *next = NULL; 3649 3650 /* 3651 * Lock out the removal of spas (spa_namespace_lock), then removal 3652 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3653 * both locks will be dropped and a spa config lock held instead. 3654 */ 3655 mutex_enter(&spa_namespace_lock); 3656 mutex_enter(&l2arc_dev_mtx); 3657 3658 /* if there are no vdevs, there is nothing to do */ 3659 if (l2arc_ndev == 0) 3660 goto out; 3661 3662 first = NULL; 3663 next = l2arc_dev_last; 3664 do { 3665 /* loop around the list looking for a non-faulted vdev */ 3666 if (next == NULL) { 3667 next = list_head(l2arc_dev_list); 3668 } else { 3669 next = list_next(l2arc_dev_list, next); 3670 if (next == NULL) 3671 next = list_head(l2arc_dev_list); 3672 } 3673 3674 /* if we have come back to the start, bail out */ 3675 if (first == NULL) 3676 first = next; 3677 else if (next == first) 3678 break; 3679 3680 } while (vdev_is_dead(next->l2ad_vdev)); 3681 3682 /* if we were unable to find any usable vdevs, return NULL */ 3683 if (vdev_is_dead(next->l2ad_vdev)) 3684 next = NULL; 3685 3686 l2arc_dev_last = next; 3687 3688 out: 3689 mutex_exit(&l2arc_dev_mtx); 3690 3691 /* 3692 * Grab the config lock to prevent the 'next' device from being 3693 * removed while we are writing to it. 3694 */ 3695 if (next != NULL) 3696 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3697 mutex_exit(&spa_namespace_lock); 3698 3699 return (next); 3700 } 3701 3702 /* 3703 * Free buffers that were tagged for destruction. 3704 */ 3705 static void 3706 l2arc_do_free_on_write() 3707 { 3708 list_t *buflist; 3709 l2arc_data_free_t *df, *df_prev; 3710 3711 mutex_enter(&l2arc_free_on_write_mtx); 3712 buflist = l2arc_free_on_write; 3713 3714 for (df = list_tail(buflist); df; df = df_prev) { 3715 df_prev = list_prev(buflist, df); 3716 ASSERT(df->l2df_data != NULL); 3717 ASSERT(df->l2df_func != NULL); 3718 df->l2df_func(df->l2df_data, df->l2df_size); 3719 list_remove(buflist, df); 3720 kmem_free(df, sizeof (l2arc_data_free_t)); 3721 } 3722 3723 mutex_exit(&l2arc_free_on_write_mtx); 3724 } 3725 3726 /* 3727 * A write to a cache device has completed. Update all headers to allow 3728 * reads from these buffers to begin. 3729 */ 3730 static void 3731 l2arc_write_done(zio_t *zio) 3732 { 3733 l2arc_write_callback_t *cb; 3734 l2arc_dev_t *dev; 3735 list_t *buflist; 3736 arc_buf_hdr_t *head, *ab, *ab_prev; 3737 l2arc_buf_hdr_t *abl2; 3738 kmutex_t *hash_lock; 3739 3740 cb = zio->io_private; 3741 ASSERT(cb != NULL); 3742 dev = cb->l2wcb_dev; 3743 ASSERT(dev != NULL); 3744 head = cb->l2wcb_head; 3745 ASSERT(head != NULL); 3746 buflist = dev->l2ad_buflist; 3747 ASSERT(buflist != NULL); 3748 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3749 l2arc_write_callback_t *, cb); 3750 3751 if (zio->io_error != 0) 3752 ARCSTAT_BUMP(arcstat_l2_writes_error); 3753 3754 mutex_enter(&l2arc_buflist_mtx); 3755 3756 /* 3757 * All writes completed, or an error was hit. 3758 */ 3759 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3760 ab_prev = list_prev(buflist, ab); 3761 3762 hash_lock = HDR_LOCK(ab); 3763 if (!mutex_tryenter(hash_lock)) { 3764 /* 3765 * This buffer misses out. It may be in a stage 3766 * of eviction. Its ARC_L2_WRITING flag will be 3767 * left set, denying reads to this buffer. 3768 */ 3769 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3770 continue; 3771 } 3772 3773 if (zio->io_error != 0) { 3774 /* 3775 * Error - drop L2ARC entry. 3776 */ 3777 list_remove(buflist, ab); 3778 abl2 = ab->b_l2hdr; 3779 ab->b_l2hdr = NULL; 3780 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3781 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3782 } 3783 3784 /* 3785 * Allow ARC to begin reads to this L2ARC entry. 3786 */ 3787 ab->b_flags &= ~ARC_L2_WRITING; 3788 3789 mutex_exit(hash_lock); 3790 } 3791 3792 atomic_inc_64(&l2arc_writes_done); 3793 list_remove(buflist, head); 3794 kmem_cache_free(hdr_cache, head); 3795 mutex_exit(&l2arc_buflist_mtx); 3796 3797 l2arc_do_free_on_write(); 3798 3799 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3800 } 3801 3802 /* 3803 * A read to a cache device completed. Validate buffer contents before 3804 * handing over to the regular ARC routines. 3805 */ 3806 static void 3807 l2arc_read_done(zio_t *zio) 3808 { 3809 l2arc_read_callback_t *cb; 3810 arc_buf_hdr_t *hdr; 3811 arc_buf_t *buf; 3812 kmutex_t *hash_lock; 3813 int equal; 3814 3815 ASSERT(zio->io_vd != NULL); 3816 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3817 3818 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3819 3820 cb = zio->io_private; 3821 ASSERT(cb != NULL); 3822 buf = cb->l2rcb_buf; 3823 ASSERT(buf != NULL); 3824 hdr = buf->b_hdr; 3825 ASSERT(hdr != NULL); 3826 3827 hash_lock = HDR_LOCK(hdr); 3828 mutex_enter(hash_lock); 3829 3830 /* 3831 * Check this survived the L2ARC journey. 3832 */ 3833 equal = arc_cksum_equal(buf); 3834 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3835 mutex_exit(hash_lock); 3836 zio->io_private = buf; 3837 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3838 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 3839 arc_read_done(zio); 3840 } else { 3841 mutex_exit(hash_lock); 3842 /* 3843 * Buffer didn't survive caching. Increment stats and 3844 * reissue to the original storage device. 3845 */ 3846 if (zio->io_error != 0) { 3847 ARCSTAT_BUMP(arcstat_l2_io_error); 3848 } else { 3849 zio->io_error = EIO; 3850 } 3851 if (!equal) 3852 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 3853 3854 /* 3855 * If there's no waiter, issue an async i/o to the primary 3856 * storage now. If there *is* a waiter, the caller must 3857 * issue the i/o in a context where it's OK to block. 3858 */ 3859 if (zio->io_waiter == NULL) 3860 zio_nowait(zio_read(zio->io_parent, 3861 cb->l2rcb_spa, &cb->l2rcb_bp, 3862 buf->b_data, zio->io_size, arc_read_done, buf, 3863 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 3864 } 3865 3866 kmem_free(cb, sizeof (l2arc_read_callback_t)); 3867 } 3868 3869 /* 3870 * This is the list priority from which the L2ARC will search for pages to 3871 * cache. This is used within loops (0..3) to cycle through lists in the 3872 * desired order. This order can have a significant effect on cache 3873 * performance. 3874 * 3875 * Currently the metadata lists are hit first, MFU then MRU, followed by 3876 * the data lists. This function returns a locked list, and also returns 3877 * the lock pointer. 3878 */ 3879 static list_t * 3880 l2arc_list_locked(int list_num, kmutex_t **lock) 3881 { 3882 list_t *list; 3883 3884 ASSERT(list_num >= 0 && list_num <= 3); 3885 3886 switch (list_num) { 3887 case 0: 3888 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 3889 *lock = &arc_mfu->arcs_mtx; 3890 break; 3891 case 1: 3892 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 3893 *lock = &arc_mru->arcs_mtx; 3894 break; 3895 case 2: 3896 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 3897 *lock = &arc_mfu->arcs_mtx; 3898 break; 3899 case 3: 3900 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 3901 *lock = &arc_mru->arcs_mtx; 3902 break; 3903 } 3904 3905 ASSERT(!(MUTEX_HELD(*lock))); 3906 mutex_enter(*lock); 3907 return (list); 3908 } 3909 3910 /* 3911 * Evict buffers from the device write hand to the distance specified in 3912 * bytes. This distance may span populated buffers, it may span nothing. 3913 * This is clearing a region on the L2ARC device ready for writing. 3914 * If the 'all' boolean is set, every buffer is evicted. 3915 */ 3916 static void 3917 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 3918 { 3919 list_t *buflist; 3920 l2arc_buf_hdr_t *abl2; 3921 arc_buf_hdr_t *ab, *ab_prev; 3922 kmutex_t *hash_lock; 3923 uint64_t taddr; 3924 3925 buflist = dev->l2ad_buflist; 3926 3927 if (buflist == NULL) 3928 return; 3929 3930 if (!all && dev->l2ad_first) { 3931 /* 3932 * This is the first sweep through the device. There is 3933 * nothing to evict. 3934 */ 3935 return; 3936 } 3937 3938 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 3939 /* 3940 * When nearing the end of the device, evict to the end 3941 * before the device write hand jumps to the start. 3942 */ 3943 taddr = dev->l2ad_end; 3944 } else { 3945 taddr = dev->l2ad_hand + distance; 3946 } 3947 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 3948 uint64_t, taddr, boolean_t, all); 3949 3950 top: 3951 mutex_enter(&l2arc_buflist_mtx); 3952 for (ab = list_tail(buflist); ab; ab = ab_prev) { 3953 ab_prev = list_prev(buflist, ab); 3954 3955 hash_lock = HDR_LOCK(ab); 3956 if (!mutex_tryenter(hash_lock)) { 3957 /* 3958 * Missed the hash lock. Retry. 3959 */ 3960 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 3961 mutex_exit(&l2arc_buflist_mtx); 3962 mutex_enter(hash_lock); 3963 mutex_exit(hash_lock); 3964 goto top; 3965 } 3966 3967 if (HDR_L2_WRITE_HEAD(ab)) { 3968 /* 3969 * We hit a write head node. Leave it for 3970 * l2arc_write_done(). 3971 */ 3972 list_remove(buflist, ab); 3973 mutex_exit(hash_lock); 3974 continue; 3975 } 3976 3977 if (!all && ab->b_l2hdr != NULL && 3978 (ab->b_l2hdr->b_daddr > taddr || 3979 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 3980 /* 3981 * We've evicted to the target address, 3982 * or the end of the device. 3983 */ 3984 mutex_exit(hash_lock); 3985 break; 3986 } 3987 3988 if (HDR_FREE_IN_PROGRESS(ab)) { 3989 /* 3990 * Already on the path to destruction. 3991 */ 3992 mutex_exit(hash_lock); 3993 continue; 3994 } 3995 3996 if (ab->b_state == arc_l2c_only) { 3997 ASSERT(!HDR_L2_READING(ab)); 3998 /* 3999 * This doesn't exist in the ARC. Destroy. 4000 * arc_hdr_destroy() will call list_remove() 4001 * and decrement arcstat_l2_size. 4002 */ 4003 arc_change_state(arc_anon, ab, hash_lock); 4004 arc_hdr_destroy(ab); 4005 } else { 4006 /* 4007 * Invalidate issued or about to be issued 4008 * reads, since we may be about to write 4009 * over this location. 4010 */ 4011 if (HDR_L2_READING(ab)) { 4012 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4013 ab->b_flags |= ARC_L2_EVICTED; 4014 } 4015 4016 /* 4017 * Tell ARC this no longer exists in L2ARC. 4018 */ 4019 if (ab->b_l2hdr != NULL) { 4020 abl2 = ab->b_l2hdr; 4021 ab->b_l2hdr = NULL; 4022 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4023 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4024 } 4025 list_remove(buflist, ab); 4026 4027 /* 4028 * This may have been leftover after a 4029 * failed write. 4030 */ 4031 ab->b_flags &= ~ARC_L2_WRITING; 4032 } 4033 mutex_exit(hash_lock); 4034 } 4035 mutex_exit(&l2arc_buflist_mtx); 4036 4037 spa_l2cache_space_update(dev->l2ad_vdev, 0, -(taddr - dev->l2ad_evict)); 4038 dev->l2ad_evict = taddr; 4039 } 4040 4041 /* 4042 * Find and write ARC buffers to the L2ARC device. 4043 * 4044 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4045 * for reading until they have completed writing. 4046 */ 4047 static void 4048 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4049 { 4050 arc_buf_hdr_t *ab, *ab_prev, *head; 4051 l2arc_buf_hdr_t *hdrl2; 4052 list_t *list; 4053 uint64_t passed_sz, write_sz, buf_sz, headroom; 4054 void *buf_data; 4055 kmutex_t *hash_lock, *list_lock; 4056 boolean_t have_lock, full; 4057 l2arc_write_callback_t *cb; 4058 zio_t *pio, *wzio; 4059 4060 ASSERT(dev->l2ad_vdev != NULL); 4061 4062 pio = NULL; 4063 write_sz = 0; 4064 full = B_FALSE; 4065 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4066 head->b_flags |= ARC_L2_WRITE_HEAD; 4067 4068 /* 4069 * Copy buffers for L2ARC writing. 4070 */ 4071 mutex_enter(&l2arc_buflist_mtx); 4072 for (int try = 0; try <= 3; try++) { 4073 list = l2arc_list_locked(try, &list_lock); 4074 passed_sz = 0; 4075 4076 /* 4077 * L2ARC fast warmup. 4078 * 4079 * Until the ARC is warm and starts to evict, read from the 4080 * head of the ARC lists rather than the tail. 4081 */ 4082 headroom = target_sz * l2arc_headroom; 4083 if (arc_warm == B_FALSE) 4084 ab = list_head(list); 4085 else 4086 ab = list_tail(list); 4087 4088 for (; ab; ab = ab_prev) { 4089 if (arc_warm == B_FALSE) 4090 ab_prev = list_next(list, ab); 4091 else 4092 ab_prev = list_prev(list, ab); 4093 4094 hash_lock = HDR_LOCK(ab); 4095 have_lock = MUTEX_HELD(hash_lock); 4096 if (!have_lock && !mutex_tryenter(hash_lock)) { 4097 /* 4098 * Skip this buffer rather than waiting. 4099 */ 4100 continue; 4101 } 4102 4103 passed_sz += ab->b_size; 4104 if (passed_sz > headroom) { 4105 /* 4106 * Searched too far. 4107 */ 4108 mutex_exit(hash_lock); 4109 break; 4110 } 4111 4112 if (ab->b_spa != spa) { 4113 mutex_exit(hash_lock); 4114 continue; 4115 } 4116 4117 if (ab->b_l2hdr != NULL) { 4118 /* 4119 * Already in L2ARC. 4120 */ 4121 mutex_exit(hash_lock); 4122 continue; 4123 } 4124 4125 if (HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) { 4126 mutex_exit(hash_lock); 4127 continue; 4128 } 4129 4130 if ((write_sz + ab->b_size) > target_sz) { 4131 full = B_TRUE; 4132 mutex_exit(hash_lock); 4133 break; 4134 } 4135 4136 if (ab->b_buf == NULL) { 4137 DTRACE_PROBE1(l2arc__buf__null, void *, ab); 4138 mutex_exit(hash_lock); 4139 continue; 4140 } 4141 4142 if (pio == NULL) { 4143 /* 4144 * Insert a dummy header on the buflist so 4145 * l2arc_write_done() can find where the 4146 * write buffers begin without searching. 4147 */ 4148 list_insert_head(dev->l2ad_buflist, head); 4149 4150 cb = kmem_alloc( 4151 sizeof (l2arc_write_callback_t), KM_SLEEP); 4152 cb->l2wcb_dev = dev; 4153 cb->l2wcb_head = head; 4154 pio = zio_root(spa, l2arc_write_done, cb, 4155 ZIO_FLAG_CANFAIL); 4156 } 4157 4158 /* 4159 * Create and add a new L2ARC header. 4160 */ 4161 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4162 hdrl2->b_dev = dev; 4163 hdrl2->b_daddr = dev->l2ad_hand; 4164 4165 ab->b_flags |= ARC_L2_WRITING; 4166 ab->b_l2hdr = hdrl2; 4167 list_insert_head(dev->l2ad_buflist, ab); 4168 buf_data = ab->b_buf->b_data; 4169 buf_sz = ab->b_size; 4170 4171 /* 4172 * Compute and store the buffer cksum before 4173 * writing. On debug the cksum is verified first. 4174 */ 4175 arc_cksum_verify(ab->b_buf); 4176 arc_cksum_compute(ab->b_buf, B_TRUE); 4177 4178 mutex_exit(hash_lock); 4179 4180 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4181 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4182 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4183 ZIO_FLAG_CANFAIL, B_FALSE); 4184 4185 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4186 zio_t *, wzio); 4187 (void) zio_nowait(wzio); 4188 4189 /* 4190 * Keep the clock hand suitably device-aligned. 4191 */ 4192 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4193 4194 write_sz += buf_sz; 4195 dev->l2ad_hand += buf_sz; 4196 } 4197 4198 mutex_exit(list_lock); 4199 4200 if (full == B_TRUE) 4201 break; 4202 } 4203 mutex_exit(&l2arc_buflist_mtx); 4204 4205 if (pio == NULL) { 4206 ASSERT3U(write_sz, ==, 0); 4207 kmem_cache_free(hdr_cache, head); 4208 return; 4209 } 4210 4211 ASSERT3U(write_sz, <=, target_sz); 4212 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4213 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4214 spa_l2cache_space_update(dev->l2ad_vdev, 0, write_sz); 4215 4216 /* 4217 * Bump device hand to the device start if it is approaching the end. 4218 * l2arc_evict() will already have evicted ahead for this case. 4219 */ 4220 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4221 spa_l2cache_space_update(dev->l2ad_vdev, 0, 4222 dev->l2ad_end - dev->l2ad_hand); 4223 dev->l2ad_hand = dev->l2ad_start; 4224 dev->l2ad_evict = dev->l2ad_start; 4225 dev->l2ad_first = B_FALSE; 4226 } 4227 4228 (void) zio_wait(pio); 4229 } 4230 4231 /* 4232 * This thread feeds the L2ARC at regular intervals. This is the beating 4233 * heart of the L2ARC. 4234 */ 4235 static void 4236 l2arc_feed_thread(void) 4237 { 4238 callb_cpr_t cpr; 4239 l2arc_dev_t *dev; 4240 spa_t *spa; 4241 uint64_t size; 4242 4243 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4244 4245 mutex_enter(&l2arc_feed_thr_lock); 4246 4247 while (l2arc_thread_exit == 0) { 4248 /* 4249 * Pause for l2arc_feed_secs seconds between writes. 4250 */ 4251 CALLB_CPR_SAFE_BEGIN(&cpr); 4252 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4253 lbolt + (hz * l2arc_feed_secs)); 4254 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4255 4256 /* 4257 * Quick check for L2ARC devices. 4258 */ 4259 mutex_enter(&l2arc_dev_mtx); 4260 if (l2arc_ndev == 0) { 4261 mutex_exit(&l2arc_dev_mtx); 4262 continue; 4263 } 4264 mutex_exit(&l2arc_dev_mtx); 4265 4266 /* 4267 * This selects the next l2arc device to write to, and in 4268 * doing so the next spa to feed from: dev->l2ad_spa. This 4269 * will return NULL if there are now no l2arc devices or if 4270 * they are all faulted. 4271 * 4272 * If a device is returned, its spa's config lock is also 4273 * held to prevent device removal. l2arc_dev_get_next() 4274 * will grab and release l2arc_dev_mtx. 4275 */ 4276 if ((dev = l2arc_dev_get_next()) == NULL) 4277 continue; 4278 4279 spa = dev->l2ad_spa; 4280 ASSERT(spa != NULL); 4281 4282 /* 4283 * Avoid contributing to memory pressure. 4284 */ 4285 if (arc_reclaim_needed()) { 4286 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4287 spa_config_exit(spa, SCL_L2ARC, dev); 4288 continue; 4289 } 4290 4291 ARCSTAT_BUMP(arcstat_l2_feeds); 4292 4293 size = dev->l2ad_write; 4294 if (arc_warm == B_FALSE) 4295 size += dev->l2ad_boost; 4296 4297 /* 4298 * Evict L2ARC buffers that will be overwritten. 4299 */ 4300 l2arc_evict(dev, size, B_FALSE); 4301 4302 /* 4303 * Write ARC buffers. 4304 */ 4305 l2arc_write_buffers(spa, dev, size); 4306 spa_config_exit(spa, SCL_L2ARC, dev); 4307 } 4308 4309 l2arc_thread_exit = 0; 4310 cv_broadcast(&l2arc_feed_thr_cv); 4311 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4312 thread_exit(); 4313 } 4314 4315 boolean_t 4316 l2arc_vdev_present(vdev_t *vd) 4317 { 4318 l2arc_dev_t *dev; 4319 4320 mutex_enter(&l2arc_dev_mtx); 4321 for (dev = list_head(l2arc_dev_list); dev != NULL; 4322 dev = list_next(l2arc_dev_list, dev)) { 4323 if (dev->l2ad_vdev == vd) 4324 break; 4325 } 4326 mutex_exit(&l2arc_dev_mtx); 4327 4328 return (dev != NULL); 4329 } 4330 4331 /* 4332 * Add a vdev for use by the L2ARC. By this point the spa has already 4333 * validated the vdev and opened it. 4334 */ 4335 void 4336 l2arc_add_vdev(spa_t *spa, vdev_t *vd, uint64_t start, uint64_t end) 4337 { 4338 l2arc_dev_t *adddev; 4339 4340 ASSERT(!l2arc_vdev_present(vd)); 4341 4342 /* 4343 * Create a new l2arc device entry. 4344 */ 4345 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4346 adddev->l2ad_spa = spa; 4347 adddev->l2ad_vdev = vd; 4348 adddev->l2ad_write = l2arc_write_max; 4349 adddev->l2ad_boost = l2arc_write_boost; 4350 adddev->l2ad_start = start; 4351 adddev->l2ad_end = end; 4352 adddev->l2ad_hand = adddev->l2ad_start; 4353 adddev->l2ad_evict = adddev->l2ad_start; 4354 adddev->l2ad_first = B_TRUE; 4355 ASSERT3U(adddev->l2ad_write, >, 0); 4356 4357 /* 4358 * This is a list of all ARC buffers that are still valid on the 4359 * device. 4360 */ 4361 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4362 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4363 offsetof(arc_buf_hdr_t, b_l2node)); 4364 4365 spa_l2cache_space_update(vd, adddev->l2ad_end - adddev->l2ad_hand, 0); 4366 4367 /* 4368 * Add device to global list 4369 */ 4370 mutex_enter(&l2arc_dev_mtx); 4371 list_insert_head(l2arc_dev_list, adddev); 4372 atomic_inc_64(&l2arc_ndev); 4373 mutex_exit(&l2arc_dev_mtx); 4374 } 4375 4376 /* 4377 * Remove a vdev from the L2ARC. 4378 */ 4379 void 4380 l2arc_remove_vdev(vdev_t *vd) 4381 { 4382 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4383 4384 /* 4385 * Find the device by vdev 4386 */ 4387 mutex_enter(&l2arc_dev_mtx); 4388 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4389 nextdev = list_next(l2arc_dev_list, dev); 4390 if (vd == dev->l2ad_vdev) { 4391 remdev = dev; 4392 break; 4393 } 4394 } 4395 ASSERT(remdev != NULL); 4396 4397 /* 4398 * Remove device from global list 4399 */ 4400 list_remove(l2arc_dev_list, remdev); 4401 l2arc_dev_last = NULL; /* may have been invalidated */ 4402 atomic_dec_64(&l2arc_ndev); 4403 mutex_exit(&l2arc_dev_mtx); 4404 4405 /* 4406 * Clear all buflists and ARC references. L2ARC device flush. 4407 */ 4408 l2arc_evict(remdev, 0, B_TRUE); 4409 list_destroy(remdev->l2ad_buflist); 4410 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4411 kmem_free(remdev, sizeof (l2arc_dev_t)); 4412 } 4413 4414 void 4415 l2arc_init(void) 4416 { 4417 l2arc_thread_exit = 0; 4418 l2arc_ndev = 0; 4419 l2arc_writes_sent = 0; 4420 l2arc_writes_done = 0; 4421 4422 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4423 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4424 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4425 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4426 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4427 4428 l2arc_dev_list = &L2ARC_dev_list; 4429 l2arc_free_on_write = &L2ARC_free_on_write; 4430 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4431 offsetof(l2arc_dev_t, l2ad_node)); 4432 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4433 offsetof(l2arc_data_free_t, l2df_list_node)); 4434 } 4435 4436 void 4437 l2arc_fini(void) 4438 { 4439 /* 4440 * This is called from dmu_fini(), which is called from spa_fini(); 4441 * Because of this, we can assume that all l2arc devices have 4442 * already been removed when the pools themselves were removed. 4443 */ 4444 4445 l2arc_do_free_on_write(); 4446 4447 mutex_destroy(&l2arc_feed_thr_lock); 4448 cv_destroy(&l2arc_feed_thr_cv); 4449 mutex_destroy(&l2arc_dev_mtx); 4450 mutex_destroy(&l2arc_buflist_mtx); 4451 mutex_destroy(&l2arc_free_on_write_mtx); 4452 4453 list_destroy(l2arc_dev_list); 4454 list_destroy(l2arc_free_on_write); 4455 } 4456 4457 void 4458 l2arc_start(void) 4459 { 4460 if (!(spa_mode & FWRITE)) 4461 return; 4462 4463 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4464 TS_RUN, minclsyspri); 4465 } 4466 4467 void 4468 l2arc_stop(void) 4469 { 4470 if (!(spa_mode & FWRITE)) 4471 return; 4472 4473 mutex_enter(&l2arc_feed_thr_lock); 4474 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4475 l2arc_thread_exit = 1; 4476 while (l2arc_thread_exit != 0) 4477 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4478 mutex_exit(&l2arc_feed_thr_lock); 4479 } 4480