1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the "top" state mutex must be held before the "bot" state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zfs_context.h> 117 #include <sys/arc.h> 118 #include <sys/refcount.h> 119 #ifdef _KERNEL 120 #include <sys/vmsystm.h> 121 #include <vm/anon.h> 122 #include <sys/fs/swapnode.h> 123 #include <sys/dnlc.h> 124 #endif 125 #include <sys/callb.h> 126 127 static kmutex_t arc_reclaim_thr_lock; 128 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 129 static uint8_t arc_thread_exit; 130 131 #define ARC_REDUCE_DNLC_PERCENT 3 132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 133 134 typedef enum arc_reclaim_strategy { 135 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 136 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 137 } arc_reclaim_strategy_t; 138 139 /* number of seconds before growing cache again */ 140 static int arc_grow_retry = 60; 141 142 /* 143 * minimum lifespan of a prefetched block in seconds 144 * (this is converted to ticks during the arc initialization) 145 */ 146 static int arc_min_prefetch_lifespan = 1; 147 148 static kmutex_t arc_reclaim_lock; 149 static int arc_dead; 150 151 /* 152 * Note that buffers can be on one of 5 states: 153 * ARC_anon - anonymous (discussed below) 154 * ARC_mru - recently used, currently cached 155 * ARC_mru_ghost - recentely used, no longer in cache 156 * ARC_mfu - frequently used, currently cached 157 * ARC_mfu_ghost - frequently used, no longer in cache 158 * When there are no active references to the buffer, they 159 * are linked onto one of the lists in arc. These are the 160 * only buffers that can be evicted or deleted. 161 * 162 * Anonymous buffers are buffers that are not associated with 163 * a DVA. These are buffers that hold dirty block copies 164 * before they are written to stable storage. By definition, 165 * they are "ref'd" and are considered part of arc_mru 166 * that cannot be freed. Generally, they will aquire a DVA 167 * as they are written and migrate onto the arc_mru list. 168 */ 169 170 typedef struct arc_state { 171 list_t list; /* linked list of evictable buffer in state */ 172 uint64_t lsize; /* total size of buffers in the linked list */ 173 uint64_t size; /* total size of all buffers in this state */ 174 uint64_t hits; 175 kmutex_t mtx; 176 } arc_state_t; 177 178 /* The 5 states: */ 179 static arc_state_t ARC_anon; 180 static arc_state_t ARC_mru; 181 static arc_state_t ARC_mru_ghost; 182 static arc_state_t ARC_mfu; 183 static arc_state_t ARC_mfu_ghost; 184 185 static struct arc { 186 arc_state_t *anon; 187 arc_state_t *mru; 188 arc_state_t *mru_ghost; 189 arc_state_t *mfu; 190 arc_state_t *mfu_ghost; 191 uint64_t size; /* Actual total arc size */ 192 uint64_t p; /* Target size (in bytes) of mru */ 193 uint64_t c; /* Target size of cache (in bytes) */ 194 uint64_t c_min; /* Minimum target cache size */ 195 uint64_t c_max; /* Maximum target cache size */ 196 197 /* performance stats */ 198 uint64_t hits; 199 uint64_t misses; 200 uint64_t deleted; 201 uint64_t skipped; 202 uint64_t hash_elements; 203 uint64_t hash_elements_max; 204 uint64_t hash_collisions; 205 uint64_t hash_chains; 206 uint32_t hash_chain_max; 207 208 int no_grow; /* Don't try to grow cache size */ 209 } arc; 210 211 static uint64_t arc_tempreserve; 212 213 typedef struct arc_callback arc_callback_t; 214 215 struct arc_callback { 216 arc_done_func_t *acb_done; 217 void *acb_private; 218 arc_byteswap_func_t *acb_byteswap; 219 arc_buf_t *acb_buf; 220 zio_t *acb_zio_dummy; 221 arc_callback_t *acb_next; 222 }; 223 224 struct arc_buf_hdr { 225 /* immutable */ 226 uint64_t b_size; 227 spa_t *b_spa; 228 229 /* protected by hash lock */ 230 dva_t b_dva; 231 uint64_t b_birth; 232 uint64_t b_cksum0; 233 234 arc_buf_hdr_t *b_hash_next; 235 arc_buf_t *b_buf; 236 uint32_t b_flags; 237 uint32_t b_datacnt; 238 239 kcondvar_t b_cv; 240 arc_callback_t *b_acb; 241 242 /* protected by arc state mutex */ 243 arc_state_t *b_state; 244 list_node_t b_arc_node; 245 246 /* updated atomically */ 247 clock_t b_arc_access; 248 249 /* self protecting */ 250 refcount_t b_refcnt; 251 }; 252 253 static arc_buf_t *arc_eviction_list; 254 static kmutex_t arc_eviction_mtx; 255 static void arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 256 257 #define GHOST_STATE(state) \ 258 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 259 260 /* 261 * Private ARC flags. These flags are private ARC only flags that will show up 262 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 263 * be passed in as arc_flags in things like arc_read. However, these flags 264 * should never be passed and should only be set by ARC code. When adding new 265 * public flags, make sure not to smash the private ones. 266 */ 267 268 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 269 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 270 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 271 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 272 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 273 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 274 275 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 276 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 277 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 278 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 279 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 280 281 /* 282 * Hash table routines 283 */ 284 285 #define HT_LOCK_PAD 64 286 287 struct ht_lock { 288 kmutex_t ht_lock; 289 #ifdef _KERNEL 290 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 291 #endif 292 }; 293 294 #define BUF_LOCKS 256 295 typedef struct buf_hash_table { 296 uint64_t ht_mask; 297 arc_buf_hdr_t **ht_table; 298 struct ht_lock ht_locks[BUF_LOCKS]; 299 } buf_hash_table_t; 300 301 static buf_hash_table_t buf_hash_table; 302 303 #define BUF_HASH_INDEX(spa, dva, birth) \ 304 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 305 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 306 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 307 #define HDR_LOCK(buf) \ 308 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 309 310 uint64_t zfs_crc64_table[256]; 311 312 static uint64_t 313 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 314 { 315 uintptr_t spav = (uintptr_t)spa; 316 uint8_t *vdva = (uint8_t *)dva; 317 uint64_t crc = -1ULL; 318 int i; 319 320 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 321 322 for (i = 0; i < sizeof (dva_t); i++) 323 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 324 325 crc ^= (spav>>8) ^ birth; 326 327 return (crc); 328 } 329 330 #define BUF_EMPTY(buf) \ 331 ((buf)->b_dva.dva_word[0] == 0 && \ 332 (buf)->b_dva.dva_word[1] == 0 && \ 333 (buf)->b_birth == 0) 334 335 #define BUF_EQUAL(spa, dva, birth, buf) \ 336 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 337 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 338 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 339 340 static arc_buf_hdr_t * 341 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 342 { 343 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 344 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 345 arc_buf_hdr_t *buf; 346 347 mutex_enter(hash_lock); 348 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 349 buf = buf->b_hash_next) { 350 if (BUF_EQUAL(spa, dva, birth, buf)) { 351 *lockp = hash_lock; 352 return (buf); 353 } 354 } 355 mutex_exit(hash_lock); 356 *lockp = NULL; 357 return (NULL); 358 } 359 360 /* 361 * Insert an entry into the hash table. If there is already an element 362 * equal to elem in the hash table, then the already existing element 363 * will be returned and the new element will not be inserted. 364 * Otherwise returns NULL. 365 */ 366 static arc_buf_hdr_t * 367 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 368 { 369 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 370 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 371 arc_buf_hdr_t *fbuf; 372 uint32_t max, i; 373 374 ASSERT(!HDR_IN_HASH_TABLE(buf)); 375 *lockp = hash_lock; 376 mutex_enter(hash_lock); 377 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 378 fbuf = fbuf->b_hash_next, i++) { 379 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 380 return (fbuf); 381 } 382 383 buf->b_hash_next = buf_hash_table.ht_table[idx]; 384 buf_hash_table.ht_table[idx] = buf; 385 buf->b_flags |= ARC_IN_HASH_TABLE; 386 387 /* collect some hash table performance data */ 388 if (i > 0) { 389 atomic_add_64(&arc.hash_collisions, 1); 390 if (i == 1) 391 atomic_add_64(&arc.hash_chains, 1); 392 } 393 while (i > (max = arc.hash_chain_max) && 394 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 395 continue; 396 } 397 atomic_add_64(&arc.hash_elements, 1); 398 if (arc.hash_elements > arc.hash_elements_max) 399 atomic_add_64(&arc.hash_elements_max, 1); 400 401 return (NULL); 402 } 403 404 static void 405 buf_hash_remove(arc_buf_hdr_t *buf) 406 { 407 arc_buf_hdr_t *fbuf, **bufp; 408 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 409 410 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 411 ASSERT(HDR_IN_HASH_TABLE(buf)); 412 413 bufp = &buf_hash_table.ht_table[idx]; 414 while ((fbuf = *bufp) != buf) { 415 ASSERT(fbuf != NULL); 416 bufp = &fbuf->b_hash_next; 417 } 418 *bufp = buf->b_hash_next; 419 buf->b_hash_next = NULL; 420 buf->b_flags &= ~ARC_IN_HASH_TABLE; 421 422 /* collect some hash table performance data */ 423 atomic_add_64(&arc.hash_elements, -1); 424 if (buf_hash_table.ht_table[idx] && 425 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 426 atomic_add_64(&arc.hash_chains, -1); 427 } 428 429 /* 430 * Global data structures and functions for the buf kmem cache. 431 */ 432 static kmem_cache_t *hdr_cache; 433 static kmem_cache_t *buf_cache; 434 435 static void 436 buf_fini(void) 437 { 438 int i; 439 440 kmem_free(buf_hash_table.ht_table, 441 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 442 for (i = 0; i < BUF_LOCKS; i++) 443 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 444 kmem_cache_destroy(hdr_cache); 445 kmem_cache_destroy(buf_cache); 446 } 447 448 /* 449 * Constructor callback - called when the cache is empty 450 * and a new buf is requested. 451 */ 452 /* ARGSUSED */ 453 static int 454 hdr_cons(void *vbuf, void *unused, int kmflag) 455 { 456 arc_buf_hdr_t *buf = vbuf; 457 458 bzero(buf, sizeof (arc_buf_hdr_t)); 459 refcount_create(&buf->b_refcnt); 460 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 461 return (0); 462 } 463 464 /* 465 * Destructor callback - called when a cached buf is 466 * no longer required. 467 */ 468 /* ARGSUSED */ 469 static void 470 hdr_dest(void *vbuf, void *unused) 471 { 472 arc_buf_hdr_t *buf = vbuf; 473 474 refcount_destroy(&buf->b_refcnt); 475 cv_destroy(&buf->b_cv); 476 } 477 478 static int arc_reclaim_needed(void); 479 void arc_kmem_reclaim(void); 480 481 /* 482 * Reclaim callback -- invoked when memory is low. 483 */ 484 /* ARGSUSED */ 485 static void 486 hdr_recl(void *unused) 487 { 488 dprintf("hdr_recl called\n"); 489 if (arc_reclaim_needed()) 490 arc_kmem_reclaim(); 491 } 492 493 static void 494 buf_init(void) 495 { 496 uint64_t *ct; 497 uint64_t hsize = 1ULL << 12; 498 int i, j; 499 500 /* 501 * The hash table is big enough to fill all of physical memory 502 * with an average 64K block size. The table will take up 503 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 504 */ 505 while (hsize * 65536 < physmem * PAGESIZE) 506 hsize <<= 1; 507 retry: 508 buf_hash_table.ht_mask = hsize - 1; 509 buf_hash_table.ht_table = 510 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 511 if (buf_hash_table.ht_table == NULL) { 512 ASSERT(hsize > (1ULL << 8)); 513 hsize >>= 1; 514 goto retry; 515 } 516 517 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 518 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 519 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 520 0, NULL, NULL, NULL, NULL, NULL, 0); 521 522 for (i = 0; i < 256; i++) 523 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 524 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 525 526 for (i = 0; i < BUF_LOCKS; i++) { 527 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 528 NULL, MUTEX_DEFAULT, NULL); 529 } 530 } 531 532 #define ARC_MINTIME (hz>>4) /* 62 ms */ 533 534 static void 535 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 536 { 537 ASSERT(MUTEX_HELD(hash_lock)); 538 539 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 540 (ab->b_state != arc.anon)) { 541 int delta = ab->b_size * ab->b_datacnt; 542 543 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 544 mutex_enter(&ab->b_state->mtx); 545 ASSERT(list_link_active(&ab->b_arc_node)); 546 list_remove(&ab->b_state->list, ab); 547 if (GHOST_STATE(ab->b_state)) { 548 ASSERT3U(ab->b_datacnt, ==, 0); 549 ASSERT3P(ab->b_buf, ==, NULL); 550 delta = ab->b_size; 551 } 552 ASSERT(delta > 0); 553 ASSERT3U(ab->b_state->lsize, >=, delta); 554 atomic_add_64(&ab->b_state->lsize, -delta); 555 mutex_exit(&ab->b_state->mtx); 556 /* remove the prefetch flag is we get a reference */ 557 if (ab->b_flags & ARC_PREFETCH) 558 ab->b_flags &= ~ARC_PREFETCH; 559 } 560 } 561 562 static int 563 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 564 { 565 int cnt; 566 567 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 568 ASSERT(!GHOST_STATE(ab->b_state)); 569 570 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 571 (ab->b_state != arc.anon)) { 572 573 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 574 mutex_enter(&ab->b_state->mtx); 575 ASSERT(!list_link_active(&ab->b_arc_node)); 576 list_insert_head(&ab->b_state->list, ab); 577 ASSERT(ab->b_datacnt > 0); 578 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 579 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 580 mutex_exit(&ab->b_state->mtx); 581 } 582 return (cnt); 583 } 584 585 /* 586 * Move the supplied buffer to the indicated state. The mutex 587 * for the buffer must be held by the caller. 588 */ 589 static void 590 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 591 { 592 arc_state_t *old_state = ab->b_state; 593 int refcnt = refcount_count(&ab->b_refcnt); 594 int from_delta, to_delta; 595 596 ASSERT(MUTEX_HELD(hash_lock)); 597 ASSERT(new_state != old_state); 598 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 599 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 600 601 from_delta = to_delta = ab->b_datacnt * ab->b_size; 602 603 /* 604 * If this buffer is evictable, transfer it from the 605 * old state list to the new state list. 606 */ 607 if (refcnt == 0) { 608 if (old_state != arc.anon) { 609 int use_mutex = !MUTEX_HELD(&old_state->mtx); 610 611 if (use_mutex) 612 mutex_enter(&old_state->mtx); 613 614 ASSERT(list_link_active(&ab->b_arc_node)); 615 list_remove(&old_state->list, ab); 616 617 /* 618 * If prefetching out of the ghost cache, 619 * we will have a non-null datacnt. 620 */ 621 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 622 /* ghost elements have a ghost size */ 623 ASSERT(ab->b_buf == NULL); 624 from_delta = ab->b_size; 625 } 626 ASSERT3U(old_state->lsize, >=, from_delta); 627 atomic_add_64(&old_state->lsize, -from_delta); 628 629 if (use_mutex) 630 mutex_exit(&old_state->mtx); 631 } 632 if (new_state != arc.anon) { 633 int use_mutex = !MUTEX_HELD(&new_state->mtx); 634 635 if (use_mutex) 636 mutex_enter(&new_state->mtx); 637 638 list_insert_head(&new_state->list, ab); 639 640 /* ghost elements have a ghost size */ 641 if (GHOST_STATE(new_state)) { 642 ASSERT(ab->b_datacnt == 0); 643 ASSERT(ab->b_buf == NULL); 644 to_delta = ab->b_size; 645 } 646 atomic_add_64(&new_state->lsize, to_delta); 647 ASSERT3U(new_state->size + to_delta, >=, 648 new_state->lsize); 649 650 if (use_mutex) 651 mutex_exit(&new_state->mtx); 652 } 653 } 654 655 ASSERT(!BUF_EMPTY(ab)); 656 if (new_state == arc.anon && old_state != arc.anon) { 657 buf_hash_remove(ab); 658 } 659 660 /* adjust state sizes */ 661 if (to_delta) 662 atomic_add_64(&new_state->size, to_delta); 663 if (from_delta) { 664 ASSERT3U(old_state->size, >=, from_delta); 665 atomic_add_64(&old_state->size, -from_delta); 666 } 667 ab->b_state = new_state; 668 } 669 670 arc_buf_t * 671 arc_buf_alloc(spa_t *spa, int size, void *tag) 672 { 673 arc_buf_hdr_t *hdr; 674 arc_buf_t *buf; 675 676 ASSERT3U(size, >, 0); 677 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 678 ASSERT(BUF_EMPTY(hdr)); 679 hdr->b_size = size; 680 hdr->b_spa = spa; 681 hdr->b_state = arc.anon; 682 hdr->b_arc_access = 0; 683 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 684 buf->b_hdr = hdr; 685 buf->b_efunc = NULL; 686 buf->b_private = NULL; 687 buf->b_next = NULL; 688 buf->b_data = zio_buf_alloc(size); 689 hdr->b_buf = buf; 690 hdr->b_datacnt = 1; 691 hdr->b_flags = 0; 692 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 693 (void) refcount_add(&hdr->b_refcnt, tag); 694 695 atomic_add_64(&arc.size, size); 696 atomic_add_64(&arc.anon->size, size); 697 698 return (buf); 699 } 700 701 static void * 702 arc_data_copy(arc_buf_hdr_t *hdr, void *old_data) 703 { 704 void *new_data = zio_buf_alloc(hdr->b_size); 705 706 atomic_add_64(&arc.size, hdr->b_size); 707 bcopy(old_data, new_data, hdr->b_size); 708 atomic_add_64(&hdr->b_state->size, hdr->b_size); 709 if (list_link_active(&hdr->b_arc_node)) { 710 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 711 atomic_add_64(&hdr->b_state->lsize, hdr->b_size); 712 } 713 return (new_data); 714 } 715 716 void 717 arc_buf_add_ref(arc_buf_t *buf, void* tag) 718 { 719 arc_buf_hdr_t *hdr; 720 kmutex_t *hash_lock; 721 722 mutex_enter(&arc_eviction_mtx); 723 hdr = buf->b_hdr; 724 if (buf->b_data == NULL) { 725 /* 726 * This buffer is evicted. 727 */ 728 mutex_exit(&arc_eviction_mtx); 729 return; 730 } else { 731 /* 732 * Prevent this buffer from being evicted 733 * while we add a reference. 734 */ 735 buf->b_hdr = NULL; 736 } 737 mutex_exit(&arc_eviction_mtx); 738 739 ASSERT(hdr->b_state != arc.anon); 740 hash_lock = HDR_LOCK(hdr); 741 mutex_enter(hash_lock); 742 ASSERT(!GHOST_STATE(hdr->b_state)); 743 buf->b_hdr = hdr; 744 add_reference(hdr, hash_lock, tag); 745 arc_access_and_exit(hdr, hash_lock); 746 atomic_add_64(&arc.hits, 1); 747 } 748 749 static void 750 arc_buf_destroy(arc_buf_t *buf, boolean_t all) 751 { 752 arc_buf_t **bufp; 753 754 /* free up data associated with the buf */ 755 if (buf->b_data) { 756 arc_state_t *state = buf->b_hdr->b_state; 757 uint64_t size = buf->b_hdr->b_size; 758 759 zio_buf_free(buf->b_data, size); 760 atomic_add_64(&arc.size, -size); 761 if (list_link_active(&buf->b_hdr->b_arc_node)) { 762 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 763 ASSERT(state != arc.anon); 764 ASSERT3U(state->lsize, >=, size); 765 atomic_add_64(&state->lsize, -size); 766 } 767 ASSERT3U(state->size, >=, size); 768 atomic_add_64(&state->size, -size); 769 buf->b_data = NULL; 770 ASSERT(buf->b_hdr->b_datacnt > 0); 771 buf->b_hdr->b_datacnt -= 1; 772 } 773 774 /* only remove the buf if requested */ 775 if (!all) 776 return; 777 778 /* remove the buf from the hdr list */ 779 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 780 continue; 781 *bufp = buf->b_next; 782 783 ASSERT(buf->b_efunc == NULL); 784 785 /* clean up the buf */ 786 buf->b_hdr = NULL; 787 kmem_cache_free(buf_cache, buf); 788 } 789 790 static void 791 arc_hdr_destroy(arc_buf_hdr_t *hdr) 792 { 793 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 794 ASSERT3P(hdr->b_state, ==, arc.anon); 795 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 796 797 if (!BUF_EMPTY(hdr)) { 798 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 799 bzero(&hdr->b_dva, sizeof (dva_t)); 800 hdr->b_birth = 0; 801 hdr->b_cksum0 = 0; 802 } 803 while (hdr->b_buf) { 804 arc_buf_t *buf = hdr->b_buf; 805 806 if (buf->b_efunc) { 807 mutex_enter(&arc_eviction_mtx); 808 ASSERT(buf->b_hdr != NULL); 809 arc_buf_destroy(hdr->b_buf, FALSE); 810 hdr->b_buf = buf->b_next; 811 buf->b_next = arc_eviction_list; 812 arc_eviction_list = buf; 813 mutex_exit(&arc_eviction_mtx); 814 } else { 815 arc_buf_destroy(hdr->b_buf, TRUE); 816 } 817 } 818 819 ASSERT(!list_link_active(&hdr->b_arc_node)); 820 ASSERT3P(hdr->b_hash_next, ==, NULL); 821 ASSERT3P(hdr->b_acb, ==, NULL); 822 kmem_cache_free(hdr_cache, hdr); 823 } 824 825 void 826 arc_buf_free(arc_buf_t *buf, void *tag) 827 { 828 arc_buf_hdr_t *hdr = buf->b_hdr; 829 int hashed = hdr->b_state != arc.anon; 830 831 ASSERT(buf->b_efunc == NULL); 832 ASSERT(buf->b_data != NULL); 833 834 if (hashed) { 835 kmutex_t *hash_lock = HDR_LOCK(hdr); 836 837 mutex_enter(hash_lock); 838 (void) remove_reference(hdr, hash_lock, tag); 839 if (hdr->b_datacnt > 1) 840 arc_buf_destroy(buf, TRUE); 841 else 842 hdr->b_flags |= ARC_BUF_AVAILABLE; 843 mutex_exit(hash_lock); 844 } else if (HDR_IO_IN_PROGRESS(hdr)) { 845 int destroy_hdr; 846 /* 847 * We are in the middle of an async write. Don't destroy 848 * this buffer unless the write completes before we finish 849 * decrementing the reference count. 850 */ 851 mutex_enter(&arc_eviction_mtx); 852 (void) remove_reference(hdr, NULL, tag); 853 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 854 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 855 mutex_exit(&arc_eviction_mtx); 856 if (destroy_hdr) 857 arc_hdr_destroy(hdr); 858 } else { 859 if (remove_reference(hdr, NULL, tag) > 0) { 860 ASSERT(HDR_IO_ERROR(hdr)); 861 arc_buf_destroy(buf, TRUE); 862 } else { 863 arc_hdr_destroy(hdr); 864 } 865 } 866 } 867 868 int 869 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 870 { 871 arc_buf_hdr_t *hdr = buf->b_hdr; 872 kmutex_t *hash_lock = HDR_LOCK(hdr); 873 int no_callback = (buf->b_efunc == NULL); 874 875 if (hdr->b_state == arc.anon) { 876 arc_buf_free(buf, tag); 877 return (no_callback); 878 } 879 880 mutex_enter(hash_lock); 881 ASSERT(hdr->b_state != arc.anon); 882 ASSERT(buf->b_data != NULL); 883 884 (void) remove_reference(hdr, hash_lock, tag); 885 if (hdr->b_datacnt > 1) { 886 if (no_callback) 887 arc_buf_destroy(buf, TRUE); 888 } else if (no_callback) { 889 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 890 hdr->b_flags |= ARC_BUF_AVAILABLE; 891 } 892 ASSERT(no_callback || hdr->b_datacnt > 1 || 893 refcount_is_zero(&hdr->b_refcnt)); 894 mutex_exit(hash_lock); 895 return (no_callback); 896 } 897 898 int 899 arc_buf_size(arc_buf_t *buf) 900 { 901 return (buf->b_hdr->b_size); 902 } 903 904 /* 905 * Evict buffers from list until we've removed the specified number of 906 * bytes. Move the removed buffers to the appropriate evict state. 907 */ 908 static uint64_t 909 arc_evict(arc_state_t *state, int64_t bytes) 910 { 911 arc_state_t *evicted_state; 912 uint64_t bytes_evicted = 0, skipped = 0; 913 arc_buf_hdr_t *ab, *ab_prev; 914 kmutex_t *hash_lock; 915 916 ASSERT(state == arc.mru || state == arc.mfu); 917 918 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 919 920 mutex_enter(&state->mtx); 921 mutex_enter(&evicted_state->mtx); 922 923 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 924 ab_prev = list_prev(&state->list, ab); 925 /* prefetch buffers have a minimum lifespan */ 926 if (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 927 lbolt - ab->b_arc_access < arc_min_prefetch_lifespan) { 928 skipped++; 929 continue; 930 } 931 hash_lock = HDR_LOCK(ab); 932 if (!HDR_IO_IN_PROGRESS(ab) && mutex_tryenter(hash_lock)) { 933 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 934 ASSERT(ab->b_datacnt > 0); 935 while (ab->b_buf) { 936 arc_buf_t *buf = ab->b_buf; 937 if (buf->b_data) 938 bytes_evicted += ab->b_size; 939 if (buf->b_efunc) { 940 mutex_enter(&arc_eviction_mtx); 941 /* 942 * arc_buf_add_ref() could derail 943 * this eviction. 944 */ 945 if (buf->b_hdr == NULL) { 946 mutex_exit(&arc_eviction_mtx); 947 mutex_exit(hash_lock); 948 goto skip; 949 } 950 arc_buf_destroy(buf, FALSE); 951 ab->b_buf = buf->b_next; 952 buf->b_next = arc_eviction_list; 953 arc_eviction_list = buf; 954 mutex_exit(&arc_eviction_mtx); 955 } else { 956 arc_buf_destroy(buf, TRUE); 957 } 958 } 959 ASSERT(ab->b_datacnt == 0); 960 arc_change_state(evicted_state, ab, hash_lock); 961 ASSERT(HDR_IN_HASH_TABLE(ab)); 962 ab->b_flags = ARC_IN_HASH_TABLE; 963 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 964 mutex_exit(hash_lock); 965 if (bytes >= 0 && bytes_evicted >= bytes) 966 break; 967 } else { 968 skip: 969 skipped += 1; 970 } 971 } 972 mutex_exit(&evicted_state->mtx); 973 mutex_exit(&state->mtx); 974 975 if (bytes_evicted < bytes) 976 dprintf("only evicted %lld bytes from %x", 977 (longlong_t)bytes_evicted, state); 978 979 atomic_add_64(&arc.skipped, skipped); 980 if (bytes < 0) 981 return (skipped); 982 return (bytes_evicted); 983 } 984 985 /* 986 * Remove buffers from list until we've removed the specified number of 987 * bytes. Destroy the buffers that are removed. 988 */ 989 static void 990 arc_evict_ghost(arc_state_t *state, int64_t bytes) 991 { 992 arc_buf_hdr_t *ab, *ab_prev; 993 kmutex_t *hash_lock; 994 uint64_t bytes_deleted = 0; 995 uint_t bufs_skipped = 0; 996 997 ASSERT(GHOST_STATE(state)); 998 top: 999 mutex_enter(&state->mtx); 1000 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 1001 ab_prev = list_prev(&state->list, ab); 1002 hash_lock = HDR_LOCK(ab); 1003 if (mutex_tryenter(hash_lock)) { 1004 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1005 ASSERT(ab->b_buf == NULL); 1006 arc_change_state(arc.anon, ab, hash_lock); 1007 mutex_exit(hash_lock); 1008 atomic_add_64(&arc.deleted, 1); 1009 bytes_deleted += ab->b_size; 1010 arc_hdr_destroy(ab); 1011 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1012 if (bytes >= 0 && bytes_deleted >= bytes) 1013 break; 1014 } else { 1015 if (bytes < 0) { 1016 mutex_exit(&state->mtx); 1017 mutex_enter(hash_lock); 1018 mutex_exit(hash_lock); 1019 goto top; 1020 } 1021 bufs_skipped += 1; 1022 } 1023 } 1024 mutex_exit(&state->mtx); 1025 1026 if (bufs_skipped) { 1027 atomic_add_64(&arc.skipped, bufs_skipped); 1028 ASSERT(bytes >= 0); 1029 } 1030 1031 if (bytes_deleted < bytes) 1032 dprintf("only deleted %lld bytes from %p", 1033 (longlong_t)bytes_deleted, state); 1034 } 1035 1036 static void 1037 arc_adjust(void) 1038 { 1039 int64_t top_sz, mru_over, arc_over; 1040 1041 top_sz = arc.anon->size + arc.mru->size; 1042 1043 if (top_sz > arc.p && arc.mru->lsize > 0) { 1044 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1045 (void) arc_evict(arc.mru, toevict); 1046 top_sz = arc.anon->size + arc.mru->size; 1047 } 1048 1049 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1050 1051 if (mru_over > 0) { 1052 if (arc.mru_ghost->lsize > 0) { 1053 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1054 arc_evict_ghost(arc.mru_ghost, todelete); 1055 } 1056 } 1057 1058 if ((arc_over = arc.size - arc.c) > 0) { 1059 int64_t tbl_over; 1060 1061 if (arc.mfu->lsize > 0) { 1062 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1063 (void) arc_evict(arc.mfu, toevict); 1064 } 1065 1066 tbl_over = arc.size + arc.mru_ghost->lsize + 1067 arc.mfu_ghost->lsize - arc.c*2; 1068 1069 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1070 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1071 arc_evict_ghost(arc.mfu_ghost, todelete); 1072 } 1073 } 1074 } 1075 1076 static void 1077 arc_do_user_evicts(void) 1078 { 1079 mutex_enter(&arc_eviction_mtx); 1080 while (arc_eviction_list != NULL) { 1081 arc_buf_t *buf = arc_eviction_list; 1082 arc_eviction_list = buf->b_next; 1083 buf->b_hdr = NULL; 1084 mutex_exit(&arc_eviction_mtx); 1085 1086 if (buf->b_efunc != NULL) 1087 VERIFY(buf->b_efunc(buf) == 0); 1088 1089 buf->b_efunc = NULL; 1090 buf->b_private = NULL; 1091 kmem_cache_free(buf_cache, buf); 1092 mutex_enter(&arc_eviction_mtx); 1093 } 1094 mutex_exit(&arc_eviction_mtx); 1095 } 1096 1097 /* 1098 * Flush all *evictable* data from the cache. 1099 * NOTE: this will not touch "active" (i.e. referenced) data. 1100 */ 1101 void 1102 arc_flush(void) 1103 { 1104 while (arc_evict(arc.mru, -1)); 1105 while (arc_evict(arc.mfu, -1)); 1106 1107 arc_evict_ghost(arc.mru_ghost, -1); 1108 arc_evict_ghost(arc.mfu_ghost, -1); 1109 1110 mutex_enter(&arc_reclaim_thr_lock); 1111 arc_do_user_evicts(); 1112 mutex_exit(&arc_reclaim_thr_lock); 1113 ASSERT(arc_eviction_list == NULL); 1114 } 1115 1116 int arc_kmem_reclaim_shift = 5; /* log2(fraction of arc to reclaim) */ 1117 1118 void 1119 arc_kmem_reclaim(void) 1120 { 1121 uint64_t to_free; 1122 1123 /* 1124 * We need arc_reclaim_lock because we don't want multiple 1125 * threads trying to reclaim concurrently. 1126 */ 1127 1128 /* 1129 * umem calls the reclaim func when we destroy the buf cache, 1130 * which is after we do arc_fini(). So we set a flag to prevent 1131 * accessing the destroyed mutexes and lists. 1132 */ 1133 if (arc_dead) 1134 return; 1135 1136 if (arc.c <= arc.c_min) 1137 return; 1138 1139 mutex_enter(&arc_reclaim_lock); 1140 1141 #ifdef _KERNEL 1142 to_free = MAX(arc.c >> arc_kmem_reclaim_shift, ptob(needfree)); 1143 #else 1144 to_free = arc.c >> arc_kmem_reclaim_shift; 1145 #endif 1146 if (arc.c > to_free) 1147 atomic_add_64(&arc.c, -to_free); 1148 else 1149 arc.c = arc.c_min; 1150 1151 atomic_add_64(&arc.p, -(arc.p >> arc_kmem_reclaim_shift)); 1152 if (arc.c > arc.size) 1153 arc.c = arc.size; 1154 if (arc.c < arc.c_min) 1155 arc.c = arc.c_min; 1156 if (arc.p > arc.c) 1157 arc.p = (arc.c >> 1); 1158 ASSERT((int64_t)arc.p >= 0); 1159 1160 arc_adjust(); 1161 1162 mutex_exit(&arc_reclaim_lock); 1163 } 1164 1165 static int 1166 arc_reclaim_needed(void) 1167 { 1168 uint64_t extra; 1169 1170 #ifdef _KERNEL 1171 1172 if (needfree) 1173 return (1); 1174 1175 /* 1176 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1177 */ 1178 extra = desfree; 1179 1180 /* 1181 * check that we're out of range of the pageout scanner. It starts to 1182 * schedule paging if freemem is less than lotsfree and needfree. 1183 * lotsfree is the high-water mark for pageout, and needfree is the 1184 * number of needed free pages. We add extra pages here to make sure 1185 * the scanner doesn't start up while we're freeing memory. 1186 */ 1187 if (freemem < lotsfree + needfree + extra) 1188 return (1); 1189 1190 /* 1191 * check to make sure that swapfs has enough space so that anon 1192 * reservations can still succeeed. anon_resvmem() checks that the 1193 * availrmem is greater than swapfs_minfree, and the number of reserved 1194 * swap pages. We also add a bit of extra here just to prevent 1195 * circumstances from getting really dire. 1196 */ 1197 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1198 return (1); 1199 1200 #if defined(__i386) 1201 /* 1202 * If we're on an i386 platform, it's possible that we'll exhaust the 1203 * kernel heap space before we ever run out of available physical 1204 * memory. Most checks of the size of the heap_area compare against 1205 * tune.t_minarmem, which is the minimum available real memory that we 1206 * can have in the system. However, this is generally fixed at 25 pages 1207 * which is so low that it's useless. In this comparison, we seek to 1208 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1209 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1210 * free) 1211 */ 1212 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1213 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1214 return (1); 1215 #endif 1216 1217 #else 1218 if (spa_get_random(100) == 0) 1219 return (1); 1220 #endif 1221 return (0); 1222 } 1223 1224 static void 1225 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1226 { 1227 size_t i; 1228 kmem_cache_t *prev_cache = NULL; 1229 extern kmem_cache_t *zio_buf_cache[]; 1230 1231 #ifdef _KERNEL 1232 /* 1233 * First purge some DNLC entries, in case the DNLC is using 1234 * up too much memory. 1235 */ 1236 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1237 1238 #if defined(__i386) 1239 /* 1240 * Reclaim unused memory from all kmem caches. 1241 */ 1242 kmem_reap(); 1243 #endif 1244 #endif 1245 1246 /* 1247 * An agressive reclamation will shrink the cache size as well as 1248 * reap free buffers from the arc kmem caches. 1249 */ 1250 if (strat == ARC_RECLAIM_AGGR) 1251 arc_kmem_reclaim(); 1252 1253 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1254 if (zio_buf_cache[i] != prev_cache) { 1255 prev_cache = zio_buf_cache[i]; 1256 kmem_cache_reap_now(zio_buf_cache[i]); 1257 } 1258 } 1259 kmem_cache_reap_now(buf_cache); 1260 kmem_cache_reap_now(hdr_cache); 1261 } 1262 1263 static void 1264 arc_reclaim_thread(void) 1265 { 1266 clock_t growtime = 0; 1267 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1268 callb_cpr_t cpr; 1269 1270 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1271 1272 mutex_enter(&arc_reclaim_thr_lock); 1273 while (arc_thread_exit == 0) { 1274 if (arc_reclaim_needed()) { 1275 1276 if (arc.no_grow) { 1277 if (last_reclaim == ARC_RECLAIM_CONS) { 1278 last_reclaim = ARC_RECLAIM_AGGR; 1279 } else { 1280 last_reclaim = ARC_RECLAIM_CONS; 1281 } 1282 } else { 1283 arc.no_grow = TRUE; 1284 last_reclaim = ARC_RECLAIM_AGGR; 1285 membar_producer(); 1286 } 1287 1288 /* reset the growth delay for every reclaim */ 1289 growtime = lbolt + (arc_grow_retry * hz); 1290 1291 arc_kmem_reap_now(last_reclaim); 1292 1293 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1294 arc.no_grow = FALSE; 1295 } 1296 1297 if (arc_eviction_list != NULL) 1298 arc_do_user_evicts(); 1299 1300 /* block until needed, or one second, whichever is shorter */ 1301 CALLB_CPR_SAFE_BEGIN(&cpr); 1302 (void) cv_timedwait(&arc_reclaim_thr_cv, 1303 &arc_reclaim_thr_lock, (lbolt + hz)); 1304 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1305 } 1306 1307 arc_thread_exit = 0; 1308 cv_broadcast(&arc_reclaim_thr_cv); 1309 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1310 thread_exit(); 1311 } 1312 1313 /* 1314 * Adapt arc info given the number of bytes we are trying to add and 1315 * the state that we are comming from. This function is only called 1316 * when we are adding new content to the cache. 1317 */ 1318 static void 1319 arc_adapt(int bytes, arc_state_t *state) 1320 { 1321 int mult; 1322 1323 ASSERT(bytes > 0); 1324 /* 1325 * Adapt the target size of the MRU list: 1326 * - if we just hit in the MRU ghost list, then increase 1327 * the target size of the MRU list. 1328 * - if we just hit in the MFU ghost list, then increase 1329 * the target size of the MFU list by decreasing the 1330 * target size of the MRU list. 1331 */ 1332 if (state == arc.mru_ghost) { 1333 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1334 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1335 1336 arc.p = MIN(arc.c, arc.p + bytes * mult); 1337 } else if (state == arc.mfu_ghost) { 1338 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1339 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1340 1341 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1342 } 1343 ASSERT((int64_t)arc.p >= 0); 1344 1345 if (arc_reclaim_needed()) { 1346 cv_signal(&arc_reclaim_thr_cv); 1347 return; 1348 } 1349 1350 if (arc.no_grow) 1351 return; 1352 1353 if (arc.c >= arc.c_max) 1354 return; 1355 1356 /* 1357 * If we're within (2 * maxblocksize) bytes of the target 1358 * cache size, increment the target cache size 1359 */ 1360 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1361 atomic_add_64(&arc.c, (int64_t)bytes); 1362 if (arc.c > arc.c_max) 1363 arc.c = arc.c_max; 1364 else if (state == arc.anon) 1365 atomic_add_64(&arc.p, (int64_t)bytes); 1366 if (arc.p > arc.c) 1367 arc.p = arc.c; 1368 } 1369 ASSERT((int64_t)arc.p >= 0); 1370 } 1371 1372 /* 1373 * Check if the cache has reached its limits and eviction is required 1374 * prior to insert. 1375 */ 1376 static int 1377 arc_evict_needed() 1378 { 1379 if (arc_reclaim_needed()) 1380 return (1); 1381 1382 return (arc.size > arc.c); 1383 } 1384 1385 /* 1386 * The state, supplied as the first argument, is going to have something 1387 * inserted on its behalf. So, determine which cache must be victimized to 1388 * satisfy an insertion for this state. We have the following cases: 1389 * 1390 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1391 * In this situation if we're out of space, but the resident size of the MFU is 1392 * under the limit, victimize the MFU cache to satisfy this insertion request. 1393 * 1394 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1395 * Here, we've used up all of the available space for the MRU, so we need to 1396 * evict from our own cache instead. Evict from the set of resident MRU 1397 * entries. 1398 * 1399 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1400 * c minus p represents the MFU space in the cache, since p is the size of the 1401 * cache that is dedicated to the MRU. In this situation there's still space on 1402 * the MFU side, so the MRU side needs to be victimized. 1403 * 1404 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1405 * MFU's resident set is consuming more space than it has been allotted. In 1406 * this situation, we must victimize our own cache, the MFU, for this insertion. 1407 */ 1408 static void 1409 arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1410 { 1411 uint64_t mru_used; 1412 uint64_t mfu_space; 1413 uint64_t evicted; 1414 1415 ASSERT(state == arc.mru || state == arc.mfu); 1416 1417 if (state == arc.mru) { 1418 mru_used = arc.anon->size + arc.mru->size; 1419 if (arc.p > mru_used) { 1420 /* case 1 */ 1421 evicted = arc_evict(arc.mfu, bytes); 1422 if (evicted < bytes) { 1423 arc_adjust(); 1424 } 1425 } else { 1426 /* case 2 */ 1427 evicted = arc_evict(arc.mru, bytes); 1428 if (evicted < bytes) { 1429 arc_adjust(); 1430 } 1431 } 1432 } else { 1433 /* MFU case */ 1434 mfu_space = arc.c - arc.p; 1435 if (mfu_space > arc.mfu->size) { 1436 /* case 3 */ 1437 evicted = arc_evict(arc.mru, bytes); 1438 if (evicted < bytes) { 1439 arc_adjust(); 1440 } 1441 } else { 1442 /* case 4 */ 1443 evicted = arc_evict(arc.mfu, bytes); 1444 if (evicted < bytes) { 1445 arc_adjust(); 1446 } 1447 } 1448 } 1449 } 1450 1451 /* 1452 * This routine is called whenever a buffer is accessed. 1453 * NOTE: the hash lock is dropped in this function. 1454 */ 1455 static void 1456 arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1457 { 1458 arc_state_t *evict_state = NULL; 1459 int blksz; 1460 1461 ASSERT(MUTEX_HELD(hash_lock)); 1462 1463 blksz = buf->b_size; 1464 1465 if (buf->b_state == arc.anon) { 1466 /* 1467 * This buffer is not in the cache, and does not 1468 * appear in our "ghost" list. Add the new buffer 1469 * to the MRU state. 1470 */ 1471 1472 arc_adapt(blksz, arc.anon); 1473 if (arc_evict_needed()) 1474 evict_state = arc.mru; 1475 1476 ASSERT(buf->b_arc_access == 0); 1477 buf->b_arc_access = lbolt; 1478 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1479 arc_change_state(arc.mru, buf, hash_lock); 1480 1481 } else if (buf->b_state == arc.mru) { 1482 /* 1483 * If this buffer is here because of a prefetch, then either: 1484 * - clear the flag if this is a "referencing" read 1485 * (any subsequent access will bump this into the MFU state). 1486 * or 1487 * - move the buffer to the head of the list if this is 1488 * another prefetch (to make it less likely to be evicted). 1489 */ 1490 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1491 if (refcount_count(&buf->b_refcnt) == 0) { 1492 ASSERT(list_link_active(&buf->b_arc_node)); 1493 mutex_enter(&arc.mru->mtx); 1494 list_remove(&arc.mru->list, buf); 1495 list_insert_head(&arc.mru->list, buf); 1496 mutex_exit(&arc.mru->mtx); 1497 } else { 1498 buf->b_flags &= ~ARC_PREFETCH; 1499 atomic_add_64(&arc.mru->hits, 1); 1500 } 1501 buf->b_arc_access = lbolt; 1502 mutex_exit(hash_lock); 1503 return; 1504 } 1505 1506 /* 1507 * This buffer has been "accessed" only once so far, 1508 * but it is still in the cache. Move it to the MFU 1509 * state. 1510 */ 1511 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1512 /* 1513 * More than 125ms have passed since we 1514 * instantiated this buffer. Move it to the 1515 * most frequently used state. 1516 */ 1517 buf->b_arc_access = lbolt; 1518 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1519 arc_change_state(arc.mfu, buf, hash_lock); 1520 } 1521 atomic_add_64(&arc.mru->hits, 1); 1522 } else if (buf->b_state == arc.mru_ghost) { 1523 arc_state_t *new_state; 1524 /* 1525 * This buffer has been "accessed" recently, but 1526 * was evicted from the cache. Move it to the 1527 * MFU state. 1528 */ 1529 1530 if (buf->b_flags & ARC_PREFETCH) { 1531 new_state = arc.mru; 1532 if (refcount_count(&buf->b_refcnt) > 0) 1533 buf->b_flags &= ~ARC_PREFETCH; 1534 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1535 } else { 1536 new_state = arc.mfu; 1537 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1538 } 1539 1540 arc_adapt(blksz, arc.mru_ghost); 1541 if (arc_evict_needed()) 1542 evict_state = new_state; 1543 1544 buf->b_arc_access = lbolt; 1545 arc_change_state(new_state, buf, hash_lock); 1546 1547 atomic_add_64(&arc.mru_ghost->hits, 1); 1548 } else if (buf->b_state == arc.mfu) { 1549 /* 1550 * This buffer has been accessed more than once and is 1551 * still in the cache. Keep it in the MFU state. 1552 * 1553 * NOTE: an add_reference() that occurred when we did 1554 * the arc_read() will have kicked this off the list. 1555 * If it was a prefetch, we will explicitly move it to 1556 * the head of the list now. 1557 */ 1558 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1559 ASSERT(refcount_count(&buf->b_refcnt) == 0); 1560 ASSERT(list_link_active(&buf->b_arc_node)); 1561 mutex_enter(&arc.mfu->mtx); 1562 list_remove(&arc.mfu->list, buf); 1563 list_insert_head(&arc.mfu->list, buf); 1564 mutex_exit(&arc.mfu->mtx); 1565 } 1566 atomic_add_64(&arc.mfu->hits, 1); 1567 buf->b_arc_access = lbolt; 1568 } else if (buf->b_state == arc.mfu_ghost) { 1569 arc_state_t *new_state = arc.mfu; 1570 /* 1571 * This buffer has been accessed more than once but has 1572 * been evicted from the cache. Move it back to the 1573 * MFU state. 1574 */ 1575 1576 if (buf->b_flags & ARC_PREFETCH) { 1577 /* 1578 * This is a prefetch access... 1579 * move this block back to the MRU state. 1580 */ 1581 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 1582 new_state = arc.mru; 1583 } 1584 1585 arc_adapt(blksz, arc.mfu_ghost); 1586 if (arc_evict_needed()) 1587 evict_state = new_state; 1588 1589 buf->b_arc_access = lbolt; 1590 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1591 arc_change_state(new_state, buf, hash_lock); 1592 1593 atomic_add_64(&arc.mfu_ghost->hits, 1); 1594 } else { 1595 ASSERT(!"invalid arc state"); 1596 } 1597 1598 mutex_exit(hash_lock); 1599 if (evict_state) 1600 arc_evict_for_state(evict_state, blksz); 1601 } 1602 1603 /* a generic arc_done_func_t which you can use */ 1604 /* ARGSUSED */ 1605 void 1606 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1607 { 1608 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1609 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1610 } 1611 1612 /* a generic arc_done_func_t which you can use */ 1613 void 1614 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1615 { 1616 arc_buf_t **bufp = arg; 1617 if (zio && zio->io_error) { 1618 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1619 *bufp = NULL; 1620 } else { 1621 *bufp = buf; 1622 } 1623 } 1624 1625 static void 1626 arc_read_done(zio_t *zio) 1627 { 1628 arc_buf_hdr_t *hdr, *found; 1629 arc_buf_t *buf; 1630 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1631 kmutex_t *hash_lock; 1632 arc_callback_t *callback_list, *acb; 1633 int freeable = FALSE; 1634 1635 buf = zio->io_private; 1636 hdr = buf->b_hdr; 1637 1638 /* 1639 * The hdr was inserted into hash-table and removed from lists 1640 * prior to starting I/O. We should find this header, since 1641 * it's in the hash table, and it should be legit since it's 1642 * not possible to evict it during the I/O. The only possible 1643 * reason for it not to be found is if we were freed during the 1644 * read. 1645 */ 1646 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1647 &hash_lock); 1648 1649 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1650 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1651 1652 /* byteswap if necessary */ 1653 callback_list = hdr->b_acb; 1654 ASSERT(callback_list != NULL); 1655 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1656 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1657 1658 /* create copies of the data buffer for the callers */ 1659 abuf = buf; 1660 for (acb = callback_list; acb; acb = acb->acb_next) { 1661 if (acb->acb_done) { 1662 if (abuf == NULL) { 1663 abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1664 abuf->b_data = arc_data_copy(hdr, buf->b_data); 1665 abuf->b_hdr = hdr; 1666 abuf->b_efunc = NULL; 1667 abuf->b_private = NULL; 1668 abuf->b_next = hdr->b_buf; 1669 hdr->b_buf = abuf; 1670 hdr->b_datacnt += 1; 1671 } 1672 acb->acb_buf = abuf; 1673 abuf = NULL; 1674 } 1675 } 1676 hdr->b_acb = NULL; 1677 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1678 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1679 if (abuf == buf) 1680 hdr->b_flags |= ARC_BUF_AVAILABLE; 1681 1682 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1683 1684 if (zio->io_error != 0) { 1685 hdr->b_flags |= ARC_IO_ERROR; 1686 if (hdr->b_state != arc.anon) 1687 arc_change_state(arc.anon, hdr, hash_lock); 1688 if (HDR_IN_HASH_TABLE(hdr)) 1689 buf_hash_remove(hdr); 1690 freeable = refcount_is_zero(&hdr->b_refcnt); 1691 /* convert checksum errors into IO errors */ 1692 if (zio->io_error == ECKSUM) 1693 zio->io_error = EIO; 1694 } 1695 1696 /* 1697 * Broadcast before we drop the hash_lock to avoid the possibility 1698 * that the hdr (and hence the cv) might be freed before we get to 1699 * the cv_broadcast(). 1700 */ 1701 cv_broadcast(&hdr->b_cv); 1702 1703 if (hash_lock) { 1704 /* 1705 * Only call arc_access on anonymous buffers. This is because 1706 * if we've issued an I/O for an evicted buffer, we've already 1707 * called arc_access (to prevent any simultaneous readers from 1708 * getting confused). 1709 */ 1710 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1711 arc_access_and_exit(hdr, hash_lock); 1712 else 1713 mutex_exit(hash_lock); 1714 } else { 1715 /* 1716 * This block was freed while we waited for the read to 1717 * complete. It has been removed from the hash table and 1718 * moved to the anonymous state (so that it won't show up 1719 * in the cache). 1720 */ 1721 ASSERT3P(hdr->b_state, ==, arc.anon); 1722 freeable = refcount_is_zero(&hdr->b_refcnt); 1723 } 1724 1725 /* execute each callback and free its structure */ 1726 while ((acb = callback_list) != NULL) { 1727 if (acb->acb_done) 1728 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1729 1730 if (acb->acb_zio_dummy != NULL) { 1731 acb->acb_zio_dummy->io_error = zio->io_error; 1732 zio_nowait(acb->acb_zio_dummy); 1733 } 1734 1735 callback_list = acb->acb_next; 1736 kmem_free(acb, sizeof (arc_callback_t)); 1737 } 1738 1739 if (freeable) 1740 arc_hdr_destroy(hdr); 1741 } 1742 1743 /* 1744 * "Read" the block block at the specified DVA (in bp) via the 1745 * cache. If the block is found in the cache, invoke the provided 1746 * callback immediately and return. Note that the `zio' parameter 1747 * in the callback will be NULL in this case, since no IO was 1748 * required. If the block is not in the cache pass the read request 1749 * on to the spa with a substitute callback function, so that the 1750 * requested block will be added to the cache. 1751 * 1752 * If a read request arrives for a block that has a read in-progress, 1753 * either wait for the in-progress read to complete (and return the 1754 * results); or, if this is a read with a "done" func, add a record 1755 * to the read to invoke the "done" func when the read completes, 1756 * and return; or just return. 1757 * 1758 * arc_read_done() will invoke all the requested "done" functions 1759 * for readers of this block. 1760 */ 1761 int 1762 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1763 arc_done_func_t *done, void *private, int priority, int flags, 1764 uint32_t *arc_flags, zbookmark_t *zb) 1765 { 1766 arc_buf_hdr_t *hdr; 1767 arc_buf_t *buf; 1768 kmutex_t *hash_lock; 1769 zio_t *rzio; 1770 1771 top: 1772 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1773 if (hdr && hdr->b_datacnt > 0) { 1774 1775 *arc_flags |= ARC_CACHED; 1776 1777 if (HDR_IO_IN_PROGRESS(hdr)) { 1778 1779 if (*arc_flags & ARC_WAIT) { 1780 cv_wait(&hdr->b_cv, hash_lock); 1781 mutex_exit(hash_lock); 1782 goto top; 1783 } 1784 ASSERT(*arc_flags & ARC_NOWAIT); 1785 1786 if (done) { 1787 arc_callback_t *acb = NULL; 1788 1789 acb = kmem_zalloc(sizeof (arc_callback_t), 1790 KM_SLEEP); 1791 acb->acb_done = done; 1792 acb->acb_private = private; 1793 acb->acb_byteswap = swap; 1794 if (pio != NULL) 1795 acb->acb_zio_dummy = zio_null(pio, 1796 spa, NULL, NULL, flags); 1797 1798 ASSERT(acb->acb_done != NULL); 1799 acb->acb_next = hdr->b_acb; 1800 hdr->b_acb = acb; 1801 add_reference(hdr, hash_lock, private); 1802 mutex_exit(hash_lock); 1803 return (0); 1804 } 1805 mutex_exit(hash_lock); 1806 return (0); 1807 } 1808 1809 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1810 1811 if (done) { 1812 /* 1813 * If this block is already in use, create a new 1814 * copy of the data so that we will be guaranteed 1815 * that arc_release() will always succeed. 1816 */ 1817 buf = hdr->b_buf; 1818 ASSERT(buf); 1819 ASSERT(buf->b_data); 1820 if (!HDR_BUF_AVAILABLE(hdr)) { 1821 void *data = arc_data_copy(hdr, buf->b_data); 1822 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1823 buf->b_hdr = hdr; 1824 buf->b_data = data; 1825 buf->b_efunc = NULL; 1826 buf->b_private = NULL; 1827 buf->b_next = hdr->b_buf; 1828 hdr->b_buf = buf; 1829 hdr->b_datacnt += 1; 1830 } else { 1831 ASSERT(buf->b_efunc == NULL); 1832 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1833 } 1834 add_reference(hdr, hash_lock, private); 1835 } else if (*arc_flags & ARC_PREFETCH && 1836 refcount_count(&hdr->b_refcnt) == 0) { 1837 hdr->b_flags |= ARC_PREFETCH; 1838 } 1839 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1840 arc_access_and_exit(hdr, hash_lock); 1841 atomic_add_64(&arc.hits, 1); 1842 if (done) 1843 done(NULL, buf, private); 1844 } else { 1845 uint64_t size = BP_GET_LSIZE(bp); 1846 arc_callback_t *acb; 1847 1848 if (hdr == NULL) { 1849 /* this block is not in the cache */ 1850 arc_buf_hdr_t *exists; 1851 1852 buf = arc_buf_alloc(spa, size, private); 1853 hdr = buf->b_hdr; 1854 hdr->b_dva = *BP_IDENTITY(bp); 1855 hdr->b_birth = bp->blk_birth; 1856 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1857 exists = buf_hash_insert(hdr, &hash_lock); 1858 if (exists) { 1859 /* somebody beat us to the hash insert */ 1860 mutex_exit(hash_lock); 1861 bzero(&hdr->b_dva, sizeof (dva_t)); 1862 hdr->b_birth = 0; 1863 hdr->b_cksum0 = 0; 1864 (void) arc_buf_remove_ref(buf, private); 1865 goto top; /* restart the IO request */ 1866 } 1867 /* if this is a prefetch, we don't have a reference */ 1868 if (*arc_flags & ARC_PREFETCH) { 1869 (void) remove_reference(hdr, hash_lock, 1870 private); 1871 hdr->b_flags |= ARC_PREFETCH; 1872 } 1873 if (BP_GET_LEVEL(bp) > 0) 1874 hdr->b_flags |= ARC_INDIRECT; 1875 } else { 1876 /* this block is in the ghost cache */ 1877 ASSERT(GHOST_STATE(hdr->b_state)); 1878 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1879 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 1880 ASSERT(hdr->b_buf == NULL); 1881 1882 /* if this is a prefetch, we don't have a reference */ 1883 if (*arc_flags & ARC_PREFETCH) 1884 hdr->b_flags |= ARC_PREFETCH; 1885 else 1886 add_reference(hdr, hash_lock, private); 1887 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1888 buf->b_hdr = hdr; 1889 buf->b_efunc = NULL; 1890 buf->b_private = NULL; 1891 buf->b_next = NULL; 1892 hdr->b_buf = buf; 1893 buf->b_data = zio_buf_alloc(hdr->b_size); 1894 atomic_add_64(&arc.size, hdr->b_size); 1895 ASSERT(hdr->b_datacnt == 0); 1896 hdr->b_datacnt = 1; 1897 1898 } 1899 1900 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1901 acb->acb_done = done; 1902 acb->acb_private = private; 1903 acb->acb_byteswap = swap; 1904 1905 ASSERT(hdr->b_acb == NULL); 1906 hdr->b_acb = acb; 1907 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1908 1909 /* 1910 * If the buffer has been evicted, migrate it to a present state 1911 * before issuing the I/O. Once we drop the hash-table lock, 1912 * the header will be marked as I/O in progress and have an 1913 * attached buffer. At this point, anybody who finds this 1914 * buffer ought to notice that it's legit but has a pending I/O. 1915 */ 1916 1917 if (GHOST_STATE(hdr->b_state)) 1918 arc_access_and_exit(hdr, hash_lock); 1919 else 1920 mutex_exit(hash_lock); 1921 1922 ASSERT3U(hdr->b_size, ==, size); 1923 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1924 zbookmark_t *, zb); 1925 atomic_add_64(&arc.misses, 1); 1926 1927 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1928 arc_read_done, buf, priority, flags, zb); 1929 1930 if (*arc_flags & ARC_WAIT) 1931 return (zio_wait(rzio)); 1932 1933 ASSERT(*arc_flags & ARC_NOWAIT); 1934 zio_nowait(rzio); 1935 } 1936 return (0); 1937 } 1938 1939 /* 1940 * arc_read() variant to support pool traversal. If the block is already 1941 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1942 * The idea is that we don't want pool traversal filling up memory, but 1943 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1944 */ 1945 int 1946 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1947 { 1948 arc_buf_hdr_t *hdr; 1949 kmutex_t *hash_mtx; 1950 int rc = 0; 1951 1952 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1953 1954 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 1955 arc_buf_t *buf = hdr->b_buf; 1956 1957 ASSERT(buf); 1958 while (buf->b_data == NULL) { 1959 buf = buf->b_next; 1960 ASSERT(buf); 1961 } 1962 bcopy(buf->b_data, data, hdr->b_size); 1963 } else { 1964 rc = ENOENT; 1965 } 1966 1967 if (hash_mtx) 1968 mutex_exit(hash_mtx); 1969 1970 return (rc); 1971 } 1972 1973 void 1974 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 1975 { 1976 ASSERT(buf->b_hdr != NULL); 1977 ASSERT(buf->b_hdr->b_state != arc.anon); 1978 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 1979 buf->b_efunc = func; 1980 buf->b_private = private; 1981 } 1982 1983 /* 1984 * This is used by the DMU to let the ARC know that a buffer is 1985 * being evicted, so the ARC should clean up. If this arc buf 1986 * is not yet in the evicted state, it will be put there. 1987 */ 1988 int 1989 arc_buf_evict(arc_buf_t *buf) 1990 { 1991 arc_buf_hdr_t *hdr; 1992 kmutex_t *hash_lock; 1993 arc_buf_t **bufp; 1994 1995 mutex_enter(&arc_eviction_mtx); 1996 hdr = buf->b_hdr; 1997 if (hdr == NULL) { 1998 /* 1999 * We are in arc_do_user_evicts(). 2000 * NOTE: We can't be in arc_buf_add_ref() because 2001 * that would violate the interface rules. 2002 */ 2003 ASSERT(buf->b_data == NULL); 2004 mutex_exit(&arc_eviction_mtx); 2005 return (0); 2006 } else if (buf->b_data == NULL) { 2007 arc_buf_t copy = *buf; /* structure assignment */ 2008 /* 2009 * We are on the eviction list. Process this buffer 2010 * now but let arc_do_user_evicts() do the reaping. 2011 */ 2012 buf->b_efunc = NULL; 2013 buf->b_hdr = NULL; 2014 mutex_exit(&arc_eviction_mtx); 2015 VERIFY(copy.b_efunc(©) == 0); 2016 return (1); 2017 } else { 2018 /* 2019 * Prevent a race with arc_evict() 2020 */ 2021 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2022 buf->b_hdr = NULL; 2023 } 2024 mutex_exit(&arc_eviction_mtx); 2025 2026 hash_lock = HDR_LOCK(hdr); 2027 mutex_enter(hash_lock); 2028 2029 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 2030 2031 /* 2032 * Pull this buffer off of the hdr 2033 */ 2034 bufp = &hdr->b_buf; 2035 while (*bufp != buf) 2036 bufp = &(*bufp)->b_next; 2037 *bufp = buf->b_next; 2038 2039 ASSERT(buf->b_data != NULL); 2040 buf->b_hdr = hdr; 2041 arc_buf_destroy(buf, FALSE); 2042 2043 if (hdr->b_datacnt == 0) { 2044 arc_state_t *old_state = hdr->b_state; 2045 arc_state_t *evicted_state; 2046 2047 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2048 2049 evicted_state = 2050 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2051 2052 mutex_enter(&old_state->mtx); 2053 mutex_enter(&evicted_state->mtx); 2054 2055 arc_change_state(evicted_state, hdr, hash_lock); 2056 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2057 hdr->b_flags = ARC_IN_HASH_TABLE; 2058 2059 mutex_exit(&evicted_state->mtx); 2060 mutex_exit(&old_state->mtx); 2061 } 2062 mutex_exit(hash_lock); 2063 2064 VERIFY(buf->b_efunc(buf) == 0); 2065 buf->b_efunc = NULL; 2066 buf->b_private = NULL; 2067 buf->b_hdr = NULL; 2068 kmem_cache_free(buf_cache, buf); 2069 return (1); 2070 } 2071 2072 /* 2073 * Release this buffer from the cache. This must be done 2074 * after a read and prior to modifying the buffer contents. 2075 * If the buffer has more than one reference, we must make 2076 * make a new hdr for the buffer. 2077 */ 2078 void 2079 arc_release(arc_buf_t *buf, void *tag) 2080 { 2081 arc_buf_hdr_t *hdr = buf->b_hdr; 2082 kmutex_t *hash_lock = HDR_LOCK(hdr); 2083 2084 /* this buffer is not on any list */ 2085 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2086 2087 if (hdr->b_state == arc.anon) { 2088 /* this buffer is already released */ 2089 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2090 ASSERT(BUF_EMPTY(hdr)); 2091 ASSERT(buf->b_efunc == NULL); 2092 return; 2093 } 2094 2095 mutex_enter(hash_lock); 2096 2097 /* 2098 * Do we have more than one buf? 2099 */ 2100 if (hdr->b_buf != buf || buf->b_next != NULL) { 2101 arc_buf_hdr_t *nhdr; 2102 arc_buf_t **bufp; 2103 uint64_t blksz = hdr->b_size; 2104 spa_t *spa = hdr->b_spa; 2105 2106 ASSERT(hdr->b_datacnt > 1); 2107 /* 2108 * Pull the data off of this buf and attach it to 2109 * a new anonymous buf. 2110 */ 2111 (void) remove_reference(hdr, hash_lock, tag); 2112 bufp = &hdr->b_buf; 2113 while (*bufp != buf) 2114 bufp = &(*bufp)->b_next; 2115 *bufp = (*bufp)->b_next; 2116 2117 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2118 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2119 if (refcount_is_zero(&hdr->b_refcnt)) { 2120 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2121 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2122 } 2123 hdr->b_datacnt -= 1; 2124 2125 mutex_exit(hash_lock); 2126 2127 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2128 nhdr->b_size = blksz; 2129 nhdr->b_spa = spa; 2130 nhdr->b_buf = buf; 2131 nhdr->b_state = arc.anon; 2132 nhdr->b_arc_access = 0; 2133 nhdr->b_flags = 0; 2134 nhdr->b_datacnt = 1; 2135 buf->b_hdr = nhdr; 2136 buf->b_next = NULL; 2137 (void) refcount_add(&nhdr->b_refcnt, tag); 2138 atomic_add_64(&arc.anon->size, blksz); 2139 2140 hdr = nhdr; 2141 } else { 2142 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2143 ASSERT(!list_link_active(&hdr->b_arc_node)); 2144 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2145 arc_change_state(arc.anon, hdr, hash_lock); 2146 hdr->b_arc_access = 0; 2147 mutex_exit(hash_lock); 2148 bzero(&hdr->b_dva, sizeof (dva_t)); 2149 hdr->b_birth = 0; 2150 hdr->b_cksum0 = 0; 2151 } 2152 buf->b_efunc = NULL; 2153 buf->b_private = NULL; 2154 } 2155 2156 int 2157 arc_released(arc_buf_t *buf) 2158 { 2159 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2160 } 2161 2162 int 2163 arc_has_callback(arc_buf_t *buf) 2164 { 2165 return (buf->b_efunc != NULL); 2166 } 2167 2168 #ifdef ZFS_DEBUG 2169 int 2170 arc_referenced(arc_buf_t *buf) 2171 { 2172 return (refcount_count(&buf->b_hdr->b_refcnt)); 2173 } 2174 #endif 2175 2176 static void 2177 arc_write_done(zio_t *zio) 2178 { 2179 arc_buf_t *buf; 2180 arc_buf_hdr_t *hdr; 2181 arc_callback_t *acb; 2182 2183 buf = zio->io_private; 2184 hdr = buf->b_hdr; 2185 acb = hdr->b_acb; 2186 hdr->b_acb = NULL; 2187 ASSERT(acb != NULL); 2188 2189 /* this buffer is on no lists and is not in the hash table */ 2190 ASSERT3P(hdr->b_state, ==, arc.anon); 2191 2192 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2193 hdr->b_birth = zio->io_bp->blk_birth; 2194 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2195 /* 2196 * If the block to be written was all-zero, we may have 2197 * compressed it away. In this case no write was performed 2198 * so there will be no dva/birth-date/checksum. The buffer 2199 * must therefor remain anonymous (and uncached). 2200 */ 2201 if (!BUF_EMPTY(hdr)) { 2202 arc_buf_hdr_t *exists; 2203 kmutex_t *hash_lock; 2204 2205 exists = buf_hash_insert(hdr, &hash_lock); 2206 if (exists) { 2207 /* 2208 * This can only happen if we overwrite for 2209 * sync-to-convergence, because we remove 2210 * buffers from the hash table when we arc_free(). 2211 */ 2212 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2213 BP_IDENTITY(zio->io_bp))); 2214 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2215 zio->io_bp->blk_birth); 2216 2217 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2218 arc_change_state(arc.anon, exists, hash_lock); 2219 mutex_exit(hash_lock); 2220 arc_hdr_destroy(exists); 2221 exists = buf_hash_insert(hdr, &hash_lock); 2222 ASSERT3P(exists, ==, NULL); 2223 } 2224 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2225 arc_access_and_exit(hdr, hash_lock); 2226 } else if (acb->acb_done == NULL) { 2227 int destroy_hdr; 2228 /* 2229 * This is an anonymous buffer with no user callback, 2230 * destroy it if there are no active references. 2231 */ 2232 mutex_enter(&arc_eviction_mtx); 2233 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2234 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2235 mutex_exit(&arc_eviction_mtx); 2236 if (destroy_hdr) 2237 arc_hdr_destroy(hdr); 2238 } else { 2239 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2240 } 2241 2242 if (acb->acb_done) { 2243 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2244 acb->acb_done(zio, buf, acb->acb_private); 2245 } 2246 2247 kmem_free(acb, sizeof (arc_callback_t)); 2248 } 2249 2250 int 2251 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2252 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2253 arc_done_func_t *done, void *private, int priority, int flags, 2254 uint32_t arc_flags, zbookmark_t *zb) 2255 { 2256 arc_buf_hdr_t *hdr = buf->b_hdr; 2257 arc_callback_t *acb; 2258 zio_t *rzio; 2259 2260 /* this is a private buffer - no locking required */ 2261 ASSERT3P(hdr->b_state, ==, arc.anon); 2262 ASSERT(BUF_EMPTY(hdr)); 2263 ASSERT(!HDR_IO_ERROR(hdr)); 2264 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2265 ASSERT(hdr->b_acb == 0); 2266 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2267 acb->acb_done = done; 2268 acb->acb_private = private; 2269 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2270 hdr->b_acb = acb; 2271 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2272 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2273 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2274 2275 if (arc_flags & ARC_WAIT) 2276 return (zio_wait(rzio)); 2277 2278 ASSERT(arc_flags & ARC_NOWAIT); 2279 zio_nowait(rzio); 2280 2281 return (0); 2282 } 2283 2284 int 2285 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2286 zio_done_func_t *done, void *private, uint32_t arc_flags) 2287 { 2288 arc_buf_hdr_t *ab; 2289 kmutex_t *hash_lock; 2290 zio_t *zio; 2291 2292 /* 2293 * If this buffer is in the cache, release it, so it 2294 * can be re-used. 2295 */ 2296 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2297 if (ab != NULL) { 2298 /* 2299 * The checksum of blocks to free is not always 2300 * preserved (eg. on the deadlist). However, if it is 2301 * nonzero, it should match what we have in the cache. 2302 */ 2303 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2304 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2305 if (ab->b_state != arc.anon) 2306 arc_change_state(arc.anon, ab, hash_lock); 2307 if (HDR_IO_IN_PROGRESS(ab)) { 2308 /* 2309 * This should only happen when we prefetch. 2310 */ 2311 ASSERT(ab->b_flags & ARC_PREFETCH); 2312 ASSERT3U(ab->b_datacnt, ==, 1); 2313 ab->b_flags |= ARC_FREED_IN_READ; 2314 if (HDR_IN_HASH_TABLE(ab)) 2315 buf_hash_remove(ab); 2316 ab->b_arc_access = 0; 2317 bzero(&ab->b_dva, sizeof (dva_t)); 2318 ab->b_birth = 0; 2319 ab->b_cksum0 = 0; 2320 ab->b_buf->b_efunc = NULL; 2321 ab->b_buf->b_private = NULL; 2322 mutex_exit(hash_lock); 2323 } else if (refcount_is_zero(&ab->b_refcnt)) { 2324 mutex_exit(hash_lock); 2325 arc_hdr_destroy(ab); 2326 atomic_add_64(&arc.deleted, 1); 2327 } else { 2328 /* 2329 * We still have an active reference on this 2330 * buffer. This can happen, e.g., from 2331 * dbuf_unoverride(). 2332 */ 2333 ASSERT(!HDR_IN_HASH_TABLE(ab)); 2334 ab->b_arc_access = 0; 2335 bzero(&ab->b_dva, sizeof (dva_t)); 2336 ab->b_birth = 0; 2337 ab->b_cksum0 = 0; 2338 ab->b_buf->b_efunc = NULL; 2339 ab->b_buf->b_private = NULL; 2340 mutex_exit(hash_lock); 2341 } 2342 } 2343 2344 zio = zio_free(pio, spa, txg, bp, done, private); 2345 2346 if (arc_flags & ARC_WAIT) 2347 return (zio_wait(zio)); 2348 2349 ASSERT(arc_flags & ARC_NOWAIT); 2350 zio_nowait(zio); 2351 2352 return (0); 2353 } 2354 2355 void 2356 arc_tempreserve_clear(uint64_t tempreserve) 2357 { 2358 atomic_add_64(&arc_tempreserve, -tempreserve); 2359 ASSERT((int64_t)arc_tempreserve >= 0); 2360 } 2361 2362 int 2363 arc_tempreserve_space(uint64_t tempreserve) 2364 { 2365 #ifdef ZFS_DEBUG 2366 /* 2367 * Once in a while, fail for no reason. Everything should cope. 2368 */ 2369 if (spa_get_random(10000) == 0) { 2370 dprintf("forcing random failure\n"); 2371 return (ERESTART); 2372 } 2373 #endif 2374 if (tempreserve > arc.c/4 && !arc.no_grow) 2375 arc.c = MIN(arc.c_max, tempreserve * 4); 2376 if (tempreserve > arc.c) 2377 return (ENOMEM); 2378 2379 /* 2380 * Throttle writes when the amount of dirty data in the cache 2381 * gets too large. We try to keep the cache less than half full 2382 * of dirty blocks so that our sync times don't grow too large. 2383 * Note: if two requests come in concurrently, we might let them 2384 * both succeed, when one of them should fail. Not a huge deal. 2385 * 2386 * XXX The limit should be adjusted dynamically to keep the time 2387 * to sync a dataset fixed (around 1-5 seconds?). 2388 */ 2389 2390 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2391 arc_tempreserve + arc.anon->size > arc.c / 4) { 2392 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2393 "tempreserve=%lluK arc.c=%lluK\n", 2394 arc_tempreserve>>10, arc.anon->lsize>>10, 2395 tempreserve>>10, arc.c>>10); 2396 return (ERESTART); 2397 } 2398 atomic_add_64(&arc_tempreserve, tempreserve); 2399 return (0); 2400 } 2401 2402 void 2403 arc_init(void) 2404 { 2405 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 2406 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2407 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2408 2409 /* Convert seconds to clock ticks */ 2410 arc_min_prefetch_lifespan *= hz; 2411 2412 /* Start out with 1/8 of all memory */ 2413 arc.c = physmem * PAGESIZE / 8; 2414 2415 #ifdef _KERNEL 2416 /* 2417 * On architectures where the physical memory can be larger 2418 * than the addressable space (intel in 32-bit mode), we may 2419 * need to limit the cache to 1/8 of VM size. 2420 */ 2421 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2422 #endif 2423 2424 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2425 arc.c_min = MAX(arc.c / 4, 64<<20); 2426 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2427 if (arc.c * 8 >= 1<<30) 2428 arc.c_max = (arc.c * 8) - (1<<30); 2429 else 2430 arc.c_max = arc.c_min; 2431 arc.c_max = MAX(arc.c * 6, arc.c_max); 2432 arc.c = arc.c_max; 2433 arc.p = (arc.c >> 1); 2434 2435 /* if kmem_flags are set, lets try to use less memory */ 2436 if (kmem_debugging()) 2437 arc.c = arc.c / 2; 2438 if (arc.c < arc.c_min) 2439 arc.c = arc.c_min; 2440 2441 arc.anon = &ARC_anon; 2442 arc.mru = &ARC_mru; 2443 arc.mru_ghost = &ARC_mru_ghost; 2444 arc.mfu = &ARC_mfu; 2445 arc.mfu_ghost = &ARC_mfu_ghost; 2446 arc.size = 0; 2447 2448 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2449 offsetof(arc_buf_hdr_t, b_arc_node)); 2450 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2451 offsetof(arc_buf_hdr_t, b_arc_node)); 2452 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2453 offsetof(arc_buf_hdr_t, b_arc_node)); 2454 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2455 offsetof(arc_buf_hdr_t, b_arc_node)); 2456 2457 buf_init(); 2458 2459 arc_thread_exit = 0; 2460 arc_eviction_list = NULL; 2461 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2462 2463 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2464 TS_RUN, minclsyspri); 2465 } 2466 2467 void 2468 arc_fini(void) 2469 { 2470 mutex_enter(&arc_reclaim_thr_lock); 2471 arc_thread_exit = 1; 2472 while (arc_thread_exit != 0) 2473 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2474 mutex_exit(&arc_reclaim_thr_lock); 2475 2476 arc_flush(); 2477 2478 arc_dead = TRUE; 2479 2480 mutex_destroy(&arc_eviction_mtx); 2481 mutex_destroy(&arc_reclaim_lock); 2482 mutex_destroy(&arc_reclaim_thr_lock); 2483 cv_destroy(&arc_reclaim_thr_cv); 2484 2485 list_destroy(&arc.mru->list); 2486 list_destroy(&arc.mru_ghost->list); 2487 list_destroy(&arc.mfu->list); 2488 list_destroy(&arc.mfu_ghost->list); 2489 2490 buf_fini(); 2491 } 2492