xref: /titanic_41/usr/src/uts/common/fs/zfs/arc.c (revision 9525b14bcdeb5b5f6f95ab27c2f48f18bd2ec829)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * DVA-based Adjustable Replacement Cache
28  *
29  * While much of the theory of operation used here is
30  * based on the self-tuning, low overhead replacement cache
31  * presented by Megiddo and Modha at FAST 2003, there are some
32  * significant differences:
33  *
34  * 1. The Megiddo and Modha model assumes any page is evictable.
35  * Pages in its cache cannot be "locked" into memory.  This makes
36  * the eviction algorithm simple: evict the last page in the list.
37  * This also make the performance characteristics easy to reason
38  * about.  Our cache is not so simple.  At any given moment, some
39  * subset of the blocks in the cache are un-evictable because we
40  * have handed out a reference to them.  Blocks are only evictable
41  * when there are no external references active.  This makes
42  * eviction far more problematic:  we choose to evict the evictable
43  * blocks that are the "lowest" in the list.
44  *
45  * There are times when it is not possible to evict the requested
46  * space.  In these circumstances we are unable to adjust the cache
47  * size.  To prevent the cache growing unbounded at these times we
48  * implement a "cache throttle" that slows the flow of new data
49  * into the cache until we can make space available.
50  *
51  * 2. The Megiddo and Modha model assumes a fixed cache size.
52  * Pages are evicted when the cache is full and there is a cache
53  * miss.  Our model has a variable sized cache.  It grows with
54  * high use, but also tries to react to memory pressure from the
55  * operating system: decreasing its size when system memory is
56  * tight.
57  *
58  * 3. The Megiddo and Modha model assumes a fixed page size. All
59  * elements of the cache are therefor exactly the same size.  So
60  * when adjusting the cache size following a cache miss, its simply
61  * a matter of choosing a single page to evict.  In our model, we
62  * have variable sized cache blocks (rangeing from 512 bytes to
63  * 128K bytes).  We therefor choose a set of blocks to evict to make
64  * space for a cache miss that approximates as closely as possible
65  * the space used by the new block.
66  *
67  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
68  * by N. Megiddo & D. Modha, FAST 2003
69  */
70 
71 /*
72  * The locking model:
73  *
74  * A new reference to a cache buffer can be obtained in two
75  * ways: 1) via a hash table lookup using the DVA as a key,
76  * or 2) via one of the ARC lists.  The arc_read() interface
77  * uses method 1, while the internal arc algorithms for
78  * adjusting the cache use method 2.  We therefor provide two
79  * types of locks: 1) the hash table lock array, and 2) the
80  * arc list locks.
81  *
82  * Buffers do not have their own mutexs, rather they rely on the
83  * hash table mutexs for the bulk of their protection (i.e. most
84  * fields in the arc_buf_hdr_t are protected by these mutexs).
85  *
86  * buf_hash_find() returns the appropriate mutex (held) when it
87  * locates the requested buffer in the hash table.  It returns
88  * NULL for the mutex if the buffer was not in the table.
89  *
90  * buf_hash_remove() expects the appropriate hash mutex to be
91  * already held before it is invoked.
92  *
93  * Each arc state also has a mutex which is used to protect the
94  * buffer list associated with the state.  When attempting to
95  * obtain a hash table lock while holding an arc list lock you
96  * must use: mutex_tryenter() to avoid deadlock.  Also note that
97  * the active state mutex must be held before the ghost state mutex.
98  *
99  * Arc buffers may have an associated eviction callback function.
100  * This function will be invoked prior to removing the buffer (e.g.
101  * in arc_do_user_evicts()).  Note however that the data associated
102  * with the buffer may be evicted prior to the callback.  The callback
103  * must be made with *no locks held* (to prevent deadlock).  Additionally,
104  * the users of callbacks must ensure that their private data is
105  * protected from simultaneous callbacks from arc_buf_evict()
106  * and arc_do_user_evicts().
107  *
108  * Note that the majority of the performance stats are manipulated
109  * with atomic operations.
110  *
111  * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
112  *
113  *	- L2ARC buflist creation
114  *	- L2ARC buflist eviction
115  *	- L2ARC write completion, which walks L2ARC buflists
116  *	- ARC header destruction, as it removes from L2ARC buflists
117  *	- ARC header release, as it removes from L2ARC buflists
118  */
119 
120 #include <sys/spa.h>
121 #include <sys/zio.h>
122 #include <sys/zfs_context.h>
123 #include <sys/arc.h>
124 #include <sys/refcount.h>
125 #include <sys/vdev.h>
126 #include <sys/vdev_impl.h>
127 #ifdef _KERNEL
128 #include <sys/vmsystm.h>
129 #include <vm/anon.h>
130 #include <sys/fs/swapnode.h>
131 #include <sys/dnlc.h>
132 #endif
133 #include <sys/callb.h>
134 #include <sys/kstat.h>
135 #include <zfs_fletcher.h>
136 
137 static kmutex_t		arc_reclaim_thr_lock;
138 static kcondvar_t	arc_reclaim_thr_cv;	/* used to signal reclaim thr */
139 static uint8_t		arc_thread_exit;
140 
141 extern int zfs_write_limit_shift;
142 extern uint64_t zfs_write_limit_max;
143 extern kmutex_t zfs_write_limit_lock;
144 
145 #define	ARC_REDUCE_DNLC_PERCENT	3
146 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;
147 
148 typedef enum arc_reclaim_strategy {
149 	ARC_RECLAIM_AGGR,		/* Aggressive reclaim strategy */
150 	ARC_RECLAIM_CONS		/* Conservative reclaim strategy */
151 } arc_reclaim_strategy_t;
152 
153 /* number of seconds before growing cache again */
154 static int		arc_grow_retry = 60;
155 
156 /* shift of arc_c for calculating both min and max arc_p */
157 static int		arc_p_min_shift = 4;
158 
159 /* log2(fraction of arc to reclaim) */
160 static int		arc_shrink_shift = 5;
161 
162 /*
163  * minimum lifespan of a prefetch block in clock ticks
164  * (initialized in arc_init())
165  */
166 static int		arc_min_prefetch_lifespan;
167 
168 static int arc_dead;
169 
170 /*
171  * The arc has filled available memory and has now warmed up.
172  */
173 static boolean_t arc_warm;
174 
175 /*
176  * These tunables are for performance analysis.
177  */
178 uint64_t zfs_arc_max;
179 uint64_t zfs_arc_min;
180 uint64_t zfs_arc_meta_limit = 0;
181 int zfs_arc_grow_retry = 0;
182 int zfs_arc_shrink_shift = 0;
183 int zfs_arc_p_min_shift = 0;
184 
185 /*
186  * Note that buffers can be in one of 6 states:
187  *	ARC_anon	- anonymous (discussed below)
188  *	ARC_mru		- recently used, currently cached
189  *	ARC_mru_ghost	- recentely used, no longer in cache
190  *	ARC_mfu		- frequently used, currently cached
191  *	ARC_mfu_ghost	- frequently used, no longer in cache
192  *	ARC_l2c_only	- exists in L2ARC but not other states
193  * When there are no active references to the buffer, they are
194  * are linked onto a list in one of these arc states.  These are
195  * the only buffers that can be evicted or deleted.  Within each
196  * state there are multiple lists, one for meta-data and one for
197  * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
198  * etc.) is tracked separately so that it can be managed more
199  * explicitly: favored over data, limited explicitly.
200  *
201  * Anonymous buffers are buffers that are not associated with
202  * a DVA.  These are buffers that hold dirty block copies
203  * before they are written to stable storage.  By definition,
204  * they are "ref'd" and are considered part of arc_mru
205  * that cannot be freed.  Generally, they will aquire a DVA
206  * as they are written and migrate onto the arc_mru list.
207  *
208  * The ARC_l2c_only state is for buffers that are in the second
209  * level ARC but no longer in any of the ARC_m* lists.  The second
210  * level ARC itself may also contain buffers that are in any of
211  * the ARC_m* states - meaning that a buffer can exist in two
212  * places.  The reason for the ARC_l2c_only state is to keep the
213  * buffer header in the hash table, so that reads that hit the
214  * second level ARC benefit from these fast lookups.
215  */
216 
217 typedef struct arc_state {
218 	list_t	arcs_list[ARC_BUFC_NUMTYPES];	/* list of evictable buffers */
219 	uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];	/* amount of evictable data */
220 	uint64_t arcs_size;	/* total amount of data in this state */
221 	kmutex_t arcs_mtx;
222 } arc_state_t;
223 
224 /* The 6 states: */
225 static arc_state_t ARC_anon;
226 static arc_state_t ARC_mru;
227 static arc_state_t ARC_mru_ghost;
228 static arc_state_t ARC_mfu;
229 static arc_state_t ARC_mfu_ghost;
230 static arc_state_t ARC_l2c_only;
231 
232 typedef struct arc_stats {
233 	kstat_named_t arcstat_hits;
234 	kstat_named_t arcstat_misses;
235 	kstat_named_t arcstat_demand_data_hits;
236 	kstat_named_t arcstat_demand_data_misses;
237 	kstat_named_t arcstat_demand_metadata_hits;
238 	kstat_named_t arcstat_demand_metadata_misses;
239 	kstat_named_t arcstat_prefetch_data_hits;
240 	kstat_named_t arcstat_prefetch_data_misses;
241 	kstat_named_t arcstat_prefetch_metadata_hits;
242 	kstat_named_t arcstat_prefetch_metadata_misses;
243 	kstat_named_t arcstat_mru_hits;
244 	kstat_named_t arcstat_mru_ghost_hits;
245 	kstat_named_t arcstat_mfu_hits;
246 	kstat_named_t arcstat_mfu_ghost_hits;
247 	kstat_named_t arcstat_deleted;
248 	kstat_named_t arcstat_recycle_miss;
249 	kstat_named_t arcstat_mutex_miss;
250 	kstat_named_t arcstat_evict_skip;
251 	kstat_named_t arcstat_evict_l2_cached;
252 	kstat_named_t arcstat_evict_l2_eligible;
253 	kstat_named_t arcstat_evict_l2_ineligible;
254 	kstat_named_t arcstat_hash_elements;
255 	kstat_named_t arcstat_hash_elements_max;
256 	kstat_named_t arcstat_hash_collisions;
257 	kstat_named_t arcstat_hash_chains;
258 	kstat_named_t arcstat_hash_chain_max;
259 	kstat_named_t arcstat_p;
260 	kstat_named_t arcstat_c;
261 	kstat_named_t arcstat_c_min;
262 	kstat_named_t arcstat_c_max;
263 	kstat_named_t arcstat_size;
264 	kstat_named_t arcstat_hdr_size;
265 	kstat_named_t arcstat_data_size;
266 	kstat_named_t arcstat_other_size;
267 	kstat_named_t arcstat_l2_hits;
268 	kstat_named_t arcstat_l2_misses;
269 	kstat_named_t arcstat_l2_feeds;
270 	kstat_named_t arcstat_l2_rw_clash;
271 	kstat_named_t arcstat_l2_read_bytes;
272 	kstat_named_t arcstat_l2_write_bytes;
273 	kstat_named_t arcstat_l2_writes_sent;
274 	kstat_named_t arcstat_l2_writes_done;
275 	kstat_named_t arcstat_l2_writes_error;
276 	kstat_named_t arcstat_l2_writes_hdr_miss;
277 	kstat_named_t arcstat_l2_evict_lock_retry;
278 	kstat_named_t arcstat_l2_evict_reading;
279 	kstat_named_t arcstat_l2_free_on_write;
280 	kstat_named_t arcstat_l2_abort_lowmem;
281 	kstat_named_t arcstat_l2_cksum_bad;
282 	kstat_named_t arcstat_l2_io_error;
283 	kstat_named_t arcstat_l2_size;
284 	kstat_named_t arcstat_l2_hdr_size;
285 	kstat_named_t arcstat_memory_throttle_count;
286 } arc_stats_t;
287 
288 static arc_stats_t arc_stats = {
289 	{ "hits",			KSTAT_DATA_UINT64 },
290 	{ "misses",			KSTAT_DATA_UINT64 },
291 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
292 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
293 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
294 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
295 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
296 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
297 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
298 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
299 	{ "mru_hits",			KSTAT_DATA_UINT64 },
300 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
301 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
302 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
303 	{ "deleted",			KSTAT_DATA_UINT64 },
304 	{ "recycle_miss",		KSTAT_DATA_UINT64 },
305 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
306 	{ "evict_skip",			KSTAT_DATA_UINT64 },
307 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
308 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
309 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
310 	{ "hash_elements",		KSTAT_DATA_UINT64 },
311 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
312 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
313 	{ "hash_chains",		KSTAT_DATA_UINT64 },
314 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
315 	{ "p",				KSTAT_DATA_UINT64 },
316 	{ "c",				KSTAT_DATA_UINT64 },
317 	{ "c_min",			KSTAT_DATA_UINT64 },
318 	{ "c_max",			KSTAT_DATA_UINT64 },
319 	{ "size",			KSTAT_DATA_UINT64 },
320 	{ "hdr_size",			KSTAT_DATA_UINT64 },
321 	{ "data_size",			KSTAT_DATA_UINT64 },
322 	{ "other_size",			KSTAT_DATA_UINT64 },
323 	{ "l2_hits",			KSTAT_DATA_UINT64 },
324 	{ "l2_misses",			KSTAT_DATA_UINT64 },
325 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
326 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
327 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
328 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
329 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
330 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
331 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
332 	{ "l2_writes_hdr_miss",		KSTAT_DATA_UINT64 },
333 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
334 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
335 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
336 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
337 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
338 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
339 	{ "l2_size",			KSTAT_DATA_UINT64 },
340 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
341 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 }
342 };
343 
344 #define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
345 
346 #define	ARCSTAT_INCR(stat, val) \
347 	atomic_add_64(&arc_stats.stat.value.ui64, (val));
348 
349 #define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
350 #define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
351 
352 #define	ARCSTAT_MAX(stat, val) {					\
353 	uint64_t m;							\
354 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
355 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
356 		continue;						\
357 }
358 
359 #define	ARCSTAT_MAXSTAT(stat) \
360 	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
361 
362 /*
363  * We define a macro to allow ARC hits/misses to be easily broken down by
364  * two separate conditions, giving a total of four different subtypes for
365  * each of hits and misses (so eight statistics total).
366  */
367 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
368 	if (cond1) {							\
369 		if (cond2) {						\
370 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
371 		} else {						\
372 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
373 		}							\
374 	} else {							\
375 		if (cond2) {						\
376 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
377 		} else {						\
378 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
379 		}							\
380 	}
381 
382 kstat_t			*arc_ksp;
383 static arc_state_t	*arc_anon;
384 static arc_state_t	*arc_mru;
385 static arc_state_t	*arc_mru_ghost;
386 static arc_state_t	*arc_mfu;
387 static arc_state_t	*arc_mfu_ghost;
388 static arc_state_t	*arc_l2c_only;
389 
390 /*
391  * There are several ARC variables that are critical to export as kstats --
392  * but we don't want to have to grovel around in the kstat whenever we wish to
393  * manipulate them.  For these variables, we therefore define them to be in
394  * terms of the statistic variable.  This assures that we are not introducing
395  * the possibility of inconsistency by having shadow copies of the variables,
396  * while still allowing the code to be readable.
397  */
398 #define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
399 #define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
400 #define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
401 #define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
402 #define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
403 
404 static int		arc_no_grow;	/* Don't try to grow cache size */
405 static uint64_t		arc_tempreserve;
406 static uint64_t		arc_loaned_bytes;
407 static uint64_t		arc_meta_used;
408 static uint64_t		arc_meta_limit;
409 static uint64_t		arc_meta_max = 0;
410 
411 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t;
412 
413 typedef struct arc_callback arc_callback_t;
414 
415 struct arc_callback {
416 	void			*acb_private;
417 	arc_done_func_t		*acb_done;
418 	arc_buf_t		*acb_buf;
419 	zio_t			*acb_zio_dummy;
420 	arc_callback_t		*acb_next;
421 };
422 
423 typedef struct arc_write_callback arc_write_callback_t;
424 
425 struct arc_write_callback {
426 	void		*awcb_private;
427 	arc_done_func_t	*awcb_ready;
428 	arc_done_func_t	*awcb_done;
429 	arc_buf_t	*awcb_buf;
430 };
431 
432 struct arc_buf_hdr {
433 	/* protected by hash lock */
434 	dva_t			b_dva;
435 	uint64_t		b_birth;
436 	uint64_t		b_cksum0;
437 
438 	kmutex_t		b_freeze_lock;
439 	zio_cksum_t		*b_freeze_cksum;
440 
441 	arc_buf_hdr_t		*b_hash_next;
442 	arc_buf_t		*b_buf;
443 	uint32_t		b_flags;
444 	uint32_t		b_datacnt;
445 
446 	arc_callback_t		*b_acb;
447 	kcondvar_t		b_cv;
448 
449 	/* immutable */
450 	arc_buf_contents_t	b_type;
451 	uint64_t		b_size;
452 	uint64_t		b_spa;
453 
454 	/* protected by arc state mutex */
455 	arc_state_t		*b_state;
456 	list_node_t		b_arc_node;
457 
458 	/* updated atomically */
459 	clock_t			b_arc_access;
460 
461 	/* self protecting */
462 	refcount_t		b_refcnt;
463 
464 	l2arc_buf_hdr_t		*b_l2hdr;
465 	list_node_t		b_l2node;
466 };
467 
468 static arc_buf_t *arc_eviction_list;
469 static kmutex_t arc_eviction_mtx;
470 static arc_buf_hdr_t arc_eviction_hdr;
471 static void arc_get_data_buf(arc_buf_t *buf);
472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
473 static int arc_evict_needed(arc_buf_contents_t type);
474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes);
475 
476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
477 
478 #define	GHOST_STATE(state)	\
479 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
480 	(state) == arc_l2c_only)
481 
482 /*
483  * Private ARC flags.  These flags are private ARC only flags that will show up
484  * in b_flags in the arc_hdr_buf_t.  Some flags are publicly declared, and can
485  * be passed in as arc_flags in things like arc_read.  However, these flags
486  * should never be passed and should only be set by ARC code.  When adding new
487  * public flags, make sure not to smash the private ones.
488  */
489 
490 #define	ARC_IN_HASH_TABLE	(1 << 9)	/* this buffer is hashed */
491 #define	ARC_IO_IN_PROGRESS	(1 << 10)	/* I/O in progress for buf */
492 #define	ARC_IO_ERROR		(1 << 11)	/* I/O failed for buf */
493 #define	ARC_FREED_IN_READ	(1 << 12)	/* buf freed while in read */
494 #define	ARC_BUF_AVAILABLE	(1 << 13)	/* block not in active use */
495 #define	ARC_INDIRECT		(1 << 14)	/* this is an indirect block */
496 #define	ARC_FREE_IN_PROGRESS	(1 << 15)	/* hdr about to be freed */
497 #define	ARC_L2_WRITING		(1 << 16)	/* L2ARC write in progress */
498 #define	ARC_L2_EVICTED		(1 << 17)	/* evicted during I/O */
499 #define	ARC_L2_WRITE_HEAD	(1 << 18)	/* head of write list */
500 
501 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_IN_HASH_TABLE)
502 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS)
503 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_IO_ERROR)
504 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_PREFETCH)
505 #define	HDR_FREED_IN_READ(hdr)	((hdr)->b_flags & ARC_FREED_IN_READ)
506 #define	HDR_BUF_AVAILABLE(hdr)	((hdr)->b_flags & ARC_BUF_AVAILABLE)
507 #define	HDR_FREE_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
508 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_L2CACHE)
509 #define	HDR_L2_READING(hdr)	((hdr)->b_flags & ARC_IO_IN_PROGRESS &&	\
510 				    (hdr)->b_l2hdr != NULL)
511 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_L2_WRITING)
512 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_L2_EVICTED)
513 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_L2_WRITE_HEAD)
514 
515 /*
516  * Other sizes
517  */
518 
519 #define	HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
520 #define	L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
521 
522 /*
523  * Hash table routines
524  */
525 
526 #define	HT_LOCK_PAD	64
527 
528 struct ht_lock {
529 	kmutex_t	ht_lock;
530 #ifdef _KERNEL
531 	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
532 #endif
533 };
534 
535 #define	BUF_LOCKS 256
536 typedef struct buf_hash_table {
537 	uint64_t ht_mask;
538 	arc_buf_hdr_t **ht_table;
539 	struct ht_lock ht_locks[BUF_LOCKS];
540 } buf_hash_table_t;
541 
542 static buf_hash_table_t buf_hash_table;
543 
544 #define	BUF_HASH_INDEX(spa, dva, birth) \
545 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
546 #define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
547 #define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
548 #define	HDR_LOCK(buf) \
549 	(BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth)))
550 
551 uint64_t zfs_crc64_table[256];
552 
553 /*
554  * Level 2 ARC
555  */
556 
557 #define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
558 #define	L2ARC_HEADROOM		2		/* num of writes */
559 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
560 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
561 
562 #define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
563 #define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
564 
565 /*
566  * L2ARC Performance Tunables
567  */
568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
570 uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
573 boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
574 boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
575 boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
576 
577 /*
578  * L2ARC Internals
579  */
580 typedef struct l2arc_dev {
581 	vdev_t			*l2ad_vdev;	/* vdev */
582 	spa_t			*l2ad_spa;	/* spa */
583 	uint64_t		l2ad_hand;	/* next write location */
584 	uint64_t		l2ad_write;	/* desired write size, bytes */
585 	uint64_t		l2ad_boost;	/* warmup write boost, bytes */
586 	uint64_t		l2ad_start;	/* first addr on device */
587 	uint64_t		l2ad_end;	/* last addr on device */
588 	uint64_t		l2ad_evict;	/* last addr eviction reached */
589 	boolean_t		l2ad_first;	/* first sweep through */
590 	boolean_t		l2ad_writing;	/* currently writing */
591 	list_t			*l2ad_buflist;	/* buffer list */
592 	list_node_t		l2ad_node;	/* device list node */
593 } l2arc_dev_t;
594 
595 static list_t L2ARC_dev_list;			/* device list */
596 static list_t *l2arc_dev_list;			/* device list pointer */
597 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
598 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
599 static kmutex_t l2arc_buflist_mtx;		/* mutex for all buflists */
600 static list_t L2ARC_free_on_write;		/* free after write buf list */
601 static list_t *l2arc_free_on_write;		/* free after write list ptr */
602 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
603 static uint64_t l2arc_ndev;			/* number of devices */
604 
605 typedef struct l2arc_read_callback {
606 	arc_buf_t	*l2rcb_buf;		/* read buffer */
607 	spa_t		*l2rcb_spa;		/* spa */
608 	blkptr_t	l2rcb_bp;		/* original blkptr */
609 	zbookmark_t	l2rcb_zb;		/* original bookmark */
610 	int		l2rcb_flags;		/* original flags */
611 } l2arc_read_callback_t;
612 
613 typedef struct l2arc_write_callback {
614 	l2arc_dev_t	*l2wcb_dev;		/* device info */
615 	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
616 } l2arc_write_callback_t;
617 
618 struct l2arc_buf_hdr {
619 	/* protected by arc_buf_hdr  mutex */
620 	l2arc_dev_t	*b_dev;			/* L2ARC device */
621 	uint64_t	b_daddr;		/* disk address, offset byte */
622 };
623 
624 typedef struct l2arc_data_free {
625 	/* protected by l2arc_free_on_write_mtx */
626 	void		*l2df_data;
627 	size_t		l2df_size;
628 	void		(*l2df_func)(void *, size_t);
629 	list_node_t	l2df_list_node;
630 } l2arc_data_free_t;
631 
632 static kmutex_t l2arc_feed_thr_lock;
633 static kcondvar_t l2arc_feed_thr_cv;
634 static uint8_t l2arc_thread_exit;
635 
636 static void l2arc_read_done(zio_t *zio);
637 static void l2arc_hdr_stat_add(void);
638 static void l2arc_hdr_stat_remove(void);
639 
640 static uint64_t
641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
642 {
643 	uint8_t *vdva = (uint8_t *)dva;
644 	uint64_t crc = -1ULL;
645 	int i;
646 
647 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
648 
649 	for (i = 0; i < sizeof (dva_t); i++)
650 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
651 
652 	crc ^= (spa>>8) ^ birth;
653 
654 	return (crc);
655 }
656 
657 #define	BUF_EMPTY(buf)						\
658 	((buf)->b_dva.dva_word[0] == 0 &&			\
659 	(buf)->b_dva.dva_word[1] == 0 &&			\
660 	(buf)->b_birth == 0)
661 
662 #define	BUF_EQUAL(spa, dva, birth, buf)				\
663 	((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
664 	((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
665 	((buf)->b_birth == birth) && ((buf)->b_spa == spa)
666 
667 static arc_buf_hdr_t *
668 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp)
669 {
670 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
671 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
672 	arc_buf_hdr_t *buf;
673 
674 	mutex_enter(hash_lock);
675 	for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
676 	    buf = buf->b_hash_next) {
677 		if (BUF_EQUAL(spa, dva, birth, buf)) {
678 			*lockp = hash_lock;
679 			return (buf);
680 		}
681 	}
682 	mutex_exit(hash_lock);
683 	*lockp = NULL;
684 	return (NULL);
685 }
686 
687 /*
688  * Insert an entry into the hash table.  If there is already an element
689  * equal to elem in the hash table, then the already existing element
690  * will be returned and the new element will not be inserted.
691  * Otherwise returns NULL.
692  */
693 static arc_buf_hdr_t *
694 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
695 {
696 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
697 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
698 	arc_buf_hdr_t *fbuf;
699 	uint32_t i;
700 
701 	ASSERT(!HDR_IN_HASH_TABLE(buf));
702 	*lockp = hash_lock;
703 	mutex_enter(hash_lock);
704 	for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
705 	    fbuf = fbuf->b_hash_next, i++) {
706 		if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
707 			return (fbuf);
708 	}
709 
710 	buf->b_hash_next = buf_hash_table.ht_table[idx];
711 	buf_hash_table.ht_table[idx] = buf;
712 	buf->b_flags |= ARC_IN_HASH_TABLE;
713 
714 	/* collect some hash table performance data */
715 	if (i > 0) {
716 		ARCSTAT_BUMP(arcstat_hash_collisions);
717 		if (i == 1)
718 			ARCSTAT_BUMP(arcstat_hash_chains);
719 
720 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
721 	}
722 
723 	ARCSTAT_BUMP(arcstat_hash_elements);
724 	ARCSTAT_MAXSTAT(arcstat_hash_elements);
725 
726 	return (NULL);
727 }
728 
729 static void
730 buf_hash_remove(arc_buf_hdr_t *buf)
731 {
732 	arc_buf_hdr_t *fbuf, **bufp;
733 	uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
734 
735 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
736 	ASSERT(HDR_IN_HASH_TABLE(buf));
737 
738 	bufp = &buf_hash_table.ht_table[idx];
739 	while ((fbuf = *bufp) != buf) {
740 		ASSERT(fbuf != NULL);
741 		bufp = &fbuf->b_hash_next;
742 	}
743 	*bufp = buf->b_hash_next;
744 	buf->b_hash_next = NULL;
745 	buf->b_flags &= ~ARC_IN_HASH_TABLE;
746 
747 	/* collect some hash table performance data */
748 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
749 
750 	if (buf_hash_table.ht_table[idx] &&
751 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
752 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
753 }
754 
755 /*
756  * Global data structures and functions for the buf kmem cache.
757  */
758 static kmem_cache_t *hdr_cache;
759 static kmem_cache_t *buf_cache;
760 
761 static void
762 buf_fini(void)
763 {
764 	int i;
765 
766 	kmem_free(buf_hash_table.ht_table,
767 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
768 	for (i = 0; i < BUF_LOCKS; i++)
769 		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
770 	kmem_cache_destroy(hdr_cache);
771 	kmem_cache_destroy(buf_cache);
772 }
773 
774 /*
775  * Constructor callback - called when the cache is empty
776  * and a new buf is requested.
777  */
778 /* ARGSUSED */
779 static int
780 hdr_cons(void *vbuf, void *unused, int kmflag)
781 {
782 	arc_buf_hdr_t *buf = vbuf;
783 
784 	bzero(buf, sizeof (arc_buf_hdr_t));
785 	refcount_create(&buf->b_refcnt);
786 	cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
787 	mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
788 	arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
789 
790 	return (0);
791 }
792 
793 /* ARGSUSED */
794 static int
795 buf_cons(void *vbuf, void *unused, int kmflag)
796 {
797 	arc_buf_t *buf = vbuf;
798 
799 	bzero(buf, sizeof (arc_buf_t));
800 	rw_init(&buf->b_lock, NULL, RW_DEFAULT, NULL);
801 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
802 
803 	return (0);
804 }
805 
806 /*
807  * Destructor callback - called when a cached buf is
808  * no longer required.
809  */
810 /* ARGSUSED */
811 static void
812 hdr_dest(void *vbuf, void *unused)
813 {
814 	arc_buf_hdr_t *buf = vbuf;
815 
816 	ASSERT(BUF_EMPTY(buf));
817 	refcount_destroy(&buf->b_refcnt);
818 	cv_destroy(&buf->b_cv);
819 	mutex_destroy(&buf->b_freeze_lock);
820 	arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
821 }
822 
823 /* ARGSUSED */
824 static void
825 buf_dest(void *vbuf, void *unused)
826 {
827 	arc_buf_t *buf = vbuf;
828 
829 	rw_destroy(&buf->b_lock);
830 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
831 }
832 
833 /*
834  * Reclaim callback -- invoked when memory is low.
835  */
836 /* ARGSUSED */
837 static void
838 hdr_recl(void *unused)
839 {
840 	dprintf("hdr_recl called\n");
841 	/*
842 	 * umem calls the reclaim func when we destroy the buf cache,
843 	 * which is after we do arc_fini().
844 	 */
845 	if (!arc_dead)
846 		cv_signal(&arc_reclaim_thr_cv);
847 }
848 
849 static void
850 buf_init(void)
851 {
852 	uint64_t *ct;
853 	uint64_t hsize = 1ULL << 12;
854 	int i, j;
855 
856 	/*
857 	 * The hash table is big enough to fill all of physical memory
858 	 * with an average 64K block size.  The table will take up
859 	 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers).
860 	 */
861 	while (hsize * 65536 < physmem * PAGESIZE)
862 		hsize <<= 1;
863 retry:
864 	buf_hash_table.ht_mask = hsize - 1;
865 	buf_hash_table.ht_table =
866 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
867 	if (buf_hash_table.ht_table == NULL) {
868 		ASSERT(hsize > (1ULL << 8));
869 		hsize >>= 1;
870 		goto retry;
871 	}
872 
873 	hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
874 	    0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0);
875 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
876 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
877 
878 	for (i = 0; i < 256; i++)
879 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
880 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
881 
882 	for (i = 0; i < BUF_LOCKS; i++) {
883 		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
884 		    NULL, MUTEX_DEFAULT, NULL);
885 	}
886 }
887 
888 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
889 
890 static void
891 arc_cksum_verify(arc_buf_t *buf)
892 {
893 	zio_cksum_t zc;
894 
895 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
896 		return;
897 
898 	mutex_enter(&buf->b_hdr->b_freeze_lock);
899 	if (buf->b_hdr->b_freeze_cksum == NULL ||
900 	    (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
901 		mutex_exit(&buf->b_hdr->b_freeze_lock);
902 		return;
903 	}
904 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
905 	if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
906 		panic("buffer modified while frozen!");
907 	mutex_exit(&buf->b_hdr->b_freeze_lock);
908 }
909 
910 static int
911 arc_cksum_equal(arc_buf_t *buf)
912 {
913 	zio_cksum_t zc;
914 	int equal;
915 
916 	mutex_enter(&buf->b_hdr->b_freeze_lock);
917 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
918 	equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
919 	mutex_exit(&buf->b_hdr->b_freeze_lock);
920 
921 	return (equal);
922 }
923 
924 static void
925 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
926 {
927 	if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
928 		return;
929 
930 	mutex_enter(&buf->b_hdr->b_freeze_lock);
931 	if (buf->b_hdr->b_freeze_cksum != NULL) {
932 		mutex_exit(&buf->b_hdr->b_freeze_lock);
933 		return;
934 	}
935 	buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
936 	fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
937 	    buf->b_hdr->b_freeze_cksum);
938 	mutex_exit(&buf->b_hdr->b_freeze_lock);
939 }
940 
941 void
942 arc_buf_thaw(arc_buf_t *buf)
943 {
944 	if (zfs_flags & ZFS_DEBUG_MODIFY) {
945 		if (buf->b_hdr->b_state != arc_anon)
946 			panic("modifying non-anon buffer!");
947 		if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
948 			panic("modifying buffer while i/o in progress!");
949 		arc_cksum_verify(buf);
950 	}
951 
952 	mutex_enter(&buf->b_hdr->b_freeze_lock);
953 	if (buf->b_hdr->b_freeze_cksum != NULL) {
954 		kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
955 		buf->b_hdr->b_freeze_cksum = NULL;
956 	}
957 	mutex_exit(&buf->b_hdr->b_freeze_lock);
958 }
959 
960 void
961 arc_buf_freeze(arc_buf_t *buf)
962 {
963 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
964 		return;
965 
966 	ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
967 	    buf->b_hdr->b_state == arc_anon);
968 	arc_cksum_compute(buf, B_FALSE);
969 }
970 
971 static void
972 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
973 {
974 	ASSERT(MUTEX_HELD(hash_lock));
975 
976 	if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
977 	    (ab->b_state != arc_anon)) {
978 		uint64_t delta = ab->b_size * ab->b_datacnt;
979 		list_t *list = &ab->b_state->arcs_list[ab->b_type];
980 		uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
981 
982 		ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
983 		mutex_enter(&ab->b_state->arcs_mtx);
984 		ASSERT(list_link_active(&ab->b_arc_node));
985 		list_remove(list, ab);
986 		if (GHOST_STATE(ab->b_state)) {
987 			ASSERT3U(ab->b_datacnt, ==, 0);
988 			ASSERT3P(ab->b_buf, ==, NULL);
989 			delta = ab->b_size;
990 		}
991 		ASSERT(delta > 0);
992 		ASSERT3U(*size, >=, delta);
993 		atomic_add_64(size, -delta);
994 		mutex_exit(&ab->b_state->arcs_mtx);
995 		/* remove the prefetch flag if we get a reference */
996 		if (ab->b_flags & ARC_PREFETCH)
997 			ab->b_flags &= ~ARC_PREFETCH;
998 	}
999 }
1000 
1001 static int
1002 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1003 {
1004 	int cnt;
1005 	arc_state_t *state = ab->b_state;
1006 
1007 	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1008 	ASSERT(!GHOST_STATE(state));
1009 
1010 	if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1011 	    (state != arc_anon)) {
1012 		uint64_t *size = &state->arcs_lsize[ab->b_type];
1013 
1014 		ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1015 		mutex_enter(&state->arcs_mtx);
1016 		ASSERT(!list_link_active(&ab->b_arc_node));
1017 		list_insert_head(&state->arcs_list[ab->b_type], ab);
1018 		ASSERT(ab->b_datacnt > 0);
1019 		atomic_add_64(size, ab->b_size * ab->b_datacnt);
1020 		mutex_exit(&state->arcs_mtx);
1021 	}
1022 	return (cnt);
1023 }
1024 
1025 /*
1026  * Move the supplied buffer to the indicated state.  The mutex
1027  * for the buffer must be held by the caller.
1028  */
1029 static void
1030 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1031 {
1032 	arc_state_t *old_state = ab->b_state;
1033 	int64_t refcnt = refcount_count(&ab->b_refcnt);
1034 	uint64_t from_delta, to_delta;
1035 
1036 	ASSERT(MUTEX_HELD(hash_lock));
1037 	ASSERT(new_state != old_state);
1038 	ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1039 	ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
1040 	ASSERT(ab->b_datacnt <= 1 || new_state != arc_anon);
1041 	ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
1042 
1043 	from_delta = to_delta = ab->b_datacnt * ab->b_size;
1044 
1045 	/*
1046 	 * If this buffer is evictable, transfer it from the
1047 	 * old state list to the new state list.
1048 	 */
1049 	if (refcnt == 0) {
1050 		if (old_state != arc_anon) {
1051 			int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1052 			uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1053 
1054 			if (use_mutex)
1055 				mutex_enter(&old_state->arcs_mtx);
1056 
1057 			ASSERT(list_link_active(&ab->b_arc_node));
1058 			list_remove(&old_state->arcs_list[ab->b_type], ab);
1059 
1060 			/*
1061 			 * If prefetching out of the ghost cache,
1062 			 * we will have a non-null datacnt.
1063 			 */
1064 			if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1065 				/* ghost elements have a ghost size */
1066 				ASSERT(ab->b_buf == NULL);
1067 				from_delta = ab->b_size;
1068 			}
1069 			ASSERT3U(*size, >=, from_delta);
1070 			atomic_add_64(size, -from_delta);
1071 
1072 			if (use_mutex)
1073 				mutex_exit(&old_state->arcs_mtx);
1074 		}
1075 		if (new_state != arc_anon) {
1076 			int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1077 			uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1078 
1079 			if (use_mutex)
1080 				mutex_enter(&new_state->arcs_mtx);
1081 
1082 			list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1083 
1084 			/* ghost elements have a ghost size */
1085 			if (GHOST_STATE(new_state)) {
1086 				ASSERT(ab->b_datacnt == 0);
1087 				ASSERT(ab->b_buf == NULL);
1088 				to_delta = ab->b_size;
1089 			}
1090 			atomic_add_64(size, to_delta);
1091 
1092 			if (use_mutex)
1093 				mutex_exit(&new_state->arcs_mtx);
1094 		}
1095 	}
1096 
1097 	ASSERT(!BUF_EMPTY(ab));
1098 	if (new_state == arc_anon) {
1099 		buf_hash_remove(ab);
1100 	}
1101 
1102 	/* adjust state sizes */
1103 	if (to_delta)
1104 		atomic_add_64(&new_state->arcs_size, to_delta);
1105 	if (from_delta) {
1106 		ASSERT3U(old_state->arcs_size, >=, from_delta);
1107 		atomic_add_64(&old_state->arcs_size, -from_delta);
1108 	}
1109 	ab->b_state = new_state;
1110 
1111 	/* adjust l2arc hdr stats */
1112 	if (new_state == arc_l2c_only)
1113 		l2arc_hdr_stat_add();
1114 	else if (old_state == arc_l2c_only)
1115 		l2arc_hdr_stat_remove();
1116 }
1117 
1118 void
1119 arc_space_consume(uint64_t space, arc_space_type_t type)
1120 {
1121 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1122 
1123 	switch (type) {
1124 	case ARC_SPACE_DATA:
1125 		ARCSTAT_INCR(arcstat_data_size, space);
1126 		break;
1127 	case ARC_SPACE_OTHER:
1128 		ARCSTAT_INCR(arcstat_other_size, space);
1129 		break;
1130 	case ARC_SPACE_HDRS:
1131 		ARCSTAT_INCR(arcstat_hdr_size, space);
1132 		break;
1133 	case ARC_SPACE_L2HDRS:
1134 		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1135 		break;
1136 	}
1137 
1138 	atomic_add_64(&arc_meta_used, space);
1139 	atomic_add_64(&arc_size, space);
1140 }
1141 
1142 void
1143 arc_space_return(uint64_t space, arc_space_type_t type)
1144 {
1145 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1146 
1147 	switch (type) {
1148 	case ARC_SPACE_DATA:
1149 		ARCSTAT_INCR(arcstat_data_size, -space);
1150 		break;
1151 	case ARC_SPACE_OTHER:
1152 		ARCSTAT_INCR(arcstat_other_size, -space);
1153 		break;
1154 	case ARC_SPACE_HDRS:
1155 		ARCSTAT_INCR(arcstat_hdr_size, -space);
1156 		break;
1157 	case ARC_SPACE_L2HDRS:
1158 		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1159 		break;
1160 	}
1161 
1162 	ASSERT(arc_meta_used >= space);
1163 	if (arc_meta_max < arc_meta_used)
1164 		arc_meta_max = arc_meta_used;
1165 	atomic_add_64(&arc_meta_used, -space);
1166 	ASSERT(arc_size >= space);
1167 	atomic_add_64(&arc_size, -space);
1168 }
1169 
1170 void *
1171 arc_data_buf_alloc(uint64_t size)
1172 {
1173 	if (arc_evict_needed(ARC_BUFC_DATA))
1174 		cv_signal(&arc_reclaim_thr_cv);
1175 	atomic_add_64(&arc_size, size);
1176 	return (zio_data_buf_alloc(size));
1177 }
1178 
1179 void
1180 arc_data_buf_free(void *buf, uint64_t size)
1181 {
1182 	zio_data_buf_free(buf, size);
1183 	ASSERT(arc_size >= size);
1184 	atomic_add_64(&arc_size, -size);
1185 }
1186 
1187 arc_buf_t *
1188 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type)
1189 {
1190 	arc_buf_hdr_t *hdr;
1191 	arc_buf_t *buf;
1192 
1193 	ASSERT3U(size, >, 0);
1194 	hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1195 	ASSERT(BUF_EMPTY(hdr));
1196 	hdr->b_size = size;
1197 	hdr->b_type = type;
1198 	hdr->b_spa = spa_guid(spa);
1199 	hdr->b_state = arc_anon;
1200 	hdr->b_arc_access = 0;
1201 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1202 	buf->b_hdr = hdr;
1203 	buf->b_data = NULL;
1204 	buf->b_efunc = NULL;
1205 	buf->b_private = NULL;
1206 	buf->b_next = NULL;
1207 	hdr->b_buf = buf;
1208 	arc_get_data_buf(buf);
1209 	hdr->b_datacnt = 1;
1210 	hdr->b_flags = 0;
1211 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1212 	(void) refcount_add(&hdr->b_refcnt, tag);
1213 
1214 	return (buf);
1215 }
1216 
1217 static char *arc_onloan_tag = "onloan";
1218 
1219 /*
1220  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1221  * flight data by arc_tempreserve_space() until they are "returned". Loaned
1222  * buffers must be returned to the arc before they can be used by the DMU or
1223  * freed.
1224  */
1225 arc_buf_t *
1226 arc_loan_buf(spa_t *spa, int size)
1227 {
1228 	arc_buf_t *buf;
1229 
1230 	buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1231 
1232 	atomic_add_64(&arc_loaned_bytes, size);
1233 	return (buf);
1234 }
1235 
1236 /*
1237  * Return a loaned arc buffer to the arc.
1238  */
1239 void
1240 arc_return_buf(arc_buf_t *buf, void *tag)
1241 {
1242 	arc_buf_hdr_t *hdr = buf->b_hdr;
1243 
1244 	ASSERT(hdr->b_state == arc_anon);
1245 	ASSERT(buf->b_data != NULL);
1246 	VERIFY(refcount_remove(&hdr->b_refcnt, arc_onloan_tag) == 0);
1247 	VERIFY(refcount_add(&hdr->b_refcnt, tag) == 1);
1248 
1249 	atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1250 }
1251 
1252 static arc_buf_t *
1253 arc_buf_clone(arc_buf_t *from)
1254 {
1255 	arc_buf_t *buf;
1256 	arc_buf_hdr_t *hdr = from->b_hdr;
1257 	uint64_t size = hdr->b_size;
1258 
1259 	ASSERT(hdr->b_state != arc_anon);
1260 
1261 	buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1262 	buf->b_hdr = hdr;
1263 	buf->b_data = NULL;
1264 	buf->b_efunc = NULL;
1265 	buf->b_private = NULL;
1266 	buf->b_next = hdr->b_buf;
1267 	hdr->b_buf = buf;
1268 	arc_get_data_buf(buf);
1269 	bcopy(from->b_data, buf->b_data, size);
1270 	hdr->b_datacnt += 1;
1271 	return (buf);
1272 }
1273 
1274 void
1275 arc_buf_add_ref(arc_buf_t *buf, void* tag)
1276 {
1277 	arc_buf_hdr_t *hdr;
1278 	kmutex_t *hash_lock;
1279 
1280 	/*
1281 	 * Check to see if this buffer is evicted.  Callers
1282 	 * must verify b_data != NULL to know if the add_ref
1283 	 * was successful.
1284 	 */
1285 	rw_enter(&buf->b_lock, RW_READER);
1286 	if (buf->b_data == NULL) {
1287 		rw_exit(&buf->b_lock);
1288 		return;
1289 	}
1290 	hdr = buf->b_hdr;
1291 	ASSERT(hdr != NULL);
1292 	hash_lock = HDR_LOCK(hdr);
1293 	mutex_enter(hash_lock);
1294 	rw_exit(&buf->b_lock);
1295 
1296 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1297 	add_reference(hdr, hash_lock, tag);
1298 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
1299 	arc_access(hdr, hash_lock);
1300 	mutex_exit(hash_lock);
1301 	ARCSTAT_BUMP(arcstat_hits);
1302 	ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1303 	    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1304 	    data, metadata, hits);
1305 }
1306 
1307 /*
1308  * Free the arc data buffer.  If it is an l2arc write in progress,
1309  * the buffer is placed on l2arc_free_on_write to be freed later.
1310  */
1311 static void
1312 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t),
1313     void *data, size_t size)
1314 {
1315 	if (HDR_L2_WRITING(hdr)) {
1316 		l2arc_data_free_t *df;
1317 		df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP);
1318 		df->l2df_data = data;
1319 		df->l2df_size = size;
1320 		df->l2df_func = free_func;
1321 		mutex_enter(&l2arc_free_on_write_mtx);
1322 		list_insert_head(l2arc_free_on_write, df);
1323 		mutex_exit(&l2arc_free_on_write_mtx);
1324 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
1325 	} else {
1326 		free_func(data, size);
1327 	}
1328 }
1329 
1330 static void
1331 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all)
1332 {
1333 	arc_buf_t **bufp;
1334 
1335 	/* free up data associated with the buf */
1336 	if (buf->b_data) {
1337 		arc_state_t *state = buf->b_hdr->b_state;
1338 		uint64_t size = buf->b_hdr->b_size;
1339 		arc_buf_contents_t type = buf->b_hdr->b_type;
1340 
1341 		arc_cksum_verify(buf);
1342 
1343 		if (!recycle) {
1344 			if (type == ARC_BUFC_METADATA) {
1345 				arc_buf_data_free(buf->b_hdr, zio_buf_free,
1346 				    buf->b_data, size);
1347 				arc_space_return(size, ARC_SPACE_DATA);
1348 			} else {
1349 				ASSERT(type == ARC_BUFC_DATA);
1350 				arc_buf_data_free(buf->b_hdr,
1351 				    zio_data_buf_free, buf->b_data, size);
1352 				ARCSTAT_INCR(arcstat_data_size, -size);
1353 				atomic_add_64(&arc_size, -size);
1354 			}
1355 		}
1356 		if (list_link_active(&buf->b_hdr->b_arc_node)) {
1357 			uint64_t *cnt = &state->arcs_lsize[type];
1358 
1359 			ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1360 			ASSERT(state != arc_anon);
1361 
1362 			ASSERT3U(*cnt, >=, size);
1363 			atomic_add_64(cnt, -size);
1364 		}
1365 		ASSERT3U(state->arcs_size, >=, size);
1366 		atomic_add_64(&state->arcs_size, -size);
1367 		buf->b_data = NULL;
1368 		ASSERT(buf->b_hdr->b_datacnt > 0);
1369 		buf->b_hdr->b_datacnt -= 1;
1370 	}
1371 
1372 	/* only remove the buf if requested */
1373 	if (!all)
1374 		return;
1375 
1376 	/* remove the buf from the hdr list */
1377 	for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1378 		continue;
1379 	*bufp = buf->b_next;
1380 
1381 	ASSERT(buf->b_efunc == NULL);
1382 
1383 	/* clean up the buf */
1384 	buf->b_hdr = NULL;
1385 	kmem_cache_free(buf_cache, buf);
1386 }
1387 
1388 static void
1389 arc_hdr_destroy(arc_buf_hdr_t *hdr)
1390 {
1391 	ASSERT(refcount_is_zero(&hdr->b_refcnt));
1392 	ASSERT3P(hdr->b_state, ==, arc_anon);
1393 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1394 	l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1395 
1396 	if (l2hdr != NULL) {
1397 		boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1398 		/*
1399 		 * To prevent arc_free() and l2arc_evict() from
1400 		 * attempting to free the same buffer at the same time,
1401 		 * a FREE_IN_PROGRESS flag is given to arc_free() to
1402 		 * give it priority.  l2arc_evict() can't destroy this
1403 		 * header while we are waiting on l2arc_buflist_mtx.
1404 		 *
1405 		 * The hdr may be removed from l2ad_buflist before we
1406 		 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1407 		 */
1408 		if (!buflist_held) {
1409 			mutex_enter(&l2arc_buflist_mtx);
1410 			l2hdr = hdr->b_l2hdr;
1411 		}
1412 
1413 		if (l2hdr != NULL) {
1414 			list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1415 			ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
1416 			kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
1417 			if (hdr->b_state == arc_l2c_only)
1418 				l2arc_hdr_stat_remove();
1419 			hdr->b_l2hdr = NULL;
1420 		}
1421 
1422 		if (!buflist_held)
1423 			mutex_exit(&l2arc_buflist_mtx);
1424 	}
1425 
1426 	if (!BUF_EMPTY(hdr)) {
1427 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
1428 		bzero(&hdr->b_dva, sizeof (dva_t));
1429 		hdr->b_birth = 0;
1430 		hdr->b_cksum0 = 0;
1431 	}
1432 	while (hdr->b_buf) {
1433 		arc_buf_t *buf = hdr->b_buf;
1434 
1435 		if (buf->b_efunc) {
1436 			mutex_enter(&arc_eviction_mtx);
1437 			rw_enter(&buf->b_lock, RW_WRITER);
1438 			ASSERT(buf->b_hdr != NULL);
1439 			arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1440 			hdr->b_buf = buf->b_next;
1441 			buf->b_hdr = &arc_eviction_hdr;
1442 			buf->b_next = arc_eviction_list;
1443 			arc_eviction_list = buf;
1444 			rw_exit(&buf->b_lock);
1445 			mutex_exit(&arc_eviction_mtx);
1446 		} else {
1447 			arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1448 		}
1449 	}
1450 	if (hdr->b_freeze_cksum != NULL) {
1451 		kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1452 		hdr->b_freeze_cksum = NULL;
1453 	}
1454 
1455 	ASSERT(!list_link_active(&hdr->b_arc_node));
1456 	ASSERT3P(hdr->b_hash_next, ==, NULL);
1457 	ASSERT3P(hdr->b_acb, ==, NULL);
1458 	kmem_cache_free(hdr_cache, hdr);
1459 }
1460 
1461 void
1462 arc_buf_free(arc_buf_t *buf, void *tag)
1463 {
1464 	arc_buf_hdr_t *hdr = buf->b_hdr;
1465 	int hashed = hdr->b_state != arc_anon;
1466 
1467 	ASSERT(buf->b_efunc == NULL);
1468 	ASSERT(buf->b_data != NULL);
1469 
1470 	if (hashed) {
1471 		kmutex_t *hash_lock = HDR_LOCK(hdr);
1472 
1473 		mutex_enter(hash_lock);
1474 		(void) remove_reference(hdr, hash_lock, tag);
1475 		if (hdr->b_datacnt > 1) {
1476 			arc_buf_destroy(buf, FALSE, TRUE);
1477 		} else {
1478 			ASSERT(buf == hdr->b_buf);
1479 			ASSERT(buf->b_efunc == NULL);
1480 			hdr->b_flags |= ARC_BUF_AVAILABLE;
1481 		}
1482 		mutex_exit(hash_lock);
1483 	} else if (HDR_IO_IN_PROGRESS(hdr)) {
1484 		int destroy_hdr;
1485 		/*
1486 		 * We are in the middle of an async write.  Don't destroy
1487 		 * this buffer unless the write completes before we finish
1488 		 * decrementing the reference count.
1489 		 */
1490 		mutex_enter(&arc_eviction_mtx);
1491 		(void) remove_reference(hdr, NULL, tag);
1492 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
1493 		destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1494 		mutex_exit(&arc_eviction_mtx);
1495 		if (destroy_hdr)
1496 			arc_hdr_destroy(hdr);
1497 	} else {
1498 		if (remove_reference(hdr, NULL, tag) > 0) {
1499 			ASSERT(HDR_IO_ERROR(hdr));
1500 			arc_buf_destroy(buf, FALSE, TRUE);
1501 		} else {
1502 			arc_hdr_destroy(hdr);
1503 		}
1504 	}
1505 }
1506 
1507 int
1508 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1509 {
1510 	arc_buf_hdr_t *hdr = buf->b_hdr;
1511 	kmutex_t *hash_lock = HDR_LOCK(hdr);
1512 	int no_callback = (buf->b_efunc == NULL);
1513 
1514 	if (hdr->b_state == arc_anon) {
1515 		ASSERT(hdr->b_datacnt == 1);
1516 		arc_buf_free(buf, tag);
1517 		return (no_callback);
1518 	}
1519 
1520 	mutex_enter(hash_lock);
1521 	ASSERT(hdr->b_state != arc_anon);
1522 	ASSERT(buf->b_data != NULL);
1523 
1524 	(void) remove_reference(hdr, hash_lock, tag);
1525 	if (hdr->b_datacnt > 1) {
1526 		if (no_callback)
1527 			arc_buf_destroy(buf, FALSE, TRUE);
1528 	} else if (no_callback) {
1529 		ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
1530 		ASSERT(buf->b_efunc == NULL);
1531 		hdr->b_flags |= ARC_BUF_AVAILABLE;
1532 	}
1533 	ASSERT(no_callback || hdr->b_datacnt > 1 ||
1534 	    refcount_is_zero(&hdr->b_refcnt));
1535 	mutex_exit(hash_lock);
1536 	return (no_callback);
1537 }
1538 
1539 int
1540 arc_buf_size(arc_buf_t *buf)
1541 {
1542 	return (buf->b_hdr->b_size);
1543 }
1544 
1545 /*
1546  * Evict buffers from list until we've removed the specified number of
1547  * bytes.  Move the removed buffers to the appropriate evict state.
1548  * If the recycle flag is set, then attempt to "recycle" a buffer:
1549  * - look for a buffer to evict that is `bytes' long.
1550  * - return the data block from this buffer rather than freeing it.
1551  * This flag is used by callers that are trying to make space for a
1552  * new buffer in a full arc cache.
1553  *
1554  * This function makes a "best effort".  It skips over any buffers
1555  * it can't get a hash_lock on, and so may not catch all candidates.
1556  * It may also return without evicting as much space as requested.
1557  */
1558 static void *
1559 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1560     arc_buf_contents_t type)
1561 {
1562 	arc_state_t *evicted_state;
1563 	uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1564 	arc_buf_hdr_t *ab, *ab_prev = NULL;
1565 	list_t *list = &state->arcs_list[type];
1566 	kmutex_t *hash_lock;
1567 	boolean_t have_lock;
1568 	void *stolen = NULL;
1569 
1570 	ASSERT(state == arc_mru || state == arc_mfu);
1571 
1572 	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1573 
1574 	mutex_enter(&state->arcs_mtx);
1575 	mutex_enter(&evicted_state->arcs_mtx);
1576 
1577 	for (ab = list_tail(list); ab; ab = ab_prev) {
1578 		ab_prev = list_prev(list, ab);
1579 		/* prefetch buffers have a minimum lifespan */
1580 		if (HDR_IO_IN_PROGRESS(ab) ||
1581 		    (spa && ab->b_spa != spa) ||
1582 		    (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1583 		    lbolt - ab->b_arc_access < arc_min_prefetch_lifespan)) {
1584 			skipped++;
1585 			continue;
1586 		}
1587 		/* "lookahead" for better eviction candidate */
1588 		if (recycle && ab->b_size != bytes &&
1589 		    ab_prev && ab_prev->b_size == bytes)
1590 			continue;
1591 		hash_lock = HDR_LOCK(ab);
1592 		have_lock = MUTEX_HELD(hash_lock);
1593 		if (have_lock || mutex_tryenter(hash_lock)) {
1594 			ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1595 			ASSERT(ab->b_datacnt > 0);
1596 			while (ab->b_buf) {
1597 				arc_buf_t *buf = ab->b_buf;
1598 				if (!rw_tryenter(&buf->b_lock, RW_WRITER)) {
1599 					missed += 1;
1600 					break;
1601 				}
1602 				if (buf->b_data) {
1603 					bytes_evicted += ab->b_size;
1604 					if (recycle && ab->b_type == type &&
1605 					    ab->b_size == bytes &&
1606 					    !HDR_L2_WRITING(ab)) {
1607 						stolen = buf->b_data;
1608 						recycle = FALSE;
1609 					}
1610 				}
1611 				if (buf->b_efunc) {
1612 					mutex_enter(&arc_eviction_mtx);
1613 					arc_buf_destroy(buf,
1614 					    buf->b_data == stolen, FALSE);
1615 					ab->b_buf = buf->b_next;
1616 					buf->b_hdr = &arc_eviction_hdr;
1617 					buf->b_next = arc_eviction_list;
1618 					arc_eviction_list = buf;
1619 					mutex_exit(&arc_eviction_mtx);
1620 					rw_exit(&buf->b_lock);
1621 				} else {
1622 					rw_exit(&buf->b_lock);
1623 					arc_buf_destroy(buf,
1624 					    buf->b_data == stolen, TRUE);
1625 				}
1626 			}
1627 
1628 			if (ab->b_l2hdr) {
1629 				ARCSTAT_INCR(arcstat_evict_l2_cached,
1630 				    ab->b_size);
1631 			} else {
1632 				if (l2arc_write_eligible(ab->b_spa, ab)) {
1633 					ARCSTAT_INCR(arcstat_evict_l2_eligible,
1634 					    ab->b_size);
1635 				} else {
1636 					ARCSTAT_INCR(
1637 					    arcstat_evict_l2_ineligible,
1638 					    ab->b_size);
1639 				}
1640 			}
1641 
1642 			if (ab->b_datacnt == 0) {
1643 				arc_change_state(evicted_state, ab, hash_lock);
1644 				ASSERT(HDR_IN_HASH_TABLE(ab));
1645 				ab->b_flags |= ARC_IN_HASH_TABLE;
1646 				ab->b_flags &= ~ARC_BUF_AVAILABLE;
1647 				DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1648 			}
1649 			if (!have_lock)
1650 				mutex_exit(hash_lock);
1651 			if (bytes >= 0 && bytes_evicted >= bytes)
1652 				break;
1653 		} else {
1654 			missed += 1;
1655 		}
1656 	}
1657 
1658 	mutex_exit(&evicted_state->arcs_mtx);
1659 	mutex_exit(&state->arcs_mtx);
1660 
1661 	if (bytes_evicted < bytes)
1662 		dprintf("only evicted %lld bytes from %x",
1663 		    (longlong_t)bytes_evicted, state);
1664 
1665 	if (skipped)
1666 		ARCSTAT_INCR(arcstat_evict_skip, skipped);
1667 
1668 	if (missed)
1669 		ARCSTAT_INCR(arcstat_mutex_miss, missed);
1670 
1671 	/*
1672 	 * We have just evicted some date into the ghost state, make
1673 	 * sure we also adjust the ghost state size if necessary.
1674 	 */
1675 	if (arc_no_grow &&
1676 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1677 		int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1678 		    arc_mru_ghost->arcs_size - arc_c;
1679 
1680 		if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1681 			int64_t todelete =
1682 			    MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1683 			arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1684 		} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1685 			int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1686 			    arc_mru_ghost->arcs_size +
1687 			    arc_mfu_ghost->arcs_size - arc_c);
1688 			arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1689 		}
1690 	}
1691 
1692 	return (stolen);
1693 }
1694 
1695 /*
1696  * Remove buffers from list until we've removed the specified number of
1697  * bytes.  Destroy the buffers that are removed.
1698  */
1699 static void
1700 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes)
1701 {
1702 	arc_buf_hdr_t *ab, *ab_prev;
1703 	list_t *list = &state->arcs_list[ARC_BUFC_DATA];
1704 	kmutex_t *hash_lock;
1705 	uint64_t bytes_deleted = 0;
1706 	uint64_t bufs_skipped = 0;
1707 
1708 	ASSERT(GHOST_STATE(state));
1709 top:
1710 	mutex_enter(&state->arcs_mtx);
1711 	for (ab = list_tail(list); ab; ab = ab_prev) {
1712 		ab_prev = list_prev(list, ab);
1713 		if (spa && ab->b_spa != spa)
1714 			continue;
1715 		hash_lock = HDR_LOCK(ab);
1716 		if (mutex_tryenter(hash_lock)) {
1717 			ASSERT(!HDR_IO_IN_PROGRESS(ab));
1718 			ASSERT(ab->b_buf == NULL);
1719 			ARCSTAT_BUMP(arcstat_deleted);
1720 			bytes_deleted += ab->b_size;
1721 
1722 			if (ab->b_l2hdr != NULL) {
1723 				/*
1724 				 * This buffer is cached on the 2nd Level ARC;
1725 				 * don't destroy the header.
1726 				 */
1727 				arc_change_state(arc_l2c_only, ab, hash_lock);
1728 				mutex_exit(hash_lock);
1729 			} else {
1730 				arc_change_state(arc_anon, ab, hash_lock);
1731 				mutex_exit(hash_lock);
1732 				arc_hdr_destroy(ab);
1733 			}
1734 
1735 			DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
1736 			if (bytes >= 0 && bytes_deleted >= bytes)
1737 				break;
1738 		} else {
1739 			if (bytes < 0) {
1740 				mutex_exit(&state->arcs_mtx);
1741 				mutex_enter(hash_lock);
1742 				mutex_exit(hash_lock);
1743 				goto top;
1744 			}
1745 			bufs_skipped += 1;
1746 		}
1747 	}
1748 	mutex_exit(&state->arcs_mtx);
1749 
1750 	if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1751 	    (bytes < 0 || bytes_deleted < bytes)) {
1752 		list = &state->arcs_list[ARC_BUFC_METADATA];
1753 		goto top;
1754 	}
1755 
1756 	if (bufs_skipped) {
1757 		ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
1758 		ASSERT(bytes >= 0);
1759 	}
1760 
1761 	if (bytes_deleted < bytes)
1762 		dprintf("only deleted %lld bytes from %p",
1763 		    (longlong_t)bytes_deleted, state);
1764 }
1765 
1766 static void
1767 arc_adjust(void)
1768 {
1769 	int64_t adjustment, delta;
1770 
1771 	/*
1772 	 * Adjust MRU size
1773 	 */
1774 
1775 	adjustment = MIN(arc_size - arc_c,
1776 	    arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p);
1777 
1778 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) {
1779 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment);
1780 		(void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA);
1781 		adjustment -= delta;
1782 	}
1783 
1784 	if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1785 		delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment);
1786 		(void) arc_evict(arc_mru, NULL, delta, FALSE,
1787 		    ARC_BUFC_METADATA);
1788 	}
1789 
1790 	/*
1791 	 * Adjust MFU size
1792 	 */
1793 
1794 	adjustment = arc_size - arc_c;
1795 
1796 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) {
1797 		delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]);
1798 		(void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA);
1799 		adjustment -= delta;
1800 	}
1801 
1802 	if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
1803 		int64_t delta = MIN(adjustment,
1804 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA]);
1805 		(void) arc_evict(arc_mfu, NULL, delta, FALSE,
1806 		    ARC_BUFC_METADATA);
1807 	}
1808 
1809 	/*
1810 	 * Adjust ghost lists
1811 	 */
1812 
1813 	adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
1814 
1815 	if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
1816 		delta = MIN(arc_mru_ghost->arcs_size, adjustment);
1817 		arc_evict_ghost(arc_mru_ghost, NULL, delta);
1818 	}
1819 
1820 	adjustment =
1821 	    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
1822 
1823 	if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
1824 		delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
1825 		arc_evict_ghost(arc_mfu_ghost, NULL, delta);
1826 	}
1827 }
1828 
1829 static void
1830 arc_do_user_evicts(void)
1831 {
1832 	mutex_enter(&arc_eviction_mtx);
1833 	while (arc_eviction_list != NULL) {
1834 		arc_buf_t *buf = arc_eviction_list;
1835 		arc_eviction_list = buf->b_next;
1836 		rw_enter(&buf->b_lock, RW_WRITER);
1837 		buf->b_hdr = NULL;
1838 		rw_exit(&buf->b_lock);
1839 		mutex_exit(&arc_eviction_mtx);
1840 
1841 		if (buf->b_efunc != NULL)
1842 			VERIFY(buf->b_efunc(buf) == 0);
1843 
1844 		buf->b_efunc = NULL;
1845 		buf->b_private = NULL;
1846 		kmem_cache_free(buf_cache, buf);
1847 		mutex_enter(&arc_eviction_mtx);
1848 	}
1849 	mutex_exit(&arc_eviction_mtx);
1850 }
1851 
1852 /*
1853  * Flush all *evictable* data from the cache for the given spa.
1854  * NOTE: this will not touch "active" (i.e. referenced) data.
1855  */
1856 void
1857 arc_flush(spa_t *spa)
1858 {
1859 	uint64_t guid = 0;
1860 
1861 	if (spa)
1862 		guid = spa_guid(spa);
1863 
1864 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
1865 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
1866 		if (spa)
1867 			break;
1868 	}
1869 	while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
1870 		(void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
1871 		if (spa)
1872 			break;
1873 	}
1874 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
1875 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
1876 		if (spa)
1877 			break;
1878 	}
1879 	while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
1880 		(void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
1881 		if (spa)
1882 			break;
1883 	}
1884 
1885 	arc_evict_ghost(arc_mru_ghost, guid, -1);
1886 	arc_evict_ghost(arc_mfu_ghost, guid, -1);
1887 
1888 	mutex_enter(&arc_reclaim_thr_lock);
1889 	arc_do_user_evicts();
1890 	mutex_exit(&arc_reclaim_thr_lock);
1891 	ASSERT(spa || arc_eviction_list == NULL);
1892 }
1893 
1894 void
1895 arc_shrink(void)
1896 {
1897 	if (arc_c > arc_c_min) {
1898 		uint64_t to_free;
1899 
1900 #ifdef _KERNEL
1901 		to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree));
1902 #else
1903 		to_free = arc_c >> arc_shrink_shift;
1904 #endif
1905 		if (arc_c > arc_c_min + to_free)
1906 			atomic_add_64(&arc_c, -to_free);
1907 		else
1908 			arc_c = arc_c_min;
1909 
1910 		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
1911 		if (arc_c > arc_size)
1912 			arc_c = MAX(arc_size, arc_c_min);
1913 		if (arc_p > arc_c)
1914 			arc_p = (arc_c >> 1);
1915 		ASSERT(arc_c >= arc_c_min);
1916 		ASSERT((int64_t)arc_p >= 0);
1917 	}
1918 
1919 	if (arc_size > arc_c)
1920 		arc_adjust();
1921 }
1922 
1923 static int
1924 arc_reclaim_needed(void)
1925 {
1926 	uint64_t extra;
1927 
1928 #ifdef _KERNEL
1929 
1930 	if (needfree)
1931 		return (1);
1932 
1933 	/*
1934 	 * take 'desfree' extra pages, so we reclaim sooner, rather than later
1935 	 */
1936 	extra = desfree;
1937 
1938 	/*
1939 	 * check that we're out of range of the pageout scanner.  It starts to
1940 	 * schedule paging if freemem is less than lotsfree and needfree.
1941 	 * lotsfree is the high-water mark for pageout, and needfree is the
1942 	 * number of needed free pages.  We add extra pages here to make sure
1943 	 * the scanner doesn't start up while we're freeing memory.
1944 	 */
1945 	if (freemem < lotsfree + needfree + extra)
1946 		return (1);
1947 
1948 	/*
1949 	 * check to make sure that swapfs has enough space so that anon
1950 	 * reservations can still succeed. anon_resvmem() checks that the
1951 	 * availrmem is greater than swapfs_minfree, and the number of reserved
1952 	 * swap pages.  We also add a bit of extra here just to prevent
1953 	 * circumstances from getting really dire.
1954 	 */
1955 	if (availrmem < swapfs_minfree + swapfs_reserve + extra)
1956 		return (1);
1957 
1958 #if defined(__i386)
1959 	/*
1960 	 * If we're on an i386 platform, it's possible that we'll exhaust the
1961 	 * kernel heap space before we ever run out of available physical
1962 	 * memory.  Most checks of the size of the heap_area compare against
1963 	 * tune.t_minarmem, which is the minimum available real memory that we
1964 	 * can have in the system.  However, this is generally fixed at 25 pages
1965 	 * which is so low that it's useless.  In this comparison, we seek to
1966 	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
1967 	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
1968 	 * free)
1969 	 */
1970 	if (btop(vmem_size(heap_arena, VMEM_FREE)) <
1971 	    (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2))
1972 		return (1);
1973 #endif
1974 
1975 #else
1976 	if (spa_get_random(100) == 0)
1977 		return (1);
1978 #endif
1979 	return (0);
1980 }
1981 
1982 static void
1983 arc_kmem_reap_now(arc_reclaim_strategy_t strat)
1984 {
1985 	size_t			i;
1986 	kmem_cache_t		*prev_cache = NULL;
1987 	kmem_cache_t		*prev_data_cache = NULL;
1988 	extern kmem_cache_t	*zio_buf_cache[];
1989 	extern kmem_cache_t	*zio_data_buf_cache[];
1990 
1991 #ifdef _KERNEL
1992 	if (arc_meta_used >= arc_meta_limit) {
1993 		/*
1994 		 * We are exceeding our meta-data cache limit.
1995 		 * Purge some DNLC entries to release holds on meta-data.
1996 		 */
1997 		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
1998 	}
1999 #if defined(__i386)
2000 	/*
2001 	 * Reclaim unused memory from all kmem caches.
2002 	 */
2003 	kmem_reap();
2004 #endif
2005 #endif
2006 
2007 	/*
2008 	 * An aggressive reclamation will shrink the cache size as well as
2009 	 * reap free buffers from the arc kmem caches.
2010 	 */
2011 	if (strat == ARC_RECLAIM_AGGR)
2012 		arc_shrink();
2013 
2014 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2015 		if (zio_buf_cache[i] != prev_cache) {
2016 			prev_cache = zio_buf_cache[i];
2017 			kmem_cache_reap_now(zio_buf_cache[i]);
2018 		}
2019 		if (zio_data_buf_cache[i] != prev_data_cache) {
2020 			prev_data_cache = zio_data_buf_cache[i];
2021 			kmem_cache_reap_now(zio_data_buf_cache[i]);
2022 		}
2023 	}
2024 	kmem_cache_reap_now(buf_cache);
2025 	kmem_cache_reap_now(hdr_cache);
2026 }
2027 
2028 static void
2029 arc_reclaim_thread(void)
2030 {
2031 	clock_t			growtime = 0;
2032 	arc_reclaim_strategy_t	last_reclaim = ARC_RECLAIM_CONS;
2033 	callb_cpr_t		cpr;
2034 
2035 	CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2036 
2037 	mutex_enter(&arc_reclaim_thr_lock);
2038 	while (arc_thread_exit == 0) {
2039 		if (arc_reclaim_needed()) {
2040 
2041 			if (arc_no_grow) {
2042 				if (last_reclaim == ARC_RECLAIM_CONS) {
2043 					last_reclaim = ARC_RECLAIM_AGGR;
2044 				} else {
2045 					last_reclaim = ARC_RECLAIM_CONS;
2046 				}
2047 			} else {
2048 				arc_no_grow = TRUE;
2049 				last_reclaim = ARC_RECLAIM_AGGR;
2050 				membar_producer();
2051 			}
2052 
2053 			/* reset the growth delay for every reclaim */
2054 			growtime = lbolt + (arc_grow_retry * hz);
2055 
2056 			arc_kmem_reap_now(last_reclaim);
2057 			arc_warm = B_TRUE;
2058 
2059 		} else if (arc_no_grow && lbolt >= growtime) {
2060 			arc_no_grow = FALSE;
2061 		}
2062 
2063 		if (2 * arc_c < arc_size +
2064 		    arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size)
2065 			arc_adjust();
2066 
2067 		if (arc_eviction_list != NULL)
2068 			arc_do_user_evicts();
2069 
2070 		/* block until needed, or one second, whichever is shorter */
2071 		CALLB_CPR_SAFE_BEGIN(&cpr);
2072 		(void) cv_timedwait(&arc_reclaim_thr_cv,
2073 		    &arc_reclaim_thr_lock, (lbolt + hz));
2074 		CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
2075 	}
2076 
2077 	arc_thread_exit = 0;
2078 	cv_broadcast(&arc_reclaim_thr_cv);
2079 	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_thr_lock */
2080 	thread_exit();
2081 }
2082 
2083 /*
2084  * Adapt arc info given the number of bytes we are trying to add and
2085  * the state that we are comming from.  This function is only called
2086  * when we are adding new content to the cache.
2087  */
2088 static void
2089 arc_adapt(int bytes, arc_state_t *state)
2090 {
2091 	int mult;
2092 	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
2093 
2094 	if (state == arc_l2c_only)
2095 		return;
2096 
2097 	ASSERT(bytes > 0);
2098 	/*
2099 	 * Adapt the target size of the MRU list:
2100 	 *	- if we just hit in the MRU ghost list, then increase
2101 	 *	  the target size of the MRU list.
2102 	 *	- if we just hit in the MFU ghost list, then increase
2103 	 *	  the target size of the MFU list by decreasing the
2104 	 *	  target size of the MRU list.
2105 	 */
2106 	if (state == arc_mru_ghost) {
2107 		mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2108 		    1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
2109 
2110 		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
2111 	} else if (state == arc_mfu_ghost) {
2112 		uint64_t delta;
2113 
2114 		mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2115 		    1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
2116 
2117 		delta = MIN(bytes * mult, arc_p);
2118 		arc_p = MAX(arc_p_min, arc_p - delta);
2119 	}
2120 	ASSERT((int64_t)arc_p >= 0);
2121 
2122 	if (arc_reclaim_needed()) {
2123 		cv_signal(&arc_reclaim_thr_cv);
2124 		return;
2125 	}
2126 
2127 	if (arc_no_grow)
2128 		return;
2129 
2130 	if (arc_c >= arc_c_max)
2131 		return;
2132 
2133 	/*
2134 	 * If we're within (2 * maxblocksize) bytes of the target
2135 	 * cache size, increment the target cache size
2136 	 */
2137 	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2138 		atomic_add_64(&arc_c, (int64_t)bytes);
2139 		if (arc_c > arc_c_max)
2140 			arc_c = arc_c_max;
2141 		else if (state == arc_anon)
2142 			atomic_add_64(&arc_p, (int64_t)bytes);
2143 		if (arc_p > arc_c)
2144 			arc_p = arc_c;
2145 	}
2146 	ASSERT((int64_t)arc_p >= 0);
2147 }
2148 
2149 /*
2150  * Check if the cache has reached its limits and eviction is required
2151  * prior to insert.
2152  */
2153 static int
2154 arc_evict_needed(arc_buf_contents_t type)
2155 {
2156 	if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2157 		return (1);
2158 
2159 #ifdef _KERNEL
2160 	/*
2161 	 * If zio data pages are being allocated out of a separate heap segment,
2162 	 * then enforce that the size of available vmem for this area remains
2163 	 * above about 1/32nd free.
2164 	 */
2165 	if (type == ARC_BUFC_DATA && zio_arena != NULL &&
2166 	    vmem_size(zio_arena, VMEM_FREE) <
2167 	    (vmem_size(zio_arena, VMEM_ALLOC) >> 5))
2168 		return (1);
2169 #endif
2170 
2171 	if (arc_reclaim_needed())
2172 		return (1);
2173 
2174 	return (arc_size > arc_c);
2175 }
2176 
2177 /*
2178  * The buffer, supplied as the first argument, needs a data block.
2179  * So, if we are at cache max, determine which cache should be victimized.
2180  * We have the following cases:
2181  *
2182  * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2183  * In this situation if we're out of space, but the resident size of the MFU is
2184  * under the limit, victimize the MFU cache to satisfy this insertion request.
2185  *
2186  * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2187  * Here, we've used up all of the available space for the MRU, so we need to
2188  * evict from our own cache instead.  Evict from the set of resident MRU
2189  * entries.
2190  *
2191  * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2192  * c minus p represents the MFU space in the cache, since p is the size of the
2193  * cache that is dedicated to the MRU.  In this situation there's still space on
2194  * the MFU side, so the MRU side needs to be victimized.
2195  *
2196  * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2197  * MFU's resident set is consuming more space than it has been allotted.  In
2198  * this situation, we must victimize our own cache, the MFU, for this insertion.
2199  */
2200 static void
2201 arc_get_data_buf(arc_buf_t *buf)
2202 {
2203 	arc_state_t		*state = buf->b_hdr->b_state;
2204 	uint64_t		size = buf->b_hdr->b_size;
2205 	arc_buf_contents_t	type = buf->b_hdr->b_type;
2206 
2207 	arc_adapt(size, state);
2208 
2209 	/*
2210 	 * We have not yet reached cache maximum size,
2211 	 * just allocate a new buffer.
2212 	 */
2213 	if (!arc_evict_needed(type)) {
2214 		if (type == ARC_BUFC_METADATA) {
2215 			buf->b_data = zio_buf_alloc(size);
2216 			arc_space_consume(size, ARC_SPACE_DATA);
2217 		} else {
2218 			ASSERT(type == ARC_BUFC_DATA);
2219 			buf->b_data = zio_data_buf_alloc(size);
2220 			ARCSTAT_INCR(arcstat_data_size, size);
2221 			atomic_add_64(&arc_size, size);
2222 		}
2223 		goto out;
2224 	}
2225 
2226 	/*
2227 	 * If we are prefetching from the mfu ghost list, this buffer
2228 	 * will end up on the mru list; so steal space from there.
2229 	 */
2230 	if (state == arc_mfu_ghost)
2231 		state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2232 	else if (state == arc_mru_ghost)
2233 		state = arc_mru;
2234 
2235 	if (state == arc_mru || state == arc_anon) {
2236 		uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
2237 		state = (arc_mfu->arcs_lsize[type] >= size &&
2238 		    arc_p > mru_used) ? arc_mfu : arc_mru;
2239 	} else {
2240 		/* MFU cases */
2241 		uint64_t mfu_space = arc_c - arc_p;
2242 		state =  (arc_mru->arcs_lsize[type] >= size &&
2243 		    mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2244 	}
2245 	if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) {
2246 		if (type == ARC_BUFC_METADATA) {
2247 			buf->b_data = zio_buf_alloc(size);
2248 			arc_space_consume(size, ARC_SPACE_DATA);
2249 		} else {
2250 			ASSERT(type == ARC_BUFC_DATA);
2251 			buf->b_data = zio_data_buf_alloc(size);
2252 			ARCSTAT_INCR(arcstat_data_size, size);
2253 			atomic_add_64(&arc_size, size);
2254 		}
2255 		ARCSTAT_BUMP(arcstat_recycle_miss);
2256 	}
2257 	ASSERT(buf->b_data != NULL);
2258 out:
2259 	/*
2260 	 * Update the state size.  Note that ghost states have a
2261 	 * "ghost size" and so don't need to be updated.
2262 	 */
2263 	if (!GHOST_STATE(buf->b_hdr->b_state)) {
2264 		arc_buf_hdr_t *hdr = buf->b_hdr;
2265 
2266 		atomic_add_64(&hdr->b_state->arcs_size, size);
2267 		if (list_link_active(&hdr->b_arc_node)) {
2268 			ASSERT(refcount_is_zero(&hdr->b_refcnt));
2269 			atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2270 		}
2271 		/*
2272 		 * If we are growing the cache, and we are adding anonymous
2273 		 * data, and we have outgrown arc_p, update arc_p
2274 		 */
2275 		if (arc_size < arc_c && hdr->b_state == arc_anon &&
2276 		    arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2277 			arc_p = MIN(arc_c, arc_p + size);
2278 	}
2279 }
2280 
2281 /*
2282  * This routine is called whenever a buffer is accessed.
2283  * NOTE: the hash lock is dropped in this function.
2284  */
2285 static void
2286 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2287 {
2288 	ASSERT(MUTEX_HELD(hash_lock));
2289 
2290 	if (buf->b_state == arc_anon) {
2291 		/*
2292 		 * This buffer is not in the cache, and does not
2293 		 * appear in our "ghost" list.  Add the new buffer
2294 		 * to the MRU state.
2295 		 */
2296 
2297 		ASSERT(buf->b_arc_access == 0);
2298 		buf->b_arc_access = lbolt;
2299 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2300 		arc_change_state(arc_mru, buf, hash_lock);
2301 
2302 	} else if (buf->b_state == arc_mru) {
2303 		/*
2304 		 * If this buffer is here because of a prefetch, then either:
2305 		 * - clear the flag if this is a "referencing" read
2306 		 *   (any subsequent access will bump this into the MFU state).
2307 		 * or
2308 		 * - move the buffer to the head of the list if this is
2309 		 *   another prefetch (to make it less likely to be evicted).
2310 		 */
2311 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2312 			if (refcount_count(&buf->b_refcnt) == 0) {
2313 				ASSERT(list_link_active(&buf->b_arc_node));
2314 			} else {
2315 				buf->b_flags &= ~ARC_PREFETCH;
2316 				ARCSTAT_BUMP(arcstat_mru_hits);
2317 			}
2318 			buf->b_arc_access = lbolt;
2319 			return;
2320 		}
2321 
2322 		/*
2323 		 * This buffer has been "accessed" only once so far,
2324 		 * but it is still in the cache. Move it to the MFU
2325 		 * state.
2326 		 */
2327 		if (lbolt > buf->b_arc_access + ARC_MINTIME) {
2328 			/*
2329 			 * More than 125ms have passed since we
2330 			 * instantiated this buffer.  Move it to the
2331 			 * most frequently used state.
2332 			 */
2333 			buf->b_arc_access = lbolt;
2334 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2335 			arc_change_state(arc_mfu, buf, hash_lock);
2336 		}
2337 		ARCSTAT_BUMP(arcstat_mru_hits);
2338 	} else if (buf->b_state == arc_mru_ghost) {
2339 		arc_state_t	*new_state;
2340 		/*
2341 		 * This buffer has been "accessed" recently, but
2342 		 * was evicted from the cache.  Move it to the
2343 		 * MFU state.
2344 		 */
2345 
2346 		if (buf->b_flags & ARC_PREFETCH) {
2347 			new_state = arc_mru;
2348 			if (refcount_count(&buf->b_refcnt) > 0)
2349 				buf->b_flags &= ~ARC_PREFETCH;
2350 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2351 		} else {
2352 			new_state = arc_mfu;
2353 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2354 		}
2355 
2356 		buf->b_arc_access = lbolt;
2357 		arc_change_state(new_state, buf, hash_lock);
2358 
2359 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2360 	} else if (buf->b_state == arc_mfu) {
2361 		/*
2362 		 * This buffer has been accessed more than once and is
2363 		 * still in the cache.  Keep it in the MFU state.
2364 		 *
2365 		 * NOTE: an add_reference() that occurred when we did
2366 		 * the arc_read() will have kicked this off the list.
2367 		 * If it was a prefetch, we will explicitly move it to
2368 		 * the head of the list now.
2369 		 */
2370 		if ((buf->b_flags & ARC_PREFETCH) != 0) {
2371 			ASSERT(refcount_count(&buf->b_refcnt) == 0);
2372 			ASSERT(list_link_active(&buf->b_arc_node));
2373 		}
2374 		ARCSTAT_BUMP(arcstat_mfu_hits);
2375 		buf->b_arc_access = lbolt;
2376 	} else if (buf->b_state == arc_mfu_ghost) {
2377 		arc_state_t	*new_state = arc_mfu;
2378 		/*
2379 		 * This buffer has been accessed more than once but has
2380 		 * been evicted from the cache.  Move it back to the
2381 		 * MFU state.
2382 		 */
2383 
2384 		if (buf->b_flags & ARC_PREFETCH) {
2385 			/*
2386 			 * This is a prefetch access...
2387 			 * move this block back to the MRU state.
2388 			 */
2389 			ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2390 			new_state = arc_mru;
2391 		}
2392 
2393 		buf->b_arc_access = lbolt;
2394 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2395 		arc_change_state(new_state, buf, hash_lock);
2396 
2397 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2398 	} else if (buf->b_state == arc_l2c_only) {
2399 		/*
2400 		 * This buffer is on the 2nd Level ARC.
2401 		 */
2402 
2403 		buf->b_arc_access = lbolt;
2404 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2405 		arc_change_state(arc_mfu, buf, hash_lock);
2406 	} else {
2407 		ASSERT(!"invalid arc state");
2408 	}
2409 }
2410 
2411 /* a generic arc_done_func_t which you can use */
2412 /* ARGSUSED */
2413 void
2414 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2415 {
2416 	bcopy(buf->b_data, arg, buf->b_hdr->b_size);
2417 	VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2418 }
2419 
2420 /* a generic arc_done_func_t */
2421 void
2422 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2423 {
2424 	arc_buf_t **bufp = arg;
2425 	if (zio && zio->io_error) {
2426 		VERIFY(arc_buf_remove_ref(buf, arg) == 1);
2427 		*bufp = NULL;
2428 	} else {
2429 		*bufp = buf;
2430 	}
2431 }
2432 
2433 static void
2434 arc_read_done(zio_t *zio)
2435 {
2436 	arc_buf_hdr_t	*hdr, *found;
2437 	arc_buf_t	*buf;
2438 	arc_buf_t	*abuf;	/* buffer we're assigning to callback */
2439 	kmutex_t	*hash_lock;
2440 	arc_callback_t	*callback_list, *acb;
2441 	int		freeable = FALSE;
2442 
2443 	buf = zio->io_private;
2444 	hdr = buf->b_hdr;
2445 
2446 	/*
2447 	 * The hdr was inserted into hash-table and removed from lists
2448 	 * prior to starting I/O.  We should find this header, since
2449 	 * it's in the hash table, and it should be legit since it's
2450 	 * not possible to evict it during the I/O.  The only possible
2451 	 * reason for it not to be found is if we were freed during the
2452 	 * read.
2453 	 */
2454 	found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth,
2455 	    &hash_lock);
2456 
2457 	ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) ||
2458 	    (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2459 	    (found == hdr && HDR_L2_READING(hdr)));
2460 
2461 	hdr->b_flags &= ~ARC_L2_EVICTED;
2462 	if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
2463 		hdr->b_flags &= ~ARC_L2CACHE;
2464 
2465 	/* byteswap if necessary */
2466 	callback_list = hdr->b_acb;
2467 	ASSERT(callback_list != NULL);
2468 	if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
2469 		arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
2470 		    byteswap_uint64_array :
2471 		    dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap;
2472 		func(buf->b_data, hdr->b_size);
2473 	}
2474 
2475 	arc_cksum_compute(buf, B_FALSE);
2476 
2477 	if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
2478 		/*
2479 		 * Only call arc_access on anonymous buffers.  This is because
2480 		 * if we've issued an I/O for an evicted buffer, we've already
2481 		 * called arc_access (to prevent any simultaneous readers from
2482 		 * getting confused).
2483 		 */
2484 		arc_access(hdr, hash_lock);
2485 	}
2486 
2487 	/* create copies of the data buffer for the callers */
2488 	abuf = buf;
2489 	for (acb = callback_list; acb; acb = acb->acb_next) {
2490 		if (acb->acb_done) {
2491 			if (abuf == NULL)
2492 				abuf = arc_buf_clone(buf);
2493 			acb->acb_buf = abuf;
2494 			abuf = NULL;
2495 		}
2496 	}
2497 	hdr->b_acb = NULL;
2498 	hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
2499 	ASSERT(!HDR_BUF_AVAILABLE(hdr));
2500 	if (abuf == buf) {
2501 		ASSERT(buf->b_efunc == NULL);
2502 		ASSERT(hdr->b_datacnt == 1);
2503 		hdr->b_flags |= ARC_BUF_AVAILABLE;
2504 	}
2505 
2506 	ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
2507 
2508 	if (zio->io_error != 0) {
2509 		hdr->b_flags |= ARC_IO_ERROR;
2510 		if (hdr->b_state != arc_anon)
2511 			arc_change_state(arc_anon, hdr, hash_lock);
2512 		if (HDR_IN_HASH_TABLE(hdr))
2513 			buf_hash_remove(hdr);
2514 		freeable = refcount_is_zero(&hdr->b_refcnt);
2515 	}
2516 
2517 	/*
2518 	 * Broadcast before we drop the hash_lock to avoid the possibility
2519 	 * that the hdr (and hence the cv) might be freed before we get to
2520 	 * the cv_broadcast().
2521 	 */
2522 	cv_broadcast(&hdr->b_cv);
2523 
2524 	if (hash_lock) {
2525 		mutex_exit(hash_lock);
2526 	} else {
2527 		/*
2528 		 * This block was freed while we waited for the read to
2529 		 * complete.  It has been removed from the hash table and
2530 		 * moved to the anonymous state (so that it won't show up
2531 		 * in the cache).
2532 		 */
2533 		ASSERT3P(hdr->b_state, ==, arc_anon);
2534 		freeable = refcount_is_zero(&hdr->b_refcnt);
2535 	}
2536 
2537 	/* execute each callback and free its structure */
2538 	while ((acb = callback_list) != NULL) {
2539 		if (acb->acb_done)
2540 			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
2541 
2542 		if (acb->acb_zio_dummy != NULL) {
2543 			acb->acb_zio_dummy->io_error = zio->io_error;
2544 			zio_nowait(acb->acb_zio_dummy);
2545 		}
2546 
2547 		callback_list = acb->acb_next;
2548 		kmem_free(acb, sizeof (arc_callback_t));
2549 	}
2550 
2551 	if (freeable)
2552 		arc_hdr_destroy(hdr);
2553 }
2554 
2555 /*
2556  * "Read" the block block at the specified DVA (in bp) via the
2557  * cache.  If the block is found in the cache, invoke the provided
2558  * callback immediately and return.  Note that the `zio' parameter
2559  * in the callback will be NULL in this case, since no IO was
2560  * required.  If the block is not in the cache pass the read request
2561  * on to the spa with a substitute callback function, so that the
2562  * requested block will be added to the cache.
2563  *
2564  * If a read request arrives for a block that has a read in-progress,
2565  * either wait for the in-progress read to complete (and return the
2566  * results); or, if this is a read with a "done" func, add a record
2567  * to the read to invoke the "done" func when the read completes,
2568  * and return; or just return.
2569  *
2570  * arc_read_done() will invoke all the requested "done" functions
2571  * for readers of this block.
2572  *
2573  * Normal callers should use arc_read and pass the arc buffer and offset
2574  * for the bp.  But if you know you don't need locking, you can use
2575  * arc_read_bp.
2576  */
2577 int
2578 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2579     arc_done_func_t *done, void *private, int priority, int zio_flags,
2580     uint32_t *arc_flags, const zbookmark_t *zb)
2581 {
2582 	int err;
2583 
2584 	ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2585 	ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2586 	rw_enter(&pbuf->b_lock, RW_READER);
2587 
2588 	err = arc_read_nolock(pio, spa, bp, done, private, priority,
2589 	    zio_flags, arc_flags, zb);
2590 	rw_exit(&pbuf->b_lock);
2591 
2592 	return (err);
2593 }
2594 
2595 int
2596 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,
2597     arc_done_func_t *done, void *private, int priority, int zio_flags,
2598     uint32_t *arc_flags, const zbookmark_t *zb)
2599 {
2600 	arc_buf_hdr_t *hdr;
2601 	arc_buf_t *buf;
2602 	kmutex_t *hash_lock;
2603 	zio_t *rzio;
2604 	uint64_t guid = spa_guid(spa);
2605 
2606 top:
2607 	hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2608 	    &hash_lock);
2609 	if (hdr && hdr->b_datacnt > 0) {
2610 
2611 		*arc_flags |= ARC_CACHED;
2612 
2613 		if (HDR_IO_IN_PROGRESS(hdr)) {
2614 
2615 			if (*arc_flags & ARC_WAIT) {
2616 				cv_wait(&hdr->b_cv, hash_lock);
2617 				mutex_exit(hash_lock);
2618 				goto top;
2619 			}
2620 			ASSERT(*arc_flags & ARC_NOWAIT);
2621 
2622 			if (done) {
2623 				arc_callback_t	*acb = NULL;
2624 
2625 				acb = kmem_zalloc(sizeof (arc_callback_t),
2626 				    KM_SLEEP);
2627 				acb->acb_done = done;
2628 				acb->acb_private = private;
2629 				if (pio != NULL)
2630 					acb->acb_zio_dummy = zio_null(pio,
2631 					    spa, NULL, NULL, NULL, zio_flags);
2632 
2633 				ASSERT(acb->acb_done != NULL);
2634 				acb->acb_next = hdr->b_acb;
2635 				hdr->b_acb = acb;
2636 				add_reference(hdr, hash_lock, private);
2637 				mutex_exit(hash_lock);
2638 				return (0);
2639 			}
2640 			mutex_exit(hash_lock);
2641 			return (0);
2642 		}
2643 
2644 		ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2645 
2646 		if (done) {
2647 			add_reference(hdr, hash_lock, private);
2648 			/*
2649 			 * If this block is already in use, create a new
2650 			 * copy of the data so that we will be guaranteed
2651 			 * that arc_release() will always succeed.
2652 			 */
2653 			buf = hdr->b_buf;
2654 			ASSERT(buf);
2655 			ASSERT(buf->b_data);
2656 			if (HDR_BUF_AVAILABLE(hdr)) {
2657 				ASSERT(buf->b_efunc == NULL);
2658 				hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2659 			} else {
2660 				buf = arc_buf_clone(buf);
2661 			}
2662 
2663 		} else if (*arc_flags & ARC_PREFETCH &&
2664 		    refcount_count(&hdr->b_refcnt) == 0) {
2665 			hdr->b_flags |= ARC_PREFETCH;
2666 		}
2667 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2668 		arc_access(hdr, hash_lock);
2669 		if (*arc_flags & ARC_L2CACHE)
2670 			hdr->b_flags |= ARC_L2CACHE;
2671 		mutex_exit(hash_lock);
2672 		ARCSTAT_BUMP(arcstat_hits);
2673 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2674 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2675 		    data, metadata, hits);
2676 
2677 		if (done)
2678 			done(NULL, buf, private);
2679 	} else {
2680 		uint64_t size = BP_GET_LSIZE(bp);
2681 		arc_callback_t	*acb;
2682 		vdev_t *vd = NULL;
2683 		uint64_t addr;
2684 		boolean_t devw = B_FALSE;
2685 
2686 		if (hdr == NULL) {
2687 			/* this block is not in the cache */
2688 			arc_buf_hdr_t	*exists;
2689 			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2690 			buf = arc_buf_alloc(spa, size, private, type);
2691 			hdr = buf->b_hdr;
2692 			hdr->b_dva = *BP_IDENTITY(bp);
2693 			hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2694 			hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2695 			exists = buf_hash_insert(hdr, &hash_lock);
2696 			if (exists) {
2697 				/* somebody beat us to the hash insert */
2698 				mutex_exit(hash_lock);
2699 				bzero(&hdr->b_dva, sizeof (dva_t));
2700 				hdr->b_birth = 0;
2701 				hdr->b_cksum0 = 0;
2702 				(void) arc_buf_remove_ref(buf, private);
2703 				goto top; /* restart the IO request */
2704 			}
2705 			/* if this is a prefetch, we don't have a reference */
2706 			if (*arc_flags & ARC_PREFETCH) {
2707 				(void) remove_reference(hdr, hash_lock,
2708 				    private);
2709 				hdr->b_flags |= ARC_PREFETCH;
2710 			}
2711 			if (*arc_flags & ARC_L2CACHE)
2712 				hdr->b_flags |= ARC_L2CACHE;
2713 			if (BP_GET_LEVEL(bp) > 0)
2714 				hdr->b_flags |= ARC_INDIRECT;
2715 		} else {
2716 			/* this block is in the ghost cache */
2717 			ASSERT(GHOST_STATE(hdr->b_state));
2718 			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2719 			ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2720 			ASSERT(hdr->b_buf == NULL);
2721 
2722 			/* if this is a prefetch, we don't have a reference */
2723 			if (*arc_flags & ARC_PREFETCH)
2724 				hdr->b_flags |= ARC_PREFETCH;
2725 			else
2726 				add_reference(hdr, hash_lock, private);
2727 			if (*arc_flags & ARC_L2CACHE)
2728 				hdr->b_flags |= ARC_L2CACHE;
2729 			buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2730 			buf->b_hdr = hdr;
2731 			buf->b_data = NULL;
2732 			buf->b_efunc = NULL;
2733 			buf->b_private = NULL;
2734 			buf->b_next = NULL;
2735 			hdr->b_buf = buf;
2736 			arc_get_data_buf(buf);
2737 			ASSERT(hdr->b_datacnt == 0);
2738 			hdr->b_datacnt = 1;
2739 		}
2740 
2741 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2742 		acb->acb_done = done;
2743 		acb->acb_private = private;
2744 
2745 		ASSERT(hdr->b_acb == NULL);
2746 		hdr->b_acb = acb;
2747 		hdr->b_flags |= ARC_IO_IN_PROGRESS;
2748 
2749 		/*
2750 		 * If the buffer has been evicted, migrate it to a present state
2751 		 * before issuing the I/O.  Once we drop the hash-table lock,
2752 		 * the header will be marked as I/O in progress and have an
2753 		 * attached buffer.  At this point, anybody who finds this
2754 		 * buffer ought to notice that it's legit but has a pending I/O.
2755 		 */
2756 
2757 		if (GHOST_STATE(hdr->b_state))
2758 			arc_access(hdr, hash_lock);
2759 
2760 		if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2761 		    (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2762 			devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2763 			addr = hdr->b_l2hdr->b_daddr;
2764 			/*
2765 			 * Lock out device removal.
2766 			 */
2767 			if (vdev_is_dead(vd) ||
2768 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2769 				vd = NULL;
2770 		}
2771 
2772 		mutex_exit(hash_lock);
2773 
2774 		ASSERT3U(hdr->b_size, ==, size);
2775 		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2776 		    uint64_t, size, zbookmark_t *, zb);
2777 		ARCSTAT_BUMP(arcstat_misses);
2778 		ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2779 		    demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2780 		    data, metadata, misses);
2781 
2782 		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2783 			/*
2784 			 * Read from the L2ARC if the following are true:
2785 			 * 1. The L2ARC vdev was previously cached.
2786 			 * 2. This buffer still has L2ARC metadata.
2787 			 * 3. This buffer isn't currently writing to the L2ARC.
2788 			 * 4. The L2ARC entry wasn't evicted, which may
2789 			 *    also have invalidated the vdev.
2790 			 * 5. This isn't prefetch and l2arc_noprefetch is set.
2791 			 */
2792 			if (hdr->b_l2hdr != NULL &&
2793 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2794 			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2795 				l2arc_read_callback_t *cb;
2796 
2797 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2798 				ARCSTAT_BUMP(arcstat_l2_hits);
2799 
2800 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2801 				    KM_SLEEP);
2802 				cb->l2rcb_buf = buf;
2803 				cb->l2rcb_spa = spa;
2804 				cb->l2rcb_bp = *bp;
2805 				cb->l2rcb_zb = *zb;
2806 				cb->l2rcb_flags = zio_flags;
2807 
2808 				/*
2809 				 * l2arc read.  The SCL_L2ARC lock will be
2810 				 * released by l2arc_read_done().
2811 				 */
2812 				rzio = zio_read_phys(pio, vd, addr, size,
2813 				    buf->b_data, ZIO_CHECKSUM_OFF,
2814 				    l2arc_read_done, cb, priority, zio_flags |
2815 				    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2816 				    ZIO_FLAG_DONT_PROPAGATE |
2817 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
2818 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2819 				    zio_t *, rzio);
2820 				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
2821 
2822 				if (*arc_flags & ARC_NOWAIT) {
2823 					zio_nowait(rzio);
2824 					return (0);
2825 				}
2826 
2827 				ASSERT(*arc_flags & ARC_WAIT);
2828 				if (zio_wait(rzio) == 0)
2829 					return (0);
2830 
2831 				/* l2arc read error; goto zio_read() */
2832 			} else {
2833 				DTRACE_PROBE1(l2arc__miss,
2834 				    arc_buf_hdr_t *, hdr);
2835 				ARCSTAT_BUMP(arcstat_l2_misses);
2836 				if (HDR_L2_WRITING(hdr))
2837 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
2838 				spa_config_exit(spa, SCL_L2ARC, vd);
2839 			}
2840 		} else {
2841 			if (vd != NULL)
2842 				spa_config_exit(spa, SCL_L2ARC, vd);
2843 			if (l2arc_ndev != 0) {
2844 				DTRACE_PROBE1(l2arc__miss,
2845 				    arc_buf_hdr_t *, hdr);
2846 				ARCSTAT_BUMP(arcstat_l2_misses);
2847 			}
2848 		}
2849 
2850 		rzio = zio_read(pio, spa, bp, buf->b_data, size,
2851 		    arc_read_done, buf, priority, zio_flags, zb);
2852 
2853 		if (*arc_flags & ARC_WAIT)
2854 			return (zio_wait(rzio));
2855 
2856 		ASSERT(*arc_flags & ARC_NOWAIT);
2857 		zio_nowait(rzio);
2858 	}
2859 	return (0);
2860 }
2861 
2862 void
2863 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
2864 {
2865 	ASSERT(buf->b_hdr != NULL);
2866 	ASSERT(buf->b_hdr->b_state != arc_anon);
2867 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
2868 	ASSERT(buf->b_efunc == NULL);
2869 	ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
2870 
2871 	buf->b_efunc = func;
2872 	buf->b_private = private;
2873 }
2874 
2875 /*
2876  * This is used by the DMU to let the ARC know that a buffer is
2877  * being evicted, so the ARC should clean up.  If this arc buf
2878  * is not yet in the evicted state, it will be put there.
2879  */
2880 int
2881 arc_buf_evict(arc_buf_t *buf)
2882 {
2883 	arc_buf_hdr_t *hdr;
2884 	kmutex_t *hash_lock;
2885 	arc_buf_t **bufp;
2886 
2887 	rw_enter(&buf->b_lock, RW_WRITER);
2888 	hdr = buf->b_hdr;
2889 	if (hdr == NULL) {
2890 		/*
2891 		 * We are in arc_do_user_evicts().
2892 		 */
2893 		ASSERT(buf->b_data == NULL);
2894 		rw_exit(&buf->b_lock);
2895 		return (0);
2896 	} else if (buf->b_data == NULL) {
2897 		arc_buf_t copy = *buf; /* structure assignment */
2898 		/*
2899 		 * We are on the eviction list; process this buffer now
2900 		 * but let arc_do_user_evicts() do the reaping.
2901 		 */
2902 		buf->b_efunc = NULL;
2903 		rw_exit(&buf->b_lock);
2904 		VERIFY(copy.b_efunc(&copy) == 0);
2905 		return (1);
2906 	}
2907 	hash_lock = HDR_LOCK(hdr);
2908 	mutex_enter(hash_lock);
2909 
2910 	ASSERT(buf->b_hdr == hdr);
2911 	ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
2912 	ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
2913 
2914 	/*
2915 	 * Pull this buffer off of the hdr
2916 	 */
2917 	bufp = &hdr->b_buf;
2918 	while (*bufp != buf)
2919 		bufp = &(*bufp)->b_next;
2920 	*bufp = buf->b_next;
2921 
2922 	ASSERT(buf->b_data != NULL);
2923 	arc_buf_destroy(buf, FALSE, FALSE);
2924 
2925 	if (hdr->b_datacnt == 0) {
2926 		arc_state_t *old_state = hdr->b_state;
2927 		arc_state_t *evicted_state;
2928 
2929 		ASSERT(refcount_is_zero(&hdr->b_refcnt));
2930 
2931 		evicted_state =
2932 		    (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2933 
2934 		mutex_enter(&old_state->arcs_mtx);
2935 		mutex_enter(&evicted_state->arcs_mtx);
2936 
2937 		arc_change_state(evicted_state, hdr, hash_lock);
2938 		ASSERT(HDR_IN_HASH_TABLE(hdr));
2939 		hdr->b_flags |= ARC_IN_HASH_TABLE;
2940 		hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2941 
2942 		mutex_exit(&evicted_state->arcs_mtx);
2943 		mutex_exit(&old_state->arcs_mtx);
2944 	}
2945 	mutex_exit(hash_lock);
2946 	rw_exit(&buf->b_lock);
2947 
2948 	VERIFY(buf->b_efunc(buf) == 0);
2949 	buf->b_efunc = NULL;
2950 	buf->b_private = NULL;
2951 	buf->b_hdr = NULL;
2952 	kmem_cache_free(buf_cache, buf);
2953 	return (1);
2954 }
2955 
2956 /*
2957  * Release this buffer from the cache.  This must be done
2958  * after a read and prior to modifying the buffer contents.
2959  * If the buffer has more than one reference, we must make
2960  * a new hdr for the buffer.
2961  */
2962 void
2963 arc_release(arc_buf_t *buf, void *tag)
2964 {
2965 	arc_buf_hdr_t *hdr;
2966 	kmutex_t *hash_lock;
2967 	l2arc_buf_hdr_t *l2hdr;
2968 	uint64_t buf_size;
2969 	boolean_t released = B_FALSE;
2970 
2971 	rw_enter(&buf->b_lock, RW_WRITER);
2972 	hdr = buf->b_hdr;
2973 
2974 	/* this buffer is not on any list */
2975 	ASSERT(refcount_count(&hdr->b_refcnt) > 0);
2976 
2977 	if (hdr->b_state == arc_anon) {
2978 		/* this buffer is already released */
2979 		ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1);
2980 		ASSERT(BUF_EMPTY(hdr));
2981 		ASSERT(buf->b_efunc == NULL);
2982 		arc_buf_thaw(buf);
2983 		rw_exit(&buf->b_lock);
2984 		released = B_TRUE;
2985 	} else {
2986 		hash_lock = HDR_LOCK(hdr);
2987 		mutex_enter(hash_lock);
2988 	}
2989 
2990 	l2hdr = hdr->b_l2hdr;
2991 	if (l2hdr) {
2992 		mutex_enter(&l2arc_buflist_mtx);
2993 		hdr->b_l2hdr = NULL;
2994 		buf_size = hdr->b_size;
2995 	}
2996 
2997 	if (released)
2998 		goto out;
2999 
3000 	/*
3001 	 * Do we have more than one buf?
3002 	 */
3003 	if (hdr->b_datacnt > 1) {
3004 		arc_buf_hdr_t *nhdr;
3005 		arc_buf_t **bufp;
3006 		uint64_t blksz = hdr->b_size;
3007 		uint64_t spa = hdr->b_spa;
3008 		arc_buf_contents_t type = hdr->b_type;
3009 		uint32_t flags = hdr->b_flags;
3010 
3011 		ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
3012 		/*
3013 		 * Pull the data off of this buf and attach it to
3014 		 * a new anonymous buf.
3015 		 */
3016 		(void) remove_reference(hdr, hash_lock, tag);
3017 		bufp = &hdr->b_buf;
3018 		while (*bufp != buf)
3019 			bufp = &(*bufp)->b_next;
3020 		*bufp = (*bufp)->b_next;
3021 		buf->b_next = NULL;
3022 
3023 		ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3024 		atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3025 		if (refcount_is_zero(&hdr->b_refcnt)) {
3026 			uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3027 			ASSERT3U(*size, >=, hdr->b_size);
3028 			atomic_add_64(size, -hdr->b_size);
3029 		}
3030 		hdr->b_datacnt -= 1;
3031 		arc_cksum_verify(buf);
3032 
3033 		mutex_exit(hash_lock);
3034 
3035 		nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3036 		nhdr->b_size = blksz;
3037 		nhdr->b_spa = spa;
3038 		nhdr->b_type = type;
3039 		nhdr->b_buf = buf;
3040 		nhdr->b_state = arc_anon;
3041 		nhdr->b_arc_access = 0;
3042 		nhdr->b_flags = flags & ARC_L2_WRITING;
3043 		nhdr->b_l2hdr = NULL;
3044 		nhdr->b_datacnt = 1;
3045 		nhdr->b_freeze_cksum = NULL;
3046 		(void) refcount_add(&nhdr->b_refcnt, tag);
3047 		buf->b_hdr = nhdr;
3048 		rw_exit(&buf->b_lock);
3049 		atomic_add_64(&arc_anon->arcs_size, blksz);
3050 	} else {
3051 		rw_exit(&buf->b_lock);
3052 		ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3053 		ASSERT(!list_link_active(&hdr->b_arc_node));
3054 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3055 		arc_change_state(arc_anon, hdr, hash_lock);
3056 		hdr->b_arc_access = 0;
3057 		mutex_exit(hash_lock);
3058 
3059 		bzero(&hdr->b_dva, sizeof (dva_t));
3060 		hdr->b_birth = 0;
3061 		hdr->b_cksum0 = 0;
3062 		arc_buf_thaw(buf);
3063 	}
3064 	buf->b_efunc = NULL;
3065 	buf->b_private = NULL;
3066 
3067 out:
3068 	if (l2hdr) {
3069 		list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
3070 		kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t));
3071 		ARCSTAT_INCR(arcstat_l2_size, -buf_size);
3072 		mutex_exit(&l2arc_buflist_mtx);
3073 	}
3074 }
3075 
3076 int
3077 arc_released(arc_buf_t *buf)
3078 {
3079 	int released;
3080 
3081 	rw_enter(&buf->b_lock, RW_READER);
3082 	released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
3083 	rw_exit(&buf->b_lock);
3084 	return (released);
3085 }
3086 
3087 int
3088 arc_has_callback(arc_buf_t *buf)
3089 {
3090 	int callback;
3091 
3092 	rw_enter(&buf->b_lock, RW_READER);
3093 	callback = (buf->b_efunc != NULL);
3094 	rw_exit(&buf->b_lock);
3095 	return (callback);
3096 }
3097 
3098 #ifdef ZFS_DEBUG
3099 int
3100 arc_referenced(arc_buf_t *buf)
3101 {
3102 	int referenced;
3103 
3104 	rw_enter(&buf->b_lock, RW_READER);
3105 	referenced = (refcount_count(&buf->b_hdr->b_refcnt));
3106 	rw_exit(&buf->b_lock);
3107 	return (referenced);
3108 }
3109 #endif
3110 
3111 static void
3112 arc_write_ready(zio_t *zio)
3113 {
3114 	arc_write_callback_t *callback = zio->io_private;
3115 	arc_buf_t *buf = callback->awcb_buf;
3116 	arc_buf_hdr_t *hdr = buf->b_hdr;
3117 
3118 	ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3119 	callback->awcb_ready(zio, buf, callback->awcb_private);
3120 
3121 	/*
3122 	 * If the IO is already in progress, then this is a re-write
3123 	 * attempt, so we need to thaw and re-compute the cksum.
3124 	 * It is the responsibility of the callback to handle the
3125 	 * accounting for any re-write attempt.
3126 	 */
3127 	if (HDR_IO_IN_PROGRESS(hdr)) {
3128 		mutex_enter(&hdr->b_freeze_lock);
3129 		if (hdr->b_freeze_cksum != NULL) {
3130 			kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3131 			hdr->b_freeze_cksum = NULL;
3132 		}
3133 		mutex_exit(&hdr->b_freeze_lock);
3134 	}
3135 	arc_cksum_compute(buf, B_FALSE);
3136 	hdr->b_flags |= ARC_IO_IN_PROGRESS;
3137 }
3138 
3139 static void
3140 arc_write_done(zio_t *zio)
3141 {
3142 	arc_write_callback_t *callback = zio->io_private;
3143 	arc_buf_t *buf = callback->awcb_buf;
3144 	arc_buf_hdr_t *hdr = buf->b_hdr;
3145 
3146 	ASSERT(hdr->b_acb == NULL);
3147 
3148 	if (zio->io_error == 0) {
3149 		hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3150 		hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3151 		hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3152 	} else {
3153 		ASSERT(BUF_EMPTY(hdr));
3154 	}
3155 
3156 	/*
3157 	 * If the block to be written was all-zero, we may have
3158 	 * compressed it away.  In this case no write was performed
3159 	 * so there will be no dva/birth-date/checksum.  The buffer
3160 	 * must therefor remain anonymous (and uncached).
3161 	 */
3162 	if (!BUF_EMPTY(hdr)) {
3163 		arc_buf_hdr_t *exists;
3164 		kmutex_t *hash_lock;
3165 
3166 		ASSERT(zio->io_error == 0);
3167 
3168 		arc_cksum_verify(buf);
3169 
3170 		exists = buf_hash_insert(hdr, &hash_lock);
3171 		if (exists) {
3172 			/*
3173 			 * This can only happen if we overwrite for
3174 			 * sync-to-convergence, because we remove
3175 			 * buffers from the hash table when we arc_free().
3176 			 */
3177 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3178 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3179 					panic("bad overwrite, hdr=%p exists=%p",
3180 					    (void *)hdr, (void *)exists);
3181 				ASSERT(refcount_is_zero(&exists->b_refcnt));
3182 				arc_change_state(arc_anon, exists, hash_lock);
3183 				mutex_exit(hash_lock);
3184 				arc_hdr_destroy(exists);
3185 				exists = buf_hash_insert(hdr, &hash_lock);
3186 				ASSERT3P(exists, ==, NULL);
3187 			} else {
3188 				/* Dedup */
3189 				ASSERT(hdr->b_datacnt == 1);
3190 				ASSERT(hdr->b_state == arc_anon);
3191 				ASSERT(BP_GET_DEDUP(zio->io_bp));
3192 				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3193 			}
3194 		}
3195 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3196 		/* if it's not anon, we are doing a scrub */
3197 		if (!exists && hdr->b_state == arc_anon)
3198 			arc_access(hdr, hash_lock);
3199 		mutex_exit(hash_lock);
3200 	} else {
3201 		hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3202 	}
3203 
3204 	ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3205 	callback->awcb_done(zio, buf, callback->awcb_private);
3206 
3207 	kmem_free(callback, sizeof (arc_write_callback_t));
3208 }
3209 
3210 zio_t *
3211 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3212     blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp,
3213     arc_done_func_t *ready, arc_done_func_t *done, void *private,
3214     int priority, int zio_flags, const zbookmark_t *zb)
3215 {
3216 	arc_buf_hdr_t *hdr = buf->b_hdr;
3217 	arc_write_callback_t *callback;
3218 	zio_t *zio;
3219 
3220 	ASSERT(ready != NULL);
3221 	ASSERT(done != NULL);
3222 	ASSERT(!HDR_IO_ERROR(hdr));
3223 	ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
3224 	ASSERT(hdr->b_acb == NULL);
3225 	if (l2arc)
3226 		hdr->b_flags |= ARC_L2CACHE;
3227 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
3228 	callback->awcb_ready = ready;
3229 	callback->awcb_done = done;
3230 	callback->awcb_private = private;
3231 	callback->awcb_buf = buf;
3232 
3233 	zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
3234 	    arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
3235 
3236 	return (zio);
3237 }
3238 
3239 void
3240 arc_free(spa_t *spa, const blkptr_t *bp)
3241 {
3242 	arc_buf_hdr_t *ab;
3243 	kmutex_t *hash_lock;
3244 	uint64_t guid = spa_guid(spa);
3245 
3246 	/*
3247 	 * If this buffer is in the cache, release it, so it can be re-used.
3248 	 */
3249 	ab = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
3250 	    &hash_lock);
3251 	if (ab != NULL) {
3252 		if (ab->b_state != arc_anon)
3253 			arc_change_state(arc_anon, ab, hash_lock);
3254 		if (HDR_IO_IN_PROGRESS(ab)) {
3255 			/*
3256 			 * This should only happen when we prefetch.
3257 			 */
3258 			ASSERT(ab->b_flags & ARC_PREFETCH);
3259 			ASSERT3U(ab->b_datacnt, ==, 1);
3260 			ab->b_flags |= ARC_FREED_IN_READ;
3261 			if (HDR_IN_HASH_TABLE(ab))
3262 				buf_hash_remove(ab);
3263 			ab->b_arc_access = 0;
3264 			bzero(&ab->b_dva, sizeof (dva_t));
3265 			ab->b_birth = 0;
3266 			ab->b_cksum0 = 0;
3267 			ab->b_buf->b_efunc = NULL;
3268 			ab->b_buf->b_private = NULL;
3269 			mutex_exit(hash_lock);
3270 		} else {
3271 			ASSERT(refcount_is_zero(&ab->b_refcnt));
3272 			ab->b_flags |= ARC_FREE_IN_PROGRESS;
3273 			mutex_exit(hash_lock);
3274 			arc_hdr_destroy(ab);
3275 			ARCSTAT_BUMP(arcstat_deleted);
3276 		}
3277 	}
3278 }
3279 
3280 static int
3281 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
3282 {
3283 #ifdef _KERNEL
3284 	uint64_t available_memory = ptob(freemem);
3285 	static uint64_t page_load = 0;
3286 	static uint64_t last_txg = 0;
3287 
3288 #if defined(__i386)
3289 	available_memory =
3290 	    MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
3291 #endif
3292 	if (available_memory >= zfs_write_limit_max)
3293 		return (0);
3294 
3295 	if (txg > last_txg) {
3296 		last_txg = txg;
3297 		page_load = 0;
3298 	}
3299 	/*
3300 	 * If we are in pageout, we know that memory is already tight,
3301 	 * the arc is already going to be evicting, so we just want to
3302 	 * continue to let page writes occur as quickly as possible.
3303 	 */
3304 	if (curproc == proc_pageout) {
3305 		if (page_load > MAX(ptob(minfree), available_memory) / 4)
3306 			return (ERESTART);
3307 		/* Note: reserve is inflated, so we deflate */
3308 		page_load += reserve / 8;
3309 		return (0);
3310 	} else if (page_load > 0 && arc_reclaim_needed()) {
3311 		/* memory is low, delay before restarting */
3312 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3313 		return (EAGAIN);
3314 	}
3315 	page_load = 0;
3316 
3317 	if (arc_size > arc_c_min) {
3318 		uint64_t evictable_memory =
3319 		    arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3320 		    arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3321 		    arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3322 		    arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3323 		available_memory += MIN(evictable_memory, arc_size - arc_c_min);
3324 	}
3325 
3326 	if (inflight_data > available_memory / 4) {
3327 		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
3328 		return (ERESTART);
3329 	}
3330 #endif
3331 	return (0);
3332 }
3333 
3334 void
3335 arc_tempreserve_clear(uint64_t reserve)
3336 {
3337 	atomic_add_64(&arc_tempreserve, -reserve);
3338 	ASSERT((int64_t)arc_tempreserve >= 0);
3339 }
3340 
3341 int
3342 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3343 {
3344 	int error;
3345 	uint64_t anon_size;
3346 
3347 #ifdef ZFS_DEBUG
3348 	/*
3349 	 * Once in a while, fail for no reason.  Everything should cope.
3350 	 */
3351 	if (spa_get_random(10000) == 0) {
3352 		dprintf("forcing random failure\n");
3353 		return (ERESTART);
3354 	}
3355 #endif
3356 	if (reserve > arc_c/4 && !arc_no_grow)
3357 		arc_c = MIN(arc_c_max, reserve * 4);
3358 	if (reserve > arc_c)
3359 		return (ENOMEM);
3360 
3361 	/*
3362 	 * Don't count loaned bufs as in flight dirty data to prevent long
3363 	 * network delays from blocking transactions that are ready to be
3364 	 * assigned to a txg.
3365 	 */
3366 	anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3367 
3368 	/*
3369 	 * Writes will, almost always, require additional memory allocations
3370 	 * in order to compress/encrypt/etc the data.  We therefor need to
3371 	 * make sure that there is sufficient available memory for this.
3372 	 */
3373 	if (error = arc_memory_throttle(reserve, anon_size, txg))
3374 		return (error);
3375 
3376 	/*
3377 	 * Throttle writes when the amount of dirty data in the cache
3378 	 * gets too large.  We try to keep the cache less than half full
3379 	 * of dirty blocks so that our sync times don't grow too large.
3380 	 * Note: if two requests come in concurrently, we might let them
3381 	 * both succeed, when one of them should fail.  Not a huge deal.
3382 	 */
3383 
3384 	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3385 	    anon_size > arc_c / 4) {
3386 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3387 		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3388 		    arc_tempreserve>>10,
3389 		    arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3390 		    arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3391 		    reserve>>10, arc_c>>10);
3392 		return (ERESTART);
3393 	}
3394 	atomic_add_64(&arc_tempreserve, reserve);
3395 	return (0);
3396 }
3397 
3398 void
3399 arc_init(void)
3400 {
3401 	mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
3402 	cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
3403 
3404 	/* Convert seconds to clock ticks */
3405 	arc_min_prefetch_lifespan = 1 * hz;
3406 
3407 	/* Start out with 1/8 of all memory */
3408 	arc_c = physmem * PAGESIZE / 8;
3409 
3410 #ifdef _KERNEL
3411 	/*
3412 	 * On architectures where the physical memory can be larger
3413 	 * than the addressable space (intel in 32-bit mode), we may
3414 	 * need to limit the cache to 1/8 of VM size.
3415 	 */
3416 	arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
3417 #endif
3418 
3419 	/* set min cache to 1/32 of all memory, or 64MB, whichever is more */
3420 	arc_c_min = MAX(arc_c / 4, 64<<20);
3421 	/* set max to 3/4 of all memory, or all but 1GB, whichever is more */
3422 	if (arc_c * 8 >= 1<<30)
3423 		arc_c_max = (arc_c * 8) - (1<<30);
3424 	else
3425 		arc_c_max = arc_c_min;
3426 	arc_c_max = MAX(arc_c * 6, arc_c_max);
3427 
3428 	/*
3429 	 * Allow the tunables to override our calculations if they are
3430 	 * reasonable (ie. over 64MB)
3431 	 */
3432 	if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
3433 		arc_c_max = zfs_arc_max;
3434 	if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max)
3435 		arc_c_min = zfs_arc_min;
3436 
3437 	arc_c = arc_c_max;
3438 	arc_p = (arc_c >> 1);
3439 
3440 	/* limit meta-data to 1/4 of the arc capacity */
3441 	arc_meta_limit = arc_c_max / 4;
3442 
3443 	/* Allow the tunable to override if it is reasonable */
3444 	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
3445 		arc_meta_limit = zfs_arc_meta_limit;
3446 
3447 	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
3448 		arc_c_min = arc_meta_limit / 2;
3449 
3450 	if (zfs_arc_grow_retry > 0)
3451 		arc_grow_retry = zfs_arc_grow_retry;
3452 
3453 	if (zfs_arc_shrink_shift > 0)
3454 		arc_shrink_shift = zfs_arc_shrink_shift;
3455 
3456 	if (zfs_arc_p_min_shift > 0)
3457 		arc_p_min_shift = zfs_arc_p_min_shift;
3458 
3459 	/* if kmem_flags are set, lets try to use less memory */
3460 	if (kmem_debugging())
3461 		arc_c = arc_c / 2;
3462 	if (arc_c < arc_c_min)
3463 		arc_c = arc_c_min;
3464 
3465 	arc_anon = &ARC_anon;
3466 	arc_mru = &ARC_mru;
3467 	arc_mru_ghost = &ARC_mru_ghost;
3468 	arc_mfu = &ARC_mfu;
3469 	arc_mfu_ghost = &ARC_mfu_ghost;
3470 	arc_l2c_only = &ARC_l2c_only;
3471 	arc_size = 0;
3472 
3473 	mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3474 	mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3475 	mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3476 	mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3477 	mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3478 	mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
3479 
3480 	list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
3481 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3482 	list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
3483 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3484 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
3485 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3486 	list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
3487 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3488 	list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
3489 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3490 	list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
3491 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3492 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
3493 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3494 	list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
3495 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3496 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
3497 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3498 	list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
3499 	    sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
3500 
3501 	buf_init();
3502 
3503 	arc_thread_exit = 0;
3504 	arc_eviction_list = NULL;
3505 	mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
3506 	bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
3507 
3508 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
3509 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
3510 
3511 	if (arc_ksp != NULL) {
3512 		arc_ksp->ks_data = &arc_stats;
3513 		kstat_install(arc_ksp);
3514 	}
3515 
3516 	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
3517 	    TS_RUN, minclsyspri);
3518 
3519 	arc_dead = FALSE;
3520 	arc_warm = B_FALSE;
3521 
3522 	if (zfs_write_limit_max == 0)
3523 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
3524 	else
3525 		zfs_write_limit_shift = 0;
3526 	mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
3527 }
3528 
3529 void
3530 arc_fini(void)
3531 {
3532 	mutex_enter(&arc_reclaim_thr_lock);
3533 	arc_thread_exit = 1;
3534 	while (arc_thread_exit != 0)
3535 		cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
3536 	mutex_exit(&arc_reclaim_thr_lock);
3537 
3538 	arc_flush(NULL);
3539 
3540 	arc_dead = TRUE;
3541 
3542 	if (arc_ksp != NULL) {
3543 		kstat_delete(arc_ksp);
3544 		arc_ksp = NULL;
3545 	}
3546 
3547 	mutex_destroy(&arc_eviction_mtx);
3548 	mutex_destroy(&arc_reclaim_thr_lock);
3549 	cv_destroy(&arc_reclaim_thr_cv);
3550 
3551 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
3552 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
3553 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
3554 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
3555 	list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
3556 	list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
3557 	list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
3558 	list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
3559 
3560 	mutex_destroy(&arc_anon->arcs_mtx);
3561 	mutex_destroy(&arc_mru->arcs_mtx);
3562 	mutex_destroy(&arc_mru_ghost->arcs_mtx);
3563 	mutex_destroy(&arc_mfu->arcs_mtx);
3564 	mutex_destroy(&arc_mfu_ghost->arcs_mtx);
3565 	mutex_destroy(&arc_l2c_only->arcs_mtx);
3566 
3567 	mutex_destroy(&zfs_write_limit_lock);
3568 
3569 	buf_fini();
3570 
3571 	ASSERT(arc_loaned_bytes == 0);
3572 }
3573 
3574 /*
3575  * Level 2 ARC
3576  *
3577  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
3578  * It uses dedicated storage devices to hold cached data, which are populated
3579  * using large infrequent writes.  The main role of this cache is to boost
3580  * the performance of random read workloads.  The intended L2ARC devices
3581  * include short-stroked disks, solid state disks, and other media with
3582  * substantially faster read latency than disk.
3583  *
3584  *                 +-----------------------+
3585  *                 |         ARC           |
3586  *                 +-----------------------+
3587  *                    |         ^     ^
3588  *                    |         |     |
3589  *      l2arc_feed_thread()    arc_read()
3590  *                    |         |     |
3591  *                    |  l2arc read   |
3592  *                    V         |     |
3593  *               +---------------+    |
3594  *               |     L2ARC     |    |
3595  *               +---------------+    |
3596  *                   |    ^           |
3597  *          l2arc_write() |           |
3598  *                   |    |           |
3599  *                   V    |           |
3600  *                 +-------+      +-------+
3601  *                 | vdev  |      | vdev  |
3602  *                 | cache |      | cache |
3603  *                 +-------+      +-------+
3604  *                 +=========+     .-----.
3605  *                 :  L2ARC  :    |-_____-|
3606  *                 : devices :    | Disks |
3607  *                 +=========+    `-_____-'
3608  *
3609  * Read requests are satisfied from the following sources, in order:
3610  *
3611  *	1) ARC
3612  *	2) vdev cache of L2ARC devices
3613  *	3) L2ARC devices
3614  *	4) vdev cache of disks
3615  *	5) disks
3616  *
3617  * Some L2ARC device types exhibit extremely slow write performance.
3618  * To accommodate for this there are some significant differences between
3619  * the L2ARC and traditional cache design:
3620  *
3621  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
3622  * the ARC behave as usual, freeing buffers and placing headers on ghost
3623  * lists.  The ARC does not send buffers to the L2ARC during eviction as
3624  * this would add inflated write latencies for all ARC memory pressure.
3625  *
3626  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
3627  * It does this by periodically scanning buffers from the eviction-end of
3628  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3629  * not already there.  It scans until a headroom of buffers is satisfied,
3630  * which itself is a buffer for ARC eviction.  The thread that does this is
3631  * l2arc_feed_thread(), illustrated below; example sizes are included to
3632  * provide a better sense of ratio than this diagram:
3633  *
3634  *	       head -->                        tail
3635  *	        +---------------------+----------+
3636  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
3637  *	        +---------------------+----------+   |   o L2ARC eligible
3638  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
3639  *	        +---------------------+----------+   |
3640  *	             15.9 Gbytes      ^ 32 Mbytes    |
3641  *	                           headroom          |
3642  *	                                      l2arc_feed_thread()
3643  *	                                             |
3644  *	                 l2arc write hand <--[oooo]--'
3645  *	                         |           8 Mbyte
3646  *	                         |          write max
3647  *	                         V
3648  *		  +==============================+
3649  *	L2ARC dev |####|#|###|###|    |####| ... |
3650  *	          +==============================+
3651  *	                     32 Gbytes
3652  *
3653  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
3654  * evicted, then the L2ARC has cached a buffer much sooner than it probably
3655  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
3656  * safe to say that this is an uncommon case, since buffers at the end of
3657  * the ARC lists have moved there due to inactivity.
3658  *
3659  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
3660  * then the L2ARC simply misses copying some buffers.  This serves as a
3661  * pressure valve to prevent heavy read workloads from both stalling the ARC
3662  * with waits and clogging the L2ARC with writes.  This also helps prevent
3663  * the potential for the L2ARC to churn if it attempts to cache content too
3664  * quickly, such as during backups of the entire pool.
3665  *
3666  * 5. After system boot and before the ARC has filled main memory, there are
3667  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
3668  * lists can remain mostly static.  Instead of searching from tail of these
3669  * lists as pictured, the l2arc_feed_thread() will search from the list heads
3670  * for eligible buffers, greatly increasing its chance of finding them.
3671  *
3672  * The L2ARC device write speed is also boosted during this time so that
3673  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
3674  * there are no L2ARC reads, and no fear of degrading read performance
3675  * through increased writes.
3676  *
3677  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
3678  * the vdev queue can aggregate them into larger and fewer writes.  Each
3679  * device is written to in a rotor fashion, sweeping writes through
3680  * available space then repeating.
3681  *
3682  * 7. The L2ARC does not store dirty content.  It never needs to flush
3683  * write buffers back to disk based storage.
3684  *
3685  * 8. If an ARC buffer is written (and dirtied) which also exists in the
3686  * L2ARC, the now stale L2ARC buffer is immediately dropped.
3687  *
3688  * The performance of the L2ARC can be tweaked by a number of tunables, which
3689  * may be necessary for different workloads:
3690  *
3691  *	l2arc_write_max		max write bytes per interval
3692  *	l2arc_write_boost	extra write bytes during device warmup
3693  *	l2arc_noprefetch	skip caching prefetched buffers
3694  *	l2arc_headroom		number of max device writes to precache
3695  *	l2arc_feed_secs		seconds between L2ARC writing
3696  *
3697  * Tunables may be removed or added as future performance improvements are
3698  * integrated, and also may become zpool properties.
3699  *
3700  * There are three key functions that control how the L2ARC warms up:
3701  *
3702  *	l2arc_write_eligible()	check if a buffer is eligible to cache
3703  *	l2arc_write_size()	calculate how much to write
3704  *	l2arc_write_interval()	calculate sleep delay between writes
3705  *
3706  * These three functions determine what to write, how much, and how quickly
3707  * to send writes.
3708  */
3709 
3710 static boolean_t
3711 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
3712 {
3713 	/*
3714 	 * A buffer is *not* eligible for the L2ARC if it:
3715 	 * 1. belongs to a different spa.
3716 	 * 2. is already cached on the L2ARC.
3717 	 * 3. has an I/O in progress (it may be an incomplete read).
3718 	 * 4. is flagged not eligible (zfs property).
3719 	 */
3720 	if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
3721 	    HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
3722 		return (B_FALSE);
3723 
3724 	return (B_TRUE);
3725 }
3726 
3727 static uint64_t
3728 l2arc_write_size(l2arc_dev_t *dev)
3729 {
3730 	uint64_t size;
3731 
3732 	size = dev->l2ad_write;
3733 
3734 	if (arc_warm == B_FALSE)
3735 		size += dev->l2ad_boost;
3736 
3737 	return (size);
3738 
3739 }
3740 
3741 static clock_t
3742 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
3743 {
3744 	clock_t interval, next;
3745 
3746 	/*
3747 	 * If the ARC lists are busy, increase our write rate; if the
3748 	 * lists are stale, idle back.  This is achieved by checking
3749 	 * how much we previously wrote - if it was more than half of
3750 	 * what we wanted, schedule the next write much sooner.
3751 	 */
3752 	if (l2arc_feed_again && wrote > (wanted / 2))
3753 		interval = (hz * l2arc_feed_min_ms) / 1000;
3754 	else
3755 		interval = hz * l2arc_feed_secs;
3756 
3757 	next = MAX(lbolt, MIN(lbolt + interval, began + interval));
3758 
3759 	return (next);
3760 }
3761 
3762 static void
3763 l2arc_hdr_stat_add(void)
3764 {
3765 	ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE);
3766 	ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
3767 }
3768 
3769 static void
3770 l2arc_hdr_stat_remove(void)
3771 {
3772 	ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE));
3773 	ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
3774 }
3775 
3776 /*
3777  * Cycle through L2ARC devices.  This is how L2ARC load balances.
3778  * If a device is returned, this also returns holding the spa config lock.
3779  */
3780 static l2arc_dev_t *
3781 l2arc_dev_get_next(void)
3782 {
3783 	l2arc_dev_t *first, *next = NULL;
3784 
3785 	/*
3786 	 * Lock out the removal of spas (spa_namespace_lock), then removal
3787 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
3788 	 * both locks will be dropped and a spa config lock held instead.
3789 	 */
3790 	mutex_enter(&spa_namespace_lock);
3791 	mutex_enter(&l2arc_dev_mtx);
3792 
3793 	/* if there are no vdevs, there is nothing to do */
3794 	if (l2arc_ndev == 0)
3795 		goto out;
3796 
3797 	first = NULL;
3798 	next = l2arc_dev_last;
3799 	do {
3800 		/* loop around the list looking for a non-faulted vdev */
3801 		if (next == NULL) {
3802 			next = list_head(l2arc_dev_list);
3803 		} else {
3804 			next = list_next(l2arc_dev_list, next);
3805 			if (next == NULL)
3806 				next = list_head(l2arc_dev_list);
3807 		}
3808 
3809 		/* if we have come back to the start, bail out */
3810 		if (first == NULL)
3811 			first = next;
3812 		else if (next == first)
3813 			break;
3814 
3815 	} while (vdev_is_dead(next->l2ad_vdev));
3816 
3817 	/* if we were unable to find any usable vdevs, return NULL */
3818 	if (vdev_is_dead(next->l2ad_vdev))
3819 		next = NULL;
3820 
3821 	l2arc_dev_last = next;
3822 
3823 out:
3824 	mutex_exit(&l2arc_dev_mtx);
3825 
3826 	/*
3827 	 * Grab the config lock to prevent the 'next' device from being
3828 	 * removed while we are writing to it.
3829 	 */
3830 	if (next != NULL)
3831 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
3832 	mutex_exit(&spa_namespace_lock);
3833 
3834 	return (next);
3835 }
3836 
3837 /*
3838  * Free buffers that were tagged for destruction.
3839  */
3840 static void
3841 l2arc_do_free_on_write()
3842 {
3843 	list_t *buflist;
3844 	l2arc_data_free_t *df, *df_prev;
3845 
3846 	mutex_enter(&l2arc_free_on_write_mtx);
3847 	buflist = l2arc_free_on_write;
3848 
3849 	for (df = list_tail(buflist); df; df = df_prev) {
3850 		df_prev = list_prev(buflist, df);
3851 		ASSERT(df->l2df_data != NULL);
3852 		ASSERT(df->l2df_func != NULL);
3853 		df->l2df_func(df->l2df_data, df->l2df_size);
3854 		list_remove(buflist, df);
3855 		kmem_free(df, sizeof (l2arc_data_free_t));
3856 	}
3857 
3858 	mutex_exit(&l2arc_free_on_write_mtx);
3859 }
3860 
3861 /*
3862  * A write to a cache device has completed.  Update all headers to allow
3863  * reads from these buffers to begin.
3864  */
3865 static void
3866 l2arc_write_done(zio_t *zio)
3867 {
3868 	l2arc_write_callback_t *cb;
3869 	l2arc_dev_t *dev;
3870 	list_t *buflist;
3871 	arc_buf_hdr_t *head, *ab, *ab_prev;
3872 	l2arc_buf_hdr_t *abl2;
3873 	kmutex_t *hash_lock;
3874 
3875 	cb = zio->io_private;
3876 	ASSERT(cb != NULL);
3877 	dev = cb->l2wcb_dev;
3878 	ASSERT(dev != NULL);
3879 	head = cb->l2wcb_head;
3880 	ASSERT(head != NULL);
3881 	buflist = dev->l2ad_buflist;
3882 	ASSERT(buflist != NULL);
3883 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
3884 	    l2arc_write_callback_t *, cb);
3885 
3886 	if (zio->io_error != 0)
3887 		ARCSTAT_BUMP(arcstat_l2_writes_error);
3888 
3889 	mutex_enter(&l2arc_buflist_mtx);
3890 
3891 	/*
3892 	 * All writes completed, or an error was hit.
3893 	 */
3894 	for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
3895 		ab_prev = list_prev(buflist, ab);
3896 
3897 		hash_lock = HDR_LOCK(ab);
3898 		if (!mutex_tryenter(hash_lock)) {
3899 			/*
3900 			 * This buffer misses out.  It may be in a stage
3901 			 * of eviction.  Its ARC_L2_WRITING flag will be
3902 			 * left set, denying reads to this buffer.
3903 			 */
3904 			ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
3905 			continue;
3906 		}
3907 
3908 		if (zio->io_error != 0) {
3909 			/*
3910 			 * Error - drop L2ARC entry.
3911 			 */
3912 			list_remove(buflist, ab);
3913 			abl2 = ab->b_l2hdr;
3914 			ab->b_l2hdr = NULL;
3915 			kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
3916 			ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
3917 		}
3918 
3919 		/*
3920 		 * Allow ARC to begin reads to this L2ARC entry.
3921 		 */
3922 		ab->b_flags &= ~ARC_L2_WRITING;
3923 
3924 		mutex_exit(hash_lock);
3925 	}
3926 
3927 	atomic_inc_64(&l2arc_writes_done);
3928 	list_remove(buflist, head);
3929 	kmem_cache_free(hdr_cache, head);
3930 	mutex_exit(&l2arc_buflist_mtx);
3931 
3932 	l2arc_do_free_on_write();
3933 
3934 	kmem_free(cb, sizeof (l2arc_write_callback_t));
3935 }
3936 
3937 /*
3938  * A read to a cache device completed.  Validate buffer contents before
3939  * handing over to the regular ARC routines.
3940  */
3941 static void
3942 l2arc_read_done(zio_t *zio)
3943 {
3944 	l2arc_read_callback_t *cb;
3945 	arc_buf_hdr_t *hdr;
3946 	arc_buf_t *buf;
3947 	kmutex_t *hash_lock;
3948 	int equal;
3949 
3950 	ASSERT(zio->io_vd != NULL);
3951 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
3952 
3953 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
3954 
3955 	cb = zio->io_private;
3956 	ASSERT(cb != NULL);
3957 	buf = cb->l2rcb_buf;
3958 	ASSERT(buf != NULL);
3959 	hdr = buf->b_hdr;
3960 	ASSERT(hdr != NULL);
3961 
3962 	hash_lock = HDR_LOCK(hdr);
3963 	mutex_enter(hash_lock);
3964 
3965 	/*
3966 	 * Check this survived the L2ARC journey.
3967 	 */
3968 	equal = arc_cksum_equal(buf);
3969 	if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
3970 		mutex_exit(hash_lock);
3971 		zio->io_private = buf;
3972 		zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
3973 		zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
3974 		arc_read_done(zio);
3975 	} else {
3976 		mutex_exit(hash_lock);
3977 		/*
3978 		 * Buffer didn't survive caching.  Increment stats and
3979 		 * reissue to the original storage device.
3980 		 */
3981 		if (zio->io_error != 0) {
3982 			ARCSTAT_BUMP(arcstat_l2_io_error);
3983 		} else {
3984 			zio->io_error = EIO;
3985 		}
3986 		if (!equal)
3987 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
3988 
3989 		/*
3990 		 * If there's no waiter, issue an async i/o to the primary
3991 		 * storage now.  If there *is* a waiter, the caller must
3992 		 * issue the i/o in a context where it's OK to block.
3993 		 */
3994 		if (zio->io_waiter == NULL) {
3995 			zio_t *pio = zio_unique_parent(zio);
3996 
3997 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
3998 
3999 			zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4000 			    buf->b_data, zio->io_size, arc_read_done, buf,
4001 			    zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
4002 		}
4003 	}
4004 
4005 	kmem_free(cb, sizeof (l2arc_read_callback_t));
4006 }
4007 
4008 /*
4009  * This is the list priority from which the L2ARC will search for pages to
4010  * cache.  This is used within loops (0..3) to cycle through lists in the
4011  * desired order.  This order can have a significant effect on cache
4012  * performance.
4013  *
4014  * Currently the metadata lists are hit first, MFU then MRU, followed by
4015  * the data lists.  This function returns a locked list, and also returns
4016  * the lock pointer.
4017  */
4018 static list_t *
4019 l2arc_list_locked(int list_num, kmutex_t **lock)
4020 {
4021 	list_t *list;
4022 
4023 	ASSERT(list_num >= 0 && list_num <= 3);
4024 
4025 	switch (list_num) {
4026 	case 0:
4027 		list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4028 		*lock = &arc_mfu->arcs_mtx;
4029 		break;
4030 	case 1:
4031 		list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4032 		*lock = &arc_mru->arcs_mtx;
4033 		break;
4034 	case 2:
4035 		list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4036 		*lock = &arc_mfu->arcs_mtx;
4037 		break;
4038 	case 3:
4039 		list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4040 		*lock = &arc_mru->arcs_mtx;
4041 		break;
4042 	}
4043 
4044 	ASSERT(!(MUTEX_HELD(*lock)));
4045 	mutex_enter(*lock);
4046 	return (list);
4047 }
4048 
4049 /*
4050  * Evict buffers from the device write hand to the distance specified in
4051  * bytes.  This distance may span populated buffers, it may span nothing.
4052  * This is clearing a region on the L2ARC device ready for writing.
4053  * If the 'all' boolean is set, every buffer is evicted.
4054  */
4055 static void
4056 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4057 {
4058 	list_t *buflist;
4059 	l2arc_buf_hdr_t *abl2;
4060 	arc_buf_hdr_t *ab, *ab_prev;
4061 	kmutex_t *hash_lock;
4062 	uint64_t taddr;
4063 
4064 	buflist = dev->l2ad_buflist;
4065 
4066 	if (buflist == NULL)
4067 		return;
4068 
4069 	if (!all && dev->l2ad_first) {
4070 		/*
4071 		 * This is the first sweep through the device.  There is
4072 		 * nothing to evict.
4073 		 */
4074 		return;
4075 	}
4076 
4077 	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
4078 		/*
4079 		 * When nearing the end of the device, evict to the end
4080 		 * before the device write hand jumps to the start.
4081 		 */
4082 		taddr = dev->l2ad_end;
4083 	} else {
4084 		taddr = dev->l2ad_hand + distance;
4085 	}
4086 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4087 	    uint64_t, taddr, boolean_t, all);
4088 
4089 top:
4090 	mutex_enter(&l2arc_buflist_mtx);
4091 	for (ab = list_tail(buflist); ab; ab = ab_prev) {
4092 		ab_prev = list_prev(buflist, ab);
4093 
4094 		hash_lock = HDR_LOCK(ab);
4095 		if (!mutex_tryenter(hash_lock)) {
4096 			/*
4097 			 * Missed the hash lock.  Retry.
4098 			 */
4099 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4100 			mutex_exit(&l2arc_buflist_mtx);
4101 			mutex_enter(hash_lock);
4102 			mutex_exit(hash_lock);
4103 			goto top;
4104 		}
4105 
4106 		if (HDR_L2_WRITE_HEAD(ab)) {
4107 			/*
4108 			 * We hit a write head node.  Leave it for
4109 			 * l2arc_write_done().
4110 			 */
4111 			list_remove(buflist, ab);
4112 			mutex_exit(hash_lock);
4113 			continue;
4114 		}
4115 
4116 		if (!all && ab->b_l2hdr != NULL &&
4117 		    (ab->b_l2hdr->b_daddr > taddr ||
4118 		    ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4119 			/*
4120 			 * We've evicted to the target address,
4121 			 * or the end of the device.
4122 			 */
4123 			mutex_exit(hash_lock);
4124 			break;
4125 		}
4126 
4127 		if (HDR_FREE_IN_PROGRESS(ab)) {
4128 			/*
4129 			 * Already on the path to destruction.
4130 			 */
4131 			mutex_exit(hash_lock);
4132 			continue;
4133 		}
4134 
4135 		if (ab->b_state == arc_l2c_only) {
4136 			ASSERT(!HDR_L2_READING(ab));
4137 			/*
4138 			 * This doesn't exist in the ARC.  Destroy.
4139 			 * arc_hdr_destroy() will call list_remove()
4140 			 * and decrement arcstat_l2_size.
4141 			 */
4142 			arc_change_state(arc_anon, ab, hash_lock);
4143 			arc_hdr_destroy(ab);
4144 		} else {
4145 			/*
4146 			 * Invalidate issued or about to be issued
4147 			 * reads, since we may be about to write
4148 			 * over this location.
4149 			 */
4150 			if (HDR_L2_READING(ab)) {
4151 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
4152 				ab->b_flags |= ARC_L2_EVICTED;
4153 			}
4154 
4155 			/*
4156 			 * Tell ARC this no longer exists in L2ARC.
4157 			 */
4158 			if (ab->b_l2hdr != NULL) {
4159 				abl2 = ab->b_l2hdr;
4160 				ab->b_l2hdr = NULL;
4161 				kmem_free(abl2, sizeof (l2arc_buf_hdr_t));
4162 				ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4163 			}
4164 			list_remove(buflist, ab);
4165 
4166 			/*
4167 			 * This may have been leftover after a
4168 			 * failed write.
4169 			 */
4170 			ab->b_flags &= ~ARC_L2_WRITING;
4171 		}
4172 		mutex_exit(hash_lock);
4173 	}
4174 	mutex_exit(&l2arc_buflist_mtx);
4175 
4176 	vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0);
4177 	dev->l2ad_evict = taddr;
4178 }
4179 
4180 /*
4181  * Find and write ARC buffers to the L2ARC device.
4182  *
4183  * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4184  * for reading until they have completed writing.
4185  */
4186 static uint64_t
4187 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4188 {
4189 	arc_buf_hdr_t *ab, *ab_prev, *head;
4190 	l2arc_buf_hdr_t *hdrl2;
4191 	list_t *list;
4192 	uint64_t passed_sz, write_sz, buf_sz, headroom;
4193 	void *buf_data;
4194 	kmutex_t *hash_lock, *list_lock;
4195 	boolean_t have_lock, full;
4196 	l2arc_write_callback_t *cb;
4197 	zio_t *pio, *wzio;
4198 	uint64_t guid = spa_guid(spa);
4199 
4200 	ASSERT(dev->l2ad_vdev != NULL);
4201 
4202 	pio = NULL;
4203 	write_sz = 0;
4204 	full = B_FALSE;
4205 	head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4206 	head->b_flags |= ARC_L2_WRITE_HEAD;
4207 
4208 	/*
4209 	 * Copy buffers for L2ARC writing.
4210 	 */
4211 	mutex_enter(&l2arc_buflist_mtx);
4212 	for (int try = 0; try <= 3; try++) {
4213 		list = l2arc_list_locked(try, &list_lock);
4214 		passed_sz = 0;
4215 
4216 		/*
4217 		 * L2ARC fast warmup.
4218 		 *
4219 		 * Until the ARC is warm and starts to evict, read from the
4220 		 * head of the ARC lists rather than the tail.
4221 		 */
4222 		headroom = target_sz * l2arc_headroom;
4223 		if (arc_warm == B_FALSE)
4224 			ab = list_head(list);
4225 		else
4226 			ab = list_tail(list);
4227 
4228 		for (; ab; ab = ab_prev) {
4229 			if (arc_warm == B_FALSE)
4230 				ab_prev = list_next(list, ab);
4231 			else
4232 				ab_prev = list_prev(list, ab);
4233 
4234 			hash_lock = HDR_LOCK(ab);
4235 			have_lock = MUTEX_HELD(hash_lock);
4236 			if (!have_lock && !mutex_tryenter(hash_lock)) {
4237 				/*
4238 				 * Skip this buffer rather than waiting.
4239 				 */
4240 				continue;
4241 			}
4242 
4243 			passed_sz += ab->b_size;
4244 			if (passed_sz > headroom) {
4245 				/*
4246 				 * Searched too far.
4247 				 */
4248 				mutex_exit(hash_lock);
4249 				break;
4250 			}
4251 
4252 			if (!l2arc_write_eligible(guid, ab)) {
4253 				mutex_exit(hash_lock);
4254 				continue;
4255 			}
4256 
4257 			if ((write_sz + ab->b_size) > target_sz) {
4258 				full = B_TRUE;
4259 				mutex_exit(hash_lock);
4260 				break;
4261 			}
4262 
4263 			if (pio == NULL) {
4264 				/*
4265 				 * Insert a dummy header on the buflist so
4266 				 * l2arc_write_done() can find where the
4267 				 * write buffers begin without searching.
4268 				 */
4269 				list_insert_head(dev->l2ad_buflist, head);
4270 
4271 				cb = kmem_alloc(
4272 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
4273 				cb->l2wcb_dev = dev;
4274 				cb->l2wcb_head = head;
4275 				pio = zio_root(spa, l2arc_write_done, cb,
4276 				    ZIO_FLAG_CANFAIL);
4277 			}
4278 
4279 			/*
4280 			 * Create and add a new L2ARC header.
4281 			 */
4282 			hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4283 			hdrl2->b_dev = dev;
4284 			hdrl2->b_daddr = dev->l2ad_hand;
4285 
4286 			ab->b_flags |= ARC_L2_WRITING;
4287 			ab->b_l2hdr = hdrl2;
4288 			list_insert_head(dev->l2ad_buflist, ab);
4289 			buf_data = ab->b_buf->b_data;
4290 			buf_sz = ab->b_size;
4291 
4292 			/*
4293 			 * Compute and store the buffer cksum before
4294 			 * writing.  On debug the cksum is verified first.
4295 			 */
4296 			arc_cksum_verify(ab->b_buf);
4297 			arc_cksum_compute(ab->b_buf, B_TRUE);
4298 
4299 			mutex_exit(hash_lock);
4300 
4301 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
4302 			    dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4303 			    NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4304 			    ZIO_FLAG_CANFAIL, B_FALSE);
4305 
4306 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4307 			    zio_t *, wzio);
4308 			(void) zio_nowait(wzio);
4309 
4310 			/*
4311 			 * Keep the clock hand suitably device-aligned.
4312 			 */
4313 			buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
4314 
4315 			write_sz += buf_sz;
4316 			dev->l2ad_hand += buf_sz;
4317 		}
4318 
4319 		mutex_exit(list_lock);
4320 
4321 		if (full == B_TRUE)
4322 			break;
4323 	}
4324 	mutex_exit(&l2arc_buflist_mtx);
4325 
4326 	if (pio == NULL) {
4327 		ASSERT3U(write_sz, ==, 0);
4328 		kmem_cache_free(hdr_cache, head);
4329 		return (0);
4330 	}
4331 
4332 	ASSERT3U(write_sz, <=, target_sz);
4333 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
4334 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4335 	ARCSTAT_INCR(arcstat_l2_size, write_sz);
4336 	vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);
4337 
4338 	/*
4339 	 * Bump device hand to the device start if it is approaching the end.
4340 	 * l2arc_evict() will already have evicted ahead for this case.
4341 	 */
4342 	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4343 		vdev_space_update(dev->l2ad_vdev,
4344 		    dev->l2ad_end - dev->l2ad_hand, 0, 0);
4345 		dev->l2ad_hand = dev->l2ad_start;
4346 		dev->l2ad_evict = dev->l2ad_start;
4347 		dev->l2ad_first = B_FALSE;
4348 	}
4349 
4350 	dev->l2ad_writing = B_TRUE;
4351 	(void) zio_wait(pio);
4352 	dev->l2ad_writing = B_FALSE;
4353 
4354 	return (write_sz);
4355 }
4356 
4357 /*
4358  * This thread feeds the L2ARC at regular intervals.  This is the beating
4359  * heart of the L2ARC.
4360  */
4361 static void
4362 l2arc_feed_thread(void)
4363 {
4364 	callb_cpr_t cpr;
4365 	l2arc_dev_t *dev;
4366 	spa_t *spa;
4367 	uint64_t size, wrote;
4368 	clock_t begin, next = lbolt;
4369 
4370 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
4371 
4372 	mutex_enter(&l2arc_feed_thr_lock);
4373 
4374 	while (l2arc_thread_exit == 0) {
4375 		CALLB_CPR_SAFE_BEGIN(&cpr);
4376 		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
4377 		    next);
4378 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
4379 		next = lbolt + hz;
4380 
4381 		/*
4382 		 * Quick check for L2ARC devices.
4383 		 */
4384 		mutex_enter(&l2arc_dev_mtx);
4385 		if (l2arc_ndev == 0) {
4386 			mutex_exit(&l2arc_dev_mtx);
4387 			continue;
4388 		}
4389 		mutex_exit(&l2arc_dev_mtx);
4390 		begin = lbolt;
4391 
4392 		/*
4393 		 * This selects the next l2arc device to write to, and in
4394 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
4395 		 * will return NULL if there are now no l2arc devices or if
4396 		 * they are all faulted.
4397 		 *
4398 		 * If a device is returned, its spa's config lock is also
4399 		 * held to prevent device removal.  l2arc_dev_get_next()
4400 		 * will grab and release l2arc_dev_mtx.
4401 		 */
4402 		if ((dev = l2arc_dev_get_next()) == NULL)
4403 			continue;
4404 
4405 		spa = dev->l2ad_spa;
4406 		ASSERT(spa != NULL);
4407 
4408 		/*
4409 		 * Avoid contributing to memory pressure.
4410 		 */
4411 		if (arc_reclaim_needed()) {
4412 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
4413 			spa_config_exit(spa, SCL_L2ARC, dev);
4414 			continue;
4415 		}
4416 
4417 		ARCSTAT_BUMP(arcstat_l2_feeds);
4418 
4419 		size = l2arc_write_size(dev);
4420 
4421 		/*
4422 		 * Evict L2ARC buffers that will be overwritten.
4423 		 */
4424 		l2arc_evict(dev, size, B_FALSE);
4425 
4426 		/*
4427 		 * Write ARC buffers.
4428 		 */
4429 		wrote = l2arc_write_buffers(spa, dev, size);
4430 
4431 		/*
4432 		 * Calculate interval between writes.
4433 		 */
4434 		next = l2arc_write_interval(begin, size, wrote);
4435 		spa_config_exit(spa, SCL_L2ARC, dev);
4436 	}
4437 
4438 	l2arc_thread_exit = 0;
4439 	cv_broadcast(&l2arc_feed_thr_cv);
4440 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
4441 	thread_exit();
4442 }
4443 
4444 boolean_t
4445 l2arc_vdev_present(vdev_t *vd)
4446 {
4447 	l2arc_dev_t *dev;
4448 
4449 	mutex_enter(&l2arc_dev_mtx);
4450 	for (dev = list_head(l2arc_dev_list); dev != NULL;
4451 	    dev = list_next(l2arc_dev_list, dev)) {
4452 		if (dev->l2ad_vdev == vd)
4453 			break;
4454 	}
4455 	mutex_exit(&l2arc_dev_mtx);
4456 
4457 	return (dev != NULL);
4458 }
4459 
4460 /*
4461  * Add a vdev for use by the L2ARC.  By this point the spa has already
4462  * validated the vdev and opened it.
4463  */
4464 void
4465 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
4466 {
4467 	l2arc_dev_t *adddev;
4468 
4469 	ASSERT(!l2arc_vdev_present(vd));
4470 
4471 	/*
4472 	 * Create a new l2arc device entry.
4473 	 */
4474 	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
4475 	adddev->l2ad_spa = spa;
4476 	adddev->l2ad_vdev = vd;
4477 	adddev->l2ad_write = l2arc_write_max;
4478 	adddev->l2ad_boost = l2arc_write_boost;
4479 	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
4480 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
4481 	adddev->l2ad_hand = adddev->l2ad_start;
4482 	adddev->l2ad_evict = adddev->l2ad_start;
4483 	adddev->l2ad_first = B_TRUE;
4484 	adddev->l2ad_writing = B_FALSE;
4485 	ASSERT3U(adddev->l2ad_write, >, 0);
4486 
4487 	/*
4488 	 * This is a list of all ARC buffers that are still valid on the
4489 	 * device.
4490 	 */
4491 	adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
4492 	list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
4493 	    offsetof(arc_buf_hdr_t, b_l2node));
4494 
4495 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
4496 
4497 	/*
4498 	 * Add device to global list
4499 	 */
4500 	mutex_enter(&l2arc_dev_mtx);
4501 	list_insert_head(l2arc_dev_list, adddev);
4502 	atomic_inc_64(&l2arc_ndev);
4503 	mutex_exit(&l2arc_dev_mtx);
4504 }
4505 
4506 /*
4507  * Remove a vdev from the L2ARC.
4508  */
4509 void
4510 l2arc_remove_vdev(vdev_t *vd)
4511 {
4512 	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
4513 
4514 	/*
4515 	 * Find the device by vdev
4516 	 */
4517 	mutex_enter(&l2arc_dev_mtx);
4518 	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
4519 		nextdev = list_next(l2arc_dev_list, dev);
4520 		if (vd == dev->l2ad_vdev) {
4521 			remdev = dev;
4522 			break;
4523 		}
4524 	}
4525 	ASSERT(remdev != NULL);
4526 
4527 	/*
4528 	 * Remove device from global list
4529 	 */
4530 	list_remove(l2arc_dev_list, remdev);
4531 	l2arc_dev_last = NULL;		/* may have been invalidated */
4532 	atomic_dec_64(&l2arc_ndev);
4533 	mutex_exit(&l2arc_dev_mtx);
4534 
4535 	/*
4536 	 * Clear all buflists and ARC references.  L2ARC device flush.
4537 	 */
4538 	l2arc_evict(remdev, 0, B_TRUE);
4539 	list_destroy(remdev->l2ad_buflist);
4540 	kmem_free(remdev->l2ad_buflist, sizeof (list_t));
4541 	kmem_free(remdev, sizeof (l2arc_dev_t));
4542 }
4543 
4544 void
4545 l2arc_init(void)
4546 {
4547 	l2arc_thread_exit = 0;
4548 	l2arc_ndev = 0;
4549 	l2arc_writes_sent = 0;
4550 	l2arc_writes_done = 0;
4551 
4552 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4553 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
4554 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
4555 	mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
4556 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
4557 
4558 	l2arc_dev_list = &L2ARC_dev_list;
4559 	l2arc_free_on_write = &L2ARC_free_on_write;
4560 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
4561 	    offsetof(l2arc_dev_t, l2ad_node));
4562 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
4563 	    offsetof(l2arc_data_free_t, l2df_list_node));
4564 }
4565 
4566 void
4567 l2arc_fini(void)
4568 {
4569 	/*
4570 	 * This is called from dmu_fini(), which is called from spa_fini();
4571 	 * Because of this, we can assume that all l2arc devices have
4572 	 * already been removed when the pools themselves were removed.
4573 	 */
4574 
4575 	l2arc_do_free_on_write();
4576 
4577 	mutex_destroy(&l2arc_feed_thr_lock);
4578 	cv_destroy(&l2arc_feed_thr_cv);
4579 	mutex_destroy(&l2arc_dev_mtx);
4580 	mutex_destroy(&l2arc_buflist_mtx);
4581 	mutex_destroy(&l2arc_free_on_write_mtx);
4582 
4583 	list_destroy(l2arc_dev_list);
4584 	list_destroy(l2arc_free_on_write);
4585 }
4586 
4587 void
4588 l2arc_start(void)
4589 {
4590 	if (!(spa_mode_global & FWRITE))
4591 		return;
4592 
4593 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
4594 	    TS_RUN, minclsyspri);
4595 }
4596 
4597 void
4598 l2arc_stop(void)
4599 {
4600 	if (!(spa_mode_global & FWRITE))
4601 		return;
4602 
4603 	mutex_enter(&l2arc_feed_thr_lock);
4604 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
4605 	l2arc_thread_exit = 1;
4606 	while (l2arc_thread_exit != 0)
4607 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
4608 	mutex_exit(&l2arc_feed_thr_lock);
4609 }
4610