1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * DVA-based Adjustable Replacement Cache 27 * 28 * While much of the theory of operation used here is 29 * based on the self-tuning, low overhead replacement cache 30 * presented by Megiddo and Modha at FAST 2003, there are some 31 * significant differences: 32 * 33 * 1. The Megiddo and Modha model assumes any page is evictable. 34 * Pages in its cache cannot be "locked" into memory. This makes 35 * the eviction algorithm simple: evict the last page in the list. 36 * This also make the performance characteristics easy to reason 37 * about. Our cache is not so simple. At any given moment, some 38 * subset of the blocks in the cache are un-evictable because we 39 * have handed out a reference to them. Blocks are only evictable 40 * when there are no external references active. This makes 41 * eviction far more problematic: we choose to evict the evictable 42 * blocks that are the "lowest" in the list. 43 * 44 * There are times when it is not possible to evict the requested 45 * space. In these circumstances we are unable to adjust the cache 46 * size. To prevent the cache growing unbounded at these times we 47 * implement a "cache throttle" that slows the flow of new data 48 * into the cache until we can make space available. 49 * 50 * 2. The Megiddo and Modha model assumes a fixed cache size. 51 * Pages are evicted when the cache is full and there is a cache 52 * miss. Our model has a variable sized cache. It grows with 53 * high use, but also tries to react to memory pressure from the 54 * operating system: decreasing its size when system memory is 55 * tight. 56 * 57 * 3. The Megiddo and Modha model assumes a fixed page size. All 58 * elements of the cache are therefor exactly the same size. So 59 * when adjusting the cache size following a cache miss, its simply 60 * a matter of choosing a single page to evict. In our model, we 61 * have variable sized cache blocks (rangeing from 512 bytes to 62 * 128K bytes). We therefor choose a set of blocks to evict to make 63 * space for a cache miss that approximates as closely as possible 64 * the space used by the new block. 65 * 66 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 67 * by N. Megiddo & D. Modha, FAST 2003 68 */ 69 70 /* 71 * The locking model: 72 * 73 * A new reference to a cache buffer can be obtained in two 74 * ways: 1) via a hash table lookup using the DVA as a key, 75 * or 2) via one of the ARC lists. The arc_read() interface 76 * uses method 1, while the internal arc algorithms for 77 * adjusting the cache use method 2. We therefor provide two 78 * types of locks: 1) the hash table lock array, and 2) the 79 * arc list locks. 80 * 81 * Buffers do not have their own mutexs, rather they rely on the 82 * hash table mutexs for the bulk of their protection (i.e. most 83 * fields in the arc_buf_hdr_t are protected by these mutexs). 84 * 85 * buf_hash_find() returns the appropriate mutex (held) when it 86 * locates the requested buffer in the hash table. It returns 87 * NULL for the mutex if the buffer was not in the table. 88 * 89 * buf_hash_remove() expects the appropriate hash mutex to be 90 * already held before it is invoked. 91 * 92 * Each arc state also has a mutex which is used to protect the 93 * buffer list associated with the state. When attempting to 94 * obtain a hash table lock while holding an arc list lock you 95 * must use: mutex_tryenter() to avoid deadlock. Also note that 96 * the active state mutex must be held before the ghost state mutex. 97 * 98 * Arc buffers may have an associated eviction callback function. 99 * This function will be invoked prior to removing the buffer (e.g. 100 * in arc_do_user_evicts()). Note however that the data associated 101 * with the buffer may be evicted prior to the callback. The callback 102 * must be made with *no locks held* (to prevent deadlock). Additionally, 103 * the users of callbacks must ensure that their private data is 104 * protected from simultaneous callbacks from arc_buf_evict() 105 * and arc_do_user_evicts(). 106 * 107 * Note that the majority of the performance stats are manipulated 108 * with atomic operations. 109 * 110 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: 111 * 112 * - L2ARC buflist creation 113 * - L2ARC buflist eviction 114 * - L2ARC write completion, which walks L2ARC buflists 115 * - ARC header destruction, as it removes from L2ARC buflists 116 * - ARC header release, as it removes from L2ARC buflists 117 */ 118 119 #include <sys/spa.h> 120 #include <sys/zio.h> 121 #include <sys/zfs_context.h> 122 #include <sys/arc.h> 123 #include <sys/refcount.h> 124 #include <sys/vdev.h> 125 #include <sys/vdev_impl.h> 126 #ifdef _KERNEL 127 #include <sys/vmsystm.h> 128 #include <vm/anon.h> 129 #include <sys/fs/swapnode.h> 130 #include <sys/dnlc.h> 131 #endif 132 #include <sys/callb.h> 133 #include <sys/kstat.h> 134 #include <zfs_fletcher.h> 135 136 static kmutex_t arc_reclaim_thr_lock; 137 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 138 static uint8_t arc_thread_exit; 139 140 extern int zfs_write_limit_shift; 141 extern uint64_t zfs_write_limit_max; 142 extern kmutex_t zfs_write_limit_lock; 143 144 #define ARC_REDUCE_DNLC_PERCENT 3 145 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 146 147 typedef enum arc_reclaim_strategy { 148 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 149 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 150 } arc_reclaim_strategy_t; 151 152 /* number of seconds before growing cache again */ 153 static int arc_grow_retry = 60; 154 155 /* shift of arc_c for calculating both min and max arc_p */ 156 static int arc_p_min_shift = 4; 157 158 /* log2(fraction of arc to reclaim) */ 159 static int arc_shrink_shift = 5; 160 161 /* 162 * minimum lifespan of a prefetch block in clock ticks 163 * (initialized in arc_init()) 164 */ 165 static int arc_min_prefetch_lifespan; 166 167 static int arc_dead; 168 169 /* 170 * The arc has filled available memory and has now warmed up. 171 */ 172 static boolean_t arc_warm; 173 174 /* 175 * These tunables are for performance analysis. 176 */ 177 uint64_t zfs_arc_max; 178 uint64_t zfs_arc_min; 179 uint64_t zfs_arc_meta_limit = 0; 180 int zfs_arc_grow_retry = 0; 181 int zfs_arc_shrink_shift = 0; 182 int zfs_arc_p_min_shift = 0; 183 184 /* 185 * Note that buffers can be in one of 6 states: 186 * ARC_anon - anonymous (discussed below) 187 * ARC_mru - recently used, currently cached 188 * ARC_mru_ghost - recentely used, no longer in cache 189 * ARC_mfu - frequently used, currently cached 190 * ARC_mfu_ghost - frequently used, no longer in cache 191 * ARC_l2c_only - exists in L2ARC but not other states 192 * When there are no active references to the buffer, they are 193 * are linked onto a list in one of these arc states. These are 194 * the only buffers that can be evicted or deleted. Within each 195 * state there are multiple lists, one for meta-data and one for 196 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, 197 * etc.) is tracked separately so that it can be managed more 198 * explicitly: favored over data, limited explicitly. 199 * 200 * Anonymous buffers are buffers that are not associated with 201 * a DVA. These are buffers that hold dirty block copies 202 * before they are written to stable storage. By definition, 203 * they are "ref'd" and are considered part of arc_mru 204 * that cannot be freed. Generally, they will aquire a DVA 205 * as they are written and migrate onto the arc_mru list. 206 * 207 * The ARC_l2c_only state is for buffers that are in the second 208 * level ARC but no longer in any of the ARC_m* lists. The second 209 * level ARC itself may also contain buffers that are in any of 210 * the ARC_m* states - meaning that a buffer can exist in two 211 * places. The reason for the ARC_l2c_only state is to keep the 212 * buffer header in the hash table, so that reads that hit the 213 * second level ARC benefit from these fast lookups. 214 */ 215 216 typedef struct arc_state { 217 list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ 218 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ 219 uint64_t arcs_size; /* total amount of data in this state */ 220 kmutex_t arcs_mtx; 221 } arc_state_t; 222 223 /* The 6 states: */ 224 static arc_state_t ARC_anon; 225 static arc_state_t ARC_mru; 226 static arc_state_t ARC_mru_ghost; 227 static arc_state_t ARC_mfu; 228 static arc_state_t ARC_mfu_ghost; 229 static arc_state_t ARC_l2c_only; 230 231 typedef struct arc_stats { 232 kstat_named_t arcstat_hits; 233 kstat_named_t arcstat_misses; 234 kstat_named_t arcstat_demand_data_hits; 235 kstat_named_t arcstat_demand_data_misses; 236 kstat_named_t arcstat_demand_metadata_hits; 237 kstat_named_t arcstat_demand_metadata_misses; 238 kstat_named_t arcstat_prefetch_data_hits; 239 kstat_named_t arcstat_prefetch_data_misses; 240 kstat_named_t arcstat_prefetch_metadata_hits; 241 kstat_named_t arcstat_prefetch_metadata_misses; 242 kstat_named_t arcstat_mru_hits; 243 kstat_named_t arcstat_mru_ghost_hits; 244 kstat_named_t arcstat_mfu_hits; 245 kstat_named_t arcstat_mfu_ghost_hits; 246 kstat_named_t arcstat_deleted; 247 kstat_named_t arcstat_recycle_miss; 248 kstat_named_t arcstat_mutex_miss; 249 kstat_named_t arcstat_evict_skip; 250 kstat_named_t arcstat_evict_l2_cached; 251 kstat_named_t arcstat_evict_l2_eligible; 252 kstat_named_t arcstat_evict_l2_ineligible; 253 kstat_named_t arcstat_hash_elements; 254 kstat_named_t arcstat_hash_elements_max; 255 kstat_named_t arcstat_hash_collisions; 256 kstat_named_t arcstat_hash_chains; 257 kstat_named_t arcstat_hash_chain_max; 258 kstat_named_t arcstat_p; 259 kstat_named_t arcstat_c; 260 kstat_named_t arcstat_c_min; 261 kstat_named_t arcstat_c_max; 262 kstat_named_t arcstat_size; 263 kstat_named_t arcstat_hdr_size; 264 kstat_named_t arcstat_data_size; 265 kstat_named_t arcstat_other_size; 266 kstat_named_t arcstat_l2_hits; 267 kstat_named_t arcstat_l2_misses; 268 kstat_named_t arcstat_l2_feeds; 269 kstat_named_t arcstat_l2_rw_clash; 270 kstat_named_t arcstat_l2_read_bytes; 271 kstat_named_t arcstat_l2_write_bytes; 272 kstat_named_t arcstat_l2_writes_sent; 273 kstat_named_t arcstat_l2_writes_done; 274 kstat_named_t arcstat_l2_writes_error; 275 kstat_named_t arcstat_l2_writes_hdr_miss; 276 kstat_named_t arcstat_l2_evict_lock_retry; 277 kstat_named_t arcstat_l2_evict_reading; 278 kstat_named_t arcstat_l2_free_on_write; 279 kstat_named_t arcstat_l2_abort_lowmem; 280 kstat_named_t arcstat_l2_cksum_bad; 281 kstat_named_t arcstat_l2_io_error; 282 kstat_named_t arcstat_l2_size; 283 kstat_named_t arcstat_l2_hdr_size; 284 kstat_named_t arcstat_memory_throttle_count; 285 } arc_stats_t; 286 287 static arc_stats_t arc_stats = { 288 { "hits", KSTAT_DATA_UINT64 }, 289 { "misses", KSTAT_DATA_UINT64 }, 290 { "demand_data_hits", KSTAT_DATA_UINT64 }, 291 { "demand_data_misses", KSTAT_DATA_UINT64 }, 292 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 293 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 294 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 295 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 296 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 297 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 298 { "mru_hits", KSTAT_DATA_UINT64 }, 299 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 300 { "mfu_hits", KSTAT_DATA_UINT64 }, 301 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 302 { "deleted", KSTAT_DATA_UINT64 }, 303 { "recycle_miss", KSTAT_DATA_UINT64 }, 304 { "mutex_miss", KSTAT_DATA_UINT64 }, 305 { "evict_skip", KSTAT_DATA_UINT64 }, 306 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 307 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 308 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 309 { "hash_elements", KSTAT_DATA_UINT64 }, 310 { "hash_elements_max", KSTAT_DATA_UINT64 }, 311 { "hash_collisions", KSTAT_DATA_UINT64 }, 312 { "hash_chains", KSTAT_DATA_UINT64 }, 313 { "hash_chain_max", KSTAT_DATA_UINT64 }, 314 { "p", KSTAT_DATA_UINT64 }, 315 { "c", KSTAT_DATA_UINT64 }, 316 { "c_min", KSTAT_DATA_UINT64 }, 317 { "c_max", KSTAT_DATA_UINT64 }, 318 { "size", KSTAT_DATA_UINT64 }, 319 { "hdr_size", KSTAT_DATA_UINT64 }, 320 { "data_size", KSTAT_DATA_UINT64 }, 321 { "other_size", KSTAT_DATA_UINT64 }, 322 { "l2_hits", KSTAT_DATA_UINT64 }, 323 { "l2_misses", KSTAT_DATA_UINT64 }, 324 { "l2_feeds", KSTAT_DATA_UINT64 }, 325 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 326 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 327 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 328 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 329 { "l2_writes_done", KSTAT_DATA_UINT64 }, 330 { "l2_writes_error", KSTAT_DATA_UINT64 }, 331 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, 332 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 333 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 334 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 335 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 336 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 337 { "l2_io_error", KSTAT_DATA_UINT64 }, 338 { "l2_size", KSTAT_DATA_UINT64 }, 339 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 340 { "memory_throttle_count", KSTAT_DATA_UINT64 } 341 }; 342 343 #define ARCSTAT(stat) (arc_stats.stat.value.ui64) 344 345 #define ARCSTAT_INCR(stat, val) \ 346 atomic_add_64(&arc_stats.stat.value.ui64, (val)); 347 348 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) 349 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) 350 351 #define ARCSTAT_MAX(stat, val) { \ 352 uint64_t m; \ 353 while ((val) > (m = arc_stats.stat.value.ui64) && \ 354 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 355 continue; \ 356 } 357 358 #define ARCSTAT_MAXSTAT(stat) \ 359 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 360 361 /* 362 * We define a macro to allow ARC hits/misses to be easily broken down by 363 * two separate conditions, giving a total of four different subtypes for 364 * each of hits and misses (so eight statistics total). 365 */ 366 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 367 if (cond1) { \ 368 if (cond2) { \ 369 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 370 } else { \ 371 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 372 } \ 373 } else { \ 374 if (cond2) { \ 375 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 376 } else { \ 377 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 378 } \ 379 } 380 381 kstat_t *arc_ksp; 382 static arc_state_t *arc_anon; 383 static arc_state_t *arc_mru; 384 static arc_state_t *arc_mru_ghost; 385 static arc_state_t *arc_mfu; 386 static arc_state_t *arc_mfu_ghost; 387 static arc_state_t *arc_l2c_only; 388 389 /* 390 * There are several ARC variables that are critical to export as kstats -- 391 * but we don't want to have to grovel around in the kstat whenever we wish to 392 * manipulate them. For these variables, we therefore define them to be in 393 * terms of the statistic variable. This assures that we are not introducing 394 * the possibility of inconsistency by having shadow copies of the variables, 395 * while still allowing the code to be readable. 396 */ 397 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ 398 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ 399 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ 400 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ 401 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ 402 403 static int arc_no_grow; /* Don't try to grow cache size */ 404 static uint64_t arc_tempreserve; 405 static uint64_t arc_loaned_bytes; 406 static uint64_t arc_meta_used; 407 static uint64_t arc_meta_limit; 408 static uint64_t arc_meta_max = 0; 409 410 typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; 411 412 typedef struct arc_callback arc_callback_t; 413 414 struct arc_callback { 415 void *acb_private; 416 arc_done_func_t *acb_done; 417 arc_buf_t *acb_buf; 418 zio_t *acb_zio_dummy; 419 arc_callback_t *acb_next; 420 }; 421 422 typedef struct arc_write_callback arc_write_callback_t; 423 424 struct arc_write_callback { 425 void *awcb_private; 426 arc_done_func_t *awcb_ready; 427 arc_done_func_t *awcb_done; 428 arc_buf_t *awcb_buf; 429 }; 430 431 struct arc_buf_hdr { 432 /* protected by hash lock */ 433 dva_t b_dva; 434 uint64_t b_birth; 435 uint64_t b_cksum0; 436 437 kmutex_t b_freeze_lock; 438 zio_cksum_t *b_freeze_cksum; 439 void *b_thawed; 440 441 arc_buf_hdr_t *b_hash_next; 442 arc_buf_t *b_buf; 443 uint32_t b_flags; 444 uint32_t b_datacnt; 445 446 arc_callback_t *b_acb; 447 kcondvar_t b_cv; 448 449 /* immutable */ 450 arc_buf_contents_t b_type; 451 uint64_t b_size; 452 uint64_t b_spa; 453 454 /* protected by arc state mutex */ 455 arc_state_t *b_state; 456 list_node_t b_arc_node; 457 458 /* updated atomically */ 459 clock_t b_arc_access; 460 461 /* self protecting */ 462 refcount_t b_refcnt; 463 464 l2arc_buf_hdr_t *b_l2hdr; 465 list_node_t b_l2node; 466 }; 467 468 static arc_buf_t *arc_eviction_list; 469 static kmutex_t arc_eviction_mtx; 470 static arc_buf_hdr_t arc_eviction_hdr; 471 static void arc_get_data_buf(arc_buf_t *buf); 472 static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 473 static int arc_evict_needed(arc_buf_contents_t type); 474 static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); 475 476 static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); 477 478 #define GHOST_STATE(state) \ 479 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 480 (state) == arc_l2c_only) 481 482 /* 483 * Private ARC flags. These flags are private ARC only flags that will show up 484 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 485 * be passed in as arc_flags in things like arc_read. However, these flags 486 * should never be passed and should only be set by ARC code. When adding new 487 * public flags, make sure not to smash the private ones. 488 */ 489 490 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 491 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 492 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 493 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 494 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 495 #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ 496 #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ 497 #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ 498 #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ 499 #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ 500 501 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 502 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 503 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 504 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) 505 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 506 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 507 #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) 508 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) 509 #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ 510 (hdr)->b_l2hdr != NULL) 511 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) 512 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) 513 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) 514 515 /* 516 * Other sizes 517 */ 518 519 #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 520 #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) 521 522 /* 523 * Hash table routines 524 */ 525 526 #define HT_LOCK_PAD 64 527 528 struct ht_lock { 529 kmutex_t ht_lock; 530 #ifdef _KERNEL 531 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 532 #endif 533 }; 534 535 #define BUF_LOCKS 256 536 typedef struct buf_hash_table { 537 uint64_t ht_mask; 538 arc_buf_hdr_t **ht_table; 539 struct ht_lock ht_locks[BUF_LOCKS]; 540 } buf_hash_table_t; 541 542 static buf_hash_table_t buf_hash_table; 543 544 #define BUF_HASH_INDEX(spa, dva, birth) \ 545 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 546 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 547 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 548 #define HDR_LOCK(hdr) \ 549 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 550 551 uint64_t zfs_crc64_table[256]; 552 553 /* 554 * Level 2 ARC 555 */ 556 557 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 558 #define L2ARC_HEADROOM 2 /* num of writes */ 559 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 560 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 561 562 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 563 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 564 565 /* 566 * L2ARC Performance Tunables 567 */ 568 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ 569 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ 570 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ 571 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 572 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ 573 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 574 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ 575 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ 576 577 /* 578 * L2ARC Internals 579 */ 580 typedef struct l2arc_dev { 581 vdev_t *l2ad_vdev; /* vdev */ 582 spa_t *l2ad_spa; /* spa */ 583 uint64_t l2ad_hand; /* next write location */ 584 uint64_t l2ad_write; /* desired write size, bytes */ 585 uint64_t l2ad_boost; /* warmup write boost, bytes */ 586 uint64_t l2ad_start; /* first addr on device */ 587 uint64_t l2ad_end; /* last addr on device */ 588 uint64_t l2ad_evict; /* last addr eviction reached */ 589 boolean_t l2ad_first; /* first sweep through */ 590 boolean_t l2ad_writing; /* currently writing */ 591 list_t *l2ad_buflist; /* buffer list */ 592 list_node_t l2ad_node; /* device list node */ 593 } l2arc_dev_t; 594 595 static list_t L2ARC_dev_list; /* device list */ 596 static list_t *l2arc_dev_list; /* device list pointer */ 597 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 598 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 599 static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ 600 static list_t L2ARC_free_on_write; /* free after write buf list */ 601 static list_t *l2arc_free_on_write; /* free after write list ptr */ 602 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 603 static uint64_t l2arc_ndev; /* number of devices */ 604 605 typedef struct l2arc_read_callback { 606 arc_buf_t *l2rcb_buf; /* read buffer */ 607 spa_t *l2rcb_spa; /* spa */ 608 blkptr_t l2rcb_bp; /* original blkptr */ 609 zbookmark_t l2rcb_zb; /* original bookmark */ 610 int l2rcb_flags; /* original flags */ 611 } l2arc_read_callback_t; 612 613 typedef struct l2arc_write_callback { 614 l2arc_dev_t *l2wcb_dev; /* device info */ 615 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ 616 } l2arc_write_callback_t; 617 618 struct l2arc_buf_hdr { 619 /* protected by arc_buf_hdr mutex */ 620 l2arc_dev_t *b_dev; /* L2ARC device */ 621 uint64_t b_daddr; /* disk address, offset byte */ 622 }; 623 624 typedef struct l2arc_data_free { 625 /* protected by l2arc_free_on_write_mtx */ 626 void *l2df_data; 627 size_t l2df_size; 628 void (*l2df_func)(void *, size_t); 629 list_node_t l2df_list_node; 630 } l2arc_data_free_t; 631 632 static kmutex_t l2arc_feed_thr_lock; 633 static kcondvar_t l2arc_feed_thr_cv; 634 static uint8_t l2arc_thread_exit; 635 636 static void l2arc_read_done(zio_t *zio); 637 static void l2arc_hdr_stat_add(void); 638 static void l2arc_hdr_stat_remove(void); 639 640 static uint64_t 641 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 642 { 643 uint8_t *vdva = (uint8_t *)dva; 644 uint64_t crc = -1ULL; 645 int i; 646 647 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 648 649 for (i = 0; i < sizeof (dva_t); i++) 650 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 651 652 crc ^= (spa>>8) ^ birth; 653 654 return (crc); 655 } 656 657 #define BUF_EMPTY(buf) \ 658 ((buf)->b_dva.dva_word[0] == 0 && \ 659 (buf)->b_dva.dva_word[1] == 0 && \ 660 (buf)->b_birth == 0) 661 662 #define BUF_EQUAL(spa, dva, birth, buf) \ 663 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 664 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 665 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 666 667 static void 668 buf_discard_identity(arc_buf_hdr_t *hdr) 669 { 670 hdr->b_dva.dva_word[0] = 0; 671 hdr->b_dva.dva_word[1] = 0; 672 hdr->b_birth = 0; 673 hdr->b_cksum0 = 0; 674 } 675 676 static arc_buf_hdr_t * 677 buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) 678 { 679 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 680 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 681 arc_buf_hdr_t *buf; 682 683 mutex_enter(hash_lock); 684 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 685 buf = buf->b_hash_next) { 686 if (BUF_EQUAL(spa, dva, birth, buf)) { 687 *lockp = hash_lock; 688 return (buf); 689 } 690 } 691 mutex_exit(hash_lock); 692 *lockp = NULL; 693 return (NULL); 694 } 695 696 /* 697 * Insert an entry into the hash table. If there is already an element 698 * equal to elem in the hash table, then the already existing element 699 * will be returned and the new element will not be inserted. 700 * Otherwise returns NULL. 701 */ 702 static arc_buf_hdr_t * 703 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 704 { 705 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 706 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 707 arc_buf_hdr_t *fbuf; 708 uint32_t i; 709 710 ASSERT(!HDR_IN_HASH_TABLE(buf)); 711 *lockp = hash_lock; 712 mutex_enter(hash_lock); 713 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 714 fbuf = fbuf->b_hash_next, i++) { 715 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 716 return (fbuf); 717 } 718 719 buf->b_hash_next = buf_hash_table.ht_table[idx]; 720 buf_hash_table.ht_table[idx] = buf; 721 buf->b_flags |= ARC_IN_HASH_TABLE; 722 723 /* collect some hash table performance data */ 724 if (i > 0) { 725 ARCSTAT_BUMP(arcstat_hash_collisions); 726 if (i == 1) 727 ARCSTAT_BUMP(arcstat_hash_chains); 728 729 ARCSTAT_MAX(arcstat_hash_chain_max, i); 730 } 731 732 ARCSTAT_BUMP(arcstat_hash_elements); 733 ARCSTAT_MAXSTAT(arcstat_hash_elements); 734 735 return (NULL); 736 } 737 738 static void 739 buf_hash_remove(arc_buf_hdr_t *buf) 740 { 741 arc_buf_hdr_t *fbuf, **bufp; 742 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 743 744 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 745 ASSERT(HDR_IN_HASH_TABLE(buf)); 746 747 bufp = &buf_hash_table.ht_table[idx]; 748 while ((fbuf = *bufp) != buf) { 749 ASSERT(fbuf != NULL); 750 bufp = &fbuf->b_hash_next; 751 } 752 *bufp = buf->b_hash_next; 753 buf->b_hash_next = NULL; 754 buf->b_flags &= ~ARC_IN_HASH_TABLE; 755 756 /* collect some hash table performance data */ 757 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 758 759 if (buf_hash_table.ht_table[idx] && 760 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 761 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 762 } 763 764 /* 765 * Global data structures and functions for the buf kmem cache. 766 */ 767 static kmem_cache_t *hdr_cache; 768 static kmem_cache_t *buf_cache; 769 770 static void 771 buf_fini(void) 772 { 773 int i; 774 775 kmem_free(buf_hash_table.ht_table, 776 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 777 for (i = 0; i < BUF_LOCKS; i++) 778 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 779 kmem_cache_destroy(hdr_cache); 780 kmem_cache_destroy(buf_cache); 781 } 782 783 /* 784 * Constructor callback - called when the cache is empty 785 * and a new buf is requested. 786 */ 787 /* ARGSUSED */ 788 static int 789 hdr_cons(void *vbuf, void *unused, int kmflag) 790 { 791 arc_buf_hdr_t *buf = vbuf; 792 793 bzero(buf, sizeof (arc_buf_hdr_t)); 794 refcount_create(&buf->b_refcnt); 795 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 796 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 797 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 798 799 return (0); 800 } 801 802 /* ARGSUSED */ 803 static int 804 buf_cons(void *vbuf, void *unused, int kmflag) 805 { 806 arc_buf_t *buf = vbuf; 807 808 bzero(buf, sizeof (arc_buf_t)); 809 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 810 rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); 811 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 812 813 return (0); 814 } 815 816 /* 817 * Destructor callback - called when a cached buf is 818 * no longer required. 819 */ 820 /* ARGSUSED */ 821 static void 822 hdr_dest(void *vbuf, void *unused) 823 { 824 arc_buf_hdr_t *buf = vbuf; 825 826 ASSERT(BUF_EMPTY(buf)); 827 refcount_destroy(&buf->b_refcnt); 828 cv_destroy(&buf->b_cv); 829 mutex_destroy(&buf->b_freeze_lock); 830 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); 831 } 832 833 /* ARGSUSED */ 834 static void 835 buf_dest(void *vbuf, void *unused) 836 { 837 arc_buf_t *buf = vbuf; 838 839 mutex_destroy(&buf->b_evict_lock); 840 rw_destroy(&buf->b_data_lock); 841 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 842 } 843 844 /* 845 * Reclaim callback -- invoked when memory is low. 846 */ 847 /* ARGSUSED */ 848 static void 849 hdr_recl(void *unused) 850 { 851 dprintf("hdr_recl called\n"); 852 /* 853 * umem calls the reclaim func when we destroy the buf cache, 854 * which is after we do arc_fini(). 855 */ 856 if (!arc_dead) 857 cv_signal(&arc_reclaim_thr_cv); 858 } 859 860 static void 861 buf_init(void) 862 { 863 uint64_t *ct; 864 uint64_t hsize = 1ULL << 12; 865 int i, j; 866 867 /* 868 * The hash table is big enough to fill all of physical memory 869 * with an average 64K block size. The table will take up 870 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 871 */ 872 while (hsize * 65536 < physmem * PAGESIZE) 873 hsize <<= 1; 874 retry: 875 buf_hash_table.ht_mask = hsize - 1; 876 buf_hash_table.ht_table = 877 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 878 if (buf_hash_table.ht_table == NULL) { 879 ASSERT(hsize > (1ULL << 8)); 880 hsize >>= 1; 881 goto retry; 882 } 883 884 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 885 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 886 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 887 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 888 889 for (i = 0; i < 256; i++) 890 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 891 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 892 893 for (i = 0; i < BUF_LOCKS; i++) { 894 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 895 NULL, MUTEX_DEFAULT, NULL); 896 } 897 } 898 899 #define ARC_MINTIME (hz>>4) /* 62 ms */ 900 901 static void 902 arc_cksum_verify(arc_buf_t *buf) 903 { 904 zio_cksum_t zc; 905 906 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 907 return; 908 909 mutex_enter(&buf->b_hdr->b_freeze_lock); 910 if (buf->b_hdr->b_freeze_cksum == NULL || 911 (buf->b_hdr->b_flags & ARC_IO_ERROR)) { 912 mutex_exit(&buf->b_hdr->b_freeze_lock); 913 return; 914 } 915 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 916 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) 917 panic("buffer modified while frozen!"); 918 mutex_exit(&buf->b_hdr->b_freeze_lock); 919 } 920 921 static int 922 arc_cksum_equal(arc_buf_t *buf) 923 { 924 zio_cksum_t zc; 925 int equal; 926 927 mutex_enter(&buf->b_hdr->b_freeze_lock); 928 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); 929 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); 930 mutex_exit(&buf->b_hdr->b_freeze_lock); 931 932 return (equal); 933 } 934 935 static void 936 arc_cksum_compute(arc_buf_t *buf, boolean_t force) 937 { 938 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) 939 return; 940 941 mutex_enter(&buf->b_hdr->b_freeze_lock); 942 if (buf->b_hdr->b_freeze_cksum != NULL) { 943 mutex_exit(&buf->b_hdr->b_freeze_lock); 944 return; 945 } 946 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); 947 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, 948 buf->b_hdr->b_freeze_cksum); 949 mutex_exit(&buf->b_hdr->b_freeze_lock); 950 } 951 952 void 953 arc_buf_thaw(arc_buf_t *buf) 954 { 955 if (zfs_flags & ZFS_DEBUG_MODIFY) { 956 if (buf->b_hdr->b_state != arc_anon) 957 panic("modifying non-anon buffer!"); 958 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) 959 panic("modifying buffer while i/o in progress!"); 960 arc_cksum_verify(buf); 961 } 962 963 mutex_enter(&buf->b_hdr->b_freeze_lock); 964 if (buf->b_hdr->b_freeze_cksum != NULL) { 965 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 966 buf->b_hdr->b_freeze_cksum = NULL; 967 } 968 969 if (zfs_flags & ZFS_DEBUG_MODIFY) { 970 if (buf->b_hdr->b_thawed) 971 kmem_free(buf->b_hdr->b_thawed, 1); 972 buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); 973 } 974 975 mutex_exit(&buf->b_hdr->b_freeze_lock); 976 } 977 978 void 979 arc_buf_freeze(arc_buf_t *buf) 980 { 981 kmutex_t *hash_lock; 982 983 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 984 return; 985 986 hash_lock = HDR_LOCK(buf->b_hdr); 987 mutex_enter(hash_lock); 988 989 ASSERT(buf->b_hdr->b_freeze_cksum != NULL || 990 buf->b_hdr->b_state == arc_anon); 991 arc_cksum_compute(buf, B_FALSE); 992 mutex_exit(hash_lock); 993 } 994 995 static void 996 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 997 { 998 ASSERT(MUTEX_HELD(hash_lock)); 999 1000 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 1001 (ab->b_state != arc_anon)) { 1002 uint64_t delta = ab->b_size * ab->b_datacnt; 1003 list_t *list = &ab->b_state->arcs_list[ab->b_type]; 1004 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; 1005 1006 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); 1007 mutex_enter(&ab->b_state->arcs_mtx); 1008 ASSERT(list_link_active(&ab->b_arc_node)); 1009 list_remove(list, ab); 1010 if (GHOST_STATE(ab->b_state)) { 1011 ASSERT3U(ab->b_datacnt, ==, 0); 1012 ASSERT3P(ab->b_buf, ==, NULL); 1013 delta = ab->b_size; 1014 } 1015 ASSERT(delta > 0); 1016 ASSERT3U(*size, >=, delta); 1017 atomic_add_64(size, -delta); 1018 mutex_exit(&ab->b_state->arcs_mtx); 1019 /* remove the prefetch flag if we get a reference */ 1020 if (ab->b_flags & ARC_PREFETCH) 1021 ab->b_flags &= ~ARC_PREFETCH; 1022 } 1023 } 1024 1025 static int 1026 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 1027 { 1028 int cnt; 1029 arc_state_t *state = ab->b_state; 1030 1031 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 1032 ASSERT(!GHOST_STATE(state)); 1033 1034 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 1035 (state != arc_anon)) { 1036 uint64_t *size = &state->arcs_lsize[ab->b_type]; 1037 1038 ASSERT(!MUTEX_HELD(&state->arcs_mtx)); 1039 mutex_enter(&state->arcs_mtx); 1040 ASSERT(!list_link_active(&ab->b_arc_node)); 1041 list_insert_head(&state->arcs_list[ab->b_type], ab); 1042 ASSERT(ab->b_datacnt > 0); 1043 atomic_add_64(size, ab->b_size * ab->b_datacnt); 1044 mutex_exit(&state->arcs_mtx); 1045 } 1046 return (cnt); 1047 } 1048 1049 /* 1050 * Move the supplied buffer to the indicated state. The mutex 1051 * for the buffer must be held by the caller. 1052 */ 1053 static void 1054 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 1055 { 1056 arc_state_t *old_state = ab->b_state; 1057 int64_t refcnt = refcount_count(&ab->b_refcnt); 1058 uint64_t from_delta, to_delta; 1059 1060 ASSERT(MUTEX_HELD(hash_lock)); 1061 ASSERT(new_state != old_state); 1062 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 1063 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 1064 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); 1065 1066 from_delta = to_delta = ab->b_datacnt * ab->b_size; 1067 1068 /* 1069 * If this buffer is evictable, transfer it from the 1070 * old state list to the new state list. 1071 */ 1072 if (refcnt == 0) { 1073 if (old_state != arc_anon) { 1074 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); 1075 uint64_t *size = &old_state->arcs_lsize[ab->b_type]; 1076 1077 if (use_mutex) 1078 mutex_enter(&old_state->arcs_mtx); 1079 1080 ASSERT(list_link_active(&ab->b_arc_node)); 1081 list_remove(&old_state->arcs_list[ab->b_type], ab); 1082 1083 /* 1084 * If prefetching out of the ghost cache, 1085 * we will have a non-zero datacnt. 1086 */ 1087 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { 1088 /* ghost elements have a ghost size */ 1089 ASSERT(ab->b_buf == NULL); 1090 from_delta = ab->b_size; 1091 } 1092 ASSERT3U(*size, >=, from_delta); 1093 atomic_add_64(size, -from_delta); 1094 1095 if (use_mutex) 1096 mutex_exit(&old_state->arcs_mtx); 1097 } 1098 if (new_state != arc_anon) { 1099 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); 1100 uint64_t *size = &new_state->arcs_lsize[ab->b_type]; 1101 1102 if (use_mutex) 1103 mutex_enter(&new_state->arcs_mtx); 1104 1105 list_insert_head(&new_state->arcs_list[ab->b_type], ab); 1106 1107 /* ghost elements have a ghost size */ 1108 if (GHOST_STATE(new_state)) { 1109 ASSERT(ab->b_datacnt == 0); 1110 ASSERT(ab->b_buf == NULL); 1111 to_delta = ab->b_size; 1112 } 1113 atomic_add_64(size, to_delta); 1114 1115 if (use_mutex) 1116 mutex_exit(&new_state->arcs_mtx); 1117 } 1118 } 1119 1120 ASSERT(!BUF_EMPTY(ab)); 1121 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) 1122 buf_hash_remove(ab); 1123 1124 /* adjust state sizes */ 1125 if (to_delta) 1126 atomic_add_64(&new_state->arcs_size, to_delta); 1127 if (from_delta) { 1128 ASSERT3U(old_state->arcs_size, >=, from_delta); 1129 atomic_add_64(&old_state->arcs_size, -from_delta); 1130 } 1131 ab->b_state = new_state; 1132 1133 /* adjust l2arc hdr stats */ 1134 if (new_state == arc_l2c_only) 1135 l2arc_hdr_stat_add(); 1136 else if (old_state == arc_l2c_only) 1137 l2arc_hdr_stat_remove(); 1138 } 1139 1140 void 1141 arc_space_consume(uint64_t space, arc_space_type_t type) 1142 { 1143 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1144 1145 switch (type) { 1146 case ARC_SPACE_DATA: 1147 ARCSTAT_INCR(arcstat_data_size, space); 1148 break; 1149 case ARC_SPACE_OTHER: 1150 ARCSTAT_INCR(arcstat_other_size, space); 1151 break; 1152 case ARC_SPACE_HDRS: 1153 ARCSTAT_INCR(arcstat_hdr_size, space); 1154 break; 1155 case ARC_SPACE_L2HDRS: 1156 ARCSTAT_INCR(arcstat_l2_hdr_size, space); 1157 break; 1158 } 1159 1160 atomic_add_64(&arc_meta_used, space); 1161 atomic_add_64(&arc_size, space); 1162 } 1163 1164 void 1165 arc_space_return(uint64_t space, arc_space_type_t type) 1166 { 1167 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 1168 1169 switch (type) { 1170 case ARC_SPACE_DATA: 1171 ARCSTAT_INCR(arcstat_data_size, -space); 1172 break; 1173 case ARC_SPACE_OTHER: 1174 ARCSTAT_INCR(arcstat_other_size, -space); 1175 break; 1176 case ARC_SPACE_HDRS: 1177 ARCSTAT_INCR(arcstat_hdr_size, -space); 1178 break; 1179 case ARC_SPACE_L2HDRS: 1180 ARCSTAT_INCR(arcstat_l2_hdr_size, -space); 1181 break; 1182 } 1183 1184 ASSERT(arc_meta_used >= space); 1185 if (arc_meta_max < arc_meta_used) 1186 arc_meta_max = arc_meta_used; 1187 atomic_add_64(&arc_meta_used, -space); 1188 ASSERT(arc_size >= space); 1189 atomic_add_64(&arc_size, -space); 1190 } 1191 1192 void * 1193 arc_data_buf_alloc(uint64_t size) 1194 { 1195 if (arc_evict_needed(ARC_BUFC_DATA)) 1196 cv_signal(&arc_reclaim_thr_cv); 1197 atomic_add_64(&arc_size, size); 1198 return (zio_data_buf_alloc(size)); 1199 } 1200 1201 void 1202 arc_data_buf_free(void *buf, uint64_t size) 1203 { 1204 zio_data_buf_free(buf, size); 1205 ASSERT(arc_size >= size); 1206 atomic_add_64(&arc_size, -size); 1207 } 1208 1209 arc_buf_t * 1210 arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) 1211 { 1212 arc_buf_hdr_t *hdr; 1213 arc_buf_t *buf; 1214 1215 ASSERT3U(size, >, 0); 1216 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 1217 ASSERT(BUF_EMPTY(hdr)); 1218 hdr->b_size = size; 1219 hdr->b_type = type; 1220 hdr->b_spa = spa_guid(spa); 1221 hdr->b_state = arc_anon; 1222 hdr->b_arc_access = 0; 1223 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1224 buf->b_hdr = hdr; 1225 buf->b_data = NULL; 1226 buf->b_efunc = NULL; 1227 buf->b_private = NULL; 1228 buf->b_next = NULL; 1229 hdr->b_buf = buf; 1230 arc_get_data_buf(buf); 1231 hdr->b_datacnt = 1; 1232 hdr->b_flags = 0; 1233 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1234 (void) refcount_add(&hdr->b_refcnt, tag); 1235 1236 return (buf); 1237 } 1238 1239 static char *arc_onloan_tag = "onloan"; 1240 1241 /* 1242 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 1243 * flight data by arc_tempreserve_space() until they are "returned". Loaned 1244 * buffers must be returned to the arc before they can be used by the DMU or 1245 * freed. 1246 */ 1247 arc_buf_t * 1248 arc_loan_buf(spa_t *spa, int size) 1249 { 1250 arc_buf_t *buf; 1251 1252 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); 1253 1254 atomic_add_64(&arc_loaned_bytes, size); 1255 return (buf); 1256 } 1257 1258 /* 1259 * Return a loaned arc buffer to the arc. 1260 */ 1261 void 1262 arc_return_buf(arc_buf_t *buf, void *tag) 1263 { 1264 arc_buf_hdr_t *hdr = buf->b_hdr; 1265 1266 ASSERT(buf->b_data != NULL); 1267 (void) refcount_add(&hdr->b_refcnt, tag); 1268 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); 1269 1270 atomic_add_64(&arc_loaned_bytes, -hdr->b_size); 1271 } 1272 1273 /* Detach an arc_buf from a dbuf (tag) */ 1274 void 1275 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 1276 { 1277 arc_buf_hdr_t *hdr; 1278 1279 ASSERT(buf->b_data != NULL); 1280 hdr = buf->b_hdr; 1281 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); 1282 (void) refcount_remove(&hdr->b_refcnt, tag); 1283 buf->b_efunc = NULL; 1284 buf->b_private = NULL; 1285 1286 atomic_add_64(&arc_loaned_bytes, hdr->b_size); 1287 } 1288 1289 static arc_buf_t * 1290 arc_buf_clone(arc_buf_t *from) 1291 { 1292 arc_buf_t *buf; 1293 arc_buf_hdr_t *hdr = from->b_hdr; 1294 uint64_t size = hdr->b_size; 1295 1296 ASSERT(hdr->b_state != arc_anon); 1297 1298 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 1299 buf->b_hdr = hdr; 1300 buf->b_data = NULL; 1301 buf->b_efunc = NULL; 1302 buf->b_private = NULL; 1303 buf->b_next = hdr->b_buf; 1304 hdr->b_buf = buf; 1305 arc_get_data_buf(buf); 1306 bcopy(from->b_data, buf->b_data, size); 1307 hdr->b_datacnt += 1; 1308 return (buf); 1309 } 1310 1311 void 1312 arc_buf_add_ref(arc_buf_t *buf, void* tag) 1313 { 1314 arc_buf_hdr_t *hdr; 1315 kmutex_t *hash_lock; 1316 1317 /* 1318 * Check to see if this buffer is evicted. Callers 1319 * must verify b_data != NULL to know if the add_ref 1320 * was successful. 1321 */ 1322 mutex_enter(&buf->b_evict_lock); 1323 if (buf->b_data == NULL) { 1324 mutex_exit(&buf->b_evict_lock); 1325 return; 1326 } 1327 hash_lock = HDR_LOCK(buf->b_hdr); 1328 mutex_enter(hash_lock); 1329 hdr = buf->b_hdr; 1330 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1331 mutex_exit(&buf->b_evict_lock); 1332 1333 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 1334 add_reference(hdr, hash_lock, tag); 1335 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1336 arc_access(hdr, hash_lock); 1337 mutex_exit(hash_lock); 1338 ARCSTAT_BUMP(arcstat_hits); 1339 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 1340 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 1341 data, metadata, hits); 1342 } 1343 1344 /* 1345 * Free the arc data buffer. If it is an l2arc write in progress, 1346 * the buffer is placed on l2arc_free_on_write to be freed later. 1347 */ 1348 static void 1349 arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), 1350 void *data, size_t size) 1351 { 1352 if (HDR_L2_WRITING(hdr)) { 1353 l2arc_data_free_t *df; 1354 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); 1355 df->l2df_data = data; 1356 df->l2df_size = size; 1357 df->l2df_func = free_func; 1358 mutex_enter(&l2arc_free_on_write_mtx); 1359 list_insert_head(l2arc_free_on_write, df); 1360 mutex_exit(&l2arc_free_on_write_mtx); 1361 ARCSTAT_BUMP(arcstat_l2_free_on_write); 1362 } else { 1363 free_func(data, size); 1364 } 1365 } 1366 1367 static void 1368 arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) 1369 { 1370 arc_buf_t **bufp; 1371 1372 /* free up data associated with the buf */ 1373 if (buf->b_data) { 1374 arc_state_t *state = buf->b_hdr->b_state; 1375 uint64_t size = buf->b_hdr->b_size; 1376 arc_buf_contents_t type = buf->b_hdr->b_type; 1377 1378 arc_cksum_verify(buf); 1379 1380 if (!recycle) { 1381 if (type == ARC_BUFC_METADATA) { 1382 arc_buf_data_free(buf->b_hdr, zio_buf_free, 1383 buf->b_data, size); 1384 arc_space_return(size, ARC_SPACE_DATA); 1385 } else { 1386 ASSERT(type == ARC_BUFC_DATA); 1387 arc_buf_data_free(buf->b_hdr, 1388 zio_data_buf_free, buf->b_data, size); 1389 ARCSTAT_INCR(arcstat_data_size, -size); 1390 atomic_add_64(&arc_size, -size); 1391 } 1392 } 1393 if (list_link_active(&buf->b_hdr->b_arc_node)) { 1394 uint64_t *cnt = &state->arcs_lsize[type]; 1395 1396 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 1397 ASSERT(state != arc_anon); 1398 1399 ASSERT3U(*cnt, >=, size); 1400 atomic_add_64(cnt, -size); 1401 } 1402 ASSERT3U(state->arcs_size, >=, size); 1403 atomic_add_64(&state->arcs_size, -size); 1404 buf->b_data = NULL; 1405 ASSERT(buf->b_hdr->b_datacnt > 0); 1406 buf->b_hdr->b_datacnt -= 1; 1407 } 1408 1409 /* only remove the buf if requested */ 1410 if (!all) 1411 return; 1412 1413 /* remove the buf from the hdr list */ 1414 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 1415 continue; 1416 *bufp = buf->b_next; 1417 buf->b_next = NULL; 1418 1419 ASSERT(buf->b_efunc == NULL); 1420 1421 /* clean up the buf */ 1422 buf->b_hdr = NULL; 1423 kmem_cache_free(buf_cache, buf); 1424 } 1425 1426 static void 1427 arc_hdr_destroy(arc_buf_hdr_t *hdr) 1428 { 1429 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1430 ASSERT3P(hdr->b_state, ==, arc_anon); 1431 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1432 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; 1433 1434 if (l2hdr != NULL) { 1435 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); 1436 /* 1437 * To prevent arc_free() and l2arc_evict() from 1438 * attempting to free the same buffer at the same time, 1439 * a FREE_IN_PROGRESS flag is given to arc_free() to 1440 * give it priority. l2arc_evict() can't destroy this 1441 * header while we are waiting on l2arc_buflist_mtx. 1442 * 1443 * The hdr may be removed from l2ad_buflist before we 1444 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. 1445 */ 1446 if (!buflist_held) { 1447 mutex_enter(&l2arc_buflist_mtx); 1448 l2hdr = hdr->b_l2hdr; 1449 } 1450 1451 if (l2hdr != NULL) { 1452 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 1453 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); 1454 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 1455 if (hdr->b_state == arc_l2c_only) 1456 l2arc_hdr_stat_remove(); 1457 hdr->b_l2hdr = NULL; 1458 } 1459 1460 if (!buflist_held) 1461 mutex_exit(&l2arc_buflist_mtx); 1462 } 1463 1464 if (!BUF_EMPTY(hdr)) { 1465 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1466 buf_discard_identity(hdr); 1467 } 1468 while (hdr->b_buf) { 1469 arc_buf_t *buf = hdr->b_buf; 1470 1471 if (buf->b_efunc) { 1472 mutex_enter(&arc_eviction_mtx); 1473 mutex_enter(&buf->b_evict_lock); 1474 ASSERT(buf->b_hdr != NULL); 1475 arc_buf_destroy(hdr->b_buf, FALSE, FALSE); 1476 hdr->b_buf = buf->b_next; 1477 buf->b_hdr = &arc_eviction_hdr; 1478 buf->b_next = arc_eviction_list; 1479 arc_eviction_list = buf; 1480 mutex_exit(&buf->b_evict_lock); 1481 mutex_exit(&arc_eviction_mtx); 1482 } else { 1483 arc_buf_destroy(hdr->b_buf, FALSE, TRUE); 1484 } 1485 } 1486 if (hdr->b_freeze_cksum != NULL) { 1487 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 1488 hdr->b_freeze_cksum = NULL; 1489 } 1490 if (hdr->b_thawed) { 1491 kmem_free(hdr->b_thawed, 1); 1492 hdr->b_thawed = NULL; 1493 } 1494 1495 ASSERT(!list_link_active(&hdr->b_arc_node)); 1496 ASSERT3P(hdr->b_hash_next, ==, NULL); 1497 ASSERT3P(hdr->b_acb, ==, NULL); 1498 kmem_cache_free(hdr_cache, hdr); 1499 } 1500 1501 void 1502 arc_buf_free(arc_buf_t *buf, void *tag) 1503 { 1504 arc_buf_hdr_t *hdr = buf->b_hdr; 1505 int hashed = hdr->b_state != arc_anon; 1506 1507 ASSERT(buf->b_efunc == NULL); 1508 ASSERT(buf->b_data != NULL); 1509 1510 if (hashed) { 1511 kmutex_t *hash_lock = HDR_LOCK(hdr); 1512 1513 mutex_enter(hash_lock); 1514 hdr = buf->b_hdr; 1515 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1516 1517 (void) remove_reference(hdr, hash_lock, tag); 1518 if (hdr->b_datacnt > 1) { 1519 arc_buf_destroy(buf, FALSE, TRUE); 1520 } else { 1521 ASSERT(buf == hdr->b_buf); 1522 ASSERT(buf->b_efunc == NULL); 1523 hdr->b_flags |= ARC_BUF_AVAILABLE; 1524 } 1525 mutex_exit(hash_lock); 1526 } else if (HDR_IO_IN_PROGRESS(hdr)) { 1527 int destroy_hdr; 1528 /* 1529 * We are in the middle of an async write. Don't destroy 1530 * this buffer unless the write completes before we finish 1531 * decrementing the reference count. 1532 */ 1533 mutex_enter(&arc_eviction_mtx); 1534 (void) remove_reference(hdr, NULL, tag); 1535 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 1536 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 1537 mutex_exit(&arc_eviction_mtx); 1538 if (destroy_hdr) 1539 arc_hdr_destroy(hdr); 1540 } else { 1541 if (remove_reference(hdr, NULL, tag) > 0) 1542 arc_buf_destroy(buf, FALSE, TRUE); 1543 else 1544 arc_hdr_destroy(hdr); 1545 } 1546 } 1547 1548 int 1549 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 1550 { 1551 arc_buf_hdr_t *hdr = buf->b_hdr; 1552 kmutex_t *hash_lock = HDR_LOCK(hdr); 1553 int no_callback = (buf->b_efunc == NULL); 1554 1555 if (hdr->b_state == arc_anon) { 1556 ASSERT(hdr->b_datacnt == 1); 1557 arc_buf_free(buf, tag); 1558 return (no_callback); 1559 } 1560 1561 mutex_enter(hash_lock); 1562 hdr = buf->b_hdr; 1563 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 1564 ASSERT(hdr->b_state != arc_anon); 1565 ASSERT(buf->b_data != NULL); 1566 1567 (void) remove_reference(hdr, hash_lock, tag); 1568 if (hdr->b_datacnt > 1) { 1569 if (no_callback) 1570 arc_buf_destroy(buf, FALSE, TRUE); 1571 } else if (no_callback) { 1572 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 1573 ASSERT(buf->b_efunc == NULL); 1574 hdr->b_flags |= ARC_BUF_AVAILABLE; 1575 } 1576 ASSERT(no_callback || hdr->b_datacnt > 1 || 1577 refcount_is_zero(&hdr->b_refcnt)); 1578 mutex_exit(hash_lock); 1579 return (no_callback); 1580 } 1581 1582 int 1583 arc_buf_size(arc_buf_t *buf) 1584 { 1585 return (buf->b_hdr->b_size); 1586 } 1587 1588 /* 1589 * Evict buffers from list until we've removed the specified number of 1590 * bytes. Move the removed buffers to the appropriate evict state. 1591 * If the recycle flag is set, then attempt to "recycle" a buffer: 1592 * - look for a buffer to evict that is `bytes' long. 1593 * - return the data block from this buffer rather than freeing it. 1594 * This flag is used by callers that are trying to make space for a 1595 * new buffer in a full arc cache. 1596 * 1597 * This function makes a "best effort". It skips over any buffers 1598 * it can't get a hash_lock on, and so may not catch all candidates. 1599 * It may also return without evicting as much space as requested. 1600 */ 1601 static void * 1602 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, 1603 arc_buf_contents_t type) 1604 { 1605 arc_state_t *evicted_state; 1606 uint64_t bytes_evicted = 0, skipped = 0, missed = 0; 1607 arc_buf_hdr_t *ab, *ab_prev = NULL; 1608 list_t *list = &state->arcs_list[type]; 1609 kmutex_t *hash_lock; 1610 boolean_t have_lock; 1611 void *stolen = NULL; 1612 1613 ASSERT(state == arc_mru || state == arc_mfu); 1614 1615 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 1616 1617 mutex_enter(&state->arcs_mtx); 1618 mutex_enter(&evicted_state->arcs_mtx); 1619 1620 for (ab = list_tail(list); ab; ab = ab_prev) { 1621 ab_prev = list_prev(list, ab); 1622 /* prefetch buffers have a minimum lifespan */ 1623 if (HDR_IO_IN_PROGRESS(ab) || 1624 (spa && ab->b_spa != spa) || 1625 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && 1626 ddi_get_lbolt() - ab->b_arc_access < 1627 arc_min_prefetch_lifespan)) { 1628 skipped++; 1629 continue; 1630 } 1631 /* "lookahead" for better eviction candidate */ 1632 if (recycle && ab->b_size != bytes && 1633 ab_prev && ab_prev->b_size == bytes) 1634 continue; 1635 hash_lock = HDR_LOCK(ab); 1636 have_lock = MUTEX_HELD(hash_lock); 1637 if (have_lock || mutex_tryenter(hash_lock)) { 1638 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 1639 ASSERT(ab->b_datacnt > 0); 1640 while (ab->b_buf) { 1641 arc_buf_t *buf = ab->b_buf; 1642 if (!mutex_tryenter(&buf->b_evict_lock)) { 1643 missed += 1; 1644 break; 1645 } 1646 if (buf->b_data) { 1647 bytes_evicted += ab->b_size; 1648 if (recycle && ab->b_type == type && 1649 ab->b_size == bytes && 1650 !HDR_L2_WRITING(ab)) { 1651 stolen = buf->b_data; 1652 recycle = FALSE; 1653 } 1654 } 1655 if (buf->b_efunc) { 1656 mutex_enter(&arc_eviction_mtx); 1657 arc_buf_destroy(buf, 1658 buf->b_data == stolen, FALSE); 1659 ab->b_buf = buf->b_next; 1660 buf->b_hdr = &arc_eviction_hdr; 1661 buf->b_next = arc_eviction_list; 1662 arc_eviction_list = buf; 1663 mutex_exit(&arc_eviction_mtx); 1664 mutex_exit(&buf->b_evict_lock); 1665 } else { 1666 mutex_exit(&buf->b_evict_lock); 1667 arc_buf_destroy(buf, 1668 buf->b_data == stolen, TRUE); 1669 } 1670 } 1671 1672 if (ab->b_l2hdr) { 1673 ARCSTAT_INCR(arcstat_evict_l2_cached, 1674 ab->b_size); 1675 } else { 1676 if (l2arc_write_eligible(ab->b_spa, ab)) { 1677 ARCSTAT_INCR(arcstat_evict_l2_eligible, 1678 ab->b_size); 1679 } else { 1680 ARCSTAT_INCR( 1681 arcstat_evict_l2_ineligible, 1682 ab->b_size); 1683 } 1684 } 1685 1686 if (ab->b_datacnt == 0) { 1687 arc_change_state(evicted_state, ab, hash_lock); 1688 ASSERT(HDR_IN_HASH_TABLE(ab)); 1689 ab->b_flags |= ARC_IN_HASH_TABLE; 1690 ab->b_flags &= ~ARC_BUF_AVAILABLE; 1691 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 1692 } 1693 if (!have_lock) 1694 mutex_exit(hash_lock); 1695 if (bytes >= 0 && bytes_evicted >= bytes) 1696 break; 1697 } else { 1698 missed += 1; 1699 } 1700 } 1701 1702 mutex_exit(&evicted_state->arcs_mtx); 1703 mutex_exit(&state->arcs_mtx); 1704 1705 if (bytes_evicted < bytes) 1706 dprintf("only evicted %lld bytes from %x", 1707 (longlong_t)bytes_evicted, state); 1708 1709 if (skipped) 1710 ARCSTAT_INCR(arcstat_evict_skip, skipped); 1711 1712 if (missed) 1713 ARCSTAT_INCR(arcstat_mutex_miss, missed); 1714 1715 /* 1716 * We have just evicted some date into the ghost state, make 1717 * sure we also adjust the ghost state size if necessary. 1718 */ 1719 if (arc_no_grow && 1720 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { 1721 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + 1722 arc_mru_ghost->arcs_size - arc_c; 1723 1724 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { 1725 int64_t todelete = 1726 MIN(arc_mru_ghost->arcs_lsize[type], mru_over); 1727 arc_evict_ghost(arc_mru_ghost, NULL, todelete); 1728 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { 1729 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], 1730 arc_mru_ghost->arcs_size + 1731 arc_mfu_ghost->arcs_size - arc_c); 1732 arc_evict_ghost(arc_mfu_ghost, NULL, todelete); 1733 } 1734 } 1735 1736 return (stolen); 1737 } 1738 1739 /* 1740 * Remove buffers from list until we've removed the specified number of 1741 * bytes. Destroy the buffers that are removed. 1742 */ 1743 static void 1744 arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) 1745 { 1746 arc_buf_hdr_t *ab, *ab_prev; 1747 list_t *list = &state->arcs_list[ARC_BUFC_DATA]; 1748 kmutex_t *hash_lock; 1749 uint64_t bytes_deleted = 0; 1750 uint64_t bufs_skipped = 0; 1751 1752 ASSERT(GHOST_STATE(state)); 1753 top: 1754 mutex_enter(&state->arcs_mtx); 1755 for (ab = list_tail(list); ab; ab = ab_prev) { 1756 ab_prev = list_prev(list, ab); 1757 if (spa && ab->b_spa != spa) 1758 continue; 1759 hash_lock = HDR_LOCK(ab); 1760 /* caller may be trying to modify this buffer, skip it */ 1761 if (MUTEX_HELD(hash_lock)) 1762 continue; 1763 if (mutex_tryenter(hash_lock)) { 1764 ASSERT(!HDR_IO_IN_PROGRESS(ab)); 1765 ASSERT(ab->b_buf == NULL); 1766 ARCSTAT_BUMP(arcstat_deleted); 1767 bytes_deleted += ab->b_size; 1768 1769 if (ab->b_l2hdr != NULL) { 1770 /* 1771 * This buffer is cached on the 2nd Level ARC; 1772 * don't destroy the header. 1773 */ 1774 arc_change_state(arc_l2c_only, ab, hash_lock); 1775 mutex_exit(hash_lock); 1776 } else { 1777 arc_change_state(arc_anon, ab, hash_lock); 1778 mutex_exit(hash_lock); 1779 arc_hdr_destroy(ab); 1780 } 1781 1782 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1783 if (bytes >= 0 && bytes_deleted >= bytes) 1784 break; 1785 } else { 1786 if (bytes < 0) { 1787 mutex_exit(&state->arcs_mtx); 1788 mutex_enter(hash_lock); 1789 mutex_exit(hash_lock); 1790 goto top; 1791 } 1792 bufs_skipped += 1; 1793 } 1794 } 1795 mutex_exit(&state->arcs_mtx); 1796 1797 if (list == &state->arcs_list[ARC_BUFC_DATA] && 1798 (bytes < 0 || bytes_deleted < bytes)) { 1799 list = &state->arcs_list[ARC_BUFC_METADATA]; 1800 goto top; 1801 } 1802 1803 if (bufs_skipped) { 1804 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); 1805 ASSERT(bytes >= 0); 1806 } 1807 1808 if (bytes_deleted < bytes) 1809 dprintf("only deleted %lld bytes from %p", 1810 (longlong_t)bytes_deleted, state); 1811 } 1812 1813 static void 1814 arc_adjust(void) 1815 { 1816 int64_t adjustment, delta; 1817 1818 /* 1819 * Adjust MRU size 1820 */ 1821 1822 adjustment = MIN(arc_size - arc_c, 1823 arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p); 1824 1825 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { 1826 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); 1827 (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); 1828 adjustment -= delta; 1829 } 1830 1831 if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1832 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); 1833 (void) arc_evict(arc_mru, NULL, delta, FALSE, 1834 ARC_BUFC_METADATA); 1835 } 1836 1837 /* 1838 * Adjust MFU size 1839 */ 1840 1841 adjustment = arc_size - arc_c; 1842 1843 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { 1844 delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); 1845 (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); 1846 adjustment -= delta; 1847 } 1848 1849 if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { 1850 int64_t delta = MIN(adjustment, 1851 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); 1852 (void) arc_evict(arc_mfu, NULL, delta, FALSE, 1853 ARC_BUFC_METADATA); 1854 } 1855 1856 /* 1857 * Adjust ghost lists 1858 */ 1859 1860 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; 1861 1862 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { 1863 delta = MIN(arc_mru_ghost->arcs_size, adjustment); 1864 arc_evict_ghost(arc_mru_ghost, NULL, delta); 1865 } 1866 1867 adjustment = 1868 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; 1869 1870 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { 1871 delta = MIN(arc_mfu_ghost->arcs_size, adjustment); 1872 arc_evict_ghost(arc_mfu_ghost, NULL, delta); 1873 } 1874 } 1875 1876 static void 1877 arc_do_user_evicts(void) 1878 { 1879 mutex_enter(&arc_eviction_mtx); 1880 while (arc_eviction_list != NULL) { 1881 arc_buf_t *buf = arc_eviction_list; 1882 arc_eviction_list = buf->b_next; 1883 mutex_enter(&buf->b_evict_lock); 1884 buf->b_hdr = NULL; 1885 mutex_exit(&buf->b_evict_lock); 1886 mutex_exit(&arc_eviction_mtx); 1887 1888 if (buf->b_efunc != NULL) 1889 VERIFY(buf->b_efunc(buf) == 0); 1890 1891 buf->b_efunc = NULL; 1892 buf->b_private = NULL; 1893 kmem_cache_free(buf_cache, buf); 1894 mutex_enter(&arc_eviction_mtx); 1895 } 1896 mutex_exit(&arc_eviction_mtx); 1897 } 1898 1899 /* 1900 * Flush all *evictable* data from the cache for the given spa. 1901 * NOTE: this will not touch "active" (i.e. referenced) data. 1902 */ 1903 void 1904 arc_flush(spa_t *spa) 1905 { 1906 uint64_t guid = 0; 1907 1908 if (spa) 1909 guid = spa_guid(spa); 1910 1911 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { 1912 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); 1913 if (spa) 1914 break; 1915 } 1916 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { 1917 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); 1918 if (spa) 1919 break; 1920 } 1921 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { 1922 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); 1923 if (spa) 1924 break; 1925 } 1926 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { 1927 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); 1928 if (spa) 1929 break; 1930 } 1931 1932 arc_evict_ghost(arc_mru_ghost, guid, -1); 1933 arc_evict_ghost(arc_mfu_ghost, guid, -1); 1934 1935 mutex_enter(&arc_reclaim_thr_lock); 1936 arc_do_user_evicts(); 1937 mutex_exit(&arc_reclaim_thr_lock); 1938 ASSERT(spa || arc_eviction_list == NULL); 1939 } 1940 1941 void 1942 arc_shrink(void) 1943 { 1944 if (arc_c > arc_c_min) { 1945 uint64_t to_free; 1946 1947 #ifdef _KERNEL 1948 to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); 1949 #else 1950 to_free = arc_c >> arc_shrink_shift; 1951 #endif 1952 if (arc_c > arc_c_min + to_free) 1953 atomic_add_64(&arc_c, -to_free); 1954 else 1955 arc_c = arc_c_min; 1956 1957 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 1958 if (arc_c > arc_size) 1959 arc_c = MAX(arc_size, arc_c_min); 1960 if (arc_p > arc_c) 1961 arc_p = (arc_c >> 1); 1962 ASSERT(arc_c >= arc_c_min); 1963 ASSERT((int64_t)arc_p >= 0); 1964 } 1965 1966 if (arc_size > arc_c) 1967 arc_adjust(); 1968 } 1969 1970 static int 1971 arc_reclaim_needed(void) 1972 { 1973 uint64_t extra; 1974 1975 #ifdef _KERNEL 1976 1977 if (needfree) 1978 return (1); 1979 1980 /* 1981 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1982 */ 1983 extra = desfree; 1984 1985 /* 1986 * check that we're out of range of the pageout scanner. It starts to 1987 * schedule paging if freemem is less than lotsfree and needfree. 1988 * lotsfree is the high-water mark for pageout, and needfree is the 1989 * number of needed free pages. We add extra pages here to make sure 1990 * the scanner doesn't start up while we're freeing memory. 1991 */ 1992 if (freemem < lotsfree + needfree + extra) 1993 return (1); 1994 1995 /* 1996 * check to make sure that swapfs has enough space so that anon 1997 * reservations can still succeed. anon_resvmem() checks that the 1998 * availrmem is greater than swapfs_minfree, and the number of reserved 1999 * swap pages. We also add a bit of extra here just to prevent 2000 * circumstances from getting really dire. 2001 */ 2002 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 2003 return (1); 2004 2005 #if defined(__i386) 2006 /* 2007 * If we're on an i386 platform, it's possible that we'll exhaust the 2008 * kernel heap space before we ever run out of available physical 2009 * memory. Most checks of the size of the heap_area compare against 2010 * tune.t_minarmem, which is the minimum available real memory that we 2011 * can have in the system. However, this is generally fixed at 25 pages 2012 * which is so low that it's useless. In this comparison, we seek to 2013 * calculate the total heap-size, and reclaim if more than 3/4ths of the 2014 * heap is allocated. (Or, in the calculation, if less than 1/4th is 2015 * free) 2016 */ 2017 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 2018 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 2019 return (1); 2020 #endif 2021 2022 #else 2023 if (spa_get_random(100) == 0) 2024 return (1); 2025 #endif 2026 return (0); 2027 } 2028 2029 static void 2030 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 2031 { 2032 size_t i; 2033 kmem_cache_t *prev_cache = NULL; 2034 kmem_cache_t *prev_data_cache = NULL; 2035 extern kmem_cache_t *zio_buf_cache[]; 2036 extern kmem_cache_t *zio_data_buf_cache[]; 2037 2038 #ifdef _KERNEL 2039 if (arc_meta_used >= arc_meta_limit) { 2040 /* 2041 * We are exceeding our meta-data cache limit. 2042 * Purge some DNLC entries to release holds on meta-data. 2043 */ 2044 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 2045 } 2046 #if defined(__i386) 2047 /* 2048 * Reclaim unused memory from all kmem caches. 2049 */ 2050 kmem_reap(); 2051 #endif 2052 #endif 2053 2054 /* 2055 * An aggressive reclamation will shrink the cache size as well as 2056 * reap free buffers from the arc kmem caches. 2057 */ 2058 if (strat == ARC_RECLAIM_AGGR) 2059 arc_shrink(); 2060 2061 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 2062 if (zio_buf_cache[i] != prev_cache) { 2063 prev_cache = zio_buf_cache[i]; 2064 kmem_cache_reap_now(zio_buf_cache[i]); 2065 } 2066 if (zio_data_buf_cache[i] != prev_data_cache) { 2067 prev_data_cache = zio_data_buf_cache[i]; 2068 kmem_cache_reap_now(zio_data_buf_cache[i]); 2069 } 2070 } 2071 kmem_cache_reap_now(buf_cache); 2072 kmem_cache_reap_now(hdr_cache); 2073 } 2074 2075 static void 2076 arc_reclaim_thread(void) 2077 { 2078 clock_t growtime = 0; 2079 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 2080 callb_cpr_t cpr; 2081 2082 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 2083 2084 mutex_enter(&arc_reclaim_thr_lock); 2085 while (arc_thread_exit == 0) { 2086 if (arc_reclaim_needed()) { 2087 2088 if (arc_no_grow) { 2089 if (last_reclaim == ARC_RECLAIM_CONS) { 2090 last_reclaim = ARC_RECLAIM_AGGR; 2091 } else { 2092 last_reclaim = ARC_RECLAIM_CONS; 2093 } 2094 } else { 2095 arc_no_grow = TRUE; 2096 last_reclaim = ARC_RECLAIM_AGGR; 2097 membar_producer(); 2098 } 2099 2100 /* reset the growth delay for every reclaim */ 2101 growtime = ddi_get_lbolt() + (arc_grow_retry * hz); 2102 2103 arc_kmem_reap_now(last_reclaim); 2104 arc_warm = B_TRUE; 2105 2106 } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { 2107 arc_no_grow = FALSE; 2108 } 2109 2110 if (2 * arc_c < arc_size + 2111 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size) 2112 arc_adjust(); 2113 2114 if (arc_eviction_list != NULL) 2115 arc_do_user_evicts(); 2116 2117 /* block until needed, or one second, whichever is shorter */ 2118 CALLB_CPR_SAFE_BEGIN(&cpr); 2119 (void) cv_timedwait(&arc_reclaim_thr_cv, 2120 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); 2121 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 2122 } 2123 2124 arc_thread_exit = 0; 2125 cv_broadcast(&arc_reclaim_thr_cv); 2126 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 2127 thread_exit(); 2128 } 2129 2130 /* 2131 * Adapt arc info given the number of bytes we are trying to add and 2132 * the state that we are comming from. This function is only called 2133 * when we are adding new content to the cache. 2134 */ 2135 static void 2136 arc_adapt(int bytes, arc_state_t *state) 2137 { 2138 int mult; 2139 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 2140 2141 if (state == arc_l2c_only) 2142 return; 2143 2144 ASSERT(bytes > 0); 2145 /* 2146 * Adapt the target size of the MRU list: 2147 * - if we just hit in the MRU ghost list, then increase 2148 * the target size of the MRU list. 2149 * - if we just hit in the MFU ghost list, then increase 2150 * the target size of the MFU list by decreasing the 2151 * target size of the MRU list. 2152 */ 2153 if (state == arc_mru_ghost) { 2154 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 2155 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); 2156 2157 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 2158 } else if (state == arc_mfu_ghost) { 2159 uint64_t delta; 2160 2161 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 2162 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); 2163 2164 delta = MIN(bytes * mult, arc_p); 2165 arc_p = MAX(arc_p_min, arc_p - delta); 2166 } 2167 ASSERT((int64_t)arc_p >= 0); 2168 2169 if (arc_reclaim_needed()) { 2170 cv_signal(&arc_reclaim_thr_cv); 2171 return; 2172 } 2173 2174 if (arc_no_grow) 2175 return; 2176 2177 if (arc_c >= arc_c_max) 2178 return; 2179 2180 /* 2181 * If we're within (2 * maxblocksize) bytes of the target 2182 * cache size, increment the target cache size 2183 */ 2184 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 2185 atomic_add_64(&arc_c, (int64_t)bytes); 2186 if (arc_c > arc_c_max) 2187 arc_c = arc_c_max; 2188 else if (state == arc_anon) 2189 atomic_add_64(&arc_p, (int64_t)bytes); 2190 if (arc_p > arc_c) 2191 arc_p = arc_c; 2192 } 2193 ASSERT((int64_t)arc_p >= 0); 2194 } 2195 2196 /* 2197 * Check if the cache has reached its limits and eviction is required 2198 * prior to insert. 2199 */ 2200 static int 2201 arc_evict_needed(arc_buf_contents_t type) 2202 { 2203 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) 2204 return (1); 2205 2206 #ifdef _KERNEL 2207 /* 2208 * If zio data pages are being allocated out of a separate heap segment, 2209 * then enforce that the size of available vmem for this area remains 2210 * above about 1/32nd free. 2211 */ 2212 if (type == ARC_BUFC_DATA && zio_arena != NULL && 2213 vmem_size(zio_arena, VMEM_FREE) < 2214 (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) 2215 return (1); 2216 #endif 2217 2218 if (arc_reclaim_needed()) 2219 return (1); 2220 2221 return (arc_size > arc_c); 2222 } 2223 2224 /* 2225 * The buffer, supplied as the first argument, needs a data block. 2226 * So, if we are at cache max, determine which cache should be victimized. 2227 * We have the following cases: 2228 * 2229 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> 2230 * In this situation if we're out of space, but the resident size of the MFU is 2231 * under the limit, victimize the MFU cache to satisfy this insertion request. 2232 * 2233 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> 2234 * Here, we've used up all of the available space for the MRU, so we need to 2235 * evict from our own cache instead. Evict from the set of resident MRU 2236 * entries. 2237 * 2238 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> 2239 * c minus p represents the MFU space in the cache, since p is the size of the 2240 * cache that is dedicated to the MRU. In this situation there's still space on 2241 * the MFU side, so the MRU side needs to be victimized. 2242 * 2243 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> 2244 * MFU's resident set is consuming more space than it has been allotted. In 2245 * this situation, we must victimize our own cache, the MFU, for this insertion. 2246 */ 2247 static void 2248 arc_get_data_buf(arc_buf_t *buf) 2249 { 2250 arc_state_t *state = buf->b_hdr->b_state; 2251 uint64_t size = buf->b_hdr->b_size; 2252 arc_buf_contents_t type = buf->b_hdr->b_type; 2253 2254 arc_adapt(size, state); 2255 2256 /* 2257 * We have not yet reached cache maximum size, 2258 * just allocate a new buffer. 2259 */ 2260 if (!arc_evict_needed(type)) { 2261 if (type == ARC_BUFC_METADATA) { 2262 buf->b_data = zio_buf_alloc(size); 2263 arc_space_consume(size, ARC_SPACE_DATA); 2264 } else { 2265 ASSERT(type == ARC_BUFC_DATA); 2266 buf->b_data = zio_data_buf_alloc(size); 2267 ARCSTAT_INCR(arcstat_data_size, size); 2268 atomic_add_64(&arc_size, size); 2269 } 2270 goto out; 2271 } 2272 2273 /* 2274 * If we are prefetching from the mfu ghost list, this buffer 2275 * will end up on the mru list; so steal space from there. 2276 */ 2277 if (state == arc_mfu_ghost) 2278 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; 2279 else if (state == arc_mru_ghost) 2280 state = arc_mru; 2281 2282 if (state == arc_mru || state == arc_anon) { 2283 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; 2284 state = (arc_mfu->arcs_lsize[type] >= size && 2285 arc_p > mru_used) ? arc_mfu : arc_mru; 2286 } else { 2287 /* MFU cases */ 2288 uint64_t mfu_space = arc_c - arc_p; 2289 state = (arc_mru->arcs_lsize[type] >= size && 2290 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; 2291 } 2292 if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { 2293 if (type == ARC_BUFC_METADATA) { 2294 buf->b_data = zio_buf_alloc(size); 2295 arc_space_consume(size, ARC_SPACE_DATA); 2296 } else { 2297 ASSERT(type == ARC_BUFC_DATA); 2298 buf->b_data = zio_data_buf_alloc(size); 2299 ARCSTAT_INCR(arcstat_data_size, size); 2300 atomic_add_64(&arc_size, size); 2301 } 2302 ARCSTAT_BUMP(arcstat_recycle_miss); 2303 } 2304 ASSERT(buf->b_data != NULL); 2305 out: 2306 /* 2307 * Update the state size. Note that ghost states have a 2308 * "ghost size" and so don't need to be updated. 2309 */ 2310 if (!GHOST_STATE(buf->b_hdr->b_state)) { 2311 arc_buf_hdr_t *hdr = buf->b_hdr; 2312 2313 atomic_add_64(&hdr->b_state->arcs_size, size); 2314 if (list_link_active(&hdr->b_arc_node)) { 2315 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2316 atomic_add_64(&hdr->b_state->arcs_lsize[type], size); 2317 } 2318 /* 2319 * If we are growing the cache, and we are adding anonymous 2320 * data, and we have outgrown arc_p, update arc_p 2321 */ 2322 if (arc_size < arc_c && hdr->b_state == arc_anon && 2323 arc_anon->arcs_size + arc_mru->arcs_size > arc_p) 2324 arc_p = MIN(arc_c, arc_p + size); 2325 } 2326 } 2327 2328 /* 2329 * This routine is called whenever a buffer is accessed. 2330 * NOTE: the hash lock is dropped in this function. 2331 */ 2332 static void 2333 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 2334 { 2335 clock_t now; 2336 2337 ASSERT(MUTEX_HELD(hash_lock)); 2338 2339 if (buf->b_state == arc_anon) { 2340 /* 2341 * This buffer is not in the cache, and does not 2342 * appear in our "ghost" list. Add the new buffer 2343 * to the MRU state. 2344 */ 2345 2346 ASSERT(buf->b_arc_access == 0); 2347 buf->b_arc_access = ddi_get_lbolt(); 2348 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2349 arc_change_state(arc_mru, buf, hash_lock); 2350 2351 } else if (buf->b_state == arc_mru) { 2352 now = ddi_get_lbolt(); 2353 2354 /* 2355 * If this buffer is here because of a prefetch, then either: 2356 * - clear the flag if this is a "referencing" read 2357 * (any subsequent access will bump this into the MFU state). 2358 * or 2359 * - move the buffer to the head of the list if this is 2360 * another prefetch (to make it less likely to be evicted). 2361 */ 2362 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2363 if (refcount_count(&buf->b_refcnt) == 0) { 2364 ASSERT(list_link_active(&buf->b_arc_node)); 2365 } else { 2366 buf->b_flags &= ~ARC_PREFETCH; 2367 ARCSTAT_BUMP(arcstat_mru_hits); 2368 } 2369 buf->b_arc_access = now; 2370 return; 2371 } 2372 2373 /* 2374 * This buffer has been "accessed" only once so far, 2375 * but it is still in the cache. Move it to the MFU 2376 * state. 2377 */ 2378 if (now > buf->b_arc_access + ARC_MINTIME) { 2379 /* 2380 * More than 125ms have passed since we 2381 * instantiated this buffer. Move it to the 2382 * most frequently used state. 2383 */ 2384 buf->b_arc_access = now; 2385 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2386 arc_change_state(arc_mfu, buf, hash_lock); 2387 } 2388 ARCSTAT_BUMP(arcstat_mru_hits); 2389 } else if (buf->b_state == arc_mru_ghost) { 2390 arc_state_t *new_state; 2391 /* 2392 * This buffer has been "accessed" recently, but 2393 * was evicted from the cache. Move it to the 2394 * MFU state. 2395 */ 2396 2397 if (buf->b_flags & ARC_PREFETCH) { 2398 new_state = arc_mru; 2399 if (refcount_count(&buf->b_refcnt) > 0) 2400 buf->b_flags &= ~ARC_PREFETCH; 2401 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 2402 } else { 2403 new_state = arc_mfu; 2404 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2405 } 2406 2407 buf->b_arc_access = ddi_get_lbolt(); 2408 arc_change_state(new_state, buf, hash_lock); 2409 2410 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 2411 } else if (buf->b_state == arc_mfu) { 2412 /* 2413 * This buffer has been accessed more than once and is 2414 * still in the cache. Keep it in the MFU state. 2415 * 2416 * NOTE: an add_reference() that occurred when we did 2417 * the arc_read() will have kicked this off the list. 2418 * If it was a prefetch, we will explicitly move it to 2419 * the head of the list now. 2420 */ 2421 if ((buf->b_flags & ARC_PREFETCH) != 0) { 2422 ASSERT(refcount_count(&buf->b_refcnt) == 0); 2423 ASSERT(list_link_active(&buf->b_arc_node)); 2424 } 2425 ARCSTAT_BUMP(arcstat_mfu_hits); 2426 buf->b_arc_access = ddi_get_lbolt(); 2427 } else if (buf->b_state == arc_mfu_ghost) { 2428 arc_state_t *new_state = arc_mfu; 2429 /* 2430 * This buffer has been accessed more than once but has 2431 * been evicted from the cache. Move it back to the 2432 * MFU state. 2433 */ 2434 2435 if (buf->b_flags & ARC_PREFETCH) { 2436 /* 2437 * This is a prefetch access... 2438 * move this block back to the MRU state. 2439 */ 2440 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); 2441 new_state = arc_mru; 2442 } 2443 2444 buf->b_arc_access = ddi_get_lbolt(); 2445 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2446 arc_change_state(new_state, buf, hash_lock); 2447 2448 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 2449 } else if (buf->b_state == arc_l2c_only) { 2450 /* 2451 * This buffer is on the 2nd Level ARC. 2452 */ 2453 2454 buf->b_arc_access = ddi_get_lbolt(); 2455 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 2456 arc_change_state(arc_mfu, buf, hash_lock); 2457 } else { 2458 ASSERT(!"invalid arc state"); 2459 } 2460 } 2461 2462 /* a generic arc_done_func_t which you can use */ 2463 /* ARGSUSED */ 2464 void 2465 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 2466 { 2467 if (zio == NULL || zio->io_error == 0) 2468 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 2469 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2470 } 2471 2472 /* a generic arc_done_func_t */ 2473 void 2474 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 2475 { 2476 arc_buf_t **bufp = arg; 2477 if (zio && zio->io_error) { 2478 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 2479 *bufp = NULL; 2480 } else { 2481 *bufp = buf; 2482 ASSERT(buf->b_data); 2483 } 2484 } 2485 2486 static void 2487 arc_read_done(zio_t *zio) 2488 { 2489 arc_buf_hdr_t *hdr, *found; 2490 arc_buf_t *buf; 2491 arc_buf_t *abuf; /* buffer we're assigning to callback */ 2492 kmutex_t *hash_lock; 2493 arc_callback_t *callback_list, *acb; 2494 int freeable = FALSE; 2495 2496 buf = zio->io_private; 2497 hdr = buf->b_hdr; 2498 2499 /* 2500 * The hdr was inserted into hash-table and removed from lists 2501 * prior to starting I/O. We should find this header, since 2502 * it's in the hash table, and it should be legit since it's 2503 * not possible to evict it during the I/O. The only possible 2504 * reason for it not to be found is if we were freed during the 2505 * read. 2506 */ 2507 found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, 2508 &hash_lock); 2509 2510 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 2511 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 2512 (found == hdr && HDR_L2_READING(hdr))); 2513 2514 hdr->b_flags &= ~ARC_L2_EVICTED; 2515 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) 2516 hdr->b_flags &= ~ARC_L2CACHE; 2517 2518 /* byteswap if necessary */ 2519 callback_list = hdr->b_acb; 2520 ASSERT(callback_list != NULL); 2521 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { 2522 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? 2523 byteswap_uint64_array : 2524 dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; 2525 func(buf->b_data, hdr->b_size); 2526 } 2527 2528 arc_cksum_compute(buf, B_FALSE); 2529 2530 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { 2531 /* 2532 * Only call arc_access on anonymous buffers. This is because 2533 * if we've issued an I/O for an evicted buffer, we've already 2534 * called arc_access (to prevent any simultaneous readers from 2535 * getting confused). 2536 */ 2537 arc_access(hdr, hash_lock); 2538 } 2539 2540 /* create copies of the data buffer for the callers */ 2541 abuf = buf; 2542 for (acb = callback_list; acb; acb = acb->acb_next) { 2543 if (acb->acb_done) { 2544 if (abuf == NULL) 2545 abuf = arc_buf_clone(buf); 2546 acb->acb_buf = abuf; 2547 abuf = NULL; 2548 } 2549 } 2550 hdr->b_acb = NULL; 2551 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2552 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 2553 if (abuf == buf) { 2554 ASSERT(buf->b_efunc == NULL); 2555 ASSERT(hdr->b_datacnt == 1); 2556 hdr->b_flags |= ARC_BUF_AVAILABLE; 2557 } 2558 2559 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 2560 2561 if (zio->io_error != 0) { 2562 hdr->b_flags |= ARC_IO_ERROR; 2563 if (hdr->b_state != arc_anon) 2564 arc_change_state(arc_anon, hdr, hash_lock); 2565 if (HDR_IN_HASH_TABLE(hdr)) 2566 buf_hash_remove(hdr); 2567 freeable = refcount_is_zero(&hdr->b_refcnt); 2568 } 2569 2570 /* 2571 * Broadcast before we drop the hash_lock to avoid the possibility 2572 * that the hdr (and hence the cv) might be freed before we get to 2573 * the cv_broadcast(). 2574 */ 2575 cv_broadcast(&hdr->b_cv); 2576 2577 if (hash_lock) { 2578 mutex_exit(hash_lock); 2579 } else { 2580 /* 2581 * This block was freed while we waited for the read to 2582 * complete. It has been removed from the hash table and 2583 * moved to the anonymous state (so that it won't show up 2584 * in the cache). 2585 */ 2586 ASSERT3P(hdr->b_state, ==, arc_anon); 2587 freeable = refcount_is_zero(&hdr->b_refcnt); 2588 } 2589 2590 /* execute each callback and free its structure */ 2591 while ((acb = callback_list) != NULL) { 2592 if (acb->acb_done) 2593 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 2594 2595 if (acb->acb_zio_dummy != NULL) { 2596 acb->acb_zio_dummy->io_error = zio->io_error; 2597 zio_nowait(acb->acb_zio_dummy); 2598 } 2599 2600 callback_list = acb->acb_next; 2601 kmem_free(acb, sizeof (arc_callback_t)); 2602 } 2603 2604 if (freeable) 2605 arc_hdr_destroy(hdr); 2606 } 2607 2608 /* 2609 * "Read" the block block at the specified DVA (in bp) via the 2610 * cache. If the block is found in the cache, invoke the provided 2611 * callback immediately and return. Note that the `zio' parameter 2612 * in the callback will be NULL in this case, since no IO was 2613 * required. If the block is not in the cache pass the read request 2614 * on to the spa with a substitute callback function, so that the 2615 * requested block will be added to the cache. 2616 * 2617 * If a read request arrives for a block that has a read in-progress, 2618 * either wait for the in-progress read to complete (and return the 2619 * results); or, if this is a read with a "done" func, add a record 2620 * to the read to invoke the "done" func when the read completes, 2621 * and return; or just return. 2622 * 2623 * arc_read_done() will invoke all the requested "done" functions 2624 * for readers of this block. 2625 * 2626 * Normal callers should use arc_read and pass the arc buffer and offset 2627 * for the bp. But if you know you don't need locking, you can use 2628 * arc_read_bp. 2629 */ 2630 int 2631 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, 2632 arc_done_func_t *done, void *private, int priority, int zio_flags, 2633 uint32_t *arc_flags, const zbookmark_t *zb) 2634 { 2635 int err; 2636 2637 if (pbuf == NULL) { 2638 /* 2639 * XXX This happens from traverse callback funcs, for 2640 * the objset_phys_t block. 2641 */ 2642 return (arc_read_nolock(pio, spa, bp, done, private, priority, 2643 zio_flags, arc_flags, zb)); 2644 } 2645 2646 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); 2647 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); 2648 rw_enter(&pbuf->b_data_lock, RW_READER); 2649 2650 err = arc_read_nolock(pio, spa, bp, done, private, priority, 2651 zio_flags, arc_flags, zb); 2652 rw_exit(&pbuf->b_data_lock); 2653 2654 return (err); 2655 } 2656 2657 int 2658 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, 2659 arc_done_func_t *done, void *private, int priority, int zio_flags, 2660 uint32_t *arc_flags, const zbookmark_t *zb) 2661 { 2662 arc_buf_hdr_t *hdr; 2663 arc_buf_t *buf; 2664 kmutex_t *hash_lock; 2665 zio_t *rzio; 2666 uint64_t guid = spa_guid(spa); 2667 2668 top: 2669 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), 2670 &hash_lock); 2671 if (hdr && hdr->b_datacnt > 0) { 2672 2673 *arc_flags |= ARC_CACHED; 2674 2675 if (HDR_IO_IN_PROGRESS(hdr)) { 2676 2677 if (*arc_flags & ARC_WAIT) { 2678 cv_wait(&hdr->b_cv, hash_lock); 2679 mutex_exit(hash_lock); 2680 goto top; 2681 } 2682 ASSERT(*arc_flags & ARC_NOWAIT); 2683 2684 if (done) { 2685 arc_callback_t *acb = NULL; 2686 2687 acb = kmem_zalloc(sizeof (arc_callback_t), 2688 KM_SLEEP); 2689 acb->acb_done = done; 2690 acb->acb_private = private; 2691 if (pio != NULL) 2692 acb->acb_zio_dummy = zio_null(pio, 2693 spa, NULL, NULL, NULL, zio_flags); 2694 2695 ASSERT(acb->acb_done != NULL); 2696 acb->acb_next = hdr->b_acb; 2697 hdr->b_acb = acb; 2698 add_reference(hdr, hash_lock, private); 2699 mutex_exit(hash_lock); 2700 return (0); 2701 } 2702 mutex_exit(hash_lock); 2703 return (0); 2704 } 2705 2706 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2707 2708 if (done) { 2709 add_reference(hdr, hash_lock, private); 2710 /* 2711 * If this block is already in use, create a new 2712 * copy of the data so that we will be guaranteed 2713 * that arc_release() will always succeed. 2714 */ 2715 buf = hdr->b_buf; 2716 ASSERT(buf); 2717 ASSERT(buf->b_data); 2718 if (HDR_BUF_AVAILABLE(hdr)) { 2719 ASSERT(buf->b_efunc == NULL); 2720 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2721 } else { 2722 buf = arc_buf_clone(buf); 2723 } 2724 2725 } else if (*arc_flags & ARC_PREFETCH && 2726 refcount_count(&hdr->b_refcnt) == 0) { 2727 hdr->b_flags |= ARC_PREFETCH; 2728 } 2729 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 2730 arc_access(hdr, hash_lock); 2731 if (*arc_flags & ARC_L2CACHE) 2732 hdr->b_flags |= ARC_L2CACHE; 2733 mutex_exit(hash_lock); 2734 ARCSTAT_BUMP(arcstat_hits); 2735 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2736 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2737 data, metadata, hits); 2738 2739 if (done) 2740 done(NULL, buf, private); 2741 } else { 2742 uint64_t size = BP_GET_LSIZE(bp); 2743 arc_callback_t *acb; 2744 vdev_t *vd = NULL; 2745 uint64_t addr; 2746 boolean_t devw = B_FALSE; 2747 2748 if (hdr == NULL) { 2749 /* this block is not in the cache */ 2750 arc_buf_hdr_t *exists; 2751 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 2752 buf = arc_buf_alloc(spa, size, private, type); 2753 hdr = buf->b_hdr; 2754 hdr->b_dva = *BP_IDENTITY(bp); 2755 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 2756 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 2757 exists = buf_hash_insert(hdr, &hash_lock); 2758 if (exists) { 2759 /* somebody beat us to the hash insert */ 2760 mutex_exit(hash_lock); 2761 buf_discard_identity(hdr); 2762 (void) arc_buf_remove_ref(buf, private); 2763 goto top; /* restart the IO request */ 2764 } 2765 /* if this is a prefetch, we don't have a reference */ 2766 if (*arc_flags & ARC_PREFETCH) { 2767 (void) remove_reference(hdr, hash_lock, 2768 private); 2769 hdr->b_flags |= ARC_PREFETCH; 2770 } 2771 if (*arc_flags & ARC_L2CACHE) 2772 hdr->b_flags |= ARC_L2CACHE; 2773 if (BP_GET_LEVEL(bp) > 0) 2774 hdr->b_flags |= ARC_INDIRECT; 2775 } else { 2776 /* this block is in the ghost cache */ 2777 ASSERT(GHOST_STATE(hdr->b_state)); 2778 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2779 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); 2780 ASSERT(hdr->b_buf == NULL); 2781 2782 /* if this is a prefetch, we don't have a reference */ 2783 if (*arc_flags & ARC_PREFETCH) 2784 hdr->b_flags |= ARC_PREFETCH; 2785 else 2786 add_reference(hdr, hash_lock, private); 2787 if (*arc_flags & ARC_L2CACHE) 2788 hdr->b_flags |= ARC_L2CACHE; 2789 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2790 buf->b_hdr = hdr; 2791 buf->b_data = NULL; 2792 buf->b_efunc = NULL; 2793 buf->b_private = NULL; 2794 buf->b_next = NULL; 2795 hdr->b_buf = buf; 2796 ASSERT(hdr->b_datacnt == 0); 2797 hdr->b_datacnt = 1; 2798 arc_get_data_buf(buf); 2799 arc_access(hdr, hash_lock); 2800 } 2801 2802 ASSERT(!GHOST_STATE(hdr->b_state)); 2803 2804 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2805 acb->acb_done = done; 2806 acb->acb_private = private; 2807 2808 ASSERT(hdr->b_acb == NULL); 2809 hdr->b_acb = acb; 2810 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2811 2812 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && 2813 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { 2814 devw = hdr->b_l2hdr->b_dev->l2ad_writing; 2815 addr = hdr->b_l2hdr->b_daddr; 2816 /* 2817 * Lock out device removal. 2818 */ 2819 if (vdev_is_dead(vd) || 2820 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 2821 vd = NULL; 2822 } 2823 2824 mutex_exit(hash_lock); 2825 2826 ASSERT3U(hdr->b_size, ==, size); 2827 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, 2828 uint64_t, size, zbookmark_t *, zb); 2829 ARCSTAT_BUMP(arcstat_misses); 2830 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), 2831 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, 2832 data, metadata, misses); 2833 2834 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 2835 /* 2836 * Read from the L2ARC if the following are true: 2837 * 1. The L2ARC vdev was previously cached. 2838 * 2. This buffer still has L2ARC metadata. 2839 * 3. This buffer isn't currently writing to the L2ARC. 2840 * 4. The L2ARC entry wasn't evicted, which may 2841 * also have invalidated the vdev. 2842 * 5. This isn't prefetch and l2arc_noprefetch is set. 2843 */ 2844 if (hdr->b_l2hdr != NULL && 2845 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 2846 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 2847 l2arc_read_callback_t *cb; 2848 2849 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 2850 ARCSTAT_BUMP(arcstat_l2_hits); 2851 2852 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 2853 KM_SLEEP); 2854 cb->l2rcb_buf = buf; 2855 cb->l2rcb_spa = spa; 2856 cb->l2rcb_bp = *bp; 2857 cb->l2rcb_zb = *zb; 2858 cb->l2rcb_flags = zio_flags; 2859 2860 /* 2861 * l2arc read. The SCL_L2ARC lock will be 2862 * released by l2arc_read_done(). 2863 */ 2864 rzio = zio_read_phys(pio, vd, addr, size, 2865 buf->b_data, ZIO_CHECKSUM_OFF, 2866 l2arc_read_done, cb, priority, zio_flags | 2867 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 2868 ZIO_FLAG_DONT_PROPAGATE | 2869 ZIO_FLAG_DONT_RETRY, B_FALSE); 2870 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 2871 zio_t *, rzio); 2872 ARCSTAT_INCR(arcstat_l2_read_bytes, size); 2873 2874 if (*arc_flags & ARC_NOWAIT) { 2875 zio_nowait(rzio); 2876 return (0); 2877 } 2878 2879 ASSERT(*arc_flags & ARC_WAIT); 2880 if (zio_wait(rzio) == 0) 2881 return (0); 2882 2883 /* l2arc read error; goto zio_read() */ 2884 } else { 2885 DTRACE_PROBE1(l2arc__miss, 2886 arc_buf_hdr_t *, hdr); 2887 ARCSTAT_BUMP(arcstat_l2_misses); 2888 if (HDR_L2_WRITING(hdr)) 2889 ARCSTAT_BUMP(arcstat_l2_rw_clash); 2890 spa_config_exit(spa, SCL_L2ARC, vd); 2891 } 2892 } else { 2893 if (vd != NULL) 2894 spa_config_exit(spa, SCL_L2ARC, vd); 2895 if (l2arc_ndev != 0) { 2896 DTRACE_PROBE1(l2arc__miss, 2897 arc_buf_hdr_t *, hdr); 2898 ARCSTAT_BUMP(arcstat_l2_misses); 2899 } 2900 } 2901 2902 rzio = zio_read(pio, spa, bp, buf->b_data, size, 2903 arc_read_done, buf, priority, zio_flags, zb); 2904 2905 if (*arc_flags & ARC_WAIT) 2906 return (zio_wait(rzio)); 2907 2908 ASSERT(*arc_flags & ARC_NOWAIT); 2909 zio_nowait(rzio); 2910 } 2911 return (0); 2912 } 2913 2914 void 2915 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 2916 { 2917 ASSERT(buf->b_hdr != NULL); 2918 ASSERT(buf->b_hdr->b_state != arc_anon); 2919 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 2920 ASSERT(buf->b_efunc == NULL); 2921 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); 2922 2923 buf->b_efunc = func; 2924 buf->b_private = private; 2925 } 2926 2927 /* 2928 * This is used by the DMU to let the ARC know that a buffer is 2929 * being evicted, so the ARC should clean up. If this arc buf 2930 * is not yet in the evicted state, it will be put there. 2931 */ 2932 int 2933 arc_buf_evict(arc_buf_t *buf) 2934 { 2935 arc_buf_hdr_t *hdr; 2936 kmutex_t *hash_lock; 2937 arc_buf_t **bufp; 2938 2939 mutex_enter(&buf->b_evict_lock); 2940 hdr = buf->b_hdr; 2941 if (hdr == NULL) { 2942 /* 2943 * We are in arc_do_user_evicts(). 2944 */ 2945 ASSERT(buf->b_data == NULL); 2946 mutex_exit(&buf->b_evict_lock); 2947 return (0); 2948 } else if (buf->b_data == NULL) { 2949 arc_buf_t copy = *buf; /* structure assignment */ 2950 /* 2951 * We are on the eviction list; process this buffer now 2952 * but let arc_do_user_evicts() do the reaping. 2953 */ 2954 buf->b_efunc = NULL; 2955 mutex_exit(&buf->b_evict_lock); 2956 VERIFY(copy.b_efunc(©) == 0); 2957 return (1); 2958 } 2959 hash_lock = HDR_LOCK(hdr); 2960 mutex_enter(hash_lock); 2961 hdr = buf->b_hdr; 2962 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 2963 2964 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 2965 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); 2966 2967 /* 2968 * Pull this buffer off of the hdr 2969 */ 2970 bufp = &hdr->b_buf; 2971 while (*bufp != buf) 2972 bufp = &(*bufp)->b_next; 2973 *bufp = buf->b_next; 2974 2975 ASSERT(buf->b_data != NULL); 2976 arc_buf_destroy(buf, FALSE, FALSE); 2977 2978 if (hdr->b_datacnt == 0) { 2979 arc_state_t *old_state = hdr->b_state; 2980 arc_state_t *evicted_state; 2981 2982 ASSERT(hdr->b_buf == NULL); 2983 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2984 2985 evicted_state = 2986 (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 2987 2988 mutex_enter(&old_state->arcs_mtx); 2989 mutex_enter(&evicted_state->arcs_mtx); 2990 2991 arc_change_state(evicted_state, hdr, hash_lock); 2992 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2993 hdr->b_flags |= ARC_IN_HASH_TABLE; 2994 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 2995 2996 mutex_exit(&evicted_state->arcs_mtx); 2997 mutex_exit(&old_state->arcs_mtx); 2998 } 2999 mutex_exit(hash_lock); 3000 mutex_exit(&buf->b_evict_lock); 3001 3002 VERIFY(buf->b_efunc(buf) == 0); 3003 buf->b_efunc = NULL; 3004 buf->b_private = NULL; 3005 buf->b_hdr = NULL; 3006 buf->b_next = NULL; 3007 kmem_cache_free(buf_cache, buf); 3008 return (1); 3009 } 3010 3011 /* 3012 * Release this buffer from the cache. This must be done 3013 * after a read and prior to modifying the buffer contents. 3014 * If the buffer has more than one reference, we must make 3015 * a new hdr for the buffer. 3016 */ 3017 void 3018 arc_release(arc_buf_t *buf, void *tag) 3019 { 3020 arc_buf_hdr_t *hdr; 3021 kmutex_t *hash_lock = NULL; 3022 l2arc_buf_hdr_t *l2hdr; 3023 uint64_t buf_size; 3024 3025 /* 3026 * It would be nice to assert that if it's DMU metadata (level > 3027 * 0 || it's the dnode file), then it must be syncing context. 3028 * But we don't know that information at this level. 3029 */ 3030 3031 mutex_enter(&buf->b_evict_lock); 3032 hdr = buf->b_hdr; 3033 3034 /* this buffer is not on any list */ 3035 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 3036 3037 if (hdr->b_state == arc_anon) { 3038 /* this buffer is already released */ 3039 ASSERT(buf->b_efunc == NULL); 3040 } else { 3041 hash_lock = HDR_LOCK(hdr); 3042 mutex_enter(hash_lock); 3043 hdr = buf->b_hdr; 3044 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3045 } 3046 3047 l2hdr = hdr->b_l2hdr; 3048 if (l2hdr) { 3049 mutex_enter(&l2arc_buflist_mtx); 3050 hdr->b_l2hdr = NULL; 3051 buf_size = hdr->b_size; 3052 } 3053 3054 /* 3055 * Do we have more than one buf? 3056 */ 3057 if (hdr->b_datacnt > 1) { 3058 arc_buf_hdr_t *nhdr; 3059 arc_buf_t **bufp; 3060 uint64_t blksz = hdr->b_size; 3061 uint64_t spa = hdr->b_spa; 3062 arc_buf_contents_t type = hdr->b_type; 3063 uint32_t flags = hdr->b_flags; 3064 3065 ASSERT(hdr->b_buf != buf || buf->b_next != NULL); 3066 /* 3067 * Pull the data off of this hdr and attach it to 3068 * a new anonymous hdr. 3069 */ 3070 (void) remove_reference(hdr, hash_lock, tag); 3071 bufp = &hdr->b_buf; 3072 while (*bufp != buf) 3073 bufp = &(*bufp)->b_next; 3074 *bufp = buf->b_next; 3075 buf->b_next = NULL; 3076 3077 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); 3078 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); 3079 if (refcount_is_zero(&hdr->b_refcnt)) { 3080 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; 3081 ASSERT3U(*size, >=, hdr->b_size); 3082 atomic_add_64(size, -hdr->b_size); 3083 } 3084 hdr->b_datacnt -= 1; 3085 arc_cksum_verify(buf); 3086 3087 mutex_exit(hash_lock); 3088 3089 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 3090 nhdr->b_size = blksz; 3091 nhdr->b_spa = spa; 3092 nhdr->b_type = type; 3093 nhdr->b_buf = buf; 3094 nhdr->b_state = arc_anon; 3095 nhdr->b_arc_access = 0; 3096 nhdr->b_flags = flags & ARC_L2_WRITING; 3097 nhdr->b_l2hdr = NULL; 3098 nhdr->b_datacnt = 1; 3099 nhdr->b_freeze_cksum = NULL; 3100 (void) refcount_add(&nhdr->b_refcnt, tag); 3101 buf->b_hdr = nhdr; 3102 mutex_exit(&buf->b_evict_lock); 3103 atomic_add_64(&arc_anon->arcs_size, blksz); 3104 } else { 3105 mutex_exit(&buf->b_evict_lock); 3106 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 3107 ASSERT(!list_link_active(&hdr->b_arc_node)); 3108 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3109 if (hdr->b_state != arc_anon) 3110 arc_change_state(arc_anon, hdr, hash_lock); 3111 hdr->b_arc_access = 0; 3112 if (hash_lock) 3113 mutex_exit(hash_lock); 3114 3115 buf_discard_identity(hdr); 3116 arc_buf_thaw(buf); 3117 } 3118 buf->b_efunc = NULL; 3119 buf->b_private = NULL; 3120 3121 if (l2hdr) { 3122 list_remove(l2hdr->b_dev->l2ad_buflist, hdr); 3123 kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); 3124 ARCSTAT_INCR(arcstat_l2_size, -buf_size); 3125 mutex_exit(&l2arc_buflist_mtx); 3126 } 3127 } 3128 3129 /* 3130 * Release this buffer. If it does not match the provided BP, fill it 3131 * with that block's contents. 3132 */ 3133 /* ARGSUSED */ 3134 int 3135 arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, 3136 zbookmark_t *zb) 3137 { 3138 arc_release(buf, tag); 3139 return (0); 3140 } 3141 3142 int 3143 arc_released(arc_buf_t *buf) 3144 { 3145 int released; 3146 3147 mutex_enter(&buf->b_evict_lock); 3148 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); 3149 mutex_exit(&buf->b_evict_lock); 3150 return (released); 3151 } 3152 3153 int 3154 arc_has_callback(arc_buf_t *buf) 3155 { 3156 int callback; 3157 3158 mutex_enter(&buf->b_evict_lock); 3159 callback = (buf->b_efunc != NULL); 3160 mutex_exit(&buf->b_evict_lock); 3161 return (callback); 3162 } 3163 3164 #ifdef ZFS_DEBUG 3165 int 3166 arc_referenced(arc_buf_t *buf) 3167 { 3168 int referenced; 3169 3170 mutex_enter(&buf->b_evict_lock); 3171 referenced = (refcount_count(&buf->b_hdr->b_refcnt)); 3172 mutex_exit(&buf->b_evict_lock); 3173 return (referenced); 3174 } 3175 #endif 3176 3177 static void 3178 arc_write_ready(zio_t *zio) 3179 { 3180 arc_write_callback_t *callback = zio->io_private; 3181 arc_buf_t *buf = callback->awcb_buf; 3182 arc_buf_hdr_t *hdr = buf->b_hdr; 3183 3184 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); 3185 callback->awcb_ready(zio, buf, callback->awcb_private); 3186 3187 /* 3188 * If the IO is already in progress, then this is a re-write 3189 * attempt, so we need to thaw and re-compute the cksum. 3190 * It is the responsibility of the callback to handle the 3191 * accounting for any re-write attempt. 3192 */ 3193 if (HDR_IO_IN_PROGRESS(hdr)) { 3194 mutex_enter(&hdr->b_freeze_lock); 3195 if (hdr->b_freeze_cksum != NULL) { 3196 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); 3197 hdr->b_freeze_cksum = NULL; 3198 } 3199 mutex_exit(&hdr->b_freeze_lock); 3200 } 3201 arc_cksum_compute(buf, B_FALSE); 3202 hdr->b_flags |= ARC_IO_IN_PROGRESS; 3203 } 3204 3205 static void 3206 arc_write_done(zio_t *zio) 3207 { 3208 arc_write_callback_t *callback = zio->io_private; 3209 arc_buf_t *buf = callback->awcb_buf; 3210 arc_buf_hdr_t *hdr = buf->b_hdr; 3211 3212 ASSERT(hdr->b_acb == NULL); 3213 3214 if (zio->io_error == 0) { 3215 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 3216 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 3217 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 3218 } else { 3219 ASSERT(BUF_EMPTY(hdr)); 3220 } 3221 3222 /* 3223 * If the block to be written was all-zero, we may have 3224 * compressed it away. In this case no write was performed 3225 * so there will be no dva/birth/checksum. The buffer must 3226 * therefore remain anonymous (and uncached). 3227 */ 3228 if (!BUF_EMPTY(hdr)) { 3229 arc_buf_hdr_t *exists; 3230 kmutex_t *hash_lock; 3231 3232 ASSERT(zio->io_error == 0); 3233 3234 arc_cksum_verify(buf); 3235 3236 exists = buf_hash_insert(hdr, &hash_lock); 3237 if (exists) { 3238 /* 3239 * This can only happen if we overwrite for 3240 * sync-to-convergence, because we remove 3241 * buffers from the hash table when we arc_free(). 3242 */ 3243 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 3244 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 3245 panic("bad overwrite, hdr=%p exists=%p", 3246 (void *)hdr, (void *)exists); 3247 ASSERT(refcount_is_zero(&exists->b_refcnt)); 3248 arc_change_state(arc_anon, exists, hash_lock); 3249 mutex_exit(hash_lock); 3250 arc_hdr_destroy(exists); 3251 exists = buf_hash_insert(hdr, &hash_lock); 3252 ASSERT3P(exists, ==, NULL); 3253 } else { 3254 /* Dedup */ 3255 ASSERT(hdr->b_datacnt == 1); 3256 ASSERT(hdr->b_state == arc_anon); 3257 ASSERT(BP_GET_DEDUP(zio->io_bp)); 3258 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 3259 } 3260 } 3261 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3262 /* if it's not anon, we are doing a scrub */ 3263 if (!exists && hdr->b_state == arc_anon) 3264 arc_access(hdr, hash_lock); 3265 mutex_exit(hash_lock); 3266 } else { 3267 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 3268 } 3269 3270 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 3271 callback->awcb_done(zio, buf, callback->awcb_private); 3272 3273 kmem_free(callback, sizeof (arc_write_callback_t)); 3274 } 3275 3276 zio_t * 3277 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 3278 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, 3279 arc_done_func_t *ready, arc_done_func_t *done, void *private, 3280 int priority, int zio_flags, const zbookmark_t *zb) 3281 { 3282 arc_buf_hdr_t *hdr = buf->b_hdr; 3283 arc_write_callback_t *callback; 3284 zio_t *zio; 3285 3286 ASSERT(ready != NULL); 3287 ASSERT(done != NULL); 3288 ASSERT(!HDR_IO_ERROR(hdr)); 3289 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 3290 ASSERT(hdr->b_acb == NULL); 3291 if (l2arc) 3292 hdr->b_flags |= ARC_L2CACHE; 3293 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 3294 callback->awcb_ready = ready; 3295 callback->awcb_done = done; 3296 callback->awcb_private = private; 3297 callback->awcb_buf = buf; 3298 3299 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, 3300 arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); 3301 3302 return (zio); 3303 } 3304 3305 static int 3306 arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) 3307 { 3308 #ifdef _KERNEL 3309 uint64_t available_memory = ptob(freemem); 3310 static uint64_t page_load = 0; 3311 static uint64_t last_txg = 0; 3312 3313 #if defined(__i386) 3314 available_memory = 3315 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); 3316 #endif 3317 if (available_memory >= zfs_write_limit_max) 3318 return (0); 3319 3320 if (txg > last_txg) { 3321 last_txg = txg; 3322 page_load = 0; 3323 } 3324 /* 3325 * If we are in pageout, we know that memory is already tight, 3326 * the arc is already going to be evicting, so we just want to 3327 * continue to let page writes occur as quickly as possible. 3328 */ 3329 if (curproc == proc_pageout) { 3330 if (page_load > MAX(ptob(minfree), available_memory) / 4) 3331 return (ERESTART); 3332 /* Note: reserve is inflated, so we deflate */ 3333 page_load += reserve / 8; 3334 return (0); 3335 } else if (page_load > 0 && arc_reclaim_needed()) { 3336 /* memory is low, delay before restarting */ 3337 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3338 return (EAGAIN); 3339 } 3340 page_load = 0; 3341 3342 if (arc_size > arc_c_min) { 3343 uint64_t evictable_memory = 3344 arc_mru->arcs_lsize[ARC_BUFC_DATA] + 3345 arc_mru->arcs_lsize[ARC_BUFC_METADATA] + 3346 arc_mfu->arcs_lsize[ARC_BUFC_DATA] + 3347 arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; 3348 available_memory += MIN(evictable_memory, arc_size - arc_c_min); 3349 } 3350 3351 if (inflight_data > available_memory / 4) { 3352 ARCSTAT_INCR(arcstat_memory_throttle_count, 1); 3353 return (ERESTART); 3354 } 3355 #endif 3356 return (0); 3357 } 3358 3359 void 3360 arc_tempreserve_clear(uint64_t reserve) 3361 { 3362 atomic_add_64(&arc_tempreserve, -reserve); 3363 ASSERT((int64_t)arc_tempreserve >= 0); 3364 } 3365 3366 int 3367 arc_tempreserve_space(uint64_t reserve, uint64_t txg) 3368 { 3369 int error; 3370 uint64_t anon_size; 3371 3372 #ifdef ZFS_DEBUG 3373 /* 3374 * Once in a while, fail for no reason. Everything should cope. 3375 */ 3376 if (spa_get_random(10000) == 0) { 3377 dprintf("forcing random failure\n"); 3378 return (ERESTART); 3379 } 3380 #endif 3381 if (reserve > arc_c/4 && !arc_no_grow) 3382 arc_c = MIN(arc_c_max, reserve * 4); 3383 if (reserve > arc_c) 3384 return (ENOMEM); 3385 3386 /* 3387 * Don't count loaned bufs as in flight dirty data to prevent long 3388 * network delays from blocking transactions that are ready to be 3389 * assigned to a txg. 3390 */ 3391 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); 3392 3393 /* 3394 * Writes will, almost always, require additional memory allocations 3395 * in order to compress/encrypt/etc the data. We therefor need to 3396 * make sure that there is sufficient available memory for this. 3397 */ 3398 if (error = arc_memory_throttle(reserve, anon_size, txg)) 3399 return (error); 3400 3401 /* 3402 * Throttle writes when the amount of dirty data in the cache 3403 * gets too large. We try to keep the cache less than half full 3404 * of dirty blocks so that our sync times don't grow too large. 3405 * Note: if two requests come in concurrently, we might let them 3406 * both succeed, when one of them should fail. Not a huge deal. 3407 */ 3408 3409 if (reserve + arc_tempreserve + anon_size > arc_c / 2 && 3410 anon_size > arc_c / 4) { 3411 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 3412 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 3413 arc_tempreserve>>10, 3414 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, 3415 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, 3416 reserve>>10, arc_c>>10); 3417 return (ERESTART); 3418 } 3419 atomic_add_64(&arc_tempreserve, reserve); 3420 return (0); 3421 } 3422 3423 void 3424 arc_init(void) 3425 { 3426 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 3427 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 3428 3429 /* Convert seconds to clock ticks */ 3430 arc_min_prefetch_lifespan = 1 * hz; 3431 3432 /* Start out with 1/8 of all memory */ 3433 arc_c = physmem * PAGESIZE / 8; 3434 3435 #ifdef _KERNEL 3436 /* 3437 * On architectures where the physical memory can be larger 3438 * than the addressable space (intel in 32-bit mode), we may 3439 * need to limit the cache to 1/8 of VM size. 3440 */ 3441 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 3442 #endif 3443 3444 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 3445 arc_c_min = MAX(arc_c / 4, 64<<20); 3446 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 3447 if (arc_c * 8 >= 1<<30) 3448 arc_c_max = (arc_c * 8) - (1<<30); 3449 else 3450 arc_c_max = arc_c_min; 3451 arc_c_max = MAX(arc_c * 6, arc_c_max); 3452 3453 /* 3454 * Allow the tunables to override our calculations if they are 3455 * reasonable (ie. over 64MB) 3456 */ 3457 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) 3458 arc_c_max = zfs_arc_max; 3459 if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) 3460 arc_c_min = zfs_arc_min; 3461 3462 arc_c = arc_c_max; 3463 arc_p = (arc_c >> 1); 3464 3465 /* limit meta-data to 1/4 of the arc capacity */ 3466 arc_meta_limit = arc_c_max / 4; 3467 3468 /* Allow the tunable to override if it is reasonable */ 3469 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) 3470 arc_meta_limit = zfs_arc_meta_limit; 3471 3472 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) 3473 arc_c_min = arc_meta_limit / 2; 3474 3475 if (zfs_arc_grow_retry > 0) 3476 arc_grow_retry = zfs_arc_grow_retry; 3477 3478 if (zfs_arc_shrink_shift > 0) 3479 arc_shrink_shift = zfs_arc_shrink_shift; 3480 3481 if (zfs_arc_p_min_shift > 0) 3482 arc_p_min_shift = zfs_arc_p_min_shift; 3483 3484 /* if kmem_flags are set, lets try to use less memory */ 3485 if (kmem_debugging()) 3486 arc_c = arc_c / 2; 3487 if (arc_c < arc_c_min) 3488 arc_c = arc_c_min; 3489 3490 arc_anon = &ARC_anon; 3491 arc_mru = &ARC_mru; 3492 arc_mru_ghost = &ARC_mru_ghost; 3493 arc_mfu = &ARC_mfu; 3494 arc_mfu_ghost = &ARC_mfu_ghost; 3495 arc_l2c_only = &ARC_l2c_only; 3496 arc_size = 0; 3497 3498 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3499 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3500 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3501 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3502 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3503 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); 3504 3505 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], 3506 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3507 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], 3508 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3509 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], 3510 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3511 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], 3512 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3513 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], 3514 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3515 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], 3516 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3517 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], 3518 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3519 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], 3520 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3521 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], 3522 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3523 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], 3524 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); 3525 3526 buf_init(); 3527 3528 arc_thread_exit = 0; 3529 arc_eviction_list = NULL; 3530 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 3531 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); 3532 3533 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 3534 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 3535 3536 if (arc_ksp != NULL) { 3537 arc_ksp->ks_data = &arc_stats; 3538 kstat_install(arc_ksp); 3539 } 3540 3541 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 3542 TS_RUN, minclsyspri); 3543 3544 arc_dead = FALSE; 3545 arc_warm = B_FALSE; 3546 3547 if (zfs_write_limit_max == 0) 3548 zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; 3549 else 3550 zfs_write_limit_shift = 0; 3551 mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); 3552 } 3553 3554 void 3555 arc_fini(void) 3556 { 3557 mutex_enter(&arc_reclaim_thr_lock); 3558 arc_thread_exit = 1; 3559 while (arc_thread_exit != 0) 3560 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 3561 mutex_exit(&arc_reclaim_thr_lock); 3562 3563 arc_flush(NULL); 3564 3565 arc_dead = TRUE; 3566 3567 if (arc_ksp != NULL) { 3568 kstat_delete(arc_ksp); 3569 arc_ksp = NULL; 3570 } 3571 3572 mutex_destroy(&arc_eviction_mtx); 3573 mutex_destroy(&arc_reclaim_thr_lock); 3574 cv_destroy(&arc_reclaim_thr_cv); 3575 3576 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); 3577 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 3578 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); 3579 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 3580 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); 3581 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 3582 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); 3583 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 3584 3585 mutex_destroy(&arc_anon->arcs_mtx); 3586 mutex_destroy(&arc_mru->arcs_mtx); 3587 mutex_destroy(&arc_mru_ghost->arcs_mtx); 3588 mutex_destroy(&arc_mfu->arcs_mtx); 3589 mutex_destroy(&arc_mfu_ghost->arcs_mtx); 3590 mutex_destroy(&arc_l2c_only->arcs_mtx); 3591 3592 mutex_destroy(&zfs_write_limit_lock); 3593 3594 buf_fini(); 3595 3596 ASSERT(arc_loaned_bytes == 0); 3597 } 3598 3599 /* 3600 * Level 2 ARC 3601 * 3602 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 3603 * It uses dedicated storage devices to hold cached data, which are populated 3604 * using large infrequent writes. The main role of this cache is to boost 3605 * the performance of random read workloads. The intended L2ARC devices 3606 * include short-stroked disks, solid state disks, and other media with 3607 * substantially faster read latency than disk. 3608 * 3609 * +-----------------------+ 3610 * | ARC | 3611 * +-----------------------+ 3612 * | ^ ^ 3613 * | | | 3614 * l2arc_feed_thread() arc_read() 3615 * | | | 3616 * | l2arc read | 3617 * V | | 3618 * +---------------+ | 3619 * | L2ARC | | 3620 * +---------------+ | 3621 * | ^ | 3622 * l2arc_write() | | 3623 * | | | 3624 * V | | 3625 * +-------+ +-------+ 3626 * | vdev | | vdev | 3627 * | cache | | cache | 3628 * +-------+ +-------+ 3629 * +=========+ .-----. 3630 * : L2ARC : |-_____-| 3631 * : devices : | Disks | 3632 * +=========+ `-_____-' 3633 * 3634 * Read requests are satisfied from the following sources, in order: 3635 * 3636 * 1) ARC 3637 * 2) vdev cache of L2ARC devices 3638 * 3) L2ARC devices 3639 * 4) vdev cache of disks 3640 * 5) disks 3641 * 3642 * Some L2ARC device types exhibit extremely slow write performance. 3643 * To accommodate for this there are some significant differences between 3644 * the L2ARC and traditional cache design: 3645 * 3646 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 3647 * the ARC behave as usual, freeing buffers and placing headers on ghost 3648 * lists. The ARC does not send buffers to the L2ARC during eviction as 3649 * this would add inflated write latencies for all ARC memory pressure. 3650 * 3651 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 3652 * It does this by periodically scanning buffers from the eviction-end of 3653 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 3654 * not already there. It scans until a headroom of buffers is satisfied, 3655 * which itself is a buffer for ARC eviction. The thread that does this is 3656 * l2arc_feed_thread(), illustrated below; example sizes are included to 3657 * provide a better sense of ratio than this diagram: 3658 * 3659 * head --> tail 3660 * +---------------------+----------+ 3661 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 3662 * +---------------------+----------+ | o L2ARC eligible 3663 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 3664 * +---------------------+----------+ | 3665 * 15.9 Gbytes ^ 32 Mbytes | 3666 * headroom | 3667 * l2arc_feed_thread() 3668 * | 3669 * l2arc write hand <--[oooo]--' 3670 * | 8 Mbyte 3671 * | write max 3672 * V 3673 * +==============================+ 3674 * L2ARC dev |####|#|###|###| |####| ... | 3675 * +==============================+ 3676 * 32 Gbytes 3677 * 3678 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 3679 * evicted, then the L2ARC has cached a buffer much sooner than it probably 3680 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 3681 * safe to say that this is an uncommon case, since buffers at the end of 3682 * the ARC lists have moved there due to inactivity. 3683 * 3684 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 3685 * then the L2ARC simply misses copying some buffers. This serves as a 3686 * pressure valve to prevent heavy read workloads from both stalling the ARC 3687 * with waits and clogging the L2ARC with writes. This also helps prevent 3688 * the potential for the L2ARC to churn if it attempts to cache content too 3689 * quickly, such as during backups of the entire pool. 3690 * 3691 * 5. After system boot and before the ARC has filled main memory, there are 3692 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 3693 * lists can remain mostly static. Instead of searching from tail of these 3694 * lists as pictured, the l2arc_feed_thread() will search from the list heads 3695 * for eligible buffers, greatly increasing its chance of finding them. 3696 * 3697 * The L2ARC device write speed is also boosted during this time so that 3698 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 3699 * there are no L2ARC reads, and no fear of degrading read performance 3700 * through increased writes. 3701 * 3702 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 3703 * the vdev queue can aggregate them into larger and fewer writes. Each 3704 * device is written to in a rotor fashion, sweeping writes through 3705 * available space then repeating. 3706 * 3707 * 7. The L2ARC does not store dirty content. It never needs to flush 3708 * write buffers back to disk based storage. 3709 * 3710 * 8. If an ARC buffer is written (and dirtied) which also exists in the 3711 * L2ARC, the now stale L2ARC buffer is immediately dropped. 3712 * 3713 * The performance of the L2ARC can be tweaked by a number of tunables, which 3714 * may be necessary for different workloads: 3715 * 3716 * l2arc_write_max max write bytes per interval 3717 * l2arc_write_boost extra write bytes during device warmup 3718 * l2arc_noprefetch skip caching prefetched buffers 3719 * l2arc_headroom number of max device writes to precache 3720 * l2arc_feed_secs seconds between L2ARC writing 3721 * 3722 * Tunables may be removed or added as future performance improvements are 3723 * integrated, and also may become zpool properties. 3724 * 3725 * There are three key functions that control how the L2ARC warms up: 3726 * 3727 * l2arc_write_eligible() check if a buffer is eligible to cache 3728 * l2arc_write_size() calculate how much to write 3729 * l2arc_write_interval() calculate sleep delay between writes 3730 * 3731 * These three functions determine what to write, how much, and how quickly 3732 * to send writes. 3733 */ 3734 3735 static boolean_t 3736 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) 3737 { 3738 /* 3739 * A buffer is *not* eligible for the L2ARC if it: 3740 * 1. belongs to a different spa. 3741 * 2. is already cached on the L2ARC. 3742 * 3. has an I/O in progress (it may be an incomplete read). 3743 * 4. is flagged not eligible (zfs property). 3744 */ 3745 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || 3746 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) 3747 return (B_FALSE); 3748 3749 return (B_TRUE); 3750 } 3751 3752 static uint64_t 3753 l2arc_write_size(l2arc_dev_t *dev) 3754 { 3755 uint64_t size; 3756 3757 size = dev->l2ad_write; 3758 3759 if (arc_warm == B_FALSE) 3760 size += dev->l2ad_boost; 3761 3762 return (size); 3763 3764 } 3765 3766 static clock_t 3767 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 3768 { 3769 clock_t interval, next, now; 3770 3771 /* 3772 * If the ARC lists are busy, increase our write rate; if the 3773 * lists are stale, idle back. This is achieved by checking 3774 * how much we previously wrote - if it was more than half of 3775 * what we wanted, schedule the next write much sooner. 3776 */ 3777 if (l2arc_feed_again && wrote > (wanted / 2)) 3778 interval = (hz * l2arc_feed_min_ms) / 1000; 3779 else 3780 interval = hz * l2arc_feed_secs; 3781 3782 now = ddi_get_lbolt(); 3783 next = MAX(now, MIN(now + interval, began + interval)); 3784 3785 return (next); 3786 } 3787 3788 static void 3789 l2arc_hdr_stat_add(void) 3790 { 3791 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); 3792 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); 3793 } 3794 3795 static void 3796 l2arc_hdr_stat_remove(void) 3797 { 3798 ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); 3799 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); 3800 } 3801 3802 /* 3803 * Cycle through L2ARC devices. This is how L2ARC load balances. 3804 * If a device is returned, this also returns holding the spa config lock. 3805 */ 3806 static l2arc_dev_t * 3807 l2arc_dev_get_next(void) 3808 { 3809 l2arc_dev_t *first, *next = NULL; 3810 3811 /* 3812 * Lock out the removal of spas (spa_namespace_lock), then removal 3813 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 3814 * both locks will be dropped and a spa config lock held instead. 3815 */ 3816 mutex_enter(&spa_namespace_lock); 3817 mutex_enter(&l2arc_dev_mtx); 3818 3819 /* if there are no vdevs, there is nothing to do */ 3820 if (l2arc_ndev == 0) 3821 goto out; 3822 3823 first = NULL; 3824 next = l2arc_dev_last; 3825 do { 3826 /* loop around the list looking for a non-faulted vdev */ 3827 if (next == NULL) { 3828 next = list_head(l2arc_dev_list); 3829 } else { 3830 next = list_next(l2arc_dev_list, next); 3831 if (next == NULL) 3832 next = list_head(l2arc_dev_list); 3833 } 3834 3835 /* if we have come back to the start, bail out */ 3836 if (first == NULL) 3837 first = next; 3838 else if (next == first) 3839 break; 3840 3841 } while (vdev_is_dead(next->l2ad_vdev)); 3842 3843 /* if we were unable to find any usable vdevs, return NULL */ 3844 if (vdev_is_dead(next->l2ad_vdev)) 3845 next = NULL; 3846 3847 l2arc_dev_last = next; 3848 3849 out: 3850 mutex_exit(&l2arc_dev_mtx); 3851 3852 /* 3853 * Grab the config lock to prevent the 'next' device from being 3854 * removed while we are writing to it. 3855 */ 3856 if (next != NULL) 3857 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 3858 mutex_exit(&spa_namespace_lock); 3859 3860 return (next); 3861 } 3862 3863 /* 3864 * Free buffers that were tagged for destruction. 3865 */ 3866 static void 3867 l2arc_do_free_on_write() 3868 { 3869 list_t *buflist; 3870 l2arc_data_free_t *df, *df_prev; 3871 3872 mutex_enter(&l2arc_free_on_write_mtx); 3873 buflist = l2arc_free_on_write; 3874 3875 for (df = list_tail(buflist); df; df = df_prev) { 3876 df_prev = list_prev(buflist, df); 3877 ASSERT(df->l2df_data != NULL); 3878 ASSERT(df->l2df_func != NULL); 3879 df->l2df_func(df->l2df_data, df->l2df_size); 3880 list_remove(buflist, df); 3881 kmem_free(df, sizeof (l2arc_data_free_t)); 3882 } 3883 3884 mutex_exit(&l2arc_free_on_write_mtx); 3885 } 3886 3887 /* 3888 * A write to a cache device has completed. Update all headers to allow 3889 * reads from these buffers to begin. 3890 */ 3891 static void 3892 l2arc_write_done(zio_t *zio) 3893 { 3894 l2arc_write_callback_t *cb; 3895 l2arc_dev_t *dev; 3896 list_t *buflist; 3897 arc_buf_hdr_t *head, *ab, *ab_prev; 3898 l2arc_buf_hdr_t *abl2; 3899 kmutex_t *hash_lock; 3900 3901 cb = zio->io_private; 3902 ASSERT(cb != NULL); 3903 dev = cb->l2wcb_dev; 3904 ASSERT(dev != NULL); 3905 head = cb->l2wcb_head; 3906 ASSERT(head != NULL); 3907 buflist = dev->l2ad_buflist; 3908 ASSERT(buflist != NULL); 3909 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 3910 l2arc_write_callback_t *, cb); 3911 3912 if (zio->io_error != 0) 3913 ARCSTAT_BUMP(arcstat_l2_writes_error); 3914 3915 mutex_enter(&l2arc_buflist_mtx); 3916 3917 /* 3918 * All writes completed, or an error was hit. 3919 */ 3920 for (ab = list_prev(buflist, head); ab; ab = ab_prev) { 3921 ab_prev = list_prev(buflist, ab); 3922 3923 hash_lock = HDR_LOCK(ab); 3924 if (!mutex_tryenter(hash_lock)) { 3925 /* 3926 * This buffer misses out. It may be in a stage 3927 * of eviction. Its ARC_L2_WRITING flag will be 3928 * left set, denying reads to this buffer. 3929 */ 3930 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); 3931 continue; 3932 } 3933 3934 if (zio->io_error != 0) { 3935 /* 3936 * Error - drop L2ARC entry. 3937 */ 3938 list_remove(buflist, ab); 3939 abl2 = ab->b_l2hdr; 3940 ab->b_l2hdr = NULL; 3941 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 3942 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 3943 } 3944 3945 /* 3946 * Allow ARC to begin reads to this L2ARC entry. 3947 */ 3948 ab->b_flags &= ~ARC_L2_WRITING; 3949 3950 mutex_exit(hash_lock); 3951 } 3952 3953 atomic_inc_64(&l2arc_writes_done); 3954 list_remove(buflist, head); 3955 kmem_cache_free(hdr_cache, head); 3956 mutex_exit(&l2arc_buflist_mtx); 3957 3958 l2arc_do_free_on_write(); 3959 3960 kmem_free(cb, sizeof (l2arc_write_callback_t)); 3961 } 3962 3963 /* 3964 * A read to a cache device completed. Validate buffer contents before 3965 * handing over to the regular ARC routines. 3966 */ 3967 static void 3968 l2arc_read_done(zio_t *zio) 3969 { 3970 l2arc_read_callback_t *cb; 3971 arc_buf_hdr_t *hdr; 3972 arc_buf_t *buf; 3973 kmutex_t *hash_lock; 3974 int equal; 3975 3976 ASSERT(zio->io_vd != NULL); 3977 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 3978 3979 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 3980 3981 cb = zio->io_private; 3982 ASSERT(cb != NULL); 3983 buf = cb->l2rcb_buf; 3984 ASSERT(buf != NULL); 3985 3986 hash_lock = HDR_LOCK(buf->b_hdr); 3987 mutex_enter(hash_lock); 3988 hdr = buf->b_hdr; 3989 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3990 3991 /* 3992 * Check this survived the L2ARC journey. 3993 */ 3994 equal = arc_cksum_equal(buf); 3995 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { 3996 mutex_exit(hash_lock); 3997 zio->io_private = buf; 3998 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 3999 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 4000 arc_read_done(zio); 4001 } else { 4002 mutex_exit(hash_lock); 4003 /* 4004 * Buffer didn't survive caching. Increment stats and 4005 * reissue to the original storage device. 4006 */ 4007 if (zio->io_error != 0) { 4008 ARCSTAT_BUMP(arcstat_l2_io_error); 4009 } else { 4010 zio->io_error = EIO; 4011 } 4012 if (!equal) 4013 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 4014 4015 /* 4016 * If there's no waiter, issue an async i/o to the primary 4017 * storage now. If there *is* a waiter, the caller must 4018 * issue the i/o in a context where it's OK to block. 4019 */ 4020 if (zio->io_waiter == NULL) { 4021 zio_t *pio = zio_unique_parent(zio); 4022 4023 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 4024 4025 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, 4026 buf->b_data, zio->io_size, arc_read_done, buf, 4027 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); 4028 } 4029 } 4030 4031 kmem_free(cb, sizeof (l2arc_read_callback_t)); 4032 } 4033 4034 /* 4035 * This is the list priority from which the L2ARC will search for pages to 4036 * cache. This is used within loops (0..3) to cycle through lists in the 4037 * desired order. This order can have a significant effect on cache 4038 * performance. 4039 * 4040 * Currently the metadata lists are hit first, MFU then MRU, followed by 4041 * the data lists. This function returns a locked list, and also returns 4042 * the lock pointer. 4043 */ 4044 static list_t * 4045 l2arc_list_locked(int list_num, kmutex_t **lock) 4046 { 4047 list_t *list; 4048 4049 ASSERT(list_num >= 0 && list_num <= 3); 4050 4051 switch (list_num) { 4052 case 0: 4053 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; 4054 *lock = &arc_mfu->arcs_mtx; 4055 break; 4056 case 1: 4057 list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; 4058 *lock = &arc_mru->arcs_mtx; 4059 break; 4060 case 2: 4061 list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; 4062 *lock = &arc_mfu->arcs_mtx; 4063 break; 4064 case 3: 4065 list = &arc_mru->arcs_list[ARC_BUFC_DATA]; 4066 *lock = &arc_mru->arcs_mtx; 4067 break; 4068 } 4069 4070 ASSERT(!(MUTEX_HELD(*lock))); 4071 mutex_enter(*lock); 4072 return (list); 4073 } 4074 4075 /* 4076 * Evict buffers from the device write hand to the distance specified in 4077 * bytes. This distance may span populated buffers, it may span nothing. 4078 * This is clearing a region on the L2ARC device ready for writing. 4079 * If the 'all' boolean is set, every buffer is evicted. 4080 */ 4081 static void 4082 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 4083 { 4084 list_t *buflist; 4085 l2arc_buf_hdr_t *abl2; 4086 arc_buf_hdr_t *ab, *ab_prev; 4087 kmutex_t *hash_lock; 4088 uint64_t taddr; 4089 4090 buflist = dev->l2ad_buflist; 4091 4092 if (buflist == NULL) 4093 return; 4094 4095 if (!all && dev->l2ad_first) { 4096 /* 4097 * This is the first sweep through the device. There is 4098 * nothing to evict. 4099 */ 4100 return; 4101 } 4102 4103 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { 4104 /* 4105 * When nearing the end of the device, evict to the end 4106 * before the device write hand jumps to the start. 4107 */ 4108 taddr = dev->l2ad_end; 4109 } else { 4110 taddr = dev->l2ad_hand + distance; 4111 } 4112 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 4113 uint64_t, taddr, boolean_t, all); 4114 4115 top: 4116 mutex_enter(&l2arc_buflist_mtx); 4117 for (ab = list_tail(buflist); ab; ab = ab_prev) { 4118 ab_prev = list_prev(buflist, ab); 4119 4120 hash_lock = HDR_LOCK(ab); 4121 if (!mutex_tryenter(hash_lock)) { 4122 /* 4123 * Missed the hash lock. Retry. 4124 */ 4125 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 4126 mutex_exit(&l2arc_buflist_mtx); 4127 mutex_enter(hash_lock); 4128 mutex_exit(hash_lock); 4129 goto top; 4130 } 4131 4132 if (HDR_L2_WRITE_HEAD(ab)) { 4133 /* 4134 * We hit a write head node. Leave it for 4135 * l2arc_write_done(). 4136 */ 4137 list_remove(buflist, ab); 4138 mutex_exit(hash_lock); 4139 continue; 4140 } 4141 4142 if (!all && ab->b_l2hdr != NULL && 4143 (ab->b_l2hdr->b_daddr > taddr || 4144 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { 4145 /* 4146 * We've evicted to the target address, 4147 * or the end of the device. 4148 */ 4149 mutex_exit(hash_lock); 4150 break; 4151 } 4152 4153 if (HDR_FREE_IN_PROGRESS(ab)) { 4154 /* 4155 * Already on the path to destruction. 4156 */ 4157 mutex_exit(hash_lock); 4158 continue; 4159 } 4160 4161 if (ab->b_state == arc_l2c_only) { 4162 ASSERT(!HDR_L2_READING(ab)); 4163 /* 4164 * This doesn't exist in the ARC. Destroy. 4165 * arc_hdr_destroy() will call list_remove() 4166 * and decrement arcstat_l2_size. 4167 */ 4168 arc_change_state(arc_anon, ab, hash_lock); 4169 arc_hdr_destroy(ab); 4170 } else { 4171 /* 4172 * Invalidate issued or about to be issued 4173 * reads, since we may be about to write 4174 * over this location. 4175 */ 4176 if (HDR_L2_READING(ab)) { 4177 ARCSTAT_BUMP(arcstat_l2_evict_reading); 4178 ab->b_flags |= ARC_L2_EVICTED; 4179 } 4180 4181 /* 4182 * Tell ARC this no longer exists in L2ARC. 4183 */ 4184 if (ab->b_l2hdr != NULL) { 4185 abl2 = ab->b_l2hdr; 4186 ab->b_l2hdr = NULL; 4187 kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); 4188 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); 4189 } 4190 list_remove(buflist, ab); 4191 4192 /* 4193 * This may have been leftover after a 4194 * failed write. 4195 */ 4196 ab->b_flags &= ~ARC_L2_WRITING; 4197 } 4198 mutex_exit(hash_lock); 4199 } 4200 mutex_exit(&l2arc_buflist_mtx); 4201 4202 vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); 4203 dev->l2ad_evict = taddr; 4204 } 4205 4206 /* 4207 * Find and write ARC buffers to the L2ARC device. 4208 * 4209 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid 4210 * for reading until they have completed writing. 4211 */ 4212 static uint64_t 4213 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 4214 { 4215 arc_buf_hdr_t *ab, *ab_prev, *head; 4216 l2arc_buf_hdr_t *hdrl2; 4217 list_t *list; 4218 uint64_t passed_sz, write_sz, buf_sz, headroom; 4219 void *buf_data; 4220 kmutex_t *hash_lock, *list_lock; 4221 boolean_t have_lock, full; 4222 l2arc_write_callback_t *cb; 4223 zio_t *pio, *wzio; 4224 uint64_t guid = spa_guid(spa); 4225 4226 ASSERT(dev->l2ad_vdev != NULL); 4227 4228 pio = NULL; 4229 write_sz = 0; 4230 full = B_FALSE; 4231 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); 4232 head->b_flags |= ARC_L2_WRITE_HEAD; 4233 4234 /* 4235 * Copy buffers for L2ARC writing. 4236 */ 4237 mutex_enter(&l2arc_buflist_mtx); 4238 for (int try = 0; try <= 3; try++) { 4239 list = l2arc_list_locked(try, &list_lock); 4240 passed_sz = 0; 4241 4242 /* 4243 * L2ARC fast warmup. 4244 * 4245 * Until the ARC is warm and starts to evict, read from the 4246 * head of the ARC lists rather than the tail. 4247 */ 4248 headroom = target_sz * l2arc_headroom; 4249 if (arc_warm == B_FALSE) 4250 ab = list_head(list); 4251 else 4252 ab = list_tail(list); 4253 4254 for (; ab; ab = ab_prev) { 4255 if (arc_warm == B_FALSE) 4256 ab_prev = list_next(list, ab); 4257 else 4258 ab_prev = list_prev(list, ab); 4259 4260 hash_lock = HDR_LOCK(ab); 4261 have_lock = MUTEX_HELD(hash_lock); 4262 if (!have_lock && !mutex_tryenter(hash_lock)) { 4263 /* 4264 * Skip this buffer rather than waiting. 4265 */ 4266 continue; 4267 } 4268 4269 passed_sz += ab->b_size; 4270 if (passed_sz > headroom) { 4271 /* 4272 * Searched too far. 4273 */ 4274 mutex_exit(hash_lock); 4275 break; 4276 } 4277 4278 if (!l2arc_write_eligible(guid, ab)) { 4279 mutex_exit(hash_lock); 4280 continue; 4281 } 4282 4283 if ((write_sz + ab->b_size) > target_sz) { 4284 full = B_TRUE; 4285 mutex_exit(hash_lock); 4286 break; 4287 } 4288 4289 if (pio == NULL) { 4290 /* 4291 * Insert a dummy header on the buflist so 4292 * l2arc_write_done() can find where the 4293 * write buffers begin without searching. 4294 */ 4295 list_insert_head(dev->l2ad_buflist, head); 4296 4297 cb = kmem_alloc( 4298 sizeof (l2arc_write_callback_t), KM_SLEEP); 4299 cb->l2wcb_dev = dev; 4300 cb->l2wcb_head = head; 4301 pio = zio_root(spa, l2arc_write_done, cb, 4302 ZIO_FLAG_CANFAIL); 4303 } 4304 4305 /* 4306 * Create and add a new L2ARC header. 4307 */ 4308 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); 4309 hdrl2->b_dev = dev; 4310 hdrl2->b_daddr = dev->l2ad_hand; 4311 4312 ab->b_flags |= ARC_L2_WRITING; 4313 ab->b_l2hdr = hdrl2; 4314 list_insert_head(dev->l2ad_buflist, ab); 4315 buf_data = ab->b_buf->b_data; 4316 buf_sz = ab->b_size; 4317 4318 /* 4319 * Compute and store the buffer cksum before 4320 * writing. On debug the cksum is verified first. 4321 */ 4322 arc_cksum_verify(ab->b_buf); 4323 arc_cksum_compute(ab->b_buf, B_TRUE); 4324 4325 mutex_exit(hash_lock); 4326 4327 wzio = zio_write_phys(pio, dev->l2ad_vdev, 4328 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, 4329 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, 4330 ZIO_FLAG_CANFAIL, B_FALSE); 4331 4332 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 4333 zio_t *, wzio); 4334 (void) zio_nowait(wzio); 4335 4336 /* 4337 * Keep the clock hand suitably device-aligned. 4338 */ 4339 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); 4340 4341 write_sz += buf_sz; 4342 dev->l2ad_hand += buf_sz; 4343 } 4344 4345 mutex_exit(list_lock); 4346 4347 if (full == B_TRUE) 4348 break; 4349 } 4350 mutex_exit(&l2arc_buflist_mtx); 4351 4352 if (pio == NULL) { 4353 ASSERT3U(write_sz, ==, 0); 4354 kmem_cache_free(hdr_cache, head); 4355 return (0); 4356 } 4357 4358 ASSERT3U(write_sz, <=, target_sz); 4359 ARCSTAT_BUMP(arcstat_l2_writes_sent); 4360 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); 4361 ARCSTAT_INCR(arcstat_l2_size, write_sz); 4362 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); 4363 4364 /* 4365 * Bump device hand to the device start if it is approaching the end. 4366 * l2arc_evict() will already have evicted ahead for this case. 4367 */ 4368 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { 4369 vdev_space_update(dev->l2ad_vdev, 4370 dev->l2ad_end - dev->l2ad_hand, 0, 0); 4371 dev->l2ad_hand = dev->l2ad_start; 4372 dev->l2ad_evict = dev->l2ad_start; 4373 dev->l2ad_first = B_FALSE; 4374 } 4375 4376 dev->l2ad_writing = B_TRUE; 4377 (void) zio_wait(pio); 4378 dev->l2ad_writing = B_FALSE; 4379 4380 return (write_sz); 4381 } 4382 4383 /* 4384 * This thread feeds the L2ARC at regular intervals. This is the beating 4385 * heart of the L2ARC. 4386 */ 4387 static void 4388 l2arc_feed_thread(void) 4389 { 4390 callb_cpr_t cpr; 4391 l2arc_dev_t *dev; 4392 spa_t *spa; 4393 uint64_t size, wrote; 4394 clock_t begin, next = ddi_get_lbolt(); 4395 4396 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 4397 4398 mutex_enter(&l2arc_feed_thr_lock); 4399 4400 while (l2arc_thread_exit == 0) { 4401 CALLB_CPR_SAFE_BEGIN(&cpr); 4402 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, 4403 next); 4404 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 4405 next = ddi_get_lbolt() + hz; 4406 4407 /* 4408 * Quick check for L2ARC devices. 4409 */ 4410 mutex_enter(&l2arc_dev_mtx); 4411 if (l2arc_ndev == 0) { 4412 mutex_exit(&l2arc_dev_mtx); 4413 continue; 4414 } 4415 mutex_exit(&l2arc_dev_mtx); 4416 begin = ddi_get_lbolt(); 4417 4418 /* 4419 * This selects the next l2arc device to write to, and in 4420 * doing so the next spa to feed from: dev->l2ad_spa. This 4421 * will return NULL if there are now no l2arc devices or if 4422 * they are all faulted. 4423 * 4424 * If a device is returned, its spa's config lock is also 4425 * held to prevent device removal. l2arc_dev_get_next() 4426 * will grab and release l2arc_dev_mtx. 4427 */ 4428 if ((dev = l2arc_dev_get_next()) == NULL) 4429 continue; 4430 4431 spa = dev->l2ad_spa; 4432 ASSERT(spa != NULL); 4433 4434 /* 4435 * Avoid contributing to memory pressure. 4436 */ 4437 if (arc_reclaim_needed()) { 4438 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 4439 spa_config_exit(spa, SCL_L2ARC, dev); 4440 continue; 4441 } 4442 4443 ARCSTAT_BUMP(arcstat_l2_feeds); 4444 4445 size = l2arc_write_size(dev); 4446 4447 /* 4448 * Evict L2ARC buffers that will be overwritten. 4449 */ 4450 l2arc_evict(dev, size, B_FALSE); 4451 4452 /* 4453 * Write ARC buffers. 4454 */ 4455 wrote = l2arc_write_buffers(spa, dev, size); 4456 4457 /* 4458 * Calculate interval between writes. 4459 */ 4460 next = l2arc_write_interval(begin, size, wrote); 4461 spa_config_exit(spa, SCL_L2ARC, dev); 4462 } 4463 4464 l2arc_thread_exit = 0; 4465 cv_broadcast(&l2arc_feed_thr_cv); 4466 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 4467 thread_exit(); 4468 } 4469 4470 boolean_t 4471 l2arc_vdev_present(vdev_t *vd) 4472 { 4473 l2arc_dev_t *dev; 4474 4475 mutex_enter(&l2arc_dev_mtx); 4476 for (dev = list_head(l2arc_dev_list); dev != NULL; 4477 dev = list_next(l2arc_dev_list, dev)) { 4478 if (dev->l2ad_vdev == vd) 4479 break; 4480 } 4481 mutex_exit(&l2arc_dev_mtx); 4482 4483 return (dev != NULL); 4484 } 4485 4486 /* 4487 * Add a vdev for use by the L2ARC. By this point the spa has already 4488 * validated the vdev and opened it. 4489 */ 4490 void 4491 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 4492 { 4493 l2arc_dev_t *adddev; 4494 4495 ASSERT(!l2arc_vdev_present(vd)); 4496 4497 /* 4498 * Create a new l2arc device entry. 4499 */ 4500 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 4501 adddev->l2ad_spa = spa; 4502 adddev->l2ad_vdev = vd; 4503 adddev->l2ad_write = l2arc_write_max; 4504 adddev->l2ad_boost = l2arc_write_boost; 4505 adddev->l2ad_start = VDEV_LABEL_START_SIZE; 4506 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 4507 adddev->l2ad_hand = adddev->l2ad_start; 4508 adddev->l2ad_evict = adddev->l2ad_start; 4509 adddev->l2ad_first = B_TRUE; 4510 adddev->l2ad_writing = B_FALSE; 4511 ASSERT3U(adddev->l2ad_write, >, 0); 4512 4513 /* 4514 * This is a list of all ARC buffers that are still valid on the 4515 * device. 4516 */ 4517 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); 4518 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 4519 offsetof(arc_buf_hdr_t, b_l2node)); 4520 4521 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 4522 4523 /* 4524 * Add device to global list 4525 */ 4526 mutex_enter(&l2arc_dev_mtx); 4527 list_insert_head(l2arc_dev_list, adddev); 4528 atomic_inc_64(&l2arc_ndev); 4529 mutex_exit(&l2arc_dev_mtx); 4530 } 4531 4532 /* 4533 * Remove a vdev from the L2ARC. 4534 */ 4535 void 4536 l2arc_remove_vdev(vdev_t *vd) 4537 { 4538 l2arc_dev_t *dev, *nextdev, *remdev = NULL; 4539 4540 /* 4541 * Find the device by vdev 4542 */ 4543 mutex_enter(&l2arc_dev_mtx); 4544 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { 4545 nextdev = list_next(l2arc_dev_list, dev); 4546 if (vd == dev->l2ad_vdev) { 4547 remdev = dev; 4548 break; 4549 } 4550 } 4551 ASSERT(remdev != NULL); 4552 4553 /* 4554 * Remove device from global list 4555 */ 4556 list_remove(l2arc_dev_list, remdev); 4557 l2arc_dev_last = NULL; /* may have been invalidated */ 4558 atomic_dec_64(&l2arc_ndev); 4559 mutex_exit(&l2arc_dev_mtx); 4560 4561 /* 4562 * Clear all buflists and ARC references. L2ARC device flush. 4563 */ 4564 l2arc_evict(remdev, 0, B_TRUE); 4565 list_destroy(remdev->l2ad_buflist); 4566 kmem_free(remdev->l2ad_buflist, sizeof (list_t)); 4567 kmem_free(remdev, sizeof (l2arc_dev_t)); 4568 } 4569 4570 void 4571 l2arc_init(void) 4572 { 4573 l2arc_thread_exit = 0; 4574 l2arc_ndev = 0; 4575 l2arc_writes_sent = 0; 4576 l2arc_writes_done = 0; 4577 4578 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 4579 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 4580 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 4581 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); 4582 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 4583 4584 l2arc_dev_list = &L2ARC_dev_list; 4585 l2arc_free_on_write = &L2ARC_free_on_write; 4586 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 4587 offsetof(l2arc_dev_t, l2ad_node)); 4588 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 4589 offsetof(l2arc_data_free_t, l2df_list_node)); 4590 } 4591 4592 void 4593 l2arc_fini(void) 4594 { 4595 /* 4596 * This is called from dmu_fini(), which is called from spa_fini(); 4597 * Because of this, we can assume that all l2arc devices have 4598 * already been removed when the pools themselves were removed. 4599 */ 4600 4601 l2arc_do_free_on_write(); 4602 4603 mutex_destroy(&l2arc_feed_thr_lock); 4604 cv_destroy(&l2arc_feed_thr_cv); 4605 mutex_destroy(&l2arc_dev_mtx); 4606 mutex_destroy(&l2arc_buflist_mtx); 4607 mutex_destroy(&l2arc_free_on_write_mtx); 4608 4609 list_destroy(l2arc_dev_list); 4610 list_destroy(l2arc_free_on_write); 4611 } 4612 4613 void 4614 l2arc_start(void) 4615 { 4616 if (!(spa_mode_global & FWRITE)) 4617 return; 4618 4619 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 4620 TS_RUN, minclsyspri); 4621 } 4622 4623 void 4624 l2arc_stop(void) 4625 { 4626 if (!(spa_mode_global & FWRITE)) 4627 return; 4628 4629 mutex_enter(&l2arc_feed_thr_lock); 4630 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 4631 l2arc_thread_exit = 1; 4632 while (l2arc_thread_exit != 0) 4633 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 4634 mutex_exit(&l2arc_feed_thr_lock); 4635 } 4636