1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * DVA-based Adjustable Relpacement Cache 30 * 31 * While much of the theory of operation used here is 32 * based on the self-tuning, low overhead replacement cache 33 * presented by Megiddo and Modha at FAST 2003, there are some 34 * significant differences: 35 * 36 * 1. The Megiddo and Modha model assumes any page is evictable. 37 * Pages in its cache cannot be "locked" into memory. This makes 38 * the eviction algorithm simple: evict the last page in the list. 39 * This also make the performance characteristics easy to reason 40 * about. Our cache is not so simple. At any given moment, some 41 * subset of the blocks in the cache are un-evictable because we 42 * have handed out a reference to them. Blocks are only evictable 43 * when there are no external references active. This makes 44 * eviction far more problematic: we choose to evict the evictable 45 * blocks that are the "lowest" in the list. 46 * 47 * There are times when it is not possible to evict the requested 48 * space. In these circumstances we are unable to adjust the cache 49 * size. To prevent the cache growing unbounded at these times we 50 * implement a "cache throttle" that slowes the flow of new data 51 * into the cache until we can make space avaiable. 52 * 53 * 2. The Megiddo and Modha model assumes a fixed cache size. 54 * Pages are evicted when the cache is full and there is a cache 55 * miss. Our model has a variable sized cache. It grows with 56 * high use, but also tries to react to memory preasure from the 57 * operating system: decreasing its size when system memory is 58 * tight. 59 * 60 * 3. The Megiddo and Modha model assumes a fixed page size. All 61 * elements of the cache are therefor exactly the same size. So 62 * when adjusting the cache size following a cache miss, its simply 63 * a matter of choosing a single page to evict. In our model, we 64 * have variable sized cache blocks (rangeing from 512 bytes to 65 * 128K bytes). We therefor choose a set of blocks to evict to make 66 * space for a cache miss that approximates as closely as possible 67 * the space used by the new block. 68 * 69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 70 * by N. Megiddo & D. Modha, FAST 2003 71 */ 72 73 /* 74 * The locking model: 75 * 76 * A new reference to a cache buffer can be obtained in two 77 * ways: 1) via a hash table lookup using the DVA as a key, 78 * or 2) via one of the ARC lists. The arc_read() inerface 79 * uses method 1, while the internal arc algorithms for 80 * adjusting the cache use method 2. We therefor provide two 81 * types of locks: 1) the hash table lock array, and 2) the 82 * arc list locks. 83 * 84 * Buffers do not have their own mutexs, rather they rely on the 85 * hash table mutexs for the bulk of their protection (i.e. most 86 * fields in the arc_buf_hdr_t are protected by these mutexs). 87 * 88 * buf_hash_find() returns the appropriate mutex (held) when it 89 * locates the requested buffer in the hash table. It returns 90 * NULL for the mutex if the buffer was not in the table. 91 * 92 * buf_hash_remove() expects the appropriate hash mutex to be 93 * already held before it is invoked. 94 * 95 * Each arc state also has a mutex which is used to protect the 96 * buffer list associated with the state. When attempting to 97 * obtain a hash table lock while holding an arc list lock you 98 * must use: mutex_tryenter() to avoid deadlock. Also note that 99 * the "top" state mutex must be held before the "bot" state mutex. 100 * 101 * Arc buffers may have an associated eviction callback function. 102 * This function will be invoked prior to removing the buffer (e.g. 103 * in arc_do_user_evicts()). Note however that the data associated 104 * with the buffer may be evicted prior to the callback. The callback 105 * must be made with *no locks held* (to prevent deadlock). Additionally, 106 * the users of callbacks must ensure that their private data is 107 * protected from simultaneous callbacks from arc_buf_evict() 108 * and arc_do_user_evicts(). 109 * 110 * Note that the majority of the performance stats are manipulated 111 * with atomic operations. 112 */ 113 114 #include <sys/spa.h> 115 #include <sys/zio.h> 116 #include <sys/zfs_context.h> 117 #include <sys/arc.h> 118 #include <sys/refcount.h> 119 #ifdef _KERNEL 120 #include <sys/vmsystm.h> 121 #include <vm/anon.h> 122 #include <sys/fs/swapnode.h> 123 #include <sys/dnlc.h> 124 #endif 125 #include <sys/callb.h> 126 127 static kmutex_t arc_reclaim_thr_lock; 128 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ 129 static uint8_t arc_thread_exit; 130 131 #define ARC_REDUCE_DNLC_PERCENT 3 132 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; 133 134 typedef enum arc_reclaim_strategy { 135 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ 136 ARC_RECLAIM_CONS /* Conservative reclaim strategy */ 137 } arc_reclaim_strategy_t; 138 139 /* number of seconds before growing cache again */ 140 static int arc_grow_retry = 60; 141 142 static kmutex_t arc_reclaim_lock; 143 static int arc_dead; 144 145 /* 146 * Note that buffers can be on one of 5 states: 147 * ARC_anon - anonymous (discussed below) 148 * ARC_mru - recently used, currently cached 149 * ARC_mru_ghost - recentely used, no longer in cache 150 * ARC_mfu - frequently used, currently cached 151 * ARC_mfu_ghost - frequently used, no longer in cache 152 * When there are no active references to the buffer, they 153 * are linked onto one of the lists in arc. These are the 154 * only buffers that can be evicted or deleted. 155 * 156 * Anonymous buffers are buffers that are not associated with 157 * a DVA. These are buffers that hold dirty block copies 158 * before they are written to stable storage. By definition, 159 * they are "ref'd" and are considered part of arc_mru 160 * that cannot be freed. Generally, they will aquire a DVA 161 * as they are written and migrate onto the arc_mru list. 162 */ 163 164 typedef struct arc_state { 165 list_t list; /* linked list of evictable buffer in state */ 166 uint64_t lsize; /* total size of buffers in the linked list */ 167 uint64_t size; /* total size of all buffers in this state */ 168 uint64_t hits; 169 kmutex_t mtx; 170 } arc_state_t; 171 172 /* The 5 states: */ 173 static arc_state_t ARC_anon; 174 static arc_state_t ARC_mru; 175 static arc_state_t ARC_mru_ghost; 176 static arc_state_t ARC_mfu; 177 static arc_state_t ARC_mfu_ghost; 178 179 static struct arc { 180 arc_state_t *anon; 181 arc_state_t *mru; 182 arc_state_t *mru_ghost; 183 arc_state_t *mfu; 184 arc_state_t *mfu_ghost; 185 uint64_t size; /* Actual total arc size */ 186 uint64_t p; /* Target size (in bytes) of mru */ 187 uint64_t c; /* Target size of cache (in bytes) */ 188 uint64_t c_min; /* Minimum target cache size */ 189 uint64_t c_max; /* Maximum target cache size */ 190 191 /* performance stats */ 192 uint64_t hits; 193 uint64_t misses; 194 uint64_t deleted; 195 uint64_t skipped; 196 uint64_t hash_elements; 197 uint64_t hash_elements_max; 198 uint64_t hash_collisions; 199 uint64_t hash_chains; 200 uint32_t hash_chain_max; 201 202 int no_grow; /* Don't try to grow cache size */ 203 } arc; 204 205 static uint64_t arc_tempreserve; 206 207 typedef struct arc_callback arc_callback_t; 208 209 struct arc_callback { 210 arc_done_func_t *acb_done; 211 void *acb_private; 212 arc_byteswap_func_t *acb_byteswap; 213 arc_buf_t *acb_buf; 214 zio_t *acb_zio_dummy; 215 arc_callback_t *acb_next; 216 }; 217 218 struct arc_buf_hdr { 219 /* immutable */ 220 uint64_t b_size; 221 spa_t *b_spa; 222 223 /* protected by hash lock */ 224 dva_t b_dva; 225 uint64_t b_birth; 226 uint64_t b_cksum0; 227 228 arc_buf_hdr_t *b_hash_next; 229 arc_buf_t *b_buf; 230 uint32_t b_flags; 231 uint32_t b_datacnt; 232 233 kcondvar_t b_cv; 234 arc_callback_t *b_acb; 235 236 /* protected by arc state mutex */ 237 arc_state_t *b_state; 238 list_node_t b_arc_node; 239 240 /* updated atomically */ 241 clock_t b_arc_access; 242 243 /* self protecting */ 244 refcount_t b_refcnt; 245 }; 246 247 static arc_buf_t *arc_eviction_list; 248 static kmutex_t arc_eviction_mtx; 249 static void arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock); 250 251 #define GHOST_STATE(state) \ 252 ((state) == arc.mru_ghost || (state) == arc.mfu_ghost) 253 254 /* 255 * Private ARC flags. These flags are private ARC only flags that will show up 256 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can 257 * be passed in as arc_flags in things like arc_read. However, these flags 258 * should never be passed and should only be set by ARC code. When adding new 259 * public flags, make sure not to smash the private ones. 260 */ 261 262 #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ 263 #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ 264 #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ 265 #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ 266 #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ 267 268 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) 269 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) 270 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) 271 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) 272 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) 273 274 /* 275 * Hash table routines 276 */ 277 278 #define HT_LOCK_PAD 64 279 280 struct ht_lock { 281 kmutex_t ht_lock; 282 #ifdef _KERNEL 283 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; 284 #endif 285 }; 286 287 #define BUF_LOCKS 256 288 typedef struct buf_hash_table { 289 uint64_t ht_mask; 290 arc_buf_hdr_t **ht_table; 291 struct ht_lock ht_locks[BUF_LOCKS]; 292 } buf_hash_table_t; 293 294 static buf_hash_table_t buf_hash_table; 295 296 #define BUF_HASH_INDEX(spa, dva, birth) \ 297 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 298 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 299 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 300 #define HDR_LOCK(buf) \ 301 (BUF_HASH_LOCK(BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth))) 302 303 uint64_t zfs_crc64_table[256]; 304 305 static uint64_t 306 buf_hash(spa_t *spa, dva_t *dva, uint64_t birth) 307 { 308 uintptr_t spav = (uintptr_t)spa; 309 uint8_t *vdva = (uint8_t *)dva; 310 uint64_t crc = -1ULL; 311 int i; 312 313 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 314 315 for (i = 0; i < sizeof (dva_t); i++) 316 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; 317 318 crc ^= (spav>>8) ^ birth; 319 320 return (crc); 321 } 322 323 #define BUF_EMPTY(buf) \ 324 ((buf)->b_dva.dva_word[0] == 0 && \ 325 (buf)->b_dva.dva_word[1] == 0 && \ 326 (buf)->b_birth == 0) 327 328 #define BUF_EQUAL(spa, dva, birth, buf) \ 329 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 330 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 331 ((buf)->b_birth == birth) && ((buf)->b_spa == spa) 332 333 static arc_buf_hdr_t * 334 buf_hash_find(spa_t *spa, dva_t *dva, uint64_t birth, kmutex_t **lockp) 335 { 336 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 337 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 338 arc_buf_hdr_t *buf; 339 340 mutex_enter(hash_lock); 341 for (buf = buf_hash_table.ht_table[idx]; buf != NULL; 342 buf = buf->b_hash_next) { 343 if (BUF_EQUAL(spa, dva, birth, buf)) { 344 *lockp = hash_lock; 345 return (buf); 346 } 347 } 348 mutex_exit(hash_lock); 349 *lockp = NULL; 350 return (NULL); 351 } 352 353 /* 354 * Insert an entry into the hash table. If there is already an element 355 * equal to elem in the hash table, then the already existing element 356 * will be returned and the new element will not be inserted. 357 * Otherwise returns NULL. 358 */ 359 static arc_buf_hdr_t * 360 buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) 361 { 362 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 363 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 364 arc_buf_hdr_t *fbuf; 365 uint32_t max, i; 366 367 ASSERT(!HDR_IN_HASH_TABLE(buf)); 368 *lockp = hash_lock; 369 mutex_enter(hash_lock); 370 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; 371 fbuf = fbuf->b_hash_next, i++) { 372 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) 373 return (fbuf); 374 } 375 376 buf->b_hash_next = buf_hash_table.ht_table[idx]; 377 buf_hash_table.ht_table[idx] = buf; 378 buf->b_flags |= ARC_IN_HASH_TABLE; 379 380 /* collect some hash table performance data */ 381 if (i > 0) { 382 atomic_add_64(&arc.hash_collisions, 1); 383 if (i == 1) 384 atomic_add_64(&arc.hash_chains, 1); 385 } 386 while (i > (max = arc.hash_chain_max) && 387 max != atomic_cas_32(&arc.hash_chain_max, max, i)) { 388 continue; 389 } 390 atomic_add_64(&arc.hash_elements, 1); 391 if (arc.hash_elements > arc.hash_elements_max) 392 atomic_add_64(&arc.hash_elements_max, 1); 393 394 return (NULL); 395 } 396 397 static void 398 buf_hash_remove(arc_buf_hdr_t *buf) 399 { 400 arc_buf_hdr_t *fbuf, **bufp; 401 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); 402 403 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 404 ASSERT(HDR_IN_HASH_TABLE(buf)); 405 406 bufp = &buf_hash_table.ht_table[idx]; 407 while ((fbuf = *bufp) != buf) { 408 ASSERT(fbuf != NULL); 409 bufp = &fbuf->b_hash_next; 410 } 411 *bufp = buf->b_hash_next; 412 buf->b_hash_next = NULL; 413 buf->b_flags &= ~ARC_IN_HASH_TABLE; 414 415 /* collect some hash table performance data */ 416 atomic_add_64(&arc.hash_elements, -1); 417 if (buf_hash_table.ht_table[idx] && 418 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 419 atomic_add_64(&arc.hash_chains, -1); 420 } 421 422 /* 423 * Global data structures and functions for the buf kmem cache. 424 */ 425 static kmem_cache_t *hdr_cache; 426 static kmem_cache_t *buf_cache; 427 428 static void 429 buf_fini(void) 430 { 431 int i; 432 433 kmem_free(buf_hash_table.ht_table, 434 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 435 for (i = 0; i < BUF_LOCKS; i++) 436 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 437 kmem_cache_destroy(hdr_cache); 438 kmem_cache_destroy(buf_cache); 439 } 440 441 /* 442 * Constructor callback - called when the cache is empty 443 * and a new buf is requested. 444 */ 445 /* ARGSUSED */ 446 static int 447 hdr_cons(void *vbuf, void *unused, int kmflag) 448 { 449 arc_buf_hdr_t *buf = vbuf; 450 451 bzero(buf, sizeof (arc_buf_hdr_t)); 452 refcount_create(&buf->b_refcnt); 453 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); 454 return (0); 455 } 456 457 /* 458 * Destructor callback - called when a cached buf is 459 * no longer required. 460 */ 461 /* ARGSUSED */ 462 static void 463 hdr_dest(void *vbuf, void *unused) 464 { 465 arc_buf_hdr_t *buf = vbuf; 466 467 refcount_destroy(&buf->b_refcnt); 468 cv_destroy(&buf->b_cv); 469 } 470 471 static int arc_reclaim_needed(void); 472 void arc_kmem_reclaim(void); 473 474 /* 475 * Reclaim callback -- invoked when memory is low. 476 */ 477 /* ARGSUSED */ 478 static void 479 hdr_recl(void *unused) 480 { 481 dprintf("hdr_recl called\n"); 482 if (arc_reclaim_needed()) 483 arc_kmem_reclaim(); 484 } 485 486 static void 487 buf_init(void) 488 { 489 uint64_t *ct; 490 uint64_t hsize = 1ULL << 12; 491 int i, j; 492 493 /* 494 * The hash table is big enough to fill all of physical memory 495 * with an average 64K block size. The table will take up 496 * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). 497 */ 498 while (hsize * 65536 < physmem * PAGESIZE) 499 hsize <<= 1; 500 retry: 501 buf_hash_table.ht_mask = hsize - 1; 502 buf_hash_table.ht_table = 503 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 504 if (buf_hash_table.ht_table == NULL) { 505 ASSERT(hsize > (1ULL << 8)); 506 hsize >>= 1; 507 goto retry; 508 } 509 510 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 511 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); 512 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 513 0, NULL, NULL, NULL, NULL, NULL, 0); 514 515 for (i = 0; i < 256; i++) 516 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 517 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 518 519 for (i = 0; i < BUF_LOCKS; i++) { 520 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 521 NULL, MUTEX_DEFAULT, NULL); 522 } 523 } 524 525 #define ARC_MINTIME (hz>>4) /* 62 ms */ 526 527 static void 528 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 529 { 530 ASSERT(MUTEX_HELD(hash_lock)); 531 532 if ((refcount_add(&ab->b_refcnt, tag) == 1) && 533 (ab->b_state != arc.anon)) { 534 int delta = ab->b_size * ab->b_datacnt; 535 536 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 537 mutex_enter(&ab->b_state->mtx); 538 ASSERT(refcount_count(&ab->b_refcnt) > 0); 539 ASSERT(list_link_active(&ab->b_arc_node)); 540 list_remove(&ab->b_state->list, ab); 541 if (GHOST_STATE(ab->b_state)) { 542 ASSERT3U(ab->b_datacnt, ==, 0); 543 ASSERT3P(ab->b_buf, ==, NULL); 544 delta = ab->b_size; 545 } 546 ASSERT(delta > 0); 547 ASSERT3U(ab->b_state->lsize, >=, delta); 548 atomic_add_64(&ab->b_state->lsize, -delta); 549 mutex_exit(&ab->b_state->mtx); 550 } 551 } 552 553 static int 554 remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) 555 { 556 int cnt; 557 558 ASSERT(ab->b_state == arc.anon || MUTEX_HELD(hash_lock)); 559 ASSERT(!GHOST_STATE(ab->b_state)); 560 561 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && 562 (ab->b_state != arc.anon)) { 563 564 ASSERT(!MUTEX_HELD(&ab->b_state->mtx)); 565 mutex_enter(&ab->b_state->mtx); 566 ASSERT(!list_link_active(&ab->b_arc_node)); 567 list_insert_head(&ab->b_state->list, ab); 568 ASSERT(ab->b_datacnt > 0); 569 atomic_add_64(&ab->b_state->lsize, ab->b_size * ab->b_datacnt); 570 ASSERT3U(ab->b_state->size, >=, ab->b_state->lsize); 571 mutex_exit(&ab->b_state->mtx); 572 } 573 return (cnt); 574 } 575 576 /* 577 * Move the supplied buffer to the indicated state. The mutex 578 * for the buffer must be held by the caller. 579 */ 580 static void 581 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) 582 { 583 arc_state_t *old_state = ab->b_state; 584 int refcnt = refcount_count(&ab->b_refcnt); 585 int from_delta, to_delta; 586 587 ASSERT(MUTEX_HELD(hash_lock)); 588 ASSERT(new_state != old_state); 589 ASSERT(refcnt == 0 || ab->b_datacnt > 0); 590 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); 591 592 from_delta = to_delta = ab->b_datacnt * ab->b_size; 593 594 /* 595 * If this buffer is evictable, transfer it from the 596 * old state list to the new state list. 597 */ 598 if (refcnt == 0) { 599 if (old_state != arc.anon) { 600 int use_mutex = !MUTEX_HELD(&old_state->mtx); 601 602 if (use_mutex) 603 mutex_enter(&old_state->mtx); 604 605 ASSERT(list_link_active(&ab->b_arc_node)); 606 list_remove(&old_state->list, ab); 607 608 /* ghost elements have a ghost size */ 609 if (GHOST_STATE(old_state)) { 610 ASSERT(ab->b_datacnt == 0); 611 ASSERT(ab->b_buf == NULL); 612 from_delta = ab->b_size; 613 } 614 ASSERT3U(old_state->lsize, >=, from_delta); 615 atomic_add_64(&old_state->lsize, -from_delta); 616 617 if (use_mutex) 618 mutex_exit(&old_state->mtx); 619 } 620 if (new_state != arc.anon) { 621 int use_mutex = !MUTEX_HELD(&new_state->mtx); 622 623 if (use_mutex) 624 mutex_enter(&new_state->mtx); 625 626 list_insert_head(&new_state->list, ab); 627 628 /* ghost elements have a ghost size */ 629 if (GHOST_STATE(new_state)) { 630 ASSERT(ab->b_datacnt == 0); 631 ASSERT(ab->b_buf == NULL); 632 to_delta = ab->b_size; 633 } 634 atomic_add_64(&new_state->lsize, to_delta); 635 ASSERT3U(new_state->size + to_delta, >=, 636 new_state->lsize); 637 638 if (use_mutex) 639 mutex_exit(&new_state->mtx); 640 } 641 } 642 643 ASSERT(!BUF_EMPTY(ab)); 644 if (new_state == arc.anon && old_state != arc.anon) { 645 buf_hash_remove(ab); 646 } 647 648 /* 649 * If this buffer isn't being transferred to the MRU-top 650 * state, it's safe to clear its prefetch flag 651 */ 652 if ((new_state != arc.mru) && (new_state != arc.mru_ghost)) { 653 ab->b_flags &= ~ARC_PREFETCH; 654 } 655 656 /* adjust state sizes */ 657 if (to_delta) 658 atomic_add_64(&new_state->size, to_delta); 659 if (from_delta) { 660 ASSERT3U(old_state->size, >=, from_delta); 661 atomic_add_64(&old_state->size, -from_delta); 662 } 663 ab->b_state = new_state; 664 } 665 666 arc_buf_t * 667 arc_buf_alloc(spa_t *spa, int size, void *tag) 668 { 669 arc_buf_hdr_t *hdr; 670 arc_buf_t *buf; 671 672 ASSERT3U(size, >, 0); 673 hdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 674 ASSERT(BUF_EMPTY(hdr)); 675 hdr->b_size = size; 676 hdr->b_spa = spa; 677 hdr->b_state = arc.anon; 678 hdr->b_arc_access = 0; 679 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 680 buf->b_hdr = hdr; 681 buf->b_efunc = NULL; 682 buf->b_private = NULL; 683 buf->b_next = NULL; 684 buf->b_data = zio_buf_alloc(size); 685 hdr->b_buf = buf; 686 hdr->b_datacnt = 1; 687 hdr->b_flags = 0; 688 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 689 (void) refcount_add(&hdr->b_refcnt, tag); 690 691 atomic_add_64(&arc.size, size); 692 atomic_add_64(&arc.anon->size, size); 693 694 return (buf); 695 } 696 697 static void * 698 arc_data_copy(arc_buf_hdr_t *hdr, void *old_data) 699 { 700 void *new_data = zio_buf_alloc(hdr->b_size); 701 702 atomic_add_64(&arc.size, hdr->b_size); 703 bcopy(old_data, new_data, hdr->b_size); 704 atomic_add_64(&hdr->b_state->size, hdr->b_size); 705 if (list_link_active(&hdr->b_arc_node)) { 706 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 707 atomic_add_64(&hdr->b_state->lsize, hdr->b_size); 708 } 709 return (new_data); 710 } 711 712 void 713 arc_buf_add_ref(arc_buf_t *buf, void* tag) 714 { 715 arc_buf_hdr_t *hdr; 716 kmutex_t *hash_lock; 717 718 mutex_enter(&arc_eviction_mtx); 719 hdr = buf->b_hdr; 720 if (buf->b_data == NULL) { 721 /* 722 * This buffer is evicted. 723 */ 724 mutex_exit(&arc_eviction_mtx); 725 return; 726 } else { 727 /* 728 * Prevent this buffer from being evicted 729 * while we add a reference. 730 */ 731 buf->b_hdr = NULL; 732 } 733 mutex_exit(&arc_eviction_mtx); 734 735 ASSERT(hdr->b_state != arc.anon); 736 hash_lock = HDR_LOCK(hdr); 737 mutex_enter(hash_lock); 738 ASSERT(!GHOST_STATE(hdr->b_state)); 739 buf->b_hdr = hdr; 740 add_reference(hdr, hash_lock, tag); 741 arc_access_and_exit(hdr, hash_lock); 742 atomic_add_64(&arc.hits, 1); 743 } 744 745 static void 746 arc_buf_destroy(arc_buf_t *buf, boolean_t all) 747 { 748 arc_buf_t **bufp; 749 750 /* free up data associated with the buf */ 751 if (buf->b_data) { 752 arc_state_t *state = buf->b_hdr->b_state; 753 uint64_t size = buf->b_hdr->b_size; 754 755 zio_buf_free(buf->b_data, size); 756 atomic_add_64(&arc.size, -size); 757 if (list_link_active(&buf->b_hdr->b_arc_node)) { 758 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); 759 ASSERT(state != arc.anon); 760 ASSERT3U(state->lsize, >=, size); 761 atomic_add_64(&state->lsize, -size); 762 } 763 ASSERT3U(state->size, >=, size); 764 atomic_add_64(&state->size, -size); 765 buf->b_data = NULL; 766 ASSERT(buf->b_hdr->b_datacnt > 0); 767 buf->b_hdr->b_datacnt -= 1; 768 } 769 770 /* only remove the buf if requested */ 771 if (!all) 772 return; 773 774 /* remove the buf from the hdr list */ 775 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) 776 continue; 777 *bufp = buf->b_next; 778 779 ASSERT(buf->b_efunc == NULL); 780 781 /* clean up the buf */ 782 buf->b_hdr = NULL; 783 kmem_cache_free(buf_cache, buf); 784 } 785 786 static void 787 arc_hdr_destroy(arc_buf_hdr_t *hdr) 788 { 789 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 790 ASSERT3P(hdr->b_state, ==, arc.anon); 791 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 792 793 if (!BUF_EMPTY(hdr)) { 794 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 795 bzero(&hdr->b_dva, sizeof (dva_t)); 796 hdr->b_birth = 0; 797 hdr->b_cksum0 = 0; 798 } 799 while (hdr->b_buf) { 800 arc_buf_t *buf = hdr->b_buf; 801 802 if (buf->b_efunc) { 803 mutex_enter(&arc_eviction_mtx); 804 ASSERT(buf->b_hdr != NULL); 805 arc_buf_destroy(hdr->b_buf, FALSE); 806 hdr->b_buf = buf->b_next; 807 buf->b_next = arc_eviction_list; 808 arc_eviction_list = buf; 809 mutex_exit(&arc_eviction_mtx); 810 } else { 811 arc_buf_destroy(hdr->b_buf, TRUE); 812 } 813 } 814 815 ASSERT(!list_link_active(&hdr->b_arc_node)); 816 ASSERT3P(hdr->b_hash_next, ==, NULL); 817 ASSERT3P(hdr->b_acb, ==, NULL); 818 kmem_cache_free(hdr_cache, hdr); 819 } 820 821 void 822 arc_buf_free(arc_buf_t *buf, void *tag) 823 { 824 arc_buf_hdr_t *hdr = buf->b_hdr; 825 int hashed = hdr->b_state != arc.anon; 826 827 ASSERT(buf->b_efunc == NULL); 828 ASSERT(buf->b_data != NULL); 829 830 if (hashed) { 831 kmutex_t *hash_lock = HDR_LOCK(hdr); 832 833 mutex_enter(hash_lock); 834 (void) remove_reference(hdr, hash_lock, tag); 835 if (hdr->b_datacnt > 1) 836 arc_buf_destroy(buf, TRUE); 837 else 838 hdr->b_flags |= ARC_BUF_AVAILABLE; 839 mutex_exit(hash_lock); 840 } else if (HDR_IO_IN_PROGRESS(hdr)) { 841 int destroy_hdr; 842 /* 843 * We are in the middle of an async write. Don't destroy 844 * this buffer unless the write completes before we finish 845 * decrementing the reference count. 846 */ 847 mutex_enter(&arc_eviction_mtx); 848 (void) remove_reference(hdr, NULL, tag); 849 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 850 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); 851 mutex_exit(&arc_eviction_mtx); 852 if (destroy_hdr) 853 arc_hdr_destroy(hdr); 854 } else { 855 if (remove_reference(hdr, NULL, tag) > 0) { 856 ASSERT(HDR_IO_ERROR(hdr)); 857 arc_buf_destroy(buf, TRUE); 858 } else { 859 arc_hdr_destroy(hdr); 860 } 861 } 862 } 863 864 int 865 arc_buf_remove_ref(arc_buf_t *buf, void* tag) 866 { 867 arc_buf_hdr_t *hdr = buf->b_hdr; 868 kmutex_t *hash_lock = HDR_LOCK(hdr); 869 int no_callback = (buf->b_efunc == NULL); 870 871 if (hdr->b_state == arc.anon) { 872 arc_buf_free(buf, tag); 873 return (no_callback); 874 } 875 876 mutex_enter(hash_lock); 877 ASSERT(hdr->b_state != arc.anon); 878 ASSERT(buf->b_data != NULL); 879 880 (void) remove_reference(hdr, hash_lock, tag); 881 if (hdr->b_datacnt > 1) { 882 if (no_callback) 883 arc_buf_destroy(buf, TRUE); 884 } else if (no_callback) { 885 ASSERT(hdr->b_buf == buf && buf->b_next == NULL); 886 hdr->b_flags |= ARC_BUF_AVAILABLE; 887 } 888 ASSERT(no_callback || hdr->b_datacnt > 1 || 889 refcount_is_zero(&hdr->b_refcnt)); 890 mutex_exit(hash_lock); 891 return (no_callback); 892 } 893 894 int 895 arc_buf_size(arc_buf_t *buf) 896 { 897 return (buf->b_hdr->b_size); 898 } 899 900 /* 901 * Evict buffers from list until we've removed the specified number of 902 * bytes. Move the removed buffers to the appropriate evict state. 903 */ 904 static uint64_t 905 arc_evict(arc_state_t *state, int64_t bytes) 906 { 907 arc_state_t *evicted_state; 908 uint64_t bytes_evicted = 0, skipped = 0; 909 arc_buf_hdr_t *ab, *ab_prev; 910 kmutex_t *hash_lock; 911 912 ASSERT(state == arc.mru || state == arc.mfu); 913 914 evicted_state = (state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 915 916 mutex_enter(&state->mtx); 917 mutex_enter(&evicted_state->mtx); 918 919 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 920 ab_prev = list_prev(&state->list, ab); 921 hash_lock = HDR_LOCK(ab); 922 if (mutex_tryenter(hash_lock)) { 923 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); 924 ASSERT(ab->b_datacnt > 0); 925 while (ab->b_buf) { 926 arc_buf_t *buf = ab->b_buf; 927 if (buf->b_data) 928 bytes_evicted += ab->b_size; 929 if (buf->b_efunc) { 930 mutex_enter(&arc_eviction_mtx); 931 /* 932 * arc_buf_add_ref() could derail 933 * this eviction. 934 */ 935 if (buf->b_hdr == NULL) { 936 mutex_exit(&arc_eviction_mtx); 937 mutex_exit(hash_lock); 938 goto skip; 939 } 940 arc_buf_destroy(buf, FALSE); 941 ab->b_buf = buf->b_next; 942 buf->b_next = arc_eviction_list; 943 arc_eviction_list = buf; 944 mutex_exit(&arc_eviction_mtx); 945 } else { 946 arc_buf_destroy(buf, TRUE); 947 } 948 } 949 ASSERT(ab->b_datacnt == 0); 950 arc_change_state(evicted_state, ab, hash_lock); 951 ASSERT(HDR_IN_HASH_TABLE(ab)); 952 ab->b_flags = ARC_IN_HASH_TABLE; 953 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); 954 mutex_exit(hash_lock); 955 if (bytes >= 0 && bytes_evicted >= bytes) 956 break; 957 } else { 958 skip: 959 skipped += 1; 960 } 961 } 962 mutex_exit(&evicted_state->mtx); 963 mutex_exit(&state->mtx); 964 965 if (bytes_evicted < bytes) 966 dprintf("only evicted %lld bytes from %x", 967 (longlong_t)bytes_evicted, state); 968 969 atomic_add_64(&arc.skipped, skipped); 970 if (bytes < 0) 971 return (skipped); 972 return (bytes_evicted); 973 } 974 975 /* 976 * Remove buffers from list until we've removed the specified number of 977 * bytes. Destroy the buffers that are removed. 978 */ 979 static void 980 arc_evict_ghost(arc_state_t *state, int64_t bytes) 981 { 982 arc_buf_hdr_t *ab, *ab_prev; 983 kmutex_t *hash_lock; 984 uint64_t bytes_deleted = 0; 985 uint_t bufs_skipped = 0; 986 987 ASSERT(GHOST_STATE(state)); 988 top: 989 mutex_enter(&state->mtx); 990 for (ab = list_tail(&state->list); ab; ab = ab_prev) { 991 ab_prev = list_prev(&state->list, ab); 992 hash_lock = HDR_LOCK(ab); 993 if (mutex_tryenter(hash_lock)) { 994 ASSERT(ab->b_buf == NULL); 995 arc_change_state(arc.anon, ab, hash_lock); 996 mutex_exit(hash_lock); 997 atomic_add_64(&arc.deleted, 1); 998 bytes_deleted += ab->b_size; 999 arc_hdr_destroy(ab); 1000 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); 1001 if (bytes >= 0 && bytes_deleted >= bytes) 1002 break; 1003 } else { 1004 if (bytes < 0) { 1005 mutex_exit(&state->mtx); 1006 mutex_enter(hash_lock); 1007 mutex_exit(hash_lock); 1008 goto top; 1009 } 1010 bufs_skipped += 1; 1011 } 1012 } 1013 mutex_exit(&state->mtx); 1014 1015 if (bufs_skipped) { 1016 atomic_add_64(&arc.skipped, bufs_skipped); 1017 ASSERT(bytes >= 0); 1018 } 1019 1020 if (bytes_deleted < bytes) 1021 dprintf("only deleted %lld bytes from %p", 1022 (longlong_t)bytes_deleted, state); 1023 } 1024 1025 static void 1026 arc_adjust(void) 1027 { 1028 int64_t top_sz, mru_over, arc_over; 1029 1030 top_sz = arc.anon->size + arc.mru->size; 1031 1032 if (top_sz > arc.p && arc.mru->lsize > 0) { 1033 int64_t toevict = MIN(arc.mru->lsize, top_sz-arc.p); 1034 (void) arc_evict(arc.mru, toevict); 1035 top_sz = arc.anon->size + arc.mru->size; 1036 } 1037 1038 mru_over = top_sz + arc.mru_ghost->size - arc.c; 1039 1040 if (mru_over > 0) { 1041 if (arc.mru_ghost->lsize > 0) { 1042 int64_t todelete = MIN(arc.mru_ghost->lsize, mru_over); 1043 arc_evict_ghost(arc.mru_ghost, todelete); 1044 } 1045 } 1046 1047 if ((arc_over = arc.size - arc.c) > 0) { 1048 int64_t tbl_over; 1049 1050 if (arc.mfu->lsize > 0) { 1051 int64_t toevict = MIN(arc.mfu->lsize, arc_over); 1052 (void) arc_evict(arc.mfu, toevict); 1053 } 1054 1055 tbl_over = arc.size + arc.mru_ghost->lsize + 1056 arc.mfu_ghost->lsize - arc.c*2; 1057 1058 if (tbl_over > 0 && arc.mfu_ghost->lsize > 0) { 1059 int64_t todelete = MIN(arc.mfu_ghost->lsize, tbl_over); 1060 arc_evict_ghost(arc.mfu_ghost, todelete); 1061 } 1062 } 1063 } 1064 1065 static void 1066 arc_do_user_evicts(void) 1067 { 1068 mutex_enter(&arc_eviction_mtx); 1069 while (arc_eviction_list != NULL) { 1070 arc_buf_t *buf = arc_eviction_list; 1071 arc_eviction_list = buf->b_next; 1072 buf->b_hdr = NULL; 1073 mutex_exit(&arc_eviction_mtx); 1074 1075 if (buf->b_efunc != NULL) 1076 VERIFY(buf->b_efunc(buf) == 0); 1077 1078 buf->b_efunc = NULL; 1079 buf->b_private = NULL; 1080 kmem_cache_free(buf_cache, buf); 1081 mutex_enter(&arc_eviction_mtx); 1082 } 1083 mutex_exit(&arc_eviction_mtx); 1084 } 1085 1086 /* 1087 * Flush all *evictable* data from the cache. 1088 * NOTE: this will not touch "active" (i.e. referenced) data. 1089 */ 1090 void 1091 arc_flush(void) 1092 { 1093 while (arc_evict(arc.mru, -1)); 1094 while (arc_evict(arc.mfu, -1)); 1095 1096 arc_evict_ghost(arc.mru_ghost, -1); 1097 arc_evict_ghost(arc.mfu_ghost, -1); 1098 1099 mutex_enter(&arc_reclaim_thr_lock); 1100 arc_do_user_evicts(); 1101 mutex_exit(&arc_reclaim_thr_lock); 1102 ASSERT(arc_eviction_list == NULL); 1103 } 1104 1105 void 1106 arc_kmem_reclaim(void) 1107 { 1108 uint64_t to_free; 1109 1110 /* Remove 12.5% */ 1111 /* 1112 * We need arc_reclaim_lock because we don't want multiple 1113 * threads trying to reclaim concurrently. 1114 */ 1115 1116 /* 1117 * umem calls the reclaim func when we destroy the buf cache, 1118 * which is after we do arc_fini(). So we set a flag to prevent 1119 * accessing the destroyed mutexes and lists. 1120 */ 1121 if (arc_dead) 1122 return; 1123 1124 if (arc.c <= arc.c_min) 1125 return; 1126 1127 mutex_enter(&arc_reclaim_lock); 1128 1129 #ifdef _KERNEL 1130 to_free = MAX(arc.c >> 3, ptob(needfree)); 1131 #else 1132 to_free = arc.c >> 3; 1133 #endif 1134 if (arc.c > to_free) 1135 atomic_add_64(&arc.c, -to_free); 1136 else 1137 arc.c = arc.c_min; 1138 1139 atomic_add_64(&arc.p, -(arc.p >> 3)); 1140 if (arc.c > arc.size) 1141 arc.c = arc.size; 1142 if (arc.c < arc.c_min) 1143 arc.c = arc.c_min; 1144 if (arc.p > arc.c) 1145 arc.p = (arc.c >> 1); 1146 ASSERT((int64_t)arc.p >= 0); 1147 1148 arc_adjust(); 1149 1150 mutex_exit(&arc_reclaim_lock); 1151 } 1152 1153 static int 1154 arc_reclaim_needed(void) 1155 { 1156 uint64_t extra; 1157 1158 #ifdef _KERNEL 1159 1160 if (needfree) 1161 return (1); 1162 1163 /* 1164 * take 'desfree' extra pages, so we reclaim sooner, rather than later 1165 */ 1166 extra = desfree; 1167 1168 /* 1169 * check that we're out of range of the pageout scanner. It starts to 1170 * schedule paging if freemem is less than lotsfree and needfree. 1171 * lotsfree is the high-water mark for pageout, and needfree is the 1172 * number of needed free pages. We add extra pages here to make sure 1173 * the scanner doesn't start up while we're freeing memory. 1174 */ 1175 if (freemem < lotsfree + needfree + extra) 1176 return (1); 1177 1178 /* 1179 * check to make sure that swapfs has enough space so that anon 1180 * reservations can still succeeed. anon_resvmem() checks that the 1181 * availrmem is greater than swapfs_minfree, and the number of reserved 1182 * swap pages. We also add a bit of extra here just to prevent 1183 * circumstances from getting really dire. 1184 */ 1185 if (availrmem < swapfs_minfree + swapfs_reserve + extra) 1186 return (1); 1187 1188 #if defined(__i386) 1189 /* 1190 * If we're on an i386 platform, it's possible that we'll exhaust the 1191 * kernel heap space before we ever run out of available physical 1192 * memory. Most checks of the size of the heap_area compare against 1193 * tune.t_minarmem, which is the minimum available real memory that we 1194 * can have in the system. However, this is generally fixed at 25 pages 1195 * which is so low that it's useless. In this comparison, we seek to 1196 * calculate the total heap-size, and reclaim if more than 3/4ths of the 1197 * heap is allocated. (Or, in the caclulation, if less than 1/4th is 1198 * free) 1199 */ 1200 if (btop(vmem_size(heap_arena, VMEM_FREE)) < 1201 (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) 1202 return (1); 1203 #endif 1204 1205 #else 1206 if (spa_get_random(100) == 0) 1207 return (1); 1208 #endif 1209 return (0); 1210 } 1211 1212 static void 1213 arc_kmem_reap_now(arc_reclaim_strategy_t strat) 1214 { 1215 size_t i; 1216 kmem_cache_t *prev_cache = NULL; 1217 extern kmem_cache_t *zio_buf_cache[]; 1218 1219 #ifdef _KERNEL 1220 /* 1221 * First purge some DNLC entries, in case the DNLC is using 1222 * up too much memory. 1223 */ 1224 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); 1225 1226 #if defined(__i386) 1227 /* 1228 * Reclaim unused memory from all kmem caches. 1229 */ 1230 kmem_reap(); 1231 #endif 1232 #endif 1233 1234 /* 1235 * An agressive reclamation will shrink the cache size as well as 1236 * reap free buffers from the arc kmem caches. 1237 */ 1238 if (strat == ARC_RECLAIM_AGGR) 1239 arc_kmem_reclaim(); 1240 1241 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 1242 if (zio_buf_cache[i] != prev_cache) { 1243 prev_cache = zio_buf_cache[i]; 1244 kmem_cache_reap_now(zio_buf_cache[i]); 1245 } 1246 } 1247 kmem_cache_reap_now(buf_cache); 1248 kmem_cache_reap_now(hdr_cache); 1249 } 1250 1251 static void 1252 arc_reclaim_thread(void) 1253 { 1254 clock_t growtime = 0; 1255 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; 1256 callb_cpr_t cpr; 1257 1258 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); 1259 1260 mutex_enter(&arc_reclaim_thr_lock); 1261 while (arc_thread_exit == 0) { 1262 if (arc_reclaim_needed()) { 1263 1264 if (arc.no_grow) { 1265 if (last_reclaim == ARC_RECLAIM_CONS) { 1266 last_reclaim = ARC_RECLAIM_AGGR; 1267 } else { 1268 last_reclaim = ARC_RECLAIM_CONS; 1269 } 1270 } else { 1271 arc.no_grow = TRUE; 1272 last_reclaim = ARC_RECLAIM_AGGR; 1273 membar_producer(); 1274 } 1275 1276 /* reset the growth delay for every reclaim */ 1277 growtime = lbolt + (arc_grow_retry * hz); 1278 1279 arc_kmem_reap_now(last_reclaim); 1280 1281 } else if ((growtime > 0) && ((growtime - lbolt) <= 0)) { 1282 arc.no_grow = FALSE; 1283 } 1284 1285 if (arc_eviction_list != NULL) 1286 arc_do_user_evicts(); 1287 1288 /* block until needed, or one second, whichever is shorter */ 1289 CALLB_CPR_SAFE_BEGIN(&cpr); 1290 (void) cv_timedwait(&arc_reclaim_thr_cv, 1291 &arc_reclaim_thr_lock, (lbolt + hz)); 1292 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); 1293 } 1294 1295 arc_thread_exit = 0; 1296 cv_broadcast(&arc_reclaim_thr_cv); 1297 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ 1298 thread_exit(); 1299 } 1300 1301 /* 1302 * Adapt arc info given the number of bytes we are trying to add and 1303 * the state that we are comming from. This function is only called 1304 * when we are adding new content to the cache. 1305 */ 1306 static void 1307 arc_adapt(int bytes, arc_state_t *state) 1308 { 1309 int mult; 1310 1311 ASSERT(bytes > 0); 1312 /* 1313 * Adapt the target size of the MRU list: 1314 * - if we just hit in the MRU ghost list, then increase 1315 * the target size of the MRU list. 1316 * - if we just hit in the MFU ghost list, then increase 1317 * the target size of the MFU list by decreasing the 1318 * target size of the MRU list. 1319 */ 1320 if (state == arc.mru_ghost) { 1321 mult = ((arc.mru_ghost->size >= arc.mfu_ghost->size) ? 1322 1 : (arc.mfu_ghost->size/arc.mru_ghost->size)); 1323 1324 arc.p = MIN(arc.c, arc.p + bytes * mult); 1325 } else if (state == arc.mfu_ghost) { 1326 mult = ((arc.mfu_ghost->size >= arc.mru_ghost->size) ? 1327 1 : (arc.mru_ghost->size/arc.mfu_ghost->size)); 1328 1329 arc.p = MAX(0, (int64_t)arc.p - bytes * mult); 1330 } 1331 ASSERT((int64_t)arc.p >= 0); 1332 1333 if (arc_reclaim_needed()) { 1334 cv_signal(&arc_reclaim_thr_cv); 1335 return; 1336 } 1337 1338 if (arc.no_grow) 1339 return; 1340 1341 if (arc.c >= arc.c_max) 1342 return; 1343 1344 /* 1345 * If we're within (2 * maxblocksize) bytes of the target 1346 * cache size, increment the target cache size 1347 */ 1348 if (arc.size > arc.c - (2ULL << SPA_MAXBLOCKSHIFT)) { 1349 atomic_add_64(&arc.c, (int64_t)bytes); 1350 if (arc.c > arc.c_max) 1351 arc.c = arc.c_max; 1352 else if (state == arc.anon) 1353 atomic_add_64(&arc.p, (int64_t)bytes); 1354 if (arc.p > arc.c) 1355 arc.p = arc.c; 1356 } 1357 ASSERT((int64_t)arc.p >= 0); 1358 } 1359 1360 /* 1361 * Check if the cache has reached its limits and eviction is required 1362 * prior to insert. 1363 */ 1364 static int 1365 arc_evict_needed() 1366 { 1367 if (arc_reclaim_needed()) 1368 return (1); 1369 1370 return (arc.size > arc.c); 1371 } 1372 1373 /* 1374 * The state, supplied as the first argument, is going to have something 1375 * inserted on its behalf. So, determine which cache must be victimized to 1376 * satisfy an insertion for this state. We have the following cases: 1377 * 1378 * 1. Insert for MRU, p > sizeof(arc.anon + arc.mru) -> 1379 * In this situation if we're out of space, but the resident size of the MFU is 1380 * under the limit, victimize the MFU cache to satisfy this insertion request. 1381 * 1382 * 2. Insert for MRU, p <= sizeof(arc.anon + arc.mru) -> 1383 * Here, we've used up all of the available space for the MRU, so we need to 1384 * evict from our own cache instead. Evict from the set of resident MRU 1385 * entries. 1386 * 1387 * 3. Insert for MFU (c - p) > sizeof(arc.mfu) -> 1388 * c minus p represents the MFU space in the cache, since p is the size of the 1389 * cache that is dedicated to the MRU. In this situation there's still space on 1390 * the MFU side, so the MRU side needs to be victimized. 1391 * 1392 * 4. Insert for MFU (c - p) < sizeof(arc.mfu) -> 1393 * MFU's resident set is consuming more space than it has been allotted. In 1394 * this situation, we must victimize our own cache, the MFU, for this insertion. 1395 */ 1396 static void 1397 arc_evict_for_state(arc_state_t *state, uint64_t bytes) 1398 { 1399 uint64_t mru_used; 1400 uint64_t mfu_space; 1401 uint64_t evicted; 1402 1403 ASSERT(state == arc.mru || state == arc.mfu); 1404 1405 if (state == arc.mru) { 1406 mru_used = arc.anon->size + arc.mru->size; 1407 if (arc.p > mru_used) { 1408 /* case 1 */ 1409 evicted = arc_evict(arc.mfu, bytes); 1410 if (evicted < bytes) { 1411 arc_adjust(); 1412 } 1413 } else { 1414 /* case 2 */ 1415 evicted = arc_evict(arc.mru, bytes); 1416 if (evicted < bytes) { 1417 arc_adjust(); 1418 } 1419 } 1420 } else { 1421 /* MFU case */ 1422 mfu_space = arc.c - arc.p; 1423 if (mfu_space > arc.mfu->size) { 1424 /* case 3 */ 1425 evicted = arc_evict(arc.mru, bytes); 1426 if (evicted < bytes) { 1427 arc_adjust(); 1428 } 1429 } else { 1430 /* case 4 */ 1431 evicted = arc_evict(arc.mfu, bytes); 1432 if (evicted < bytes) { 1433 arc_adjust(); 1434 } 1435 } 1436 } 1437 } 1438 1439 /* 1440 * This routine is called whenever a buffer is accessed. 1441 * NOTE: the hash lock is dropped in this function. 1442 */ 1443 static void 1444 arc_access_and_exit(arc_buf_hdr_t *buf, kmutex_t *hash_lock) 1445 { 1446 arc_state_t *evict_state = NULL; 1447 int blksz; 1448 1449 ASSERT(MUTEX_HELD(hash_lock)); 1450 1451 blksz = buf->b_size; 1452 1453 if (buf->b_state == arc.anon) { 1454 /* 1455 * This buffer is not in the cache, and does not 1456 * appear in our "ghost" list. Add the new buffer 1457 * to the MRU state. 1458 */ 1459 1460 arc_adapt(blksz, arc.anon); 1461 if (arc_evict_needed()) 1462 evict_state = arc.mru; 1463 1464 ASSERT(buf->b_arc_access == 0); 1465 buf->b_arc_access = lbolt; 1466 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1467 arc_change_state(arc.mru, buf, hash_lock); 1468 1469 } else if (buf->b_state == arc.mru) { 1470 /* 1471 * If this buffer is in the MRU-top state and has the prefetch 1472 * flag, the first read was actually part of a prefetch. In 1473 * this situation, we simply want to clear the flag and return. 1474 * A subsequent access should bump this into the MFU state. 1475 */ 1476 if ((buf->b_flags & ARC_PREFETCH) != 0) { 1477 buf->b_flags &= ~ARC_PREFETCH; 1478 atomic_add_64(&arc.mru->hits, 1); 1479 mutex_exit(hash_lock); 1480 return; 1481 } 1482 1483 /* 1484 * This buffer has been "accessed" only once so far, 1485 * but it is still in the cache. Move it to the MFU 1486 * state. 1487 */ 1488 if (lbolt > buf->b_arc_access + ARC_MINTIME) { 1489 /* 1490 * More than 125ms have passed since we 1491 * instantiated this buffer. Move it to the 1492 * most frequently used state. 1493 */ 1494 buf->b_arc_access = lbolt; 1495 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1496 arc_change_state(arc.mfu, buf, hash_lock); 1497 } 1498 atomic_add_64(&arc.mru->hits, 1); 1499 } else if (buf->b_state == arc.mru_ghost) { 1500 arc_state_t *new_state; 1501 /* 1502 * This buffer has been "accessed" recently, but 1503 * was evicted from the cache. Move it to the 1504 * MFU state. 1505 */ 1506 1507 if (buf->b_flags & ARC_PREFETCH) { 1508 new_state = arc.mru; 1509 buf->b_flags &= ~ARC_PREFETCH; 1510 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); 1511 } else { 1512 new_state = arc.mfu; 1513 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1514 } 1515 1516 arc_adapt(blksz, arc.mru_ghost); 1517 if (arc_evict_needed()) 1518 evict_state = new_state; 1519 1520 buf->b_arc_access = lbolt; 1521 arc_change_state(new_state, buf, hash_lock); 1522 1523 atomic_add_64(&arc.mru_ghost->hits, 1); 1524 } else if (buf->b_state == arc.mfu) { 1525 /* 1526 * This buffer has been accessed more than once and is 1527 * still in the cache. Keep it in the MFU state. 1528 * 1529 * NOTE: the add_reference() that occurred when we did 1530 * the arc_read() should have kicked this off the list, 1531 * so even if it was a prefetch, it will be put back at 1532 * the head of the list when we remove_reference(). 1533 */ 1534 atomic_add_64(&arc.mfu->hits, 1); 1535 } else if (buf->b_state == arc.mfu_ghost) { 1536 /* 1537 * This buffer has been accessed more than once but has 1538 * been evicted from the cache. Move it back to the 1539 * MFU state. 1540 */ 1541 1542 arc_adapt(blksz, arc.mfu_ghost); 1543 if (arc_evict_needed()) 1544 evict_state = arc.mfu; 1545 1546 buf->b_arc_access = lbolt; 1547 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); 1548 arc_change_state(arc.mfu, buf, hash_lock); 1549 1550 atomic_add_64(&arc.mfu_ghost->hits, 1); 1551 } else { 1552 ASSERT(!"invalid arc state"); 1553 } 1554 1555 mutex_exit(hash_lock); 1556 if (evict_state) 1557 arc_evict_for_state(evict_state, blksz); 1558 } 1559 1560 /* a generic arc_done_func_t which you can use */ 1561 /* ARGSUSED */ 1562 void 1563 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) 1564 { 1565 bcopy(buf->b_data, arg, buf->b_hdr->b_size); 1566 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1567 } 1568 1569 /* a generic arc_done_func_t which you can use */ 1570 void 1571 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) 1572 { 1573 arc_buf_t **bufp = arg; 1574 if (zio && zio->io_error) { 1575 VERIFY(arc_buf_remove_ref(buf, arg) == 1); 1576 *bufp = NULL; 1577 } else { 1578 *bufp = buf; 1579 } 1580 } 1581 1582 static void 1583 arc_read_done(zio_t *zio) 1584 { 1585 arc_buf_hdr_t *hdr, *found; 1586 arc_buf_t *buf; 1587 arc_buf_t *abuf; /* buffer we're assigning to callback */ 1588 kmutex_t *hash_lock; 1589 arc_callback_t *callback_list, *acb; 1590 int freeable = FALSE; 1591 1592 buf = zio->io_private; 1593 hdr = buf->b_hdr; 1594 1595 /* 1596 * The hdr was inserted into hash-table and removed from lists 1597 * prior to starting I/O. We should find this header, since 1598 * it's in the hash table, and it should be legit since it's 1599 * not possible to evict it during the I/O. The only possible 1600 * reason for it not to be found is if we were freed during the 1601 * read. 1602 */ 1603 found = buf_hash_find(zio->io_spa, &hdr->b_dva, hdr->b_birth, 1604 &hash_lock); 1605 1606 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || 1607 (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp)))); 1608 1609 /* byteswap if necessary */ 1610 callback_list = hdr->b_acb; 1611 ASSERT(callback_list != NULL); 1612 if (BP_SHOULD_BYTESWAP(zio->io_bp) && callback_list->acb_byteswap) 1613 callback_list->acb_byteswap(buf->b_data, hdr->b_size); 1614 1615 /* create copies of the data buffer for the callers */ 1616 abuf = buf; 1617 for (acb = callback_list; acb; acb = acb->acb_next) { 1618 if (acb->acb_done) { 1619 if (abuf == NULL) { 1620 abuf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1621 abuf->b_data = arc_data_copy(hdr, buf->b_data); 1622 abuf->b_hdr = hdr; 1623 abuf->b_efunc = NULL; 1624 abuf->b_private = NULL; 1625 abuf->b_next = hdr->b_buf; 1626 hdr->b_buf = abuf; 1627 hdr->b_datacnt += 1; 1628 } 1629 acb->acb_buf = abuf; 1630 abuf = NULL; 1631 } else { 1632 /* 1633 * The caller did not provide a callback function. 1634 * In this case, we should just remove the reference. 1635 */ 1636 if (HDR_FREED_IN_READ(hdr)) { 1637 ASSERT3P(hdr->b_state, ==, arc.anon); 1638 (void) refcount_remove(&hdr->b_refcnt, 1639 acb->acb_private); 1640 } else { 1641 (void) remove_reference(hdr, hash_lock, 1642 acb->acb_private); 1643 } 1644 } 1645 } 1646 hdr->b_acb = NULL; 1647 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 1648 ASSERT(!HDR_BUF_AVAILABLE(hdr)); 1649 if (abuf == buf) 1650 hdr->b_flags |= ARC_BUF_AVAILABLE; 1651 1652 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); 1653 1654 if (zio->io_error != 0) { 1655 hdr->b_flags |= ARC_IO_ERROR; 1656 if (hdr->b_state != arc.anon) 1657 arc_change_state(arc.anon, hdr, hash_lock); 1658 if (HDR_IN_HASH_TABLE(hdr)) 1659 buf_hash_remove(hdr); 1660 freeable = refcount_is_zero(&hdr->b_refcnt); 1661 /* translate checksum errors into IO errors */ 1662 if (zio->io_error == ECKSUM) 1663 zio->io_error = EIO; 1664 } 1665 1666 /* 1667 * Broadcast before we drop the hash_lock. This is less efficient, 1668 * but avoids the possibility that the hdr (and hence the cv) might 1669 * be freed before we get to the cv_broadcast(). 1670 */ 1671 cv_broadcast(&hdr->b_cv); 1672 1673 if (hash_lock) { 1674 /* 1675 * Only call arc_access on anonymous buffers. This is because 1676 * if we've issued an I/O for an evicted buffer, we've already 1677 * called arc_access (to prevent any simultaneous readers from 1678 * getting confused). 1679 */ 1680 if (zio->io_error == 0 && hdr->b_state == arc.anon) 1681 arc_access_and_exit(hdr, hash_lock); 1682 else 1683 mutex_exit(hash_lock); 1684 } else { 1685 /* 1686 * This block was freed while we waited for the read to 1687 * complete. It has been removed from the hash table and 1688 * moved to the anonymous state (so that it won't show up 1689 * in the cache). 1690 */ 1691 ASSERT3P(hdr->b_state, ==, arc.anon); 1692 freeable = refcount_is_zero(&hdr->b_refcnt); 1693 } 1694 1695 /* execute each callback and free its structure */ 1696 while ((acb = callback_list) != NULL) { 1697 if (acb->acb_done) 1698 acb->acb_done(zio, acb->acb_buf, acb->acb_private); 1699 1700 if (acb->acb_zio_dummy != NULL) { 1701 acb->acb_zio_dummy->io_error = zio->io_error; 1702 zio_nowait(acb->acb_zio_dummy); 1703 } 1704 1705 callback_list = acb->acb_next; 1706 kmem_free(acb, sizeof (arc_callback_t)); 1707 } 1708 1709 if (freeable) 1710 arc_hdr_destroy(hdr); 1711 } 1712 1713 /* 1714 * "Read" the block block at the specified DVA (in bp) via the 1715 * cache. If the block is found in the cache, invoke the provided 1716 * callback immediately and return. Note that the `zio' parameter 1717 * in the callback will be NULL in this case, since no IO was 1718 * required. If the block is not in the cache pass the read request 1719 * on to the spa with a substitute callback function, so that the 1720 * requested block will be added to the cache. 1721 * 1722 * If a read request arrives for a block that has a read in-progress, 1723 * either wait for the in-progress read to complete (and return the 1724 * results); or, if this is a read with a "done" func, add a record 1725 * to the read to invoke the "done" func when the read completes, 1726 * and return; or just return. 1727 * 1728 * arc_read_done() will invoke all the requested "done" functions 1729 * for readers of this block. 1730 */ 1731 int 1732 arc_read(zio_t *pio, spa_t *spa, blkptr_t *bp, arc_byteswap_func_t *swap, 1733 arc_done_func_t *done, void *private, int priority, int flags, 1734 uint32_t arc_flags, zbookmark_t *zb) 1735 { 1736 arc_buf_hdr_t *hdr; 1737 arc_buf_t *buf; 1738 kmutex_t *hash_lock; 1739 zio_t *rzio; 1740 1741 top: 1742 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 1743 if (hdr && hdr->b_datacnt > 0) { 1744 1745 if (HDR_IO_IN_PROGRESS(hdr)) { 1746 if ((arc_flags & ARC_NOWAIT) && done) { 1747 arc_callback_t *acb = NULL; 1748 1749 acb = kmem_zalloc(sizeof (arc_callback_t), 1750 KM_SLEEP); 1751 acb->acb_done = done; 1752 acb->acb_private = private; 1753 acb->acb_byteswap = swap; 1754 if (pio != NULL) 1755 acb->acb_zio_dummy = zio_null(pio, 1756 spa, NULL, NULL, flags); 1757 1758 ASSERT(acb->acb_done != NULL); 1759 acb->acb_next = hdr->b_acb; 1760 hdr->b_acb = acb; 1761 add_reference(hdr, hash_lock, private); 1762 mutex_exit(hash_lock); 1763 return (0); 1764 } else if (arc_flags & ARC_WAIT) { 1765 cv_wait(&hdr->b_cv, hash_lock); 1766 mutex_exit(hash_lock); 1767 goto top; 1768 } 1769 mutex_exit(hash_lock); 1770 return (0); 1771 } 1772 1773 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1774 1775 if (done) { 1776 /* 1777 * If this block is already in use, create a new 1778 * copy of the data so that we will be guaranteed 1779 * that arc_release() will always succeed. 1780 */ 1781 buf = hdr->b_buf; 1782 ASSERT(buf); 1783 ASSERT(buf->b_data); 1784 if (!HDR_BUF_AVAILABLE(hdr)) { 1785 void *data = arc_data_copy(hdr, buf->b_data); 1786 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1787 buf->b_hdr = hdr; 1788 buf->b_data = data; 1789 buf->b_efunc = NULL; 1790 buf->b_private = NULL; 1791 buf->b_next = hdr->b_buf; 1792 hdr->b_buf = buf; 1793 hdr->b_datacnt += 1; 1794 } else { 1795 ASSERT(buf->b_efunc == NULL); 1796 hdr->b_flags &= ~ARC_BUF_AVAILABLE; 1797 } 1798 add_reference(hdr, hash_lock, private); 1799 } 1800 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 1801 arc_access_and_exit(hdr, hash_lock); 1802 atomic_add_64(&arc.hits, 1); 1803 if (done) 1804 done(NULL, buf, private); 1805 } else { 1806 uint64_t size = BP_GET_LSIZE(bp); 1807 arc_callback_t *acb; 1808 1809 if (hdr == NULL) { 1810 /* this block is not in the cache */ 1811 arc_buf_hdr_t *exists; 1812 1813 buf = arc_buf_alloc(spa, size, private); 1814 hdr = buf->b_hdr; 1815 hdr->b_dva = *BP_IDENTITY(bp); 1816 hdr->b_birth = bp->blk_birth; 1817 hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; 1818 exists = buf_hash_insert(hdr, &hash_lock); 1819 if (exists) { 1820 /* somebody beat us to the hash insert */ 1821 mutex_exit(hash_lock); 1822 bzero(&hdr->b_dva, sizeof (dva_t)); 1823 hdr->b_birth = 0; 1824 hdr->b_cksum0 = 0; 1825 (void) arc_buf_remove_ref(buf, private); 1826 goto top; /* restart the IO request */ 1827 } 1828 1829 } else { 1830 /* this block is in the ghost cache */ 1831 ASSERT(GHOST_STATE(hdr->b_state)); 1832 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1833 add_reference(hdr, hash_lock, private); 1834 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 1835 1836 ASSERT(hdr->b_buf == NULL); 1837 buf = kmem_cache_alloc(buf_cache, KM_SLEEP); 1838 buf->b_hdr = hdr; 1839 buf->b_efunc = NULL; 1840 buf->b_private = NULL; 1841 buf->b_next = NULL; 1842 hdr->b_buf = buf; 1843 buf->b_data = zio_buf_alloc(hdr->b_size); 1844 atomic_add_64(&arc.size, hdr->b_size); 1845 ASSERT(hdr->b_datacnt == 0); 1846 hdr->b_datacnt = 1; 1847 } 1848 1849 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 1850 acb->acb_done = done; 1851 acb->acb_private = private; 1852 acb->acb_byteswap = swap; 1853 1854 ASSERT(hdr->b_acb == NULL); 1855 hdr->b_acb = acb; 1856 1857 /* 1858 * If this DVA is part of a prefetch, mark the buf 1859 * header with the prefetch flag 1860 */ 1861 if (arc_flags & ARC_PREFETCH) 1862 hdr->b_flags |= ARC_PREFETCH; 1863 hdr->b_flags |= ARC_IO_IN_PROGRESS; 1864 1865 /* 1866 * If the buffer has been evicted, migrate it to a present state 1867 * before issuing the I/O. Once we drop the hash-table lock, 1868 * the header will be marked as I/O in progress and have an 1869 * attached buffer. At this point, anybody who finds this 1870 * buffer ought to notice that it's legit but has a pending I/O. 1871 */ 1872 1873 if (GHOST_STATE(hdr->b_state)) 1874 arc_access_and_exit(hdr, hash_lock); 1875 else 1876 mutex_exit(hash_lock); 1877 1878 ASSERT3U(hdr->b_size, ==, size); 1879 DTRACE_PROBE3(arc__miss, blkptr_t *, bp, uint64_t, size, 1880 zbookmark_t *, zb); 1881 atomic_add_64(&arc.misses, 1); 1882 1883 rzio = zio_read(pio, spa, bp, buf->b_data, size, 1884 arc_read_done, buf, priority, flags, zb); 1885 1886 if (arc_flags & ARC_WAIT) 1887 return (zio_wait(rzio)); 1888 1889 ASSERT(arc_flags & ARC_NOWAIT); 1890 zio_nowait(rzio); 1891 } 1892 return (0); 1893 } 1894 1895 /* 1896 * arc_read() variant to support pool traversal. If the block is already 1897 * in the ARC, make a copy of it; otherwise, the caller will do the I/O. 1898 * The idea is that we don't want pool traversal filling up memory, but 1899 * if the ARC already has the data anyway, we shouldn't pay for the I/O. 1900 */ 1901 int 1902 arc_tryread(spa_t *spa, blkptr_t *bp, void *data) 1903 { 1904 arc_buf_hdr_t *hdr; 1905 kmutex_t *hash_mtx; 1906 int rc = 0; 1907 1908 hdr = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_mtx); 1909 1910 if (hdr && hdr->b_datacnt > 0 && !HDR_IO_IN_PROGRESS(hdr)) { 1911 arc_buf_t *buf = hdr->b_buf; 1912 1913 ASSERT(buf); 1914 while (buf->b_data == NULL) { 1915 buf = buf->b_next; 1916 ASSERT(buf); 1917 } 1918 bcopy(buf->b_data, data, hdr->b_size); 1919 } else { 1920 rc = ENOENT; 1921 } 1922 1923 if (hash_mtx) 1924 mutex_exit(hash_mtx); 1925 1926 return (rc); 1927 } 1928 1929 void 1930 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) 1931 { 1932 ASSERT(buf->b_hdr != NULL); 1933 ASSERT(buf->b_hdr->b_state != arc.anon); 1934 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); 1935 buf->b_efunc = func; 1936 buf->b_private = private; 1937 } 1938 1939 /* 1940 * This is used by the DMU to let the ARC know that a buffer is 1941 * being evicted, so the ARC should clean up. If this arc buf 1942 * is not yet in the evicted state, it will be put there. 1943 */ 1944 int 1945 arc_buf_evict(arc_buf_t *buf) 1946 { 1947 arc_buf_hdr_t *hdr; 1948 kmutex_t *hash_lock; 1949 arc_buf_t **bufp; 1950 1951 mutex_enter(&arc_eviction_mtx); 1952 hdr = buf->b_hdr; 1953 if (hdr == NULL) { 1954 /* 1955 * We are in arc_do_user_evicts(). 1956 * NOTE: We can't be in arc_buf_add_ref() because 1957 * that would violate the interface rules. 1958 */ 1959 ASSERT(buf->b_data == NULL); 1960 mutex_exit(&arc_eviction_mtx); 1961 return (0); 1962 } else if (buf->b_data == NULL) { 1963 arc_buf_t copy = *buf; /* structure assignment */ 1964 /* 1965 * We are on the eviction list. Process this buffer 1966 * now but let arc_do_user_evicts() do the reaping. 1967 */ 1968 buf->b_efunc = NULL; 1969 buf->b_hdr = NULL; 1970 mutex_exit(&arc_eviction_mtx); 1971 VERIFY(copy.b_efunc(©) == 0); 1972 return (1); 1973 } else { 1974 /* 1975 * Prevent a race with arc_evict() 1976 */ 1977 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); 1978 buf->b_hdr = NULL; 1979 } 1980 mutex_exit(&arc_eviction_mtx); 1981 1982 hash_lock = HDR_LOCK(hdr); 1983 mutex_enter(hash_lock); 1984 1985 ASSERT(hdr->b_state == arc.mru || hdr->b_state == arc.mfu); 1986 1987 /* 1988 * Pull this buffer off of the hdr 1989 */ 1990 bufp = &hdr->b_buf; 1991 while (*bufp != buf) 1992 bufp = &(*bufp)->b_next; 1993 *bufp = buf->b_next; 1994 1995 ASSERT(buf->b_data != NULL); 1996 buf->b_hdr = hdr; 1997 arc_buf_destroy(buf, FALSE); 1998 1999 if (hdr->b_datacnt == 0) { 2000 arc_state_t *old_state = hdr->b_state; 2001 arc_state_t *evicted_state; 2002 2003 ASSERT(refcount_is_zero(&hdr->b_refcnt)); 2004 2005 evicted_state = 2006 (old_state == arc.mru) ? arc.mru_ghost : arc.mfu_ghost; 2007 2008 mutex_enter(&old_state->mtx); 2009 mutex_enter(&evicted_state->mtx); 2010 2011 arc_change_state(evicted_state, hdr, hash_lock); 2012 ASSERT(HDR_IN_HASH_TABLE(hdr)); 2013 hdr->b_flags = ARC_IN_HASH_TABLE; 2014 2015 mutex_exit(&evicted_state->mtx); 2016 mutex_exit(&old_state->mtx); 2017 } 2018 mutex_exit(hash_lock); 2019 2020 VERIFY(buf->b_efunc(buf) == 0); 2021 buf->b_efunc = NULL; 2022 buf->b_private = NULL; 2023 buf->b_hdr = NULL; 2024 kmem_cache_free(buf_cache, buf); 2025 return (1); 2026 } 2027 2028 /* 2029 * Release this buffer from the cache. This must be done 2030 * after a read and prior to modifying the buffer contents. 2031 * If the buffer has more than one reference, we must make 2032 * make a new hdr for the buffer. 2033 */ 2034 void 2035 arc_release(arc_buf_t *buf, void *tag) 2036 { 2037 arc_buf_hdr_t *hdr = buf->b_hdr; 2038 kmutex_t *hash_lock = HDR_LOCK(hdr); 2039 2040 /* this buffer is not on any list */ 2041 ASSERT(refcount_count(&hdr->b_refcnt) > 0); 2042 2043 if (hdr->b_state == arc.anon) { 2044 /* this buffer is already released */ 2045 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 1); 2046 ASSERT(BUF_EMPTY(hdr)); 2047 ASSERT(buf->b_efunc == NULL); 2048 return; 2049 } 2050 2051 mutex_enter(hash_lock); 2052 2053 /* 2054 * Do we have more than one buf? 2055 */ 2056 if (hdr->b_buf != buf || buf->b_next != NULL) { 2057 arc_buf_hdr_t *nhdr; 2058 arc_buf_t **bufp; 2059 uint64_t blksz = hdr->b_size; 2060 spa_t *spa = hdr->b_spa; 2061 2062 ASSERT(hdr->b_datacnt > 1); 2063 /* 2064 * Pull the data off of this buf and attach it to 2065 * a new anonymous buf. 2066 */ 2067 (void) remove_reference(hdr, hash_lock, tag); 2068 bufp = &hdr->b_buf; 2069 while (*bufp != buf) 2070 bufp = &(*bufp)->b_next; 2071 *bufp = (*bufp)->b_next; 2072 2073 ASSERT3U(hdr->b_state->size, >=, hdr->b_size); 2074 atomic_add_64(&hdr->b_state->size, -hdr->b_size); 2075 if (refcount_is_zero(&hdr->b_refcnt)) { 2076 ASSERT3U(hdr->b_state->lsize, >=, hdr->b_size); 2077 atomic_add_64(&hdr->b_state->lsize, -hdr->b_size); 2078 } 2079 hdr->b_datacnt -= 1; 2080 2081 mutex_exit(hash_lock); 2082 2083 nhdr = kmem_cache_alloc(hdr_cache, KM_SLEEP); 2084 nhdr->b_size = blksz; 2085 nhdr->b_spa = spa; 2086 nhdr->b_buf = buf; 2087 nhdr->b_state = arc.anon; 2088 nhdr->b_arc_access = 0; 2089 nhdr->b_flags = 0; 2090 nhdr->b_datacnt = 1; 2091 buf->b_hdr = nhdr; 2092 buf->b_next = NULL; 2093 (void) refcount_add(&nhdr->b_refcnt, tag); 2094 atomic_add_64(&arc.anon->size, blksz); 2095 2096 hdr = nhdr; 2097 } else { 2098 ASSERT(refcount_count(&hdr->b_refcnt) == 1); 2099 ASSERT(!list_link_active(&hdr->b_arc_node)); 2100 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 2101 arc_change_state(arc.anon, hdr, hash_lock); 2102 hdr->b_arc_access = 0; 2103 mutex_exit(hash_lock); 2104 bzero(&hdr->b_dva, sizeof (dva_t)); 2105 hdr->b_birth = 0; 2106 hdr->b_cksum0 = 0; 2107 } 2108 buf->b_efunc = NULL; 2109 buf->b_private = NULL; 2110 } 2111 2112 int 2113 arc_released(arc_buf_t *buf) 2114 { 2115 return (buf->b_data != NULL && buf->b_hdr->b_state == arc.anon); 2116 } 2117 2118 int 2119 arc_has_callback(arc_buf_t *buf) 2120 { 2121 return (buf->b_efunc != NULL); 2122 } 2123 2124 #ifdef ZFS_DEBUG 2125 int 2126 arc_referenced(arc_buf_t *buf) 2127 { 2128 return (refcount_count(&buf->b_hdr->b_refcnt)); 2129 } 2130 #endif 2131 2132 static void 2133 arc_write_done(zio_t *zio) 2134 { 2135 arc_buf_t *buf; 2136 arc_buf_hdr_t *hdr; 2137 arc_callback_t *acb; 2138 2139 buf = zio->io_private; 2140 hdr = buf->b_hdr; 2141 acb = hdr->b_acb; 2142 hdr->b_acb = NULL; 2143 ASSERT(acb != NULL); 2144 2145 /* this buffer is on no lists and is not in the hash table */ 2146 ASSERT3P(hdr->b_state, ==, arc.anon); 2147 2148 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 2149 hdr->b_birth = zio->io_bp->blk_birth; 2150 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; 2151 /* 2152 * If the block to be written was all-zero, we may have 2153 * compressed it away. In this case no write was performed 2154 * so there will be no dva/birth-date/checksum. The buffer 2155 * must therefor remain anonymous (and uncached). 2156 */ 2157 if (!BUF_EMPTY(hdr)) { 2158 arc_buf_hdr_t *exists; 2159 kmutex_t *hash_lock; 2160 2161 exists = buf_hash_insert(hdr, &hash_lock); 2162 if (exists) { 2163 /* 2164 * This can only happen if we overwrite for 2165 * sync-to-convergence, because we remove 2166 * buffers from the hash table when we arc_free(). 2167 */ 2168 ASSERT(DVA_EQUAL(BP_IDENTITY(&zio->io_bp_orig), 2169 BP_IDENTITY(zio->io_bp))); 2170 ASSERT3U(zio->io_bp_orig.blk_birth, ==, 2171 zio->io_bp->blk_birth); 2172 2173 ASSERT(refcount_is_zero(&exists->b_refcnt)); 2174 arc_change_state(arc.anon, exists, hash_lock); 2175 mutex_exit(hash_lock); 2176 arc_hdr_destroy(exists); 2177 exists = buf_hash_insert(hdr, &hash_lock); 2178 ASSERT3P(exists, ==, NULL); 2179 } 2180 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2181 arc_access_and_exit(hdr, hash_lock); 2182 } else if (acb->acb_done == NULL) { 2183 int destroy_hdr; 2184 /* 2185 * This is an anonymous buffer with no user callback, 2186 * destroy it if there are no active references. 2187 */ 2188 mutex_enter(&arc_eviction_mtx); 2189 destroy_hdr = refcount_is_zero(&hdr->b_refcnt); 2190 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2191 mutex_exit(&arc_eviction_mtx); 2192 if (destroy_hdr) 2193 arc_hdr_destroy(hdr); 2194 } else { 2195 hdr->b_flags &= ~ARC_IO_IN_PROGRESS; 2196 } 2197 2198 if (acb->acb_done) { 2199 ASSERT(!refcount_is_zero(&hdr->b_refcnt)); 2200 acb->acb_done(zio, buf, acb->acb_private); 2201 } 2202 2203 kmem_free(acb, sizeof (arc_callback_t)); 2204 } 2205 2206 int 2207 arc_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 2208 uint64_t txg, blkptr_t *bp, arc_buf_t *buf, 2209 arc_done_func_t *done, void *private, int priority, int flags, 2210 uint32_t arc_flags, zbookmark_t *zb) 2211 { 2212 arc_buf_hdr_t *hdr = buf->b_hdr; 2213 arc_callback_t *acb; 2214 zio_t *rzio; 2215 2216 /* this is a private buffer - no locking required */ 2217 ASSERT3P(hdr->b_state, ==, arc.anon); 2218 ASSERT(BUF_EMPTY(hdr)); 2219 ASSERT(!HDR_IO_ERROR(hdr)); 2220 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); 2221 ASSERT(hdr->b_acb == 0); 2222 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 2223 acb->acb_done = done; 2224 acb->acb_private = private; 2225 acb->acb_byteswap = (arc_byteswap_func_t *)-1; 2226 hdr->b_acb = acb; 2227 hdr->b_flags |= ARC_IO_IN_PROGRESS; 2228 rzio = zio_write(pio, spa, checksum, compress, ncopies, txg, bp, 2229 buf->b_data, hdr->b_size, arc_write_done, buf, priority, flags, zb); 2230 2231 if (arc_flags & ARC_WAIT) 2232 return (zio_wait(rzio)); 2233 2234 ASSERT(arc_flags & ARC_NOWAIT); 2235 zio_nowait(rzio); 2236 2237 return (0); 2238 } 2239 2240 int 2241 arc_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 2242 zio_done_func_t *done, void *private, uint32_t arc_flags) 2243 { 2244 arc_buf_hdr_t *ab; 2245 kmutex_t *hash_lock; 2246 zio_t *zio; 2247 2248 /* 2249 * If this buffer is in the cache, release it, so it 2250 * can be re-used. 2251 */ 2252 ab = buf_hash_find(spa, BP_IDENTITY(bp), bp->blk_birth, &hash_lock); 2253 if (ab != NULL) { 2254 /* 2255 * The checksum of blocks to free is not always 2256 * preserved (eg. on the deadlist). However, if it is 2257 * nonzero, it should match what we have in the cache. 2258 */ 2259 ASSERT(bp->blk_cksum.zc_word[0] == 0 || 2260 ab->b_cksum0 == bp->blk_cksum.zc_word[0]); 2261 if (ab->b_state != arc.anon) 2262 arc_change_state(arc.anon, ab, hash_lock); 2263 if (refcount_is_zero(&ab->b_refcnt)) { 2264 mutex_exit(hash_lock); 2265 arc_hdr_destroy(ab); 2266 atomic_add_64(&arc.deleted, 1); 2267 } else { 2268 /* 2269 * We could have an outstanding read on this 2270 * block, so multiple active references are 2271 * possible. But we should only have a single 2272 * data buffer associated at this point. 2273 */ 2274 ASSERT3U(ab->b_datacnt, ==, 1); 2275 if (HDR_IO_IN_PROGRESS(ab)) 2276 ab->b_flags |= ARC_FREED_IN_READ; 2277 if (HDR_IN_HASH_TABLE(ab)) 2278 buf_hash_remove(ab); 2279 ab->b_arc_access = 0; 2280 bzero(&ab->b_dva, sizeof (dva_t)); 2281 ab->b_birth = 0; 2282 ab->b_cksum0 = 0; 2283 ab->b_buf->b_efunc = NULL; 2284 ab->b_buf->b_private = NULL; 2285 mutex_exit(hash_lock); 2286 } 2287 } 2288 2289 zio = zio_free(pio, spa, txg, bp, done, private); 2290 2291 if (arc_flags & ARC_WAIT) 2292 return (zio_wait(zio)); 2293 2294 ASSERT(arc_flags & ARC_NOWAIT); 2295 zio_nowait(zio); 2296 2297 return (0); 2298 } 2299 2300 void 2301 arc_tempreserve_clear(uint64_t tempreserve) 2302 { 2303 atomic_add_64(&arc_tempreserve, -tempreserve); 2304 ASSERT((int64_t)arc_tempreserve >= 0); 2305 } 2306 2307 int 2308 arc_tempreserve_space(uint64_t tempreserve) 2309 { 2310 #ifdef ZFS_DEBUG 2311 /* 2312 * Once in a while, fail for no reason. Everything should cope. 2313 */ 2314 if (spa_get_random(10000) == 0) { 2315 dprintf("forcing random failure\n"); 2316 return (ERESTART); 2317 } 2318 #endif 2319 if (tempreserve > arc.c/4 && !arc.no_grow) 2320 arc.c = MIN(arc.c_max, tempreserve * 4); 2321 if (tempreserve > arc.c) 2322 return (ENOMEM); 2323 2324 /* 2325 * Throttle writes when the amount of dirty data in the cache 2326 * gets too large. We try to keep the cache less than half full 2327 * of dirty blocks so that our sync times don't grow too large. 2328 * Note: if two requests come in concurrently, we might let them 2329 * both succeed, when one of them should fail. Not a huge deal. 2330 * 2331 * XXX The limit should be adjusted dynamically to keep the time 2332 * to sync a dataset fixed (around 1-5 seconds?). 2333 */ 2334 2335 if (tempreserve + arc_tempreserve + arc.anon->size > arc.c / 2 && 2336 arc_tempreserve + arc.anon->size > arc.c / 4) { 2337 dprintf("failing, arc_tempreserve=%lluK anon=%lluK " 2338 "tempreserve=%lluK arc.c=%lluK\n", 2339 arc_tempreserve>>10, arc.anon->lsize>>10, 2340 tempreserve>>10, arc.c>>10); 2341 return (ERESTART); 2342 } 2343 atomic_add_64(&arc_tempreserve, tempreserve); 2344 return (0); 2345 } 2346 2347 void 2348 arc_init(void) 2349 { 2350 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 2351 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); 2352 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); 2353 2354 /* Start out with 1/8 of all memory */ 2355 arc.c = physmem * PAGESIZE / 8; 2356 2357 #ifdef _KERNEL 2358 /* 2359 * On architectures where the physical memory can be larger 2360 * than the addressable space (intel in 32-bit mode), we may 2361 * need to limit the cache to 1/8 of VM size. 2362 */ 2363 arc.c = MIN(arc.c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); 2364 #endif 2365 2366 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ 2367 arc.c_min = MAX(arc.c / 4, 64<<20); 2368 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ 2369 if (arc.c * 8 >= 1<<30) 2370 arc.c_max = (arc.c * 8) - (1<<30); 2371 else 2372 arc.c_max = arc.c_min; 2373 arc.c_max = MAX(arc.c * 6, arc.c_max); 2374 arc.c = arc.c_max; 2375 arc.p = (arc.c >> 1); 2376 2377 /* if kmem_flags are set, lets try to use less memory */ 2378 if (kmem_debugging()) 2379 arc.c = arc.c / 2; 2380 if (arc.c < arc.c_min) 2381 arc.c = arc.c_min; 2382 2383 arc.anon = &ARC_anon; 2384 arc.mru = &ARC_mru; 2385 arc.mru_ghost = &ARC_mru_ghost; 2386 arc.mfu = &ARC_mfu; 2387 arc.mfu_ghost = &ARC_mfu_ghost; 2388 arc.size = 0; 2389 2390 list_create(&arc.mru->list, sizeof (arc_buf_hdr_t), 2391 offsetof(arc_buf_hdr_t, b_arc_node)); 2392 list_create(&arc.mru_ghost->list, sizeof (arc_buf_hdr_t), 2393 offsetof(arc_buf_hdr_t, b_arc_node)); 2394 list_create(&arc.mfu->list, sizeof (arc_buf_hdr_t), 2395 offsetof(arc_buf_hdr_t, b_arc_node)); 2396 list_create(&arc.mfu_ghost->list, sizeof (arc_buf_hdr_t), 2397 offsetof(arc_buf_hdr_t, b_arc_node)); 2398 2399 buf_init(); 2400 2401 arc_thread_exit = 0; 2402 arc_eviction_list = NULL; 2403 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); 2404 2405 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, 2406 TS_RUN, minclsyspri); 2407 } 2408 2409 void 2410 arc_fini(void) 2411 { 2412 mutex_enter(&arc_reclaim_thr_lock); 2413 arc_thread_exit = 1; 2414 while (arc_thread_exit != 0) 2415 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); 2416 mutex_exit(&arc_reclaim_thr_lock); 2417 2418 arc_flush(); 2419 2420 arc_dead = TRUE; 2421 2422 mutex_destroy(&arc_eviction_mtx); 2423 mutex_destroy(&arc_reclaim_lock); 2424 mutex_destroy(&arc_reclaim_thr_lock); 2425 cv_destroy(&arc_reclaim_thr_cv); 2426 2427 list_destroy(&arc.mru->list); 2428 list_destroy(&arc.mru_ghost->list); 2429 list_destroy(&arc.mfu->list); 2430 list_destroy(&arc.mfu_ghost->list); 2431 2432 buf_fini(); 2433 } 2434