1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/t_lock.h> 42 #include <sys/errno.h> 43 #include <sys/cred.h> 44 #include <sys/user.h> 45 #include <sys/uio.h> 46 #include <sys/file.h> 47 #include <sys/pathname.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/rwstlock.h> 52 #include <sys/fem.h> 53 #include <sys/stat.h> 54 #include <sys/mode.h> 55 #include <sys/conf.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cmn_err.h> 58 #include <sys/systm.h> 59 #include <sys/kmem.h> 60 #include <sys/debug.h> 61 #include <c2/audit.h> 62 #include <sys/acl.h> 63 #include <sys/nbmlock.h> 64 #include <sys/fcntl.h> 65 #include <fs/fs_subr.h> 66 #include <sys/taskq.h> 67 #include <fs/fs_reparse.h> 68 69 /* Determine if this vnode is a file that is read-only */ 70 #define ISROFILE(vp) \ 71 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 72 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 73 74 /* Tunable via /etc/system; used only by admin/install */ 75 int nfs_global_client_only; 76 77 /* 78 * Array of vopstats_t for per-FS-type vopstats. This array has the same 79 * number of entries as and parallel to the vfssw table. (Arguably, it could 80 * be part of the vfssw table.) Once it's initialized, it's accessed using 81 * the same fstype index that is used to index into the vfssw table. 82 */ 83 vopstats_t **vopstats_fstype; 84 85 /* vopstats initialization template used for fast initialization via bcopy() */ 86 static vopstats_t *vs_templatep; 87 88 /* Kmem cache handle for vsk_anchor_t allocations */ 89 kmem_cache_t *vsk_anchor_cache; 90 91 /* file events cleanup routine */ 92 extern void free_fopdata(vnode_t *); 93 94 /* 95 * Root of AVL tree for the kstats associated with vopstats. Lock protects 96 * updates to vsktat_tree. 97 */ 98 avl_tree_t vskstat_tree; 99 kmutex_t vskstat_tree_lock; 100 101 /* Global variable which enables/disables the vopstats collection */ 102 int vopstats_enabled = 1; 103 104 /* 105 * forward declarations for internal vnode specific data (vsd) 106 */ 107 static void *vsd_realloc(void *, size_t, size_t); 108 109 /* 110 * forward declarations for reparse point functions 111 */ 112 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr); 113 114 /* 115 * VSD -- VNODE SPECIFIC DATA 116 * The v_data pointer is typically used by a file system to store a 117 * pointer to the file system's private node (e.g. ufs inode, nfs rnode). 118 * However, there are times when additional project private data needs 119 * to be stored separately from the data (node) pointed to by v_data. 120 * This additional data could be stored by the file system itself or 121 * by a completely different kernel entity. VSD provides a way for 122 * callers to obtain a key and store a pointer to private data associated 123 * with a vnode. 124 * 125 * Callers are responsible for protecting the vsd by holding v_vsd_lock 126 * for calls to vsd_set() and vsd_get(). 127 */ 128 129 /* 130 * vsd_lock protects: 131 * vsd_nkeys - creation and deletion of vsd keys 132 * vsd_list - insertion and deletion of vsd_node in the vsd_list 133 * vsd_destructor - adding and removing destructors to the list 134 */ 135 static kmutex_t vsd_lock; 136 static uint_t vsd_nkeys; /* size of destructor array */ 137 /* list of vsd_node's */ 138 static list_t *vsd_list = NULL; 139 /* per-key destructor funcs */ 140 static void (**vsd_destructor)(void *); 141 142 /* 143 * The following is the common set of actions needed to update the 144 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 145 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 146 * recording of the bytes transferred. Since the code is similar 147 * but small, it is nearly a duplicate. Consequently any changes 148 * to one may need to be reflected in the other. 149 * Rundown of the variables: 150 * vp - Pointer to the vnode 151 * counter - Partial name structure member to update in vopstats for counts 152 * bytecounter - Partial name structure member to update in vopstats for bytes 153 * bytesval - Value to update in vopstats for bytes 154 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 155 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 156 */ 157 158 #define VOPSTATS_UPDATE(vp, counter) { \ 159 vfs_t *vfsp = (vp)->v_vfsp; \ 160 if (vfsp && vfsp->vfs_implp && \ 161 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 162 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 163 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 164 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 165 size_t, uint64_t *); \ 166 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 167 (*stataddr)++; \ 168 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 169 vsp->n##counter.value.ui64++; \ 170 } \ 171 } \ 172 } 173 174 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 175 vfs_t *vfsp = (vp)->v_vfsp; \ 176 if (vfsp && vfsp->vfs_implp && \ 177 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 178 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 179 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 180 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 181 size_t, uint64_t *); \ 182 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 183 (*stataddr)++; \ 184 vsp->bytecounter.value.ui64 += bytesval; \ 185 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 186 vsp->n##counter.value.ui64++; \ 187 vsp->bytecounter.value.ui64 += bytesval; \ 188 } \ 189 } \ 190 } 191 192 /* 193 * If the filesystem does not support XIDs map credential 194 * If the vfsp is NULL, perhaps we should also map? 195 */ 196 #define VOPXID_MAP_CR(vp, cr) { \ 197 vfs_t *vfsp = (vp)->v_vfsp; \ 198 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 199 cr = crgetmapped(cr); \ 200 } 201 202 /* 203 * Convert stat(2) formats to vnode types and vice versa. (Knows about 204 * numerical order of S_IFMT and vnode types.) 205 */ 206 enum vtype iftovt_tab[] = { 207 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 208 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 209 }; 210 211 ushort_t vttoif_tab[] = { 212 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 213 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 214 }; 215 216 /* 217 * The system vnode cache. 218 */ 219 220 kmem_cache_t *vn_cache; 221 222 223 /* 224 * Vnode operations vector. 225 */ 226 227 static const fs_operation_trans_def_t vn_ops_table[] = { 228 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 229 fs_nosys, fs_nosys, 230 231 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 232 fs_nosys, fs_nosys, 233 234 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 235 fs_nosys, fs_nosys, 236 237 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 238 fs_nosys, fs_nosys, 239 240 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 241 fs_nosys, fs_nosys, 242 243 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 244 fs_setfl, fs_nosys, 245 246 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 247 fs_nosys, fs_nosys, 248 249 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 250 fs_nosys, fs_nosys, 251 252 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 253 fs_nosys, fs_nosys, 254 255 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 256 fs_nosys, fs_nosys, 257 258 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 259 fs_nosys, fs_nosys, 260 261 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 262 fs_nosys, fs_nosys, 263 264 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 265 fs_nosys, fs_nosys, 266 267 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 268 fs_nosys, fs_nosys, 269 270 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 271 fs_nosys, fs_nosys, 272 273 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 274 fs_nosys, fs_nosys, 275 276 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 277 fs_nosys, fs_nosys, 278 279 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 283 fs_nosys, fs_nosys, 284 285 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 286 fs_nosys, fs_nosys, 287 288 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 289 fs_nosys, fs_nosys, 290 291 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 292 fs_nosys, fs_nosys, 293 294 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 295 fs_rwlock, fs_rwlock, 296 297 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 298 (fs_generic_func_p) fs_rwunlock, 299 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 300 301 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 302 fs_nosys, fs_nosys, 303 304 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 305 fs_cmp, fs_cmp, /* no errors allowed */ 306 307 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 308 fs_frlock, fs_nosys, 309 310 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 311 fs_nosys, fs_nosys, 312 313 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 314 fs_nosys, fs_nosys, 315 316 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 317 fs_nosys, fs_nosys, 318 319 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 320 fs_nosys, fs_nosys, 321 322 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 323 (fs_generic_func_p) fs_nosys_map, 324 (fs_generic_func_p) fs_nosys_map, 325 326 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 327 (fs_generic_func_p) fs_nosys_addmap, 328 (fs_generic_func_p) fs_nosys_addmap, 329 330 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 331 fs_nosys, fs_nosys, 332 333 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 334 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 335 336 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 337 fs_nosys, fs_nosys, 338 339 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 340 fs_pathconf, fs_nosys, 341 342 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 343 fs_nosys, fs_nosys, 344 345 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 346 fs_nosys, fs_nosys, 347 348 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 349 (fs_generic_func_p) fs_dispose, 350 (fs_generic_func_p) fs_nodispose, 351 352 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 353 fs_nosys, fs_nosys, 354 355 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 356 fs_fab_acl, fs_nosys, 357 358 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 359 fs_shrlock, fs_nosys, 360 361 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 362 (fs_generic_func_p) fs_vnevent_nosupport, 363 (fs_generic_func_p) fs_vnevent_nosupport, 364 365 NULL, 0, NULL, NULL 366 }; 367 368 /* Extensible attribute (xva) routines. */ 369 370 /* 371 * Zero out the structure, set the size of the requested/returned bitmaps, 372 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer 373 * to the returned attributes array. 374 */ 375 void 376 xva_init(xvattr_t *xvap) 377 { 378 bzero(xvap, sizeof (xvattr_t)); 379 xvap->xva_mapsize = XVA_MAPSIZE; 380 xvap->xva_magic = XVA_MAGIC; 381 xvap->xva_vattr.va_mask = AT_XVATTR; 382 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0]; 383 } 384 385 /* 386 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t 387 * structure. Otherwise, returns NULL. 388 */ 389 xoptattr_t * 390 xva_getxoptattr(xvattr_t *xvap) 391 { 392 xoptattr_t *xoap = NULL; 393 if (xvap->xva_vattr.va_mask & AT_XVATTR) 394 xoap = &xvap->xva_xoptattrs; 395 return (xoap); 396 } 397 398 /* 399 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 400 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 401 * kstat name. 402 */ 403 static int 404 vska_compar(const void *n1, const void *n2) 405 { 406 int ret; 407 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 408 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 409 410 if (p1 < p2) { 411 ret = -1; 412 } else if (p1 > p2) { 413 ret = 1; 414 } else { 415 ret = 0; 416 } 417 418 return (ret); 419 } 420 421 /* 422 * Used to create a single template which will be bcopy()ed to a newly 423 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 424 */ 425 static vopstats_t * 426 create_vopstats_template() 427 { 428 vopstats_t *vsp; 429 430 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 431 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 432 433 /* VOP_OPEN */ 434 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 435 /* VOP_CLOSE */ 436 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 437 /* VOP_READ I/O */ 438 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 439 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 440 /* VOP_WRITE I/O */ 441 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 442 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 443 /* VOP_IOCTL */ 444 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 445 /* VOP_SETFL */ 446 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 447 /* VOP_GETATTR */ 448 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 449 /* VOP_SETATTR */ 450 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 451 /* VOP_ACCESS */ 452 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 453 /* VOP_LOOKUP */ 454 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 455 /* VOP_CREATE */ 456 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 457 /* VOP_REMOVE */ 458 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 459 /* VOP_LINK */ 460 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 461 /* VOP_RENAME */ 462 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 463 /* VOP_MKDIR */ 464 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 465 /* VOP_RMDIR */ 466 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 467 /* VOP_READDIR I/O */ 468 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 469 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 470 KSTAT_DATA_UINT64); 471 /* VOP_SYMLINK */ 472 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 473 /* VOP_READLINK */ 474 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 475 /* VOP_FSYNC */ 476 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 477 /* VOP_INACTIVE */ 478 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 479 /* VOP_FID */ 480 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 481 /* VOP_RWLOCK */ 482 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 483 /* VOP_RWUNLOCK */ 484 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 485 /* VOP_SEEK */ 486 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 487 /* VOP_CMP */ 488 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 489 /* VOP_FRLOCK */ 490 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 491 /* VOP_SPACE */ 492 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 493 /* VOP_REALVP */ 494 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 495 /* VOP_GETPAGE */ 496 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 497 /* VOP_PUTPAGE */ 498 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 499 /* VOP_MAP */ 500 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 501 /* VOP_ADDMAP */ 502 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 503 /* VOP_DELMAP */ 504 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 505 /* VOP_POLL */ 506 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 507 /* VOP_DUMP */ 508 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 509 /* VOP_PATHCONF */ 510 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 511 /* VOP_PAGEIO */ 512 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 513 /* VOP_DUMPCTL */ 514 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 515 /* VOP_DISPOSE */ 516 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 517 /* VOP_SETSECATTR */ 518 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 519 /* VOP_GETSECATTR */ 520 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 521 /* VOP_SHRLOCK */ 522 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 523 /* VOP_VNEVENT */ 524 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 525 526 return (vsp); 527 } 528 529 /* 530 * Creates a kstat structure associated with a vopstats structure. 531 */ 532 kstat_t * 533 new_vskstat(char *ksname, vopstats_t *vsp) 534 { 535 kstat_t *ksp; 536 537 if (!vopstats_enabled) { 538 return (NULL); 539 } 540 541 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 542 sizeof (vopstats_t)/sizeof (kstat_named_t), 543 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 544 if (ksp) { 545 ksp->ks_data = vsp; 546 kstat_install(ksp); 547 } 548 549 return (ksp); 550 } 551 552 /* 553 * Called from vfsinit() to initialize the support mechanisms for vopstats 554 */ 555 void 556 vopstats_startup() 557 { 558 if (!vopstats_enabled) 559 return; 560 561 /* 562 * Creates the AVL tree which holds per-vfs vopstat anchors. This 563 * is necessary since we need to check if a kstat exists before we 564 * attempt to create it. Also, initialize its lock. 565 */ 566 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 567 offsetof(vsk_anchor_t, vsk_node)); 568 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 569 570 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 571 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 572 NULL, NULL, 0); 573 574 /* 575 * Set up the array of pointers for the vopstats-by-FS-type. 576 * The entries will be allocated/initialized as each file system 577 * goes through modload/mod_installfs. 578 */ 579 vopstats_fstype = (vopstats_t **)kmem_zalloc( 580 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 581 582 /* Set up the global vopstats initialization template */ 583 vs_templatep = create_vopstats_template(); 584 } 585 586 /* 587 * We need to have the all of the counters zeroed. 588 * The initialization of the vopstats_t includes on the order of 589 * 50 calls to kstat_named_init(). Rather that do that on every call, 590 * we do it once in a template (vs_templatep) then bcopy it over. 591 */ 592 void 593 initialize_vopstats(vopstats_t *vsp) 594 { 595 if (vsp == NULL) 596 return; 597 598 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 599 } 600 601 /* 602 * If possible, determine which vopstats by fstype to use and 603 * return a pointer to the caller. 604 */ 605 vopstats_t * 606 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 607 { 608 int fstype = 0; /* Index into vfssw[] */ 609 vopstats_t *vsp = NULL; 610 611 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 612 !vopstats_enabled) 613 return (NULL); 614 /* 615 * Set up the fstype. We go to so much trouble because all versions 616 * of NFS use the same fstype in their vfs even though they have 617 * distinct entries in the vfssw[] table. 618 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 619 */ 620 if (vswp) { 621 fstype = vswp - vfssw; /* Gets us the index */ 622 } else { 623 fstype = vfsp->vfs_fstype; 624 } 625 626 /* 627 * Point to the per-fstype vopstats. The only valid values are 628 * non-zero positive values less than the number of vfssw[] table 629 * entries. 630 */ 631 if (fstype > 0 && fstype < nfstype) { 632 vsp = vopstats_fstype[fstype]; 633 } 634 635 return (vsp); 636 } 637 638 /* 639 * Generate a kstat name, create the kstat structure, and allocate a 640 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 641 * to the caller. This must only be called from a mount. 642 */ 643 vsk_anchor_t * 644 get_vskstat_anchor(vfs_t *vfsp) 645 { 646 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 647 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 648 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 649 kstat_t *ksp; /* Ptr to new kstat */ 650 avl_index_t where; /* Location in the AVL tree */ 651 652 if (vfsp == NULL || vfsp->vfs_implp == NULL || 653 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 654 return (NULL); 655 656 /* Need to get the fsid to build a kstat name */ 657 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 658 /* Create a name for our kstats based on fsid */ 659 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 660 VOPSTATS_STR, statvfsbuf.f_fsid); 661 662 /* Allocate and initialize the vsk_anchor_t */ 663 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 664 bzero(vskp, sizeof (*vskp)); 665 vskp->vsk_fsid = statvfsbuf.f_fsid; 666 667 mutex_enter(&vskstat_tree_lock); 668 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 669 avl_insert(&vskstat_tree, vskp, where); 670 mutex_exit(&vskstat_tree_lock); 671 672 /* 673 * Now that we've got the anchor in the AVL 674 * tree, we can create the kstat. 675 */ 676 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 677 if (ksp) { 678 vskp->vsk_ksp = ksp; 679 } 680 } else { 681 /* Oops, found one! Release memory and lock. */ 682 mutex_exit(&vskstat_tree_lock); 683 kmem_cache_free(vsk_anchor_cache, vskp); 684 vskp = NULL; 685 } 686 } 687 return (vskp); 688 } 689 690 /* 691 * We're in the process of tearing down the vfs and need to cleanup 692 * the data structures associated with the vopstats. Must only be called 693 * from dounmount(). 694 */ 695 void 696 teardown_vopstats(vfs_t *vfsp) 697 { 698 vsk_anchor_t *vskap; 699 avl_index_t where; 700 701 if (vfsp == NULL || vfsp->vfs_implp == NULL || 702 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 703 return; 704 705 /* This is a safe check since VFS_STATS must be set (see above) */ 706 if ((vskap = vfsp->vfs_vskap) == NULL) 707 return; 708 709 /* Whack the pointer right away */ 710 vfsp->vfs_vskap = NULL; 711 712 /* Lock the tree, remove the node, and delete the kstat */ 713 mutex_enter(&vskstat_tree_lock); 714 if (avl_find(&vskstat_tree, vskap, &where)) { 715 avl_remove(&vskstat_tree, vskap); 716 } 717 718 if (vskap->vsk_ksp) { 719 kstat_delete(vskap->vsk_ksp); 720 } 721 mutex_exit(&vskstat_tree_lock); 722 723 kmem_cache_free(vsk_anchor_cache, vskap); 724 } 725 726 /* 727 * Read or write a vnode. Called from kernel code. 728 */ 729 int 730 vn_rdwr( 731 enum uio_rw rw, 732 struct vnode *vp, 733 caddr_t base, 734 ssize_t len, 735 offset_t offset, 736 enum uio_seg seg, 737 int ioflag, 738 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 739 cred_t *cr, 740 ssize_t *residp) 741 { 742 struct uio uio; 743 struct iovec iov; 744 int error; 745 int in_crit = 0; 746 747 if (rw == UIO_WRITE && ISROFILE(vp)) 748 return (EROFS); 749 750 if (len < 0) 751 return (EIO); 752 753 VOPXID_MAP_CR(vp, cr); 754 755 iov.iov_base = base; 756 iov.iov_len = len; 757 uio.uio_iov = &iov; 758 uio.uio_iovcnt = 1; 759 uio.uio_loffset = offset; 760 uio.uio_segflg = (short)seg; 761 uio.uio_resid = len; 762 uio.uio_llimit = ulimit; 763 764 /* 765 * We have to enter the critical region before calling VOP_RWLOCK 766 * to avoid a deadlock with ufs. 767 */ 768 if (nbl_need_check(vp)) { 769 int svmand; 770 771 nbl_start_crit(vp, RW_READER); 772 in_crit = 1; 773 error = nbl_svmand(vp, cr, &svmand); 774 if (error != 0) 775 goto done; 776 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 777 uio.uio_offset, uio.uio_resid, svmand, NULL)) { 778 error = EACCES; 779 goto done; 780 } 781 } 782 783 (void) VOP_RWLOCK(vp, 784 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 785 if (rw == UIO_WRITE) { 786 uio.uio_fmode = FWRITE; 787 uio.uio_extflg = UIO_COPY_DEFAULT; 788 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 789 } else { 790 uio.uio_fmode = FREAD; 791 uio.uio_extflg = UIO_COPY_CACHED; 792 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 793 } 794 VOP_RWUNLOCK(vp, 795 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 796 if (residp) 797 *residp = uio.uio_resid; 798 else if (uio.uio_resid) 799 error = EIO; 800 801 done: 802 if (in_crit) 803 nbl_end_crit(vp); 804 return (error); 805 } 806 807 /* 808 * Release a vnode. Call VOP_INACTIVE on last reference or 809 * decrement reference count. 810 * 811 * To avoid race conditions, the v_count is left at 1 for 812 * the call to VOP_INACTIVE. This prevents another thread 813 * from reclaiming and releasing the vnode *before* the 814 * VOP_INACTIVE routine has a chance to destroy the vnode. 815 * We can't have more than 1 thread calling VOP_INACTIVE 816 * on a vnode. 817 */ 818 void 819 vn_rele(vnode_t *vp) 820 { 821 VERIFY(vp->v_count > 0); 822 mutex_enter(&vp->v_lock); 823 if (vp->v_count == 1) { 824 mutex_exit(&vp->v_lock); 825 VOP_INACTIVE(vp, CRED(), NULL); 826 return; 827 } 828 vp->v_count--; 829 mutex_exit(&vp->v_lock); 830 } 831 832 /* 833 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated 834 * as a single reference, so v_count is not decremented until the last DNLC hold 835 * is released. This makes it possible to distinguish vnodes that are referenced 836 * only by the DNLC. 837 */ 838 void 839 vn_rele_dnlc(vnode_t *vp) 840 { 841 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0)); 842 mutex_enter(&vp->v_lock); 843 if (--vp->v_count_dnlc == 0) { 844 if (vp->v_count == 1) { 845 mutex_exit(&vp->v_lock); 846 VOP_INACTIVE(vp, CRED(), NULL); 847 return; 848 } 849 vp->v_count--; 850 } 851 mutex_exit(&vp->v_lock); 852 } 853 854 /* 855 * Like vn_rele() except that it clears v_stream under v_lock. 856 * This is used by sockfs when it dismantels the association between 857 * the sockfs node and the vnode in the underlaying file system. 858 * v_lock has to be held to prevent a thread coming through the lookupname 859 * path from accessing a stream head that is going away. 860 */ 861 void 862 vn_rele_stream(vnode_t *vp) 863 { 864 VERIFY(vp->v_count > 0); 865 mutex_enter(&vp->v_lock); 866 vp->v_stream = NULL; 867 if (vp->v_count == 1) { 868 mutex_exit(&vp->v_lock); 869 VOP_INACTIVE(vp, CRED(), NULL); 870 return; 871 } 872 vp->v_count--; 873 mutex_exit(&vp->v_lock); 874 } 875 876 static void 877 vn_rele_inactive(vnode_t *vp) 878 { 879 VOP_INACTIVE(vp, CRED(), NULL); 880 } 881 882 /* 883 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it 884 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering 885 * the file system as a result of releasing the vnode. Note, file systems 886 * already have to handle the race where the vnode is incremented before the 887 * inactive routine is called and does its locking. 888 * 889 * Warning: Excessive use of this routine can lead to performance problems. 890 * This is because taskqs throttle back allocation if too many are created. 891 */ 892 void 893 vn_rele_async(vnode_t *vp, taskq_t *taskq) 894 { 895 VERIFY(vp->v_count > 0); 896 mutex_enter(&vp->v_lock); 897 if (vp->v_count == 1) { 898 mutex_exit(&vp->v_lock); 899 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive, 900 vp, TQ_SLEEP) != NULL); 901 return; 902 } 903 vp->v_count--; 904 mutex_exit(&vp->v_lock); 905 } 906 907 int 908 vn_open( 909 char *pnamep, 910 enum uio_seg seg, 911 int filemode, 912 int createmode, 913 struct vnode **vpp, 914 enum create crwhy, 915 mode_t umask) 916 { 917 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy, 918 umask, NULL, -1)); 919 } 920 921 922 /* 923 * Open/create a vnode. 924 * This may be callable by the kernel, the only known use 925 * of user context being that the current user credentials 926 * are used for permissions. crwhy is defined iff filemode & FCREAT. 927 */ 928 int 929 vn_openat( 930 char *pnamep, 931 enum uio_seg seg, 932 int filemode, 933 int createmode, 934 struct vnode **vpp, 935 enum create crwhy, 936 mode_t umask, 937 struct vnode *startvp, 938 int fd) 939 { 940 struct vnode *vp; 941 int mode; 942 int accessflags; 943 int error; 944 int in_crit = 0; 945 int open_done = 0; 946 int shrlock_done = 0; 947 struct vattr vattr; 948 enum symfollow follow; 949 int estale_retry = 0; 950 struct shrlock shr; 951 struct shr_locowner shr_own; 952 953 mode = 0; 954 accessflags = 0; 955 if (filemode & FREAD) 956 mode |= VREAD; 957 if (filemode & (FWRITE|FTRUNC)) 958 mode |= VWRITE; 959 if (filemode & FXATTRDIROPEN) 960 mode |= VEXEC; 961 962 /* symlink interpretation */ 963 if (filemode & FNOFOLLOW) 964 follow = NO_FOLLOW; 965 else 966 follow = FOLLOW; 967 968 if (filemode & FAPPEND) 969 accessflags |= V_APPEND; 970 971 top: 972 if (filemode & FCREAT) { 973 enum vcexcl excl; 974 975 /* 976 * Wish to create a file. 977 */ 978 vattr.va_type = VREG; 979 vattr.va_mode = createmode; 980 vattr.va_mask = AT_TYPE|AT_MODE; 981 if (filemode & FTRUNC) { 982 vattr.va_size = 0; 983 vattr.va_mask |= AT_SIZE; 984 } 985 if (filemode & FEXCL) 986 excl = EXCL; 987 else 988 excl = NONEXCL; 989 990 if (error = 991 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 992 (filemode & ~(FTRUNC|FEXCL)), umask, startvp)) 993 return (error); 994 } else { 995 /* 996 * Wish to open a file. Just look it up. 997 */ 998 if (error = lookupnameat(pnamep, seg, follow, 999 NULLVPP, &vp, startvp)) { 1000 if ((error == ESTALE) && 1001 fs_need_estale_retry(estale_retry++)) 1002 goto top; 1003 return (error); 1004 } 1005 1006 /* 1007 * Get the attributes to check whether file is large. 1008 * We do this only if the FOFFMAX flag is not set and 1009 * only for regular files. 1010 */ 1011 1012 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 1013 vattr.va_mask = AT_SIZE; 1014 if ((error = VOP_GETATTR(vp, &vattr, 0, 1015 CRED(), NULL))) { 1016 goto out; 1017 } 1018 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 1019 /* 1020 * Large File API - regular open fails 1021 * if FOFFMAX flag is set in file mode 1022 */ 1023 error = EOVERFLOW; 1024 goto out; 1025 } 1026 } 1027 /* 1028 * Can't write directories, active texts, or 1029 * read-only filesystems. Can't truncate files 1030 * on which mandatory locking is in effect. 1031 */ 1032 if (filemode & (FWRITE|FTRUNC)) { 1033 /* 1034 * Allow writable directory if VDIROPEN flag is set. 1035 */ 1036 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 1037 error = EISDIR; 1038 goto out; 1039 } 1040 if (ISROFILE(vp)) { 1041 error = EROFS; 1042 goto out; 1043 } 1044 /* 1045 * Can't truncate files on which 1046 * sysv mandatory locking is in effect. 1047 */ 1048 if (filemode & FTRUNC) { 1049 vnode_t *rvp; 1050 1051 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1052 rvp = vp; 1053 if (rvp->v_filocks != NULL) { 1054 vattr.va_mask = AT_MODE; 1055 if ((error = VOP_GETATTR(vp, 1056 &vattr, 0, CRED(), NULL)) == 0 && 1057 MANDLOCK(vp, vattr.va_mode)) 1058 error = EAGAIN; 1059 } 1060 } 1061 if (error) 1062 goto out; 1063 } 1064 /* 1065 * Check permissions. 1066 */ 1067 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL)) 1068 goto out; 1069 } 1070 1071 /* 1072 * Do remaining checks for FNOFOLLOW and FNOLINKS. 1073 */ 1074 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 1075 error = ELOOP; 1076 goto out; 1077 } 1078 if (filemode & FNOLINKS) { 1079 vattr.va_mask = AT_NLINK; 1080 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1081 goto out; 1082 } 1083 if (vattr.va_nlink != 1) { 1084 error = EMLINK; 1085 goto out; 1086 } 1087 } 1088 1089 /* 1090 * Opening a socket corresponding to the AF_UNIX pathname 1091 * in the filesystem name space is not supported. 1092 * However, VSOCK nodes in namefs are supported in order 1093 * to make fattach work for sockets. 1094 * 1095 * XXX This uses VOP_REALVP to distinguish between 1096 * an unopened namefs node (where VOP_REALVP returns a 1097 * different VSOCK vnode) and a VSOCK created by vn_create 1098 * in some file system (where VOP_REALVP would never return 1099 * a different vnode). 1100 */ 1101 if (vp->v_type == VSOCK) { 1102 struct vnode *nvp; 1103 1104 error = VOP_REALVP(vp, &nvp, NULL); 1105 if (error != 0 || nvp == NULL || nvp == vp || 1106 nvp->v_type != VSOCK) { 1107 error = EOPNOTSUPP; 1108 goto out; 1109 } 1110 } 1111 1112 if ((vp->v_type == VREG) && nbl_need_check(vp)) { 1113 /* get share reservation */ 1114 shr.s_access = 0; 1115 if (filemode & FWRITE) 1116 shr.s_access |= F_WRACC; 1117 if (filemode & FREAD) 1118 shr.s_access |= F_RDACC; 1119 shr.s_deny = 0; 1120 shr.s_sysid = 0; 1121 shr.s_pid = ttoproc(curthread)->p_pid; 1122 shr_own.sl_pid = shr.s_pid; 1123 shr_own.sl_id = fd; 1124 shr.s_own_len = sizeof (shr_own); 1125 shr.s_owner = (caddr_t)&shr_own; 1126 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(), 1127 NULL); 1128 if (error) 1129 goto out; 1130 shrlock_done = 1; 1131 1132 /* nbmand conflict check if truncating file */ 1133 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1134 nbl_start_crit(vp, RW_READER); 1135 in_crit = 1; 1136 1137 vattr.va_mask = AT_SIZE; 1138 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) 1139 goto out; 1140 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0, 1141 NULL)) { 1142 error = EACCES; 1143 goto out; 1144 } 1145 } 1146 } 1147 1148 /* 1149 * Do opening protocol. 1150 */ 1151 error = VOP_OPEN(&vp, filemode, CRED(), NULL); 1152 if (error) 1153 goto out; 1154 open_done = 1; 1155 1156 /* 1157 * Truncate if required. 1158 */ 1159 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1160 vattr.va_size = 0; 1161 vattr.va_mask = AT_SIZE; 1162 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1163 goto out; 1164 } 1165 out: 1166 ASSERT(vp->v_count > 0); 1167 1168 if (in_crit) { 1169 nbl_end_crit(vp); 1170 in_crit = 0; 1171 } 1172 if (error) { 1173 if (open_done) { 1174 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(), 1175 NULL); 1176 open_done = 0; 1177 shrlock_done = 0; 1178 } 1179 if (shrlock_done) { 1180 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(), 1181 NULL); 1182 shrlock_done = 0; 1183 } 1184 1185 /* 1186 * The following clause was added to handle a problem 1187 * with NFS consistency. It is possible that a lookup 1188 * of the file to be opened succeeded, but the file 1189 * itself doesn't actually exist on the server. This 1190 * is chiefly due to the DNLC containing an entry for 1191 * the file which has been removed on the server. In 1192 * this case, we just start over. If there was some 1193 * other cause for the ESTALE error, then the lookup 1194 * of the file will fail and the error will be returned 1195 * above instead of looping around from here. 1196 */ 1197 VN_RELE(vp); 1198 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1199 goto top; 1200 } else 1201 *vpp = vp; 1202 return (error); 1203 } 1204 1205 /* 1206 * The following two accessor functions are for the NFSv4 server. Since there 1207 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the 1208 * vnode open counts correct when a client "upgrades" an open or does an 1209 * open_downgrade. In NFS, an upgrade or downgrade can not only change the 1210 * open mode (add or subtract read or write), but also change the share/deny 1211 * modes. However, share reservations are not integrated with OPEN, yet, so 1212 * we need to handle each separately. These functions are cleaner than having 1213 * the NFS server manipulate the counts directly, however, nobody else should 1214 * use these functions. 1215 */ 1216 void 1217 vn_open_upgrade( 1218 vnode_t *vp, 1219 int filemode) 1220 { 1221 ASSERT(vp->v_type == VREG); 1222 1223 if (filemode & FREAD) 1224 atomic_add_32(&(vp->v_rdcnt), 1); 1225 if (filemode & FWRITE) 1226 atomic_add_32(&(vp->v_wrcnt), 1); 1227 1228 } 1229 1230 void 1231 vn_open_downgrade( 1232 vnode_t *vp, 1233 int filemode) 1234 { 1235 ASSERT(vp->v_type == VREG); 1236 1237 if (filemode & FREAD) { 1238 ASSERT(vp->v_rdcnt > 0); 1239 atomic_add_32(&(vp->v_rdcnt), -1); 1240 } 1241 if (filemode & FWRITE) { 1242 ASSERT(vp->v_wrcnt > 0); 1243 atomic_add_32(&(vp->v_wrcnt), -1); 1244 } 1245 1246 } 1247 1248 int 1249 vn_create( 1250 char *pnamep, 1251 enum uio_seg seg, 1252 struct vattr *vap, 1253 enum vcexcl excl, 1254 int mode, 1255 struct vnode **vpp, 1256 enum create why, 1257 int flag, 1258 mode_t umask) 1259 { 1260 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag, 1261 umask, NULL)); 1262 } 1263 1264 /* 1265 * Create a vnode (makenode). 1266 */ 1267 int 1268 vn_createat( 1269 char *pnamep, 1270 enum uio_seg seg, 1271 struct vattr *vap, 1272 enum vcexcl excl, 1273 int mode, 1274 struct vnode **vpp, 1275 enum create why, 1276 int flag, 1277 mode_t umask, 1278 struct vnode *startvp) 1279 { 1280 struct vnode *dvp; /* ptr to parent dir vnode */ 1281 struct vnode *vp = NULL; 1282 struct pathname pn; 1283 int error; 1284 int in_crit = 0; 1285 struct vattr vattr; 1286 enum symfollow follow; 1287 int estale_retry = 0; 1288 1289 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1290 1291 /* symlink interpretation */ 1292 if ((flag & FNOFOLLOW) || excl == EXCL) 1293 follow = NO_FOLLOW; 1294 else 1295 follow = FOLLOW; 1296 flag &= ~(FNOFOLLOW|FNOLINKS); 1297 1298 top: 1299 /* 1300 * Lookup directory. 1301 * If new object is a file, call lower level to create it. 1302 * Note that it is up to the lower level to enforce exclusive 1303 * creation, if the file is already there. 1304 * This allows the lower level to do whatever 1305 * locking or protocol that is needed to prevent races. 1306 * If the new object is directory call lower level to make 1307 * the new directory, with "." and "..". 1308 */ 1309 if (error = pn_get(pnamep, seg, &pn)) 1310 return (error); 1311 if (audit_active) 1312 audit_vncreate_start(); 1313 dvp = NULL; 1314 *vpp = NULL; 1315 /* 1316 * lookup will find the parent directory for the vnode. 1317 * When it is done the pn holds the name of the entry 1318 * in the directory. 1319 * If this is a non-exclusive create we also find the node itself. 1320 */ 1321 error = lookuppnat(&pn, NULL, follow, &dvp, 1322 (excl == EXCL) ? NULLVPP : vpp, startvp); 1323 if (error) { 1324 pn_free(&pn); 1325 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1326 goto top; 1327 if (why == CRMKDIR && error == EINVAL) 1328 error = EEXIST; /* SVID */ 1329 return (error); 1330 } 1331 1332 if (why != CRMKNOD) 1333 vap->va_mode &= ~VSVTX; 1334 1335 /* 1336 * If default ACLs are defined for the directory don't apply the 1337 * umask if umask is passed. 1338 */ 1339 1340 if (umask) { 1341 1342 vsecattr_t vsec; 1343 1344 vsec.vsa_aclcnt = 0; 1345 vsec.vsa_aclentp = NULL; 1346 vsec.vsa_dfaclcnt = 0; 1347 vsec.vsa_dfaclentp = NULL; 1348 vsec.vsa_mask = VSA_DFACLCNT; 1349 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL); 1350 /* 1351 * If error is ENOSYS then treat it as no error 1352 * Don't want to force all file systems to support 1353 * aclent_t style of ACL's. 1354 */ 1355 if (error == ENOSYS) 1356 error = 0; 1357 if (error) { 1358 if (*vpp != NULL) 1359 VN_RELE(*vpp); 1360 goto out; 1361 } else { 1362 /* 1363 * Apply the umask if no default ACLs. 1364 */ 1365 if (vsec.vsa_dfaclcnt == 0) 1366 vap->va_mode &= ~umask; 1367 1368 /* 1369 * VOP_GETSECATTR() may have allocated memory for 1370 * ACLs we didn't request, so double-check and 1371 * free it if necessary. 1372 */ 1373 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1374 kmem_free((caddr_t)vsec.vsa_aclentp, 1375 vsec.vsa_aclcnt * sizeof (aclent_t)); 1376 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1377 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1378 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1379 } 1380 } 1381 1382 /* 1383 * In general we want to generate EROFS if the file system is 1384 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1385 * documents the open system call, and it says that O_CREAT has no 1386 * effect if the file already exists. Bug 1119649 states 1387 * that open(path, O_CREAT, ...) fails when attempting to open an 1388 * existing file on a read only file system. Thus, the first part 1389 * of the following if statement has 3 checks: 1390 * if the file exists && 1391 * it is being open with write access && 1392 * the file system is read only 1393 * then generate EROFS 1394 */ 1395 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1396 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1397 if (*vpp) 1398 VN_RELE(*vpp); 1399 error = EROFS; 1400 } else if (excl == NONEXCL && *vpp != NULL) { 1401 vnode_t *rvp; 1402 1403 /* 1404 * File already exists. If a mandatory lock has been 1405 * applied, return error. 1406 */ 1407 vp = *vpp; 1408 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1409 rvp = vp; 1410 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1411 nbl_start_crit(vp, RW_READER); 1412 in_crit = 1; 1413 } 1414 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1415 vattr.va_mask = AT_MODE|AT_SIZE; 1416 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) { 1417 goto out; 1418 } 1419 if (MANDLOCK(vp, vattr.va_mode)) { 1420 error = EAGAIN; 1421 goto out; 1422 } 1423 /* 1424 * File cannot be truncated if non-blocking mandatory 1425 * locks are currently on the file. 1426 */ 1427 if ((vap->va_mask & AT_SIZE) && in_crit) { 1428 u_offset_t offset; 1429 ssize_t length; 1430 1431 offset = vap->va_size > vattr.va_size ? 1432 vattr.va_size : vap->va_size; 1433 length = vap->va_size > vattr.va_size ? 1434 vap->va_size - vattr.va_size : 1435 vattr.va_size - vap->va_size; 1436 if (nbl_conflict(vp, NBL_WRITE, offset, 1437 length, 0, NULL)) { 1438 error = EACCES; 1439 goto out; 1440 } 1441 } 1442 } 1443 1444 /* 1445 * If the file is the root of a VFS, we've crossed a 1446 * mount point and the "containing" directory that we 1447 * acquired above (dvp) is irrelevant because it's in 1448 * a different file system. We apply VOP_CREATE to the 1449 * target itself instead of to the containing directory 1450 * and supply a null path name to indicate (conventionally) 1451 * the node itself as the "component" of interest. 1452 * 1453 * The intercession of the file system is necessary to 1454 * ensure that the appropriate permission checks are 1455 * done. 1456 */ 1457 if (vp->v_flag & VROOT) { 1458 ASSERT(why != CRMKDIR); 1459 error = VOP_CREATE(vp, "", vap, excl, mode, vpp, 1460 CRED(), flag, NULL, NULL); 1461 /* 1462 * If the create succeeded, it will have created 1463 * a new reference to the vnode. Give up the 1464 * original reference. The assertion should not 1465 * get triggered because NBMAND locks only apply to 1466 * VREG files. And if in_crit is non-zero for some 1467 * reason, detect that here, rather than when we 1468 * deference a null vp. 1469 */ 1470 ASSERT(in_crit == 0); 1471 VN_RELE(vp); 1472 vp = NULL; 1473 goto out; 1474 } 1475 1476 /* 1477 * Large File API - non-large open (FOFFMAX flag not set) 1478 * of regular file fails if the file size exceeds MAXOFF32_T. 1479 */ 1480 if (why != CRMKDIR && 1481 !(flag & FOFFMAX) && 1482 (vp->v_type == VREG)) { 1483 vattr.va_mask = AT_SIZE; 1484 if ((error = VOP_GETATTR(vp, &vattr, 0, 1485 CRED(), NULL))) { 1486 goto out; 1487 } 1488 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1489 error = EOVERFLOW; 1490 goto out; 1491 } 1492 } 1493 } 1494 1495 if (error == 0) { 1496 /* 1497 * Call mkdir() if specified, otherwise create(). 1498 */ 1499 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1500 1501 if (why == CRMKDIR) 1502 /* 1503 * N.B., if vn_createat() ever requests 1504 * case-insensitive behavior then it will need 1505 * to be passed to VOP_MKDIR(). VOP_CREATE() 1506 * will already get it via "flag" 1507 */ 1508 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(), 1509 NULL, 0, NULL); 1510 else if (!must_be_dir) 1511 error = VOP_CREATE(dvp, pn.pn_path, vap, 1512 excl, mode, vpp, CRED(), flag, NULL, NULL); 1513 else 1514 error = ENOTDIR; 1515 } 1516 1517 out: 1518 1519 if (audit_active) 1520 audit_vncreate_finish(*vpp, error); 1521 if (in_crit) { 1522 nbl_end_crit(vp); 1523 in_crit = 0; 1524 } 1525 if (vp != NULL) { 1526 VN_RELE(vp); 1527 vp = NULL; 1528 } 1529 pn_free(&pn); 1530 VN_RELE(dvp); 1531 /* 1532 * The following clause was added to handle a problem 1533 * with NFS consistency. It is possible that a lookup 1534 * of the file to be created succeeded, but the file 1535 * itself doesn't actually exist on the server. This 1536 * is chiefly due to the DNLC containing an entry for 1537 * the file which has been removed on the server. In 1538 * this case, we just start over. If there was some 1539 * other cause for the ESTALE error, then the lookup 1540 * of the file will fail and the error will be returned 1541 * above instead of looping around from here. 1542 */ 1543 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1544 goto top; 1545 return (error); 1546 } 1547 1548 int 1549 vn_link(char *from, char *to, enum uio_seg seg) 1550 { 1551 struct vnode *fvp; /* from vnode ptr */ 1552 struct vnode *tdvp; /* to directory vnode ptr */ 1553 struct pathname pn; 1554 int error; 1555 struct vattr vattr; 1556 dev_t fsid; 1557 int estale_retry = 0; 1558 1559 top: 1560 fvp = tdvp = NULL; 1561 if (error = pn_get(to, seg, &pn)) 1562 return (error); 1563 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1564 goto out; 1565 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1566 goto out; 1567 /* 1568 * Make sure both source vnode and target directory vnode are 1569 * in the same vfs and that it is writeable. 1570 */ 1571 vattr.va_mask = AT_FSID; 1572 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL)) 1573 goto out; 1574 fsid = vattr.va_fsid; 1575 vattr.va_mask = AT_FSID; 1576 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL)) 1577 goto out; 1578 if (fsid != vattr.va_fsid) { 1579 error = EXDEV; 1580 goto out; 1581 } 1582 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1583 error = EROFS; 1584 goto out; 1585 } 1586 /* 1587 * Do the link. 1588 */ 1589 (void) pn_fixslash(&pn); 1590 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0); 1591 out: 1592 pn_free(&pn); 1593 if (fvp) 1594 VN_RELE(fvp); 1595 if (tdvp) 1596 VN_RELE(tdvp); 1597 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1598 goto top; 1599 return (error); 1600 } 1601 1602 int 1603 vn_rename(char *from, char *to, enum uio_seg seg) 1604 { 1605 return (vn_renameat(NULL, from, NULL, to, seg)); 1606 } 1607 1608 int 1609 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1610 char *tname, enum uio_seg seg) 1611 { 1612 int error; 1613 struct vattr vattr; 1614 struct pathname fpn; /* from pathname */ 1615 struct pathname tpn; /* to pathname */ 1616 dev_t fsid; 1617 int in_crit_src, in_crit_targ; 1618 vnode_t *fromvp, *fvp; 1619 vnode_t *tovp, *targvp; 1620 int estale_retry = 0; 1621 1622 top: 1623 fvp = fromvp = tovp = targvp = NULL; 1624 in_crit_src = in_crit_targ = 0; 1625 /* 1626 * Get to and from pathnames. 1627 */ 1628 if (error = pn_get(fname, seg, &fpn)) 1629 return (error); 1630 if (error = pn_get(tname, seg, &tpn)) { 1631 pn_free(&fpn); 1632 return (error); 1633 } 1634 1635 /* 1636 * First we need to resolve the correct directories 1637 * The passed in directories may only be a starting point, 1638 * but we need the real directories the file(s) live in. 1639 * For example the fname may be something like usr/lib/sparc 1640 * and we were passed in the / directory, but we need to 1641 * use the lib directory for the rename. 1642 */ 1643 1644 if (audit_active) 1645 audit_setfsat_path(1); 1646 /* 1647 * Lookup to and from directories. 1648 */ 1649 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1650 goto out; 1651 } 1652 1653 /* 1654 * Make sure there is an entry. 1655 */ 1656 if (fvp == NULL) { 1657 error = ENOENT; 1658 goto out; 1659 } 1660 1661 if (audit_active) 1662 audit_setfsat_path(3); 1663 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) { 1664 goto out; 1665 } 1666 1667 /* 1668 * Make sure both the from vnode directory and the to directory 1669 * are in the same vfs and the to directory is writable. 1670 * We check fsid's, not vfs pointers, so loopback fs works. 1671 */ 1672 if (fromvp != tovp) { 1673 vattr.va_mask = AT_FSID; 1674 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL)) 1675 goto out; 1676 fsid = vattr.va_fsid; 1677 vattr.va_mask = AT_FSID; 1678 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL)) 1679 goto out; 1680 if (fsid != vattr.va_fsid) { 1681 error = EXDEV; 1682 goto out; 1683 } 1684 } 1685 1686 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1687 error = EROFS; 1688 goto out; 1689 } 1690 1691 if (targvp && (fvp != targvp)) { 1692 nbl_start_crit(targvp, RW_READER); 1693 in_crit_targ = 1; 1694 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) { 1695 error = EACCES; 1696 goto out; 1697 } 1698 } 1699 1700 if (nbl_need_check(fvp)) { 1701 nbl_start_crit(fvp, RW_READER); 1702 in_crit_src = 1; 1703 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) { 1704 error = EACCES; 1705 goto out; 1706 } 1707 } 1708 1709 /* 1710 * Do the rename. 1711 */ 1712 (void) pn_fixslash(&tpn); 1713 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(), 1714 NULL, 0); 1715 1716 out: 1717 pn_free(&fpn); 1718 pn_free(&tpn); 1719 if (in_crit_src) 1720 nbl_end_crit(fvp); 1721 if (in_crit_targ) 1722 nbl_end_crit(targvp); 1723 if (fromvp) 1724 VN_RELE(fromvp); 1725 if (tovp) 1726 VN_RELE(tovp); 1727 if (targvp) 1728 VN_RELE(targvp); 1729 if (fvp) 1730 VN_RELE(fvp); 1731 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1732 goto top; 1733 return (error); 1734 } 1735 1736 /* 1737 * Remove a file or directory. 1738 */ 1739 int 1740 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1741 { 1742 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1743 } 1744 1745 int 1746 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1747 { 1748 struct vnode *vp; /* entry vnode */ 1749 struct vnode *dvp; /* ptr to parent dir vnode */ 1750 struct vnode *coveredvp; 1751 struct pathname pn; /* name of entry */ 1752 enum vtype vtype; 1753 int error; 1754 struct vfs *vfsp; 1755 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1756 int in_crit = 0; 1757 int estale_retry = 0; 1758 1759 top: 1760 if (error = pn_get(fnamep, seg, &pn)) 1761 return (error); 1762 dvp = vp = NULL; 1763 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1764 pn_free(&pn); 1765 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1766 goto top; 1767 return (error); 1768 } 1769 1770 /* 1771 * Make sure there is an entry. 1772 */ 1773 if (vp == NULL) { 1774 error = ENOENT; 1775 goto out; 1776 } 1777 1778 vfsp = vp->v_vfsp; 1779 dvfsp = dvp->v_vfsp; 1780 1781 /* 1782 * If the named file is the root of a mounted filesystem, fail, 1783 * unless it's marked unlinkable. In that case, unmount the 1784 * filesystem and proceed to unlink the covered vnode. (If the 1785 * covered vnode is a directory, use rmdir instead of unlink, 1786 * to avoid file system corruption.) 1787 */ 1788 if (vp->v_flag & VROOT) { 1789 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { 1790 error = EBUSY; 1791 goto out; 1792 } 1793 1794 /* 1795 * Namefs specific code starts here. 1796 */ 1797 1798 if (dirflag == RMDIRECTORY) { 1799 /* 1800 * User called rmdir(2) on a file that has 1801 * been namefs mounted on top of. Since 1802 * namefs doesn't allow directories to 1803 * be mounted on other files we know 1804 * vp is not of type VDIR so fail to operation. 1805 */ 1806 error = ENOTDIR; 1807 goto out; 1808 } 1809 1810 /* 1811 * If VROOT is still set after grabbing vp->v_lock, 1812 * noone has finished nm_unmount so far and coveredvp 1813 * is valid. 1814 * If we manage to grab vn_vfswlock(coveredvp) before releasing 1815 * vp->v_lock, any race window is eliminated. 1816 */ 1817 1818 mutex_enter(&vp->v_lock); 1819 if ((vp->v_flag & VROOT) == 0) { 1820 /* Someone beat us to the unmount */ 1821 mutex_exit(&vp->v_lock); 1822 error = EBUSY; 1823 goto out; 1824 } 1825 vfsp = vp->v_vfsp; 1826 coveredvp = vfsp->vfs_vnodecovered; 1827 ASSERT(coveredvp); 1828 /* 1829 * Note: Implementation of vn_vfswlock shows that ordering of 1830 * v_lock / vn_vfswlock is not an issue here. 1831 */ 1832 error = vn_vfswlock(coveredvp); 1833 mutex_exit(&vp->v_lock); 1834 1835 if (error) 1836 goto out; 1837 1838 VN_HOLD(coveredvp); 1839 VN_RELE(vp); 1840 error = dounmount(vfsp, 0, CRED()); 1841 1842 /* 1843 * Unmounted the namefs file system; now get 1844 * the object it was mounted over. 1845 */ 1846 vp = coveredvp; 1847 /* 1848 * If namefs was mounted over a directory, then 1849 * we want to use rmdir() instead of unlink(). 1850 */ 1851 if (vp->v_type == VDIR) 1852 dirflag = RMDIRECTORY; 1853 1854 if (error) 1855 goto out; 1856 } 1857 1858 /* 1859 * Make sure filesystem is writeable. 1860 * We check the parent directory's vfs in case this is an lofs vnode. 1861 */ 1862 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1863 error = EROFS; 1864 goto out; 1865 } 1866 1867 vtype = vp->v_type; 1868 1869 /* 1870 * If there is the possibility of an nbmand share reservation, make 1871 * sure it's okay to remove the file. Keep a reference to the 1872 * vnode, so that we can exit the nbl critical region after 1873 * calling VOP_REMOVE. 1874 * If there is no possibility of an nbmand share reservation, 1875 * release the vnode reference now. Filesystems like NFS may 1876 * behave differently if there is an extra reference, so get rid of 1877 * this one. Fortunately, we can't have nbmand mounts on NFS 1878 * filesystems. 1879 */ 1880 if (nbl_need_check(vp)) { 1881 nbl_start_crit(vp, RW_READER); 1882 in_crit = 1; 1883 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) { 1884 error = EACCES; 1885 goto out; 1886 } 1887 } else { 1888 VN_RELE(vp); 1889 vp = NULL; 1890 } 1891 1892 if (dirflag == RMDIRECTORY) { 1893 /* 1894 * Caller is using rmdir(2), which can only be applied to 1895 * directories. 1896 */ 1897 if (vtype != VDIR) { 1898 error = ENOTDIR; 1899 } else { 1900 vnode_t *cwd; 1901 proc_t *pp = curproc; 1902 1903 mutex_enter(&pp->p_lock); 1904 cwd = PTOU(pp)->u_cdir; 1905 VN_HOLD(cwd); 1906 mutex_exit(&pp->p_lock); 1907 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(), 1908 NULL, 0); 1909 VN_RELE(cwd); 1910 } 1911 } else { 1912 /* 1913 * Unlink(2) can be applied to anything. 1914 */ 1915 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0); 1916 } 1917 1918 out: 1919 pn_free(&pn); 1920 if (in_crit) { 1921 nbl_end_crit(vp); 1922 in_crit = 0; 1923 } 1924 if (vp != NULL) 1925 VN_RELE(vp); 1926 if (dvp != NULL) 1927 VN_RELE(dvp); 1928 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1929 goto top; 1930 return (error); 1931 } 1932 1933 /* 1934 * Utility function to compare equality of vnodes. 1935 * Compare the underlying real vnodes, if there are underlying vnodes. 1936 * This is a more thorough comparison than the VN_CMP() macro provides. 1937 */ 1938 int 1939 vn_compare(vnode_t *vp1, vnode_t *vp2) 1940 { 1941 vnode_t *realvp; 1942 1943 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0) 1944 vp1 = realvp; 1945 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0) 1946 vp2 = realvp; 1947 return (VN_CMP(vp1, vp2)); 1948 } 1949 1950 /* 1951 * The number of locks to hash into. This value must be a power 1952 * of 2 minus 1 and should probably also be prime. 1953 */ 1954 #define NUM_BUCKETS 1023 1955 1956 struct vn_vfslocks_bucket { 1957 kmutex_t vb_lock; 1958 vn_vfslocks_entry_t *vb_list; 1959 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1960 }; 1961 1962 /* 1963 * Total number of buckets will be NUM_BUCKETS + 1 . 1964 */ 1965 1966 #pragma align 64(vn_vfslocks_buckets) 1967 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1968 1969 #define VN_VFSLOCKS_SHIFT 9 1970 1971 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1972 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1973 1974 /* 1975 * vn_vfslocks_getlock() uses an HASH scheme to generate 1976 * rwstlock using vfs/vnode pointer passed to it. 1977 * 1978 * vn_vfslocks_rele() releases a reference in the 1979 * HASH table which allows the entry allocated by 1980 * vn_vfslocks_getlock() to be freed at a later 1981 * stage when the refcount drops to zero. 1982 */ 1983 1984 vn_vfslocks_entry_t * 1985 vn_vfslocks_getlock(void *vfsvpptr) 1986 { 1987 struct vn_vfslocks_bucket *bp; 1988 vn_vfslocks_entry_t *vep; 1989 vn_vfslocks_entry_t *tvep; 1990 1991 ASSERT(vfsvpptr != NULL); 1992 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1993 1994 mutex_enter(&bp->vb_lock); 1995 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1996 if (vep->ve_vpvfs == vfsvpptr) { 1997 vep->ve_refcnt++; 1998 mutex_exit(&bp->vb_lock); 1999 return (vep); 2000 } 2001 } 2002 mutex_exit(&bp->vb_lock); 2003 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 2004 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 2005 vep->ve_vpvfs = (char *)vfsvpptr; 2006 vep->ve_refcnt = 1; 2007 mutex_enter(&bp->vb_lock); 2008 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 2009 if (tvep->ve_vpvfs == vfsvpptr) { 2010 tvep->ve_refcnt++; 2011 mutex_exit(&bp->vb_lock); 2012 2013 /* 2014 * There is already an entry in the hash 2015 * destroy what we just allocated. 2016 */ 2017 rwst_destroy(&vep->ve_lock); 2018 kmem_free(vep, sizeof (*vep)); 2019 return (tvep); 2020 } 2021 } 2022 vep->ve_next = bp->vb_list; 2023 bp->vb_list = vep; 2024 mutex_exit(&bp->vb_lock); 2025 return (vep); 2026 } 2027 2028 void 2029 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 2030 { 2031 struct vn_vfslocks_bucket *bp; 2032 vn_vfslocks_entry_t *vep; 2033 vn_vfslocks_entry_t *pvep; 2034 2035 ASSERT(vepent != NULL); 2036 ASSERT(vepent->ve_vpvfs != NULL); 2037 2038 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 2039 2040 mutex_enter(&bp->vb_lock); 2041 vepent->ve_refcnt--; 2042 2043 if ((int32_t)vepent->ve_refcnt < 0) 2044 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 2045 2046 if (vepent->ve_refcnt == 0) { 2047 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 2048 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 2049 if (bp->vb_list == vep) 2050 bp->vb_list = vep->ve_next; 2051 else { 2052 /* LINTED */ 2053 pvep->ve_next = vep->ve_next; 2054 } 2055 mutex_exit(&bp->vb_lock); 2056 rwst_destroy(&vep->ve_lock); 2057 kmem_free(vep, sizeof (*vep)); 2058 return; 2059 } 2060 pvep = vep; 2061 } 2062 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 2063 } 2064 mutex_exit(&bp->vb_lock); 2065 } 2066 2067 /* 2068 * vn_vfswlock_wait is used to implement a lock which is logically a writers 2069 * lock protecting the v_vfsmountedhere field. 2070 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 2071 * except that it blocks to acquire the lock VVFSLOCK. 2072 * 2073 * traverse() and routines re-implementing part of traverse (e.g. autofs) 2074 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 2075 * need the non-blocking version of the writers lock i.e. vn_vfswlock 2076 */ 2077 int 2078 vn_vfswlock_wait(vnode_t *vp) 2079 { 2080 int retval; 2081 vn_vfslocks_entry_t *vpvfsentry; 2082 ASSERT(vp != NULL); 2083 2084 vpvfsentry = vn_vfslocks_getlock(vp); 2085 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 2086 2087 if (retval == EINTR) { 2088 vn_vfslocks_rele(vpvfsentry); 2089 return (EINTR); 2090 } 2091 return (retval); 2092 } 2093 2094 int 2095 vn_vfsrlock_wait(vnode_t *vp) 2096 { 2097 int retval; 2098 vn_vfslocks_entry_t *vpvfsentry; 2099 ASSERT(vp != NULL); 2100 2101 vpvfsentry = vn_vfslocks_getlock(vp); 2102 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 2103 2104 if (retval == EINTR) { 2105 vn_vfslocks_rele(vpvfsentry); 2106 return (EINTR); 2107 } 2108 2109 return (retval); 2110 } 2111 2112 2113 /* 2114 * vn_vfswlock is used to implement a lock which is logically a writers lock 2115 * protecting the v_vfsmountedhere field. 2116 */ 2117 int 2118 vn_vfswlock(vnode_t *vp) 2119 { 2120 vn_vfslocks_entry_t *vpvfsentry; 2121 2122 /* 2123 * If vp is NULL then somebody is trying to lock the covered vnode 2124 * of /. (vfs_vnodecovered is NULL for /). This situation will 2125 * only happen when unmounting /. Since that operation will fail 2126 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2127 */ 2128 if (vp == NULL) 2129 return (EBUSY); 2130 2131 vpvfsentry = vn_vfslocks_getlock(vp); 2132 2133 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2134 return (0); 2135 2136 vn_vfslocks_rele(vpvfsentry); 2137 return (EBUSY); 2138 } 2139 2140 int 2141 vn_vfsrlock(vnode_t *vp) 2142 { 2143 vn_vfslocks_entry_t *vpvfsentry; 2144 2145 /* 2146 * If vp is NULL then somebody is trying to lock the covered vnode 2147 * of /. (vfs_vnodecovered is NULL for /). This situation will 2148 * only happen when unmounting /. Since that operation will fail 2149 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2150 */ 2151 if (vp == NULL) 2152 return (EBUSY); 2153 2154 vpvfsentry = vn_vfslocks_getlock(vp); 2155 2156 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2157 return (0); 2158 2159 vn_vfslocks_rele(vpvfsentry); 2160 return (EBUSY); 2161 } 2162 2163 void 2164 vn_vfsunlock(vnode_t *vp) 2165 { 2166 vn_vfslocks_entry_t *vpvfsentry; 2167 2168 /* 2169 * ve_refcnt needs to be decremented twice. 2170 * 1. To release refernce after a call to vn_vfslocks_getlock() 2171 * 2. To release the reference from the locking routines like 2172 * vn_vfsrlock/vn_vfswlock etc,. 2173 */ 2174 vpvfsentry = vn_vfslocks_getlock(vp); 2175 vn_vfslocks_rele(vpvfsentry); 2176 2177 rwst_exit(&vpvfsentry->ve_lock); 2178 vn_vfslocks_rele(vpvfsentry); 2179 } 2180 2181 int 2182 vn_vfswlock_held(vnode_t *vp) 2183 { 2184 int held; 2185 vn_vfslocks_entry_t *vpvfsentry; 2186 2187 ASSERT(vp != NULL); 2188 2189 vpvfsentry = vn_vfslocks_getlock(vp); 2190 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2191 2192 vn_vfslocks_rele(vpvfsentry); 2193 return (held); 2194 } 2195 2196 2197 int 2198 vn_make_ops( 2199 const char *name, /* Name of file system */ 2200 const fs_operation_def_t *templ, /* Operation specification */ 2201 vnodeops_t **actual) /* Return the vnodeops */ 2202 { 2203 int unused_ops; 2204 int error; 2205 2206 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 2207 2208 (*actual)->vnop_name = name; 2209 2210 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 2211 if (error) { 2212 kmem_free(*actual, sizeof (vnodeops_t)); 2213 } 2214 2215 #if DEBUG 2216 if (unused_ops != 0) 2217 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 2218 "but not used", name, unused_ops); 2219 #endif 2220 2221 return (error); 2222 } 2223 2224 /* 2225 * Free the vnodeops created as a result of vn_make_ops() 2226 */ 2227 void 2228 vn_freevnodeops(vnodeops_t *vnops) 2229 { 2230 kmem_free(vnops, sizeof (vnodeops_t)); 2231 } 2232 2233 /* 2234 * Vnode cache. 2235 */ 2236 2237 /* ARGSUSED */ 2238 static int 2239 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 2240 { 2241 struct vnode *vp; 2242 2243 vp = buf; 2244 2245 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 2246 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL); 2247 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 2248 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 2249 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2250 vp->v_path = NULL; 2251 vp->v_mpssdata = NULL; 2252 vp->v_vsd = NULL; 2253 vp->v_fopdata = NULL; 2254 2255 return (0); 2256 } 2257 2258 /* ARGSUSED */ 2259 static void 2260 vn_cache_destructor(void *buf, void *cdrarg) 2261 { 2262 struct vnode *vp; 2263 2264 vp = buf; 2265 2266 rw_destroy(&vp->v_nbllock); 2267 cv_destroy(&vp->v_cv); 2268 mutex_destroy(&vp->v_vsd_lock); 2269 mutex_destroy(&vp->v_lock); 2270 } 2271 2272 void 2273 vn_create_cache(void) 2274 { 2275 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2276 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2277 NULL, 0); 2278 } 2279 2280 void 2281 vn_destroy_cache(void) 2282 { 2283 kmem_cache_destroy(vn_cache); 2284 } 2285 2286 /* 2287 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2288 * cached by the file system and vnodes remain associated. 2289 */ 2290 void 2291 vn_recycle(vnode_t *vp) 2292 { 2293 ASSERT(vp->v_pages == NULL); 2294 2295 /* 2296 * XXX - This really belongs in vn_reinit(), but we have some issues 2297 * with the counts. Best to have it here for clean initialization. 2298 */ 2299 vp->v_rdcnt = 0; 2300 vp->v_wrcnt = 0; 2301 vp->v_mmap_read = 0; 2302 vp->v_mmap_write = 0; 2303 2304 /* 2305 * If FEM was in use, make sure everything gets cleaned up 2306 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2307 * constructor. 2308 */ 2309 if (vp->v_femhead) { 2310 /* XXX - There should be a free_femhead() that does all this */ 2311 ASSERT(vp->v_femhead->femh_list == NULL); 2312 mutex_destroy(&vp->v_femhead->femh_lock); 2313 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2314 vp->v_femhead = NULL; 2315 } 2316 if (vp->v_path) { 2317 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2318 vp->v_path = NULL; 2319 } 2320 2321 if (vp->v_fopdata != NULL) { 2322 free_fopdata(vp); 2323 } 2324 vp->v_mpssdata = NULL; 2325 vsd_free(vp); 2326 } 2327 2328 /* 2329 * Used to reset the vnode fields including those that are directly accessible 2330 * as well as those which require an accessor function. 2331 * 2332 * Does not initialize: 2333 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv 2334 * v_data (since FS-nodes and vnodes point to each other and should 2335 * be updated simultaneously) 2336 * v_op (in case someone needs to make a VOP call on this object) 2337 */ 2338 void 2339 vn_reinit(vnode_t *vp) 2340 { 2341 vp->v_count = 1; 2342 vp->v_count_dnlc = 0; 2343 vp->v_vfsp = NULL; 2344 vp->v_stream = NULL; 2345 vp->v_vfsmountedhere = NULL; 2346 vp->v_flag = 0; 2347 vp->v_type = VNON; 2348 vp->v_rdev = NODEV; 2349 2350 vp->v_filocks = NULL; 2351 vp->v_shrlocks = NULL; 2352 vp->v_pages = NULL; 2353 2354 vp->v_locality = NULL; 2355 vp->v_xattrdir = NULL; 2356 2357 /* Handles v_femhead, v_path, and the r/w/map counts */ 2358 vn_recycle(vp); 2359 } 2360 2361 vnode_t * 2362 vn_alloc(int kmflag) 2363 { 2364 vnode_t *vp; 2365 2366 vp = kmem_cache_alloc(vn_cache, kmflag); 2367 2368 if (vp != NULL) { 2369 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2370 vp->v_fopdata = NULL; 2371 vn_reinit(vp); 2372 } 2373 2374 return (vp); 2375 } 2376 2377 void 2378 vn_free(vnode_t *vp) 2379 { 2380 ASSERT(vp->v_shrlocks == NULL); 2381 ASSERT(vp->v_filocks == NULL); 2382 2383 /* 2384 * Some file systems call vn_free() with v_count of zero, 2385 * some with v_count of 1. In any case, the value should 2386 * never be anything else. 2387 */ 2388 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2389 ASSERT(vp->v_count_dnlc == 0); 2390 if (vp->v_path != NULL) { 2391 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2392 vp->v_path = NULL; 2393 } 2394 2395 /* If FEM was in use, make sure everything gets cleaned up */ 2396 if (vp->v_femhead) { 2397 /* XXX - There should be a free_femhead() that does all this */ 2398 ASSERT(vp->v_femhead->femh_list == NULL); 2399 mutex_destroy(&vp->v_femhead->femh_lock); 2400 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2401 vp->v_femhead = NULL; 2402 } 2403 2404 if (vp->v_fopdata != NULL) { 2405 free_fopdata(vp); 2406 } 2407 vp->v_mpssdata = NULL; 2408 vsd_free(vp); 2409 kmem_cache_free(vn_cache, vp); 2410 } 2411 2412 /* 2413 * vnode status changes, should define better states than 1, 0. 2414 */ 2415 void 2416 vn_reclaim(vnode_t *vp) 2417 { 2418 vfs_t *vfsp = vp->v_vfsp; 2419 2420 if (vfsp == NULL || 2421 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2422 return; 2423 } 2424 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2425 } 2426 2427 void 2428 vn_idle(vnode_t *vp) 2429 { 2430 vfs_t *vfsp = vp->v_vfsp; 2431 2432 if (vfsp == NULL || 2433 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2434 return; 2435 } 2436 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2437 } 2438 void 2439 vn_exists(vnode_t *vp) 2440 { 2441 vfs_t *vfsp = vp->v_vfsp; 2442 2443 if (vfsp == NULL || 2444 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2445 return; 2446 } 2447 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2448 } 2449 2450 void 2451 vn_invalid(vnode_t *vp) 2452 { 2453 vfs_t *vfsp = vp->v_vfsp; 2454 2455 if (vfsp == NULL || 2456 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2457 return; 2458 } 2459 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2460 } 2461 2462 /* Vnode event notification */ 2463 2464 int 2465 vnevent_support(vnode_t *vp, caller_context_t *ct) 2466 { 2467 if (vp == NULL) 2468 return (EINVAL); 2469 2470 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct)); 2471 } 2472 2473 void 2474 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2475 { 2476 if (vp == NULL || vp->v_femhead == NULL) { 2477 return; 2478 } 2479 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct); 2480 } 2481 2482 void 2483 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name, 2484 caller_context_t *ct) 2485 { 2486 if (vp == NULL || vp->v_femhead == NULL) { 2487 return; 2488 } 2489 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct); 2490 } 2491 2492 void 2493 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct) 2494 { 2495 if (vp == NULL || vp->v_femhead == NULL) { 2496 return; 2497 } 2498 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct); 2499 } 2500 2501 void 2502 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2503 { 2504 if (vp == NULL || vp->v_femhead == NULL) { 2505 return; 2506 } 2507 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct); 2508 } 2509 2510 void 2511 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2512 { 2513 if (vp == NULL || vp->v_femhead == NULL) { 2514 return; 2515 } 2516 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct); 2517 } 2518 2519 void 2520 vnevent_create(vnode_t *vp, caller_context_t *ct) 2521 { 2522 if (vp == NULL || vp->v_femhead == NULL) { 2523 return; 2524 } 2525 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct); 2526 } 2527 2528 void 2529 vnevent_link(vnode_t *vp, caller_context_t *ct) 2530 { 2531 if (vp == NULL || vp->v_femhead == NULL) { 2532 return; 2533 } 2534 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct); 2535 } 2536 2537 void 2538 vnevent_mountedover(vnode_t *vp, caller_context_t *ct) 2539 { 2540 if (vp == NULL || vp->v_femhead == NULL) { 2541 return; 2542 } 2543 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct); 2544 } 2545 2546 /* 2547 * Vnode accessors. 2548 */ 2549 2550 int 2551 vn_is_readonly(vnode_t *vp) 2552 { 2553 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2554 } 2555 2556 int 2557 vn_has_flocks(vnode_t *vp) 2558 { 2559 return (vp->v_filocks != NULL); 2560 } 2561 2562 int 2563 vn_has_mandatory_locks(vnode_t *vp, int mode) 2564 { 2565 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2566 } 2567 2568 int 2569 vn_has_cached_data(vnode_t *vp) 2570 { 2571 return (vp->v_pages != NULL); 2572 } 2573 2574 /* 2575 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2576 * zone_enter(2). 2577 */ 2578 int 2579 vn_can_change_zones(vnode_t *vp) 2580 { 2581 struct vfssw *vswp; 2582 int allow = 1; 2583 vnode_t *rvp; 2584 2585 if (nfs_global_client_only != 0) 2586 return (1); 2587 2588 /* 2589 * We always want to look at the underlying vnode if there is one. 2590 */ 2591 if (VOP_REALVP(vp, &rvp, NULL) != 0) 2592 rvp = vp; 2593 /* 2594 * Some pseudo filesystems (including doorfs) don't actually register 2595 * their vfsops_t, so the following may return NULL; we happily let 2596 * such vnodes switch zones. 2597 */ 2598 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2599 if (vswp != NULL) { 2600 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2601 allow = 0; 2602 vfs_unrefvfssw(vswp); 2603 } 2604 return (allow); 2605 } 2606 2607 /* 2608 * Return nonzero if the vnode is a mount point, zero if not. 2609 */ 2610 int 2611 vn_ismntpt(vnode_t *vp) 2612 { 2613 return (vp->v_vfsmountedhere != NULL); 2614 } 2615 2616 /* Retrieve the vfs (if any) mounted on this vnode */ 2617 vfs_t * 2618 vn_mountedvfs(vnode_t *vp) 2619 { 2620 return (vp->v_vfsmountedhere); 2621 } 2622 2623 /* 2624 * Return nonzero if the vnode is referenced by the dnlc, zero if not. 2625 */ 2626 int 2627 vn_in_dnlc(vnode_t *vp) 2628 { 2629 return (vp->v_count_dnlc > 0); 2630 } 2631 2632 /* 2633 * vn_has_other_opens() checks whether a particular file is opened by more than 2634 * just the caller and whether the open is for read and/or write. 2635 * This routine is for calling after the caller has already called VOP_OPEN() 2636 * and the caller wishes to know if they are the only one with it open for 2637 * the mode(s) specified. 2638 * 2639 * Vnode counts are only kept on regular files (v_type=VREG). 2640 */ 2641 int 2642 vn_has_other_opens( 2643 vnode_t *vp, 2644 v_mode_t mode) 2645 { 2646 2647 ASSERT(vp != NULL); 2648 2649 switch (mode) { 2650 case V_WRITE: 2651 if (vp->v_wrcnt > 1) 2652 return (V_TRUE); 2653 break; 2654 case V_RDORWR: 2655 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1)) 2656 return (V_TRUE); 2657 break; 2658 case V_RDANDWR: 2659 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1)) 2660 return (V_TRUE); 2661 break; 2662 case V_READ: 2663 if (vp->v_rdcnt > 1) 2664 return (V_TRUE); 2665 break; 2666 } 2667 2668 return (V_FALSE); 2669 } 2670 2671 /* 2672 * vn_is_opened() checks whether a particular file is opened and 2673 * whether the open is for read and/or write. 2674 * 2675 * Vnode counts are only kept on regular files (v_type=VREG). 2676 */ 2677 int 2678 vn_is_opened( 2679 vnode_t *vp, 2680 v_mode_t mode) 2681 { 2682 2683 ASSERT(vp != NULL); 2684 2685 switch (mode) { 2686 case V_WRITE: 2687 if (vp->v_wrcnt) 2688 return (V_TRUE); 2689 break; 2690 case V_RDANDWR: 2691 if (vp->v_rdcnt && vp->v_wrcnt) 2692 return (V_TRUE); 2693 break; 2694 case V_RDORWR: 2695 if (vp->v_rdcnt || vp->v_wrcnt) 2696 return (V_TRUE); 2697 break; 2698 case V_READ: 2699 if (vp->v_rdcnt) 2700 return (V_TRUE); 2701 break; 2702 } 2703 2704 return (V_FALSE); 2705 } 2706 2707 /* 2708 * vn_is_mapped() checks whether a particular file is mapped and whether 2709 * the file is mapped read and/or write. 2710 */ 2711 int 2712 vn_is_mapped( 2713 vnode_t *vp, 2714 v_mode_t mode) 2715 { 2716 2717 ASSERT(vp != NULL); 2718 2719 #if !defined(_LP64) 2720 switch (mode) { 2721 /* 2722 * The atomic_add_64_nv functions force atomicity in the 2723 * case of 32 bit architectures. Otherwise the 64 bit values 2724 * require two fetches. The value of the fields may be 2725 * (potentially) changed between the first fetch and the 2726 * second 2727 */ 2728 case V_WRITE: 2729 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2730 return (V_TRUE); 2731 break; 2732 case V_RDANDWR: 2733 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2734 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2735 return (V_TRUE); 2736 break; 2737 case V_RDORWR: 2738 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2739 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2740 return (V_TRUE); 2741 break; 2742 case V_READ: 2743 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2744 return (V_TRUE); 2745 break; 2746 } 2747 #else 2748 switch (mode) { 2749 case V_WRITE: 2750 if (vp->v_mmap_write) 2751 return (V_TRUE); 2752 break; 2753 case V_RDANDWR: 2754 if (vp->v_mmap_read && vp->v_mmap_write) 2755 return (V_TRUE); 2756 break; 2757 case V_RDORWR: 2758 if (vp->v_mmap_read || vp->v_mmap_write) 2759 return (V_TRUE); 2760 break; 2761 case V_READ: 2762 if (vp->v_mmap_read) 2763 return (V_TRUE); 2764 break; 2765 } 2766 #endif 2767 2768 return (V_FALSE); 2769 } 2770 2771 /* 2772 * Set the operations vector for a vnode. 2773 * 2774 * FEM ensures that the v_femhead pointer is filled in before the 2775 * v_op pointer is changed. This means that if the v_femhead pointer 2776 * is NULL, and the v_op field hasn't changed since before which checked 2777 * the v_femhead pointer; then our update is ok - we are not racing with 2778 * FEM. 2779 */ 2780 void 2781 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2782 { 2783 vnodeops_t *op; 2784 2785 ASSERT(vp != NULL); 2786 ASSERT(vnodeops != NULL); 2787 2788 op = vp->v_op; 2789 membar_consumer(); 2790 /* 2791 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2792 * compare-and-swap on vp->v_op. If either fails, then FEM is 2793 * in effect on the vnode and we need to have FEM deal with it. 2794 */ 2795 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2796 fem_setvnops(vp, vnodeops); 2797 } 2798 } 2799 2800 /* 2801 * Retrieve the operations vector for a vnode 2802 * As with vn_setops(above); make sure we aren't racing with FEM. 2803 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2804 * make sense to the callers of this routine. 2805 */ 2806 vnodeops_t * 2807 vn_getops(vnode_t *vp) 2808 { 2809 vnodeops_t *op; 2810 2811 ASSERT(vp != NULL); 2812 2813 op = vp->v_op; 2814 membar_consumer(); 2815 if (vp->v_femhead == NULL && op == vp->v_op) { 2816 return (op); 2817 } else { 2818 return (fem_getvnops(vp)); 2819 } 2820 } 2821 2822 /* 2823 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2824 * Returns zero (0) if not. 2825 */ 2826 int 2827 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2828 { 2829 return (vn_getops(vp) == vnodeops); 2830 } 2831 2832 /* 2833 * Returns non-zero (1) if the specified operation matches the 2834 * corresponding operation for that the vnode. 2835 * Returns zero (0) if not. 2836 */ 2837 2838 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2839 2840 int 2841 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2842 { 2843 const fs_operation_trans_def_t *otdp; 2844 fs_generic_func_p *loc = NULL; 2845 vnodeops_t *vop = vn_getops(vp); 2846 2847 ASSERT(vopname != NULL); 2848 2849 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2850 if (MATCHNAME(otdp->name, vopname)) { 2851 loc = (fs_generic_func_p *) 2852 ((char *)(vop) + otdp->offset); 2853 break; 2854 } 2855 } 2856 2857 return ((loc != NULL) && (*loc == funcp)); 2858 } 2859 2860 /* 2861 * fs_new_caller_id() needs to return a unique ID on a given local system. 2862 * The IDs do not need to survive across reboots. These are primarily 2863 * used so that (FEM) monitors can detect particular callers (such as 2864 * the NFS server) to a given vnode/vfs operation. 2865 */ 2866 u_longlong_t 2867 fs_new_caller_id() 2868 { 2869 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2870 2871 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2872 } 2873 2874 /* 2875 * Given a starting vnode and a path, updates the path in the target vnode in 2876 * a safe manner. If the vnode already has path information embedded, then the 2877 * cached path is left untouched. 2878 */ 2879 2880 size_t max_vnode_path = 4 * MAXPATHLEN; 2881 2882 void 2883 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2884 const char *path, size_t plen) 2885 { 2886 char *rpath; 2887 vnode_t *base; 2888 size_t rpathlen, rpathalloc; 2889 int doslash = 1; 2890 2891 if (*path == '/') { 2892 base = rootvp; 2893 path++; 2894 plen--; 2895 } else { 2896 base = startvp; 2897 } 2898 2899 /* 2900 * We cannot grab base->v_lock while we hold vp->v_lock because of 2901 * the potential for deadlock. 2902 */ 2903 mutex_enter(&base->v_lock); 2904 if (base->v_path == NULL) { 2905 mutex_exit(&base->v_lock); 2906 return; 2907 } 2908 2909 rpathlen = strlen(base->v_path); 2910 rpathalloc = rpathlen + plen + 1; 2911 /* Avoid adding a slash if there's already one there */ 2912 if (base->v_path[rpathlen-1] == '/') 2913 doslash = 0; 2914 else 2915 rpathalloc++; 2916 2917 /* 2918 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2919 * so we must do this dance. If, by chance, something changes the path, 2920 * just give up since there is no real harm. 2921 */ 2922 mutex_exit(&base->v_lock); 2923 2924 /* Paths should stay within reason */ 2925 if (rpathalloc > max_vnode_path) 2926 return; 2927 2928 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2929 2930 mutex_enter(&base->v_lock); 2931 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2932 mutex_exit(&base->v_lock); 2933 kmem_free(rpath, rpathalloc); 2934 return; 2935 } 2936 bcopy(base->v_path, rpath, rpathlen); 2937 mutex_exit(&base->v_lock); 2938 2939 if (doslash) 2940 rpath[rpathlen++] = '/'; 2941 bcopy(path, rpath + rpathlen, plen); 2942 rpath[rpathlen + plen] = '\0'; 2943 2944 mutex_enter(&vp->v_lock); 2945 if (vp->v_path != NULL) { 2946 mutex_exit(&vp->v_lock); 2947 kmem_free(rpath, rpathalloc); 2948 } else { 2949 vp->v_path = rpath; 2950 mutex_exit(&vp->v_lock); 2951 } 2952 } 2953 2954 /* 2955 * Sets the path to the vnode to be the given string, regardless of current 2956 * context. The string must be a complete path from rootdir. This is only used 2957 * by fsop_root() for setting the path based on the mountpoint. 2958 */ 2959 void 2960 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2961 { 2962 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2963 2964 mutex_enter(&vp->v_lock); 2965 if (vp->v_path != NULL) { 2966 mutex_exit(&vp->v_lock); 2967 kmem_free(buf, len + 1); 2968 return; 2969 } 2970 2971 vp->v_path = buf; 2972 bcopy(str, vp->v_path, len); 2973 vp->v_path[len] = '\0'; 2974 2975 mutex_exit(&vp->v_lock); 2976 } 2977 2978 /* 2979 * Called from within filesystem's vop_rename() to handle renames once the 2980 * target vnode is available. 2981 */ 2982 void 2983 vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len) 2984 { 2985 char *tmp; 2986 2987 mutex_enter(&vp->v_lock); 2988 tmp = vp->v_path; 2989 vp->v_path = NULL; 2990 mutex_exit(&vp->v_lock); 2991 vn_setpath(rootdir, dvp, vp, nm, len); 2992 if (tmp != NULL) 2993 kmem_free(tmp, strlen(tmp) + 1); 2994 } 2995 2996 /* 2997 * Similar to vn_setpath_str(), this function sets the path of the destination 2998 * vnode to the be the same as the source vnode. 2999 */ 3000 void 3001 vn_copypath(struct vnode *src, struct vnode *dst) 3002 { 3003 char *buf; 3004 int alloc; 3005 3006 mutex_enter(&src->v_lock); 3007 if (src->v_path == NULL) { 3008 mutex_exit(&src->v_lock); 3009 return; 3010 } 3011 alloc = strlen(src->v_path) + 1; 3012 3013 /* avoid kmem_alloc() with lock held */ 3014 mutex_exit(&src->v_lock); 3015 buf = kmem_alloc(alloc, KM_SLEEP); 3016 mutex_enter(&src->v_lock); 3017 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 3018 mutex_exit(&src->v_lock); 3019 kmem_free(buf, alloc); 3020 return; 3021 } 3022 bcopy(src->v_path, buf, alloc); 3023 mutex_exit(&src->v_lock); 3024 3025 mutex_enter(&dst->v_lock); 3026 if (dst->v_path != NULL) { 3027 mutex_exit(&dst->v_lock); 3028 kmem_free(buf, alloc); 3029 return; 3030 } 3031 dst->v_path = buf; 3032 mutex_exit(&dst->v_lock); 3033 } 3034 3035 /* 3036 * XXX Private interface for segvn routines that handle vnode 3037 * large page segments. 3038 * 3039 * return 1 if vp's file system VOP_PAGEIO() implementation 3040 * can be safely used instead of VOP_GETPAGE() for handling 3041 * pagefaults against regular non swap files. VOP_PAGEIO() 3042 * interface is considered safe here if its implementation 3043 * is very close to VOP_GETPAGE() implementation. 3044 * e.g. It zero's out the part of the page beyond EOF. Doesn't 3045 * panic if there're file holes but instead returns an error. 3046 * Doesn't assume file won't be changed by user writes, etc. 3047 * 3048 * return 0 otherwise. 3049 * 3050 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 3051 */ 3052 int 3053 vn_vmpss_usepageio(vnode_t *vp) 3054 { 3055 vfs_t *vfsp = vp->v_vfsp; 3056 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 3057 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 3058 char **fsok = pageio_ok_fss; 3059 3060 if (fsname == NULL) { 3061 return (0); 3062 } 3063 3064 for (; *fsok; fsok++) { 3065 if (strcmp(*fsok, fsname) == 0) { 3066 return (1); 3067 } 3068 } 3069 return (0); 3070 } 3071 3072 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 3073 3074 int 3075 fop_open( 3076 vnode_t **vpp, 3077 int mode, 3078 cred_t *cr, 3079 caller_context_t *ct) 3080 { 3081 int ret; 3082 vnode_t *vp = *vpp; 3083 3084 VN_HOLD(vp); 3085 /* 3086 * Adding to the vnode counts before calling open 3087 * avoids the need for a mutex. It circumvents a race 3088 * condition where a query made on the vnode counts results in a 3089 * false negative. The inquirer goes away believing the file is 3090 * not open when there is an open on the file already under way. 3091 * 3092 * The counts are meant to prevent NFS from granting a delegation 3093 * when it would be dangerous to do so. 3094 * 3095 * The vnode counts are only kept on regular files 3096 */ 3097 if ((*vpp)->v_type == VREG) { 3098 if (mode & FREAD) 3099 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3100 if (mode & FWRITE) 3101 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3102 } 3103 3104 VOPXID_MAP_CR(vp, cr); 3105 3106 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct); 3107 3108 if (ret) { 3109 /* 3110 * Use the saved vp just in case the vnode ptr got trashed 3111 * by the error. 3112 */ 3113 VOPSTATS_UPDATE(vp, open); 3114 if ((vp->v_type == VREG) && (mode & FREAD)) 3115 atomic_add_32(&(vp->v_rdcnt), -1); 3116 if ((vp->v_type == VREG) && (mode & FWRITE)) 3117 atomic_add_32(&(vp->v_wrcnt), -1); 3118 } else { 3119 /* 3120 * Some filesystems will return a different vnode, 3121 * but the same path was still used to open it. 3122 * So if we do change the vnode and need to 3123 * copy over the path, do so here, rather than special 3124 * casing each filesystem. Adjust the vnode counts to 3125 * reflect the vnode switch. 3126 */ 3127 VOPSTATS_UPDATE(*vpp, open); 3128 if (*vpp != vp && *vpp != NULL) { 3129 vn_copypath(vp, *vpp); 3130 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 3131 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3132 if ((vp->v_type == VREG) && (mode & FREAD)) 3133 atomic_add_32(&(vp->v_rdcnt), -1); 3134 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 3135 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3136 if ((vp->v_type == VREG) && (mode & FWRITE)) 3137 atomic_add_32(&(vp->v_wrcnt), -1); 3138 } 3139 } 3140 VN_RELE(vp); 3141 return (ret); 3142 } 3143 3144 int 3145 fop_close( 3146 vnode_t *vp, 3147 int flag, 3148 int count, 3149 offset_t offset, 3150 cred_t *cr, 3151 caller_context_t *ct) 3152 { 3153 int err; 3154 3155 VOPXID_MAP_CR(vp, cr); 3156 3157 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct); 3158 VOPSTATS_UPDATE(vp, close); 3159 /* 3160 * Check passed in count to handle possible dups. Vnode counts are only 3161 * kept on regular files 3162 */ 3163 if ((vp->v_type == VREG) && (count == 1)) { 3164 if (flag & FREAD) { 3165 ASSERT(vp->v_rdcnt > 0); 3166 atomic_add_32(&(vp->v_rdcnt), -1); 3167 } 3168 if (flag & FWRITE) { 3169 ASSERT(vp->v_wrcnt > 0); 3170 atomic_add_32(&(vp->v_wrcnt), -1); 3171 } 3172 } 3173 return (err); 3174 } 3175 3176 int 3177 fop_read( 3178 vnode_t *vp, 3179 uio_t *uiop, 3180 int ioflag, 3181 cred_t *cr, 3182 caller_context_t *ct) 3183 { 3184 int err; 3185 ssize_t resid_start = uiop->uio_resid; 3186 3187 VOPXID_MAP_CR(vp, cr); 3188 3189 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 3190 VOPSTATS_UPDATE_IO(vp, read, 3191 read_bytes, (resid_start - uiop->uio_resid)); 3192 return (err); 3193 } 3194 3195 int 3196 fop_write( 3197 vnode_t *vp, 3198 uio_t *uiop, 3199 int ioflag, 3200 cred_t *cr, 3201 caller_context_t *ct) 3202 { 3203 int err; 3204 ssize_t resid_start = uiop->uio_resid; 3205 3206 VOPXID_MAP_CR(vp, cr); 3207 3208 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 3209 VOPSTATS_UPDATE_IO(vp, write, 3210 write_bytes, (resid_start - uiop->uio_resid)); 3211 return (err); 3212 } 3213 3214 int 3215 fop_ioctl( 3216 vnode_t *vp, 3217 int cmd, 3218 intptr_t arg, 3219 int flag, 3220 cred_t *cr, 3221 int *rvalp, 3222 caller_context_t *ct) 3223 { 3224 int err; 3225 3226 VOPXID_MAP_CR(vp, cr); 3227 3228 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct); 3229 VOPSTATS_UPDATE(vp, ioctl); 3230 return (err); 3231 } 3232 3233 int 3234 fop_setfl( 3235 vnode_t *vp, 3236 int oflags, 3237 int nflags, 3238 cred_t *cr, 3239 caller_context_t *ct) 3240 { 3241 int err; 3242 3243 VOPXID_MAP_CR(vp, cr); 3244 3245 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct); 3246 VOPSTATS_UPDATE(vp, setfl); 3247 return (err); 3248 } 3249 3250 int 3251 fop_getattr( 3252 vnode_t *vp, 3253 vattr_t *vap, 3254 int flags, 3255 cred_t *cr, 3256 caller_context_t *ct) 3257 { 3258 int err; 3259 3260 VOPXID_MAP_CR(vp, cr); 3261 3262 /* 3263 * If this file system doesn't understand the xvattr extensions 3264 * then turn off the xvattr bit. 3265 */ 3266 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3267 vap->va_mask &= ~AT_XVATTR; 3268 } 3269 3270 /* 3271 * We're only allowed to skip the ACL check iff we used a 32 bit 3272 * ACE mask with VOP_ACCESS() to determine permissions. 3273 */ 3274 if ((flags & ATTR_NOACLCHECK) && 3275 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3276 return (EINVAL); 3277 } 3278 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct); 3279 VOPSTATS_UPDATE(vp, getattr); 3280 return (err); 3281 } 3282 3283 int 3284 fop_setattr( 3285 vnode_t *vp, 3286 vattr_t *vap, 3287 int flags, 3288 cred_t *cr, 3289 caller_context_t *ct) 3290 { 3291 int err; 3292 3293 VOPXID_MAP_CR(vp, cr); 3294 3295 /* 3296 * If this file system doesn't understand the xvattr extensions 3297 * then turn off the xvattr bit. 3298 */ 3299 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3300 vap->va_mask &= ~AT_XVATTR; 3301 } 3302 3303 /* 3304 * We're only allowed to skip the ACL check iff we used a 32 bit 3305 * ACE mask with VOP_ACCESS() to determine permissions. 3306 */ 3307 if ((flags & ATTR_NOACLCHECK) && 3308 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3309 return (EINVAL); 3310 } 3311 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 3312 VOPSTATS_UPDATE(vp, setattr); 3313 return (err); 3314 } 3315 3316 int 3317 fop_access( 3318 vnode_t *vp, 3319 int mode, 3320 int flags, 3321 cred_t *cr, 3322 caller_context_t *ct) 3323 { 3324 int err; 3325 3326 if ((flags & V_ACE_MASK) && 3327 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3328 return (EINVAL); 3329 } 3330 3331 VOPXID_MAP_CR(vp, cr); 3332 3333 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct); 3334 VOPSTATS_UPDATE(vp, access); 3335 return (err); 3336 } 3337 3338 int 3339 fop_lookup( 3340 vnode_t *dvp, 3341 char *nm, 3342 vnode_t **vpp, 3343 pathname_t *pnp, 3344 int flags, 3345 vnode_t *rdir, 3346 cred_t *cr, 3347 caller_context_t *ct, 3348 int *deflags, /* Returned per-dirent flags */ 3349 pathname_t *ppnp) /* Returned case-preserved name in directory */ 3350 { 3351 int ret; 3352 3353 /* 3354 * If this file system doesn't support case-insensitive access 3355 * and said access is requested, fail quickly. It is required 3356 * that if the vfs supports case-insensitive lookup, it also 3357 * supports extended dirent flags. 3358 */ 3359 if (flags & FIGNORECASE && 3360 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3361 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3362 return (EINVAL); 3363 3364 VOPXID_MAP_CR(dvp, cr); 3365 3366 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) { 3367 ret = xattr_dir_lookup(dvp, vpp, flags, cr); 3368 } else { 3369 ret = (*(dvp)->v_op->vop_lookup) 3370 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp); 3371 } 3372 if (ret == 0 && *vpp) { 3373 VOPSTATS_UPDATE(*vpp, lookup); 3374 if ((*vpp)->v_path == NULL) { 3375 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 3376 } 3377 } 3378 3379 return (ret); 3380 } 3381 3382 int 3383 fop_create( 3384 vnode_t *dvp, 3385 char *name, 3386 vattr_t *vap, 3387 vcexcl_t excl, 3388 int mode, 3389 vnode_t **vpp, 3390 cred_t *cr, 3391 int flags, 3392 caller_context_t *ct, 3393 vsecattr_t *vsecp) /* ACL to set during create */ 3394 { 3395 int ret; 3396 3397 if (vsecp != NULL && 3398 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3399 return (EINVAL); 3400 } 3401 /* 3402 * If this file system doesn't support case-insensitive access 3403 * and said access is requested, fail quickly. 3404 */ 3405 if (flags & FIGNORECASE && 3406 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3407 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3408 return (EINVAL); 3409 3410 VOPXID_MAP_CR(dvp, cr); 3411 3412 ret = (*(dvp)->v_op->vop_create) 3413 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp); 3414 if (ret == 0 && *vpp) { 3415 VOPSTATS_UPDATE(*vpp, create); 3416 if ((*vpp)->v_path == NULL) { 3417 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3418 } 3419 } 3420 3421 return (ret); 3422 } 3423 3424 int 3425 fop_remove( 3426 vnode_t *dvp, 3427 char *nm, 3428 cred_t *cr, 3429 caller_context_t *ct, 3430 int flags) 3431 { 3432 int err; 3433 3434 /* 3435 * If this file system doesn't support case-insensitive access 3436 * and said access is requested, fail quickly. 3437 */ 3438 if (flags & FIGNORECASE && 3439 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3440 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3441 return (EINVAL); 3442 3443 VOPXID_MAP_CR(dvp, cr); 3444 3445 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags); 3446 VOPSTATS_UPDATE(dvp, remove); 3447 return (err); 3448 } 3449 3450 int 3451 fop_link( 3452 vnode_t *tdvp, 3453 vnode_t *svp, 3454 char *tnm, 3455 cred_t *cr, 3456 caller_context_t *ct, 3457 int flags) 3458 { 3459 int err; 3460 3461 /* 3462 * If the target file system doesn't support case-insensitive access 3463 * and said access is requested, fail quickly. 3464 */ 3465 if (flags & FIGNORECASE && 3466 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3467 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3468 return (EINVAL); 3469 3470 VOPXID_MAP_CR(tdvp, cr); 3471 3472 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags); 3473 VOPSTATS_UPDATE(tdvp, link); 3474 return (err); 3475 } 3476 3477 int 3478 fop_rename( 3479 vnode_t *sdvp, 3480 char *snm, 3481 vnode_t *tdvp, 3482 char *tnm, 3483 cred_t *cr, 3484 caller_context_t *ct, 3485 int flags) 3486 { 3487 int err; 3488 3489 /* 3490 * If the file system involved does not support 3491 * case-insensitive access and said access is requested, fail 3492 * quickly. 3493 */ 3494 if (flags & FIGNORECASE && 3495 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3496 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))) 3497 return (EINVAL); 3498 3499 VOPXID_MAP_CR(tdvp, cr); 3500 3501 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags); 3502 VOPSTATS_UPDATE(sdvp, rename); 3503 return (err); 3504 } 3505 3506 int 3507 fop_mkdir( 3508 vnode_t *dvp, 3509 char *dirname, 3510 vattr_t *vap, 3511 vnode_t **vpp, 3512 cred_t *cr, 3513 caller_context_t *ct, 3514 int flags, 3515 vsecattr_t *vsecp) /* ACL to set during create */ 3516 { 3517 int ret; 3518 3519 if (vsecp != NULL && 3520 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3521 return (EINVAL); 3522 } 3523 /* 3524 * If this file system doesn't support case-insensitive access 3525 * and said access is requested, fail quickly. 3526 */ 3527 if (flags & FIGNORECASE && 3528 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3529 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3530 return (EINVAL); 3531 3532 VOPXID_MAP_CR(dvp, cr); 3533 3534 ret = (*(dvp)->v_op->vop_mkdir) 3535 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp); 3536 if (ret == 0 && *vpp) { 3537 VOPSTATS_UPDATE(*vpp, mkdir); 3538 if ((*vpp)->v_path == NULL) { 3539 vn_setpath(rootdir, dvp, *vpp, dirname, 3540 strlen(dirname)); 3541 } 3542 } 3543 3544 return (ret); 3545 } 3546 3547 int 3548 fop_rmdir( 3549 vnode_t *dvp, 3550 char *nm, 3551 vnode_t *cdir, 3552 cred_t *cr, 3553 caller_context_t *ct, 3554 int flags) 3555 { 3556 int err; 3557 3558 /* 3559 * If this file system doesn't support case-insensitive access 3560 * and said access is requested, fail quickly. 3561 */ 3562 if (flags & FIGNORECASE && 3563 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3564 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3565 return (EINVAL); 3566 3567 VOPXID_MAP_CR(dvp, cr); 3568 3569 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags); 3570 VOPSTATS_UPDATE(dvp, rmdir); 3571 return (err); 3572 } 3573 3574 int 3575 fop_readdir( 3576 vnode_t *vp, 3577 uio_t *uiop, 3578 cred_t *cr, 3579 int *eofp, 3580 caller_context_t *ct, 3581 int flags) 3582 { 3583 int err; 3584 ssize_t resid_start = uiop->uio_resid; 3585 3586 /* 3587 * If this file system doesn't support retrieving directory 3588 * entry flags and said access is requested, fail quickly. 3589 */ 3590 if (flags & V_RDDIR_ENTFLAGS && 3591 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0) 3592 return (EINVAL); 3593 3594 VOPXID_MAP_CR(vp, cr); 3595 3596 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags); 3597 VOPSTATS_UPDATE_IO(vp, readdir, 3598 readdir_bytes, (resid_start - uiop->uio_resid)); 3599 return (err); 3600 } 3601 3602 int 3603 fop_symlink( 3604 vnode_t *dvp, 3605 char *linkname, 3606 vattr_t *vap, 3607 char *target, 3608 cred_t *cr, 3609 caller_context_t *ct, 3610 int flags) 3611 { 3612 int err; 3613 xvattr_t xvattr; 3614 3615 /* 3616 * If this file system doesn't support case-insensitive access 3617 * and said access is requested, fail quickly. 3618 */ 3619 if (flags & FIGNORECASE && 3620 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3621 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3622 return (EINVAL); 3623 3624 VOPXID_MAP_CR(dvp, cr); 3625 3626 /* check for reparse point */ 3627 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) && 3628 (strncmp(target, FS_REPARSE_TAG_STR, 3629 strlen(FS_REPARSE_TAG_STR)) == 0)) { 3630 if (!fs_reparse_mark(target, vap, &xvattr)) 3631 vap = (vattr_t *)&xvattr; 3632 } 3633 3634 err = (*(dvp)->v_op->vop_symlink) 3635 (dvp, linkname, vap, target, cr, ct, flags); 3636 VOPSTATS_UPDATE(dvp, symlink); 3637 return (err); 3638 } 3639 3640 int 3641 fop_readlink( 3642 vnode_t *vp, 3643 uio_t *uiop, 3644 cred_t *cr, 3645 caller_context_t *ct) 3646 { 3647 int err; 3648 3649 VOPXID_MAP_CR(vp, cr); 3650 3651 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct); 3652 VOPSTATS_UPDATE(vp, readlink); 3653 return (err); 3654 } 3655 3656 int 3657 fop_fsync( 3658 vnode_t *vp, 3659 int syncflag, 3660 cred_t *cr, 3661 caller_context_t *ct) 3662 { 3663 int err; 3664 3665 VOPXID_MAP_CR(vp, cr); 3666 3667 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct); 3668 VOPSTATS_UPDATE(vp, fsync); 3669 return (err); 3670 } 3671 3672 void 3673 fop_inactive( 3674 vnode_t *vp, 3675 cred_t *cr, 3676 caller_context_t *ct) 3677 { 3678 /* Need to update stats before vop call since we may lose the vnode */ 3679 VOPSTATS_UPDATE(vp, inactive); 3680 3681 VOPXID_MAP_CR(vp, cr); 3682 3683 (*(vp)->v_op->vop_inactive)(vp, cr, ct); 3684 } 3685 3686 int 3687 fop_fid( 3688 vnode_t *vp, 3689 fid_t *fidp, 3690 caller_context_t *ct) 3691 { 3692 int err; 3693 3694 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct); 3695 VOPSTATS_UPDATE(vp, fid); 3696 return (err); 3697 } 3698 3699 int 3700 fop_rwlock( 3701 vnode_t *vp, 3702 int write_lock, 3703 caller_context_t *ct) 3704 { 3705 int ret; 3706 3707 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3708 VOPSTATS_UPDATE(vp, rwlock); 3709 return (ret); 3710 } 3711 3712 void 3713 fop_rwunlock( 3714 vnode_t *vp, 3715 int write_lock, 3716 caller_context_t *ct) 3717 { 3718 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3719 VOPSTATS_UPDATE(vp, rwunlock); 3720 } 3721 3722 int 3723 fop_seek( 3724 vnode_t *vp, 3725 offset_t ooff, 3726 offset_t *noffp, 3727 caller_context_t *ct) 3728 { 3729 int err; 3730 3731 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct); 3732 VOPSTATS_UPDATE(vp, seek); 3733 return (err); 3734 } 3735 3736 int 3737 fop_cmp( 3738 vnode_t *vp1, 3739 vnode_t *vp2, 3740 caller_context_t *ct) 3741 { 3742 int err; 3743 3744 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct); 3745 VOPSTATS_UPDATE(vp1, cmp); 3746 return (err); 3747 } 3748 3749 int 3750 fop_frlock( 3751 vnode_t *vp, 3752 int cmd, 3753 flock64_t *bfp, 3754 int flag, 3755 offset_t offset, 3756 struct flk_callback *flk_cbp, 3757 cred_t *cr, 3758 caller_context_t *ct) 3759 { 3760 int err; 3761 3762 VOPXID_MAP_CR(vp, cr); 3763 3764 err = (*(vp)->v_op->vop_frlock) 3765 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3766 VOPSTATS_UPDATE(vp, frlock); 3767 return (err); 3768 } 3769 3770 int 3771 fop_space( 3772 vnode_t *vp, 3773 int cmd, 3774 flock64_t *bfp, 3775 int flag, 3776 offset_t offset, 3777 cred_t *cr, 3778 caller_context_t *ct) 3779 { 3780 int err; 3781 3782 VOPXID_MAP_CR(vp, cr); 3783 3784 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3785 VOPSTATS_UPDATE(vp, space); 3786 return (err); 3787 } 3788 3789 int 3790 fop_realvp( 3791 vnode_t *vp, 3792 vnode_t **vpp, 3793 caller_context_t *ct) 3794 { 3795 int err; 3796 3797 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct); 3798 VOPSTATS_UPDATE(vp, realvp); 3799 return (err); 3800 } 3801 3802 int 3803 fop_getpage( 3804 vnode_t *vp, 3805 offset_t off, 3806 size_t len, 3807 uint_t *protp, 3808 page_t **plarr, 3809 size_t plsz, 3810 struct seg *seg, 3811 caddr_t addr, 3812 enum seg_rw rw, 3813 cred_t *cr, 3814 caller_context_t *ct) 3815 { 3816 int err; 3817 3818 VOPXID_MAP_CR(vp, cr); 3819 3820 err = (*(vp)->v_op->vop_getpage) 3821 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct); 3822 VOPSTATS_UPDATE(vp, getpage); 3823 return (err); 3824 } 3825 3826 int 3827 fop_putpage( 3828 vnode_t *vp, 3829 offset_t off, 3830 size_t len, 3831 int flags, 3832 cred_t *cr, 3833 caller_context_t *ct) 3834 { 3835 int err; 3836 3837 VOPXID_MAP_CR(vp, cr); 3838 3839 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct); 3840 VOPSTATS_UPDATE(vp, putpage); 3841 return (err); 3842 } 3843 3844 int 3845 fop_map( 3846 vnode_t *vp, 3847 offset_t off, 3848 struct as *as, 3849 caddr_t *addrp, 3850 size_t len, 3851 uchar_t prot, 3852 uchar_t maxprot, 3853 uint_t flags, 3854 cred_t *cr, 3855 caller_context_t *ct) 3856 { 3857 int err; 3858 3859 VOPXID_MAP_CR(vp, cr); 3860 3861 err = (*(vp)->v_op->vop_map) 3862 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct); 3863 VOPSTATS_UPDATE(vp, map); 3864 return (err); 3865 } 3866 3867 int 3868 fop_addmap( 3869 vnode_t *vp, 3870 offset_t off, 3871 struct as *as, 3872 caddr_t addr, 3873 size_t len, 3874 uchar_t prot, 3875 uchar_t maxprot, 3876 uint_t flags, 3877 cred_t *cr, 3878 caller_context_t *ct) 3879 { 3880 int error; 3881 u_longlong_t delta; 3882 3883 VOPXID_MAP_CR(vp, cr); 3884 3885 error = (*(vp)->v_op->vop_addmap) 3886 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3887 3888 if ((!error) && (vp->v_type == VREG)) { 3889 delta = (u_longlong_t)btopr(len); 3890 /* 3891 * If file is declared MAP_PRIVATE, it can't be written back 3892 * even if open for write. Handle as read. 3893 */ 3894 if (flags & MAP_PRIVATE) { 3895 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3896 (int64_t)delta); 3897 } else { 3898 /* 3899 * atomic_add_64 forces the fetch of a 64 bit value to 3900 * be atomic on 32 bit machines 3901 */ 3902 if (maxprot & PROT_WRITE) 3903 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3904 (int64_t)delta); 3905 if (maxprot & PROT_READ) 3906 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3907 (int64_t)delta); 3908 if (maxprot & PROT_EXEC) 3909 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3910 (int64_t)delta); 3911 } 3912 } 3913 VOPSTATS_UPDATE(vp, addmap); 3914 return (error); 3915 } 3916 3917 int 3918 fop_delmap( 3919 vnode_t *vp, 3920 offset_t off, 3921 struct as *as, 3922 caddr_t addr, 3923 size_t len, 3924 uint_t prot, 3925 uint_t maxprot, 3926 uint_t flags, 3927 cred_t *cr, 3928 caller_context_t *ct) 3929 { 3930 int error; 3931 u_longlong_t delta; 3932 3933 VOPXID_MAP_CR(vp, cr); 3934 3935 error = (*(vp)->v_op->vop_delmap) 3936 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3937 3938 /* 3939 * NFS calls into delmap twice, the first time 3940 * it simply establishes a callback mechanism and returns EAGAIN 3941 * while the real work is being done upon the second invocation. 3942 * We have to detect this here and only decrement the counts upon 3943 * the second delmap request. 3944 */ 3945 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3946 3947 delta = (u_longlong_t)btopr(len); 3948 3949 if (flags & MAP_PRIVATE) { 3950 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3951 (int64_t)(-delta)); 3952 } else { 3953 /* 3954 * atomic_add_64 forces the fetch of a 64 bit value 3955 * to be atomic on 32 bit machines 3956 */ 3957 if (maxprot & PROT_WRITE) 3958 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3959 (int64_t)(-delta)); 3960 if (maxprot & PROT_READ) 3961 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3962 (int64_t)(-delta)); 3963 if (maxprot & PROT_EXEC) 3964 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3965 (int64_t)(-delta)); 3966 } 3967 } 3968 VOPSTATS_UPDATE(vp, delmap); 3969 return (error); 3970 } 3971 3972 3973 int 3974 fop_poll( 3975 vnode_t *vp, 3976 short events, 3977 int anyyet, 3978 short *reventsp, 3979 struct pollhead **phpp, 3980 caller_context_t *ct) 3981 { 3982 int err; 3983 3984 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct); 3985 VOPSTATS_UPDATE(vp, poll); 3986 return (err); 3987 } 3988 3989 int 3990 fop_dump( 3991 vnode_t *vp, 3992 caddr_t addr, 3993 offset_t lbdn, 3994 offset_t dblks, 3995 caller_context_t *ct) 3996 { 3997 int err; 3998 3999 /* ensure lbdn and dblks can be passed safely to bdev_dump */ 4000 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks)) 4001 return (EIO); 4002 4003 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct); 4004 VOPSTATS_UPDATE(vp, dump); 4005 return (err); 4006 } 4007 4008 int 4009 fop_pathconf( 4010 vnode_t *vp, 4011 int cmd, 4012 ulong_t *valp, 4013 cred_t *cr, 4014 caller_context_t *ct) 4015 { 4016 int err; 4017 4018 VOPXID_MAP_CR(vp, cr); 4019 4020 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct); 4021 VOPSTATS_UPDATE(vp, pathconf); 4022 return (err); 4023 } 4024 4025 int 4026 fop_pageio( 4027 vnode_t *vp, 4028 struct page *pp, 4029 u_offset_t io_off, 4030 size_t io_len, 4031 int flags, 4032 cred_t *cr, 4033 caller_context_t *ct) 4034 { 4035 int err; 4036 4037 VOPXID_MAP_CR(vp, cr); 4038 4039 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct); 4040 VOPSTATS_UPDATE(vp, pageio); 4041 return (err); 4042 } 4043 4044 int 4045 fop_dumpctl( 4046 vnode_t *vp, 4047 int action, 4048 offset_t *blkp, 4049 caller_context_t *ct) 4050 { 4051 int err; 4052 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct); 4053 VOPSTATS_UPDATE(vp, dumpctl); 4054 return (err); 4055 } 4056 4057 void 4058 fop_dispose( 4059 vnode_t *vp, 4060 page_t *pp, 4061 int flag, 4062 int dn, 4063 cred_t *cr, 4064 caller_context_t *ct) 4065 { 4066 /* Must do stats first since it's possible to lose the vnode */ 4067 VOPSTATS_UPDATE(vp, dispose); 4068 4069 VOPXID_MAP_CR(vp, cr); 4070 4071 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct); 4072 } 4073 4074 int 4075 fop_setsecattr( 4076 vnode_t *vp, 4077 vsecattr_t *vsap, 4078 int flag, 4079 cred_t *cr, 4080 caller_context_t *ct) 4081 { 4082 int err; 4083 4084 VOPXID_MAP_CR(vp, cr); 4085 4086 /* 4087 * We're only allowed to skip the ACL check iff we used a 32 bit 4088 * ACE mask with VOP_ACCESS() to determine permissions. 4089 */ 4090 if ((flag & ATTR_NOACLCHECK) && 4091 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4092 return (EINVAL); 4093 } 4094 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct); 4095 VOPSTATS_UPDATE(vp, setsecattr); 4096 return (err); 4097 } 4098 4099 int 4100 fop_getsecattr( 4101 vnode_t *vp, 4102 vsecattr_t *vsap, 4103 int flag, 4104 cred_t *cr, 4105 caller_context_t *ct) 4106 { 4107 int err; 4108 4109 /* 4110 * We're only allowed to skip the ACL check iff we used a 32 bit 4111 * ACE mask with VOP_ACCESS() to determine permissions. 4112 */ 4113 if ((flag & ATTR_NOACLCHECK) && 4114 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4115 return (EINVAL); 4116 } 4117 4118 VOPXID_MAP_CR(vp, cr); 4119 4120 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct); 4121 VOPSTATS_UPDATE(vp, getsecattr); 4122 return (err); 4123 } 4124 4125 int 4126 fop_shrlock( 4127 vnode_t *vp, 4128 int cmd, 4129 struct shrlock *shr, 4130 int flag, 4131 cred_t *cr, 4132 caller_context_t *ct) 4133 { 4134 int err; 4135 4136 VOPXID_MAP_CR(vp, cr); 4137 4138 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct); 4139 VOPSTATS_UPDATE(vp, shrlock); 4140 return (err); 4141 } 4142 4143 int 4144 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm, 4145 caller_context_t *ct) 4146 { 4147 int err; 4148 4149 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct); 4150 VOPSTATS_UPDATE(vp, vnevent); 4151 return (err); 4152 } 4153 4154 /* 4155 * Default destructor 4156 * Needed because NULL destructor means that the key is unused 4157 */ 4158 /* ARGSUSED */ 4159 void 4160 vsd_defaultdestructor(void *value) 4161 {} 4162 4163 /* 4164 * Create a key (index into per vnode array) 4165 * Locks out vsd_create, vsd_destroy, and vsd_free 4166 * May allocate memory with lock held 4167 */ 4168 void 4169 vsd_create(uint_t *keyp, void (*destructor)(void *)) 4170 { 4171 int i; 4172 uint_t nkeys; 4173 4174 /* 4175 * if key is allocated, do nothing 4176 */ 4177 mutex_enter(&vsd_lock); 4178 if (*keyp) { 4179 mutex_exit(&vsd_lock); 4180 return; 4181 } 4182 /* 4183 * find an unused key 4184 */ 4185 if (destructor == NULL) 4186 destructor = vsd_defaultdestructor; 4187 4188 for (i = 0; i < vsd_nkeys; ++i) 4189 if (vsd_destructor[i] == NULL) 4190 break; 4191 4192 /* 4193 * if no unused keys, increase the size of the destructor array 4194 */ 4195 if (i == vsd_nkeys) { 4196 if ((nkeys = (vsd_nkeys << 1)) == 0) 4197 nkeys = 1; 4198 vsd_destructor = 4199 (void (**)(void *))vsd_realloc((void *)vsd_destructor, 4200 (size_t)(vsd_nkeys * sizeof (void (*)(void *))), 4201 (size_t)(nkeys * sizeof (void (*)(void *)))); 4202 vsd_nkeys = nkeys; 4203 } 4204 4205 /* 4206 * allocate the next available unused key 4207 */ 4208 vsd_destructor[i] = destructor; 4209 *keyp = i + 1; 4210 4211 /* create vsd_list, if it doesn't exist */ 4212 if (vsd_list == NULL) { 4213 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 4214 list_create(vsd_list, sizeof (struct vsd_node), 4215 offsetof(struct vsd_node, vs_nodes)); 4216 } 4217 4218 mutex_exit(&vsd_lock); 4219 } 4220 4221 /* 4222 * Destroy a key 4223 * 4224 * Assumes that the caller is preventing vsd_set and vsd_get 4225 * Locks out vsd_create, vsd_destroy, and vsd_free 4226 * May free memory with lock held 4227 */ 4228 void 4229 vsd_destroy(uint_t *keyp) 4230 { 4231 uint_t key; 4232 struct vsd_node *vsd; 4233 4234 /* 4235 * protect the key namespace and our destructor lists 4236 */ 4237 mutex_enter(&vsd_lock); 4238 key = *keyp; 4239 *keyp = 0; 4240 4241 ASSERT(key <= vsd_nkeys); 4242 4243 /* 4244 * if the key is valid 4245 */ 4246 if (key != 0) { 4247 uint_t k = key - 1; 4248 /* 4249 * for every vnode with VSD, call key's destructor 4250 */ 4251 for (vsd = list_head(vsd_list); vsd != NULL; 4252 vsd = list_next(vsd_list, vsd)) { 4253 /* 4254 * no VSD for key in this vnode 4255 */ 4256 if (key > vsd->vs_nkeys) 4257 continue; 4258 /* 4259 * call destructor for key 4260 */ 4261 if (vsd->vs_value[k] && vsd_destructor[k]) 4262 (*vsd_destructor[k])(vsd->vs_value[k]); 4263 /* 4264 * reset value for key 4265 */ 4266 vsd->vs_value[k] = NULL; 4267 } 4268 /* 4269 * actually free the key (NULL destructor == unused) 4270 */ 4271 vsd_destructor[k] = NULL; 4272 } 4273 4274 mutex_exit(&vsd_lock); 4275 } 4276 4277 /* 4278 * Quickly return the per vnode value that was stored with the specified key 4279 * Assumes the caller is protecting key from vsd_create and vsd_destroy 4280 * Assumes the caller is holding v_vsd_lock to protect the vsd. 4281 */ 4282 void * 4283 vsd_get(vnode_t *vp, uint_t key) 4284 { 4285 struct vsd_node *vsd; 4286 4287 ASSERT(vp != NULL); 4288 ASSERT(mutex_owned(&vp->v_vsd_lock)); 4289 4290 vsd = vp->v_vsd; 4291 4292 if (key && vsd != NULL && key <= vsd->vs_nkeys) 4293 return (vsd->vs_value[key - 1]); 4294 return (NULL); 4295 } 4296 4297 /* 4298 * Set a per vnode value indexed with the specified key 4299 * Assumes the caller is holding v_vsd_lock to protect the vsd. 4300 */ 4301 int 4302 vsd_set(vnode_t *vp, uint_t key, void *value) 4303 { 4304 struct vsd_node *vsd; 4305 4306 ASSERT(vp != NULL); 4307 ASSERT(mutex_owned(&vp->v_vsd_lock)); 4308 4309 if (key == 0) 4310 return (EINVAL); 4311 4312 vsd = vp->v_vsd; 4313 if (vsd == NULL) 4314 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP); 4315 4316 /* 4317 * If the vsd was just allocated, vs_nkeys will be 0, so the following 4318 * code won't happen and we will continue down and allocate space for 4319 * the vs_value array. 4320 * If the caller is replacing one value with another, then it is up 4321 * to the caller to free/rele/destroy the previous value (if needed). 4322 */ 4323 if (key <= vsd->vs_nkeys) { 4324 vsd->vs_value[key - 1] = value; 4325 return (0); 4326 } 4327 4328 ASSERT(key <= vsd_nkeys); 4329 4330 if (vsd->vs_nkeys == 0) { 4331 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */ 4332 /* 4333 * Link onto list of all VSD nodes. 4334 */ 4335 list_insert_head(vsd_list, vsd); 4336 mutex_exit(&vsd_lock); 4337 } 4338 4339 /* 4340 * Allocate vnode local storage and set the value for key 4341 */ 4342 vsd->vs_value = vsd_realloc(vsd->vs_value, 4343 vsd->vs_nkeys * sizeof (void *), 4344 key * sizeof (void *)); 4345 vsd->vs_nkeys = key; 4346 vsd->vs_value[key - 1] = value; 4347 4348 return (0); 4349 } 4350 4351 /* 4352 * Called from vn_free() to run the destructor function for each vsd 4353 * Locks out vsd_create and vsd_destroy 4354 * Assumes that the destructor *DOES NOT* use vsd 4355 */ 4356 void 4357 vsd_free(vnode_t *vp) 4358 { 4359 int i; 4360 struct vsd_node *vsd = vp->v_vsd; 4361 4362 if (vsd == NULL) 4363 return; 4364 4365 if (vsd->vs_nkeys == 0) { 4366 kmem_free(vsd, sizeof (*vsd)); 4367 vp->v_vsd = NULL; 4368 return; 4369 } 4370 4371 /* 4372 * lock out vsd_create and vsd_destroy, call 4373 * the destructor, and mark the value as destroyed. 4374 */ 4375 mutex_enter(&vsd_lock); 4376 4377 for (i = 0; i < vsd->vs_nkeys; i++) { 4378 if (vsd->vs_value[i] && vsd_destructor[i]) 4379 (*vsd_destructor[i])(vsd->vs_value[i]); 4380 vsd->vs_value[i] = NULL; 4381 } 4382 4383 /* 4384 * remove from linked list of VSD nodes 4385 */ 4386 list_remove(vsd_list, vsd); 4387 4388 mutex_exit(&vsd_lock); 4389 4390 /* 4391 * free up the VSD 4392 */ 4393 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *)); 4394 kmem_free(vsd, sizeof (struct vsd_node)); 4395 vp->v_vsd = NULL; 4396 } 4397 4398 /* 4399 * realloc 4400 */ 4401 static void * 4402 vsd_realloc(void *old, size_t osize, size_t nsize) 4403 { 4404 void *new; 4405 4406 new = kmem_zalloc(nsize, KM_SLEEP); 4407 if (old) { 4408 bcopy(old, new, osize); 4409 kmem_free(old, osize); 4410 } 4411 return (new); 4412 } 4413 4414 /* 4415 * Setup the extensible system attribute for creating a reparse point. 4416 * The symlink data 'target' is validated for proper format of a reparse 4417 * string and a check also made to make sure the symlink data does not 4418 * point to an existing file. 4419 * 4420 * return 0 if ok else -1. 4421 */ 4422 static int 4423 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr) 4424 { 4425 xoptattr_t *xoap; 4426 4427 if ((!target) || (!vap) || (!xvattr)) 4428 return (-1); 4429 4430 /* validate reparse string */ 4431 if (reparse_validate((const char *)target)) 4432 return (-1); 4433 4434 xva_init(xvattr); 4435 xvattr->xva_vattr = *vap; 4436 xvattr->xva_vattr.va_mask |= AT_XVATTR; 4437 xoap = xva_getxoptattr(xvattr); 4438 ASSERT(xoap); 4439 XVA_SET_REQ(xvattr, XAT_REPARSE); 4440 xoap->xoa_reparse = 1; 4441 4442 return (0); 4443 } 4444 4445 /* 4446 * Function to check whether a symlink is a reparse point. 4447 * Return B_TRUE if it is a reparse point, else return B_FALSE 4448 */ 4449 boolean_t 4450 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4451 { 4452 xvattr_t xvattr; 4453 xoptattr_t *xoap; 4454 4455 if ((vp->v_type != VLNK) || 4456 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR))) 4457 return (B_FALSE); 4458 4459 xva_init(&xvattr); 4460 xoap = xva_getxoptattr(&xvattr); 4461 ASSERT(xoap); 4462 XVA_SET_REQ(&xvattr, XAT_REPARSE); 4463 4464 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct)) 4465 return (B_FALSE); 4466 4467 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) || 4468 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE)))) 4469 return (B_FALSE); 4470 4471 return (xoap->xoa_reparse ? B_TRUE : B_FALSE); 4472 } 4473