1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/t_lock.h> 46 #include <sys/errno.h> 47 #include <sys/cred.h> 48 #include <sys/user.h> 49 #include <sys/uio.h> 50 #include <sys/file.h> 51 #include <sys/pathname.h> 52 #include <sys/vfs.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Convert stat(2) formats to vnode types and vice versa. (Knows about 80 * numerical order of S_IFMT and vnode types.) 81 */ 82 enum vtype iftovt_tab[] = { 83 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 84 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 85 }; 86 87 ushort_t vttoif_tab[] = { 88 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 89 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 90 }; 91 92 /* 93 * The system vnode cache. 94 */ 95 96 kmem_cache_t *vn_cache; 97 98 99 /* 100 * Vnode operations vector. 101 */ 102 103 static const fs_operation_trans_def_t vn_ops_table[] = { 104 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 105 fs_nosys, fs_nosys, 106 107 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 108 fs_nosys, fs_nosys, 109 110 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 111 fs_nosys, fs_nosys, 112 113 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 114 fs_nosys, fs_nosys, 115 116 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 117 fs_nosys, fs_nosys, 118 119 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 120 fs_setfl, fs_nosys, 121 122 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 123 fs_nosys, fs_nosys, 124 125 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 126 fs_nosys, fs_nosys, 127 128 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 129 fs_nosys, fs_nosys, 130 131 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 132 fs_nosys, fs_nosys, 133 134 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 135 fs_nosys, fs_nosys, 136 137 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 138 fs_nosys, fs_nosys, 139 140 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 141 fs_nosys, fs_nosys, 142 143 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 144 fs_nosys, fs_nosys, 145 146 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 147 fs_nosys, fs_nosys, 148 149 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 150 fs_nosys, fs_nosys, 151 152 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 153 fs_nosys, fs_nosys, 154 155 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 156 fs_nosys, fs_nosys, 157 158 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 159 fs_nosys, fs_nosys, 160 161 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 162 fs_nosys, fs_nosys, 163 164 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 165 fs_nosys, fs_nosys, 166 167 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 168 fs_nosys, fs_nosys, 169 170 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 171 fs_rwlock, fs_rwlock, 172 173 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 174 (fs_generic_func_p) fs_rwunlock, 175 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 176 177 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 178 fs_nosys, fs_nosys, 179 180 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 181 fs_cmp, fs_cmp, /* no errors allowed */ 182 183 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 184 fs_frlock, fs_nosys, 185 186 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 187 fs_nosys, fs_nosys, 188 189 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 190 fs_nosys, fs_nosys, 191 192 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 193 fs_nosys, fs_nosys, 194 195 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 196 fs_nosys, fs_nosys, 197 198 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 199 (fs_generic_func_p) fs_nosys_map, 200 (fs_generic_func_p) fs_nosys_map, 201 202 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 203 (fs_generic_func_p) fs_nosys_addmap, 204 (fs_generic_func_p) fs_nosys_addmap, 205 206 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 207 fs_nosys, fs_nosys, 208 209 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 210 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 211 212 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 213 fs_nosys, fs_nosys, 214 215 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 216 fs_pathconf, fs_nosys, 217 218 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 219 fs_nosys, fs_nosys, 220 221 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 222 fs_nosys, fs_nosys, 223 224 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 225 (fs_generic_func_p) fs_dispose, 226 (fs_generic_func_p) fs_nodispose, 227 228 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 229 fs_nosys, fs_nosys, 230 231 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 232 fs_fab_acl, fs_nosys, 233 234 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 235 fs_shrlock, fs_nosys, 236 237 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 238 (fs_generic_func_p) fs_vnevent_nosupport, 239 (fs_generic_func_p) fs_vnevent_nosupport, 240 241 NULL, 0, NULL, NULL 242 }; 243 244 245 /* 246 * Read or write a vnode. Called from kernel code. 247 */ 248 int 249 vn_rdwr( 250 enum uio_rw rw, 251 struct vnode *vp, 252 caddr_t base, 253 ssize_t len, 254 offset_t offset, 255 enum uio_seg seg, 256 int ioflag, 257 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 258 cred_t *cr, 259 ssize_t *residp) 260 { 261 struct uio uio; 262 struct iovec iov; 263 int error; 264 int in_crit = 0; 265 266 if (rw == UIO_WRITE && ISROFILE(vp)) 267 return (EROFS); 268 269 if (len < 0) 270 return (EIO); 271 272 iov.iov_base = base; 273 iov.iov_len = len; 274 uio.uio_iov = &iov; 275 uio.uio_iovcnt = 1; 276 uio.uio_loffset = offset; 277 uio.uio_segflg = (short)seg; 278 uio.uio_resid = len; 279 uio.uio_llimit = ulimit; 280 281 /* 282 * We have to enter the critical region before calling VOP_RWLOCK 283 * to avoid a deadlock with ufs. 284 */ 285 if (nbl_need_check(vp)) { 286 int svmand; 287 288 nbl_start_crit(vp, RW_READER); 289 in_crit = 1; 290 error = nbl_svmand(vp, cr, &svmand); 291 if (error != 0) 292 goto done; 293 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 294 uio.uio_offset, uio.uio_resid, svmand)) { 295 error = EACCES; 296 goto done; 297 } 298 } 299 300 (void) VOP_RWLOCK(vp, 301 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 302 if (rw == UIO_WRITE) { 303 uio.uio_fmode = FWRITE; 304 uio.uio_extflg = UIO_COPY_DEFAULT; 305 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 306 } else { 307 uio.uio_fmode = FREAD; 308 uio.uio_extflg = UIO_COPY_CACHED; 309 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 310 } 311 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 312 NULL); 313 if (residp) 314 *residp = uio.uio_resid; 315 else if (uio.uio_resid) 316 error = EIO; 317 318 done: 319 if (in_crit) 320 nbl_end_crit(vp); 321 return (error); 322 } 323 324 /* 325 * Release a vnode. Call VOP_INACTIVE on last reference or 326 * decrement reference count. 327 * 328 * To avoid race conditions, the v_count is left at 1 for 329 * the call to VOP_INACTIVE. This prevents another thread 330 * from reclaiming and releasing the vnode *before* the 331 * VOP_INACTIVE routine has a chance to destroy the vnode. 332 * We can't have more than 1 thread calling VOP_INACTIVE 333 * on a vnode. 334 */ 335 void 336 vn_rele(vnode_t *vp) 337 { 338 if (vp->v_count == 0) 339 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 340 mutex_enter(&vp->v_lock); 341 if (vp->v_count == 1) { 342 mutex_exit(&vp->v_lock); 343 VOP_INACTIVE(vp, CRED()); 344 } else { 345 vp->v_count--; 346 mutex_exit(&vp->v_lock); 347 } 348 } 349 350 /* 351 * Like vn_rele() except that it clears v_stream under v_lock. 352 * This is used by sockfs when it dismantels the association between 353 * the sockfs node and the vnode in the underlaying file system. 354 * v_lock has to be held to prevent a thread coming through the lookupname 355 * path from accessing a stream head that is going away. 356 */ 357 void 358 vn_rele_stream(vnode_t *vp) 359 { 360 if (vp->v_count == 0) 361 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 362 mutex_enter(&vp->v_lock); 363 vp->v_stream = NULL; 364 if (vp->v_count == 1) { 365 mutex_exit(&vp->v_lock); 366 VOP_INACTIVE(vp, CRED()); 367 } else { 368 vp->v_count--; 369 mutex_exit(&vp->v_lock); 370 } 371 } 372 373 int 374 vn_open( 375 char *pnamep, 376 enum uio_seg seg, 377 int filemode, 378 int createmode, 379 struct vnode **vpp, 380 enum create crwhy, 381 mode_t umask) 382 { 383 return (vn_openat(pnamep, seg, filemode, 384 createmode, vpp, crwhy, umask, NULL)); 385 } 386 387 388 /* 389 * Open/create a vnode. 390 * This may be callable by the kernel, the only known use 391 * of user context being that the current user credentials 392 * are used for permissions. crwhy is defined iff filemode & FCREAT. 393 */ 394 int 395 vn_openat( 396 char *pnamep, 397 enum uio_seg seg, 398 int filemode, 399 int createmode, 400 struct vnode **vpp, 401 enum create crwhy, 402 mode_t umask, 403 struct vnode *startvp) 404 { 405 struct vnode *vp; 406 int mode; 407 int error; 408 int in_crit = 0; 409 struct vattr vattr; 410 enum symfollow follow; 411 412 mode = 0; 413 if (filemode & FREAD) 414 mode |= VREAD; 415 if (filemode & (FWRITE|FTRUNC)) 416 mode |= VWRITE; 417 418 /* symlink interpretation */ 419 if (filemode & FNOFOLLOW) 420 follow = NO_FOLLOW; 421 else 422 follow = FOLLOW; 423 424 top: 425 if (filemode & FCREAT) { 426 enum vcexcl excl; 427 428 /* 429 * Wish to create a file. 430 */ 431 vattr.va_type = VREG; 432 vattr.va_mode = createmode; 433 vattr.va_mask = AT_TYPE|AT_MODE; 434 if (filemode & FTRUNC) { 435 vattr.va_size = 0; 436 vattr.va_mask |= AT_SIZE; 437 } 438 if (filemode & FEXCL) 439 excl = EXCL; 440 else 441 excl = NONEXCL; 442 443 if (error = 444 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 445 (filemode & ~(FTRUNC|FEXCL)), 446 umask, startvp)) 447 return (error); 448 } else { 449 /* 450 * Wish to open a file. Just look it up. 451 */ 452 if (error = lookupnameat(pnamep, seg, follow, 453 NULLVPP, &vp, startvp)) { 454 if (error == ESTALE) 455 goto top; 456 return (error); 457 } 458 459 /* 460 * Get the attributes to check whether file is large. 461 * We do this only if the FOFFMAX flag is not set and 462 * only for regular files. 463 */ 464 465 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 466 vattr.va_mask = AT_SIZE; 467 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 468 goto out; 469 } 470 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 471 /* 472 * Large File API - regular open fails 473 * if FOFFMAX flag is set in file mode 474 */ 475 error = EOVERFLOW; 476 goto out; 477 } 478 } 479 /* 480 * Can't write directories, active texts, or 481 * read-only filesystems. Can't truncate files 482 * on which mandatory locking is in effect. 483 */ 484 if (filemode & (FWRITE|FTRUNC)) { 485 /* 486 * Allow writable directory if VDIROPEN flag is set. 487 */ 488 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 489 error = EISDIR; 490 goto out; 491 } 492 if (ISROFILE(vp)) { 493 error = EROFS; 494 goto out; 495 } 496 /* 497 * Can't truncate files on which mandatory locking 498 * or non-blocking mandatory locking is in effect. 499 */ 500 if (filemode & FTRUNC) { 501 vnode_t *rvp; 502 503 if (VOP_REALVP(vp, &rvp) != 0) 504 rvp = vp; 505 if (nbl_need_check(vp)) { 506 nbl_start_crit(vp, RW_READER); 507 in_crit = 1; 508 vattr.va_mask = AT_MODE|AT_SIZE; 509 if ((error = VOP_GETATTR(vp, &vattr, 0, 510 CRED())) == 0) { 511 if (rvp->v_filocks != NULL) 512 if (MANDLOCK(vp, 513 vattr.va_mode)) 514 error = EAGAIN; 515 if (!error) { 516 if (nbl_conflict(vp, 517 NBL_WRITE, 0, 518 vattr.va_size, 0)) 519 error = EACCES; 520 } 521 } 522 } else if (rvp->v_filocks != NULL) { 523 vattr.va_mask = AT_MODE; 524 if ((error = VOP_GETATTR(vp, &vattr, 525 0, CRED())) == 0 && MANDLOCK(vp, 526 vattr.va_mode)) 527 error = EAGAIN; 528 } 529 } 530 if (error) 531 goto out; 532 } 533 /* 534 * Check permissions. 535 */ 536 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 537 goto out; 538 } 539 540 /* 541 * Do remaining checks for FNOFOLLOW and FNOLINKS. 542 */ 543 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 544 error = EINVAL; 545 goto out; 546 } 547 if (filemode & FNOLINKS) { 548 vattr.va_mask = AT_NLINK; 549 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 550 goto out; 551 } 552 if (vattr.va_nlink != 1) { 553 error = EMLINK; 554 goto out; 555 } 556 } 557 558 /* 559 * Opening a socket corresponding to the AF_UNIX pathname 560 * in the filesystem name space is not supported. 561 * However, VSOCK nodes in namefs are supported in order 562 * to make fattach work for sockets. 563 * 564 * XXX This uses VOP_REALVP to distinguish between 565 * an unopened namefs node (where VOP_REALVP returns a 566 * different VSOCK vnode) and a VSOCK created by vn_create 567 * in some file system (where VOP_REALVP would never return 568 * a different vnode). 569 */ 570 if (vp->v_type == VSOCK) { 571 struct vnode *nvp; 572 573 error = VOP_REALVP(vp, &nvp); 574 if (error != 0 || nvp == NULL || nvp == vp || 575 nvp->v_type != VSOCK) { 576 error = EOPNOTSUPP; 577 goto out; 578 } 579 } 580 /* 581 * Do opening protocol. 582 */ 583 error = VOP_OPEN(&vp, filemode, CRED()); 584 /* 585 * Truncate if required. 586 */ 587 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 588 vattr.va_size = 0; 589 vattr.va_mask = AT_SIZE; 590 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 591 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 592 } 593 out: 594 ASSERT(vp->v_count > 0); 595 596 if (in_crit) { 597 nbl_end_crit(vp); 598 in_crit = 0; 599 } 600 if (error) { 601 /* 602 * The following clause was added to handle a problem 603 * with NFS consistency. It is possible that a lookup 604 * of the file to be opened succeeded, but the file 605 * itself doesn't actually exist on the server. This 606 * is chiefly due to the DNLC containing an entry for 607 * the file which has been removed on the server. In 608 * this case, we just start over. If there was some 609 * other cause for the ESTALE error, then the lookup 610 * of the file will fail and the error will be returned 611 * above instead of looping around from here. 612 */ 613 VN_RELE(vp); 614 if (error == ESTALE) 615 goto top; 616 } else 617 *vpp = vp; 618 return (error); 619 } 620 621 int 622 vn_create( 623 char *pnamep, 624 enum uio_seg seg, 625 struct vattr *vap, 626 enum vcexcl excl, 627 int mode, 628 struct vnode **vpp, 629 enum create why, 630 int flag, 631 mode_t umask) 632 { 633 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 634 why, flag, umask, NULL)); 635 } 636 637 /* 638 * Create a vnode (makenode). 639 */ 640 int 641 vn_createat( 642 char *pnamep, 643 enum uio_seg seg, 644 struct vattr *vap, 645 enum vcexcl excl, 646 int mode, 647 struct vnode **vpp, 648 enum create why, 649 int flag, 650 mode_t umask, 651 struct vnode *startvp) 652 { 653 struct vnode *dvp; /* ptr to parent dir vnode */ 654 struct vnode *vp = NULL; 655 struct pathname pn; 656 int error; 657 int in_crit = 0; 658 struct vattr vattr; 659 enum symfollow follow; 660 661 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 662 663 /* symlink interpretation */ 664 if ((flag & FNOFOLLOW) || excl == EXCL) 665 follow = NO_FOLLOW; 666 else 667 follow = FOLLOW; 668 flag &= ~(FNOFOLLOW|FNOLINKS); 669 670 top: 671 /* 672 * Lookup directory. 673 * If new object is a file, call lower level to create it. 674 * Note that it is up to the lower level to enforce exclusive 675 * creation, if the file is already there. 676 * This allows the lower level to do whatever 677 * locking or protocol that is needed to prevent races. 678 * If the new object is directory call lower level to make 679 * the new directory, with "." and "..". 680 */ 681 if (error = pn_get(pnamep, seg, &pn)) 682 return (error); 683 #ifdef C2_AUDIT 684 if (audit_active) 685 audit_vncreate_start(); 686 #endif /* C2_AUDIT */ 687 dvp = NULL; 688 *vpp = NULL; 689 /* 690 * lookup will find the parent directory for the vnode. 691 * When it is done the pn holds the name of the entry 692 * in the directory. 693 * If this is a non-exclusive create we also find the node itself. 694 */ 695 error = lookuppnat(&pn, NULL, follow, &dvp, 696 (excl == EXCL) ? NULLVPP : vpp, startvp); 697 if (error) { 698 pn_free(&pn); 699 if (error == ESTALE) 700 goto top; 701 if (why == CRMKDIR && error == EINVAL) 702 error = EEXIST; /* SVID */ 703 return (error); 704 } 705 706 if (why != CRMKNOD) 707 vap->va_mode &= ~VSVTX; 708 709 /* 710 * If default ACLs are defined for the directory don't apply the 711 * umask if umask is passed. 712 */ 713 714 if (umask) { 715 716 vsecattr_t vsec; 717 718 vsec.vsa_aclcnt = 0; 719 vsec.vsa_aclentp = NULL; 720 vsec.vsa_dfaclcnt = 0; 721 vsec.vsa_dfaclentp = NULL; 722 vsec.vsa_mask = VSA_DFACLCNT; 723 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 724 /* 725 * If error is ENOSYS then treat it as no error 726 * Don't want to force all file systems to support 727 * aclent_t style of ACL's. 728 */ 729 if (error == ENOSYS) 730 error = 0; 731 if (error) { 732 if (*vpp != NULL) 733 VN_RELE(*vpp); 734 goto out; 735 } else { 736 /* 737 * Apply the umask if no default ACLs. 738 */ 739 if (vsec.vsa_dfaclcnt == 0) 740 vap->va_mode &= ~umask; 741 742 /* 743 * VOP_GETSECATTR() may have allocated memory for 744 * ACLs we didn't request, so double-check and 745 * free it if necessary. 746 */ 747 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 748 kmem_free((caddr_t)vsec.vsa_aclentp, 749 vsec.vsa_aclcnt * sizeof (aclent_t)); 750 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 751 kmem_free((caddr_t)vsec.vsa_dfaclentp, 752 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 753 } 754 } 755 756 /* 757 * In general we want to generate EROFS if the file system is 758 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 759 * documents the open system call, and it says that O_CREAT has no 760 * effect if the file already exists. Bug 1119649 states 761 * that open(path, O_CREAT, ...) fails when attempting to open an 762 * existing file on a read only file system. Thus, the first part 763 * of the following if statement has 3 checks: 764 * if the file exists && 765 * it is being open with write access && 766 * the file system is read only 767 * then generate EROFS 768 */ 769 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 770 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 771 if (*vpp) 772 VN_RELE(*vpp); 773 error = EROFS; 774 } else if (excl == NONEXCL && *vpp != NULL) { 775 vnode_t *rvp; 776 777 /* 778 * File already exists. If a mandatory lock has been 779 * applied, return error. 780 */ 781 vp = *vpp; 782 if (VOP_REALVP(vp, &rvp) != 0) 783 rvp = vp; 784 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 785 nbl_start_crit(vp, RW_READER); 786 in_crit = 1; 787 } 788 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 789 vattr.va_mask = AT_MODE|AT_SIZE; 790 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 791 goto out; 792 } 793 if (MANDLOCK(vp, vattr.va_mode)) { 794 error = EAGAIN; 795 goto out; 796 } 797 /* 798 * File cannot be truncated if non-blocking mandatory 799 * locks are currently on the file. 800 */ 801 if ((vap->va_mask & AT_SIZE) && in_crit) { 802 u_offset_t offset; 803 ssize_t length; 804 805 offset = vap->va_size > vattr.va_size ? 806 vattr.va_size : vap->va_size; 807 length = vap->va_size > vattr.va_size ? 808 vap->va_size - vattr.va_size : 809 vattr.va_size - vap->va_size; 810 if (nbl_conflict(vp, NBL_WRITE, offset, 811 length, 0)) { 812 error = EACCES; 813 goto out; 814 } 815 } 816 } 817 818 /* 819 * If the file is the root of a VFS, we've crossed a 820 * mount point and the "containing" directory that we 821 * acquired above (dvp) is irrelevant because it's in 822 * a different file system. We apply VOP_CREATE to the 823 * target itself instead of to the containing directory 824 * and supply a null path name to indicate (conventionally) 825 * the node itself as the "component" of interest. 826 * 827 * The intercession of the file system is necessary to 828 * ensure that the appropriate permission checks are 829 * done. 830 */ 831 if (vp->v_flag & VROOT) { 832 ASSERT(why != CRMKDIR); 833 error = 834 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 835 flag); 836 /* 837 * If the create succeeded, it will have created 838 * a new reference to the vnode. Give up the 839 * original reference. The assertion should not 840 * get triggered because NBMAND locks only apply to 841 * VREG files. And if in_crit is non-zero for some 842 * reason, detect that here, rather than when we 843 * deference a null vp. 844 */ 845 ASSERT(in_crit == 0); 846 VN_RELE(vp); 847 vp = NULL; 848 goto out; 849 } 850 851 /* 852 * Large File API - non-large open (FOFFMAX flag not set) 853 * of regular file fails if the file size exceeds MAXOFF32_T. 854 */ 855 if (why != CRMKDIR && 856 !(flag & FOFFMAX) && 857 (vp->v_type == VREG)) { 858 vattr.va_mask = AT_SIZE; 859 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 860 goto out; 861 } 862 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 863 error = EOVERFLOW; 864 goto out; 865 } 866 } 867 } 868 869 if (error == 0) { 870 /* 871 * Call mkdir() if specified, otherwise create(). 872 */ 873 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 874 875 if (why == CRMKDIR) 876 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 877 else if (!must_be_dir) 878 error = VOP_CREATE(dvp, pn.pn_path, vap, 879 excl, mode, vpp, CRED(), flag); 880 else 881 error = ENOTDIR; 882 } 883 884 out: 885 886 #ifdef C2_AUDIT 887 if (audit_active) 888 audit_vncreate_finish(*vpp, error); 889 #endif /* C2_AUDIT */ 890 if (in_crit) { 891 nbl_end_crit(vp); 892 in_crit = 0; 893 } 894 if (vp != NULL) { 895 VN_RELE(vp); 896 vp = NULL; 897 } 898 pn_free(&pn); 899 VN_RELE(dvp); 900 /* 901 * The following clause was added to handle a problem 902 * with NFS consistency. It is possible that a lookup 903 * of the file to be created succeeded, but the file 904 * itself doesn't actually exist on the server. This 905 * is chiefly due to the DNLC containing an entry for 906 * the file which has been removed on the server. In 907 * this case, we just start over. If there was some 908 * other cause for the ESTALE error, then the lookup 909 * of the file will fail and the error will be returned 910 * above instead of looping around from here. 911 */ 912 if (error == ESTALE) 913 goto top; 914 return (error); 915 } 916 917 int 918 vn_link(char *from, char *to, enum uio_seg seg) 919 { 920 struct vnode *fvp; /* from vnode ptr */ 921 struct vnode *tdvp; /* to directory vnode ptr */ 922 struct pathname pn; 923 int error; 924 struct vattr vattr; 925 dev_t fsid; 926 927 top: 928 fvp = tdvp = NULL; 929 if (error = pn_get(to, seg, &pn)) 930 return (error); 931 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 932 goto out; 933 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 934 goto out; 935 /* 936 * Make sure both source vnode and target directory vnode are 937 * in the same vfs and that it is writeable. 938 */ 939 vattr.va_mask = AT_FSID; 940 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 941 goto out; 942 fsid = vattr.va_fsid; 943 vattr.va_mask = AT_FSID; 944 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 945 goto out; 946 if (fsid != vattr.va_fsid) { 947 error = EXDEV; 948 goto out; 949 } 950 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 951 error = EROFS; 952 goto out; 953 } 954 /* 955 * Do the link. 956 */ 957 (void) pn_fixslash(&pn); 958 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 959 out: 960 pn_free(&pn); 961 if (fvp) 962 VN_RELE(fvp); 963 if (tdvp) 964 VN_RELE(tdvp); 965 if (error == ESTALE) 966 goto top; 967 return (error); 968 } 969 970 int 971 vn_rename(char *from, char *to, enum uio_seg seg) 972 { 973 return (vn_renameat(NULL, from, NULL, to, seg)); 974 } 975 976 int 977 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 978 char *tname, enum uio_seg seg) 979 { 980 int error; 981 struct vattr vattr; 982 struct pathname fpn; /* from pathname */ 983 struct pathname tpn; /* to pathname */ 984 dev_t fsid; 985 int in_crit = 0; 986 vnode_t *fromvp, *fvp; 987 vnode_t *tovp; 988 989 top: 990 fvp = fromvp = tovp = NULL; 991 /* 992 * Get to and from pathnames. 993 */ 994 if (error = pn_get(fname, seg, &fpn)) 995 return (error); 996 if (error = pn_get(tname, seg, &tpn)) { 997 pn_free(&fpn); 998 return (error); 999 } 1000 1001 /* 1002 * First we need to resolve the correct directories 1003 * The passed in directories may only be a starting point, 1004 * but we need the real directories the file(s) live in. 1005 * For example the fname may be something like usr/lib/sparc 1006 * and we were passed in the / directory, but we need to 1007 * use the lib directory for the rename. 1008 */ 1009 1010 #ifdef C2_AUDIT 1011 if (audit_active) 1012 audit_setfsat_path(1); 1013 #endif /* C2_AUDIT */ 1014 /* 1015 * Lookup to and from directories. 1016 */ 1017 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1018 goto out; 1019 } 1020 1021 /* 1022 * Make sure there is an entry. 1023 */ 1024 if (fvp == NULL) { 1025 error = ENOENT; 1026 goto out; 1027 } 1028 1029 #ifdef C2_AUDIT 1030 if (audit_active) 1031 audit_setfsat_path(3); 1032 #endif /* C2_AUDIT */ 1033 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1034 goto out; 1035 } 1036 1037 /* 1038 * Make sure both the from vnode directory and the to directory 1039 * are in the same vfs and the to directory is writable. 1040 * We check fsid's, not vfs pointers, so loopback fs works. 1041 */ 1042 if (fromvp != tovp) { 1043 vattr.va_mask = AT_FSID; 1044 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1045 goto out; 1046 fsid = vattr.va_fsid; 1047 vattr.va_mask = AT_FSID; 1048 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1049 goto out; 1050 if (fsid != vattr.va_fsid) { 1051 error = EXDEV; 1052 goto out; 1053 } 1054 } 1055 1056 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1057 error = EROFS; 1058 goto out; 1059 } 1060 1061 if (nbl_need_check(fvp)) { 1062 nbl_start_crit(fvp, RW_READER); 1063 in_crit = 1; 1064 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1065 error = EACCES; 1066 goto out; 1067 } 1068 } 1069 1070 /* 1071 * Do the rename. 1072 */ 1073 (void) pn_fixslash(&tpn); 1074 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1075 1076 out: 1077 pn_free(&fpn); 1078 pn_free(&tpn); 1079 if (in_crit) { 1080 nbl_end_crit(fvp); 1081 in_crit = 0; 1082 } 1083 if (fromvp) 1084 VN_RELE(fromvp); 1085 if (tovp) 1086 VN_RELE(tovp); 1087 if (fvp) 1088 VN_RELE(fvp); 1089 if (error == ESTALE) 1090 goto top; 1091 return (error); 1092 } 1093 1094 /* 1095 * Remove a file or directory. 1096 */ 1097 int 1098 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1099 { 1100 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1101 } 1102 1103 int 1104 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1105 { 1106 struct vnode *vp; /* entry vnode */ 1107 struct vnode *dvp; /* ptr to parent dir vnode */ 1108 struct vnode *coveredvp; 1109 struct pathname pn; /* name of entry */ 1110 enum vtype vtype; 1111 int error; 1112 struct vfs *vfsp; 1113 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1114 int in_crit = 0; 1115 1116 top: 1117 if (error = pn_get(fnamep, seg, &pn)) 1118 return (error); 1119 dvp = vp = NULL; 1120 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1121 pn_free(&pn); 1122 if (error == ESTALE) 1123 goto top; 1124 return (error); 1125 } 1126 1127 /* 1128 * Make sure there is an entry. 1129 */ 1130 if (vp == NULL) { 1131 error = ENOENT; 1132 goto out; 1133 } 1134 1135 vfsp = vp->v_vfsp; 1136 dvfsp = dvp->v_vfsp; 1137 1138 /* 1139 * If the named file is the root of a mounted filesystem, fail, 1140 * unless it's marked unlinkable. In that case, unmount the 1141 * filesystem and proceed to unlink the covered vnode. (If the 1142 * covered vnode is a directory, use rmdir instead of unlink, 1143 * to avoid file system corruption.) 1144 */ 1145 if (vp->v_flag & VROOT) { 1146 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1147 if (dirflag == RMDIRECTORY) { 1148 /* 1149 * User called rmdir(2) on a file that has 1150 * been namefs mounted on top of. Since 1151 * namefs doesn't allow directories to 1152 * be mounted on other files we know 1153 * vp is not of type VDIR so fail to operation. 1154 */ 1155 error = ENOTDIR; 1156 goto out; 1157 } 1158 coveredvp = vfsp->vfs_vnodecovered; 1159 VN_HOLD(coveredvp); 1160 VN_RELE(vp); 1161 vp = NULL; 1162 if ((error = vn_vfswlock(coveredvp)) == 0) 1163 error = dounmount(vfsp, 0, CRED()); 1164 /* 1165 * Unmounted the namefs file system; now get 1166 * the object it was mounted over. 1167 */ 1168 vp = coveredvp; 1169 /* 1170 * If namefs was mounted over a directory, then 1171 * we want to use rmdir() instead of unlink(). 1172 */ 1173 if (vp->v_type == VDIR) 1174 dirflag = RMDIRECTORY; 1175 } else 1176 error = EBUSY; 1177 1178 if (error) 1179 goto out; 1180 } 1181 1182 /* 1183 * Make sure filesystem is writeable. 1184 * We check the parent directory's vfs in case this is an lofs vnode. 1185 */ 1186 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1187 error = EROFS; 1188 goto out; 1189 } 1190 1191 vtype = vp->v_type; 1192 1193 /* 1194 * If there is the possibility of an nbmand share reservation, make 1195 * sure it's okay to remove the file. Keep a reference to the 1196 * vnode, so that we can exit the nbl critical region after 1197 * calling VOP_REMOVE. 1198 * If there is no possibility of an nbmand share reservation, 1199 * release the vnode reference now. Filesystems like NFS may 1200 * behave differently if there is an extra reference, so get rid of 1201 * this one. Fortunately, we can't have nbmand mounts on NFS 1202 * filesystems. 1203 */ 1204 if (nbl_need_check(vp)) { 1205 nbl_start_crit(vp, RW_READER); 1206 in_crit = 1; 1207 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1208 error = EACCES; 1209 goto out; 1210 } 1211 } else { 1212 VN_RELE(vp); 1213 vp = NULL; 1214 } 1215 1216 if (dirflag == RMDIRECTORY) { 1217 /* 1218 * Caller is using rmdir(2), which can only be applied to 1219 * directories. 1220 */ 1221 if (vtype != VDIR) { 1222 error = ENOTDIR; 1223 } else { 1224 vnode_t *cwd; 1225 proc_t *pp = curproc; 1226 1227 mutex_enter(&pp->p_lock); 1228 cwd = PTOU(pp)->u_cdir; 1229 VN_HOLD(cwd); 1230 mutex_exit(&pp->p_lock); 1231 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1232 VN_RELE(cwd); 1233 } 1234 } else { 1235 /* 1236 * Unlink(2) can be applied to anything. 1237 */ 1238 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1239 } 1240 1241 out: 1242 pn_free(&pn); 1243 if (in_crit) { 1244 nbl_end_crit(vp); 1245 in_crit = 0; 1246 } 1247 if (vp != NULL) 1248 VN_RELE(vp); 1249 if (dvp != NULL) 1250 VN_RELE(dvp); 1251 if (error == ESTALE) 1252 goto top; 1253 return (error); 1254 } 1255 1256 /* 1257 * Utility function to compare equality of vnodes. 1258 * Compare the underlying real vnodes, if there are underlying vnodes. 1259 * This is a more thorough comparison than the VN_CMP() macro provides. 1260 */ 1261 int 1262 vn_compare(vnode_t *vp1, vnode_t *vp2) 1263 { 1264 vnode_t *realvp; 1265 1266 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1267 vp1 = realvp; 1268 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1269 vp2 = realvp; 1270 return (VN_CMP(vp1, vp2)); 1271 } 1272 1273 /* 1274 * The number of locks to hash into. This value must be a power 1275 * of 2 minus 1 and should probably also be prime. 1276 */ 1277 #define NUM_BUCKETS 1023 1278 1279 struct vn_vfslocks_bucket { 1280 kmutex_t vb_lock; 1281 vn_vfslocks_entry_t *vb_list; 1282 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1283 }; 1284 1285 /* 1286 * Total number of buckets will be NUM_BUCKETS + 1 . 1287 */ 1288 1289 #pragma align 64(vn_vfslocks_buckets) 1290 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1291 1292 #define VN_VFSLOCKS_SHIFT 9 1293 1294 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1295 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1296 1297 /* 1298 * vn_vfslocks_getlock() uses an HASH scheme to generate 1299 * rwstlock using vfs/vnode pointer passed to it. 1300 * 1301 * vn_vfslocks_rele() releases a reference in the 1302 * HASH table which allows the entry allocated by 1303 * vn_vfslocks_getlock() to be freed at a later 1304 * stage when the refcount drops to zero. 1305 */ 1306 1307 vn_vfslocks_entry_t * 1308 vn_vfslocks_getlock(void *vfsvpptr) 1309 { 1310 struct vn_vfslocks_bucket *bp; 1311 vn_vfslocks_entry_t *vep; 1312 vn_vfslocks_entry_t *tvep; 1313 1314 ASSERT(vfsvpptr != NULL); 1315 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1316 1317 mutex_enter(&bp->vb_lock); 1318 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1319 if (vep->ve_vpvfs == vfsvpptr) { 1320 vep->ve_refcnt++; 1321 mutex_exit(&bp->vb_lock); 1322 return (vep); 1323 } 1324 } 1325 mutex_exit(&bp->vb_lock); 1326 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1327 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1328 vep->ve_vpvfs = (char *)vfsvpptr; 1329 vep->ve_refcnt = 1; 1330 mutex_enter(&bp->vb_lock); 1331 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1332 if (tvep->ve_vpvfs == vfsvpptr) { 1333 tvep->ve_refcnt++; 1334 mutex_exit(&bp->vb_lock); 1335 1336 /* 1337 * There is already an entry in the hash 1338 * destroy what we just allocated. 1339 */ 1340 rwst_destroy(&vep->ve_lock); 1341 kmem_free(vep, sizeof (*vep)); 1342 return (tvep); 1343 } 1344 } 1345 vep->ve_next = bp->vb_list; 1346 bp->vb_list = vep; 1347 mutex_exit(&bp->vb_lock); 1348 return (vep); 1349 } 1350 1351 void 1352 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1353 { 1354 struct vn_vfslocks_bucket *bp; 1355 vn_vfslocks_entry_t *vep; 1356 vn_vfslocks_entry_t *pvep; 1357 1358 ASSERT(vepent != NULL); 1359 ASSERT(vepent->ve_vpvfs != NULL); 1360 1361 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1362 1363 mutex_enter(&bp->vb_lock); 1364 vepent->ve_refcnt--; 1365 1366 if ((int32_t)vepent->ve_refcnt < 0) 1367 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1368 1369 if (vepent->ve_refcnt == 0) { 1370 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1371 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1372 if (bp->vb_list == vep) 1373 bp->vb_list = vep->ve_next; 1374 else { 1375 /* LINTED */ 1376 pvep->ve_next = vep->ve_next; 1377 } 1378 mutex_exit(&bp->vb_lock); 1379 rwst_destroy(&vep->ve_lock); 1380 kmem_free(vep, sizeof (*vep)); 1381 return; 1382 } 1383 pvep = vep; 1384 } 1385 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1386 } 1387 mutex_exit(&bp->vb_lock); 1388 } 1389 1390 /* 1391 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1392 * lock protecting the v_vfsmountedhere field. 1393 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1394 * except that it blocks to acquire the lock VVFSLOCK. 1395 * 1396 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1397 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1398 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1399 */ 1400 int 1401 vn_vfswlock_wait(vnode_t *vp) 1402 { 1403 int retval; 1404 vn_vfslocks_entry_t *vpvfsentry; 1405 ASSERT(vp != NULL); 1406 1407 vpvfsentry = vn_vfslocks_getlock(vp); 1408 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1409 1410 if (retval == EINTR) { 1411 vn_vfslocks_rele(vpvfsentry); 1412 return (EINTR); 1413 } 1414 return (retval); 1415 } 1416 1417 int 1418 vn_vfsrlock_wait(vnode_t *vp) 1419 { 1420 int retval; 1421 vn_vfslocks_entry_t *vpvfsentry; 1422 ASSERT(vp != NULL); 1423 1424 vpvfsentry = vn_vfslocks_getlock(vp); 1425 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1426 1427 if (retval == EINTR) { 1428 vn_vfslocks_rele(vpvfsentry); 1429 return (EINTR); 1430 } 1431 1432 return (retval); 1433 } 1434 1435 1436 /* 1437 * vn_vfswlock is used to implement a lock which is logically a writers lock 1438 * protecting the v_vfsmountedhere field. 1439 */ 1440 int 1441 vn_vfswlock(vnode_t *vp) 1442 { 1443 vn_vfslocks_entry_t *vpvfsentry; 1444 1445 /* 1446 * If vp is NULL then somebody is trying to lock the covered vnode 1447 * of /. (vfs_vnodecovered is NULL for /). This situation will 1448 * only happen when unmounting /. Since that operation will fail 1449 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1450 */ 1451 if (vp == NULL) 1452 return (EBUSY); 1453 1454 vpvfsentry = vn_vfslocks_getlock(vp); 1455 1456 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1457 return (0); 1458 1459 vn_vfslocks_rele(vpvfsentry); 1460 return (EBUSY); 1461 } 1462 1463 int 1464 vn_vfsrlock(vnode_t *vp) 1465 { 1466 vn_vfslocks_entry_t *vpvfsentry; 1467 1468 /* 1469 * If vp is NULL then somebody is trying to lock the covered vnode 1470 * of /. (vfs_vnodecovered is NULL for /). This situation will 1471 * only happen when unmounting /. Since that operation will fail 1472 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1473 */ 1474 if (vp == NULL) 1475 return (EBUSY); 1476 1477 vpvfsentry = vn_vfslocks_getlock(vp); 1478 1479 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1480 return (0); 1481 1482 vn_vfslocks_rele(vpvfsentry); 1483 return (EBUSY); 1484 } 1485 1486 void 1487 vn_vfsunlock(vnode_t *vp) 1488 { 1489 vn_vfslocks_entry_t *vpvfsentry; 1490 1491 /* 1492 * ve_refcnt needs to be decremented twice. 1493 * 1. To release refernce after a call to vn_vfslocks_getlock() 1494 * 2. To release the reference from the locking routines like 1495 * vn_vfsrlock/vn_vfswlock etc,. 1496 */ 1497 vpvfsentry = vn_vfslocks_getlock(vp); 1498 vn_vfslocks_rele(vpvfsentry); 1499 1500 rwst_exit(&vpvfsentry->ve_lock); 1501 vn_vfslocks_rele(vpvfsentry); 1502 } 1503 1504 int 1505 vn_vfswlock_held(vnode_t *vp) 1506 { 1507 int held; 1508 vn_vfslocks_entry_t *vpvfsentry; 1509 1510 ASSERT(vp != NULL); 1511 1512 vpvfsentry = vn_vfslocks_getlock(vp); 1513 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1514 1515 vn_vfslocks_rele(vpvfsentry); 1516 return (held); 1517 } 1518 1519 1520 int 1521 vn_make_ops( 1522 const char *name, /* Name of file system */ 1523 const fs_operation_def_t *templ, /* Operation specification */ 1524 vnodeops_t **actual) /* Return the vnodeops */ 1525 { 1526 int unused_ops; 1527 int error; 1528 1529 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1530 1531 (*actual)->vnop_name = name; 1532 1533 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1534 if (error) { 1535 kmem_free(*actual, sizeof (vnodeops_t)); 1536 } 1537 1538 #if DEBUG 1539 if (unused_ops != 0) 1540 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1541 "but not used", name, unused_ops); 1542 #endif 1543 1544 return (error); 1545 } 1546 1547 /* 1548 * Free the vnodeops created as a result of vn_make_ops() 1549 */ 1550 void 1551 vn_freevnodeops(vnodeops_t *vnops) 1552 { 1553 kmem_free(vnops, sizeof (vnodeops_t)); 1554 } 1555 1556 /* 1557 * Vnode cache. 1558 */ 1559 1560 /* ARGSUSED */ 1561 static int 1562 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1563 { 1564 struct vnode *vp; 1565 1566 vp = buf; 1567 1568 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1569 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1570 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1571 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1572 1573 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1574 vp->v_path = NULL; 1575 vp->v_mpssdata = NULL; 1576 1577 return (0); 1578 } 1579 1580 /* ARGSUSED */ 1581 static void 1582 vn_cache_destructor(void *buf, void *cdrarg) 1583 { 1584 struct vnode *vp; 1585 1586 vp = buf; 1587 1588 rw_destroy(&vp->v_mslock); 1589 rw_destroy(&vp->v_nbllock); 1590 cv_destroy(&vp->v_cv); 1591 mutex_destroy(&vp->v_lock); 1592 } 1593 1594 void 1595 vn_create_cache(void) 1596 { 1597 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 1598 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 1599 NULL, 0); 1600 } 1601 1602 void 1603 vn_destroy_cache(void) 1604 { 1605 kmem_cache_destroy(vn_cache); 1606 } 1607 1608 /* 1609 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 1610 * cached by the file system and vnodes remain associated. 1611 */ 1612 void 1613 vn_recycle(vnode_t *vp) 1614 { 1615 ASSERT(vp->v_pages == NULL); 1616 1617 /* 1618 * XXX - This really belongs in vn_reinit(), but we have some issues 1619 * with the counts. Best to have it here for clean initialization. 1620 */ 1621 vp->v_rdcnt = 0; 1622 vp->v_wrcnt = 0; 1623 vp->v_mmap_read = 0; 1624 vp->v_mmap_write = 0; 1625 1626 /* 1627 * If FEM was in use, make sure everything gets cleaned up 1628 * NOTE: vp->v_femhead is initialized to NULL in the vnode 1629 * constructor. 1630 */ 1631 if (vp->v_femhead) { 1632 /* XXX - There should be a free_femhead() that does all this */ 1633 ASSERT(vp->v_femhead->femh_list == NULL); 1634 mutex_destroy(&vp->v_femhead->femh_lock); 1635 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 1636 vp->v_femhead = NULL; 1637 } 1638 if (vp->v_path) { 1639 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 1640 vp->v_path = NULL; 1641 } 1642 vp->v_mpssdata = NULL; 1643 } 1644 1645 /* 1646 * Used to reset the vnode fields including those that are directly accessible 1647 * as well as those which require an accessor function. 1648 * 1649 * Does not initialize: 1650 * synchronization objects: v_lock, v_nbllock, v_cv 1651 * v_data (since FS-nodes and vnodes point to each other and should 1652 * be updated simultaneously) 1653 * v_op (in case someone needs to make a VOP call on this object) 1654 */ 1655 void 1656 vn_reinit(vnode_t *vp) 1657 { 1658 vp->v_count = 1; 1659 vp->v_vfsp = NULL; 1660 vp->v_stream = NULL; 1661 vp->v_vfsmountedhere = NULL; 1662 vp->v_flag = 0; 1663 vp->v_type = VNON; 1664 vp->v_rdev = NODEV; 1665 1666 vp->v_filocks = NULL; 1667 vp->v_shrlocks = NULL; 1668 vp->v_pages = NULL; 1669 vp->v_npages = 0; 1670 vp->v_msnpages = 0; 1671 vp->v_scanfront = NULL; 1672 vp->v_scanback = NULL; 1673 1674 vp->v_locality = NULL; 1675 vp->v_scantime = 0; 1676 vp->v_mset = 0; 1677 vp->v_msflags = 0; 1678 vp->v_msnext = NULL; 1679 vp->v_msprev = NULL; 1680 1681 /* Handles v_femhead, v_path, and the r/w/map counts */ 1682 vn_recycle(vp); 1683 } 1684 1685 vnode_t * 1686 vn_alloc(int kmflag) 1687 { 1688 vnode_t *vp; 1689 1690 vp = kmem_cache_alloc(vn_cache, kmflag); 1691 1692 if (vp != NULL) { 1693 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1694 vn_reinit(vp); 1695 } 1696 1697 return (vp); 1698 } 1699 1700 void 1701 vn_free(vnode_t *vp) 1702 { 1703 /* 1704 * Some file systems call vn_free() with v_count of zero, 1705 * some with v_count of 1. In any case, the value should 1706 * never be anything else. 1707 */ 1708 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 1709 if (vp->v_path != NULL) { 1710 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 1711 vp->v_path = NULL; 1712 } 1713 1714 /* If FEM was in use, make sure everything gets cleaned up */ 1715 if (vp->v_femhead) { 1716 /* XXX - There should be a free_femhead() that does all this */ 1717 ASSERT(vp->v_femhead->femh_list == NULL); 1718 mutex_destroy(&vp->v_femhead->femh_lock); 1719 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 1720 vp->v_femhead = NULL; 1721 } 1722 vp->v_mpssdata = NULL; 1723 kmem_cache_free(vn_cache, vp); 1724 } 1725 1726 /* 1727 * vnode status changes, should define better states than 1, 0. 1728 */ 1729 void 1730 vn_reclaim(vnode_t *vp) 1731 { 1732 vfs_t *vfsp = vp->v_vfsp; 1733 1734 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1735 return; 1736 } 1737 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 1738 } 1739 1740 void 1741 vn_idle(vnode_t *vp) 1742 { 1743 vfs_t *vfsp = vp->v_vfsp; 1744 1745 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1746 return; 1747 } 1748 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 1749 } 1750 void 1751 vn_exists(vnode_t *vp) 1752 { 1753 vfs_t *vfsp = vp->v_vfsp; 1754 1755 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1756 return; 1757 } 1758 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 1759 } 1760 1761 void 1762 vn_invalid(vnode_t *vp) 1763 { 1764 vfs_t *vfsp = vp->v_vfsp; 1765 1766 if (vfsp == NULL || vfsp->vfs_femhead == NULL) { 1767 return; 1768 } 1769 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 1770 } 1771 1772 /* Vnode event notification */ 1773 1774 int 1775 vnevent_support(vnode_t *vp) 1776 { 1777 if (vp == NULL) 1778 return (EINVAL); 1779 1780 return (VOP_VNEVENT(vp, VE_SUPPORT)); 1781 } 1782 1783 void 1784 vnevent_rename_src(vnode_t *vp) 1785 { 1786 if (vp == NULL || vp->v_femhead == NULL) { 1787 return; 1788 } 1789 (void) VOP_VNEVENT(vp, VE_RENAME_SRC); 1790 } 1791 1792 void 1793 vnevent_rename_dest(vnode_t *vp) 1794 { 1795 if (vp == NULL || vp->v_femhead == NULL) { 1796 return; 1797 } 1798 (void) VOP_VNEVENT(vp, VE_RENAME_DEST); 1799 } 1800 1801 void 1802 vnevent_remove(vnode_t *vp) 1803 { 1804 if (vp == NULL || vp->v_femhead == NULL) { 1805 return; 1806 } 1807 (void) VOP_VNEVENT(vp, VE_REMOVE); 1808 } 1809 1810 void 1811 vnevent_rmdir(vnode_t *vp) 1812 { 1813 if (vp == NULL || vp->v_femhead == NULL) { 1814 return; 1815 } 1816 (void) VOP_VNEVENT(vp, VE_RMDIR); 1817 } 1818 1819 /* 1820 * Vnode accessors. 1821 */ 1822 1823 int 1824 vn_is_readonly(vnode_t *vp) 1825 { 1826 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 1827 } 1828 1829 int 1830 vn_has_flocks(vnode_t *vp) 1831 { 1832 return (vp->v_filocks != NULL); 1833 } 1834 1835 int 1836 vn_has_mandatory_locks(vnode_t *vp, int mode) 1837 { 1838 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 1839 } 1840 1841 int 1842 vn_has_cached_data(vnode_t *vp) 1843 { 1844 return (vp->v_pages != NULL); 1845 } 1846 1847 /* 1848 * Return 0 if the vnode in question shouldn't be permitted into a zone via 1849 * zone_enter(2). 1850 */ 1851 int 1852 vn_can_change_zones(vnode_t *vp) 1853 { 1854 struct vfssw *vswp; 1855 int allow = 1; 1856 vnode_t *rvp; 1857 1858 if (nfs_global_client_only != 0) 1859 return (1); 1860 1861 /* 1862 * We always want to look at the underlying vnode if there is one. 1863 */ 1864 if (VOP_REALVP(vp, &rvp) != 0) 1865 rvp = vp; 1866 /* 1867 * Some pseudo filesystems (including doorfs) don't actually register 1868 * their vfsops_t, so the following may return NULL; we happily let 1869 * such vnodes switch zones. 1870 */ 1871 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 1872 if (vswp != NULL) { 1873 if (vswp->vsw_flag & VSW_NOTZONESAFE) 1874 allow = 0; 1875 vfs_unrefvfssw(vswp); 1876 } 1877 return (allow); 1878 } 1879 1880 /* 1881 * Return nonzero if the vnode is a mount point, zero if not. 1882 */ 1883 int 1884 vn_ismntpt(vnode_t *vp) 1885 { 1886 return (vp->v_vfsmountedhere != NULL); 1887 } 1888 1889 /* Retrieve the vfs (if any) mounted on this vnode */ 1890 vfs_t * 1891 vn_mountedvfs(vnode_t *vp) 1892 { 1893 return (vp->v_vfsmountedhere); 1894 } 1895 1896 /* 1897 * vn_is_opened() checks whether a particular file is opened and 1898 * whether the open is for read and/or write. 1899 * 1900 * Vnode counts are only kept on regular files (v_type=VREG). 1901 */ 1902 int 1903 vn_is_opened( 1904 vnode_t *vp, 1905 v_mode_t mode) 1906 { 1907 1908 ASSERT(vp != NULL); 1909 1910 switch (mode) { 1911 case V_WRITE: 1912 if (vp->v_wrcnt) 1913 return (V_TRUE); 1914 break; 1915 case V_RDANDWR: 1916 if (vp->v_rdcnt && vp->v_wrcnt) 1917 return (V_TRUE); 1918 break; 1919 case V_RDORWR: 1920 if (vp->v_rdcnt || vp->v_wrcnt) 1921 return (V_TRUE); 1922 break; 1923 case V_READ: 1924 if (vp->v_rdcnt) 1925 return (V_TRUE); 1926 break; 1927 } 1928 1929 return (V_FALSE); 1930 } 1931 1932 /* 1933 * vn_is_mapped() checks whether a particular file is mapped and whether 1934 * the file is mapped read and/or write. 1935 */ 1936 int 1937 vn_is_mapped( 1938 vnode_t *vp, 1939 v_mode_t mode) 1940 { 1941 1942 ASSERT(vp != NULL); 1943 1944 #if !defined(_LP64) 1945 switch (mode) { 1946 /* 1947 * The atomic_add_64_nv functions force atomicity in the 1948 * case of 32 bit architectures. Otherwise the 64 bit values 1949 * require two fetches. The value of the fields may be 1950 * (potentially) changed between the first fetch and the 1951 * second 1952 */ 1953 case V_WRITE: 1954 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 1955 return (V_TRUE); 1956 break; 1957 case V_RDANDWR: 1958 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 1959 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 1960 return (V_TRUE); 1961 break; 1962 case V_RDORWR: 1963 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 1964 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 1965 return (V_TRUE); 1966 break; 1967 case V_READ: 1968 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 1969 return (V_TRUE); 1970 break; 1971 } 1972 #else 1973 switch (mode) { 1974 case V_WRITE: 1975 if (vp->v_mmap_write) 1976 return (V_TRUE); 1977 break; 1978 case V_RDANDWR: 1979 if (vp->v_mmap_read && vp->v_mmap_write) 1980 return (V_TRUE); 1981 break; 1982 case V_RDORWR: 1983 if (vp->v_mmap_read || vp->v_mmap_write) 1984 return (V_TRUE); 1985 break; 1986 case V_READ: 1987 if (vp->v_mmap_read) 1988 return (V_TRUE); 1989 break; 1990 } 1991 #endif 1992 1993 return (V_FALSE); 1994 } 1995 1996 /* 1997 * Set the operations vector for a vnode. 1998 * 1999 * FEM ensures that the v_femhead pointer is filled in before the 2000 * v_op pointer is changed. This means that if the v_femhead pointer 2001 * is NULL, and the v_op field hasn't changed since before which checked 2002 * the v_femhead pointer; then our update is ok - we are not racing with 2003 * FEM. 2004 */ 2005 void 2006 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2007 { 2008 vnodeops_t *op; 2009 2010 ASSERT(vp != NULL); 2011 ASSERT(vnodeops != NULL); 2012 2013 op = vp->v_op; 2014 membar_consumer(); 2015 /* 2016 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2017 * compare-and-swap on vp->v_op. If either fails, then FEM is 2018 * in effect on the vnode and we need to have FEM deal with it. 2019 */ 2020 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2021 fem_setvnops(vp, vnodeops); 2022 } 2023 } 2024 2025 /* 2026 * Retrieve the operations vector for a vnode 2027 * As with vn_setops(above); make sure we aren't racing with FEM. 2028 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2029 * make sense to the callers of this routine. 2030 */ 2031 vnodeops_t * 2032 vn_getops(vnode_t *vp) 2033 { 2034 vnodeops_t *op; 2035 2036 ASSERT(vp != NULL); 2037 2038 op = vp->v_op; 2039 membar_consumer(); 2040 if (vp->v_femhead == NULL && op == vp->v_op) { 2041 return (op); 2042 } else { 2043 return (fem_getvnops(vp)); 2044 } 2045 } 2046 2047 /* 2048 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2049 * Returns zero (0) if not. 2050 */ 2051 int 2052 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2053 { 2054 return (vn_getops(vp) == vnodeops); 2055 } 2056 2057 /* 2058 * Returns non-zero (1) if the specified operation matches the 2059 * corresponding operation for that the vnode. 2060 * Returns zero (0) if not. 2061 */ 2062 2063 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2064 2065 int 2066 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2067 { 2068 const fs_operation_trans_def_t *otdp; 2069 fs_generic_func_p *loc = NULL; 2070 vnodeops_t *vop = vn_getops(vp); 2071 2072 ASSERT(vopname != NULL); 2073 2074 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2075 if (MATCHNAME(otdp->name, vopname)) { 2076 loc = (fs_generic_func_p *)((char *)(vop) 2077 + otdp->offset); 2078 break; 2079 } 2080 } 2081 2082 return ((loc != NULL) && (*loc == funcp)); 2083 } 2084 2085 /* 2086 * fs_new_caller_id() needs to return a unique ID on a given local system. 2087 * The IDs do not need to survive across reboots. These are primarily 2088 * used so that (FEM) monitors can detect particular callers (such as 2089 * the NFS server) to a given vnode/vfs operation. 2090 */ 2091 u_longlong_t 2092 fs_new_caller_id() 2093 { 2094 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2095 2096 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2097 } 2098 2099 /* 2100 * Given a starting vnode and a path, updates the path in the target vnode in 2101 * a safe manner. If the vnode already has path information embedded, then the 2102 * cached path is left untouched. 2103 */ 2104 void 2105 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2106 const char *path, size_t plen) 2107 { 2108 char *rpath; 2109 vnode_t *base; 2110 size_t rpathlen, rpathalloc; 2111 int doslash = 1; 2112 2113 if (*path == '/') { 2114 base = rootvp; 2115 path++; 2116 plen--; 2117 } else { 2118 base = startvp; 2119 } 2120 2121 /* 2122 * We cannot grab base->v_lock while we hold vp->v_lock because of 2123 * the potential for deadlock. 2124 */ 2125 mutex_enter(&base->v_lock); 2126 if (base->v_path == NULL) { 2127 mutex_exit(&base->v_lock); 2128 return; 2129 } 2130 2131 rpathlen = strlen(base->v_path); 2132 rpathalloc = rpathlen + plen + 1; 2133 /* Avoid adding a slash if there's already one there */ 2134 if (base->v_path[rpathlen-1] == '/') 2135 doslash = 0; 2136 else 2137 rpathalloc++; 2138 2139 /* 2140 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2141 * so we must do this dance. If, by chance, something changes the path, 2142 * just give up since there is no real harm. 2143 */ 2144 mutex_exit(&base->v_lock); 2145 2146 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2147 2148 mutex_enter(&base->v_lock); 2149 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2150 mutex_exit(&base->v_lock); 2151 kmem_free(rpath, rpathalloc); 2152 return; 2153 } 2154 bcopy(base->v_path, rpath, rpathlen); 2155 mutex_exit(&base->v_lock); 2156 2157 if (doslash) 2158 rpath[rpathlen++] = '/'; 2159 bcopy(path, rpath + rpathlen, plen); 2160 rpath[rpathlen + plen] = '\0'; 2161 2162 mutex_enter(&vp->v_lock); 2163 if (vp->v_path != NULL) { 2164 mutex_exit(&vp->v_lock); 2165 kmem_free(rpath, rpathalloc); 2166 } else { 2167 vp->v_path = rpath; 2168 mutex_exit(&vp->v_lock); 2169 } 2170 } 2171 2172 /* 2173 * Sets the path to the vnode to be the given string, regardless of current 2174 * context. The string must be a complete path from rootdir. This is only used 2175 * by fsop_root() for setting the path based on the mountpoint. 2176 */ 2177 void 2178 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2179 { 2180 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2181 2182 mutex_enter(&vp->v_lock); 2183 if (vp->v_path != NULL) { 2184 mutex_exit(&vp->v_lock); 2185 kmem_free(buf, len + 1); 2186 return; 2187 } 2188 2189 vp->v_path = buf; 2190 bcopy(str, vp->v_path, len); 2191 vp->v_path[len] = '\0'; 2192 2193 mutex_exit(&vp->v_lock); 2194 } 2195 2196 /* 2197 * Similar to vn_setpath_str(), this function sets the path of the destination 2198 * vnode to the be the same as the source vnode. 2199 */ 2200 void 2201 vn_copypath(struct vnode *src, struct vnode *dst) 2202 { 2203 char *buf; 2204 int alloc; 2205 2206 mutex_enter(&src->v_lock); 2207 if (src->v_path == NULL) { 2208 mutex_exit(&src->v_lock); 2209 return; 2210 } 2211 alloc = strlen(src->v_path) + 1; 2212 2213 /* avoid kmem_alloc() with lock held */ 2214 mutex_exit(&src->v_lock); 2215 buf = kmem_alloc(alloc, KM_SLEEP); 2216 mutex_enter(&src->v_lock); 2217 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2218 mutex_exit(&src->v_lock); 2219 kmem_free(buf, alloc); 2220 return; 2221 } 2222 bcopy(src->v_path, buf, alloc); 2223 mutex_exit(&src->v_lock); 2224 2225 mutex_enter(&dst->v_lock); 2226 if (dst->v_path != NULL) { 2227 mutex_exit(&dst->v_lock); 2228 kmem_free(buf, alloc); 2229 return; 2230 } 2231 dst->v_path = buf; 2232 mutex_exit(&dst->v_lock); 2233 } 2234 2235 /* 2236 * XXX Private interface for segvn routines that handle vnode 2237 * large page segments. 2238 * 2239 * return 1 if vp's file system VOP_PAGEIO() implementation 2240 * can be safely used instead of VOP_GETPAGE() for handling 2241 * pagefaults against regular non swap files. VOP_PAGEIO() 2242 * interface is considered safe here if its implementation 2243 * is very close to VOP_GETPAGE() implementation. 2244 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2245 * panic if there're file holes but instead returns an error. 2246 * Doesn't assume file won't be changed by user writes, etc. 2247 * 2248 * return 0 otherwise. 2249 * 2250 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2251 */ 2252 int 2253 vn_vmpss_usepageio(vnode_t *vp) 2254 { 2255 vfs_t *vfsp = vp->v_vfsp; 2256 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2257 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2258 char **fsok = pageio_ok_fss; 2259 2260 if (fsname == NULL) { 2261 return (0); 2262 } 2263 2264 for (; *fsok; fsok++) { 2265 if (strcmp(*fsok, fsname) == 0) { 2266 return (1); 2267 } 2268 } 2269 return (0); 2270 } 2271 2272 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2273 2274 int 2275 fop_open( 2276 vnode_t **vpp, 2277 int mode, 2278 cred_t *cr) 2279 { 2280 int ret; 2281 vnode_t *vp = *vpp; 2282 2283 VN_HOLD(vp); 2284 /* 2285 * Adding to the vnode counts before calling open 2286 * avoids the need for a mutex. It circumvents a race 2287 * condition where a query made on the vnode counts results in a 2288 * false negative. The inquirer goes away believing the file is 2289 * not open when there is an open on the file already under way. 2290 * 2291 * The counts are meant to prevent NFS from granting a delegation 2292 * when it would be dangerous to do so. 2293 * 2294 * The vnode counts are only kept on regular files 2295 */ 2296 if ((*vpp)->v_type == VREG) { 2297 if (mode & FREAD) 2298 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2299 if (mode & FWRITE) 2300 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2301 } 2302 2303 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2304 2305 if (ret) { 2306 /* 2307 * Use the saved vp just in case the vnode ptr got trashed 2308 * by the error. 2309 */ 2310 if ((vp->v_type == VREG) && (mode & FREAD)) 2311 atomic_add_32(&(vp->v_rdcnt), -1); 2312 if ((vp->v_type == VREG) && (mode & FWRITE)) 2313 atomic_add_32(&(vp->v_wrcnt), -1); 2314 } else { 2315 /* 2316 * Some filesystems will return a different vnode, 2317 * but the same path was still used to open it. 2318 * So if we do change the vnode and need to 2319 * copy over the path, do so here, rather than special 2320 * casing each filesystem. Adjust the vnode counts to 2321 * reflect the vnode switch. 2322 */ 2323 2324 if (*vpp != vp && *vpp != NULL) { 2325 vn_copypath(vp, *vpp); 2326 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2327 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2328 if ((vp->v_type == VREG) && (mode & FREAD)) 2329 atomic_add_32(&(vp->v_rdcnt), -1); 2330 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2331 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2332 if ((vp->v_type == VREG) && (mode & FWRITE)) 2333 atomic_add_32(&(vp->v_wrcnt), -1); 2334 } 2335 } 2336 VN_RELE(vp); 2337 return (ret); 2338 } 2339 2340 int 2341 fop_close( 2342 vnode_t *vp, 2343 int flag, 2344 int count, 2345 offset_t offset, 2346 cred_t *cr) 2347 { 2348 int error; 2349 error = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2350 /* 2351 * Check passed in count to handle possible dups. Vnode counts are only 2352 * kept on regular files 2353 */ 2354 if ((vp->v_type == VREG) && (count == 1)) { 2355 if (flag & FREAD) { 2356 ASSERT(vp->v_rdcnt > 0); 2357 atomic_add_32(&(vp->v_rdcnt), -1); 2358 } 2359 if (flag & FWRITE) { 2360 ASSERT(vp->v_wrcnt > 0); 2361 atomic_add_32(&(vp->v_wrcnt), -1); 2362 } 2363 } 2364 return (error); 2365 } 2366 2367 int 2368 fop_read( 2369 vnode_t *vp, 2370 uio_t *uiop, 2371 int ioflag, 2372 cred_t *cr, 2373 struct caller_context *ct) 2374 { 2375 return (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2376 } 2377 2378 int 2379 fop_write( 2380 vnode_t *vp, 2381 uio_t *uiop, 2382 int ioflag, 2383 cred_t *cr, 2384 struct caller_context *ct) 2385 { 2386 return (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2387 } 2388 2389 int 2390 fop_ioctl( 2391 vnode_t *vp, 2392 int cmd, 2393 intptr_t arg, 2394 int flag, 2395 cred_t *cr, 2396 int *rvalp) 2397 { 2398 return (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2399 } 2400 2401 int 2402 fop_setfl( 2403 vnode_t *vp, 2404 int oflags, 2405 int nflags, 2406 cred_t *cr) 2407 { 2408 return (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2409 } 2410 2411 int 2412 fop_getattr( 2413 vnode_t *vp, 2414 vattr_t *vap, 2415 int flags, 2416 cred_t *cr) 2417 { 2418 return (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2419 } 2420 2421 int 2422 fop_setattr( 2423 vnode_t *vp, 2424 vattr_t *vap, 2425 int flags, 2426 cred_t *cr, 2427 caller_context_t *ct) 2428 { 2429 return (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2430 } 2431 2432 int 2433 fop_access( 2434 vnode_t *vp, 2435 int mode, 2436 int flags, 2437 cred_t *cr) 2438 { 2439 return (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2440 } 2441 2442 int 2443 fop_lookup( 2444 vnode_t *dvp, 2445 char *nm, 2446 vnode_t **vpp, 2447 pathname_t *pnp, 2448 int flags, 2449 vnode_t *rdir, 2450 cred_t *cr) 2451 { 2452 int ret; 2453 2454 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2455 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2456 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2457 2458 return (ret); 2459 } 2460 2461 int 2462 fop_create( 2463 vnode_t *dvp, 2464 char *name, 2465 vattr_t *vap, 2466 vcexcl_t excl, 2467 int mode, 2468 vnode_t **vpp, 2469 cred_t *cr, 2470 int flag) 2471 { 2472 int ret; 2473 2474 ret = (*(dvp)->v_op->vop_create) 2475 (dvp, name, vap, excl, mode, vpp, cr, flag); 2476 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2477 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 2478 2479 return (ret); 2480 } 2481 2482 int 2483 fop_remove( 2484 vnode_t *dvp, 2485 char *nm, 2486 cred_t *cr) 2487 { 2488 return (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 2489 } 2490 2491 int 2492 fop_link( 2493 vnode_t *tdvp, 2494 vnode_t *svp, 2495 char *tnm, 2496 cred_t *cr) 2497 { 2498 return (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 2499 } 2500 2501 int 2502 fop_rename( 2503 vnode_t *sdvp, 2504 char *snm, 2505 vnode_t *tdvp, 2506 char *tnm, 2507 cred_t *cr) 2508 { 2509 return (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 2510 } 2511 2512 int 2513 fop_mkdir( 2514 vnode_t *dvp, 2515 char *dirname, 2516 vattr_t *vap, 2517 vnode_t **vpp, 2518 cred_t *cr) 2519 { 2520 int ret; 2521 2522 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 2523 if (ret == 0 && *vpp && (*vpp)->v_path == NULL) 2524 vn_setpath(rootdir, dvp, *vpp, dirname, strlen(dirname)); 2525 2526 return (ret); 2527 } 2528 2529 int 2530 fop_rmdir( 2531 vnode_t *dvp, 2532 char *nm, 2533 vnode_t *cdir, 2534 cred_t *cr) 2535 { 2536 return (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 2537 } 2538 2539 int 2540 fop_readdir( 2541 vnode_t *vp, 2542 uio_t *uiop, 2543 cred_t *cr, 2544 int *eofp) 2545 { 2546 return (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 2547 } 2548 2549 int 2550 fop_symlink( 2551 vnode_t *dvp, 2552 char *linkname, 2553 vattr_t *vap, 2554 char *target, 2555 cred_t *cr) 2556 { 2557 return (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 2558 } 2559 2560 int 2561 fop_readlink( 2562 vnode_t *vp, 2563 uio_t *uiop, 2564 cred_t *cr) 2565 { 2566 return (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 2567 } 2568 2569 int 2570 fop_fsync( 2571 vnode_t *vp, 2572 int syncflag, 2573 cred_t *cr) 2574 { 2575 return (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 2576 } 2577 2578 void 2579 fop_inactive( 2580 vnode_t *vp, 2581 cred_t *cr) 2582 { 2583 (*(vp)->v_op->vop_inactive)(vp, cr); 2584 } 2585 2586 int 2587 fop_fid( 2588 vnode_t *vp, 2589 fid_t *fidp) 2590 { 2591 return (*(vp)->v_op->vop_fid)(vp, fidp); 2592 } 2593 2594 int 2595 fop_rwlock( 2596 vnode_t *vp, 2597 int write_lock, 2598 caller_context_t *ct) 2599 { 2600 return ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 2601 } 2602 2603 void 2604 fop_rwunlock( 2605 vnode_t *vp, 2606 int write_lock, 2607 caller_context_t *ct) 2608 { 2609 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 2610 } 2611 2612 int 2613 fop_seek( 2614 vnode_t *vp, 2615 offset_t ooff, 2616 offset_t *noffp) 2617 { 2618 return (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 2619 } 2620 2621 int 2622 fop_cmp( 2623 vnode_t *vp1, 2624 vnode_t *vp2) 2625 { 2626 return (*(vp1)->v_op->vop_cmp)(vp1, vp2); 2627 } 2628 2629 int 2630 fop_frlock( 2631 vnode_t *vp, 2632 int cmd, 2633 flock64_t *bfp, 2634 int flag, 2635 offset_t offset, 2636 struct flk_callback *flk_cbp, 2637 cred_t *cr) 2638 { 2639 return (*(vp)->v_op->vop_frlock) 2640 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 2641 } 2642 2643 int 2644 fop_space( 2645 vnode_t *vp, 2646 int cmd, 2647 flock64_t *bfp, 2648 int flag, 2649 offset_t offset, 2650 cred_t *cr, 2651 caller_context_t *ct) 2652 { 2653 return (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 2654 } 2655 2656 int 2657 fop_realvp( 2658 vnode_t *vp, 2659 vnode_t **vpp) 2660 { 2661 return (*(vp)->v_op->vop_realvp)(vp, vpp); 2662 } 2663 2664 int 2665 fop_getpage( 2666 vnode_t *vp, 2667 offset_t off, 2668 size_t len, 2669 uint_t *protp, 2670 page_t **plarr, 2671 size_t plsz, 2672 struct seg *seg, 2673 caddr_t addr, 2674 enum seg_rw rw, 2675 cred_t *cr) 2676 { 2677 return (*(vp)->v_op->vop_getpage) 2678 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 2679 } 2680 2681 int 2682 fop_putpage( 2683 vnode_t *vp, 2684 offset_t off, 2685 size_t len, 2686 int flags, 2687 cred_t *cr) 2688 { 2689 return (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 2690 } 2691 2692 int 2693 fop_map( 2694 vnode_t *vp, 2695 offset_t off, 2696 struct as *as, 2697 caddr_t *addrp, 2698 size_t len, 2699 uchar_t prot, 2700 uchar_t maxprot, 2701 uint_t flags, 2702 cred_t *cr) 2703 { 2704 return (*(vp)->v_op->vop_map) 2705 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 2706 } 2707 2708 int 2709 fop_addmap( 2710 vnode_t *vp, 2711 offset_t off, 2712 struct as *as, 2713 caddr_t addr, 2714 size_t len, 2715 uchar_t prot, 2716 uchar_t maxprot, 2717 uint_t flags, 2718 cred_t *cr) 2719 { 2720 int error; 2721 u_longlong_t delta; 2722 2723 error = (*(vp)->v_op->vop_addmap) 2724 (vp, off, as, addr, len, prot, maxprot, flags, cr); 2725 2726 if ((!error) && (vp->v_type == VREG)) { 2727 delta = (u_longlong_t)btopr(len); 2728 /* 2729 * If file is declared MAP_PRIVATE, it can't be written back 2730 * even if open for write. Handle as read. 2731 */ 2732 if (flags & MAP_PRIVATE) { 2733 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2734 (int64_t)delta); 2735 } else { 2736 /* 2737 * atomic_add_64 forces the fetch of a 64 bit value to 2738 * be atomic on 32 bit machines 2739 */ 2740 if (maxprot & PROT_WRITE) 2741 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 2742 (int64_t)delta); 2743 if (maxprot & PROT_READ) 2744 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2745 (int64_t)delta); 2746 if (maxprot & PROT_EXEC) 2747 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2748 (int64_t)delta); 2749 } 2750 } 2751 return (error); 2752 } 2753 2754 int 2755 fop_delmap( 2756 vnode_t *vp, 2757 offset_t off, 2758 struct as *as, 2759 caddr_t addr, 2760 size_t len, 2761 uint_t prot, 2762 uint_t maxprot, 2763 uint_t flags, 2764 cred_t *cr) 2765 { 2766 int error; 2767 u_longlong_t delta; 2768 error = (*(vp)->v_op->vop_delmap) 2769 (vp, off, as, addr, len, prot, maxprot, flags, cr); 2770 2771 /* 2772 * NFS calls into delmap twice, the first time 2773 * it simply establishes a callback mechanism and returns EAGAIN 2774 * while the real work is being done upon the second invocation. 2775 * We have to detect this here and only decrement the counts upon 2776 * the second delmap request. 2777 */ 2778 if ((error != EAGAIN) && (vp->v_type == VREG)) { 2779 2780 delta = (u_longlong_t)btopr(len); 2781 2782 if (flags & MAP_PRIVATE) { 2783 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2784 (int64_t)(-delta)); 2785 } else { 2786 /* 2787 * atomic_add_64 forces the fetch of a 64 bit value 2788 * to be atomic on 32 bit machines 2789 */ 2790 if (maxprot & PROT_WRITE) 2791 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 2792 (int64_t)(-delta)); 2793 if (maxprot & PROT_READ) 2794 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2795 (int64_t)(-delta)); 2796 if (maxprot & PROT_EXEC) 2797 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 2798 (int64_t)(-delta)); 2799 } 2800 } 2801 return (error); 2802 } 2803 2804 2805 int 2806 fop_poll( 2807 vnode_t *vp, 2808 short events, 2809 int anyyet, 2810 short *reventsp, 2811 struct pollhead **phpp) 2812 { 2813 return (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 2814 } 2815 2816 int 2817 fop_dump( 2818 vnode_t *vp, 2819 caddr_t addr, 2820 int lbdn, 2821 int dblks) 2822 { 2823 return (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 2824 } 2825 2826 int 2827 fop_pathconf( 2828 vnode_t *vp, 2829 int cmd, 2830 ulong_t *valp, 2831 cred_t *cr) 2832 { 2833 return (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 2834 } 2835 2836 int 2837 fop_pageio( 2838 vnode_t *vp, 2839 struct page *pp, 2840 u_offset_t io_off, 2841 size_t io_len, 2842 int flags, 2843 cred_t *cr) 2844 { 2845 return (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 2846 } 2847 2848 int 2849 fop_dumpctl( 2850 vnode_t *vp, 2851 int action, 2852 int *blkp) 2853 { 2854 return (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 2855 } 2856 2857 void 2858 fop_dispose( 2859 vnode_t *vp, 2860 page_t *pp, 2861 int flag, 2862 int dn, 2863 cred_t *cr) 2864 { 2865 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 2866 } 2867 2868 int 2869 fop_setsecattr( 2870 vnode_t *vp, 2871 vsecattr_t *vsap, 2872 int flag, 2873 cred_t *cr) 2874 { 2875 return (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 2876 } 2877 2878 int 2879 fop_getsecattr( 2880 vnode_t *vp, 2881 vsecattr_t *vsap, 2882 int flag, 2883 cred_t *cr) 2884 { 2885 return (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 2886 } 2887 2888 int 2889 fop_shrlock( 2890 vnode_t *vp, 2891 int cmd, 2892 struct shrlock *shr, 2893 int flag, 2894 cred_t *cr) 2895 { 2896 return (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 2897 } 2898 2899 int 2900 fop_vnevent(vnode_t *vp, vnevent_t vnevent) 2901 { 2902 return (*(vp)->v_op->vop_vnevent)(vp, vnevent); 2903 } 2904