1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same 80 * number of entries as and parallel to the vfssw table. (Arguably, it could 81 * be part of the vfssw table.) Once it's initialized, it's accessed using 82 * the same fstype index that is used to index into the vfssw table. 83 */ 84 vopstats_t **vopstats_fstype; 85 86 /* vopstats initialization template used for fast initialization via bcopy() */ 87 static vopstats_t *vs_templatep; 88 89 /* Kmem cache handle for vsk_anchor_t allocations */ 90 kmem_cache_t *vsk_anchor_cache; 91 92 /* file events cleanup routine */ 93 extern void free_fopdata(vnode_t *); 94 95 /* 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects 97 * updates to vsktat_tree. 98 */ 99 avl_tree_t vskstat_tree; 100 kmutex_t vskstat_tree_lock; 101 102 /* Global variable which enables/disables the vopstats collection */ 103 int vopstats_enabled = 1; 104 105 /* 106 * The following is the common set of actions needed to update the 107 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 108 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 109 * recording of the bytes transferred. Since the code is similar 110 * but small, it is nearly a duplicate. Consequently any changes 111 * to one may need to be reflected in the other. 112 * Rundown of the variables: 113 * vp - Pointer to the vnode 114 * counter - Partial name structure member to update in vopstats for counts 115 * bytecounter - Partial name structure member to update in vopstats for bytes 116 * bytesval - Value to update in vopstats for bytes 117 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 118 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 119 */ 120 121 #define VOPSTATS_UPDATE(vp, counter) { \ 122 vfs_t *vfsp = (vp)->v_vfsp; \ 123 if (vfsp && vfsp->vfs_implp && \ 124 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 125 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 126 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 127 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 128 size_t, uint64_t *); \ 129 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 130 (*stataddr)++; \ 131 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 132 vsp->n##counter.value.ui64++; \ 133 } \ 134 } \ 135 } 136 137 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 138 vfs_t *vfsp = (vp)->v_vfsp; \ 139 if (vfsp && vfsp->vfs_implp && \ 140 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 141 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 142 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 143 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 144 size_t, uint64_t *); \ 145 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 146 (*stataddr)++; \ 147 vsp->bytecounter.value.ui64 += bytesval; \ 148 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 149 vsp->n##counter.value.ui64++; \ 150 vsp->bytecounter.value.ui64 += bytesval; \ 151 } \ 152 } \ 153 } 154 155 /* 156 * If the filesystem does not support XIDs map credential 157 * If the vfsp is NULL, perhaps we should also map? 158 */ 159 #define VOPXID_MAP_CR(vp, cr) { \ 160 vfs_t *vfsp = (vp)->v_vfsp; \ 161 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 162 cr = crgetmapped(cr); \ 163 } 164 165 /* 166 * Convert stat(2) formats to vnode types and vice versa. (Knows about 167 * numerical order of S_IFMT and vnode types.) 168 */ 169 enum vtype iftovt_tab[] = { 170 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 171 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 172 }; 173 174 ushort_t vttoif_tab[] = { 175 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 176 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 177 }; 178 179 /* 180 * The system vnode cache. 181 */ 182 183 kmem_cache_t *vn_cache; 184 185 186 /* 187 * Vnode operations vector. 188 */ 189 190 static const fs_operation_trans_def_t vn_ops_table[] = { 191 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 192 fs_nosys, fs_nosys, 193 194 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 195 fs_nosys, fs_nosys, 196 197 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 198 fs_nosys, fs_nosys, 199 200 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 201 fs_nosys, fs_nosys, 202 203 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 204 fs_nosys, fs_nosys, 205 206 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 207 fs_setfl, fs_nosys, 208 209 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 210 fs_nosys, fs_nosys, 211 212 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 213 fs_nosys, fs_nosys, 214 215 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 216 fs_nosys, fs_nosys, 217 218 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 219 fs_nosys, fs_nosys, 220 221 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 222 fs_nosys, fs_nosys, 223 224 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 225 fs_nosys, fs_nosys, 226 227 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 228 fs_nosys, fs_nosys, 229 230 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 231 fs_nosys, fs_nosys, 232 233 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 234 fs_nosys, fs_nosys, 235 236 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 237 fs_nosys, fs_nosys, 238 239 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 240 fs_nosys, fs_nosys, 241 242 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 243 fs_nosys, fs_nosys, 244 245 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 246 fs_nosys, fs_nosys, 247 248 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 252 fs_nosys, fs_nosys, 253 254 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 255 fs_nosys, fs_nosys, 256 257 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 258 fs_rwlock, fs_rwlock, 259 260 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 261 (fs_generic_func_p) fs_rwunlock, 262 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 263 264 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 265 fs_nosys, fs_nosys, 266 267 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 268 fs_cmp, fs_cmp, /* no errors allowed */ 269 270 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 271 fs_frlock, fs_nosys, 272 273 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 274 fs_nosys, fs_nosys, 275 276 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 277 fs_nosys, fs_nosys, 278 279 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 283 fs_nosys, fs_nosys, 284 285 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 286 (fs_generic_func_p) fs_nosys_map, 287 (fs_generic_func_p) fs_nosys_map, 288 289 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 290 (fs_generic_func_p) fs_nosys_addmap, 291 (fs_generic_func_p) fs_nosys_addmap, 292 293 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 294 fs_nosys, fs_nosys, 295 296 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 297 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 298 299 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 300 fs_nosys, fs_nosys, 301 302 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 303 fs_pathconf, fs_nosys, 304 305 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 306 fs_nosys, fs_nosys, 307 308 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 309 fs_nosys, fs_nosys, 310 311 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 312 (fs_generic_func_p) fs_dispose, 313 (fs_generic_func_p) fs_nodispose, 314 315 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 316 fs_nosys, fs_nosys, 317 318 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 319 fs_fab_acl, fs_nosys, 320 321 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 322 fs_shrlock, fs_nosys, 323 324 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 325 (fs_generic_func_p) fs_vnevent_nosupport, 326 (fs_generic_func_p) fs_vnevent_nosupport, 327 328 NULL, 0, NULL, NULL 329 }; 330 331 /* 332 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 333 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 334 * kstat name. 335 */ 336 static int 337 vska_compar(const void *n1, const void *n2) 338 { 339 int ret; 340 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 341 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 342 343 if (p1 < p2) { 344 ret = -1; 345 } else if (p1 > p2) { 346 ret = 1; 347 } else { 348 ret = 0; 349 } 350 351 return (ret); 352 } 353 354 /* 355 * Used to create a single template which will be bcopy()ed to a newly 356 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 357 */ 358 static vopstats_t * 359 create_vopstats_template() 360 { 361 vopstats_t *vsp; 362 363 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 364 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 365 366 /* VOP_OPEN */ 367 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 368 /* VOP_CLOSE */ 369 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 370 /* VOP_READ I/O */ 371 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 372 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 373 /* VOP_WRITE I/O */ 374 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 375 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 376 /* VOP_IOCTL */ 377 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 378 /* VOP_SETFL */ 379 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 380 /* VOP_GETATTR */ 381 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 382 /* VOP_SETATTR */ 383 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 384 /* VOP_ACCESS */ 385 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 386 /* VOP_LOOKUP */ 387 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 388 /* VOP_CREATE */ 389 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 390 /* VOP_REMOVE */ 391 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 392 /* VOP_LINK */ 393 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 394 /* VOP_RENAME */ 395 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 396 /* VOP_MKDIR */ 397 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 398 /* VOP_RMDIR */ 399 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 400 /* VOP_READDIR I/O */ 401 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 402 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 403 KSTAT_DATA_UINT64); 404 /* VOP_SYMLINK */ 405 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 406 /* VOP_READLINK */ 407 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 408 /* VOP_FSYNC */ 409 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 410 /* VOP_INACTIVE */ 411 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 412 /* VOP_FID */ 413 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 414 /* VOP_RWLOCK */ 415 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 416 /* VOP_RWUNLOCK */ 417 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 418 /* VOP_SEEK */ 419 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 420 /* VOP_CMP */ 421 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 422 /* VOP_FRLOCK */ 423 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 424 /* VOP_SPACE */ 425 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 426 /* VOP_REALVP */ 427 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 428 /* VOP_GETPAGE */ 429 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 430 /* VOP_PUTPAGE */ 431 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 432 /* VOP_MAP */ 433 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 434 /* VOP_ADDMAP */ 435 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 436 /* VOP_DELMAP */ 437 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 438 /* VOP_POLL */ 439 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 440 /* VOP_DUMP */ 441 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 442 /* VOP_PATHCONF */ 443 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 444 /* VOP_PAGEIO */ 445 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 446 /* VOP_DUMPCTL */ 447 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 448 /* VOP_DISPOSE */ 449 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 450 /* VOP_SETSECATTR */ 451 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 452 /* VOP_GETSECATTR */ 453 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 454 /* VOP_SHRLOCK */ 455 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 456 /* VOP_VNEVENT */ 457 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 458 459 return (vsp); 460 } 461 462 /* 463 * Creates a kstat structure associated with a vopstats structure. 464 */ 465 kstat_t * 466 new_vskstat(char *ksname, vopstats_t *vsp) 467 { 468 kstat_t *ksp; 469 470 if (!vopstats_enabled) { 471 return (NULL); 472 } 473 474 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 475 sizeof (vopstats_t)/sizeof (kstat_named_t), 476 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 477 if (ksp) { 478 ksp->ks_data = vsp; 479 kstat_install(ksp); 480 } 481 482 return (ksp); 483 } 484 485 /* 486 * Called from vfsinit() to initialize the support mechanisms for vopstats 487 */ 488 void 489 vopstats_startup() 490 { 491 if (!vopstats_enabled) 492 return; 493 494 /* 495 * Creates the AVL tree which holds per-vfs vopstat anchors. This 496 * is necessary since we need to check if a kstat exists before we 497 * attempt to create it. Also, initialize its lock. 498 */ 499 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 500 offsetof(vsk_anchor_t, vsk_node)); 501 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 502 503 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 504 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 505 NULL, NULL, 0); 506 507 /* 508 * Set up the array of pointers for the vopstats-by-FS-type. 509 * The entries will be allocated/initialized as each file system 510 * goes through modload/mod_installfs. 511 */ 512 vopstats_fstype = (vopstats_t **)kmem_zalloc( 513 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 514 515 /* Set up the global vopstats initialization template */ 516 vs_templatep = create_vopstats_template(); 517 } 518 519 /* 520 * We need to have the all of the counters zeroed. 521 * The initialization of the vopstats_t includes on the order of 522 * 50 calls to kstat_named_init(). Rather that do that on every call, 523 * we do it once in a template (vs_templatep) then bcopy it over. 524 */ 525 void 526 initialize_vopstats(vopstats_t *vsp) 527 { 528 if (vsp == NULL) 529 return; 530 531 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 532 } 533 534 /* 535 * If possible, determine which vopstats by fstype to use and 536 * return a pointer to the caller. 537 */ 538 vopstats_t * 539 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 540 { 541 int fstype = 0; /* Index into vfssw[] */ 542 vopstats_t *vsp = NULL; 543 544 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 545 !vopstats_enabled) 546 return (NULL); 547 /* 548 * Set up the fstype. We go to so much trouble because all versions 549 * of NFS use the same fstype in their vfs even though they have 550 * distinct entries in the vfssw[] table. 551 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 552 */ 553 if (vswp) { 554 fstype = vswp - vfssw; /* Gets us the index */ 555 } else { 556 fstype = vfsp->vfs_fstype; 557 } 558 559 /* 560 * Point to the per-fstype vopstats. The only valid values are 561 * non-zero positive values less than the number of vfssw[] table 562 * entries. 563 */ 564 if (fstype > 0 && fstype < nfstype) { 565 vsp = vopstats_fstype[fstype]; 566 } 567 568 return (vsp); 569 } 570 571 /* 572 * Generate a kstat name, create the kstat structure, and allocate a 573 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 574 * to the caller. This must only be called from a mount. 575 */ 576 vsk_anchor_t * 577 get_vskstat_anchor(vfs_t *vfsp) 578 { 579 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 580 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 581 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 582 kstat_t *ksp; /* Ptr to new kstat */ 583 avl_index_t where; /* Location in the AVL tree */ 584 585 if (vfsp == NULL || vfsp->vfs_implp == NULL || 586 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 587 return (NULL); 588 589 /* Need to get the fsid to build a kstat name */ 590 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 591 /* Create a name for our kstats based on fsid */ 592 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 593 VOPSTATS_STR, statvfsbuf.f_fsid); 594 595 /* Allocate and initialize the vsk_anchor_t */ 596 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 597 bzero(vskp, sizeof (*vskp)); 598 vskp->vsk_fsid = statvfsbuf.f_fsid; 599 600 mutex_enter(&vskstat_tree_lock); 601 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 602 avl_insert(&vskstat_tree, vskp, where); 603 mutex_exit(&vskstat_tree_lock); 604 605 /* 606 * Now that we've got the anchor in the AVL 607 * tree, we can create the kstat. 608 */ 609 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 610 if (ksp) { 611 vskp->vsk_ksp = ksp; 612 } 613 } else { 614 /* Oops, found one! Release memory and lock. */ 615 mutex_exit(&vskstat_tree_lock); 616 kmem_cache_free(vsk_anchor_cache, vskp); 617 vskp = NULL; 618 } 619 } 620 return (vskp); 621 } 622 623 /* 624 * We're in the process of tearing down the vfs and need to cleanup 625 * the data structures associated with the vopstats. Must only be called 626 * from dounmount(). 627 */ 628 void 629 teardown_vopstats(vfs_t *vfsp) 630 { 631 vsk_anchor_t *vskap; 632 avl_index_t where; 633 634 if (vfsp == NULL || vfsp->vfs_implp == NULL || 635 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 636 return; 637 638 /* This is a safe check since VFS_STATS must be set (see above) */ 639 if ((vskap = vfsp->vfs_vskap) == NULL) 640 return; 641 642 /* Whack the pointer right away */ 643 vfsp->vfs_vskap = NULL; 644 645 /* Lock the tree, remove the node, and delete the kstat */ 646 mutex_enter(&vskstat_tree_lock); 647 if (avl_find(&vskstat_tree, vskap, &where)) { 648 avl_remove(&vskstat_tree, vskap); 649 } 650 651 if (vskap->vsk_ksp) { 652 kstat_delete(vskap->vsk_ksp); 653 } 654 mutex_exit(&vskstat_tree_lock); 655 656 kmem_cache_free(vsk_anchor_cache, vskap); 657 } 658 659 /* 660 * Read or write a vnode. Called from kernel code. 661 */ 662 int 663 vn_rdwr( 664 enum uio_rw rw, 665 struct vnode *vp, 666 caddr_t base, 667 ssize_t len, 668 offset_t offset, 669 enum uio_seg seg, 670 int ioflag, 671 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 672 cred_t *cr, 673 ssize_t *residp) 674 { 675 struct uio uio; 676 struct iovec iov; 677 int error; 678 int in_crit = 0; 679 680 if (rw == UIO_WRITE && ISROFILE(vp)) 681 return (EROFS); 682 683 if (len < 0) 684 return (EIO); 685 686 VOPXID_MAP_CR(vp, cr); 687 688 iov.iov_base = base; 689 iov.iov_len = len; 690 uio.uio_iov = &iov; 691 uio.uio_iovcnt = 1; 692 uio.uio_loffset = offset; 693 uio.uio_segflg = (short)seg; 694 uio.uio_resid = len; 695 uio.uio_llimit = ulimit; 696 697 /* 698 * We have to enter the critical region before calling VOP_RWLOCK 699 * to avoid a deadlock with ufs. 700 */ 701 if (nbl_need_check(vp)) { 702 int svmand; 703 704 nbl_start_crit(vp, RW_READER); 705 in_crit = 1; 706 error = nbl_svmand(vp, cr, &svmand); 707 if (error != 0) 708 goto done; 709 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 710 uio.uio_offset, uio.uio_resid, svmand)) { 711 error = EACCES; 712 goto done; 713 } 714 } 715 716 (void) VOP_RWLOCK(vp, 717 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 718 if (rw == UIO_WRITE) { 719 uio.uio_fmode = FWRITE; 720 uio.uio_extflg = UIO_COPY_DEFAULT; 721 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 722 } else { 723 uio.uio_fmode = FREAD; 724 uio.uio_extflg = UIO_COPY_CACHED; 725 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 726 } 727 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 728 NULL); 729 if (residp) 730 *residp = uio.uio_resid; 731 else if (uio.uio_resid) 732 error = EIO; 733 734 done: 735 if (in_crit) 736 nbl_end_crit(vp); 737 return (error); 738 } 739 740 /* 741 * Release a vnode. Call VOP_INACTIVE on last reference or 742 * decrement reference count. 743 * 744 * To avoid race conditions, the v_count is left at 1 for 745 * the call to VOP_INACTIVE. This prevents another thread 746 * from reclaiming and releasing the vnode *before* the 747 * VOP_INACTIVE routine has a chance to destroy the vnode. 748 * We can't have more than 1 thread calling VOP_INACTIVE 749 * on a vnode. 750 */ 751 void 752 vn_rele(vnode_t *vp) 753 { 754 if (vp->v_count == 0) 755 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 756 mutex_enter(&vp->v_lock); 757 if (vp->v_count == 1) { 758 mutex_exit(&vp->v_lock); 759 VOP_INACTIVE(vp, CRED()); 760 } else { 761 vp->v_count--; 762 mutex_exit(&vp->v_lock); 763 } 764 } 765 766 /* 767 * Like vn_rele() except that it clears v_stream under v_lock. 768 * This is used by sockfs when it dismantels the association between 769 * the sockfs node and the vnode in the underlaying file system. 770 * v_lock has to be held to prevent a thread coming through the lookupname 771 * path from accessing a stream head that is going away. 772 */ 773 void 774 vn_rele_stream(vnode_t *vp) 775 { 776 if (vp->v_count == 0) 777 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 778 mutex_enter(&vp->v_lock); 779 vp->v_stream = NULL; 780 if (vp->v_count == 1) { 781 mutex_exit(&vp->v_lock); 782 VOP_INACTIVE(vp, CRED()); 783 } else { 784 vp->v_count--; 785 mutex_exit(&vp->v_lock); 786 } 787 } 788 789 int 790 vn_open( 791 char *pnamep, 792 enum uio_seg seg, 793 int filemode, 794 int createmode, 795 struct vnode **vpp, 796 enum create crwhy, 797 mode_t umask) 798 { 799 return (vn_openat(pnamep, seg, filemode, 800 createmode, vpp, crwhy, umask, NULL)); 801 } 802 803 804 /* 805 * Open/create a vnode. 806 * This may be callable by the kernel, the only known use 807 * of user context being that the current user credentials 808 * are used for permissions. crwhy is defined iff filemode & FCREAT. 809 */ 810 int 811 vn_openat( 812 char *pnamep, 813 enum uio_seg seg, 814 int filemode, 815 int createmode, 816 struct vnode **vpp, 817 enum create crwhy, 818 mode_t umask, 819 struct vnode *startvp) 820 { 821 struct vnode *vp; 822 int mode; 823 int error; 824 int in_crit = 0; 825 struct vattr vattr; 826 enum symfollow follow; 827 int estale_retry = 0; 828 829 mode = 0; 830 if (filemode & FREAD) 831 mode |= VREAD; 832 if (filemode & (FWRITE|FTRUNC)) 833 mode |= VWRITE; 834 835 /* symlink interpretation */ 836 if (filemode & FNOFOLLOW) 837 follow = NO_FOLLOW; 838 else 839 follow = FOLLOW; 840 841 top: 842 if (filemode & FCREAT) { 843 enum vcexcl excl; 844 845 /* 846 * Wish to create a file. 847 */ 848 vattr.va_type = VREG; 849 vattr.va_mode = createmode; 850 vattr.va_mask = AT_TYPE|AT_MODE; 851 if (filemode & FTRUNC) { 852 vattr.va_size = 0; 853 vattr.va_mask |= AT_SIZE; 854 } 855 if (filemode & FEXCL) 856 excl = EXCL; 857 else 858 excl = NONEXCL; 859 860 if (error = 861 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 862 (filemode & ~(FTRUNC|FEXCL)), 863 umask, startvp)) 864 return (error); 865 } else { 866 /* 867 * Wish to open a file. Just look it up. 868 */ 869 if (error = lookupnameat(pnamep, seg, follow, 870 NULLVPP, &vp, startvp)) { 871 if ((error == ESTALE) && 872 fs_need_estale_retry(estale_retry++)) 873 goto top; 874 return (error); 875 } 876 877 /* 878 * Get the attributes to check whether file is large. 879 * We do this only if the FOFFMAX flag is not set and 880 * only for regular files. 881 */ 882 883 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 884 vattr.va_mask = AT_SIZE; 885 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 886 goto out; 887 } 888 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 889 /* 890 * Large File API - regular open fails 891 * if FOFFMAX flag is set in file mode 892 */ 893 error = EOVERFLOW; 894 goto out; 895 } 896 } 897 /* 898 * Can't write directories, active texts, or 899 * read-only filesystems. Can't truncate files 900 * on which mandatory locking is in effect. 901 */ 902 if (filemode & (FWRITE|FTRUNC)) { 903 /* 904 * Allow writable directory if VDIROPEN flag is set. 905 */ 906 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 907 error = EISDIR; 908 goto out; 909 } 910 if (ISROFILE(vp)) { 911 error = EROFS; 912 goto out; 913 } 914 /* 915 * Can't truncate files on which mandatory locking 916 * or non-blocking mandatory locking is in effect. 917 */ 918 if (filemode & FTRUNC) { 919 vnode_t *rvp; 920 921 if (VOP_REALVP(vp, &rvp) != 0) 922 rvp = vp; 923 if (nbl_need_check(vp)) { 924 nbl_start_crit(vp, RW_READER); 925 in_crit = 1; 926 vattr.va_mask = AT_MODE|AT_SIZE; 927 if ((error = VOP_GETATTR(vp, &vattr, 0, 928 CRED())) == 0) { 929 if (rvp->v_filocks != NULL) 930 if (MANDLOCK(vp, 931 vattr.va_mode)) 932 error = EAGAIN; 933 if (!error) { 934 if (nbl_conflict(vp, 935 NBL_WRITE, 0, 936 vattr.va_size, 0)) 937 error = EACCES; 938 } 939 } 940 } else if (rvp->v_filocks != NULL) { 941 vattr.va_mask = AT_MODE; 942 if ((error = VOP_GETATTR(vp, &vattr, 943 0, CRED())) == 0 && MANDLOCK(vp, 944 vattr.va_mode)) 945 error = EAGAIN; 946 } 947 } 948 if (error) 949 goto out; 950 } 951 /* 952 * Check permissions. 953 */ 954 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 955 goto out; 956 } 957 958 /* 959 * Do remaining checks for FNOFOLLOW and FNOLINKS. 960 */ 961 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 962 error = ELOOP; 963 goto out; 964 } 965 if (filemode & FNOLINKS) { 966 vattr.va_mask = AT_NLINK; 967 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 968 goto out; 969 } 970 if (vattr.va_nlink != 1) { 971 error = EMLINK; 972 goto out; 973 } 974 } 975 976 /* 977 * Opening a socket corresponding to the AF_UNIX pathname 978 * in the filesystem name space is not supported. 979 * However, VSOCK nodes in namefs are supported in order 980 * to make fattach work for sockets. 981 * 982 * XXX This uses VOP_REALVP to distinguish between 983 * an unopened namefs node (where VOP_REALVP returns a 984 * different VSOCK vnode) and a VSOCK created by vn_create 985 * in some file system (where VOP_REALVP would never return 986 * a different vnode). 987 */ 988 if (vp->v_type == VSOCK) { 989 struct vnode *nvp; 990 991 error = VOP_REALVP(vp, &nvp); 992 if (error != 0 || nvp == NULL || nvp == vp || 993 nvp->v_type != VSOCK) { 994 error = EOPNOTSUPP; 995 goto out; 996 } 997 } 998 /* 999 * Do opening protocol. 1000 */ 1001 error = VOP_OPEN(&vp, filemode, CRED()); 1002 /* 1003 * Truncate if required. 1004 */ 1005 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 1006 vattr.va_size = 0; 1007 vattr.va_mask = AT_SIZE; 1008 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1009 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 1010 } 1011 out: 1012 ASSERT(vp->v_count > 0); 1013 1014 if (in_crit) { 1015 nbl_end_crit(vp); 1016 in_crit = 0; 1017 } 1018 if (error) { 1019 /* 1020 * The following clause was added to handle a problem 1021 * with NFS consistency. It is possible that a lookup 1022 * of the file to be opened succeeded, but the file 1023 * itself doesn't actually exist on the server. This 1024 * is chiefly due to the DNLC containing an entry for 1025 * the file which has been removed on the server. In 1026 * this case, we just start over. If there was some 1027 * other cause for the ESTALE error, then the lookup 1028 * of the file will fail and the error will be returned 1029 * above instead of looping around from here. 1030 */ 1031 VN_RELE(vp); 1032 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1033 goto top; 1034 } else 1035 *vpp = vp; 1036 return (error); 1037 } 1038 1039 int 1040 vn_create( 1041 char *pnamep, 1042 enum uio_seg seg, 1043 struct vattr *vap, 1044 enum vcexcl excl, 1045 int mode, 1046 struct vnode **vpp, 1047 enum create why, 1048 int flag, 1049 mode_t umask) 1050 { 1051 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1052 why, flag, umask, NULL)); 1053 } 1054 1055 /* 1056 * Create a vnode (makenode). 1057 */ 1058 int 1059 vn_createat( 1060 char *pnamep, 1061 enum uio_seg seg, 1062 struct vattr *vap, 1063 enum vcexcl excl, 1064 int mode, 1065 struct vnode **vpp, 1066 enum create why, 1067 int flag, 1068 mode_t umask, 1069 struct vnode *startvp) 1070 { 1071 struct vnode *dvp; /* ptr to parent dir vnode */ 1072 struct vnode *vp = NULL; 1073 struct pathname pn; 1074 int error; 1075 int in_crit = 0; 1076 struct vattr vattr; 1077 enum symfollow follow; 1078 int estale_retry = 0; 1079 1080 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1081 1082 /* symlink interpretation */ 1083 if ((flag & FNOFOLLOW) || excl == EXCL) 1084 follow = NO_FOLLOW; 1085 else 1086 follow = FOLLOW; 1087 flag &= ~(FNOFOLLOW|FNOLINKS); 1088 1089 top: 1090 /* 1091 * Lookup directory. 1092 * If new object is a file, call lower level to create it. 1093 * Note that it is up to the lower level to enforce exclusive 1094 * creation, if the file is already there. 1095 * This allows the lower level to do whatever 1096 * locking or protocol that is needed to prevent races. 1097 * If the new object is directory call lower level to make 1098 * the new directory, with "." and "..". 1099 */ 1100 if (error = pn_get(pnamep, seg, &pn)) 1101 return (error); 1102 #ifdef C2_AUDIT 1103 if (audit_active) 1104 audit_vncreate_start(); 1105 #endif /* C2_AUDIT */ 1106 dvp = NULL; 1107 *vpp = NULL; 1108 /* 1109 * lookup will find the parent directory for the vnode. 1110 * When it is done the pn holds the name of the entry 1111 * in the directory. 1112 * If this is a non-exclusive create we also find the node itself. 1113 */ 1114 error = lookuppnat(&pn, NULL, follow, &dvp, 1115 (excl == EXCL) ? NULLVPP : vpp, startvp); 1116 if (error) { 1117 pn_free(&pn); 1118 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1119 goto top; 1120 if (why == CRMKDIR && error == EINVAL) 1121 error = EEXIST; /* SVID */ 1122 return (error); 1123 } 1124 1125 if (why != CRMKNOD) 1126 vap->va_mode &= ~VSVTX; 1127 1128 /* 1129 * If default ACLs are defined for the directory don't apply the 1130 * umask if umask is passed. 1131 */ 1132 1133 if (umask) { 1134 1135 vsecattr_t vsec; 1136 1137 vsec.vsa_aclcnt = 0; 1138 vsec.vsa_aclentp = NULL; 1139 vsec.vsa_dfaclcnt = 0; 1140 vsec.vsa_dfaclentp = NULL; 1141 vsec.vsa_mask = VSA_DFACLCNT; 1142 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1143 /* 1144 * If error is ENOSYS then treat it as no error 1145 * Don't want to force all file systems to support 1146 * aclent_t style of ACL's. 1147 */ 1148 if (error == ENOSYS) 1149 error = 0; 1150 if (error) { 1151 if (*vpp != NULL) 1152 VN_RELE(*vpp); 1153 goto out; 1154 } else { 1155 /* 1156 * Apply the umask if no default ACLs. 1157 */ 1158 if (vsec.vsa_dfaclcnt == 0) 1159 vap->va_mode &= ~umask; 1160 1161 /* 1162 * VOP_GETSECATTR() may have allocated memory for 1163 * ACLs we didn't request, so double-check and 1164 * free it if necessary. 1165 */ 1166 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1167 kmem_free((caddr_t)vsec.vsa_aclentp, 1168 vsec.vsa_aclcnt * sizeof (aclent_t)); 1169 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1170 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1171 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1172 } 1173 } 1174 1175 /* 1176 * In general we want to generate EROFS if the file system is 1177 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1178 * documents the open system call, and it says that O_CREAT has no 1179 * effect if the file already exists. Bug 1119649 states 1180 * that open(path, O_CREAT, ...) fails when attempting to open an 1181 * existing file on a read only file system. Thus, the first part 1182 * of the following if statement has 3 checks: 1183 * if the file exists && 1184 * it is being open with write access && 1185 * the file system is read only 1186 * then generate EROFS 1187 */ 1188 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1189 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1190 if (*vpp) 1191 VN_RELE(*vpp); 1192 error = EROFS; 1193 } else if (excl == NONEXCL && *vpp != NULL) { 1194 vnode_t *rvp; 1195 1196 /* 1197 * File already exists. If a mandatory lock has been 1198 * applied, return error. 1199 */ 1200 vp = *vpp; 1201 if (VOP_REALVP(vp, &rvp) != 0) 1202 rvp = vp; 1203 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1204 nbl_start_crit(vp, RW_READER); 1205 in_crit = 1; 1206 } 1207 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1208 vattr.va_mask = AT_MODE|AT_SIZE; 1209 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1210 goto out; 1211 } 1212 if (MANDLOCK(vp, vattr.va_mode)) { 1213 error = EAGAIN; 1214 goto out; 1215 } 1216 /* 1217 * File cannot be truncated if non-blocking mandatory 1218 * locks are currently on the file. 1219 */ 1220 if ((vap->va_mask & AT_SIZE) && in_crit) { 1221 u_offset_t offset; 1222 ssize_t length; 1223 1224 offset = vap->va_size > vattr.va_size ? 1225 vattr.va_size : vap->va_size; 1226 length = vap->va_size > vattr.va_size ? 1227 vap->va_size - vattr.va_size : 1228 vattr.va_size - vap->va_size; 1229 if (nbl_conflict(vp, NBL_WRITE, offset, 1230 length, 0)) { 1231 error = EACCES; 1232 goto out; 1233 } 1234 } 1235 } 1236 1237 /* 1238 * If the file is the root of a VFS, we've crossed a 1239 * mount point and the "containing" directory that we 1240 * acquired above (dvp) is irrelevant because it's in 1241 * a different file system. We apply VOP_CREATE to the 1242 * target itself instead of to the containing directory 1243 * and supply a null path name to indicate (conventionally) 1244 * the node itself as the "component" of interest. 1245 * 1246 * The intercession of the file system is necessary to 1247 * ensure that the appropriate permission checks are 1248 * done. 1249 */ 1250 if (vp->v_flag & VROOT) { 1251 ASSERT(why != CRMKDIR); 1252 error = 1253 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1254 flag); 1255 /* 1256 * If the create succeeded, it will have created 1257 * a new reference to the vnode. Give up the 1258 * original reference. The assertion should not 1259 * get triggered because NBMAND locks only apply to 1260 * VREG files. And if in_crit is non-zero for some 1261 * reason, detect that here, rather than when we 1262 * deference a null vp. 1263 */ 1264 ASSERT(in_crit == 0); 1265 VN_RELE(vp); 1266 vp = NULL; 1267 goto out; 1268 } 1269 1270 /* 1271 * Large File API - non-large open (FOFFMAX flag not set) 1272 * of regular file fails if the file size exceeds MAXOFF32_T. 1273 */ 1274 if (why != CRMKDIR && 1275 !(flag & FOFFMAX) && 1276 (vp->v_type == VREG)) { 1277 vattr.va_mask = AT_SIZE; 1278 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1279 goto out; 1280 } 1281 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1282 error = EOVERFLOW; 1283 goto out; 1284 } 1285 } 1286 } 1287 1288 if (error == 0) { 1289 /* 1290 * Call mkdir() if specified, otherwise create(). 1291 */ 1292 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1293 1294 if (why == CRMKDIR) 1295 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1296 else if (!must_be_dir) 1297 error = VOP_CREATE(dvp, pn.pn_path, vap, 1298 excl, mode, vpp, CRED(), flag); 1299 else 1300 error = ENOTDIR; 1301 } 1302 1303 out: 1304 1305 #ifdef C2_AUDIT 1306 if (audit_active) 1307 audit_vncreate_finish(*vpp, error); 1308 #endif /* C2_AUDIT */ 1309 if (in_crit) { 1310 nbl_end_crit(vp); 1311 in_crit = 0; 1312 } 1313 if (vp != NULL) { 1314 VN_RELE(vp); 1315 vp = NULL; 1316 } 1317 pn_free(&pn); 1318 VN_RELE(dvp); 1319 /* 1320 * The following clause was added to handle a problem 1321 * with NFS consistency. It is possible that a lookup 1322 * of the file to be created succeeded, but the file 1323 * itself doesn't actually exist on the server. This 1324 * is chiefly due to the DNLC containing an entry for 1325 * the file which has been removed on the server. In 1326 * this case, we just start over. If there was some 1327 * other cause for the ESTALE error, then the lookup 1328 * of the file will fail and the error will be returned 1329 * above instead of looping around from here. 1330 */ 1331 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1332 goto top; 1333 return (error); 1334 } 1335 1336 int 1337 vn_link(char *from, char *to, enum uio_seg seg) 1338 { 1339 struct vnode *fvp; /* from vnode ptr */ 1340 struct vnode *tdvp; /* to directory vnode ptr */ 1341 struct pathname pn; 1342 int error; 1343 struct vattr vattr; 1344 dev_t fsid; 1345 int estale_retry = 0; 1346 1347 top: 1348 fvp = tdvp = NULL; 1349 if (error = pn_get(to, seg, &pn)) 1350 return (error); 1351 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1352 goto out; 1353 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1354 goto out; 1355 /* 1356 * Make sure both source vnode and target directory vnode are 1357 * in the same vfs and that it is writeable. 1358 */ 1359 vattr.va_mask = AT_FSID; 1360 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1361 goto out; 1362 fsid = vattr.va_fsid; 1363 vattr.va_mask = AT_FSID; 1364 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1365 goto out; 1366 if (fsid != vattr.va_fsid) { 1367 error = EXDEV; 1368 goto out; 1369 } 1370 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1371 error = EROFS; 1372 goto out; 1373 } 1374 /* 1375 * Do the link. 1376 */ 1377 (void) pn_fixslash(&pn); 1378 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1379 out: 1380 pn_free(&pn); 1381 if (fvp) 1382 VN_RELE(fvp); 1383 if (tdvp) 1384 VN_RELE(tdvp); 1385 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1386 goto top; 1387 return (error); 1388 } 1389 1390 int 1391 vn_rename(char *from, char *to, enum uio_seg seg) 1392 { 1393 return (vn_renameat(NULL, from, NULL, to, seg)); 1394 } 1395 1396 int 1397 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1398 char *tname, enum uio_seg seg) 1399 { 1400 int error; 1401 struct vattr vattr; 1402 struct pathname fpn; /* from pathname */ 1403 struct pathname tpn; /* to pathname */ 1404 dev_t fsid; 1405 int in_crit = 0; 1406 vnode_t *fromvp, *fvp; 1407 vnode_t *tovp; 1408 int estale_retry = 0; 1409 1410 top: 1411 fvp = fromvp = tovp = NULL; 1412 /* 1413 * Get to and from pathnames. 1414 */ 1415 if (error = pn_get(fname, seg, &fpn)) 1416 return (error); 1417 if (error = pn_get(tname, seg, &tpn)) { 1418 pn_free(&fpn); 1419 return (error); 1420 } 1421 1422 /* 1423 * First we need to resolve the correct directories 1424 * The passed in directories may only be a starting point, 1425 * but we need the real directories the file(s) live in. 1426 * For example the fname may be something like usr/lib/sparc 1427 * and we were passed in the / directory, but we need to 1428 * use the lib directory for the rename. 1429 */ 1430 1431 #ifdef C2_AUDIT 1432 if (audit_active) 1433 audit_setfsat_path(1); 1434 #endif /* C2_AUDIT */ 1435 /* 1436 * Lookup to and from directories. 1437 */ 1438 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1439 goto out; 1440 } 1441 1442 /* 1443 * Make sure there is an entry. 1444 */ 1445 if (fvp == NULL) { 1446 error = ENOENT; 1447 goto out; 1448 } 1449 1450 #ifdef C2_AUDIT 1451 if (audit_active) 1452 audit_setfsat_path(3); 1453 #endif /* C2_AUDIT */ 1454 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1455 goto out; 1456 } 1457 1458 /* 1459 * Make sure both the from vnode directory and the to directory 1460 * are in the same vfs and the to directory is writable. 1461 * We check fsid's, not vfs pointers, so loopback fs works. 1462 */ 1463 if (fromvp != tovp) { 1464 vattr.va_mask = AT_FSID; 1465 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1466 goto out; 1467 fsid = vattr.va_fsid; 1468 vattr.va_mask = AT_FSID; 1469 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1470 goto out; 1471 if (fsid != vattr.va_fsid) { 1472 error = EXDEV; 1473 goto out; 1474 } 1475 } 1476 1477 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1478 error = EROFS; 1479 goto out; 1480 } 1481 1482 if (nbl_need_check(fvp)) { 1483 nbl_start_crit(fvp, RW_READER); 1484 in_crit = 1; 1485 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1486 error = EACCES; 1487 goto out; 1488 } 1489 } 1490 1491 /* 1492 * Do the rename. 1493 */ 1494 (void) pn_fixslash(&tpn); 1495 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1496 1497 out: 1498 pn_free(&fpn); 1499 pn_free(&tpn); 1500 if (in_crit) { 1501 nbl_end_crit(fvp); 1502 in_crit = 0; 1503 } 1504 if (fromvp) 1505 VN_RELE(fromvp); 1506 if (tovp) 1507 VN_RELE(tovp); 1508 if (fvp) 1509 VN_RELE(fvp); 1510 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1511 goto top; 1512 return (error); 1513 } 1514 1515 /* 1516 * Remove a file or directory. 1517 */ 1518 int 1519 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1520 { 1521 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1522 } 1523 1524 int 1525 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1526 { 1527 struct vnode *vp; /* entry vnode */ 1528 struct vnode *dvp; /* ptr to parent dir vnode */ 1529 struct vnode *coveredvp; 1530 struct pathname pn; /* name of entry */ 1531 enum vtype vtype; 1532 int error; 1533 struct vfs *vfsp; 1534 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1535 int in_crit = 0; 1536 int estale_retry = 0; 1537 1538 top: 1539 if (error = pn_get(fnamep, seg, &pn)) 1540 return (error); 1541 dvp = vp = NULL; 1542 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1543 pn_free(&pn); 1544 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1545 goto top; 1546 return (error); 1547 } 1548 1549 /* 1550 * Make sure there is an entry. 1551 */ 1552 if (vp == NULL) { 1553 error = ENOENT; 1554 goto out; 1555 } 1556 1557 vfsp = vp->v_vfsp; 1558 dvfsp = dvp->v_vfsp; 1559 1560 /* 1561 * If the named file is the root of a mounted filesystem, fail, 1562 * unless it's marked unlinkable. In that case, unmount the 1563 * filesystem and proceed to unlink the covered vnode. (If the 1564 * covered vnode is a directory, use rmdir instead of unlink, 1565 * to avoid file system corruption.) 1566 */ 1567 if (vp->v_flag & VROOT) { 1568 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { 1569 error = EBUSY; 1570 goto out; 1571 } 1572 1573 /* 1574 * Namefs specific code starts here. 1575 */ 1576 1577 if (dirflag == RMDIRECTORY) { 1578 /* 1579 * User called rmdir(2) on a file that has 1580 * been namefs mounted on top of. Since 1581 * namefs doesn't allow directories to 1582 * be mounted on other files we know 1583 * vp is not of type VDIR so fail to operation. 1584 */ 1585 error = ENOTDIR; 1586 goto out; 1587 } 1588 1589 /* 1590 * If VROOT is still set after grabbing vp->v_lock, 1591 * noone has finished nm_unmount so far and coveredvp 1592 * is valid. 1593 * If we manage to grab vn_vfswlock(coveredvp) before releasing 1594 * vp->v_lock, any race window is eliminated. 1595 */ 1596 1597 mutex_enter(&vp->v_lock); 1598 if ((vp->v_flag & VROOT) == 0) { 1599 /* Someone beat us to the unmount */ 1600 mutex_exit(&vp->v_lock); 1601 error = EBUSY; 1602 goto out; 1603 } 1604 vfsp = vp->v_vfsp; 1605 coveredvp = vfsp->vfs_vnodecovered; 1606 ASSERT(coveredvp); 1607 /* 1608 * Note: Implementation of vn_vfswlock shows that ordering of 1609 * v_lock / vn_vfswlock is not an issue here. 1610 */ 1611 error = vn_vfswlock(coveredvp); 1612 mutex_exit(&vp->v_lock); 1613 1614 if (error) 1615 goto out; 1616 1617 VN_HOLD(coveredvp); 1618 VN_RELE(vp); 1619 error = dounmount(vfsp, 0, CRED()); 1620 1621 /* 1622 * Unmounted the namefs file system; now get 1623 * the object it was mounted over. 1624 */ 1625 vp = coveredvp; 1626 /* 1627 * If namefs was mounted over a directory, then 1628 * we want to use rmdir() instead of unlink(). 1629 */ 1630 if (vp->v_type == VDIR) 1631 dirflag = RMDIRECTORY; 1632 1633 if (error) 1634 goto out; 1635 } 1636 1637 /* 1638 * Make sure filesystem is writeable. 1639 * We check the parent directory's vfs in case this is an lofs vnode. 1640 */ 1641 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1642 error = EROFS; 1643 goto out; 1644 } 1645 1646 vtype = vp->v_type; 1647 1648 /* 1649 * If there is the possibility of an nbmand share reservation, make 1650 * sure it's okay to remove the file. Keep a reference to the 1651 * vnode, so that we can exit the nbl critical region after 1652 * calling VOP_REMOVE. 1653 * If there is no possibility of an nbmand share reservation, 1654 * release the vnode reference now. Filesystems like NFS may 1655 * behave differently if there is an extra reference, so get rid of 1656 * this one. Fortunately, we can't have nbmand mounts on NFS 1657 * filesystems. 1658 */ 1659 if (nbl_need_check(vp)) { 1660 nbl_start_crit(vp, RW_READER); 1661 in_crit = 1; 1662 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1663 error = EACCES; 1664 goto out; 1665 } 1666 } else { 1667 VN_RELE(vp); 1668 vp = NULL; 1669 } 1670 1671 if (dirflag == RMDIRECTORY) { 1672 /* 1673 * Caller is using rmdir(2), which can only be applied to 1674 * directories. 1675 */ 1676 if (vtype != VDIR) { 1677 error = ENOTDIR; 1678 } else { 1679 vnode_t *cwd; 1680 proc_t *pp = curproc; 1681 1682 mutex_enter(&pp->p_lock); 1683 cwd = PTOU(pp)->u_cdir; 1684 VN_HOLD(cwd); 1685 mutex_exit(&pp->p_lock); 1686 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1687 VN_RELE(cwd); 1688 } 1689 } else { 1690 /* 1691 * Unlink(2) can be applied to anything. 1692 */ 1693 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1694 } 1695 1696 out: 1697 pn_free(&pn); 1698 if (in_crit) { 1699 nbl_end_crit(vp); 1700 in_crit = 0; 1701 } 1702 if (vp != NULL) 1703 VN_RELE(vp); 1704 if (dvp != NULL) 1705 VN_RELE(dvp); 1706 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1707 goto top; 1708 return (error); 1709 } 1710 1711 /* 1712 * Utility function to compare equality of vnodes. 1713 * Compare the underlying real vnodes, if there are underlying vnodes. 1714 * This is a more thorough comparison than the VN_CMP() macro provides. 1715 */ 1716 int 1717 vn_compare(vnode_t *vp1, vnode_t *vp2) 1718 { 1719 vnode_t *realvp; 1720 1721 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1722 vp1 = realvp; 1723 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1724 vp2 = realvp; 1725 return (VN_CMP(vp1, vp2)); 1726 } 1727 1728 /* 1729 * The number of locks to hash into. This value must be a power 1730 * of 2 minus 1 and should probably also be prime. 1731 */ 1732 #define NUM_BUCKETS 1023 1733 1734 struct vn_vfslocks_bucket { 1735 kmutex_t vb_lock; 1736 vn_vfslocks_entry_t *vb_list; 1737 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1738 }; 1739 1740 /* 1741 * Total number of buckets will be NUM_BUCKETS + 1 . 1742 */ 1743 1744 #pragma align 64(vn_vfslocks_buckets) 1745 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1746 1747 #define VN_VFSLOCKS_SHIFT 9 1748 1749 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1750 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1751 1752 /* 1753 * vn_vfslocks_getlock() uses an HASH scheme to generate 1754 * rwstlock using vfs/vnode pointer passed to it. 1755 * 1756 * vn_vfslocks_rele() releases a reference in the 1757 * HASH table which allows the entry allocated by 1758 * vn_vfslocks_getlock() to be freed at a later 1759 * stage when the refcount drops to zero. 1760 */ 1761 1762 vn_vfslocks_entry_t * 1763 vn_vfslocks_getlock(void *vfsvpptr) 1764 { 1765 struct vn_vfslocks_bucket *bp; 1766 vn_vfslocks_entry_t *vep; 1767 vn_vfslocks_entry_t *tvep; 1768 1769 ASSERT(vfsvpptr != NULL); 1770 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1771 1772 mutex_enter(&bp->vb_lock); 1773 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1774 if (vep->ve_vpvfs == vfsvpptr) { 1775 vep->ve_refcnt++; 1776 mutex_exit(&bp->vb_lock); 1777 return (vep); 1778 } 1779 } 1780 mutex_exit(&bp->vb_lock); 1781 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1782 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1783 vep->ve_vpvfs = (char *)vfsvpptr; 1784 vep->ve_refcnt = 1; 1785 mutex_enter(&bp->vb_lock); 1786 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1787 if (tvep->ve_vpvfs == vfsvpptr) { 1788 tvep->ve_refcnt++; 1789 mutex_exit(&bp->vb_lock); 1790 1791 /* 1792 * There is already an entry in the hash 1793 * destroy what we just allocated. 1794 */ 1795 rwst_destroy(&vep->ve_lock); 1796 kmem_free(vep, sizeof (*vep)); 1797 return (tvep); 1798 } 1799 } 1800 vep->ve_next = bp->vb_list; 1801 bp->vb_list = vep; 1802 mutex_exit(&bp->vb_lock); 1803 return (vep); 1804 } 1805 1806 void 1807 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1808 { 1809 struct vn_vfslocks_bucket *bp; 1810 vn_vfslocks_entry_t *vep; 1811 vn_vfslocks_entry_t *pvep; 1812 1813 ASSERT(vepent != NULL); 1814 ASSERT(vepent->ve_vpvfs != NULL); 1815 1816 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1817 1818 mutex_enter(&bp->vb_lock); 1819 vepent->ve_refcnt--; 1820 1821 if ((int32_t)vepent->ve_refcnt < 0) 1822 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1823 1824 if (vepent->ve_refcnt == 0) { 1825 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1826 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1827 if (bp->vb_list == vep) 1828 bp->vb_list = vep->ve_next; 1829 else { 1830 /* LINTED */ 1831 pvep->ve_next = vep->ve_next; 1832 } 1833 mutex_exit(&bp->vb_lock); 1834 rwst_destroy(&vep->ve_lock); 1835 kmem_free(vep, sizeof (*vep)); 1836 return; 1837 } 1838 pvep = vep; 1839 } 1840 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1841 } 1842 mutex_exit(&bp->vb_lock); 1843 } 1844 1845 /* 1846 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1847 * lock protecting the v_vfsmountedhere field. 1848 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1849 * except that it blocks to acquire the lock VVFSLOCK. 1850 * 1851 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1852 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1853 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1854 */ 1855 int 1856 vn_vfswlock_wait(vnode_t *vp) 1857 { 1858 int retval; 1859 vn_vfslocks_entry_t *vpvfsentry; 1860 ASSERT(vp != NULL); 1861 1862 vpvfsentry = vn_vfslocks_getlock(vp); 1863 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1864 1865 if (retval == EINTR) { 1866 vn_vfslocks_rele(vpvfsentry); 1867 return (EINTR); 1868 } 1869 return (retval); 1870 } 1871 1872 int 1873 vn_vfsrlock_wait(vnode_t *vp) 1874 { 1875 int retval; 1876 vn_vfslocks_entry_t *vpvfsentry; 1877 ASSERT(vp != NULL); 1878 1879 vpvfsentry = vn_vfslocks_getlock(vp); 1880 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1881 1882 if (retval == EINTR) { 1883 vn_vfslocks_rele(vpvfsentry); 1884 return (EINTR); 1885 } 1886 1887 return (retval); 1888 } 1889 1890 1891 /* 1892 * vn_vfswlock is used to implement a lock which is logically a writers lock 1893 * protecting the v_vfsmountedhere field. 1894 */ 1895 int 1896 vn_vfswlock(vnode_t *vp) 1897 { 1898 vn_vfslocks_entry_t *vpvfsentry; 1899 1900 /* 1901 * If vp is NULL then somebody is trying to lock the covered vnode 1902 * of /. (vfs_vnodecovered is NULL for /). This situation will 1903 * only happen when unmounting /. Since that operation will fail 1904 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1905 */ 1906 if (vp == NULL) 1907 return (EBUSY); 1908 1909 vpvfsentry = vn_vfslocks_getlock(vp); 1910 1911 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1912 return (0); 1913 1914 vn_vfslocks_rele(vpvfsentry); 1915 return (EBUSY); 1916 } 1917 1918 int 1919 vn_vfsrlock(vnode_t *vp) 1920 { 1921 vn_vfslocks_entry_t *vpvfsentry; 1922 1923 /* 1924 * If vp is NULL then somebody is trying to lock the covered vnode 1925 * of /. (vfs_vnodecovered is NULL for /). This situation will 1926 * only happen when unmounting /. Since that operation will fail 1927 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1928 */ 1929 if (vp == NULL) 1930 return (EBUSY); 1931 1932 vpvfsentry = vn_vfslocks_getlock(vp); 1933 1934 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1935 return (0); 1936 1937 vn_vfslocks_rele(vpvfsentry); 1938 return (EBUSY); 1939 } 1940 1941 void 1942 vn_vfsunlock(vnode_t *vp) 1943 { 1944 vn_vfslocks_entry_t *vpvfsentry; 1945 1946 /* 1947 * ve_refcnt needs to be decremented twice. 1948 * 1. To release refernce after a call to vn_vfslocks_getlock() 1949 * 2. To release the reference from the locking routines like 1950 * vn_vfsrlock/vn_vfswlock etc,. 1951 */ 1952 vpvfsentry = vn_vfslocks_getlock(vp); 1953 vn_vfslocks_rele(vpvfsentry); 1954 1955 rwst_exit(&vpvfsentry->ve_lock); 1956 vn_vfslocks_rele(vpvfsentry); 1957 } 1958 1959 int 1960 vn_vfswlock_held(vnode_t *vp) 1961 { 1962 int held; 1963 vn_vfslocks_entry_t *vpvfsentry; 1964 1965 ASSERT(vp != NULL); 1966 1967 vpvfsentry = vn_vfslocks_getlock(vp); 1968 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1969 1970 vn_vfslocks_rele(vpvfsentry); 1971 return (held); 1972 } 1973 1974 1975 int 1976 vn_make_ops( 1977 const char *name, /* Name of file system */ 1978 const fs_operation_def_t *templ, /* Operation specification */ 1979 vnodeops_t **actual) /* Return the vnodeops */ 1980 { 1981 int unused_ops; 1982 int error; 1983 1984 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1985 1986 (*actual)->vnop_name = name; 1987 1988 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1989 if (error) { 1990 kmem_free(*actual, sizeof (vnodeops_t)); 1991 } 1992 1993 #if DEBUG 1994 if (unused_ops != 0) 1995 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1996 "but not used", name, unused_ops); 1997 #endif 1998 1999 return (error); 2000 } 2001 2002 /* 2003 * Free the vnodeops created as a result of vn_make_ops() 2004 */ 2005 void 2006 vn_freevnodeops(vnodeops_t *vnops) 2007 { 2008 kmem_free(vnops, sizeof (vnodeops_t)); 2009 } 2010 2011 /* 2012 * Vnode cache. 2013 */ 2014 2015 /* ARGSUSED */ 2016 static int 2017 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 2018 { 2019 struct vnode *vp; 2020 2021 vp = buf; 2022 2023 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 2024 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 2025 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 2026 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 2027 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2028 vp->v_path = NULL; 2029 vp->v_mpssdata = NULL; 2030 vp->v_fopdata = NULL; 2031 2032 return (0); 2033 } 2034 2035 /* ARGSUSED */ 2036 static void 2037 vn_cache_destructor(void *buf, void *cdrarg) 2038 { 2039 struct vnode *vp; 2040 2041 vp = buf; 2042 2043 rw_destroy(&vp->v_mslock); 2044 rw_destroy(&vp->v_nbllock); 2045 cv_destroy(&vp->v_cv); 2046 mutex_destroy(&vp->v_lock); 2047 } 2048 2049 void 2050 vn_create_cache(void) 2051 { 2052 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2053 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2054 NULL, 0); 2055 } 2056 2057 void 2058 vn_destroy_cache(void) 2059 { 2060 kmem_cache_destroy(vn_cache); 2061 } 2062 2063 /* 2064 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2065 * cached by the file system and vnodes remain associated. 2066 */ 2067 void 2068 vn_recycle(vnode_t *vp) 2069 { 2070 ASSERT(vp->v_pages == NULL); 2071 2072 /* 2073 * XXX - This really belongs in vn_reinit(), but we have some issues 2074 * with the counts. Best to have it here for clean initialization. 2075 */ 2076 vp->v_rdcnt = 0; 2077 vp->v_wrcnt = 0; 2078 vp->v_mmap_read = 0; 2079 vp->v_mmap_write = 0; 2080 2081 /* 2082 * If FEM was in use, make sure everything gets cleaned up 2083 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2084 * constructor. 2085 */ 2086 if (vp->v_femhead) { 2087 /* XXX - There should be a free_femhead() that does all this */ 2088 ASSERT(vp->v_femhead->femh_list == NULL); 2089 mutex_destroy(&vp->v_femhead->femh_lock); 2090 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2091 vp->v_femhead = NULL; 2092 } 2093 if (vp->v_path) { 2094 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2095 vp->v_path = NULL; 2096 } 2097 2098 if (vp->v_fopdata != NULL) { 2099 free_fopdata(vp); 2100 } 2101 vp->v_mpssdata = NULL; 2102 } 2103 2104 /* 2105 * Used to reset the vnode fields including those that are directly accessible 2106 * as well as those which require an accessor function. 2107 * 2108 * Does not initialize: 2109 * synchronization objects: v_lock, v_nbllock, v_cv 2110 * v_data (since FS-nodes and vnodes point to each other and should 2111 * be updated simultaneously) 2112 * v_op (in case someone needs to make a VOP call on this object) 2113 */ 2114 void 2115 vn_reinit(vnode_t *vp) 2116 { 2117 vp->v_count = 1; 2118 vp->v_vfsp = NULL; 2119 vp->v_stream = NULL; 2120 vp->v_vfsmountedhere = NULL; 2121 vp->v_flag = 0; 2122 vp->v_type = VNON; 2123 vp->v_rdev = NODEV; 2124 2125 vp->v_filocks = NULL; 2126 vp->v_shrlocks = NULL; 2127 vp->v_pages = NULL; 2128 vp->v_npages = 0; 2129 vp->v_msnpages = 0; 2130 vp->v_scanfront = NULL; 2131 vp->v_scanback = NULL; 2132 2133 vp->v_locality = NULL; 2134 vp->v_scantime = 0; 2135 vp->v_mset = 0; 2136 vp->v_msflags = 0; 2137 vp->v_msnext = NULL; 2138 vp->v_msprev = NULL; 2139 2140 /* Handles v_femhead, v_path, and the r/w/map counts */ 2141 vn_recycle(vp); 2142 } 2143 2144 vnode_t * 2145 vn_alloc(int kmflag) 2146 { 2147 vnode_t *vp; 2148 2149 vp = kmem_cache_alloc(vn_cache, kmflag); 2150 2151 if (vp != NULL) { 2152 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2153 vp->v_fopdata = NULL; 2154 vn_reinit(vp); 2155 } 2156 2157 return (vp); 2158 } 2159 2160 void 2161 vn_free(vnode_t *vp) 2162 { 2163 /* 2164 * Some file systems call vn_free() with v_count of zero, 2165 * some with v_count of 1. In any case, the value should 2166 * never be anything else. 2167 */ 2168 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2169 if (vp->v_path != NULL) { 2170 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2171 vp->v_path = NULL; 2172 } 2173 2174 /* If FEM was in use, make sure everything gets cleaned up */ 2175 if (vp->v_femhead) { 2176 /* XXX - There should be a free_femhead() that does all this */ 2177 ASSERT(vp->v_femhead->femh_list == NULL); 2178 mutex_destroy(&vp->v_femhead->femh_lock); 2179 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2180 vp->v_femhead = NULL; 2181 } 2182 2183 if (vp->v_fopdata != NULL) { 2184 free_fopdata(vp); 2185 } 2186 vp->v_mpssdata = NULL; 2187 kmem_cache_free(vn_cache, vp); 2188 } 2189 2190 /* 2191 * vnode status changes, should define better states than 1, 0. 2192 */ 2193 void 2194 vn_reclaim(vnode_t *vp) 2195 { 2196 vfs_t *vfsp = vp->v_vfsp; 2197 2198 if (vfsp == NULL || 2199 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2200 return; 2201 } 2202 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2203 } 2204 2205 void 2206 vn_idle(vnode_t *vp) 2207 { 2208 vfs_t *vfsp = vp->v_vfsp; 2209 2210 if (vfsp == NULL || 2211 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2212 return; 2213 } 2214 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2215 } 2216 void 2217 vn_exists(vnode_t *vp) 2218 { 2219 vfs_t *vfsp = vp->v_vfsp; 2220 2221 if (vfsp == NULL || 2222 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2223 return; 2224 } 2225 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2226 } 2227 2228 void 2229 vn_invalid(vnode_t *vp) 2230 { 2231 vfs_t *vfsp = vp->v_vfsp; 2232 2233 if (vfsp == NULL || 2234 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2235 return; 2236 } 2237 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2238 } 2239 2240 /* Vnode event notification */ 2241 2242 int 2243 vnevent_support(vnode_t *vp) 2244 { 2245 if (vp == NULL) 2246 return (EINVAL); 2247 2248 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL)); 2249 } 2250 2251 void 2252 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name) 2253 { 2254 if (vp == NULL || vp->v_femhead == NULL) { 2255 return; 2256 } 2257 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name); 2258 } 2259 2260 void 2261 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name) 2262 { 2263 if (vp == NULL || vp->v_femhead == NULL) { 2264 return; 2265 } 2266 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name); 2267 } 2268 2269 void 2270 vnevent_rename_dest_dir(vnode_t *vp) 2271 { 2272 if (vp == NULL || vp->v_femhead == NULL) { 2273 return; 2274 } 2275 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL); 2276 } 2277 2278 void 2279 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name) 2280 { 2281 if (vp == NULL || vp->v_femhead == NULL) { 2282 return; 2283 } 2284 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name); 2285 } 2286 2287 void 2288 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name) 2289 { 2290 if (vp == NULL || vp->v_femhead == NULL) { 2291 return; 2292 } 2293 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name); 2294 } 2295 2296 void 2297 vnevent_create(vnode_t *vp) 2298 { 2299 if (vp == NULL || vp->v_femhead == NULL) { 2300 return; 2301 } 2302 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL); 2303 } 2304 2305 void 2306 vnevent_link(vnode_t *vp) 2307 { 2308 if (vp == NULL || vp->v_femhead == NULL) { 2309 return; 2310 } 2311 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL); 2312 } 2313 2314 void 2315 vnevent_mountedover(vnode_t *vp) 2316 { 2317 if (vp == NULL || vp->v_femhead == NULL) { 2318 return; 2319 } 2320 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL); 2321 } 2322 2323 /* 2324 * Vnode accessors. 2325 */ 2326 2327 int 2328 vn_is_readonly(vnode_t *vp) 2329 { 2330 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2331 } 2332 2333 int 2334 vn_has_flocks(vnode_t *vp) 2335 { 2336 return (vp->v_filocks != NULL); 2337 } 2338 2339 int 2340 vn_has_mandatory_locks(vnode_t *vp, int mode) 2341 { 2342 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2343 } 2344 2345 int 2346 vn_has_cached_data(vnode_t *vp) 2347 { 2348 return (vp->v_pages != NULL); 2349 } 2350 2351 /* 2352 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2353 * zone_enter(2). 2354 */ 2355 int 2356 vn_can_change_zones(vnode_t *vp) 2357 { 2358 struct vfssw *vswp; 2359 int allow = 1; 2360 vnode_t *rvp; 2361 2362 if (nfs_global_client_only != 0) 2363 return (1); 2364 2365 /* 2366 * We always want to look at the underlying vnode if there is one. 2367 */ 2368 if (VOP_REALVP(vp, &rvp) != 0) 2369 rvp = vp; 2370 /* 2371 * Some pseudo filesystems (including doorfs) don't actually register 2372 * their vfsops_t, so the following may return NULL; we happily let 2373 * such vnodes switch zones. 2374 */ 2375 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2376 if (vswp != NULL) { 2377 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2378 allow = 0; 2379 vfs_unrefvfssw(vswp); 2380 } 2381 return (allow); 2382 } 2383 2384 /* 2385 * Return nonzero if the vnode is a mount point, zero if not. 2386 */ 2387 int 2388 vn_ismntpt(vnode_t *vp) 2389 { 2390 return (vp->v_vfsmountedhere != NULL); 2391 } 2392 2393 /* Retrieve the vfs (if any) mounted on this vnode */ 2394 vfs_t * 2395 vn_mountedvfs(vnode_t *vp) 2396 { 2397 return (vp->v_vfsmountedhere); 2398 } 2399 2400 /* 2401 * vn_is_opened() checks whether a particular file is opened and 2402 * whether the open is for read and/or write. 2403 * 2404 * Vnode counts are only kept on regular files (v_type=VREG). 2405 */ 2406 int 2407 vn_is_opened( 2408 vnode_t *vp, 2409 v_mode_t mode) 2410 { 2411 2412 ASSERT(vp != NULL); 2413 2414 switch (mode) { 2415 case V_WRITE: 2416 if (vp->v_wrcnt) 2417 return (V_TRUE); 2418 break; 2419 case V_RDANDWR: 2420 if (vp->v_rdcnt && vp->v_wrcnt) 2421 return (V_TRUE); 2422 break; 2423 case V_RDORWR: 2424 if (vp->v_rdcnt || vp->v_wrcnt) 2425 return (V_TRUE); 2426 break; 2427 case V_READ: 2428 if (vp->v_rdcnt) 2429 return (V_TRUE); 2430 break; 2431 } 2432 2433 return (V_FALSE); 2434 } 2435 2436 /* 2437 * vn_is_mapped() checks whether a particular file is mapped and whether 2438 * the file is mapped read and/or write. 2439 */ 2440 int 2441 vn_is_mapped( 2442 vnode_t *vp, 2443 v_mode_t mode) 2444 { 2445 2446 ASSERT(vp != NULL); 2447 2448 #if !defined(_LP64) 2449 switch (mode) { 2450 /* 2451 * The atomic_add_64_nv functions force atomicity in the 2452 * case of 32 bit architectures. Otherwise the 64 bit values 2453 * require two fetches. The value of the fields may be 2454 * (potentially) changed between the first fetch and the 2455 * second 2456 */ 2457 case V_WRITE: 2458 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2459 return (V_TRUE); 2460 break; 2461 case V_RDANDWR: 2462 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2463 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2464 return (V_TRUE); 2465 break; 2466 case V_RDORWR: 2467 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2468 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2469 return (V_TRUE); 2470 break; 2471 case V_READ: 2472 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2473 return (V_TRUE); 2474 break; 2475 } 2476 #else 2477 switch (mode) { 2478 case V_WRITE: 2479 if (vp->v_mmap_write) 2480 return (V_TRUE); 2481 break; 2482 case V_RDANDWR: 2483 if (vp->v_mmap_read && vp->v_mmap_write) 2484 return (V_TRUE); 2485 break; 2486 case V_RDORWR: 2487 if (vp->v_mmap_read || vp->v_mmap_write) 2488 return (V_TRUE); 2489 break; 2490 case V_READ: 2491 if (vp->v_mmap_read) 2492 return (V_TRUE); 2493 break; 2494 } 2495 #endif 2496 2497 return (V_FALSE); 2498 } 2499 2500 /* 2501 * Set the operations vector for a vnode. 2502 * 2503 * FEM ensures that the v_femhead pointer is filled in before the 2504 * v_op pointer is changed. This means that if the v_femhead pointer 2505 * is NULL, and the v_op field hasn't changed since before which checked 2506 * the v_femhead pointer; then our update is ok - we are not racing with 2507 * FEM. 2508 */ 2509 void 2510 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2511 { 2512 vnodeops_t *op; 2513 2514 ASSERT(vp != NULL); 2515 ASSERT(vnodeops != NULL); 2516 2517 op = vp->v_op; 2518 membar_consumer(); 2519 /* 2520 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2521 * compare-and-swap on vp->v_op. If either fails, then FEM is 2522 * in effect on the vnode and we need to have FEM deal with it. 2523 */ 2524 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2525 fem_setvnops(vp, vnodeops); 2526 } 2527 } 2528 2529 /* 2530 * Retrieve the operations vector for a vnode 2531 * As with vn_setops(above); make sure we aren't racing with FEM. 2532 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2533 * make sense to the callers of this routine. 2534 */ 2535 vnodeops_t * 2536 vn_getops(vnode_t *vp) 2537 { 2538 vnodeops_t *op; 2539 2540 ASSERT(vp != NULL); 2541 2542 op = vp->v_op; 2543 membar_consumer(); 2544 if (vp->v_femhead == NULL && op == vp->v_op) { 2545 return (op); 2546 } else { 2547 return (fem_getvnops(vp)); 2548 } 2549 } 2550 2551 /* 2552 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2553 * Returns zero (0) if not. 2554 */ 2555 int 2556 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2557 { 2558 return (vn_getops(vp) == vnodeops); 2559 } 2560 2561 /* 2562 * Returns non-zero (1) if the specified operation matches the 2563 * corresponding operation for that the vnode. 2564 * Returns zero (0) if not. 2565 */ 2566 2567 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2568 2569 int 2570 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2571 { 2572 const fs_operation_trans_def_t *otdp; 2573 fs_generic_func_p *loc = NULL; 2574 vnodeops_t *vop = vn_getops(vp); 2575 2576 ASSERT(vopname != NULL); 2577 2578 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2579 if (MATCHNAME(otdp->name, vopname)) { 2580 loc = (fs_generic_func_p *) 2581 ((char *)(vop) + otdp->offset); 2582 break; 2583 } 2584 } 2585 2586 return ((loc != NULL) && (*loc == funcp)); 2587 } 2588 2589 /* 2590 * fs_new_caller_id() needs to return a unique ID on a given local system. 2591 * The IDs do not need to survive across reboots. These are primarily 2592 * used so that (FEM) monitors can detect particular callers (such as 2593 * the NFS server) to a given vnode/vfs operation. 2594 */ 2595 u_longlong_t 2596 fs_new_caller_id() 2597 { 2598 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2599 2600 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2601 } 2602 2603 /* 2604 * Given a starting vnode and a path, updates the path in the target vnode in 2605 * a safe manner. If the vnode already has path information embedded, then the 2606 * cached path is left untouched. 2607 */ 2608 2609 size_t max_vnode_path = 4 * MAXPATHLEN; 2610 2611 void 2612 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2613 const char *path, size_t plen) 2614 { 2615 char *rpath; 2616 vnode_t *base; 2617 size_t rpathlen, rpathalloc; 2618 int doslash = 1; 2619 2620 if (*path == '/') { 2621 base = rootvp; 2622 path++; 2623 plen--; 2624 } else { 2625 base = startvp; 2626 } 2627 2628 /* 2629 * We cannot grab base->v_lock while we hold vp->v_lock because of 2630 * the potential for deadlock. 2631 */ 2632 mutex_enter(&base->v_lock); 2633 if (base->v_path == NULL) { 2634 mutex_exit(&base->v_lock); 2635 return; 2636 } 2637 2638 rpathlen = strlen(base->v_path); 2639 rpathalloc = rpathlen + plen + 1; 2640 /* Avoid adding a slash if there's already one there */ 2641 if (base->v_path[rpathlen-1] == '/') 2642 doslash = 0; 2643 else 2644 rpathalloc++; 2645 2646 /* 2647 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2648 * so we must do this dance. If, by chance, something changes the path, 2649 * just give up since there is no real harm. 2650 */ 2651 mutex_exit(&base->v_lock); 2652 2653 /* Paths should stay within reason */ 2654 if (rpathalloc > max_vnode_path) 2655 return; 2656 2657 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2658 2659 mutex_enter(&base->v_lock); 2660 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2661 mutex_exit(&base->v_lock); 2662 kmem_free(rpath, rpathalloc); 2663 return; 2664 } 2665 bcopy(base->v_path, rpath, rpathlen); 2666 mutex_exit(&base->v_lock); 2667 2668 if (doslash) 2669 rpath[rpathlen++] = '/'; 2670 bcopy(path, rpath + rpathlen, plen); 2671 rpath[rpathlen + plen] = '\0'; 2672 2673 mutex_enter(&vp->v_lock); 2674 if (vp->v_path != NULL) { 2675 mutex_exit(&vp->v_lock); 2676 kmem_free(rpath, rpathalloc); 2677 } else { 2678 vp->v_path = rpath; 2679 mutex_exit(&vp->v_lock); 2680 } 2681 } 2682 2683 /* 2684 * Sets the path to the vnode to be the given string, regardless of current 2685 * context. The string must be a complete path from rootdir. This is only used 2686 * by fsop_root() for setting the path based on the mountpoint. 2687 */ 2688 void 2689 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2690 { 2691 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2692 2693 mutex_enter(&vp->v_lock); 2694 if (vp->v_path != NULL) { 2695 mutex_exit(&vp->v_lock); 2696 kmem_free(buf, len + 1); 2697 return; 2698 } 2699 2700 vp->v_path = buf; 2701 bcopy(str, vp->v_path, len); 2702 vp->v_path[len] = '\0'; 2703 2704 mutex_exit(&vp->v_lock); 2705 } 2706 2707 /* 2708 * Similar to vn_setpath_str(), this function sets the path of the destination 2709 * vnode to the be the same as the source vnode. 2710 */ 2711 void 2712 vn_copypath(struct vnode *src, struct vnode *dst) 2713 { 2714 char *buf; 2715 int alloc; 2716 2717 mutex_enter(&src->v_lock); 2718 if (src->v_path == NULL) { 2719 mutex_exit(&src->v_lock); 2720 return; 2721 } 2722 alloc = strlen(src->v_path) + 1; 2723 2724 /* avoid kmem_alloc() with lock held */ 2725 mutex_exit(&src->v_lock); 2726 buf = kmem_alloc(alloc, KM_SLEEP); 2727 mutex_enter(&src->v_lock); 2728 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2729 mutex_exit(&src->v_lock); 2730 kmem_free(buf, alloc); 2731 return; 2732 } 2733 bcopy(src->v_path, buf, alloc); 2734 mutex_exit(&src->v_lock); 2735 2736 mutex_enter(&dst->v_lock); 2737 if (dst->v_path != NULL) { 2738 mutex_exit(&dst->v_lock); 2739 kmem_free(buf, alloc); 2740 return; 2741 } 2742 dst->v_path = buf; 2743 mutex_exit(&dst->v_lock); 2744 } 2745 2746 /* 2747 * XXX Private interface for segvn routines that handle vnode 2748 * large page segments. 2749 * 2750 * return 1 if vp's file system VOP_PAGEIO() implementation 2751 * can be safely used instead of VOP_GETPAGE() for handling 2752 * pagefaults against regular non swap files. VOP_PAGEIO() 2753 * interface is considered safe here if its implementation 2754 * is very close to VOP_GETPAGE() implementation. 2755 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2756 * panic if there're file holes but instead returns an error. 2757 * Doesn't assume file won't be changed by user writes, etc. 2758 * 2759 * return 0 otherwise. 2760 * 2761 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2762 */ 2763 int 2764 vn_vmpss_usepageio(vnode_t *vp) 2765 { 2766 vfs_t *vfsp = vp->v_vfsp; 2767 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2768 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2769 char **fsok = pageio_ok_fss; 2770 2771 if (fsname == NULL) { 2772 return (0); 2773 } 2774 2775 for (; *fsok; fsok++) { 2776 if (strcmp(*fsok, fsname) == 0) { 2777 return (1); 2778 } 2779 } 2780 return (0); 2781 } 2782 2783 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2784 2785 int 2786 fop_open( 2787 vnode_t **vpp, 2788 int mode, 2789 cred_t *cr) 2790 { 2791 int ret; 2792 vnode_t *vp = *vpp; 2793 2794 VN_HOLD(vp); 2795 /* 2796 * Adding to the vnode counts before calling open 2797 * avoids the need for a mutex. It circumvents a race 2798 * condition where a query made on the vnode counts results in a 2799 * false negative. The inquirer goes away believing the file is 2800 * not open when there is an open on the file already under way. 2801 * 2802 * The counts are meant to prevent NFS from granting a delegation 2803 * when it would be dangerous to do so. 2804 * 2805 * The vnode counts are only kept on regular files 2806 */ 2807 if ((*vpp)->v_type == VREG) { 2808 if (mode & FREAD) 2809 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2810 if (mode & FWRITE) 2811 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2812 } 2813 2814 VOPXID_MAP_CR(vp, cr); 2815 2816 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2817 2818 if (ret) { 2819 /* 2820 * Use the saved vp just in case the vnode ptr got trashed 2821 * by the error. 2822 */ 2823 VOPSTATS_UPDATE(vp, open); 2824 if ((vp->v_type == VREG) && (mode & FREAD)) 2825 atomic_add_32(&(vp->v_rdcnt), -1); 2826 if ((vp->v_type == VREG) && (mode & FWRITE)) 2827 atomic_add_32(&(vp->v_wrcnt), -1); 2828 } else { 2829 /* 2830 * Some filesystems will return a different vnode, 2831 * but the same path was still used to open it. 2832 * So if we do change the vnode and need to 2833 * copy over the path, do so here, rather than special 2834 * casing each filesystem. Adjust the vnode counts to 2835 * reflect the vnode switch. 2836 */ 2837 VOPSTATS_UPDATE(*vpp, open); 2838 if (*vpp != vp && *vpp != NULL) { 2839 vn_copypath(vp, *vpp); 2840 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2841 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2842 if ((vp->v_type == VREG) && (mode & FREAD)) 2843 atomic_add_32(&(vp->v_rdcnt), -1); 2844 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2845 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2846 if ((vp->v_type == VREG) && (mode & FWRITE)) 2847 atomic_add_32(&(vp->v_wrcnt), -1); 2848 } 2849 } 2850 VN_RELE(vp); 2851 return (ret); 2852 } 2853 2854 int 2855 fop_close( 2856 vnode_t *vp, 2857 int flag, 2858 int count, 2859 offset_t offset, 2860 cred_t *cr) 2861 { 2862 int err; 2863 2864 VOPXID_MAP_CR(vp, cr); 2865 2866 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2867 VOPSTATS_UPDATE(vp, close); 2868 /* 2869 * Check passed in count to handle possible dups. Vnode counts are only 2870 * kept on regular files 2871 */ 2872 if ((vp->v_type == VREG) && (count == 1)) { 2873 if (flag & FREAD) { 2874 ASSERT(vp->v_rdcnt > 0); 2875 atomic_add_32(&(vp->v_rdcnt), -1); 2876 } 2877 if (flag & FWRITE) { 2878 ASSERT(vp->v_wrcnt > 0); 2879 atomic_add_32(&(vp->v_wrcnt), -1); 2880 } 2881 } 2882 return (err); 2883 } 2884 2885 int 2886 fop_read( 2887 vnode_t *vp, 2888 uio_t *uiop, 2889 int ioflag, 2890 cred_t *cr, 2891 struct caller_context *ct) 2892 { 2893 int err; 2894 ssize_t resid_start = uiop->uio_resid; 2895 2896 VOPXID_MAP_CR(vp, cr); 2897 2898 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2899 VOPSTATS_UPDATE_IO(vp, read, 2900 read_bytes, (resid_start - uiop->uio_resid)); 2901 return (err); 2902 } 2903 2904 int 2905 fop_write( 2906 vnode_t *vp, 2907 uio_t *uiop, 2908 int ioflag, 2909 cred_t *cr, 2910 struct caller_context *ct) 2911 { 2912 int err; 2913 ssize_t resid_start = uiop->uio_resid; 2914 2915 VOPXID_MAP_CR(vp, cr); 2916 2917 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2918 VOPSTATS_UPDATE_IO(vp, write, 2919 write_bytes, (resid_start - uiop->uio_resid)); 2920 return (err); 2921 } 2922 2923 int 2924 fop_ioctl( 2925 vnode_t *vp, 2926 int cmd, 2927 intptr_t arg, 2928 int flag, 2929 cred_t *cr, 2930 int *rvalp) 2931 { 2932 int err; 2933 2934 VOPXID_MAP_CR(vp, cr); 2935 2936 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2937 VOPSTATS_UPDATE(vp, ioctl); 2938 return (err); 2939 } 2940 2941 int 2942 fop_setfl( 2943 vnode_t *vp, 2944 int oflags, 2945 int nflags, 2946 cred_t *cr) 2947 { 2948 int err; 2949 2950 VOPXID_MAP_CR(vp, cr); 2951 2952 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2953 VOPSTATS_UPDATE(vp, setfl); 2954 return (err); 2955 } 2956 2957 int 2958 fop_getattr( 2959 vnode_t *vp, 2960 vattr_t *vap, 2961 int flags, 2962 cred_t *cr) 2963 { 2964 int err; 2965 2966 VOPXID_MAP_CR(vp, cr); 2967 2968 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2969 VOPSTATS_UPDATE(vp, getattr); 2970 return (err); 2971 } 2972 2973 int 2974 fop_setattr( 2975 vnode_t *vp, 2976 vattr_t *vap, 2977 int flags, 2978 cred_t *cr, 2979 caller_context_t *ct) 2980 { 2981 int err; 2982 2983 VOPXID_MAP_CR(vp, cr); 2984 2985 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2986 VOPSTATS_UPDATE(vp, setattr); 2987 return (err); 2988 } 2989 2990 int 2991 fop_access( 2992 vnode_t *vp, 2993 int mode, 2994 int flags, 2995 cred_t *cr) 2996 { 2997 int err; 2998 2999 VOPXID_MAP_CR(vp, cr); 3000 3001 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 3002 VOPSTATS_UPDATE(vp, access); 3003 return (err); 3004 } 3005 3006 int 3007 fop_lookup( 3008 vnode_t *dvp, 3009 char *nm, 3010 vnode_t **vpp, 3011 pathname_t *pnp, 3012 int flags, 3013 vnode_t *rdir, 3014 cred_t *cr) 3015 { 3016 int ret; 3017 3018 VOPXID_MAP_CR(dvp, cr); 3019 3020 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 3021 if (ret == 0 && *vpp) { 3022 VOPSTATS_UPDATE(*vpp, lookup); 3023 if ((*vpp)->v_path == NULL) { 3024 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 3025 } 3026 } 3027 3028 return (ret); 3029 } 3030 3031 int 3032 fop_create( 3033 vnode_t *dvp, 3034 char *name, 3035 vattr_t *vap, 3036 vcexcl_t excl, 3037 int mode, 3038 vnode_t **vpp, 3039 cred_t *cr, 3040 int flag) 3041 { 3042 int ret; 3043 3044 VOPXID_MAP_CR(dvp, cr); 3045 3046 ret = (*(dvp)->v_op->vop_create) 3047 (dvp, name, vap, excl, mode, vpp, cr, flag); 3048 if (ret == 0 && *vpp) { 3049 VOPSTATS_UPDATE(*vpp, create); 3050 if ((*vpp)->v_path == NULL) { 3051 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3052 } 3053 } 3054 3055 return (ret); 3056 } 3057 3058 int 3059 fop_remove( 3060 vnode_t *dvp, 3061 char *nm, 3062 cred_t *cr) 3063 { 3064 int err; 3065 3066 VOPXID_MAP_CR(dvp, cr); 3067 3068 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 3069 VOPSTATS_UPDATE(dvp, remove); 3070 return (err); 3071 } 3072 3073 int 3074 fop_link( 3075 vnode_t *tdvp, 3076 vnode_t *svp, 3077 char *tnm, 3078 cred_t *cr) 3079 { 3080 int err; 3081 3082 VOPXID_MAP_CR(tdvp, cr); 3083 3084 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 3085 VOPSTATS_UPDATE(tdvp, link); 3086 return (err); 3087 } 3088 3089 int 3090 fop_rename( 3091 vnode_t *sdvp, 3092 char *snm, 3093 vnode_t *tdvp, 3094 char *tnm, 3095 cred_t *cr) 3096 { 3097 int err; 3098 3099 VOPXID_MAP_CR(tdvp, cr); 3100 3101 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 3102 VOPSTATS_UPDATE(sdvp, rename); 3103 return (err); 3104 } 3105 3106 int 3107 fop_mkdir( 3108 vnode_t *dvp, 3109 char *dirname, 3110 vattr_t *vap, 3111 vnode_t **vpp, 3112 cred_t *cr) 3113 { 3114 int ret; 3115 3116 VOPXID_MAP_CR(dvp, cr); 3117 3118 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 3119 if (ret == 0 && *vpp) { 3120 VOPSTATS_UPDATE(*vpp, mkdir); 3121 if ((*vpp)->v_path == NULL) { 3122 vn_setpath(rootdir, dvp, *vpp, dirname, 3123 strlen(dirname)); 3124 } 3125 } 3126 3127 return (ret); 3128 } 3129 3130 int 3131 fop_rmdir( 3132 vnode_t *dvp, 3133 char *nm, 3134 vnode_t *cdir, 3135 cred_t *cr) 3136 { 3137 int err; 3138 3139 VOPXID_MAP_CR(dvp, cr); 3140 3141 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 3142 VOPSTATS_UPDATE(dvp, rmdir); 3143 return (err); 3144 } 3145 3146 int 3147 fop_readdir( 3148 vnode_t *vp, 3149 uio_t *uiop, 3150 cred_t *cr, 3151 int *eofp) 3152 { 3153 int err; 3154 ssize_t resid_start = uiop->uio_resid; 3155 3156 VOPXID_MAP_CR(vp, cr); 3157 3158 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3159 VOPSTATS_UPDATE_IO(vp, readdir, 3160 readdir_bytes, (resid_start - uiop->uio_resid)); 3161 return (err); 3162 } 3163 3164 int 3165 fop_symlink( 3166 vnode_t *dvp, 3167 char *linkname, 3168 vattr_t *vap, 3169 char *target, 3170 cred_t *cr) 3171 { 3172 int err; 3173 3174 VOPXID_MAP_CR(dvp, cr); 3175 3176 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3177 VOPSTATS_UPDATE(dvp, symlink); 3178 return (err); 3179 } 3180 3181 int 3182 fop_readlink( 3183 vnode_t *vp, 3184 uio_t *uiop, 3185 cred_t *cr) 3186 { 3187 int err; 3188 3189 VOPXID_MAP_CR(vp, cr); 3190 3191 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3192 VOPSTATS_UPDATE(vp, readlink); 3193 return (err); 3194 } 3195 3196 int 3197 fop_fsync( 3198 vnode_t *vp, 3199 int syncflag, 3200 cred_t *cr) 3201 { 3202 int err; 3203 3204 VOPXID_MAP_CR(vp, cr); 3205 3206 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3207 VOPSTATS_UPDATE(vp, fsync); 3208 return (err); 3209 } 3210 3211 void 3212 fop_inactive( 3213 vnode_t *vp, 3214 cred_t *cr) 3215 { 3216 /* Need to update stats before vop call since we may lose the vnode */ 3217 VOPSTATS_UPDATE(vp, inactive); 3218 3219 VOPXID_MAP_CR(vp, cr); 3220 3221 (*(vp)->v_op->vop_inactive)(vp, cr); 3222 } 3223 3224 int 3225 fop_fid( 3226 vnode_t *vp, 3227 fid_t *fidp) 3228 { 3229 int err; 3230 3231 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3232 VOPSTATS_UPDATE(vp, fid); 3233 return (err); 3234 } 3235 3236 int 3237 fop_rwlock( 3238 vnode_t *vp, 3239 int write_lock, 3240 caller_context_t *ct) 3241 { 3242 int ret; 3243 3244 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3245 VOPSTATS_UPDATE(vp, rwlock); 3246 return (ret); 3247 } 3248 3249 void 3250 fop_rwunlock( 3251 vnode_t *vp, 3252 int write_lock, 3253 caller_context_t *ct) 3254 { 3255 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3256 VOPSTATS_UPDATE(vp, rwunlock); 3257 } 3258 3259 int 3260 fop_seek( 3261 vnode_t *vp, 3262 offset_t ooff, 3263 offset_t *noffp) 3264 { 3265 int err; 3266 3267 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3268 VOPSTATS_UPDATE(vp, seek); 3269 return (err); 3270 } 3271 3272 int 3273 fop_cmp( 3274 vnode_t *vp1, 3275 vnode_t *vp2) 3276 { 3277 int err; 3278 3279 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3280 VOPSTATS_UPDATE(vp1, cmp); 3281 return (err); 3282 } 3283 3284 int 3285 fop_frlock( 3286 vnode_t *vp, 3287 int cmd, 3288 flock64_t *bfp, 3289 int flag, 3290 offset_t offset, 3291 struct flk_callback *flk_cbp, 3292 cred_t *cr) 3293 { 3294 int err; 3295 3296 VOPXID_MAP_CR(vp, cr); 3297 3298 err = (*(vp)->v_op->vop_frlock) 3299 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3300 VOPSTATS_UPDATE(vp, frlock); 3301 return (err); 3302 } 3303 3304 int 3305 fop_space( 3306 vnode_t *vp, 3307 int cmd, 3308 flock64_t *bfp, 3309 int flag, 3310 offset_t offset, 3311 cred_t *cr, 3312 caller_context_t *ct) 3313 { 3314 int err; 3315 3316 VOPXID_MAP_CR(vp, cr); 3317 3318 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3319 VOPSTATS_UPDATE(vp, space); 3320 return (err); 3321 } 3322 3323 int 3324 fop_realvp( 3325 vnode_t *vp, 3326 vnode_t **vpp) 3327 { 3328 int err; 3329 3330 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3331 VOPSTATS_UPDATE(vp, realvp); 3332 return (err); 3333 } 3334 3335 int 3336 fop_getpage( 3337 vnode_t *vp, 3338 offset_t off, 3339 size_t len, 3340 uint_t *protp, 3341 page_t **plarr, 3342 size_t plsz, 3343 struct seg *seg, 3344 caddr_t addr, 3345 enum seg_rw rw, 3346 cred_t *cr) 3347 { 3348 int err; 3349 3350 VOPXID_MAP_CR(vp, cr); 3351 3352 err = (*(vp)->v_op->vop_getpage) 3353 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3354 VOPSTATS_UPDATE(vp, getpage); 3355 return (err); 3356 } 3357 3358 int 3359 fop_putpage( 3360 vnode_t *vp, 3361 offset_t off, 3362 size_t len, 3363 int flags, 3364 cred_t *cr) 3365 { 3366 int err; 3367 3368 VOPXID_MAP_CR(vp, cr); 3369 3370 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3371 VOPSTATS_UPDATE(vp, putpage); 3372 return (err); 3373 } 3374 3375 int 3376 fop_map( 3377 vnode_t *vp, 3378 offset_t off, 3379 struct as *as, 3380 caddr_t *addrp, 3381 size_t len, 3382 uchar_t prot, 3383 uchar_t maxprot, 3384 uint_t flags, 3385 cred_t *cr) 3386 { 3387 int err; 3388 3389 VOPXID_MAP_CR(vp, cr); 3390 3391 err = (*(vp)->v_op->vop_map) 3392 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3393 VOPSTATS_UPDATE(vp, map); 3394 return (err); 3395 } 3396 3397 int 3398 fop_addmap( 3399 vnode_t *vp, 3400 offset_t off, 3401 struct as *as, 3402 caddr_t addr, 3403 size_t len, 3404 uchar_t prot, 3405 uchar_t maxprot, 3406 uint_t flags, 3407 cred_t *cr) 3408 { 3409 int error; 3410 u_longlong_t delta; 3411 3412 VOPXID_MAP_CR(vp, cr); 3413 3414 error = (*(vp)->v_op->vop_addmap) 3415 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3416 3417 if ((!error) && (vp->v_type == VREG)) { 3418 delta = (u_longlong_t)btopr(len); 3419 /* 3420 * If file is declared MAP_PRIVATE, it can't be written back 3421 * even if open for write. Handle as read. 3422 */ 3423 if (flags & MAP_PRIVATE) { 3424 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3425 (int64_t)delta); 3426 } else { 3427 /* 3428 * atomic_add_64 forces the fetch of a 64 bit value to 3429 * be atomic on 32 bit machines 3430 */ 3431 if (maxprot & PROT_WRITE) 3432 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3433 (int64_t)delta); 3434 if (maxprot & PROT_READ) 3435 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3436 (int64_t)delta); 3437 if (maxprot & PROT_EXEC) 3438 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3439 (int64_t)delta); 3440 } 3441 } 3442 VOPSTATS_UPDATE(vp, addmap); 3443 return (error); 3444 } 3445 3446 int 3447 fop_delmap( 3448 vnode_t *vp, 3449 offset_t off, 3450 struct as *as, 3451 caddr_t addr, 3452 size_t len, 3453 uint_t prot, 3454 uint_t maxprot, 3455 uint_t flags, 3456 cred_t *cr) 3457 { 3458 int error; 3459 u_longlong_t delta; 3460 3461 VOPXID_MAP_CR(vp, cr); 3462 3463 error = (*(vp)->v_op->vop_delmap) 3464 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3465 3466 /* 3467 * NFS calls into delmap twice, the first time 3468 * it simply establishes a callback mechanism and returns EAGAIN 3469 * while the real work is being done upon the second invocation. 3470 * We have to detect this here and only decrement the counts upon 3471 * the second delmap request. 3472 */ 3473 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3474 3475 delta = (u_longlong_t)btopr(len); 3476 3477 if (flags & MAP_PRIVATE) { 3478 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3479 (int64_t)(-delta)); 3480 } else { 3481 /* 3482 * atomic_add_64 forces the fetch of a 64 bit value 3483 * to be atomic on 32 bit machines 3484 */ 3485 if (maxprot & PROT_WRITE) 3486 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3487 (int64_t)(-delta)); 3488 if (maxprot & PROT_READ) 3489 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3490 (int64_t)(-delta)); 3491 if (maxprot & PROT_EXEC) 3492 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3493 (int64_t)(-delta)); 3494 } 3495 } 3496 VOPSTATS_UPDATE(vp, delmap); 3497 return (error); 3498 } 3499 3500 3501 int 3502 fop_poll( 3503 vnode_t *vp, 3504 short events, 3505 int anyyet, 3506 short *reventsp, 3507 struct pollhead **phpp) 3508 { 3509 int err; 3510 3511 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3512 VOPSTATS_UPDATE(vp, poll); 3513 return (err); 3514 } 3515 3516 int 3517 fop_dump( 3518 vnode_t *vp, 3519 caddr_t addr, 3520 int lbdn, 3521 int dblks) 3522 { 3523 int err; 3524 3525 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3526 VOPSTATS_UPDATE(vp, dump); 3527 return (err); 3528 } 3529 3530 int 3531 fop_pathconf( 3532 vnode_t *vp, 3533 int cmd, 3534 ulong_t *valp, 3535 cred_t *cr) 3536 { 3537 int err; 3538 3539 VOPXID_MAP_CR(vp, cr); 3540 3541 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3542 VOPSTATS_UPDATE(vp, pathconf); 3543 return (err); 3544 } 3545 3546 int 3547 fop_pageio( 3548 vnode_t *vp, 3549 struct page *pp, 3550 u_offset_t io_off, 3551 size_t io_len, 3552 int flags, 3553 cred_t *cr) 3554 { 3555 int err; 3556 3557 VOPXID_MAP_CR(vp, cr); 3558 3559 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3560 VOPSTATS_UPDATE(vp, pageio); 3561 return (err); 3562 } 3563 3564 int 3565 fop_dumpctl( 3566 vnode_t *vp, 3567 int action, 3568 int *blkp) 3569 { 3570 int err; 3571 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3572 VOPSTATS_UPDATE(vp, dumpctl); 3573 return (err); 3574 } 3575 3576 void 3577 fop_dispose( 3578 vnode_t *vp, 3579 page_t *pp, 3580 int flag, 3581 int dn, 3582 cred_t *cr) 3583 { 3584 /* Must do stats first since it's possible to lose the vnode */ 3585 VOPSTATS_UPDATE(vp, dispose); 3586 3587 VOPXID_MAP_CR(vp, cr); 3588 3589 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3590 } 3591 3592 int 3593 fop_setsecattr( 3594 vnode_t *vp, 3595 vsecattr_t *vsap, 3596 int flag, 3597 cred_t *cr) 3598 { 3599 int err; 3600 3601 VOPXID_MAP_CR(vp, cr); 3602 3603 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3604 VOPSTATS_UPDATE(vp, setsecattr); 3605 return (err); 3606 } 3607 3608 int 3609 fop_getsecattr( 3610 vnode_t *vp, 3611 vsecattr_t *vsap, 3612 int flag, 3613 cred_t *cr) 3614 { 3615 int err; 3616 3617 VOPXID_MAP_CR(vp, cr); 3618 3619 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3620 VOPSTATS_UPDATE(vp, getsecattr); 3621 return (err); 3622 } 3623 3624 int 3625 fop_shrlock( 3626 vnode_t *vp, 3627 int cmd, 3628 struct shrlock *shr, 3629 int flag, 3630 cred_t *cr) 3631 { 3632 int err; 3633 3634 VOPXID_MAP_CR(vp, cr); 3635 3636 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3637 VOPSTATS_UPDATE(vp, shrlock); 3638 return (err); 3639 } 3640 3641 int 3642 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm) 3643 { 3644 int err; 3645 3646 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm); 3647 VOPSTATS_UPDATE(vp, vnevent); 3648 return (err); 3649 } 3650