1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/param.h> 41 #include <sys/t_lock.h> 42 #include <sys/errno.h> 43 #include <sys/cred.h> 44 #include <sys/user.h> 45 #include <sys/uio.h> 46 #include <sys/file.h> 47 #include <sys/pathname.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/rwstlock.h> 52 #include <sys/fem.h> 53 #include <sys/stat.h> 54 #include <sys/mode.h> 55 #include <sys/conf.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cmn_err.h> 58 #include <sys/systm.h> 59 #include <sys/kmem.h> 60 #include <sys/debug.h> 61 #include <c2/audit.h> 62 #include <sys/acl.h> 63 #include <sys/nbmlock.h> 64 #include <sys/fcntl.h> 65 #include <fs/fs_subr.h> 66 #include <sys/taskq.h> 67 #include <fs/fs_reparse.h> 68 69 /* Determine if this vnode is a file that is read-only */ 70 #define ISROFILE(vp) \ 71 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 72 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 73 74 /* Tunable via /etc/system; used only by admin/install */ 75 int nfs_global_client_only; 76 77 /* 78 * Array of vopstats_t for per-FS-type vopstats. This array has the same 79 * number of entries as and parallel to the vfssw table. (Arguably, it could 80 * be part of the vfssw table.) Once it's initialized, it's accessed using 81 * the same fstype index that is used to index into the vfssw table. 82 */ 83 vopstats_t **vopstats_fstype; 84 85 /* vopstats initialization template used for fast initialization via bcopy() */ 86 static vopstats_t *vs_templatep; 87 88 /* Kmem cache handle for vsk_anchor_t allocations */ 89 kmem_cache_t *vsk_anchor_cache; 90 91 /* file events cleanup routine */ 92 extern void free_fopdata(vnode_t *); 93 94 /* 95 * Root of AVL tree for the kstats associated with vopstats. Lock protects 96 * updates to vsktat_tree. 97 */ 98 avl_tree_t vskstat_tree; 99 kmutex_t vskstat_tree_lock; 100 101 /* Global variable which enables/disables the vopstats collection */ 102 int vopstats_enabled = 1; 103 104 /* 105 * forward declarations for internal vnode specific data (vsd) 106 */ 107 static void *vsd_realloc(void *, size_t, size_t); 108 109 /* 110 * forward declarations for reparse point functions 111 */ 112 static int fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr); 113 114 /* 115 * VSD -- VNODE SPECIFIC DATA 116 * The v_data pointer is typically used by a file system to store a 117 * pointer to the file system's private node (e.g. ufs inode, nfs rnode). 118 * However, there are times when additional project private data needs 119 * to be stored separately from the data (node) pointed to by v_data. 120 * This additional data could be stored by the file system itself or 121 * by a completely different kernel entity. VSD provides a way for 122 * callers to obtain a key and store a pointer to private data associated 123 * with a vnode. 124 * 125 * Callers are responsible for protecting the vsd by holding v_vsd_lock 126 * for calls to vsd_set() and vsd_get(). 127 */ 128 129 /* 130 * vsd_lock protects: 131 * vsd_nkeys - creation and deletion of vsd keys 132 * vsd_list - insertion and deletion of vsd_node in the vsd_list 133 * vsd_destructor - adding and removing destructors to the list 134 */ 135 static kmutex_t vsd_lock; 136 static uint_t vsd_nkeys; /* size of destructor array */ 137 /* list of vsd_node's */ 138 static list_t *vsd_list = NULL; 139 /* per-key destructor funcs */ 140 static void (**vsd_destructor)(void *); 141 142 /* 143 * The following is the common set of actions needed to update the 144 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 145 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 146 * recording of the bytes transferred. Since the code is similar 147 * but small, it is nearly a duplicate. Consequently any changes 148 * to one may need to be reflected in the other. 149 * Rundown of the variables: 150 * vp - Pointer to the vnode 151 * counter - Partial name structure member to update in vopstats for counts 152 * bytecounter - Partial name structure member to update in vopstats for bytes 153 * bytesval - Value to update in vopstats for bytes 154 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 155 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 156 */ 157 158 #define VOPSTATS_UPDATE(vp, counter) { \ 159 vfs_t *vfsp = (vp)->v_vfsp; \ 160 if (vfsp && vfsp->vfs_implp && \ 161 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 162 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 163 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 164 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 165 size_t, uint64_t *); \ 166 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 167 (*stataddr)++; \ 168 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 169 vsp->n##counter.value.ui64++; \ 170 } \ 171 } \ 172 } 173 174 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 175 vfs_t *vfsp = (vp)->v_vfsp; \ 176 if (vfsp && vfsp->vfs_implp && \ 177 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 178 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 179 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 180 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 181 size_t, uint64_t *); \ 182 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 183 (*stataddr)++; \ 184 vsp->bytecounter.value.ui64 += bytesval; \ 185 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 186 vsp->n##counter.value.ui64++; \ 187 vsp->bytecounter.value.ui64 += bytesval; \ 188 } \ 189 } \ 190 } 191 192 /* 193 * If the filesystem does not support XIDs map credential 194 * If the vfsp is NULL, perhaps we should also map? 195 */ 196 #define VOPXID_MAP_CR(vp, cr) { \ 197 vfs_t *vfsp = (vp)->v_vfsp; \ 198 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 199 cr = crgetmapped(cr); \ 200 } 201 202 /* 203 * Convert stat(2) formats to vnode types and vice versa. (Knows about 204 * numerical order of S_IFMT and vnode types.) 205 */ 206 enum vtype iftovt_tab[] = { 207 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 208 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 209 }; 210 211 ushort_t vttoif_tab[] = { 212 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 213 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 214 }; 215 216 /* 217 * The system vnode cache. 218 */ 219 220 kmem_cache_t *vn_cache; 221 222 223 /* 224 * Vnode operations vector. 225 */ 226 227 static const fs_operation_trans_def_t vn_ops_table[] = { 228 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 229 fs_nosys, fs_nosys, 230 231 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 232 fs_nosys, fs_nosys, 233 234 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 235 fs_nosys, fs_nosys, 236 237 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 238 fs_nosys, fs_nosys, 239 240 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 241 fs_nosys, fs_nosys, 242 243 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 244 fs_setfl, fs_nosys, 245 246 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 247 fs_nosys, fs_nosys, 248 249 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 250 fs_nosys, fs_nosys, 251 252 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 253 fs_nosys, fs_nosys, 254 255 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 256 fs_nosys, fs_nosys, 257 258 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 259 fs_nosys, fs_nosys, 260 261 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 262 fs_nosys, fs_nosys, 263 264 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 265 fs_nosys, fs_nosys, 266 267 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 268 fs_nosys, fs_nosys, 269 270 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 271 fs_nosys, fs_nosys, 272 273 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 274 fs_nosys, fs_nosys, 275 276 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 277 fs_nosys, fs_nosys, 278 279 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 283 fs_nosys, fs_nosys, 284 285 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 286 fs_nosys, fs_nosys, 287 288 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 289 fs_nosys, fs_nosys, 290 291 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 292 fs_nosys, fs_nosys, 293 294 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 295 fs_rwlock, fs_rwlock, 296 297 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 298 (fs_generic_func_p) fs_rwunlock, 299 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 300 301 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 302 fs_nosys, fs_nosys, 303 304 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 305 fs_cmp, fs_cmp, /* no errors allowed */ 306 307 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 308 fs_frlock, fs_nosys, 309 310 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 311 fs_nosys, fs_nosys, 312 313 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 314 fs_nosys, fs_nosys, 315 316 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 317 fs_nosys, fs_nosys, 318 319 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 320 fs_nosys, fs_nosys, 321 322 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 323 (fs_generic_func_p) fs_nosys_map, 324 (fs_generic_func_p) fs_nosys_map, 325 326 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 327 (fs_generic_func_p) fs_nosys_addmap, 328 (fs_generic_func_p) fs_nosys_addmap, 329 330 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 331 fs_nosys, fs_nosys, 332 333 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 334 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 335 336 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 337 fs_nosys, fs_nosys, 338 339 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 340 fs_pathconf, fs_nosys, 341 342 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 343 fs_nosys, fs_nosys, 344 345 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 346 fs_nosys, fs_nosys, 347 348 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 349 (fs_generic_func_p) fs_dispose, 350 (fs_generic_func_p) fs_nodispose, 351 352 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 353 fs_nosys, fs_nosys, 354 355 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 356 fs_fab_acl, fs_nosys, 357 358 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 359 fs_shrlock, fs_nosys, 360 361 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 362 (fs_generic_func_p) fs_vnevent_nosupport, 363 (fs_generic_func_p) fs_vnevent_nosupport, 364 365 VOPNAME_REQZCBUF, offsetof(struct vnodeops, vop_reqzcbuf), 366 fs_nosys, fs_nosys, 367 368 VOPNAME_RETZCBUF, offsetof(struct vnodeops, vop_retzcbuf), 369 fs_nosys, fs_nosys, 370 371 NULL, 0, NULL, NULL 372 }; 373 374 /* Extensible attribute (xva) routines. */ 375 376 /* 377 * Zero out the structure, set the size of the requested/returned bitmaps, 378 * set AT_XVATTR in the embedded vattr_t's va_mask, and set up the pointer 379 * to the returned attributes array. 380 */ 381 void 382 xva_init(xvattr_t *xvap) 383 { 384 bzero(xvap, sizeof (xvattr_t)); 385 xvap->xva_mapsize = XVA_MAPSIZE; 386 xvap->xva_magic = XVA_MAGIC; 387 xvap->xva_vattr.va_mask = AT_XVATTR; 388 xvap->xva_rtnattrmapp = &(xvap->xva_rtnattrmap)[0]; 389 } 390 391 /* 392 * If AT_XVATTR is set, returns a pointer to the embedded xoptattr_t 393 * structure. Otherwise, returns NULL. 394 */ 395 xoptattr_t * 396 xva_getxoptattr(xvattr_t *xvap) 397 { 398 xoptattr_t *xoap = NULL; 399 if (xvap->xva_vattr.va_mask & AT_XVATTR) 400 xoap = &xvap->xva_xoptattrs; 401 return (xoap); 402 } 403 404 /* 405 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 406 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 407 * kstat name. 408 */ 409 static int 410 vska_compar(const void *n1, const void *n2) 411 { 412 int ret; 413 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 414 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 415 416 if (p1 < p2) { 417 ret = -1; 418 } else if (p1 > p2) { 419 ret = 1; 420 } else { 421 ret = 0; 422 } 423 424 return (ret); 425 } 426 427 /* 428 * Used to create a single template which will be bcopy()ed to a newly 429 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 430 */ 431 static vopstats_t * 432 create_vopstats_template() 433 { 434 vopstats_t *vsp; 435 436 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 437 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 438 439 /* VOP_OPEN */ 440 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 441 /* VOP_CLOSE */ 442 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 443 /* VOP_READ I/O */ 444 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 445 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 446 /* VOP_WRITE I/O */ 447 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 448 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 449 /* VOP_IOCTL */ 450 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 451 /* VOP_SETFL */ 452 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 453 /* VOP_GETATTR */ 454 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 455 /* VOP_SETATTR */ 456 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 457 /* VOP_ACCESS */ 458 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 459 /* VOP_LOOKUP */ 460 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 461 /* VOP_CREATE */ 462 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 463 /* VOP_REMOVE */ 464 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 465 /* VOP_LINK */ 466 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 467 /* VOP_RENAME */ 468 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 469 /* VOP_MKDIR */ 470 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 471 /* VOP_RMDIR */ 472 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 473 /* VOP_READDIR I/O */ 474 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 475 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 476 KSTAT_DATA_UINT64); 477 /* VOP_SYMLINK */ 478 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 479 /* VOP_READLINK */ 480 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 481 /* VOP_FSYNC */ 482 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 483 /* VOP_INACTIVE */ 484 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 485 /* VOP_FID */ 486 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 487 /* VOP_RWLOCK */ 488 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 489 /* VOP_RWUNLOCK */ 490 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 491 /* VOP_SEEK */ 492 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 493 /* VOP_CMP */ 494 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 495 /* VOP_FRLOCK */ 496 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 497 /* VOP_SPACE */ 498 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 499 /* VOP_REALVP */ 500 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 501 /* VOP_GETPAGE */ 502 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 503 /* VOP_PUTPAGE */ 504 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 505 /* VOP_MAP */ 506 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 507 /* VOP_ADDMAP */ 508 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 509 /* VOP_DELMAP */ 510 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 511 /* VOP_POLL */ 512 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 513 /* VOP_DUMP */ 514 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 515 /* VOP_PATHCONF */ 516 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 517 /* VOP_PAGEIO */ 518 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 519 /* VOP_DUMPCTL */ 520 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 521 /* VOP_DISPOSE */ 522 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 523 /* VOP_SETSECATTR */ 524 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 525 /* VOP_GETSECATTR */ 526 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 527 /* VOP_SHRLOCK */ 528 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 529 /* VOP_VNEVENT */ 530 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 531 /* VOP_REQZCBUF */ 532 kstat_named_init(&vsp->nreqzcbuf, "nreqzcbuf", KSTAT_DATA_UINT64); 533 /* VOP_RETZCBUF */ 534 kstat_named_init(&vsp->nretzcbuf, "nretzcbuf", KSTAT_DATA_UINT64); 535 536 return (vsp); 537 } 538 539 /* 540 * Creates a kstat structure associated with a vopstats structure. 541 */ 542 kstat_t * 543 new_vskstat(char *ksname, vopstats_t *vsp) 544 { 545 kstat_t *ksp; 546 547 if (!vopstats_enabled) { 548 return (NULL); 549 } 550 551 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 552 sizeof (vopstats_t)/sizeof (kstat_named_t), 553 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 554 if (ksp) { 555 ksp->ks_data = vsp; 556 kstat_install(ksp); 557 } 558 559 return (ksp); 560 } 561 562 /* 563 * Called from vfsinit() to initialize the support mechanisms for vopstats 564 */ 565 void 566 vopstats_startup() 567 { 568 if (!vopstats_enabled) 569 return; 570 571 /* 572 * Creates the AVL tree which holds per-vfs vopstat anchors. This 573 * is necessary since we need to check if a kstat exists before we 574 * attempt to create it. Also, initialize its lock. 575 */ 576 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 577 offsetof(vsk_anchor_t, vsk_node)); 578 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 579 580 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 581 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 582 NULL, NULL, 0); 583 584 /* 585 * Set up the array of pointers for the vopstats-by-FS-type. 586 * The entries will be allocated/initialized as each file system 587 * goes through modload/mod_installfs. 588 */ 589 vopstats_fstype = (vopstats_t **)kmem_zalloc( 590 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 591 592 /* Set up the global vopstats initialization template */ 593 vs_templatep = create_vopstats_template(); 594 } 595 596 /* 597 * We need to have the all of the counters zeroed. 598 * The initialization of the vopstats_t includes on the order of 599 * 50 calls to kstat_named_init(). Rather that do that on every call, 600 * we do it once in a template (vs_templatep) then bcopy it over. 601 */ 602 void 603 initialize_vopstats(vopstats_t *vsp) 604 { 605 if (vsp == NULL) 606 return; 607 608 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 609 } 610 611 /* 612 * If possible, determine which vopstats by fstype to use and 613 * return a pointer to the caller. 614 */ 615 vopstats_t * 616 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 617 { 618 int fstype = 0; /* Index into vfssw[] */ 619 vopstats_t *vsp = NULL; 620 621 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 622 !vopstats_enabled) 623 return (NULL); 624 /* 625 * Set up the fstype. We go to so much trouble because all versions 626 * of NFS use the same fstype in their vfs even though they have 627 * distinct entries in the vfssw[] table. 628 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 629 */ 630 if (vswp) { 631 fstype = vswp - vfssw; /* Gets us the index */ 632 } else { 633 fstype = vfsp->vfs_fstype; 634 } 635 636 /* 637 * Point to the per-fstype vopstats. The only valid values are 638 * non-zero positive values less than the number of vfssw[] table 639 * entries. 640 */ 641 if (fstype > 0 && fstype < nfstype) { 642 vsp = vopstats_fstype[fstype]; 643 } 644 645 return (vsp); 646 } 647 648 /* 649 * Generate a kstat name, create the kstat structure, and allocate a 650 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 651 * to the caller. This must only be called from a mount. 652 */ 653 vsk_anchor_t * 654 get_vskstat_anchor(vfs_t *vfsp) 655 { 656 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 657 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 658 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 659 kstat_t *ksp; /* Ptr to new kstat */ 660 avl_index_t where; /* Location in the AVL tree */ 661 662 if (vfsp == NULL || vfsp->vfs_implp == NULL || 663 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 664 return (NULL); 665 666 /* Need to get the fsid to build a kstat name */ 667 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 668 /* Create a name for our kstats based on fsid */ 669 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 670 VOPSTATS_STR, statvfsbuf.f_fsid); 671 672 /* Allocate and initialize the vsk_anchor_t */ 673 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 674 bzero(vskp, sizeof (*vskp)); 675 vskp->vsk_fsid = statvfsbuf.f_fsid; 676 677 mutex_enter(&vskstat_tree_lock); 678 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 679 avl_insert(&vskstat_tree, vskp, where); 680 mutex_exit(&vskstat_tree_lock); 681 682 /* 683 * Now that we've got the anchor in the AVL 684 * tree, we can create the kstat. 685 */ 686 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 687 if (ksp) { 688 vskp->vsk_ksp = ksp; 689 } 690 } else { 691 /* Oops, found one! Release memory and lock. */ 692 mutex_exit(&vskstat_tree_lock); 693 kmem_cache_free(vsk_anchor_cache, vskp); 694 vskp = NULL; 695 } 696 } 697 return (vskp); 698 } 699 700 /* 701 * We're in the process of tearing down the vfs and need to cleanup 702 * the data structures associated with the vopstats. Must only be called 703 * from dounmount(). 704 */ 705 void 706 teardown_vopstats(vfs_t *vfsp) 707 { 708 vsk_anchor_t *vskap; 709 avl_index_t where; 710 711 if (vfsp == NULL || vfsp->vfs_implp == NULL || 712 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 713 return; 714 715 /* This is a safe check since VFS_STATS must be set (see above) */ 716 if ((vskap = vfsp->vfs_vskap) == NULL) 717 return; 718 719 /* Whack the pointer right away */ 720 vfsp->vfs_vskap = NULL; 721 722 /* Lock the tree, remove the node, and delete the kstat */ 723 mutex_enter(&vskstat_tree_lock); 724 if (avl_find(&vskstat_tree, vskap, &where)) { 725 avl_remove(&vskstat_tree, vskap); 726 } 727 728 if (vskap->vsk_ksp) { 729 kstat_delete(vskap->vsk_ksp); 730 } 731 mutex_exit(&vskstat_tree_lock); 732 733 kmem_cache_free(vsk_anchor_cache, vskap); 734 } 735 736 /* 737 * Read or write a vnode. Called from kernel code. 738 */ 739 int 740 vn_rdwr( 741 enum uio_rw rw, 742 struct vnode *vp, 743 caddr_t base, 744 ssize_t len, 745 offset_t offset, 746 enum uio_seg seg, 747 int ioflag, 748 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 749 cred_t *cr, 750 ssize_t *residp) 751 { 752 struct uio uio; 753 struct iovec iov; 754 int error; 755 int in_crit = 0; 756 757 if (rw == UIO_WRITE && ISROFILE(vp)) 758 return (EROFS); 759 760 if (len < 0) 761 return (EIO); 762 763 VOPXID_MAP_CR(vp, cr); 764 765 iov.iov_base = base; 766 iov.iov_len = len; 767 uio.uio_iov = &iov; 768 uio.uio_iovcnt = 1; 769 uio.uio_loffset = offset; 770 uio.uio_segflg = (short)seg; 771 uio.uio_resid = len; 772 uio.uio_llimit = ulimit; 773 774 /* 775 * We have to enter the critical region before calling VOP_RWLOCK 776 * to avoid a deadlock with ufs. 777 */ 778 if (nbl_need_check(vp)) { 779 int svmand; 780 781 nbl_start_crit(vp, RW_READER); 782 in_crit = 1; 783 error = nbl_svmand(vp, cr, &svmand); 784 if (error != 0) 785 goto done; 786 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 787 uio.uio_offset, uio.uio_resid, svmand, NULL)) { 788 error = EACCES; 789 goto done; 790 } 791 } 792 793 (void) VOP_RWLOCK(vp, 794 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 795 if (rw == UIO_WRITE) { 796 uio.uio_fmode = FWRITE; 797 uio.uio_extflg = UIO_COPY_DEFAULT; 798 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 799 } else { 800 uio.uio_fmode = FREAD; 801 uio.uio_extflg = UIO_COPY_CACHED; 802 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 803 } 804 VOP_RWUNLOCK(vp, 805 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 806 if (residp) 807 *residp = uio.uio_resid; 808 else if (uio.uio_resid) 809 error = EIO; 810 811 done: 812 if (in_crit) 813 nbl_end_crit(vp); 814 return (error); 815 } 816 817 /* 818 * Release a vnode. Call VOP_INACTIVE on last reference or 819 * decrement reference count. 820 * 821 * To avoid race conditions, the v_count is left at 1 for 822 * the call to VOP_INACTIVE. This prevents another thread 823 * from reclaiming and releasing the vnode *before* the 824 * VOP_INACTIVE routine has a chance to destroy the vnode. 825 * We can't have more than 1 thread calling VOP_INACTIVE 826 * on a vnode. 827 */ 828 void 829 vn_rele(vnode_t *vp) 830 { 831 VERIFY(vp->v_count > 0); 832 mutex_enter(&vp->v_lock); 833 if (vp->v_count == 1) { 834 mutex_exit(&vp->v_lock); 835 VOP_INACTIVE(vp, CRED(), NULL); 836 return; 837 } 838 vp->v_count--; 839 mutex_exit(&vp->v_lock); 840 } 841 842 /* 843 * Release a vnode referenced by the DNLC. Multiple DNLC references are treated 844 * as a single reference, so v_count is not decremented until the last DNLC hold 845 * is released. This makes it possible to distinguish vnodes that are referenced 846 * only by the DNLC. 847 */ 848 void 849 vn_rele_dnlc(vnode_t *vp) 850 { 851 VERIFY((vp->v_count > 0) && (vp->v_count_dnlc > 0)); 852 mutex_enter(&vp->v_lock); 853 if (--vp->v_count_dnlc == 0) { 854 if (vp->v_count == 1) { 855 mutex_exit(&vp->v_lock); 856 VOP_INACTIVE(vp, CRED(), NULL); 857 return; 858 } 859 vp->v_count--; 860 } 861 mutex_exit(&vp->v_lock); 862 } 863 864 /* 865 * Like vn_rele() except that it clears v_stream under v_lock. 866 * This is used by sockfs when it dismantels the association between 867 * the sockfs node and the vnode in the underlaying file system. 868 * v_lock has to be held to prevent a thread coming through the lookupname 869 * path from accessing a stream head that is going away. 870 */ 871 void 872 vn_rele_stream(vnode_t *vp) 873 { 874 VERIFY(vp->v_count > 0); 875 mutex_enter(&vp->v_lock); 876 vp->v_stream = NULL; 877 if (vp->v_count == 1) { 878 mutex_exit(&vp->v_lock); 879 VOP_INACTIVE(vp, CRED(), NULL); 880 return; 881 } 882 vp->v_count--; 883 mutex_exit(&vp->v_lock); 884 } 885 886 static void 887 vn_rele_inactive(vnode_t *vp) 888 { 889 VOP_INACTIVE(vp, CRED(), NULL); 890 } 891 892 /* 893 * Like vn_rele() except if we are going to call VOP_INACTIVE() then do it 894 * asynchronously using a taskq. This can avoid deadlocks caused by re-entering 895 * the file system as a result of releasing the vnode. Note, file systems 896 * already have to handle the race where the vnode is incremented before the 897 * inactive routine is called and does its locking. 898 * 899 * Warning: Excessive use of this routine can lead to performance problems. 900 * This is because taskqs throttle back allocation if too many are created. 901 */ 902 void 903 vn_rele_async(vnode_t *vp, taskq_t *taskq) 904 { 905 VERIFY(vp->v_count > 0); 906 mutex_enter(&vp->v_lock); 907 if (vp->v_count == 1) { 908 mutex_exit(&vp->v_lock); 909 VERIFY(taskq_dispatch(taskq, (task_func_t *)vn_rele_inactive, 910 vp, TQ_SLEEP) != NULL); 911 return; 912 } 913 vp->v_count--; 914 mutex_exit(&vp->v_lock); 915 } 916 917 int 918 vn_open( 919 char *pnamep, 920 enum uio_seg seg, 921 int filemode, 922 int createmode, 923 struct vnode **vpp, 924 enum create crwhy, 925 mode_t umask) 926 { 927 return (vn_openat(pnamep, seg, filemode, createmode, vpp, crwhy, 928 umask, NULL, -1)); 929 } 930 931 932 /* 933 * Open/create a vnode. 934 * This may be callable by the kernel, the only known use 935 * of user context being that the current user credentials 936 * are used for permissions. crwhy is defined iff filemode & FCREAT. 937 */ 938 int 939 vn_openat( 940 char *pnamep, 941 enum uio_seg seg, 942 int filemode, 943 int createmode, 944 struct vnode **vpp, 945 enum create crwhy, 946 mode_t umask, 947 struct vnode *startvp, 948 int fd) 949 { 950 struct vnode *vp; 951 int mode; 952 int accessflags; 953 int error; 954 int in_crit = 0; 955 int open_done = 0; 956 int shrlock_done = 0; 957 struct vattr vattr; 958 enum symfollow follow; 959 int estale_retry = 0; 960 struct shrlock shr; 961 struct shr_locowner shr_own; 962 963 mode = 0; 964 accessflags = 0; 965 if (filemode & FREAD) 966 mode |= VREAD; 967 if (filemode & (FWRITE|FTRUNC)) 968 mode |= VWRITE; 969 if (filemode & (FSEARCH|FEXEC|FXATTRDIROPEN)) 970 mode |= VEXEC; 971 972 /* symlink interpretation */ 973 if (filemode & FNOFOLLOW) 974 follow = NO_FOLLOW; 975 else 976 follow = FOLLOW; 977 978 if (filemode & FAPPEND) 979 accessflags |= V_APPEND; 980 981 top: 982 if (filemode & FCREAT) { 983 enum vcexcl excl; 984 985 /* 986 * Wish to create a file. 987 */ 988 vattr.va_type = VREG; 989 vattr.va_mode = createmode; 990 vattr.va_mask = AT_TYPE|AT_MODE; 991 if (filemode & FTRUNC) { 992 vattr.va_size = 0; 993 vattr.va_mask |= AT_SIZE; 994 } 995 if (filemode & FEXCL) 996 excl = EXCL; 997 else 998 excl = NONEXCL; 999 1000 if (error = 1001 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 1002 (filemode & ~(FTRUNC|FEXCL)), umask, startvp)) 1003 return (error); 1004 } else { 1005 /* 1006 * Wish to open a file. Just look it up. 1007 */ 1008 if (error = lookupnameat(pnamep, seg, follow, 1009 NULLVPP, &vp, startvp)) { 1010 if ((error == ESTALE) && 1011 fs_need_estale_retry(estale_retry++)) 1012 goto top; 1013 return (error); 1014 } 1015 1016 /* 1017 * Get the attributes to check whether file is large. 1018 * We do this only if the FOFFMAX flag is not set and 1019 * only for regular files. 1020 */ 1021 1022 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 1023 vattr.va_mask = AT_SIZE; 1024 if ((error = VOP_GETATTR(vp, &vattr, 0, 1025 CRED(), NULL))) { 1026 goto out; 1027 } 1028 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 1029 /* 1030 * Large File API - regular open fails 1031 * if FOFFMAX flag is set in file mode 1032 */ 1033 error = EOVERFLOW; 1034 goto out; 1035 } 1036 } 1037 /* 1038 * Can't write directories, active texts, or 1039 * read-only filesystems. Can't truncate files 1040 * on which mandatory locking is in effect. 1041 */ 1042 if (filemode & (FWRITE|FTRUNC)) { 1043 /* 1044 * Allow writable directory if VDIROPEN flag is set. 1045 */ 1046 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 1047 error = EISDIR; 1048 goto out; 1049 } 1050 if (ISROFILE(vp)) { 1051 error = EROFS; 1052 goto out; 1053 } 1054 /* 1055 * Can't truncate files on which 1056 * sysv mandatory locking is in effect. 1057 */ 1058 if (filemode & FTRUNC) { 1059 vnode_t *rvp; 1060 1061 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1062 rvp = vp; 1063 if (rvp->v_filocks != NULL) { 1064 vattr.va_mask = AT_MODE; 1065 if ((error = VOP_GETATTR(vp, 1066 &vattr, 0, CRED(), NULL)) == 0 && 1067 MANDLOCK(vp, vattr.va_mode)) 1068 error = EAGAIN; 1069 } 1070 } 1071 if (error) 1072 goto out; 1073 } 1074 /* 1075 * Check permissions. 1076 */ 1077 if (error = VOP_ACCESS(vp, mode, accessflags, CRED(), NULL)) 1078 goto out; 1079 /* 1080 * Require FSEARCH to return a directory. 1081 * Require FEXEC to return a regular file. 1082 */ 1083 if ((filemode & FSEARCH) && vp->v_type != VDIR) { 1084 error = ENOTDIR; 1085 goto out; 1086 } 1087 if ((filemode & FEXEC) && vp->v_type != VREG) { 1088 error = ENOEXEC; /* XXX: error code? */ 1089 goto out; 1090 } 1091 } 1092 1093 /* 1094 * Do remaining checks for FNOFOLLOW and FNOLINKS. 1095 */ 1096 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 1097 error = ELOOP; 1098 goto out; 1099 } 1100 if (filemode & FNOLINKS) { 1101 vattr.va_mask = AT_NLINK; 1102 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { 1103 goto out; 1104 } 1105 if (vattr.va_nlink != 1) { 1106 error = EMLINK; 1107 goto out; 1108 } 1109 } 1110 1111 /* 1112 * Opening a socket corresponding to the AF_UNIX pathname 1113 * in the filesystem name space is not supported. 1114 * However, VSOCK nodes in namefs are supported in order 1115 * to make fattach work for sockets. 1116 * 1117 * XXX This uses VOP_REALVP to distinguish between 1118 * an unopened namefs node (where VOP_REALVP returns a 1119 * different VSOCK vnode) and a VSOCK created by vn_create 1120 * in some file system (where VOP_REALVP would never return 1121 * a different vnode). 1122 */ 1123 if (vp->v_type == VSOCK) { 1124 struct vnode *nvp; 1125 1126 error = VOP_REALVP(vp, &nvp, NULL); 1127 if (error != 0 || nvp == NULL || nvp == vp || 1128 nvp->v_type != VSOCK) { 1129 error = EOPNOTSUPP; 1130 goto out; 1131 } 1132 } 1133 1134 if ((vp->v_type == VREG) && nbl_need_check(vp)) { 1135 /* get share reservation */ 1136 shr.s_access = 0; 1137 if (filemode & FWRITE) 1138 shr.s_access |= F_WRACC; 1139 if (filemode & FREAD) 1140 shr.s_access |= F_RDACC; 1141 shr.s_deny = 0; 1142 shr.s_sysid = 0; 1143 shr.s_pid = ttoproc(curthread)->p_pid; 1144 shr_own.sl_pid = shr.s_pid; 1145 shr_own.sl_id = fd; 1146 shr.s_own_len = sizeof (shr_own); 1147 shr.s_owner = (caddr_t)&shr_own; 1148 error = VOP_SHRLOCK(vp, F_SHARE_NBMAND, &shr, filemode, CRED(), 1149 NULL); 1150 if (error) 1151 goto out; 1152 shrlock_done = 1; 1153 1154 /* nbmand conflict check if truncating file */ 1155 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1156 nbl_start_crit(vp, RW_READER); 1157 in_crit = 1; 1158 1159 vattr.va_mask = AT_SIZE; 1160 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) 1161 goto out; 1162 if (nbl_conflict(vp, NBL_WRITE, 0, vattr.va_size, 0, 1163 NULL)) { 1164 error = EACCES; 1165 goto out; 1166 } 1167 } 1168 } 1169 1170 /* 1171 * Do opening protocol. 1172 */ 1173 error = VOP_OPEN(&vp, filemode, CRED(), NULL); 1174 if (error) 1175 goto out; 1176 open_done = 1; 1177 1178 /* 1179 * Truncate if required. 1180 */ 1181 if ((filemode & FTRUNC) && !(filemode & FCREAT)) { 1182 vattr.va_size = 0; 1183 vattr.va_mask = AT_SIZE; 1184 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1185 goto out; 1186 } 1187 out: 1188 ASSERT(vp->v_count > 0); 1189 1190 if (in_crit) { 1191 nbl_end_crit(vp); 1192 in_crit = 0; 1193 } 1194 if (error) { 1195 if (open_done) { 1196 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED(), 1197 NULL); 1198 open_done = 0; 1199 shrlock_done = 0; 1200 } 1201 if (shrlock_done) { 1202 (void) VOP_SHRLOCK(vp, F_UNSHARE, &shr, 0, CRED(), 1203 NULL); 1204 shrlock_done = 0; 1205 } 1206 1207 /* 1208 * The following clause was added to handle a problem 1209 * with NFS consistency. It is possible that a lookup 1210 * of the file to be opened succeeded, but the file 1211 * itself doesn't actually exist on the server. This 1212 * is chiefly due to the DNLC containing an entry for 1213 * the file which has been removed on the server. In 1214 * this case, we just start over. If there was some 1215 * other cause for the ESTALE error, then the lookup 1216 * of the file will fail and the error will be returned 1217 * above instead of looping around from here. 1218 */ 1219 VN_RELE(vp); 1220 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1221 goto top; 1222 } else 1223 *vpp = vp; 1224 return (error); 1225 } 1226 1227 /* 1228 * The following two accessor functions are for the NFSv4 server. Since there 1229 * is no VOP_OPEN_UP/DOWNGRADE we need a way for the NFS server to keep the 1230 * vnode open counts correct when a client "upgrades" an open or does an 1231 * open_downgrade. In NFS, an upgrade or downgrade can not only change the 1232 * open mode (add or subtract read or write), but also change the share/deny 1233 * modes. However, share reservations are not integrated with OPEN, yet, so 1234 * we need to handle each separately. These functions are cleaner than having 1235 * the NFS server manipulate the counts directly, however, nobody else should 1236 * use these functions. 1237 */ 1238 void 1239 vn_open_upgrade( 1240 vnode_t *vp, 1241 int filemode) 1242 { 1243 ASSERT(vp->v_type == VREG); 1244 1245 if (filemode & FREAD) 1246 atomic_add_32(&(vp->v_rdcnt), 1); 1247 if (filemode & FWRITE) 1248 atomic_add_32(&(vp->v_wrcnt), 1); 1249 1250 } 1251 1252 void 1253 vn_open_downgrade( 1254 vnode_t *vp, 1255 int filemode) 1256 { 1257 ASSERT(vp->v_type == VREG); 1258 1259 if (filemode & FREAD) { 1260 ASSERT(vp->v_rdcnt > 0); 1261 atomic_add_32(&(vp->v_rdcnt), -1); 1262 } 1263 if (filemode & FWRITE) { 1264 ASSERT(vp->v_wrcnt > 0); 1265 atomic_add_32(&(vp->v_wrcnt), -1); 1266 } 1267 1268 } 1269 1270 int 1271 vn_create( 1272 char *pnamep, 1273 enum uio_seg seg, 1274 struct vattr *vap, 1275 enum vcexcl excl, 1276 int mode, 1277 struct vnode **vpp, 1278 enum create why, 1279 int flag, 1280 mode_t umask) 1281 { 1282 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, why, flag, 1283 umask, NULL)); 1284 } 1285 1286 /* 1287 * Create a vnode (makenode). 1288 */ 1289 int 1290 vn_createat( 1291 char *pnamep, 1292 enum uio_seg seg, 1293 struct vattr *vap, 1294 enum vcexcl excl, 1295 int mode, 1296 struct vnode **vpp, 1297 enum create why, 1298 int flag, 1299 mode_t umask, 1300 struct vnode *startvp) 1301 { 1302 struct vnode *dvp; /* ptr to parent dir vnode */ 1303 struct vnode *vp = NULL; 1304 struct pathname pn; 1305 int error; 1306 int in_crit = 0; 1307 struct vattr vattr; 1308 enum symfollow follow; 1309 int estale_retry = 0; 1310 uint32_t auditing = AU_AUDITING(); 1311 1312 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1313 1314 /* symlink interpretation */ 1315 if ((flag & FNOFOLLOW) || excl == EXCL) 1316 follow = NO_FOLLOW; 1317 else 1318 follow = FOLLOW; 1319 flag &= ~(FNOFOLLOW|FNOLINKS); 1320 1321 top: 1322 /* 1323 * Lookup directory. 1324 * If new object is a file, call lower level to create it. 1325 * Note that it is up to the lower level to enforce exclusive 1326 * creation, if the file is already there. 1327 * This allows the lower level to do whatever 1328 * locking or protocol that is needed to prevent races. 1329 * If the new object is directory call lower level to make 1330 * the new directory, with "." and "..". 1331 */ 1332 if (error = pn_get(pnamep, seg, &pn)) 1333 return (error); 1334 if (auditing) 1335 audit_vncreate_start(); 1336 dvp = NULL; 1337 *vpp = NULL; 1338 /* 1339 * lookup will find the parent directory for the vnode. 1340 * When it is done the pn holds the name of the entry 1341 * in the directory. 1342 * If this is a non-exclusive create we also find the node itself. 1343 */ 1344 error = lookuppnat(&pn, NULL, follow, &dvp, 1345 (excl == EXCL) ? NULLVPP : vpp, startvp); 1346 if (error) { 1347 pn_free(&pn); 1348 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1349 goto top; 1350 if (why == CRMKDIR && error == EINVAL) 1351 error = EEXIST; /* SVID */ 1352 return (error); 1353 } 1354 1355 if (why != CRMKNOD) 1356 vap->va_mode &= ~VSVTX; 1357 1358 /* 1359 * If default ACLs are defined for the directory don't apply the 1360 * umask if umask is passed. 1361 */ 1362 1363 if (umask) { 1364 1365 vsecattr_t vsec; 1366 1367 vsec.vsa_aclcnt = 0; 1368 vsec.vsa_aclentp = NULL; 1369 vsec.vsa_dfaclcnt = 0; 1370 vsec.vsa_dfaclentp = NULL; 1371 vsec.vsa_mask = VSA_DFACLCNT; 1372 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED(), NULL); 1373 /* 1374 * If error is ENOSYS then treat it as no error 1375 * Don't want to force all file systems to support 1376 * aclent_t style of ACL's. 1377 */ 1378 if (error == ENOSYS) 1379 error = 0; 1380 if (error) { 1381 if (*vpp != NULL) 1382 VN_RELE(*vpp); 1383 goto out; 1384 } else { 1385 /* 1386 * Apply the umask if no default ACLs. 1387 */ 1388 if (vsec.vsa_dfaclcnt == 0) 1389 vap->va_mode &= ~umask; 1390 1391 /* 1392 * VOP_GETSECATTR() may have allocated memory for 1393 * ACLs we didn't request, so double-check and 1394 * free it if necessary. 1395 */ 1396 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1397 kmem_free((caddr_t)vsec.vsa_aclentp, 1398 vsec.vsa_aclcnt * sizeof (aclent_t)); 1399 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1400 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1401 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1402 } 1403 } 1404 1405 /* 1406 * In general we want to generate EROFS if the file system is 1407 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1408 * documents the open system call, and it says that O_CREAT has no 1409 * effect if the file already exists. Bug 1119649 states 1410 * that open(path, O_CREAT, ...) fails when attempting to open an 1411 * existing file on a read only file system. Thus, the first part 1412 * of the following if statement has 3 checks: 1413 * if the file exists && 1414 * it is being open with write access && 1415 * the file system is read only 1416 * then generate EROFS 1417 */ 1418 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1419 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1420 if (*vpp) 1421 VN_RELE(*vpp); 1422 error = EROFS; 1423 } else if (excl == NONEXCL && *vpp != NULL) { 1424 vnode_t *rvp; 1425 1426 /* 1427 * File already exists. If a mandatory lock has been 1428 * applied, return error. 1429 */ 1430 vp = *vpp; 1431 if (VOP_REALVP(vp, &rvp, NULL) != 0) 1432 rvp = vp; 1433 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1434 nbl_start_crit(vp, RW_READER); 1435 in_crit = 1; 1436 } 1437 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1438 vattr.va_mask = AT_MODE|AT_SIZE; 1439 if (error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL)) { 1440 goto out; 1441 } 1442 if (MANDLOCK(vp, vattr.va_mode)) { 1443 error = EAGAIN; 1444 goto out; 1445 } 1446 /* 1447 * File cannot be truncated if non-blocking mandatory 1448 * locks are currently on the file. 1449 */ 1450 if ((vap->va_mask & AT_SIZE) && in_crit) { 1451 u_offset_t offset; 1452 ssize_t length; 1453 1454 offset = vap->va_size > vattr.va_size ? 1455 vattr.va_size : vap->va_size; 1456 length = vap->va_size > vattr.va_size ? 1457 vap->va_size - vattr.va_size : 1458 vattr.va_size - vap->va_size; 1459 if (nbl_conflict(vp, NBL_WRITE, offset, 1460 length, 0, NULL)) { 1461 error = EACCES; 1462 goto out; 1463 } 1464 } 1465 } 1466 1467 /* 1468 * If the file is the root of a VFS, we've crossed a 1469 * mount point and the "containing" directory that we 1470 * acquired above (dvp) is irrelevant because it's in 1471 * a different file system. We apply VOP_CREATE to the 1472 * target itself instead of to the containing directory 1473 * and supply a null path name to indicate (conventionally) 1474 * the node itself as the "component" of interest. 1475 * 1476 * The intercession of the file system is necessary to 1477 * ensure that the appropriate permission checks are 1478 * done. 1479 */ 1480 if (vp->v_flag & VROOT) { 1481 ASSERT(why != CRMKDIR); 1482 error = VOP_CREATE(vp, "", vap, excl, mode, vpp, 1483 CRED(), flag, NULL, NULL); 1484 /* 1485 * If the create succeeded, it will have created 1486 * a new reference to the vnode. Give up the 1487 * original reference. The assertion should not 1488 * get triggered because NBMAND locks only apply to 1489 * VREG files. And if in_crit is non-zero for some 1490 * reason, detect that here, rather than when we 1491 * deference a null vp. 1492 */ 1493 ASSERT(in_crit == 0); 1494 VN_RELE(vp); 1495 vp = NULL; 1496 goto out; 1497 } 1498 1499 /* 1500 * Large File API - non-large open (FOFFMAX flag not set) 1501 * of regular file fails if the file size exceeds MAXOFF32_T. 1502 */ 1503 if (why != CRMKDIR && 1504 !(flag & FOFFMAX) && 1505 (vp->v_type == VREG)) { 1506 vattr.va_mask = AT_SIZE; 1507 if ((error = VOP_GETATTR(vp, &vattr, 0, 1508 CRED(), NULL))) { 1509 goto out; 1510 } 1511 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1512 error = EOVERFLOW; 1513 goto out; 1514 } 1515 } 1516 } 1517 1518 if (error == 0) { 1519 /* 1520 * Call mkdir() if specified, otherwise create(). 1521 */ 1522 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1523 1524 if (why == CRMKDIR) 1525 /* 1526 * N.B., if vn_createat() ever requests 1527 * case-insensitive behavior then it will need 1528 * to be passed to VOP_MKDIR(). VOP_CREATE() 1529 * will already get it via "flag" 1530 */ 1531 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED(), 1532 NULL, 0, NULL); 1533 else if (!must_be_dir) 1534 error = VOP_CREATE(dvp, pn.pn_path, vap, 1535 excl, mode, vpp, CRED(), flag, NULL, NULL); 1536 else 1537 error = ENOTDIR; 1538 } 1539 1540 out: 1541 1542 if (auditing) 1543 audit_vncreate_finish(*vpp, error); 1544 if (in_crit) { 1545 nbl_end_crit(vp); 1546 in_crit = 0; 1547 } 1548 if (vp != NULL) { 1549 VN_RELE(vp); 1550 vp = NULL; 1551 } 1552 pn_free(&pn); 1553 VN_RELE(dvp); 1554 /* 1555 * The following clause was added to handle a problem 1556 * with NFS consistency. It is possible that a lookup 1557 * of the file to be created succeeded, but the file 1558 * itself doesn't actually exist on the server. This 1559 * is chiefly due to the DNLC containing an entry for 1560 * the file which has been removed on the server. In 1561 * this case, we just start over. If there was some 1562 * other cause for the ESTALE error, then the lookup 1563 * of the file will fail and the error will be returned 1564 * above instead of looping around from here. 1565 */ 1566 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1567 goto top; 1568 return (error); 1569 } 1570 1571 int 1572 vn_link(char *from, char *to, enum uio_seg seg) 1573 { 1574 return (vn_linkat(NULL, from, NO_FOLLOW, NULL, to, seg)); 1575 } 1576 1577 int 1578 vn_linkat(vnode_t *fstartvp, char *from, enum symfollow follow, 1579 vnode_t *tstartvp, char *to, enum uio_seg seg) 1580 { 1581 struct vnode *fvp; /* from vnode ptr */ 1582 struct vnode *tdvp; /* to directory vnode ptr */ 1583 struct pathname pn; 1584 int error; 1585 struct vattr vattr; 1586 dev_t fsid; 1587 int estale_retry = 0; 1588 uint32_t auditing = AU_AUDITING(); 1589 1590 top: 1591 fvp = tdvp = NULL; 1592 if (error = pn_get(to, seg, &pn)) 1593 return (error); 1594 if (auditing && fstartvp != NULL) 1595 audit_setfsat_path(1); 1596 if (error = lookupnameat(from, seg, follow, NULLVPP, &fvp, fstartvp)) 1597 goto out; 1598 if (auditing && tstartvp != NULL) 1599 audit_setfsat_path(3); 1600 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP, tstartvp)) 1601 goto out; 1602 /* 1603 * Make sure both source vnode and target directory vnode are 1604 * in the same vfs and that it is writeable. 1605 */ 1606 vattr.va_mask = AT_FSID; 1607 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED(), NULL)) 1608 goto out; 1609 fsid = vattr.va_fsid; 1610 vattr.va_mask = AT_FSID; 1611 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED(), NULL)) 1612 goto out; 1613 if (fsid != vattr.va_fsid) { 1614 error = EXDEV; 1615 goto out; 1616 } 1617 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1618 error = EROFS; 1619 goto out; 1620 } 1621 /* 1622 * Do the link. 1623 */ 1624 (void) pn_fixslash(&pn); 1625 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED(), NULL, 0); 1626 out: 1627 pn_free(&pn); 1628 if (fvp) 1629 VN_RELE(fvp); 1630 if (tdvp) 1631 VN_RELE(tdvp); 1632 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1633 goto top; 1634 return (error); 1635 } 1636 1637 int 1638 vn_rename(char *from, char *to, enum uio_seg seg) 1639 { 1640 return (vn_renameat(NULL, from, NULL, to, seg)); 1641 } 1642 1643 int 1644 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1645 char *tname, enum uio_seg seg) 1646 { 1647 int error; 1648 struct vattr vattr; 1649 struct pathname fpn; /* from pathname */ 1650 struct pathname tpn; /* to pathname */ 1651 dev_t fsid; 1652 int in_crit_src, in_crit_targ; 1653 vnode_t *fromvp, *fvp; 1654 vnode_t *tovp, *targvp; 1655 int estale_retry = 0; 1656 uint32_t auditing = AU_AUDITING(); 1657 1658 top: 1659 fvp = fromvp = tovp = targvp = NULL; 1660 in_crit_src = in_crit_targ = 0; 1661 /* 1662 * Get to and from pathnames. 1663 */ 1664 if (error = pn_get(fname, seg, &fpn)) 1665 return (error); 1666 if (error = pn_get(tname, seg, &tpn)) { 1667 pn_free(&fpn); 1668 return (error); 1669 } 1670 1671 /* 1672 * First we need to resolve the correct directories 1673 * The passed in directories may only be a starting point, 1674 * but we need the real directories the file(s) live in. 1675 * For example the fname may be something like usr/lib/sparc 1676 * and we were passed in the / directory, but we need to 1677 * use the lib directory for the rename. 1678 */ 1679 1680 if (auditing && fdvp != NULL) 1681 audit_setfsat_path(1); 1682 /* 1683 * Lookup to and from directories. 1684 */ 1685 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1686 goto out; 1687 } 1688 1689 /* 1690 * Make sure there is an entry. 1691 */ 1692 if (fvp == NULL) { 1693 error = ENOENT; 1694 goto out; 1695 } 1696 1697 if (auditing && tdvp != NULL) 1698 audit_setfsat_path(3); 1699 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, &targvp, tdvp)) { 1700 goto out; 1701 } 1702 1703 /* 1704 * Make sure both the from vnode directory and the to directory 1705 * are in the same vfs and the to directory is writable. 1706 * We check fsid's, not vfs pointers, so loopback fs works. 1707 */ 1708 if (fromvp != tovp) { 1709 vattr.va_mask = AT_FSID; 1710 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED(), NULL)) 1711 goto out; 1712 fsid = vattr.va_fsid; 1713 vattr.va_mask = AT_FSID; 1714 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED(), NULL)) 1715 goto out; 1716 if (fsid != vattr.va_fsid) { 1717 error = EXDEV; 1718 goto out; 1719 } 1720 } 1721 1722 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1723 error = EROFS; 1724 goto out; 1725 } 1726 1727 if (targvp && (fvp != targvp)) { 1728 nbl_start_crit(targvp, RW_READER); 1729 in_crit_targ = 1; 1730 if (nbl_conflict(targvp, NBL_REMOVE, 0, 0, 0, NULL)) { 1731 error = EACCES; 1732 goto out; 1733 } 1734 } 1735 1736 if (nbl_need_check(fvp)) { 1737 nbl_start_crit(fvp, RW_READER); 1738 in_crit_src = 1; 1739 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0, NULL)) { 1740 error = EACCES; 1741 goto out; 1742 } 1743 } 1744 1745 /* 1746 * Do the rename. 1747 */ 1748 (void) pn_fixslash(&tpn); 1749 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED(), 1750 NULL, 0); 1751 1752 out: 1753 pn_free(&fpn); 1754 pn_free(&tpn); 1755 if (in_crit_src) 1756 nbl_end_crit(fvp); 1757 if (in_crit_targ) 1758 nbl_end_crit(targvp); 1759 if (fromvp) 1760 VN_RELE(fromvp); 1761 if (tovp) 1762 VN_RELE(tovp); 1763 if (targvp) 1764 VN_RELE(targvp); 1765 if (fvp) 1766 VN_RELE(fvp); 1767 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1768 goto top; 1769 return (error); 1770 } 1771 1772 /* 1773 * Remove a file or directory. 1774 */ 1775 int 1776 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1777 { 1778 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1779 } 1780 1781 int 1782 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1783 { 1784 struct vnode *vp; /* entry vnode */ 1785 struct vnode *dvp; /* ptr to parent dir vnode */ 1786 struct vnode *coveredvp; 1787 struct pathname pn; /* name of entry */ 1788 enum vtype vtype; 1789 int error; 1790 struct vfs *vfsp; 1791 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1792 int in_crit = 0; 1793 int estale_retry = 0; 1794 1795 top: 1796 if (error = pn_get(fnamep, seg, &pn)) 1797 return (error); 1798 dvp = vp = NULL; 1799 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1800 pn_free(&pn); 1801 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1802 goto top; 1803 return (error); 1804 } 1805 1806 /* 1807 * Make sure there is an entry. 1808 */ 1809 if (vp == NULL) { 1810 error = ENOENT; 1811 goto out; 1812 } 1813 1814 vfsp = vp->v_vfsp; 1815 dvfsp = dvp->v_vfsp; 1816 1817 /* 1818 * If the named file is the root of a mounted filesystem, fail, 1819 * unless it's marked unlinkable. In that case, unmount the 1820 * filesystem and proceed to unlink the covered vnode. (If the 1821 * covered vnode is a directory, use rmdir instead of unlink, 1822 * to avoid file system corruption.) 1823 */ 1824 if (vp->v_flag & VROOT) { 1825 if ((vfsp->vfs_flag & VFS_UNLINKABLE) == 0) { 1826 error = EBUSY; 1827 goto out; 1828 } 1829 1830 /* 1831 * Namefs specific code starts here. 1832 */ 1833 1834 if (dirflag == RMDIRECTORY) { 1835 /* 1836 * User called rmdir(2) on a file that has 1837 * been namefs mounted on top of. Since 1838 * namefs doesn't allow directories to 1839 * be mounted on other files we know 1840 * vp is not of type VDIR so fail to operation. 1841 */ 1842 error = ENOTDIR; 1843 goto out; 1844 } 1845 1846 /* 1847 * If VROOT is still set after grabbing vp->v_lock, 1848 * noone has finished nm_unmount so far and coveredvp 1849 * is valid. 1850 * If we manage to grab vn_vfswlock(coveredvp) before releasing 1851 * vp->v_lock, any race window is eliminated. 1852 */ 1853 1854 mutex_enter(&vp->v_lock); 1855 if ((vp->v_flag & VROOT) == 0) { 1856 /* Someone beat us to the unmount */ 1857 mutex_exit(&vp->v_lock); 1858 error = EBUSY; 1859 goto out; 1860 } 1861 vfsp = vp->v_vfsp; 1862 coveredvp = vfsp->vfs_vnodecovered; 1863 ASSERT(coveredvp); 1864 /* 1865 * Note: Implementation of vn_vfswlock shows that ordering of 1866 * v_lock / vn_vfswlock is not an issue here. 1867 */ 1868 error = vn_vfswlock(coveredvp); 1869 mutex_exit(&vp->v_lock); 1870 1871 if (error) 1872 goto out; 1873 1874 VN_HOLD(coveredvp); 1875 VN_RELE(vp); 1876 error = dounmount(vfsp, 0, CRED()); 1877 1878 /* 1879 * Unmounted the namefs file system; now get 1880 * the object it was mounted over. 1881 */ 1882 vp = coveredvp; 1883 /* 1884 * If namefs was mounted over a directory, then 1885 * we want to use rmdir() instead of unlink(). 1886 */ 1887 if (vp->v_type == VDIR) 1888 dirflag = RMDIRECTORY; 1889 1890 if (error) 1891 goto out; 1892 } 1893 1894 /* 1895 * Make sure filesystem is writeable. 1896 * We check the parent directory's vfs in case this is an lofs vnode. 1897 */ 1898 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1899 error = EROFS; 1900 goto out; 1901 } 1902 1903 vtype = vp->v_type; 1904 1905 /* 1906 * If there is the possibility of an nbmand share reservation, make 1907 * sure it's okay to remove the file. Keep a reference to the 1908 * vnode, so that we can exit the nbl critical region after 1909 * calling VOP_REMOVE. 1910 * If there is no possibility of an nbmand share reservation, 1911 * release the vnode reference now. Filesystems like NFS may 1912 * behave differently if there is an extra reference, so get rid of 1913 * this one. Fortunately, we can't have nbmand mounts on NFS 1914 * filesystems. 1915 */ 1916 if (nbl_need_check(vp)) { 1917 nbl_start_crit(vp, RW_READER); 1918 in_crit = 1; 1919 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0, NULL)) { 1920 error = EACCES; 1921 goto out; 1922 } 1923 } else { 1924 VN_RELE(vp); 1925 vp = NULL; 1926 } 1927 1928 if (dirflag == RMDIRECTORY) { 1929 /* 1930 * Caller is using rmdir(2), which can only be applied to 1931 * directories. 1932 */ 1933 if (vtype != VDIR) { 1934 error = ENOTDIR; 1935 } else { 1936 vnode_t *cwd; 1937 proc_t *pp = curproc; 1938 1939 mutex_enter(&pp->p_lock); 1940 cwd = PTOU(pp)->u_cdir; 1941 VN_HOLD(cwd); 1942 mutex_exit(&pp->p_lock); 1943 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED(), 1944 NULL, 0); 1945 VN_RELE(cwd); 1946 } 1947 } else { 1948 /* 1949 * Unlink(2) can be applied to anything. 1950 */ 1951 error = VOP_REMOVE(dvp, pn.pn_path, CRED(), NULL, 0); 1952 } 1953 1954 out: 1955 pn_free(&pn); 1956 if (in_crit) { 1957 nbl_end_crit(vp); 1958 in_crit = 0; 1959 } 1960 if (vp != NULL) 1961 VN_RELE(vp); 1962 if (dvp != NULL) 1963 VN_RELE(dvp); 1964 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1965 goto top; 1966 return (error); 1967 } 1968 1969 /* 1970 * Utility function to compare equality of vnodes. 1971 * Compare the underlying real vnodes, if there are underlying vnodes. 1972 * This is a more thorough comparison than the VN_CMP() macro provides. 1973 */ 1974 int 1975 vn_compare(vnode_t *vp1, vnode_t *vp2) 1976 { 1977 vnode_t *realvp; 1978 1979 if (vp1 != NULL && VOP_REALVP(vp1, &realvp, NULL) == 0) 1980 vp1 = realvp; 1981 if (vp2 != NULL && VOP_REALVP(vp2, &realvp, NULL) == 0) 1982 vp2 = realvp; 1983 return (VN_CMP(vp1, vp2)); 1984 } 1985 1986 /* 1987 * The number of locks to hash into. This value must be a power 1988 * of 2 minus 1 and should probably also be prime. 1989 */ 1990 #define NUM_BUCKETS 1023 1991 1992 struct vn_vfslocks_bucket { 1993 kmutex_t vb_lock; 1994 vn_vfslocks_entry_t *vb_list; 1995 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1996 }; 1997 1998 /* 1999 * Total number of buckets will be NUM_BUCKETS + 1 . 2000 */ 2001 2002 #pragma align 64(vn_vfslocks_buckets) 2003 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 2004 2005 #define VN_VFSLOCKS_SHIFT 9 2006 2007 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 2008 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 2009 2010 /* 2011 * vn_vfslocks_getlock() uses an HASH scheme to generate 2012 * rwstlock using vfs/vnode pointer passed to it. 2013 * 2014 * vn_vfslocks_rele() releases a reference in the 2015 * HASH table which allows the entry allocated by 2016 * vn_vfslocks_getlock() to be freed at a later 2017 * stage when the refcount drops to zero. 2018 */ 2019 2020 vn_vfslocks_entry_t * 2021 vn_vfslocks_getlock(void *vfsvpptr) 2022 { 2023 struct vn_vfslocks_bucket *bp; 2024 vn_vfslocks_entry_t *vep; 2025 vn_vfslocks_entry_t *tvep; 2026 2027 ASSERT(vfsvpptr != NULL); 2028 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 2029 2030 mutex_enter(&bp->vb_lock); 2031 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 2032 if (vep->ve_vpvfs == vfsvpptr) { 2033 vep->ve_refcnt++; 2034 mutex_exit(&bp->vb_lock); 2035 return (vep); 2036 } 2037 } 2038 mutex_exit(&bp->vb_lock); 2039 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 2040 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 2041 vep->ve_vpvfs = (char *)vfsvpptr; 2042 vep->ve_refcnt = 1; 2043 mutex_enter(&bp->vb_lock); 2044 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 2045 if (tvep->ve_vpvfs == vfsvpptr) { 2046 tvep->ve_refcnt++; 2047 mutex_exit(&bp->vb_lock); 2048 2049 /* 2050 * There is already an entry in the hash 2051 * destroy what we just allocated. 2052 */ 2053 rwst_destroy(&vep->ve_lock); 2054 kmem_free(vep, sizeof (*vep)); 2055 return (tvep); 2056 } 2057 } 2058 vep->ve_next = bp->vb_list; 2059 bp->vb_list = vep; 2060 mutex_exit(&bp->vb_lock); 2061 return (vep); 2062 } 2063 2064 void 2065 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 2066 { 2067 struct vn_vfslocks_bucket *bp; 2068 vn_vfslocks_entry_t *vep; 2069 vn_vfslocks_entry_t *pvep; 2070 2071 ASSERT(vepent != NULL); 2072 ASSERT(vepent->ve_vpvfs != NULL); 2073 2074 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 2075 2076 mutex_enter(&bp->vb_lock); 2077 vepent->ve_refcnt--; 2078 2079 if ((int32_t)vepent->ve_refcnt < 0) 2080 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 2081 2082 if (vepent->ve_refcnt == 0) { 2083 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 2084 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 2085 if (bp->vb_list == vep) 2086 bp->vb_list = vep->ve_next; 2087 else { 2088 /* LINTED */ 2089 pvep->ve_next = vep->ve_next; 2090 } 2091 mutex_exit(&bp->vb_lock); 2092 rwst_destroy(&vep->ve_lock); 2093 kmem_free(vep, sizeof (*vep)); 2094 return; 2095 } 2096 pvep = vep; 2097 } 2098 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 2099 } 2100 mutex_exit(&bp->vb_lock); 2101 } 2102 2103 /* 2104 * vn_vfswlock_wait is used to implement a lock which is logically a writers 2105 * lock protecting the v_vfsmountedhere field. 2106 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 2107 * except that it blocks to acquire the lock VVFSLOCK. 2108 * 2109 * traverse() and routines re-implementing part of traverse (e.g. autofs) 2110 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 2111 * need the non-blocking version of the writers lock i.e. vn_vfswlock 2112 */ 2113 int 2114 vn_vfswlock_wait(vnode_t *vp) 2115 { 2116 int retval; 2117 vn_vfslocks_entry_t *vpvfsentry; 2118 ASSERT(vp != NULL); 2119 2120 vpvfsentry = vn_vfslocks_getlock(vp); 2121 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 2122 2123 if (retval == EINTR) { 2124 vn_vfslocks_rele(vpvfsentry); 2125 return (EINTR); 2126 } 2127 return (retval); 2128 } 2129 2130 int 2131 vn_vfsrlock_wait(vnode_t *vp) 2132 { 2133 int retval; 2134 vn_vfslocks_entry_t *vpvfsentry; 2135 ASSERT(vp != NULL); 2136 2137 vpvfsentry = vn_vfslocks_getlock(vp); 2138 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 2139 2140 if (retval == EINTR) { 2141 vn_vfslocks_rele(vpvfsentry); 2142 return (EINTR); 2143 } 2144 2145 return (retval); 2146 } 2147 2148 2149 /* 2150 * vn_vfswlock is used to implement a lock which is logically a writers lock 2151 * protecting the v_vfsmountedhere field. 2152 */ 2153 int 2154 vn_vfswlock(vnode_t *vp) 2155 { 2156 vn_vfslocks_entry_t *vpvfsentry; 2157 2158 /* 2159 * If vp is NULL then somebody is trying to lock the covered vnode 2160 * of /. (vfs_vnodecovered is NULL for /). This situation will 2161 * only happen when unmounting /. Since that operation will fail 2162 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2163 */ 2164 if (vp == NULL) 2165 return (EBUSY); 2166 2167 vpvfsentry = vn_vfslocks_getlock(vp); 2168 2169 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2170 return (0); 2171 2172 vn_vfslocks_rele(vpvfsentry); 2173 return (EBUSY); 2174 } 2175 2176 int 2177 vn_vfsrlock(vnode_t *vp) 2178 { 2179 vn_vfslocks_entry_t *vpvfsentry; 2180 2181 /* 2182 * If vp is NULL then somebody is trying to lock the covered vnode 2183 * of /. (vfs_vnodecovered is NULL for /). This situation will 2184 * only happen when unmounting /. Since that operation will fail 2185 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 2186 */ 2187 if (vp == NULL) 2188 return (EBUSY); 2189 2190 vpvfsentry = vn_vfslocks_getlock(vp); 2191 2192 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2193 return (0); 2194 2195 vn_vfslocks_rele(vpvfsentry); 2196 return (EBUSY); 2197 } 2198 2199 void 2200 vn_vfsunlock(vnode_t *vp) 2201 { 2202 vn_vfslocks_entry_t *vpvfsentry; 2203 2204 /* 2205 * ve_refcnt needs to be decremented twice. 2206 * 1. To release refernce after a call to vn_vfslocks_getlock() 2207 * 2. To release the reference from the locking routines like 2208 * vn_vfsrlock/vn_vfswlock etc,. 2209 */ 2210 vpvfsentry = vn_vfslocks_getlock(vp); 2211 vn_vfslocks_rele(vpvfsentry); 2212 2213 rwst_exit(&vpvfsentry->ve_lock); 2214 vn_vfslocks_rele(vpvfsentry); 2215 } 2216 2217 int 2218 vn_vfswlock_held(vnode_t *vp) 2219 { 2220 int held; 2221 vn_vfslocks_entry_t *vpvfsentry; 2222 2223 ASSERT(vp != NULL); 2224 2225 vpvfsentry = vn_vfslocks_getlock(vp); 2226 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2227 2228 vn_vfslocks_rele(vpvfsentry); 2229 return (held); 2230 } 2231 2232 2233 int 2234 vn_make_ops( 2235 const char *name, /* Name of file system */ 2236 const fs_operation_def_t *templ, /* Operation specification */ 2237 vnodeops_t **actual) /* Return the vnodeops */ 2238 { 2239 int unused_ops; 2240 int error; 2241 2242 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 2243 2244 (*actual)->vnop_name = name; 2245 2246 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 2247 if (error) { 2248 kmem_free(*actual, sizeof (vnodeops_t)); 2249 } 2250 2251 #if DEBUG 2252 if (unused_ops != 0) 2253 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 2254 "but not used", name, unused_ops); 2255 #endif 2256 2257 return (error); 2258 } 2259 2260 /* 2261 * Free the vnodeops created as a result of vn_make_ops() 2262 */ 2263 void 2264 vn_freevnodeops(vnodeops_t *vnops) 2265 { 2266 kmem_free(vnops, sizeof (vnodeops_t)); 2267 } 2268 2269 /* 2270 * Vnode cache. 2271 */ 2272 2273 /* ARGSUSED */ 2274 static int 2275 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 2276 { 2277 struct vnode *vp; 2278 2279 vp = buf; 2280 2281 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 2282 mutex_init(&vp->v_vsd_lock, NULL, MUTEX_DEFAULT, NULL); 2283 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 2284 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 2285 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2286 vp->v_path = NULL; 2287 vp->v_mpssdata = NULL; 2288 vp->v_vsd = NULL; 2289 vp->v_fopdata = NULL; 2290 2291 return (0); 2292 } 2293 2294 /* ARGSUSED */ 2295 static void 2296 vn_cache_destructor(void *buf, void *cdrarg) 2297 { 2298 struct vnode *vp; 2299 2300 vp = buf; 2301 2302 rw_destroy(&vp->v_nbllock); 2303 cv_destroy(&vp->v_cv); 2304 mutex_destroy(&vp->v_vsd_lock); 2305 mutex_destroy(&vp->v_lock); 2306 } 2307 2308 void 2309 vn_create_cache(void) 2310 { 2311 /* LINTED */ 2312 ASSERT((1 << VNODE_ALIGN_LOG2) == 2313 P2ROUNDUP(sizeof (struct vnode), VNODE_ALIGN)); 2314 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 2315 VNODE_ALIGN, vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2316 NULL, 0); 2317 } 2318 2319 void 2320 vn_destroy_cache(void) 2321 { 2322 kmem_cache_destroy(vn_cache); 2323 } 2324 2325 /* 2326 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2327 * cached by the file system and vnodes remain associated. 2328 */ 2329 void 2330 vn_recycle(vnode_t *vp) 2331 { 2332 ASSERT(vp->v_pages == NULL); 2333 2334 /* 2335 * XXX - This really belongs in vn_reinit(), but we have some issues 2336 * with the counts. Best to have it here for clean initialization. 2337 */ 2338 vp->v_rdcnt = 0; 2339 vp->v_wrcnt = 0; 2340 vp->v_mmap_read = 0; 2341 vp->v_mmap_write = 0; 2342 2343 /* 2344 * If FEM was in use, make sure everything gets cleaned up 2345 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2346 * constructor. 2347 */ 2348 if (vp->v_femhead) { 2349 /* XXX - There should be a free_femhead() that does all this */ 2350 ASSERT(vp->v_femhead->femh_list == NULL); 2351 mutex_destroy(&vp->v_femhead->femh_lock); 2352 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2353 vp->v_femhead = NULL; 2354 } 2355 if (vp->v_path) { 2356 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2357 vp->v_path = NULL; 2358 } 2359 2360 if (vp->v_fopdata != NULL) { 2361 free_fopdata(vp); 2362 } 2363 vp->v_mpssdata = NULL; 2364 vsd_free(vp); 2365 } 2366 2367 /* 2368 * Used to reset the vnode fields including those that are directly accessible 2369 * as well as those which require an accessor function. 2370 * 2371 * Does not initialize: 2372 * synchronization objects: v_lock, v_vsd_lock, v_nbllock, v_cv 2373 * v_data (since FS-nodes and vnodes point to each other and should 2374 * be updated simultaneously) 2375 * v_op (in case someone needs to make a VOP call on this object) 2376 */ 2377 void 2378 vn_reinit(vnode_t *vp) 2379 { 2380 vp->v_count = 1; 2381 vp->v_count_dnlc = 0; 2382 vp->v_vfsp = NULL; 2383 vp->v_stream = NULL; 2384 vp->v_vfsmountedhere = NULL; 2385 vp->v_flag = 0; 2386 vp->v_type = VNON; 2387 vp->v_rdev = NODEV; 2388 2389 vp->v_filocks = NULL; 2390 vp->v_shrlocks = NULL; 2391 vp->v_pages = NULL; 2392 2393 vp->v_locality = NULL; 2394 vp->v_xattrdir = NULL; 2395 2396 /* Handles v_femhead, v_path, and the r/w/map counts */ 2397 vn_recycle(vp); 2398 } 2399 2400 vnode_t * 2401 vn_alloc(int kmflag) 2402 { 2403 vnode_t *vp; 2404 2405 vp = kmem_cache_alloc(vn_cache, kmflag); 2406 2407 if (vp != NULL) { 2408 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2409 vp->v_fopdata = NULL; 2410 vn_reinit(vp); 2411 } 2412 2413 return (vp); 2414 } 2415 2416 void 2417 vn_free(vnode_t *vp) 2418 { 2419 ASSERT(vp->v_shrlocks == NULL); 2420 ASSERT(vp->v_filocks == NULL); 2421 2422 /* 2423 * Some file systems call vn_free() with v_count of zero, 2424 * some with v_count of 1. In any case, the value should 2425 * never be anything else. 2426 */ 2427 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2428 ASSERT(vp->v_count_dnlc == 0); 2429 if (vp->v_path != NULL) { 2430 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2431 vp->v_path = NULL; 2432 } 2433 2434 /* If FEM was in use, make sure everything gets cleaned up */ 2435 if (vp->v_femhead) { 2436 /* XXX - There should be a free_femhead() that does all this */ 2437 ASSERT(vp->v_femhead->femh_list == NULL); 2438 mutex_destroy(&vp->v_femhead->femh_lock); 2439 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2440 vp->v_femhead = NULL; 2441 } 2442 2443 if (vp->v_fopdata != NULL) { 2444 free_fopdata(vp); 2445 } 2446 vp->v_mpssdata = NULL; 2447 vsd_free(vp); 2448 kmem_cache_free(vn_cache, vp); 2449 } 2450 2451 /* 2452 * vnode status changes, should define better states than 1, 0. 2453 */ 2454 void 2455 vn_reclaim(vnode_t *vp) 2456 { 2457 vfs_t *vfsp = vp->v_vfsp; 2458 2459 if (vfsp == NULL || 2460 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2461 return; 2462 } 2463 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2464 } 2465 2466 void 2467 vn_idle(vnode_t *vp) 2468 { 2469 vfs_t *vfsp = vp->v_vfsp; 2470 2471 if (vfsp == NULL || 2472 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2473 return; 2474 } 2475 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2476 } 2477 void 2478 vn_exists(vnode_t *vp) 2479 { 2480 vfs_t *vfsp = vp->v_vfsp; 2481 2482 if (vfsp == NULL || 2483 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2484 return; 2485 } 2486 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2487 } 2488 2489 void 2490 vn_invalid(vnode_t *vp) 2491 { 2492 vfs_t *vfsp = vp->v_vfsp; 2493 2494 if (vfsp == NULL || 2495 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2496 return; 2497 } 2498 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2499 } 2500 2501 /* Vnode event notification */ 2502 2503 int 2504 vnevent_support(vnode_t *vp, caller_context_t *ct) 2505 { 2506 if (vp == NULL) 2507 return (EINVAL); 2508 2509 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL, ct)); 2510 } 2511 2512 void 2513 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2514 { 2515 if (vp == NULL || vp->v_femhead == NULL) { 2516 return; 2517 } 2518 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name, ct); 2519 } 2520 2521 void 2522 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name, 2523 caller_context_t *ct) 2524 { 2525 if (vp == NULL || vp->v_femhead == NULL) { 2526 return; 2527 } 2528 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name, ct); 2529 } 2530 2531 void 2532 vnevent_rename_dest_dir(vnode_t *vp, caller_context_t *ct) 2533 { 2534 if (vp == NULL || vp->v_femhead == NULL) { 2535 return; 2536 } 2537 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL, ct); 2538 } 2539 2540 void 2541 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2542 { 2543 if (vp == NULL || vp->v_femhead == NULL) { 2544 return; 2545 } 2546 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name, ct); 2547 } 2548 2549 void 2550 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name, caller_context_t *ct) 2551 { 2552 if (vp == NULL || vp->v_femhead == NULL) { 2553 return; 2554 } 2555 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name, ct); 2556 } 2557 2558 void 2559 vnevent_create(vnode_t *vp, caller_context_t *ct) 2560 { 2561 if (vp == NULL || vp->v_femhead == NULL) { 2562 return; 2563 } 2564 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL, ct); 2565 } 2566 2567 void 2568 vnevent_link(vnode_t *vp, caller_context_t *ct) 2569 { 2570 if (vp == NULL || vp->v_femhead == NULL) { 2571 return; 2572 } 2573 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL, ct); 2574 } 2575 2576 void 2577 vnevent_mountedover(vnode_t *vp, caller_context_t *ct) 2578 { 2579 if (vp == NULL || vp->v_femhead == NULL) { 2580 return; 2581 } 2582 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL, ct); 2583 } 2584 2585 /* 2586 * Vnode accessors. 2587 */ 2588 2589 int 2590 vn_is_readonly(vnode_t *vp) 2591 { 2592 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2593 } 2594 2595 int 2596 vn_has_flocks(vnode_t *vp) 2597 { 2598 return (vp->v_filocks != NULL); 2599 } 2600 2601 int 2602 vn_has_mandatory_locks(vnode_t *vp, int mode) 2603 { 2604 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2605 } 2606 2607 int 2608 vn_has_cached_data(vnode_t *vp) 2609 { 2610 return (vp->v_pages != NULL); 2611 } 2612 2613 /* 2614 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2615 * zone_enter(2). 2616 */ 2617 int 2618 vn_can_change_zones(vnode_t *vp) 2619 { 2620 struct vfssw *vswp; 2621 int allow = 1; 2622 vnode_t *rvp; 2623 2624 if (nfs_global_client_only != 0) 2625 return (1); 2626 2627 /* 2628 * We always want to look at the underlying vnode if there is one. 2629 */ 2630 if (VOP_REALVP(vp, &rvp, NULL) != 0) 2631 rvp = vp; 2632 /* 2633 * Some pseudo filesystems (including doorfs) don't actually register 2634 * their vfsops_t, so the following may return NULL; we happily let 2635 * such vnodes switch zones. 2636 */ 2637 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2638 if (vswp != NULL) { 2639 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2640 allow = 0; 2641 vfs_unrefvfssw(vswp); 2642 } 2643 return (allow); 2644 } 2645 2646 /* 2647 * Return nonzero if the vnode is a mount point, zero if not. 2648 */ 2649 int 2650 vn_ismntpt(vnode_t *vp) 2651 { 2652 return (vp->v_vfsmountedhere != NULL); 2653 } 2654 2655 /* Retrieve the vfs (if any) mounted on this vnode */ 2656 vfs_t * 2657 vn_mountedvfs(vnode_t *vp) 2658 { 2659 return (vp->v_vfsmountedhere); 2660 } 2661 2662 /* 2663 * Return nonzero if the vnode is referenced by the dnlc, zero if not. 2664 */ 2665 int 2666 vn_in_dnlc(vnode_t *vp) 2667 { 2668 return (vp->v_count_dnlc > 0); 2669 } 2670 2671 /* 2672 * vn_has_other_opens() checks whether a particular file is opened by more than 2673 * just the caller and whether the open is for read and/or write. 2674 * This routine is for calling after the caller has already called VOP_OPEN() 2675 * and the caller wishes to know if they are the only one with it open for 2676 * the mode(s) specified. 2677 * 2678 * Vnode counts are only kept on regular files (v_type=VREG). 2679 */ 2680 int 2681 vn_has_other_opens( 2682 vnode_t *vp, 2683 v_mode_t mode) 2684 { 2685 2686 ASSERT(vp != NULL); 2687 2688 switch (mode) { 2689 case V_WRITE: 2690 if (vp->v_wrcnt > 1) 2691 return (V_TRUE); 2692 break; 2693 case V_RDORWR: 2694 if ((vp->v_rdcnt > 1) || (vp->v_wrcnt > 1)) 2695 return (V_TRUE); 2696 break; 2697 case V_RDANDWR: 2698 if ((vp->v_rdcnt > 1) && (vp->v_wrcnt > 1)) 2699 return (V_TRUE); 2700 break; 2701 case V_READ: 2702 if (vp->v_rdcnt > 1) 2703 return (V_TRUE); 2704 break; 2705 } 2706 2707 return (V_FALSE); 2708 } 2709 2710 /* 2711 * vn_is_opened() checks whether a particular file is opened and 2712 * whether the open is for read and/or write. 2713 * 2714 * Vnode counts are only kept on regular files (v_type=VREG). 2715 */ 2716 int 2717 vn_is_opened( 2718 vnode_t *vp, 2719 v_mode_t mode) 2720 { 2721 2722 ASSERT(vp != NULL); 2723 2724 switch (mode) { 2725 case V_WRITE: 2726 if (vp->v_wrcnt) 2727 return (V_TRUE); 2728 break; 2729 case V_RDANDWR: 2730 if (vp->v_rdcnt && vp->v_wrcnt) 2731 return (V_TRUE); 2732 break; 2733 case V_RDORWR: 2734 if (vp->v_rdcnt || vp->v_wrcnt) 2735 return (V_TRUE); 2736 break; 2737 case V_READ: 2738 if (vp->v_rdcnt) 2739 return (V_TRUE); 2740 break; 2741 } 2742 2743 return (V_FALSE); 2744 } 2745 2746 /* 2747 * vn_is_mapped() checks whether a particular file is mapped and whether 2748 * the file is mapped read and/or write. 2749 */ 2750 int 2751 vn_is_mapped( 2752 vnode_t *vp, 2753 v_mode_t mode) 2754 { 2755 2756 ASSERT(vp != NULL); 2757 2758 #if !defined(_LP64) 2759 switch (mode) { 2760 /* 2761 * The atomic_add_64_nv functions force atomicity in the 2762 * case of 32 bit architectures. Otherwise the 64 bit values 2763 * require two fetches. The value of the fields may be 2764 * (potentially) changed between the first fetch and the 2765 * second 2766 */ 2767 case V_WRITE: 2768 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2769 return (V_TRUE); 2770 break; 2771 case V_RDANDWR: 2772 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2773 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2774 return (V_TRUE); 2775 break; 2776 case V_RDORWR: 2777 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2778 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2779 return (V_TRUE); 2780 break; 2781 case V_READ: 2782 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2783 return (V_TRUE); 2784 break; 2785 } 2786 #else 2787 switch (mode) { 2788 case V_WRITE: 2789 if (vp->v_mmap_write) 2790 return (V_TRUE); 2791 break; 2792 case V_RDANDWR: 2793 if (vp->v_mmap_read && vp->v_mmap_write) 2794 return (V_TRUE); 2795 break; 2796 case V_RDORWR: 2797 if (vp->v_mmap_read || vp->v_mmap_write) 2798 return (V_TRUE); 2799 break; 2800 case V_READ: 2801 if (vp->v_mmap_read) 2802 return (V_TRUE); 2803 break; 2804 } 2805 #endif 2806 2807 return (V_FALSE); 2808 } 2809 2810 /* 2811 * Set the operations vector for a vnode. 2812 * 2813 * FEM ensures that the v_femhead pointer is filled in before the 2814 * v_op pointer is changed. This means that if the v_femhead pointer 2815 * is NULL, and the v_op field hasn't changed since before which checked 2816 * the v_femhead pointer; then our update is ok - we are not racing with 2817 * FEM. 2818 */ 2819 void 2820 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2821 { 2822 vnodeops_t *op; 2823 2824 ASSERT(vp != NULL); 2825 ASSERT(vnodeops != NULL); 2826 2827 op = vp->v_op; 2828 membar_consumer(); 2829 /* 2830 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2831 * compare-and-swap on vp->v_op. If either fails, then FEM is 2832 * in effect on the vnode and we need to have FEM deal with it. 2833 */ 2834 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2835 fem_setvnops(vp, vnodeops); 2836 } 2837 } 2838 2839 /* 2840 * Retrieve the operations vector for a vnode 2841 * As with vn_setops(above); make sure we aren't racing with FEM. 2842 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2843 * make sense to the callers of this routine. 2844 */ 2845 vnodeops_t * 2846 vn_getops(vnode_t *vp) 2847 { 2848 vnodeops_t *op; 2849 2850 ASSERT(vp != NULL); 2851 2852 op = vp->v_op; 2853 membar_consumer(); 2854 if (vp->v_femhead == NULL && op == vp->v_op) { 2855 return (op); 2856 } else { 2857 return (fem_getvnops(vp)); 2858 } 2859 } 2860 2861 /* 2862 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2863 * Returns zero (0) if not. 2864 */ 2865 int 2866 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2867 { 2868 return (vn_getops(vp) == vnodeops); 2869 } 2870 2871 /* 2872 * Returns non-zero (1) if the specified operation matches the 2873 * corresponding operation for that the vnode. 2874 * Returns zero (0) if not. 2875 */ 2876 2877 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2878 2879 int 2880 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2881 { 2882 const fs_operation_trans_def_t *otdp; 2883 fs_generic_func_p *loc = NULL; 2884 vnodeops_t *vop = vn_getops(vp); 2885 2886 ASSERT(vopname != NULL); 2887 2888 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2889 if (MATCHNAME(otdp->name, vopname)) { 2890 loc = (fs_generic_func_p *) 2891 ((char *)(vop) + otdp->offset); 2892 break; 2893 } 2894 } 2895 2896 return ((loc != NULL) && (*loc == funcp)); 2897 } 2898 2899 /* 2900 * fs_new_caller_id() needs to return a unique ID on a given local system. 2901 * The IDs do not need to survive across reboots. These are primarily 2902 * used so that (FEM) monitors can detect particular callers (such as 2903 * the NFS server) to a given vnode/vfs operation. 2904 */ 2905 u_longlong_t 2906 fs_new_caller_id() 2907 { 2908 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2909 2910 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2911 } 2912 2913 /* 2914 * Given a starting vnode and a path, updates the path in the target vnode in 2915 * a safe manner. If the vnode already has path information embedded, then the 2916 * cached path is left untouched. 2917 */ 2918 2919 size_t max_vnode_path = 4 * MAXPATHLEN; 2920 2921 void 2922 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2923 const char *path, size_t plen) 2924 { 2925 char *rpath; 2926 vnode_t *base; 2927 size_t rpathlen, rpathalloc; 2928 int doslash = 1; 2929 2930 if (*path == '/') { 2931 base = rootvp; 2932 path++; 2933 plen--; 2934 } else { 2935 base = startvp; 2936 } 2937 2938 /* 2939 * We cannot grab base->v_lock while we hold vp->v_lock because of 2940 * the potential for deadlock. 2941 */ 2942 mutex_enter(&base->v_lock); 2943 if (base->v_path == NULL) { 2944 mutex_exit(&base->v_lock); 2945 return; 2946 } 2947 2948 rpathlen = strlen(base->v_path); 2949 rpathalloc = rpathlen + plen + 1; 2950 /* Avoid adding a slash if there's already one there */ 2951 if (base->v_path[rpathlen-1] == '/') 2952 doslash = 0; 2953 else 2954 rpathalloc++; 2955 2956 /* 2957 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2958 * so we must do this dance. If, by chance, something changes the path, 2959 * just give up since there is no real harm. 2960 */ 2961 mutex_exit(&base->v_lock); 2962 2963 /* Paths should stay within reason */ 2964 if (rpathalloc > max_vnode_path) 2965 return; 2966 2967 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2968 2969 mutex_enter(&base->v_lock); 2970 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2971 mutex_exit(&base->v_lock); 2972 kmem_free(rpath, rpathalloc); 2973 return; 2974 } 2975 bcopy(base->v_path, rpath, rpathlen); 2976 mutex_exit(&base->v_lock); 2977 2978 if (doslash) 2979 rpath[rpathlen++] = '/'; 2980 bcopy(path, rpath + rpathlen, plen); 2981 rpath[rpathlen + plen] = '\0'; 2982 2983 mutex_enter(&vp->v_lock); 2984 if (vp->v_path != NULL) { 2985 mutex_exit(&vp->v_lock); 2986 kmem_free(rpath, rpathalloc); 2987 } else { 2988 vp->v_path = rpath; 2989 mutex_exit(&vp->v_lock); 2990 } 2991 } 2992 2993 /* 2994 * Sets the path to the vnode to be the given string, regardless of current 2995 * context. The string must be a complete path from rootdir. This is only used 2996 * by fsop_root() for setting the path based on the mountpoint. 2997 */ 2998 void 2999 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 3000 { 3001 char *buf = kmem_alloc(len + 1, KM_SLEEP); 3002 3003 mutex_enter(&vp->v_lock); 3004 if (vp->v_path != NULL) { 3005 mutex_exit(&vp->v_lock); 3006 kmem_free(buf, len + 1); 3007 return; 3008 } 3009 3010 vp->v_path = buf; 3011 bcopy(str, vp->v_path, len); 3012 vp->v_path[len] = '\0'; 3013 3014 mutex_exit(&vp->v_lock); 3015 } 3016 3017 /* 3018 * Called from within filesystem's vop_rename() to handle renames once the 3019 * target vnode is available. 3020 */ 3021 void 3022 vn_renamepath(vnode_t *dvp, vnode_t *vp, const char *nm, size_t len) 3023 { 3024 char *tmp; 3025 3026 mutex_enter(&vp->v_lock); 3027 tmp = vp->v_path; 3028 vp->v_path = NULL; 3029 mutex_exit(&vp->v_lock); 3030 vn_setpath(rootdir, dvp, vp, nm, len); 3031 if (tmp != NULL) 3032 kmem_free(tmp, strlen(tmp) + 1); 3033 } 3034 3035 /* 3036 * Similar to vn_setpath_str(), this function sets the path of the destination 3037 * vnode to the be the same as the source vnode. 3038 */ 3039 void 3040 vn_copypath(struct vnode *src, struct vnode *dst) 3041 { 3042 char *buf; 3043 int alloc; 3044 3045 mutex_enter(&src->v_lock); 3046 if (src->v_path == NULL) { 3047 mutex_exit(&src->v_lock); 3048 return; 3049 } 3050 alloc = strlen(src->v_path) + 1; 3051 3052 /* avoid kmem_alloc() with lock held */ 3053 mutex_exit(&src->v_lock); 3054 buf = kmem_alloc(alloc, KM_SLEEP); 3055 mutex_enter(&src->v_lock); 3056 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 3057 mutex_exit(&src->v_lock); 3058 kmem_free(buf, alloc); 3059 return; 3060 } 3061 bcopy(src->v_path, buf, alloc); 3062 mutex_exit(&src->v_lock); 3063 3064 mutex_enter(&dst->v_lock); 3065 if (dst->v_path != NULL) { 3066 mutex_exit(&dst->v_lock); 3067 kmem_free(buf, alloc); 3068 return; 3069 } 3070 dst->v_path = buf; 3071 mutex_exit(&dst->v_lock); 3072 } 3073 3074 /* 3075 * XXX Private interface for segvn routines that handle vnode 3076 * large page segments. 3077 * 3078 * return 1 if vp's file system VOP_PAGEIO() implementation 3079 * can be safely used instead of VOP_GETPAGE() for handling 3080 * pagefaults against regular non swap files. VOP_PAGEIO() 3081 * interface is considered safe here if its implementation 3082 * is very close to VOP_GETPAGE() implementation. 3083 * e.g. It zero's out the part of the page beyond EOF. Doesn't 3084 * panic if there're file holes but instead returns an error. 3085 * Doesn't assume file won't be changed by user writes, etc. 3086 * 3087 * return 0 otherwise. 3088 * 3089 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 3090 */ 3091 int 3092 vn_vmpss_usepageio(vnode_t *vp) 3093 { 3094 vfs_t *vfsp = vp->v_vfsp; 3095 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 3096 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 3097 char **fsok = pageio_ok_fss; 3098 3099 if (fsname == NULL) { 3100 return (0); 3101 } 3102 3103 for (; *fsok; fsok++) { 3104 if (strcmp(*fsok, fsname) == 0) { 3105 return (1); 3106 } 3107 } 3108 return (0); 3109 } 3110 3111 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 3112 3113 int 3114 fop_open( 3115 vnode_t **vpp, 3116 int mode, 3117 cred_t *cr, 3118 caller_context_t *ct) 3119 { 3120 int ret; 3121 vnode_t *vp = *vpp; 3122 3123 VN_HOLD(vp); 3124 /* 3125 * Adding to the vnode counts before calling open 3126 * avoids the need for a mutex. It circumvents a race 3127 * condition where a query made on the vnode counts results in a 3128 * false negative. The inquirer goes away believing the file is 3129 * not open when there is an open on the file already under way. 3130 * 3131 * The counts are meant to prevent NFS from granting a delegation 3132 * when it would be dangerous to do so. 3133 * 3134 * The vnode counts are only kept on regular files 3135 */ 3136 if ((*vpp)->v_type == VREG) { 3137 if (mode & FREAD) 3138 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3139 if (mode & FWRITE) 3140 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3141 } 3142 3143 VOPXID_MAP_CR(vp, cr); 3144 3145 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr, ct); 3146 3147 if (ret) { 3148 /* 3149 * Use the saved vp just in case the vnode ptr got trashed 3150 * by the error. 3151 */ 3152 VOPSTATS_UPDATE(vp, open); 3153 if ((vp->v_type == VREG) && (mode & FREAD)) 3154 atomic_add_32(&(vp->v_rdcnt), -1); 3155 if ((vp->v_type == VREG) && (mode & FWRITE)) 3156 atomic_add_32(&(vp->v_wrcnt), -1); 3157 } else { 3158 /* 3159 * Some filesystems will return a different vnode, 3160 * but the same path was still used to open it. 3161 * So if we do change the vnode and need to 3162 * copy over the path, do so here, rather than special 3163 * casing each filesystem. Adjust the vnode counts to 3164 * reflect the vnode switch. 3165 */ 3166 VOPSTATS_UPDATE(*vpp, open); 3167 if (*vpp != vp && *vpp != NULL) { 3168 vn_copypath(vp, *vpp); 3169 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 3170 atomic_add_32(&((*vpp)->v_rdcnt), 1); 3171 if ((vp->v_type == VREG) && (mode & FREAD)) 3172 atomic_add_32(&(vp->v_rdcnt), -1); 3173 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 3174 atomic_add_32(&((*vpp)->v_wrcnt), 1); 3175 if ((vp->v_type == VREG) && (mode & FWRITE)) 3176 atomic_add_32(&(vp->v_wrcnt), -1); 3177 } 3178 } 3179 VN_RELE(vp); 3180 return (ret); 3181 } 3182 3183 int 3184 fop_close( 3185 vnode_t *vp, 3186 int flag, 3187 int count, 3188 offset_t offset, 3189 cred_t *cr, 3190 caller_context_t *ct) 3191 { 3192 int err; 3193 3194 VOPXID_MAP_CR(vp, cr); 3195 3196 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr, ct); 3197 VOPSTATS_UPDATE(vp, close); 3198 /* 3199 * Check passed in count to handle possible dups. Vnode counts are only 3200 * kept on regular files 3201 */ 3202 if ((vp->v_type == VREG) && (count == 1)) { 3203 if (flag & FREAD) { 3204 ASSERT(vp->v_rdcnt > 0); 3205 atomic_add_32(&(vp->v_rdcnt), -1); 3206 } 3207 if (flag & FWRITE) { 3208 ASSERT(vp->v_wrcnt > 0); 3209 atomic_add_32(&(vp->v_wrcnt), -1); 3210 } 3211 } 3212 return (err); 3213 } 3214 3215 int 3216 fop_read( 3217 vnode_t *vp, 3218 uio_t *uiop, 3219 int ioflag, 3220 cred_t *cr, 3221 caller_context_t *ct) 3222 { 3223 int err; 3224 ssize_t resid_start = uiop->uio_resid; 3225 3226 VOPXID_MAP_CR(vp, cr); 3227 3228 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 3229 VOPSTATS_UPDATE_IO(vp, read, 3230 read_bytes, (resid_start - uiop->uio_resid)); 3231 return (err); 3232 } 3233 3234 int 3235 fop_write( 3236 vnode_t *vp, 3237 uio_t *uiop, 3238 int ioflag, 3239 cred_t *cr, 3240 caller_context_t *ct) 3241 { 3242 int err; 3243 ssize_t resid_start = uiop->uio_resid; 3244 3245 VOPXID_MAP_CR(vp, cr); 3246 3247 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 3248 VOPSTATS_UPDATE_IO(vp, write, 3249 write_bytes, (resid_start - uiop->uio_resid)); 3250 return (err); 3251 } 3252 3253 int 3254 fop_ioctl( 3255 vnode_t *vp, 3256 int cmd, 3257 intptr_t arg, 3258 int flag, 3259 cred_t *cr, 3260 int *rvalp, 3261 caller_context_t *ct) 3262 { 3263 int err; 3264 3265 VOPXID_MAP_CR(vp, cr); 3266 3267 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp, ct); 3268 VOPSTATS_UPDATE(vp, ioctl); 3269 return (err); 3270 } 3271 3272 int 3273 fop_setfl( 3274 vnode_t *vp, 3275 int oflags, 3276 int nflags, 3277 cred_t *cr, 3278 caller_context_t *ct) 3279 { 3280 int err; 3281 3282 VOPXID_MAP_CR(vp, cr); 3283 3284 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr, ct); 3285 VOPSTATS_UPDATE(vp, setfl); 3286 return (err); 3287 } 3288 3289 int 3290 fop_getattr( 3291 vnode_t *vp, 3292 vattr_t *vap, 3293 int flags, 3294 cred_t *cr, 3295 caller_context_t *ct) 3296 { 3297 int err; 3298 3299 VOPXID_MAP_CR(vp, cr); 3300 3301 /* 3302 * If this file system doesn't understand the xvattr extensions 3303 * then turn off the xvattr bit. 3304 */ 3305 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3306 vap->va_mask &= ~AT_XVATTR; 3307 } 3308 3309 /* 3310 * We're only allowed to skip the ACL check iff we used a 32 bit 3311 * ACE mask with VOP_ACCESS() to determine permissions. 3312 */ 3313 if ((flags & ATTR_NOACLCHECK) && 3314 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3315 return (EINVAL); 3316 } 3317 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr, ct); 3318 VOPSTATS_UPDATE(vp, getattr); 3319 return (err); 3320 } 3321 3322 int 3323 fop_setattr( 3324 vnode_t *vp, 3325 vattr_t *vap, 3326 int flags, 3327 cred_t *cr, 3328 caller_context_t *ct) 3329 { 3330 int err; 3331 3332 VOPXID_MAP_CR(vp, cr); 3333 3334 /* 3335 * If this file system doesn't understand the xvattr extensions 3336 * then turn off the xvattr bit. 3337 */ 3338 if (vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) == 0) { 3339 vap->va_mask &= ~AT_XVATTR; 3340 } 3341 3342 /* 3343 * We're only allowed to skip the ACL check iff we used a 32 bit 3344 * ACE mask with VOP_ACCESS() to determine permissions. 3345 */ 3346 if ((flags & ATTR_NOACLCHECK) && 3347 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3348 return (EINVAL); 3349 } 3350 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 3351 VOPSTATS_UPDATE(vp, setattr); 3352 return (err); 3353 } 3354 3355 int 3356 fop_access( 3357 vnode_t *vp, 3358 int mode, 3359 int flags, 3360 cred_t *cr, 3361 caller_context_t *ct) 3362 { 3363 int err; 3364 3365 if ((flags & V_ACE_MASK) && 3366 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 3367 return (EINVAL); 3368 } 3369 3370 VOPXID_MAP_CR(vp, cr); 3371 3372 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr, ct); 3373 VOPSTATS_UPDATE(vp, access); 3374 return (err); 3375 } 3376 3377 int 3378 fop_lookup( 3379 vnode_t *dvp, 3380 char *nm, 3381 vnode_t **vpp, 3382 pathname_t *pnp, 3383 int flags, 3384 vnode_t *rdir, 3385 cred_t *cr, 3386 caller_context_t *ct, 3387 int *deflags, /* Returned per-dirent flags */ 3388 pathname_t *ppnp) /* Returned case-preserved name in directory */ 3389 { 3390 int ret; 3391 3392 /* 3393 * If this file system doesn't support case-insensitive access 3394 * and said access is requested, fail quickly. It is required 3395 * that if the vfs supports case-insensitive lookup, it also 3396 * supports extended dirent flags. 3397 */ 3398 if (flags & FIGNORECASE && 3399 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3400 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3401 return (EINVAL); 3402 3403 VOPXID_MAP_CR(dvp, cr); 3404 3405 if ((flags & LOOKUP_XATTR) && (flags & LOOKUP_HAVE_SYSATTR_DIR) == 0) { 3406 ret = xattr_dir_lookup(dvp, vpp, flags, cr); 3407 } else { 3408 ret = (*(dvp)->v_op->vop_lookup) 3409 (dvp, nm, vpp, pnp, flags, rdir, cr, ct, deflags, ppnp); 3410 } 3411 if (ret == 0 && *vpp) { 3412 VOPSTATS_UPDATE(*vpp, lookup); 3413 if ((*vpp)->v_path == NULL) { 3414 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 3415 } 3416 } 3417 3418 return (ret); 3419 } 3420 3421 int 3422 fop_create( 3423 vnode_t *dvp, 3424 char *name, 3425 vattr_t *vap, 3426 vcexcl_t excl, 3427 int mode, 3428 vnode_t **vpp, 3429 cred_t *cr, 3430 int flags, 3431 caller_context_t *ct, 3432 vsecattr_t *vsecp) /* ACL to set during create */ 3433 { 3434 int ret; 3435 3436 if (vsecp != NULL && 3437 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3438 return (EINVAL); 3439 } 3440 /* 3441 * If this file system doesn't support case-insensitive access 3442 * and said access is requested, fail quickly. 3443 */ 3444 if (flags & FIGNORECASE && 3445 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3446 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3447 return (EINVAL); 3448 3449 VOPXID_MAP_CR(dvp, cr); 3450 3451 ret = (*(dvp)->v_op->vop_create) 3452 (dvp, name, vap, excl, mode, vpp, cr, flags, ct, vsecp); 3453 if (ret == 0 && *vpp) { 3454 VOPSTATS_UPDATE(*vpp, create); 3455 if ((*vpp)->v_path == NULL) { 3456 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3457 } 3458 } 3459 3460 return (ret); 3461 } 3462 3463 int 3464 fop_remove( 3465 vnode_t *dvp, 3466 char *nm, 3467 cred_t *cr, 3468 caller_context_t *ct, 3469 int flags) 3470 { 3471 int err; 3472 3473 /* 3474 * If this file system doesn't support case-insensitive access 3475 * and said access is requested, fail quickly. 3476 */ 3477 if (flags & FIGNORECASE && 3478 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3479 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3480 return (EINVAL); 3481 3482 VOPXID_MAP_CR(dvp, cr); 3483 3484 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr, ct, flags); 3485 VOPSTATS_UPDATE(dvp, remove); 3486 return (err); 3487 } 3488 3489 int 3490 fop_link( 3491 vnode_t *tdvp, 3492 vnode_t *svp, 3493 char *tnm, 3494 cred_t *cr, 3495 caller_context_t *ct, 3496 int flags) 3497 { 3498 int err; 3499 3500 /* 3501 * If the target file system doesn't support case-insensitive access 3502 * and said access is requested, fail quickly. 3503 */ 3504 if (flags & FIGNORECASE && 3505 (vfs_has_feature(tdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3506 vfs_has_feature(tdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3507 return (EINVAL); 3508 3509 VOPXID_MAP_CR(tdvp, cr); 3510 3511 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr, ct, flags); 3512 VOPSTATS_UPDATE(tdvp, link); 3513 return (err); 3514 } 3515 3516 int 3517 fop_rename( 3518 vnode_t *sdvp, 3519 char *snm, 3520 vnode_t *tdvp, 3521 char *tnm, 3522 cred_t *cr, 3523 caller_context_t *ct, 3524 int flags) 3525 { 3526 int err; 3527 3528 /* 3529 * If the file system involved does not support 3530 * case-insensitive access and said access is requested, fail 3531 * quickly. 3532 */ 3533 if (flags & FIGNORECASE && 3534 ((vfs_has_feature(sdvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3535 vfs_has_feature(sdvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0))) 3536 return (EINVAL); 3537 3538 VOPXID_MAP_CR(tdvp, cr); 3539 3540 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr, ct, flags); 3541 VOPSTATS_UPDATE(sdvp, rename); 3542 return (err); 3543 } 3544 3545 int 3546 fop_mkdir( 3547 vnode_t *dvp, 3548 char *dirname, 3549 vattr_t *vap, 3550 vnode_t **vpp, 3551 cred_t *cr, 3552 caller_context_t *ct, 3553 int flags, 3554 vsecattr_t *vsecp) /* ACL to set during create */ 3555 { 3556 int ret; 3557 3558 if (vsecp != NULL && 3559 vfs_has_feature(dvp->v_vfsp, VFSFT_ACLONCREATE) == 0) { 3560 return (EINVAL); 3561 } 3562 /* 3563 * If this file system doesn't support case-insensitive access 3564 * and said access is requested, fail quickly. 3565 */ 3566 if (flags & FIGNORECASE && 3567 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3568 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3569 return (EINVAL); 3570 3571 VOPXID_MAP_CR(dvp, cr); 3572 3573 ret = (*(dvp)->v_op->vop_mkdir) 3574 (dvp, dirname, vap, vpp, cr, ct, flags, vsecp); 3575 if (ret == 0 && *vpp) { 3576 VOPSTATS_UPDATE(*vpp, mkdir); 3577 if ((*vpp)->v_path == NULL) { 3578 vn_setpath(rootdir, dvp, *vpp, dirname, 3579 strlen(dirname)); 3580 } 3581 } 3582 3583 return (ret); 3584 } 3585 3586 int 3587 fop_rmdir( 3588 vnode_t *dvp, 3589 char *nm, 3590 vnode_t *cdir, 3591 cred_t *cr, 3592 caller_context_t *ct, 3593 int flags) 3594 { 3595 int err; 3596 3597 /* 3598 * If this file system doesn't support case-insensitive access 3599 * and said access is requested, fail quickly. 3600 */ 3601 if (flags & FIGNORECASE && 3602 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3603 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3604 return (EINVAL); 3605 3606 VOPXID_MAP_CR(dvp, cr); 3607 3608 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr, ct, flags); 3609 VOPSTATS_UPDATE(dvp, rmdir); 3610 return (err); 3611 } 3612 3613 int 3614 fop_readdir( 3615 vnode_t *vp, 3616 uio_t *uiop, 3617 cred_t *cr, 3618 int *eofp, 3619 caller_context_t *ct, 3620 int flags) 3621 { 3622 int err; 3623 ssize_t resid_start = uiop->uio_resid; 3624 3625 /* 3626 * If this file system doesn't support retrieving directory 3627 * entry flags and said access is requested, fail quickly. 3628 */ 3629 if (flags & V_RDDIR_ENTFLAGS && 3630 vfs_has_feature(vp->v_vfsp, VFSFT_DIRENTFLAGS) == 0) 3631 return (EINVAL); 3632 3633 VOPXID_MAP_CR(vp, cr); 3634 3635 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp, ct, flags); 3636 VOPSTATS_UPDATE_IO(vp, readdir, 3637 readdir_bytes, (resid_start - uiop->uio_resid)); 3638 return (err); 3639 } 3640 3641 int 3642 fop_symlink( 3643 vnode_t *dvp, 3644 char *linkname, 3645 vattr_t *vap, 3646 char *target, 3647 cred_t *cr, 3648 caller_context_t *ct, 3649 int flags) 3650 { 3651 int err; 3652 xvattr_t xvattr; 3653 3654 /* 3655 * If this file system doesn't support case-insensitive access 3656 * and said access is requested, fail quickly. 3657 */ 3658 if (flags & FIGNORECASE && 3659 (vfs_has_feature(dvp->v_vfsp, VFSFT_CASEINSENSITIVE) == 0 && 3660 vfs_has_feature(dvp->v_vfsp, VFSFT_NOCASESENSITIVE) == 0)) 3661 return (EINVAL); 3662 3663 VOPXID_MAP_CR(dvp, cr); 3664 3665 /* check for reparse point */ 3666 if ((vfs_has_feature(dvp->v_vfsp, VFSFT_REPARSE)) && 3667 (strncmp(target, FS_REPARSE_TAG_STR, 3668 strlen(FS_REPARSE_TAG_STR)) == 0)) { 3669 if (!fs_reparse_mark(target, vap, &xvattr)) 3670 vap = (vattr_t *)&xvattr; 3671 } 3672 3673 err = (*(dvp)->v_op->vop_symlink) 3674 (dvp, linkname, vap, target, cr, ct, flags); 3675 VOPSTATS_UPDATE(dvp, symlink); 3676 return (err); 3677 } 3678 3679 int 3680 fop_readlink( 3681 vnode_t *vp, 3682 uio_t *uiop, 3683 cred_t *cr, 3684 caller_context_t *ct) 3685 { 3686 int err; 3687 3688 VOPXID_MAP_CR(vp, cr); 3689 3690 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr, ct); 3691 VOPSTATS_UPDATE(vp, readlink); 3692 return (err); 3693 } 3694 3695 int 3696 fop_fsync( 3697 vnode_t *vp, 3698 int syncflag, 3699 cred_t *cr, 3700 caller_context_t *ct) 3701 { 3702 int err; 3703 3704 VOPXID_MAP_CR(vp, cr); 3705 3706 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr, ct); 3707 VOPSTATS_UPDATE(vp, fsync); 3708 return (err); 3709 } 3710 3711 void 3712 fop_inactive( 3713 vnode_t *vp, 3714 cred_t *cr, 3715 caller_context_t *ct) 3716 { 3717 /* Need to update stats before vop call since we may lose the vnode */ 3718 VOPSTATS_UPDATE(vp, inactive); 3719 3720 VOPXID_MAP_CR(vp, cr); 3721 3722 (*(vp)->v_op->vop_inactive)(vp, cr, ct); 3723 } 3724 3725 int 3726 fop_fid( 3727 vnode_t *vp, 3728 fid_t *fidp, 3729 caller_context_t *ct) 3730 { 3731 int err; 3732 3733 err = (*(vp)->v_op->vop_fid)(vp, fidp, ct); 3734 VOPSTATS_UPDATE(vp, fid); 3735 return (err); 3736 } 3737 3738 int 3739 fop_rwlock( 3740 vnode_t *vp, 3741 int write_lock, 3742 caller_context_t *ct) 3743 { 3744 int ret; 3745 3746 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3747 VOPSTATS_UPDATE(vp, rwlock); 3748 return (ret); 3749 } 3750 3751 void 3752 fop_rwunlock( 3753 vnode_t *vp, 3754 int write_lock, 3755 caller_context_t *ct) 3756 { 3757 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3758 VOPSTATS_UPDATE(vp, rwunlock); 3759 } 3760 3761 int 3762 fop_seek( 3763 vnode_t *vp, 3764 offset_t ooff, 3765 offset_t *noffp, 3766 caller_context_t *ct) 3767 { 3768 int err; 3769 3770 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp, ct); 3771 VOPSTATS_UPDATE(vp, seek); 3772 return (err); 3773 } 3774 3775 int 3776 fop_cmp( 3777 vnode_t *vp1, 3778 vnode_t *vp2, 3779 caller_context_t *ct) 3780 { 3781 int err; 3782 3783 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2, ct); 3784 VOPSTATS_UPDATE(vp1, cmp); 3785 return (err); 3786 } 3787 3788 int 3789 fop_frlock( 3790 vnode_t *vp, 3791 int cmd, 3792 flock64_t *bfp, 3793 int flag, 3794 offset_t offset, 3795 struct flk_callback *flk_cbp, 3796 cred_t *cr, 3797 caller_context_t *ct) 3798 { 3799 int err; 3800 3801 VOPXID_MAP_CR(vp, cr); 3802 3803 err = (*(vp)->v_op->vop_frlock) 3804 (vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3805 VOPSTATS_UPDATE(vp, frlock); 3806 return (err); 3807 } 3808 3809 int 3810 fop_space( 3811 vnode_t *vp, 3812 int cmd, 3813 flock64_t *bfp, 3814 int flag, 3815 offset_t offset, 3816 cred_t *cr, 3817 caller_context_t *ct) 3818 { 3819 int err; 3820 3821 VOPXID_MAP_CR(vp, cr); 3822 3823 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3824 VOPSTATS_UPDATE(vp, space); 3825 return (err); 3826 } 3827 3828 int 3829 fop_realvp( 3830 vnode_t *vp, 3831 vnode_t **vpp, 3832 caller_context_t *ct) 3833 { 3834 int err; 3835 3836 err = (*(vp)->v_op->vop_realvp)(vp, vpp, ct); 3837 VOPSTATS_UPDATE(vp, realvp); 3838 return (err); 3839 } 3840 3841 int 3842 fop_getpage( 3843 vnode_t *vp, 3844 offset_t off, 3845 size_t len, 3846 uint_t *protp, 3847 page_t **plarr, 3848 size_t plsz, 3849 struct seg *seg, 3850 caddr_t addr, 3851 enum seg_rw rw, 3852 cred_t *cr, 3853 caller_context_t *ct) 3854 { 3855 int err; 3856 3857 VOPXID_MAP_CR(vp, cr); 3858 3859 err = (*(vp)->v_op->vop_getpage) 3860 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr, ct); 3861 VOPSTATS_UPDATE(vp, getpage); 3862 return (err); 3863 } 3864 3865 int 3866 fop_putpage( 3867 vnode_t *vp, 3868 offset_t off, 3869 size_t len, 3870 int flags, 3871 cred_t *cr, 3872 caller_context_t *ct) 3873 { 3874 int err; 3875 3876 VOPXID_MAP_CR(vp, cr); 3877 3878 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr, ct); 3879 VOPSTATS_UPDATE(vp, putpage); 3880 return (err); 3881 } 3882 3883 int 3884 fop_map( 3885 vnode_t *vp, 3886 offset_t off, 3887 struct as *as, 3888 caddr_t *addrp, 3889 size_t len, 3890 uchar_t prot, 3891 uchar_t maxprot, 3892 uint_t flags, 3893 cred_t *cr, 3894 caller_context_t *ct) 3895 { 3896 int err; 3897 3898 VOPXID_MAP_CR(vp, cr); 3899 3900 err = (*(vp)->v_op->vop_map) 3901 (vp, off, as, addrp, len, prot, maxprot, flags, cr, ct); 3902 VOPSTATS_UPDATE(vp, map); 3903 return (err); 3904 } 3905 3906 int 3907 fop_addmap( 3908 vnode_t *vp, 3909 offset_t off, 3910 struct as *as, 3911 caddr_t addr, 3912 size_t len, 3913 uchar_t prot, 3914 uchar_t maxprot, 3915 uint_t flags, 3916 cred_t *cr, 3917 caller_context_t *ct) 3918 { 3919 int error; 3920 u_longlong_t delta; 3921 3922 VOPXID_MAP_CR(vp, cr); 3923 3924 error = (*(vp)->v_op->vop_addmap) 3925 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3926 3927 if ((!error) && (vp->v_type == VREG)) { 3928 delta = (u_longlong_t)btopr(len); 3929 /* 3930 * If file is declared MAP_PRIVATE, it can't be written back 3931 * even if open for write. Handle as read. 3932 */ 3933 if (flags & MAP_PRIVATE) { 3934 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3935 (int64_t)delta); 3936 } else { 3937 /* 3938 * atomic_add_64 forces the fetch of a 64 bit value to 3939 * be atomic on 32 bit machines 3940 */ 3941 if (maxprot & PROT_WRITE) 3942 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3943 (int64_t)delta); 3944 if (maxprot & PROT_READ) 3945 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3946 (int64_t)delta); 3947 if (maxprot & PROT_EXEC) 3948 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3949 (int64_t)delta); 3950 } 3951 } 3952 VOPSTATS_UPDATE(vp, addmap); 3953 return (error); 3954 } 3955 3956 int 3957 fop_delmap( 3958 vnode_t *vp, 3959 offset_t off, 3960 struct as *as, 3961 caddr_t addr, 3962 size_t len, 3963 uint_t prot, 3964 uint_t maxprot, 3965 uint_t flags, 3966 cred_t *cr, 3967 caller_context_t *ct) 3968 { 3969 int error; 3970 u_longlong_t delta; 3971 3972 VOPXID_MAP_CR(vp, cr); 3973 3974 error = (*(vp)->v_op->vop_delmap) 3975 (vp, off, as, addr, len, prot, maxprot, flags, cr, ct); 3976 3977 /* 3978 * NFS calls into delmap twice, the first time 3979 * it simply establishes a callback mechanism and returns EAGAIN 3980 * while the real work is being done upon the second invocation. 3981 * We have to detect this here and only decrement the counts upon 3982 * the second delmap request. 3983 */ 3984 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3985 3986 delta = (u_longlong_t)btopr(len); 3987 3988 if (flags & MAP_PRIVATE) { 3989 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3990 (int64_t)(-delta)); 3991 } else { 3992 /* 3993 * atomic_add_64 forces the fetch of a 64 bit value 3994 * to be atomic on 32 bit machines 3995 */ 3996 if (maxprot & PROT_WRITE) 3997 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3998 (int64_t)(-delta)); 3999 if (maxprot & PROT_READ) 4000 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 4001 (int64_t)(-delta)); 4002 if (maxprot & PROT_EXEC) 4003 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 4004 (int64_t)(-delta)); 4005 } 4006 } 4007 VOPSTATS_UPDATE(vp, delmap); 4008 return (error); 4009 } 4010 4011 4012 int 4013 fop_poll( 4014 vnode_t *vp, 4015 short events, 4016 int anyyet, 4017 short *reventsp, 4018 struct pollhead **phpp, 4019 caller_context_t *ct) 4020 { 4021 int err; 4022 4023 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp, ct); 4024 VOPSTATS_UPDATE(vp, poll); 4025 return (err); 4026 } 4027 4028 int 4029 fop_dump( 4030 vnode_t *vp, 4031 caddr_t addr, 4032 offset_t lbdn, 4033 offset_t dblks, 4034 caller_context_t *ct) 4035 { 4036 int err; 4037 4038 /* ensure lbdn and dblks can be passed safely to bdev_dump */ 4039 if ((lbdn != (daddr_t)lbdn) || (dblks != (int)dblks)) 4040 return (EIO); 4041 4042 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks, ct); 4043 VOPSTATS_UPDATE(vp, dump); 4044 return (err); 4045 } 4046 4047 int 4048 fop_pathconf( 4049 vnode_t *vp, 4050 int cmd, 4051 ulong_t *valp, 4052 cred_t *cr, 4053 caller_context_t *ct) 4054 { 4055 int err; 4056 4057 VOPXID_MAP_CR(vp, cr); 4058 4059 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr, ct); 4060 VOPSTATS_UPDATE(vp, pathconf); 4061 return (err); 4062 } 4063 4064 int 4065 fop_pageio( 4066 vnode_t *vp, 4067 struct page *pp, 4068 u_offset_t io_off, 4069 size_t io_len, 4070 int flags, 4071 cred_t *cr, 4072 caller_context_t *ct) 4073 { 4074 int err; 4075 4076 VOPXID_MAP_CR(vp, cr); 4077 4078 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr, ct); 4079 VOPSTATS_UPDATE(vp, pageio); 4080 return (err); 4081 } 4082 4083 int 4084 fop_dumpctl( 4085 vnode_t *vp, 4086 int action, 4087 offset_t *blkp, 4088 caller_context_t *ct) 4089 { 4090 int err; 4091 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp, ct); 4092 VOPSTATS_UPDATE(vp, dumpctl); 4093 return (err); 4094 } 4095 4096 void 4097 fop_dispose( 4098 vnode_t *vp, 4099 page_t *pp, 4100 int flag, 4101 int dn, 4102 cred_t *cr, 4103 caller_context_t *ct) 4104 { 4105 /* Must do stats first since it's possible to lose the vnode */ 4106 VOPSTATS_UPDATE(vp, dispose); 4107 4108 VOPXID_MAP_CR(vp, cr); 4109 4110 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr, ct); 4111 } 4112 4113 int 4114 fop_setsecattr( 4115 vnode_t *vp, 4116 vsecattr_t *vsap, 4117 int flag, 4118 cred_t *cr, 4119 caller_context_t *ct) 4120 { 4121 int err; 4122 4123 VOPXID_MAP_CR(vp, cr); 4124 4125 /* 4126 * We're only allowed to skip the ACL check iff we used a 32 bit 4127 * ACE mask with VOP_ACCESS() to determine permissions. 4128 */ 4129 if ((flag & ATTR_NOACLCHECK) && 4130 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4131 return (EINVAL); 4132 } 4133 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr, ct); 4134 VOPSTATS_UPDATE(vp, setsecattr); 4135 return (err); 4136 } 4137 4138 int 4139 fop_getsecattr( 4140 vnode_t *vp, 4141 vsecattr_t *vsap, 4142 int flag, 4143 cred_t *cr, 4144 caller_context_t *ct) 4145 { 4146 int err; 4147 4148 /* 4149 * We're only allowed to skip the ACL check iff we used a 32 bit 4150 * ACE mask with VOP_ACCESS() to determine permissions. 4151 */ 4152 if ((flag & ATTR_NOACLCHECK) && 4153 vfs_has_feature(vp->v_vfsp, VFSFT_ACEMASKONACCESS) == 0) { 4154 return (EINVAL); 4155 } 4156 4157 VOPXID_MAP_CR(vp, cr); 4158 4159 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr, ct); 4160 VOPSTATS_UPDATE(vp, getsecattr); 4161 return (err); 4162 } 4163 4164 int 4165 fop_shrlock( 4166 vnode_t *vp, 4167 int cmd, 4168 struct shrlock *shr, 4169 int flag, 4170 cred_t *cr, 4171 caller_context_t *ct) 4172 { 4173 int err; 4174 4175 VOPXID_MAP_CR(vp, cr); 4176 4177 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr, ct); 4178 VOPSTATS_UPDATE(vp, shrlock); 4179 return (err); 4180 } 4181 4182 int 4183 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm, 4184 caller_context_t *ct) 4185 { 4186 int err; 4187 4188 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm, ct); 4189 VOPSTATS_UPDATE(vp, vnevent); 4190 return (err); 4191 } 4192 4193 int 4194 fop_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *uiop, cred_t *cr, 4195 caller_context_t *ct) 4196 { 4197 int err; 4198 4199 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0) 4200 return (ENOTSUP); 4201 err = (*(vp)->v_op->vop_reqzcbuf)(vp, ioflag, uiop, cr, ct); 4202 VOPSTATS_UPDATE(vp, reqzcbuf); 4203 return (err); 4204 } 4205 4206 int 4207 fop_retzcbuf(vnode_t *vp, xuio_t *uiop, cred_t *cr, caller_context_t *ct) 4208 { 4209 int err; 4210 4211 if (vfs_has_feature(vp->v_vfsp, VFSFT_ZEROCOPY_SUPPORTED) == 0) 4212 return (ENOTSUP); 4213 err = (*(vp)->v_op->vop_retzcbuf)(vp, uiop, cr, ct); 4214 VOPSTATS_UPDATE(vp, retzcbuf); 4215 return (err); 4216 } 4217 4218 /* 4219 * Default destructor 4220 * Needed because NULL destructor means that the key is unused 4221 */ 4222 /* ARGSUSED */ 4223 void 4224 vsd_defaultdestructor(void *value) 4225 {} 4226 4227 /* 4228 * Create a key (index into per vnode array) 4229 * Locks out vsd_create, vsd_destroy, and vsd_free 4230 * May allocate memory with lock held 4231 */ 4232 void 4233 vsd_create(uint_t *keyp, void (*destructor)(void *)) 4234 { 4235 int i; 4236 uint_t nkeys; 4237 4238 /* 4239 * if key is allocated, do nothing 4240 */ 4241 mutex_enter(&vsd_lock); 4242 if (*keyp) { 4243 mutex_exit(&vsd_lock); 4244 return; 4245 } 4246 /* 4247 * find an unused key 4248 */ 4249 if (destructor == NULL) 4250 destructor = vsd_defaultdestructor; 4251 4252 for (i = 0; i < vsd_nkeys; ++i) 4253 if (vsd_destructor[i] == NULL) 4254 break; 4255 4256 /* 4257 * if no unused keys, increase the size of the destructor array 4258 */ 4259 if (i == vsd_nkeys) { 4260 if ((nkeys = (vsd_nkeys << 1)) == 0) 4261 nkeys = 1; 4262 vsd_destructor = 4263 (void (**)(void *))vsd_realloc((void *)vsd_destructor, 4264 (size_t)(vsd_nkeys * sizeof (void (*)(void *))), 4265 (size_t)(nkeys * sizeof (void (*)(void *)))); 4266 vsd_nkeys = nkeys; 4267 } 4268 4269 /* 4270 * allocate the next available unused key 4271 */ 4272 vsd_destructor[i] = destructor; 4273 *keyp = i + 1; 4274 4275 /* create vsd_list, if it doesn't exist */ 4276 if (vsd_list == NULL) { 4277 vsd_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 4278 list_create(vsd_list, sizeof (struct vsd_node), 4279 offsetof(struct vsd_node, vs_nodes)); 4280 } 4281 4282 mutex_exit(&vsd_lock); 4283 } 4284 4285 /* 4286 * Destroy a key 4287 * 4288 * Assumes that the caller is preventing vsd_set and vsd_get 4289 * Locks out vsd_create, vsd_destroy, and vsd_free 4290 * May free memory with lock held 4291 */ 4292 void 4293 vsd_destroy(uint_t *keyp) 4294 { 4295 uint_t key; 4296 struct vsd_node *vsd; 4297 4298 /* 4299 * protect the key namespace and our destructor lists 4300 */ 4301 mutex_enter(&vsd_lock); 4302 key = *keyp; 4303 *keyp = 0; 4304 4305 ASSERT(key <= vsd_nkeys); 4306 4307 /* 4308 * if the key is valid 4309 */ 4310 if (key != 0) { 4311 uint_t k = key - 1; 4312 /* 4313 * for every vnode with VSD, call key's destructor 4314 */ 4315 for (vsd = list_head(vsd_list); vsd != NULL; 4316 vsd = list_next(vsd_list, vsd)) { 4317 /* 4318 * no VSD for key in this vnode 4319 */ 4320 if (key > vsd->vs_nkeys) 4321 continue; 4322 /* 4323 * call destructor for key 4324 */ 4325 if (vsd->vs_value[k] && vsd_destructor[k]) 4326 (*vsd_destructor[k])(vsd->vs_value[k]); 4327 /* 4328 * reset value for key 4329 */ 4330 vsd->vs_value[k] = NULL; 4331 } 4332 /* 4333 * actually free the key (NULL destructor == unused) 4334 */ 4335 vsd_destructor[k] = NULL; 4336 } 4337 4338 mutex_exit(&vsd_lock); 4339 } 4340 4341 /* 4342 * Quickly return the per vnode value that was stored with the specified key 4343 * Assumes the caller is protecting key from vsd_create and vsd_destroy 4344 * Assumes the caller is holding v_vsd_lock to protect the vsd. 4345 */ 4346 void * 4347 vsd_get(vnode_t *vp, uint_t key) 4348 { 4349 struct vsd_node *vsd; 4350 4351 ASSERT(vp != NULL); 4352 ASSERT(mutex_owned(&vp->v_vsd_lock)); 4353 4354 vsd = vp->v_vsd; 4355 4356 if (key && vsd != NULL && key <= vsd->vs_nkeys) 4357 return (vsd->vs_value[key - 1]); 4358 return (NULL); 4359 } 4360 4361 /* 4362 * Set a per vnode value indexed with the specified key 4363 * Assumes the caller is holding v_vsd_lock to protect the vsd. 4364 */ 4365 int 4366 vsd_set(vnode_t *vp, uint_t key, void *value) 4367 { 4368 struct vsd_node *vsd; 4369 4370 ASSERT(vp != NULL); 4371 ASSERT(mutex_owned(&vp->v_vsd_lock)); 4372 4373 if (key == 0) 4374 return (EINVAL); 4375 4376 vsd = vp->v_vsd; 4377 if (vsd == NULL) 4378 vsd = vp->v_vsd = kmem_zalloc(sizeof (*vsd), KM_SLEEP); 4379 4380 /* 4381 * If the vsd was just allocated, vs_nkeys will be 0, so the following 4382 * code won't happen and we will continue down and allocate space for 4383 * the vs_value array. 4384 * If the caller is replacing one value with another, then it is up 4385 * to the caller to free/rele/destroy the previous value (if needed). 4386 */ 4387 if (key <= vsd->vs_nkeys) { 4388 vsd->vs_value[key - 1] = value; 4389 return (0); 4390 } 4391 4392 ASSERT(key <= vsd_nkeys); 4393 4394 if (vsd->vs_nkeys == 0) { 4395 mutex_enter(&vsd_lock); /* lock out vsd_destroy() */ 4396 /* 4397 * Link onto list of all VSD nodes. 4398 */ 4399 list_insert_head(vsd_list, vsd); 4400 mutex_exit(&vsd_lock); 4401 } 4402 4403 /* 4404 * Allocate vnode local storage and set the value for key 4405 */ 4406 vsd->vs_value = vsd_realloc(vsd->vs_value, 4407 vsd->vs_nkeys * sizeof (void *), 4408 key * sizeof (void *)); 4409 vsd->vs_nkeys = key; 4410 vsd->vs_value[key - 1] = value; 4411 4412 return (0); 4413 } 4414 4415 /* 4416 * Called from vn_free() to run the destructor function for each vsd 4417 * Locks out vsd_create and vsd_destroy 4418 * Assumes that the destructor *DOES NOT* use vsd 4419 */ 4420 void 4421 vsd_free(vnode_t *vp) 4422 { 4423 int i; 4424 struct vsd_node *vsd = vp->v_vsd; 4425 4426 if (vsd == NULL) 4427 return; 4428 4429 if (vsd->vs_nkeys == 0) { 4430 kmem_free(vsd, sizeof (*vsd)); 4431 vp->v_vsd = NULL; 4432 return; 4433 } 4434 4435 /* 4436 * lock out vsd_create and vsd_destroy, call 4437 * the destructor, and mark the value as destroyed. 4438 */ 4439 mutex_enter(&vsd_lock); 4440 4441 for (i = 0; i < vsd->vs_nkeys; i++) { 4442 if (vsd->vs_value[i] && vsd_destructor[i]) 4443 (*vsd_destructor[i])(vsd->vs_value[i]); 4444 vsd->vs_value[i] = NULL; 4445 } 4446 4447 /* 4448 * remove from linked list of VSD nodes 4449 */ 4450 list_remove(vsd_list, vsd); 4451 4452 mutex_exit(&vsd_lock); 4453 4454 /* 4455 * free up the VSD 4456 */ 4457 kmem_free(vsd->vs_value, vsd->vs_nkeys * sizeof (void *)); 4458 kmem_free(vsd, sizeof (struct vsd_node)); 4459 vp->v_vsd = NULL; 4460 } 4461 4462 /* 4463 * realloc 4464 */ 4465 static void * 4466 vsd_realloc(void *old, size_t osize, size_t nsize) 4467 { 4468 void *new; 4469 4470 new = kmem_zalloc(nsize, KM_SLEEP); 4471 if (old) { 4472 bcopy(old, new, osize); 4473 kmem_free(old, osize); 4474 } 4475 return (new); 4476 } 4477 4478 /* 4479 * Setup the extensible system attribute for creating a reparse point. 4480 * The symlink data 'target' is validated for proper format of a reparse 4481 * string and a check also made to make sure the symlink data does not 4482 * point to an existing file. 4483 * 4484 * return 0 if ok else -1. 4485 */ 4486 static int 4487 fs_reparse_mark(char *target, vattr_t *vap, xvattr_t *xvattr) 4488 { 4489 xoptattr_t *xoap; 4490 4491 if ((!target) || (!vap) || (!xvattr)) 4492 return (-1); 4493 4494 /* validate reparse string */ 4495 if (reparse_validate((const char *)target)) 4496 return (-1); 4497 4498 xva_init(xvattr); 4499 xvattr->xva_vattr = *vap; 4500 xvattr->xva_vattr.va_mask |= AT_XVATTR; 4501 xoap = xva_getxoptattr(xvattr); 4502 ASSERT(xoap); 4503 XVA_SET_REQ(xvattr, XAT_REPARSE); 4504 xoap->xoa_reparse = 1; 4505 4506 return (0); 4507 } 4508 4509 /* 4510 * Function to check whether a symlink is a reparse point. 4511 * Return B_TRUE if it is a reparse point, else return B_FALSE 4512 */ 4513 boolean_t 4514 vn_is_reparse(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4515 { 4516 xvattr_t xvattr; 4517 xoptattr_t *xoap; 4518 4519 if ((vp->v_type != VLNK) || 4520 !(vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR))) 4521 return (B_FALSE); 4522 4523 xva_init(&xvattr); 4524 xoap = xva_getxoptattr(&xvattr); 4525 ASSERT(xoap); 4526 XVA_SET_REQ(&xvattr, XAT_REPARSE); 4527 4528 if (VOP_GETATTR(vp, &xvattr.xva_vattr, 0, cr, ct)) 4529 return (B_FALSE); 4530 4531 if ((!(xvattr.xva_vattr.va_mask & AT_XVATTR)) || 4532 (!(XVA_ISSET_RTN(&xvattr, XAT_REPARSE)))) 4533 return (B_FALSE); 4534 4535 return (xoap->xoa_reparse ? B_TRUE : B_FALSE); 4536 } 4537