1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/t_lock.h> 45 #include <sys/errno.h> 46 #include <sys/cred.h> 47 #include <sys/user.h> 48 #include <sys/uio.h> 49 #include <sys/file.h> 50 #include <sys/pathname.h> 51 #include <sys/vfs.h> 52 #include <sys/vfs_opreg.h> 53 #include <sys/vnode.h> 54 #include <sys/rwstlock.h> 55 #include <sys/fem.h> 56 #include <sys/stat.h> 57 #include <sys/mode.h> 58 #include <sys/conf.h> 59 #include <sys/sysmacros.h> 60 #include <sys/cmn_err.h> 61 #include <sys/systm.h> 62 #include <sys/kmem.h> 63 #include <sys/debug.h> 64 #include <c2/audit.h> 65 #include <sys/acl.h> 66 #include <sys/nbmlock.h> 67 #include <sys/fcntl.h> 68 #include <fs/fs_subr.h> 69 70 /* Determine if this vnode is a file that is read-only */ 71 #define ISROFILE(vp) \ 72 ((vp)->v_type != VCHR && (vp)->v_type != VBLK && \ 73 (vp)->v_type != VFIFO && vn_is_readonly(vp)) 74 75 /* Tunable via /etc/system; used only by admin/install */ 76 int nfs_global_client_only; 77 78 /* 79 * Array of vopstats_t for per-FS-type vopstats. This array has the same 80 * number of entries as and parallel to the vfssw table. (Arguably, it could 81 * be part of the vfssw table.) Once it's initialized, it's accessed using 82 * the same fstype index that is used to index into the vfssw table. 83 */ 84 vopstats_t **vopstats_fstype; 85 86 /* vopstats initialization template used for fast initialization via bcopy() */ 87 static vopstats_t *vs_templatep; 88 89 /* Kmem cache handle for vsk_anchor_t allocations */ 90 kmem_cache_t *vsk_anchor_cache; 91 92 /* file events cleanup routine */ 93 extern void free_fopdata(vnode_t *); 94 95 /* 96 * Root of AVL tree for the kstats associated with vopstats. Lock protects 97 * updates to vsktat_tree. 98 */ 99 avl_tree_t vskstat_tree; 100 kmutex_t vskstat_tree_lock; 101 102 /* Global variable which enables/disables the vopstats collection */ 103 int vopstats_enabled = 1; 104 105 /* 106 * The following is the common set of actions needed to update the 107 * vopstats structure from a vnode op. Both VOPSTATS_UPDATE() and 108 * VOPSTATS_UPDATE_IO() do almost the same thing, except for the 109 * recording of the bytes transferred. Since the code is similar 110 * but small, it is nearly a duplicate. Consequently any changes 111 * to one may need to be reflected in the other. 112 * Rundown of the variables: 113 * vp - Pointer to the vnode 114 * counter - Partial name structure member to update in vopstats for counts 115 * bytecounter - Partial name structure member to update in vopstats for bytes 116 * bytesval - Value to update in vopstats for bytes 117 * fstype - Index into vsanchor_fstype[], same as index into vfssw[] 118 * vsp - Pointer to vopstats structure (either in vfs or vsanchor_fstype[i]) 119 */ 120 121 #define VOPSTATS_UPDATE(vp, counter) { \ 122 vfs_t *vfsp = (vp)->v_vfsp; \ 123 if (vfsp && vfsp->vfs_implp && \ 124 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 125 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 126 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 127 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 128 size_t, uint64_t *); \ 129 __dtrace_probe___fsinfo_##counter(vp, 0, stataddr); \ 130 (*stataddr)++; \ 131 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 132 vsp->n##counter.value.ui64++; \ 133 } \ 134 } \ 135 } 136 137 #define VOPSTATS_UPDATE_IO(vp, counter, bytecounter, bytesval) { \ 138 vfs_t *vfsp = (vp)->v_vfsp; \ 139 if (vfsp && vfsp->vfs_implp && \ 140 (vfsp->vfs_flag & VFS_STATS) && (vp)->v_type != VBAD) { \ 141 vopstats_t *vsp = &vfsp->vfs_vopstats; \ 142 uint64_t *stataddr = &(vsp->n##counter.value.ui64); \ 143 extern void __dtrace_probe___fsinfo_##counter(vnode_t *, \ 144 size_t, uint64_t *); \ 145 __dtrace_probe___fsinfo_##counter(vp, bytesval, stataddr); \ 146 (*stataddr)++; \ 147 vsp->bytecounter.value.ui64 += bytesval; \ 148 if ((vsp = vfsp->vfs_fstypevsp) != NULL) { \ 149 vsp->n##counter.value.ui64++; \ 150 vsp->bytecounter.value.ui64 += bytesval; \ 151 } \ 152 } \ 153 } 154 155 /* 156 * If the filesystem does not support XIDs map credential 157 * If the vfsp is NULL, perhaps we should also map? 158 */ 159 #define VOPXID_MAP_CR(vp, cr) { \ 160 vfs_t *vfsp = (vp)->v_vfsp; \ 161 if (vfsp != NULL && (vfsp->vfs_flag & VFS_XID) == 0) \ 162 cr = crgetmapped(cr); \ 163 } 164 165 /* 166 * Convert stat(2) formats to vnode types and vice versa. (Knows about 167 * numerical order of S_IFMT and vnode types.) 168 */ 169 enum vtype iftovt_tab[] = { 170 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON, 171 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON 172 }; 173 174 ushort_t vttoif_tab[] = { 175 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK, S_IFIFO, 176 S_IFDOOR, 0, S_IFSOCK, S_IFPORT, 0 177 }; 178 179 /* 180 * The system vnode cache. 181 */ 182 183 kmem_cache_t *vn_cache; 184 185 186 /* 187 * Vnode operations vector. 188 */ 189 190 static const fs_operation_trans_def_t vn_ops_table[] = { 191 VOPNAME_OPEN, offsetof(struct vnodeops, vop_open), 192 fs_nosys, fs_nosys, 193 194 VOPNAME_CLOSE, offsetof(struct vnodeops, vop_close), 195 fs_nosys, fs_nosys, 196 197 VOPNAME_READ, offsetof(struct vnodeops, vop_read), 198 fs_nosys, fs_nosys, 199 200 VOPNAME_WRITE, offsetof(struct vnodeops, vop_write), 201 fs_nosys, fs_nosys, 202 203 VOPNAME_IOCTL, offsetof(struct vnodeops, vop_ioctl), 204 fs_nosys, fs_nosys, 205 206 VOPNAME_SETFL, offsetof(struct vnodeops, vop_setfl), 207 fs_setfl, fs_nosys, 208 209 VOPNAME_GETATTR, offsetof(struct vnodeops, vop_getattr), 210 fs_nosys, fs_nosys, 211 212 VOPNAME_SETATTR, offsetof(struct vnodeops, vop_setattr), 213 fs_nosys, fs_nosys, 214 215 VOPNAME_ACCESS, offsetof(struct vnodeops, vop_access), 216 fs_nosys, fs_nosys, 217 218 VOPNAME_LOOKUP, offsetof(struct vnodeops, vop_lookup), 219 fs_nosys, fs_nosys, 220 221 VOPNAME_CREATE, offsetof(struct vnodeops, vop_create), 222 fs_nosys, fs_nosys, 223 224 VOPNAME_REMOVE, offsetof(struct vnodeops, vop_remove), 225 fs_nosys, fs_nosys, 226 227 VOPNAME_LINK, offsetof(struct vnodeops, vop_link), 228 fs_nosys, fs_nosys, 229 230 VOPNAME_RENAME, offsetof(struct vnodeops, vop_rename), 231 fs_nosys, fs_nosys, 232 233 VOPNAME_MKDIR, offsetof(struct vnodeops, vop_mkdir), 234 fs_nosys, fs_nosys, 235 236 VOPNAME_RMDIR, offsetof(struct vnodeops, vop_rmdir), 237 fs_nosys, fs_nosys, 238 239 VOPNAME_READDIR, offsetof(struct vnodeops, vop_readdir), 240 fs_nosys, fs_nosys, 241 242 VOPNAME_SYMLINK, offsetof(struct vnodeops, vop_symlink), 243 fs_nosys, fs_nosys, 244 245 VOPNAME_READLINK, offsetof(struct vnodeops, vop_readlink), 246 fs_nosys, fs_nosys, 247 248 VOPNAME_FSYNC, offsetof(struct vnodeops, vop_fsync), 249 fs_nosys, fs_nosys, 250 251 VOPNAME_INACTIVE, offsetof(struct vnodeops, vop_inactive), 252 fs_nosys, fs_nosys, 253 254 VOPNAME_FID, offsetof(struct vnodeops, vop_fid), 255 fs_nosys, fs_nosys, 256 257 VOPNAME_RWLOCK, offsetof(struct vnodeops, vop_rwlock), 258 fs_rwlock, fs_rwlock, 259 260 VOPNAME_RWUNLOCK, offsetof(struct vnodeops, vop_rwunlock), 261 (fs_generic_func_p) fs_rwunlock, 262 (fs_generic_func_p) fs_rwunlock, /* no errors allowed */ 263 264 VOPNAME_SEEK, offsetof(struct vnodeops, vop_seek), 265 fs_nosys, fs_nosys, 266 267 VOPNAME_CMP, offsetof(struct vnodeops, vop_cmp), 268 fs_cmp, fs_cmp, /* no errors allowed */ 269 270 VOPNAME_FRLOCK, offsetof(struct vnodeops, vop_frlock), 271 fs_frlock, fs_nosys, 272 273 VOPNAME_SPACE, offsetof(struct vnodeops, vop_space), 274 fs_nosys, fs_nosys, 275 276 VOPNAME_REALVP, offsetof(struct vnodeops, vop_realvp), 277 fs_nosys, fs_nosys, 278 279 VOPNAME_GETPAGE, offsetof(struct vnodeops, vop_getpage), 280 fs_nosys, fs_nosys, 281 282 VOPNAME_PUTPAGE, offsetof(struct vnodeops, vop_putpage), 283 fs_nosys, fs_nosys, 284 285 VOPNAME_MAP, offsetof(struct vnodeops, vop_map), 286 (fs_generic_func_p) fs_nosys_map, 287 (fs_generic_func_p) fs_nosys_map, 288 289 VOPNAME_ADDMAP, offsetof(struct vnodeops, vop_addmap), 290 (fs_generic_func_p) fs_nosys_addmap, 291 (fs_generic_func_p) fs_nosys_addmap, 292 293 VOPNAME_DELMAP, offsetof(struct vnodeops, vop_delmap), 294 fs_nosys, fs_nosys, 295 296 VOPNAME_POLL, offsetof(struct vnodeops, vop_poll), 297 (fs_generic_func_p) fs_poll, (fs_generic_func_p) fs_nosys_poll, 298 299 VOPNAME_DUMP, offsetof(struct vnodeops, vop_dump), 300 fs_nosys, fs_nosys, 301 302 VOPNAME_PATHCONF, offsetof(struct vnodeops, vop_pathconf), 303 fs_pathconf, fs_nosys, 304 305 VOPNAME_PAGEIO, offsetof(struct vnodeops, vop_pageio), 306 fs_nosys, fs_nosys, 307 308 VOPNAME_DUMPCTL, offsetof(struct vnodeops, vop_dumpctl), 309 fs_nosys, fs_nosys, 310 311 VOPNAME_DISPOSE, offsetof(struct vnodeops, vop_dispose), 312 (fs_generic_func_p) fs_dispose, 313 (fs_generic_func_p) fs_nodispose, 314 315 VOPNAME_SETSECATTR, offsetof(struct vnodeops, vop_setsecattr), 316 fs_nosys, fs_nosys, 317 318 VOPNAME_GETSECATTR, offsetof(struct vnodeops, vop_getsecattr), 319 fs_fab_acl, fs_nosys, 320 321 VOPNAME_SHRLOCK, offsetof(struct vnodeops, vop_shrlock), 322 fs_shrlock, fs_nosys, 323 324 VOPNAME_VNEVENT, offsetof(struct vnodeops, vop_vnevent), 325 (fs_generic_func_p) fs_vnevent_nosupport, 326 (fs_generic_func_p) fs_vnevent_nosupport, 327 328 NULL, 0, NULL, NULL 329 }; 330 331 /* 332 * Used by the AVL routines to compare two vsk_anchor_t structures in the tree. 333 * We use the f_fsid reported by VFS_STATVFS() since we use that for the 334 * kstat name. 335 */ 336 static int 337 vska_compar(const void *n1, const void *n2) 338 { 339 int ret; 340 ulong_t p1 = ((vsk_anchor_t *)n1)->vsk_fsid; 341 ulong_t p2 = ((vsk_anchor_t *)n2)->vsk_fsid; 342 343 if (p1 < p2) { 344 ret = -1; 345 } else if (p1 > p2) { 346 ret = 1; 347 } else { 348 ret = 0; 349 } 350 351 return (ret); 352 } 353 354 /* 355 * Used to create a single template which will be bcopy()ed to a newly 356 * allocated vsanchor_combo_t structure in new_vsanchor(), below. 357 */ 358 static vopstats_t * 359 create_vopstats_template() 360 { 361 vopstats_t *vsp; 362 363 vsp = kmem_alloc(sizeof (vopstats_t), KM_SLEEP); 364 bzero(vsp, sizeof (*vsp)); /* Start fresh */ 365 366 /* VOP_OPEN */ 367 kstat_named_init(&vsp->nopen, "nopen", KSTAT_DATA_UINT64); 368 /* VOP_CLOSE */ 369 kstat_named_init(&vsp->nclose, "nclose", KSTAT_DATA_UINT64); 370 /* VOP_READ I/O */ 371 kstat_named_init(&vsp->nread, "nread", KSTAT_DATA_UINT64); 372 kstat_named_init(&vsp->read_bytes, "read_bytes", KSTAT_DATA_UINT64); 373 /* VOP_WRITE I/O */ 374 kstat_named_init(&vsp->nwrite, "nwrite", KSTAT_DATA_UINT64); 375 kstat_named_init(&vsp->write_bytes, "write_bytes", KSTAT_DATA_UINT64); 376 /* VOP_IOCTL */ 377 kstat_named_init(&vsp->nioctl, "nioctl", KSTAT_DATA_UINT64); 378 /* VOP_SETFL */ 379 kstat_named_init(&vsp->nsetfl, "nsetfl", KSTAT_DATA_UINT64); 380 /* VOP_GETATTR */ 381 kstat_named_init(&vsp->ngetattr, "ngetattr", KSTAT_DATA_UINT64); 382 /* VOP_SETATTR */ 383 kstat_named_init(&vsp->nsetattr, "nsetattr", KSTAT_DATA_UINT64); 384 /* VOP_ACCESS */ 385 kstat_named_init(&vsp->naccess, "naccess", KSTAT_DATA_UINT64); 386 /* VOP_LOOKUP */ 387 kstat_named_init(&vsp->nlookup, "nlookup", KSTAT_DATA_UINT64); 388 /* VOP_CREATE */ 389 kstat_named_init(&vsp->ncreate, "ncreate", KSTAT_DATA_UINT64); 390 /* VOP_REMOVE */ 391 kstat_named_init(&vsp->nremove, "nremove", KSTAT_DATA_UINT64); 392 /* VOP_LINK */ 393 kstat_named_init(&vsp->nlink, "nlink", KSTAT_DATA_UINT64); 394 /* VOP_RENAME */ 395 kstat_named_init(&vsp->nrename, "nrename", KSTAT_DATA_UINT64); 396 /* VOP_MKDIR */ 397 kstat_named_init(&vsp->nmkdir, "nmkdir", KSTAT_DATA_UINT64); 398 /* VOP_RMDIR */ 399 kstat_named_init(&vsp->nrmdir, "nrmdir", KSTAT_DATA_UINT64); 400 /* VOP_READDIR I/O */ 401 kstat_named_init(&vsp->nreaddir, "nreaddir", KSTAT_DATA_UINT64); 402 kstat_named_init(&vsp->readdir_bytes, "readdir_bytes", 403 KSTAT_DATA_UINT64); 404 /* VOP_SYMLINK */ 405 kstat_named_init(&vsp->nsymlink, "nsymlink", KSTAT_DATA_UINT64); 406 /* VOP_READLINK */ 407 kstat_named_init(&vsp->nreadlink, "nreadlink", KSTAT_DATA_UINT64); 408 /* VOP_FSYNC */ 409 kstat_named_init(&vsp->nfsync, "nfsync", KSTAT_DATA_UINT64); 410 /* VOP_INACTIVE */ 411 kstat_named_init(&vsp->ninactive, "ninactive", KSTAT_DATA_UINT64); 412 /* VOP_FID */ 413 kstat_named_init(&vsp->nfid, "nfid", KSTAT_DATA_UINT64); 414 /* VOP_RWLOCK */ 415 kstat_named_init(&vsp->nrwlock, "nrwlock", KSTAT_DATA_UINT64); 416 /* VOP_RWUNLOCK */ 417 kstat_named_init(&vsp->nrwunlock, "nrwunlock", KSTAT_DATA_UINT64); 418 /* VOP_SEEK */ 419 kstat_named_init(&vsp->nseek, "nseek", KSTAT_DATA_UINT64); 420 /* VOP_CMP */ 421 kstat_named_init(&vsp->ncmp, "ncmp", KSTAT_DATA_UINT64); 422 /* VOP_FRLOCK */ 423 kstat_named_init(&vsp->nfrlock, "nfrlock", KSTAT_DATA_UINT64); 424 /* VOP_SPACE */ 425 kstat_named_init(&vsp->nspace, "nspace", KSTAT_DATA_UINT64); 426 /* VOP_REALVP */ 427 kstat_named_init(&vsp->nrealvp, "nrealvp", KSTAT_DATA_UINT64); 428 /* VOP_GETPAGE */ 429 kstat_named_init(&vsp->ngetpage, "ngetpage", KSTAT_DATA_UINT64); 430 /* VOP_PUTPAGE */ 431 kstat_named_init(&vsp->nputpage, "nputpage", KSTAT_DATA_UINT64); 432 /* VOP_MAP */ 433 kstat_named_init(&vsp->nmap, "nmap", KSTAT_DATA_UINT64); 434 /* VOP_ADDMAP */ 435 kstat_named_init(&vsp->naddmap, "naddmap", KSTAT_DATA_UINT64); 436 /* VOP_DELMAP */ 437 kstat_named_init(&vsp->ndelmap, "ndelmap", KSTAT_DATA_UINT64); 438 /* VOP_POLL */ 439 kstat_named_init(&vsp->npoll, "npoll", KSTAT_DATA_UINT64); 440 /* VOP_DUMP */ 441 kstat_named_init(&vsp->ndump, "ndump", KSTAT_DATA_UINT64); 442 /* VOP_PATHCONF */ 443 kstat_named_init(&vsp->npathconf, "npathconf", KSTAT_DATA_UINT64); 444 /* VOP_PAGEIO */ 445 kstat_named_init(&vsp->npageio, "npageio", KSTAT_DATA_UINT64); 446 /* VOP_DUMPCTL */ 447 kstat_named_init(&vsp->ndumpctl, "ndumpctl", KSTAT_DATA_UINT64); 448 /* VOP_DISPOSE */ 449 kstat_named_init(&vsp->ndispose, "ndispose", KSTAT_DATA_UINT64); 450 /* VOP_SETSECATTR */ 451 kstat_named_init(&vsp->nsetsecattr, "nsetsecattr", KSTAT_DATA_UINT64); 452 /* VOP_GETSECATTR */ 453 kstat_named_init(&vsp->ngetsecattr, "ngetsecattr", KSTAT_DATA_UINT64); 454 /* VOP_SHRLOCK */ 455 kstat_named_init(&vsp->nshrlock, "nshrlock", KSTAT_DATA_UINT64); 456 /* VOP_VNEVENT */ 457 kstat_named_init(&vsp->nvnevent, "nvnevent", KSTAT_DATA_UINT64); 458 459 return (vsp); 460 } 461 462 /* 463 * Creates a kstat structure associated with a vopstats structure. 464 */ 465 kstat_t * 466 new_vskstat(char *ksname, vopstats_t *vsp) 467 { 468 kstat_t *ksp; 469 470 if (!vopstats_enabled) { 471 return (NULL); 472 } 473 474 ksp = kstat_create("unix", 0, ksname, "misc", KSTAT_TYPE_NAMED, 475 sizeof (vopstats_t)/sizeof (kstat_named_t), 476 KSTAT_FLAG_VIRTUAL|KSTAT_FLAG_WRITABLE); 477 if (ksp) { 478 ksp->ks_data = vsp; 479 kstat_install(ksp); 480 } 481 482 return (ksp); 483 } 484 485 /* 486 * Called from vfsinit() to initialize the support mechanisms for vopstats 487 */ 488 void 489 vopstats_startup() 490 { 491 if (!vopstats_enabled) 492 return; 493 494 /* 495 * Creates the AVL tree which holds per-vfs vopstat anchors. This 496 * is necessary since we need to check if a kstat exists before we 497 * attempt to create it. Also, initialize its lock. 498 */ 499 avl_create(&vskstat_tree, vska_compar, sizeof (vsk_anchor_t), 500 offsetof(vsk_anchor_t, vsk_node)); 501 mutex_init(&vskstat_tree_lock, NULL, MUTEX_DEFAULT, NULL); 502 503 vsk_anchor_cache = kmem_cache_create("vsk_anchor_cache", 504 sizeof (vsk_anchor_t), sizeof (uintptr_t), NULL, NULL, NULL, 505 NULL, NULL, 0); 506 507 /* 508 * Set up the array of pointers for the vopstats-by-FS-type. 509 * The entries will be allocated/initialized as each file system 510 * goes through modload/mod_installfs. 511 */ 512 vopstats_fstype = (vopstats_t **)kmem_zalloc( 513 (sizeof (vopstats_t *) * nfstype), KM_SLEEP); 514 515 /* Set up the global vopstats initialization template */ 516 vs_templatep = create_vopstats_template(); 517 } 518 519 /* 520 * We need to have the all of the counters zeroed. 521 * The initialization of the vopstats_t includes on the order of 522 * 50 calls to kstat_named_init(). Rather that do that on every call, 523 * we do it once in a template (vs_templatep) then bcopy it over. 524 */ 525 void 526 initialize_vopstats(vopstats_t *vsp) 527 { 528 if (vsp == NULL) 529 return; 530 531 bcopy(vs_templatep, vsp, sizeof (vopstats_t)); 532 } 533 534 /* 535 * If possible, determine which vopstats by fstype to use and 536 * return a pointer to the caller. 537 */ 538 vopstats_t * 539 get_fstype_vopstats(vfs_t *vfsp, struct vfssw *vswp) 540 { 541 int fstype = 0; /* Index into vfssw[] */ 542 vopstats_t *vsp = NULL; 543 544 if (vfsp == NULL || (vfsp->vfs_flag & VFS_STATS) == 0 || 545 !vopstats_enabled) 546 return (NULL); 547 /* 548 * Set up the fstype. We go to so much trouble because all versions 549 * of NFS use the same fstype in their vfs even though they have 550 * distinct entries in the vfssw[] table. 551 * NOTE: A special vfs (e.g., EIO_vfs) may not have an entry. 552 */ 553 if (vswp) { 554 fstype = vswp - vfssw; /* Gets us the index */ 555 } else { 556 fstype = vfsp->vfs_fstype; 557 } 558 559 /* 560 * Point to the per-fstype vopstats. The only valid values are 561 * non-zero positive values less than the number of vfssw[] table 562 * entries. 563 */ 564 if (fstype > 0 && fstype < nfstype) { 565 vsp = vopstats_fstype[fstype]; 566 } 567 568 return (vsp); 569 } 570 571 /* 572 * Generate a kstat name, create the kstat structure, and allocate a 573 * vsk_anchor_t to hold it together. Return the pointer to the vsk_anchor_t 574 * to the caller. This must only be called from a mount. 575 */ 576 vsk_anchor_t * 577 get_vskstat_anchor(vfs_t *vfsp) 578 { 579 char kstatstr[KSTAT_STRLEN]; /* kstat name for vopstats */ 580 statvfs64_t statvfsbuf; /* Needed to find f_fsid */ 581 vsk_anchor_t *vskp = NULL; /* vfs <--> kstat anchor */ 582 kstat_t *ksp; /* Ptr to new kstat */ 583 avl_index_t where; /* Location in the AVL tree */ 584 585 if (vfsp == NULL || vfsp->vfs_implp == NULL || 586 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 587 return (NULL); 588 589 /* Need to get the fsid to build a kstat name */ 590 if (VFS_STATVFS(vfsp, &statvfsbuf) == 0) { 591 /* Create a name for our kstats based on fsid */ 592 (void) snprintf(kstatstr, KSTAT_STRLEN, "%s%lx", 593 VOPSTATS_STR, statvfsbuf.f_fsid); 594 595 /* Allocate and initialize the vsk_anchor_t */ 596 vskp = kmem_cache_alloc(vsk_anchor_cache, KM_SLEEP); 597 bzero(vskp, sizeof (*vskp)); 598 vskp->vsk_fsid = statvfsbuf.f_fsid; 599 600 mutex_enter(&vskstat_tree_lock); 601 if (avl_find(&vskstat_tree, vskp, &where) == NULL) { 602 avl_insert(&vskstat_tree, vskp, where); 603 mutex_exit(&vskstat_tree_lock); 604 605 /* 606 * Now that we've got the anchor in the AVL 607 * tree, we can create the kstat. 608 */ 609 ksp = new_vskstat(kstatstr, &vfsp->vfs_vopstats); 610 if (ksp) { 611 vskp->vsk_ksp = ksp; 612 } 613 } else { 614 /* Oops, found one! Release memory and lock. */ 615 mutex_exit(&vskstat_tree_lock); 616 kmem_cache_free(vsk_anchor_cache, vskp); 617 vskp = NULL; 618 } 619 } 620 return (vskp); 621 } 622 623 /* 624 * We're in the process of tearing down the vfs and need to cleanup 625 * the data structures associated with the vopstats. Must only be called 626 * from dounmount(). 627 */ 628 void 629 teardown_vopstats(vfs_t *vfsp) 630 { 631 vsk_anchor_t *vskap; 632 avl_index_t where; 633 634 if (vfsp == NULL || vfsp->vfs_implp == NULL || 635 (vfsp->vfs_flag & VFS_STATS) == 0 || !vopstats_enabled) 636 return; 637 638 /* This is a safe check since VFS_STATS must be set (see above) */ 639 if ((vskap = vfsp->vfs_vskap) == NULL) 640 return; 641 642 /* Whack the pointer right away */ 643 vfsp->vfs_vskap = NULL; 644 645 /* Lock the tree, remove the node, and delete the kstat */ 646 mutex_enter(&vskstat_tree_lock); 647 if (avl_find(&vskstat_tree, vskap, &where)) { 648 avl_remove(&vskstat_tree, vskap); 649 } 650 651 if (vskap->vsk_ksp) { 652 kstat_delete(vskap->vsk_ksp); 653 } 654 mutex_exit(&vskstat_tree_lock); 655 656 kmem_cache_free(vsk_anchor_cache, vskap); 657 } 658 659 /* 660 * Read or write a vnode. Called from kernel code. 661 */ 662 int 663 vn_rdwr( 664 enum uio_rw rw, 665 struct vnode *vp, 666 caddr_t base, 667 ssize_t len, 668 offset_t offset, 669 enum uio_seg seg, 670 int ioflag, 671 rlim64_t ulimit, /* meaningful only if rw is UIO_WRITE */ 672 cred_t *cr, 673 ssize_t *residp) 674 { 675 struct uio uio; 676 struct iovec iov; 677 int error; 678 int in_crit = 0; 679 680 if (rw == UIO_WRITE && ISROFILE(vp)) 681 return (EROFS); 682 683 if (len < 0) 684 return (EIO); 685 686 VOPXID_MAP_CR(vp, cr); 687 688 iov.iov_base = base; 689 iov.iov_len = len; 690 uio.uio_iov = &iov; 691 uio.uio_iovcnt = 1; 692 uio.uio_loffset = offset; 693 uio.uio_segflg = (short)seg; 694 uio.uio_resid = len; 695 uio.uio_llimit = ulimit; 696 697 /* 698 * We have to enter the critical region before calling VOP_RWLOCK 699 * to avoid a deadlock with ufs. 700 */ 701 if (nbl_need_check(vp)) { 702 int svmand; 703 704 nbl_start_crit(vp, RW_READER); 705 in_crit = 1; 706 error = nbl_svmand(vp, cr, &svmand); 707 if (error != 0) 708 goto done; 709 if (nbl_conflict(vp, rw == UIO_WRITE ? NBL_WRITE : NBL_READ, 710 uio.uio_offset, uio.uio_resid, svmand)) { 711 error = EACCES; 712 goto done; 713 } 714 } 715 716 (void) VOP_RWLOCK(vp, 717 rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, NULL); 718 if (rw == UIO_WRITE) { 719 uio.uio_fmode = FWRITE; 720 uio.uio_extflg = UIO_COPY_DEFAULT; 721 error = VOP_WRITE(vp, &uio, ioflag, cr, NULL); 722 } else { 723 uio.uio_fmode = FREAD; 724 uio.uio_extflg = UIO_COPY_CACHED; 725 error = VOP_READ(vp, &uio, ioflag, cr, NULL); 726 } 727 VOP_RWUNLOCK(vp, rw == UIO_WRITE ? V_WRITELOCK_TRUE : V_WRITELOCK_FALSE, 728 NULL); 729 if (residp) 730 *residp = uio.uio_resid; 731 else if (uio.uio_resid) 732 error = EIO; 733 734 done: 735 if (in_crit) 736 nbl_end_crit(vp); 737 return (error); 738 } 739 740 /* 741 * Release a vnode. Call VOP_INACTIVE on last reference or 742 * decrement reference count. 743 * 744 * To avoid race conditions, the v_count is left at 1 for 745 * the call to VOP_INACTIVE. This prevents another thread 746 * from reclaiming and releasing the vnode *before* the 747 * VOP_INACTIVE routine has a chance to destroy the vnode. 748 * We can't have more than 1 thread calling VOP_INACTIVE 749 * on a vnode. 750 */ 751 void 752 vn_rele(vnode_t *vp) 753 { 754 if (vp->v_count == 0) 755 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 756 mutex_enter(&vp->v_lock); 757 if (vp->v_count == 1) { 758 mutex_exit(&vp->v_lock); 759 VOP_INACTIVE(vp, CRED()); 760 } else { 761 vp->v_count--; 762 mutex_exit(&vp->v_lock); 763 } 764 } 765 766 /* 767 * Like vn_rele() except that it clears v_stream under v_lock. 768 * This is used by sockfs when it dismantels the association between 769 * the sockfs node and the vnode in the underlaying file system. 770 * v_lock has to be held to prevent a thread coming through the lookupname 771 * path from accessing a stream head that is going away. 772 */ 773 void 774 vn_rele_stream(vnode_t *vp) 775 { 776 if (vp->v_count == 0) 777 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0"); 778 mutex_enter(&vp->v_lock); 779 vp->v_stream = NULL; 780 if (vp->v_count == 1) { 781 mutex_exit(&vp->v_lock); 782 VOP_INACTIVE(vp, CRED()); 783 } else { 784 vp->v_count--; 785 mutex_exit(&vp->v_lock); 786 } 787 } 788 789 int 790 vn_open( 791 char *pnamep, 792 enum uio_seg seg, 793 int filemode, 794 int createmode, 795 struct vnode **vpp, 796 enum create crwhy, 797 mode_t umask) 798 { 799 return (vn_openat(pnamep, seg, filemode, 800 createmode, vpp, crwhy, umask, NULL)); 801 } 802 803 804 /* 805 * Open/create a vnode. 806 * This may be callable by the kernel, the only known use 807 * of user context being that the current user credentials 808 * are used for permissions. crwhy is defined iff filemode & FCREAT. 809 */ 810 int 811 vn_openat( 812 char *pnamep, 813 enum uio_seg seg, 814 int filemode, 815 int createmode, 816 struct vnode **vpp, 817 enum create crwhy, 818 mode_t umask, 819 struct vnode *startvp) 820 { 821 struct vnode *vp; 822 int mode; 823 int error; 824 int in_crit = 0; 825 struct vattr vattr; 826 enum symfollow follow; 827 int estale_retry = 0; 828 829 mode = 0; 830 if (filemode & FREAD) 831 mode |= VREAD; 832 if (filemode & (FWRITE|FTRUNC)) 833 mode |= VWRITE; 834 835 /* symlink interpretation */ 836 if (filemode & FNOFOLLOW) 837 follow = NO_FOLLOW; 838 else 839 follow = FOLLOW; 840 841 top: 842 if (filemode & FCREAT) { 843 enum vcexcl excl; 844 845 /* 846 * Wish to create a file. 847 */ 848 vattr.va_type = VREG; 849 vattr.va_mode = createmode; 850 vattr.va_mask = AT_TYPE|AT_MODE; 851 if (filemode & FTRUNC) { 852 vattr.va_size = 0; 853 vattr.va_mask |= AT_SIZE; 854 } 855 if (filemode & FEXCL) 856 excl = EXCL; 857 else 858 excl = NONEXCL; 859 860 if (error = 861 vn_createat(pnamep, seg, &vattr, excl, mode, &vp, crwhy, 862 (filemode & ~(FTRUNC|FEXCL)), 863 umask, startvp)) 864 return (error); 865 } else { 866 /* 867 * Wish to open a file. Just look it up. 868 */ 869 if (error = lookupnameat(pnamep, seg, follow, 870 NULLVPP, &vp, startvp)) { 871 if ((error == ESTALE) && 872 fs_need_estale_retry(estale_retry++)) 873 goto top; 874 return (error); 875 } 876 877 /* 878 * Get the attributes to check whether file is large. 879 * We do this only if the FOFFMAX flag is not set and 880 * only for regular files. 881 */ 882 883 if (!(filemode & FOFFMAX) && (vp->v_type == VREG)) { 884 vattr.va_mask = AT_SIZE; 885 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 886 goto out; 887 } 888 if (vattr.va_size > (u_offset_t)MAXOFF32_T) { 889 /* 890 * Large File API - regular open fails 891 * if FOFFMAX flag is set in file mode 892 */ 893 error = EOVERFLOW; 894 goto out; 895 } 896 } 897 /* 898 * Can't write directories, active texts, or 899 * read-only filesystems. Can't truncate files 900 * on which mandatory locking is in effect. 901 */ 902 if (filemode & (FWRITE|FTRUNC)) { 903 /* 904 * Allow writable directory if VDIROPEN flag is set. 905 */ 906 if (vp->v_type == VDIR && !(vp->v_flag & VDIROPEN)) { 907 error = EISDIR; 908 goto out; 909 } 910 if (ISROFILE(vp)) { 911 error = EROFS; 912 goto out; 913 } 914 /* 915 * Can't truncate files on which mandatory locking 916 * or non-blocking mandatory locking is in effect. 917 */ 918 if (filemode & FTRUNC) { 919 vnode_t *rvp; 920 921 if (VOP_REALVP(vp, &rvp) != 0) 922 rvp = vp; 923 if (nbl_need_check(vp)) { 924 nbl_start_crit(vp, RW_READER); 925 in_crit = 1; 926 vattr.va_mask = AT_MODE|AT_SIZE; 927 if ((error = VOP_GETATTR(vp, &vattr, 0, 928 CRED())) == 0) { 929 if (rvp->v_filocks != NULL) 930 if (MANDLOCK(vp, 931 vattr.va_mode)) 932 error = EAGAIN; 933 if (!error) { 934 if (nbl_conflict(vp, 935 NBL_WRITE, 0, 936 vattr.va_size, 0)) 937 error = EACCES; 938 } 939 } 940 } else if (rvp->v_filocks != NULL) { 941 vattr.va_mask = AT_MODE; 942 if ((error = VOP_GETATTR(vp, &vattr, 943 0, CRED())) == 0 && MANDLOCK(vp, 944 vattr.va_mode)) 945 error = EAGAIN; 946 } 947 } 948 if (error) 949 goto out; 950 } 951 /* 952 * Check permissions. 953 */ 954 if (error = VOP_ACCESS(vp, mode, 0, CRED())) 955 goto out; 956 } 957 958 /* 959 * Do remaining checks for FNOFOLLOW and FNOLINKS. 960 */ 961 if ((filemode & FNOFOLLOW) && vp->v_type == VLNK) { 962 error = ELOOP; 963 goto out; 964 } 965 if (filemode & FNOLINKS) { 966 vattr.va_mask = AT_NLINK; 967 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 968 goto out; 969 } 970 if (vattr.va_nlink != 1) { 971 error = EMLINK; 972 goto out; 973 } 974 } 975 976 /* 977 * Opening a socket corresponding to the AF_UNIX pathname 978 * in the filesystem name space is not supported. 979 * However, VSOCK nodes in namefs are supported in order 980 * to make fattach work for sockets. 981 * 982 * XXX This uses VOP_REALVP to distinguish between 983 * an unopened namefs node (where VOP_REALVP returns a 984 * different VSOCK vnode) and a VSOCK created by vn_create 985 * in some file system (where VOP_REALVP would never return 986 * a different vnode). 987 */ 988 if (vp->v_type == VSOCK) { 989 struct vnode *nvp; 990 991 error = VOP_REALVP(vp, &nvp); 992 if (error != 0 || nvp == NULL || nvp == vp || 993 nvp->v_type != VSOCK) { 994 error = EOPNOTSUPP; 995 goto out; 996 } 997 } 998 /* 999 * Do opening protocol. 1000 */ 1001 error = VOP_OPEN(&vp, filemode, CRED()); 1002 /* 1003 * Truncate if required. 1004 */ 1005 if (error == 0 && (filemode & FTRUNC) && !(filemode & FCREAT)) { 1006 vattr.va_size = 0; 1007 vattr.va_mask = AT_SIZE; 1008 if ((error = VOP_SETATTR(vp, &vattr, 0, CRED(), NULL)) != 0) 1009 (void) VOP_CLOSE(vp, filemode, 1, (offset_t)0, CRED()); 1010 } 1011 out: 1012 ASSERT(vp->v_count > 0); 1013 1014 if (in_crit) { 1015 nbl_end_crit(vp); 1016 in_crit = 0; 1017 } 1018 if (error) { 1019 /* 1020 * The following clause was added to handle a problem 1021 * with NFS consistency. It is possible that a lookup 1022 * of the file to be opened succeeded, but the file 1023 * itself doesn't actually exist on the server. This 1024 * is chiefly due to the DNLC containing an entry for 1025 * the file which has been removed on the server. In 1026 * this case, we just start over. If there was some 1027 * other cause for the ESTALE error, then the lookup 1028 * of the file will fail and the error will be returned 1029 * above instead of looping around from here. 1030 */ 1031 VN_RELE(vp); 1032 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1033 goto top; 1034 } else 1035 *vpp = vp; 1036 return (error); 1037 } 1038 1039 int 1040 vn_create( 1041 char *pnamep, 1042 enum uio_seg seg, 1043 struct vattr *vap, 1044 enum vcexcl excl, 1045 int mode, 1046 struct vnode **vpp, 1047 enum create why, 1048 int flag, 1049 mode_t umask) 1050 { 1051 return (vn_createat(pnamep, seg, vap, excl, mode, vpp, 1052 why, flag, umask, NULL)); 1053 } 1054 1055 /* 1056 * Create a vnode (makenode). 1057 */ 1058 int 1059 vn_createat( 1060 char *pnamep, 1061 enum uio_seg seg, 1062 struct vattr *vap, 1063 enum vcexcl excl, 1064 int mode, 1065 struct vnode **vpp, 1066 enum create why, 1067 int flag, 1068 mode_t umask, 1069 struct vnode *startvp) 1070 { 1071 struct vnode *dvp; /* ptr to parent dir vnode */ 1072 struct vnode *vp = NULL; 1073 struct pathname pn; 1074 int error; 1075 int in_crit = 0; 1076 struct vattr vattr; 1077 enum symfollow follow; 1078 int estale_retry = 0; 1079 1080 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 1081 1082 /* symlink interpretation */ 1083 if ((flag & FNOFOLLOW) || excl == EXCL) 1084 follow = NO_FOLLOW; 1085 else 1086 follow = FOLLOW; 1087 flag &= ~(FNOFOLLOW|FNOLINKS); 1088 1089 top: 1090 /* 1091 * Lookup directory. 1092 * If new object is a file, call lower level to create it. 1093 * Note that it is up to the lower level to enforce exclusive 1094 * creation, if the file is already there. 1095 * This allows the lower level to do whatever 1096 * locking or protocol that is needed to prevent races. 1097 * If the new object is directory call lower level to make 1098 * the new directory, with "." and "..". 1099 */ 1100 if (error = pn_get(pnamep, seg, &pn)) 1101 return (error); 1102 #ifdef C2_AUDIT 1103 if (audit_active) 1104 audit_vncreate_start(); 1105 #endif /* C2_AUDIT */ 1106 dvp = NULL; 1107 *vpp = NULL; 1108 /* 1109 * lookup will find the parent directory for the vnode. 1110 * When it is done the pn holds the name of the entry 1111 * in the directory. 1112 * If this is a non-exclusive create we also find the node itself. 1113 */ 1114 error = lookuppnat(&pn, NULL, follow, &dvp, 1115 (excl == EXCL) ? NULLVPP : vpp, startvp); 1116 if (error) { 1117 pn_free(&pn); 1118 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1119 goto top; 1120 if (why == CRMKDIR && error == EINVAL) 1121 error = EEXIST; /* SVID */ 1122 return (error); 1123 } 1124 1125 if (why != CRMKNOD) 1126 vap->va_mode &= ~VSVTX; 1127 1128 /* 1129 * If default ACLs are defined for the directory don't apply the 1130 * umask if umask is passed. 1131 */ 1132 1133 if (umask) { 1134 1135 vsecattr_t vsec; 1136 1137 vsec.vsa_aclcnt = 0; 1138 vsec.vsa_aclentp = NULL; 1139 vsec.vsa_dfaclcnt = 0; 1140 vsec.vsa_dfaclentp = NULL; 1141 vsec.vsa_mask = VSA_DFACLCNT; 1142 error = VOP_GETSECATTR(dvp, &vsec, 0, CRED()); 1143 /* 1144 * If error is ENOSYS then treat it as no error 1145 * Don't want to force all file systems to support 1146 * aclent_t style of ACL's. 1147 */ 1148 if (error == ENOSYS) 1149 error = 0; 1150 if (error) { 1151 if (*vpp != NULL) 1152 VN_RELE(*vpp); 1153 goto out; 1154 } else { 1155 /* 1156 * Apply the umask if no default ACLs. 1157 */ 1158 if (vsec.vsa_dfaclcnt == 0) 1159 vap->va_mode &= ~umask; 1160 1161 /* 1162 * VOP_GETSECATTR() may have allocated memory for 1163 * ACLs we didn't request, so double-check and 1164 * free it if necessary. 1165 */ 1166 if (vsec.vsa_aclcnt && vsec.vsa_aclentp != NULL) 1167 kmem_free((caddr_t)vsec.vsa_aclentp, 1168 vsec.vsa_aclcnt * sizeof (aclent_t)); 1169 if (vsec.vsa_dfaclcnt && vsec.vsa_dfaclentp != NULL) 1170 kmem_free((caddr_t)vsec.vsa_dfaclentp, 1171 vsec.vsa_dfaclcnt * sizeof (aclent_t)); 1172 } 1173 } 1174 1175 /* 1176 * In general we want to generate EROFS if the file system is 1177 * readonly. However, POSIX (IEEE Std. 1003.1) section 5.3.1 1178 * documents the open system call, and it says that O_CREAT has no 1179 * effect if the file already exists. Bug 1119649 states 1180 * that open(path, O_CREAT, ...) fails when attempting to open an 1181 * existing file on a read only file system. Thus, the first part 1182 * of the following if statement has 3 checks: 1183 * if the file exists && 1184 * it is being open with write access && 1185 * the file system is read only 1186 * then generate EROFS 1187 */ 1188 if ((*vpp != NULL && (mode & VWRITE) && ISROFILE(*vpp)) || 1189 (*vpp == NULL && dvp->v_vfsp->vfs_flag & VFS_RDONLY)) { 1190 if (*vpp) 1191 VN_RELE(*vpp); 1192 error = EROFS; 1193 } else if (excl == NONEXCL && *vpp != NULL) { 1194 vnode_t *rvp; 1195 1196 /* 1197 * File already exists. If a mandatory lock has been 1198 * applied, return error. 1199 */ 1200 vp = *vpp; 1201 if (VOP_REALVP(vp, &rvp) != 0) 1202 rvp = vp; 1203 if ((vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { 1204 nbl_start_crit(vp, RW_READER); 1205 in_crit = 1; 1206 } 1207 if (rvp->v_filocks != NULL || rvp->v_shrlocks != NULL) { 1208 vattr.va_mask = AT_MODE|AT_SIZE; 1209 if (error = VOP_GETATTR(vp, &vattr, 0, CRED())) { 1210 goto out; 1211 } 1212 if (MANDLOCK(vp, vattr.va_mode)) { 1213 error = EAGAIN; 1214 goto out; 1215 } 1216 /* 1217 * File cannot be truncated if non-blocking mandatory 1218 * locks are currently on the file. 1219 */ 1220 if ((vap->va_mask & AT_SIZE) && in_crit) { 1221 u_offset_t offset; 1222 ssize_t length; 1223 1224 offset = vap->va_size > vattr.va_size ? 1225 vattr.va_size : vap->va_size; 1226 length = vap->va_size > vattr.va_size ? 1227 vap->va_size - vattr.va_size : 1228 vattr.va_size - vap->va_size; 1229 if (nbl_conflict(vp, NBL_WRITE, offset, 1230 length, 0)) { 1231 error = EACCES; 1232 goto out; 1233 } 1234 } 1235 } 1236 1237 /* 1238 * If the file is the root of a VFS, we've crossed a 1239 * mount point and the "containing" directory that we 1240 * acquired above (dvp) is irrelevant because it's in 1241 * a different file system. We apply VOP_CREATE to the 1242 * target itself instead of to the containing directory 1243 * and supply a null path name to indicate (conventionally) 1244 * the node itself as the "component" of interest. 1245 * 1246 * The intercession of the file system is necessary to 1247 * ensure that the appropriate permission checks are 1248 * done. 1249 */ 1250 if (vp->v_flag & VROOT) { 1251 ASSERT(why != CRMKDIR); 1252 error = 1253 VOP_CREATE(vp, "", vap, excl, mode, vpp, CRED(), 1254 flag); 1255 /* 1256 * If the create succeeded, it will have created 1257 * a new reference to the vnode. Give up the 1258 * original reference. The assertion should not 1259 * get triggered because NBMAND locks only apply to 1260 * VREG files. And if in_crit is non-zero for some 1261 * reason, detect that here, rather than when we 1262 * deference a null vp. 1263 */ 1264 ASSERT(in_crit == 0); 1265 VN_RELE(vp); 1266 vp = NULL; 1267 goto out; 1268 } 1269 1270 /* 1271 * Large File API - non-large open (FOFFMAX flag not set) 1272 * of regular file fails if the file size exceeds MAXOFF32_T. 1273 */ 1274 if (why != CRMKDIR && 1275 !(flag & FOFFMAX) && 1276 (vp->v_type == VREG)) { 1277 vattr.va_mask = AT_SIZE; 1278 if ((error = VOP_GETATTR(vp, &vattr, 0, CRED()))) { 1279 goto out; 1280 } 1281 if ((vattr.va_size > (u_offset_t)MAXOFF32_T)) { 1282 error = EOVERFLOW; 1283 goto out; 1284 } 1285 } 1286 } 1287 1288 if (error == 0) { 1289 /* 1290 * Call mkdir() if specified, otherwise create(). 1291 */ 1292 int must_be_dir = pn_fixslash(&pn); /* trailing '/'? */ 1293 1294 if (why == CRMKDIR) 1295 error = VOP_MKDIR(dvp, pn.pn_path, vap, vpp, CRED()); 1296 else if (!must_be_dir) 1297 error = VOP_CREATE(dvp, pn.pn_path, vap, 1298 excl, mode, vpp, CRED(), flag); 1299 else 1300 error = ENOTDIR; 1301 } 1302 1303 out: 1304 1305 #ifdef C2_AUDIT 1306 if (audit_active) 1307 audit_vncreate_finish(*vpp, error); 1308 #endif /* C2_AUDIT */ 1309 if (in_crit) { 1310 nbl_end_crit(vp); 1311 in_crit = 0; 1312 } 1313 if (vp != NULL) { 1314 VN_RELE(vp); 1315 vp = NULL; 1316 } 1317 pn_free(&pn); 1318 VN_RELE(dvp); 1319 /* 1320 * The following clause was added to handle a problem 1321 * with NFS consistency. It is possible that a lookup 1322 * of the file to be created succeeded, but the file 1323 * itself doesn't actually exist on the server. This 1324 * is chiefly due to the DNLC containing an entry for 1325 * the file which has been removed on the server. In 1326 * this case, we just start over. If there was some 1327 * other cause for the ESTALE error, then the lookup 1328 * of the file will fail and the error will be returned 1329 * above instead of looping around from here. 1330 */ 1331 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1332 goto top; 1333 return (error); 1334 } 1335 1336 int 1337 vn_link(char *from, char *to, enum uio_seg seg) 1338 { 1339 struct vnode *fvp; /* from vnode ptr */ 1340 struct vnode *tdvp; /* to directory vnode ptr */ 1341 struct pathname pn; 1342 int error; 1343 struct vattr vattr; 1344 dev_t fsid; 1345 int estale_retry = 0; 1346 1347 top: 1348 fvp = tdvp = NULL; 1349 if (error = pn_get(to, seg, &pn)) 1350 return (error); 1351 if (error = lookupname(from, seg, NO_FOLLOW, NULLVPP, &fvp)) 1352 goto out; 1353 if (error = lookuppn(&pn, NULL, NO_FOLLOW, &tdvp, NULLVPP)) 1354 goto out; 1355 /* 1356 * Make sure both source vnode and target directory vnode are 1357 * in the same vfs and that it is writeable. 1358 */ 1359 vattr.va_mask = AT_FSID; 1360 if (error = VOP_GETATTR(fvp, &vattr, 0, CRED())) 1361 goto out; 1362 fsid = vattr.va_fsid; 1363 vattr.va_mask = AT_FSID; 1364 if (error = VOP_GETATTR(tdvp, &vattr, 0, CRED())) 1365 goto out; 1366 if (fsid != vattr.va_fsid) { 1367 error = EXDEV; 1368 goto out; 1369 } 1370 if (tdvp->v_vfsp->vfs_flag & VFS_RDONLY) { 1371 error = EROFS; 1372 goto out; 1373 } 1374 /* 1375 * Do the link. 1376 */ 1377 (void) pn_fixslash(&pn); 1378 error = VOP_LINK(tdvp, fvp, pn.pn_path, CRED()); 1379 out: 1380 pn_free(&pn); 1381 if (fvp) 1382 VN_RELE(fvp); 1383 if (tdvp) 1384 VN_RELE(tdvp); 1385 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1386 goto top; 1387 return (error); 1388 } 1389 1390 int 1391 vn_rename(char *from, char *to, enum uio_seg seg) 1392 { 1393 return (vn_renameat(NULL, from, NULL, to, seg)); 1394 } 1395 1396 int 1397 vn_renameat(vnode_t *fdvp, char *fname, vnode_t *tdvp, 1398 char *tname, enum uio_seg seg) 1399 { 1400 int error; 1401 struct vattr vattr; 1402 struct pathname fpn; /* from pathname */ 1403 struct pathname tpn; /* to pathname */ 1404 dev_t fsid; 1405 int in_crit = 0; 1406 vnode_t *fromvp, *fvp; 1407 vnode_t *tovp; 1408 int estale_retry = 0; 1409 1410 top: 1411 fvp = fromvp = tovp = NULL; 1412 /* 1413 * Get to and from pathnames. 1414 */ 1415 if (error = pn_get(fname, seg, &fpn)) 1416 return (error); 1417 if (error = pn_get(tname, seg, &tpn)) { 1418 pn_free(&fpn); 1419 return (error); 1420 } 1421 1422 /* 1423 * First we need to resolve the correct directories 1424 * The passed in directories may only be a starting point, 1425 * but we need the real directories the file(s) live in. 1426 * For example the fname may be something like usr/lib/sparc 1427 * and we were passed in the / directory, but we need to 1428 * use the lib directory for the rename. 1429 */ 1430 1431 #ifdef C2_AUDIT 1432 if (audit_active) 1433 audit_setfsat_path(1); 1434 #endif /* C2_AUDIT */ 1435 /* 1436 * Lookup to and from directories. 1437 */ 1438 if (error = lookuppnat(&fpn, NULL, NO_FOLLOW, &fromvp, &fvp, fdvp)) { 1439 goto out; 1440 } 1441 1442 /* 1443 * Make sure there is an entry. 1444 */ 1445 if (fvp == NULL) { 1446 error = ENOENT; 1447 goto out; 1448 } 1449 1450 #ifdef C2_AUDIT 1451 if (audit_active) 1452 audit_setfsat_path(3); 1453 #endif /* C2_AUDIT */ 1454 if (error = lookuppnat(&tpn, NULL, NO_FOLLOW, &tovp, NULLVPP, tdvp)) { 1455 goto out; 1456 } 1457 1458 /* 1459 * Make sure both the from vnode directory and the to directory 1460 * are in the same vfs and the to directory is writable. 1461 * We check fsid's, not vfs pointers, so loopback fs works. 1462 */ 1463 if (fromvp != tovp) { 1464 vattr.va_mask = AT_FSID; 1465 if (error = VOP_GETATTR(fromvp, &vattr, 0, CRED())) 1466 goto out; 1467 fsid = vattr.va_fsid; 1468 vattr.va_mask = AT_FSID; 1469 if (error = VOP_GETATTR(tovp, &vattr, 0, CRED())) 1470 goto out; 1471 if (fsid != vattr.va_fsid) { 1472 error = EXDEV; 1473 goto out; 1474 } 1475 } 1476 1477 if (tovp->v_vfsp->vfs_flag & VFS_RDONLY) { 1478 error = EROFS; 1479 goto out; 1480 } 1481 1482 if (nbl_need_check(fvp)) { 1483 nbl_start_crit(fvp, RW_READER); 1484 in_crit = 1; 1485 if (nbl_conflict(fvp, NBL_RENAME, 0, 0, 0)) { 1486 error = EACCES; 1487 goto out; 1488 } 1489 } 1490 1491 /* 1492 * Do the rename. 1493 */ 1494 (void) pn_fixslash(&tpn); 1495 error = VOP_RENAME(fromvp, fpn.pn_path, tovp, tpn.pn_path, CRED()); 1496 1497 out: 1498 pn_free(&fpn); 1499 pn_free(&tpn); 1500 if (in_crit) { 1501 nbl_end_crit(fvp); 1502 in_crit = 0; 1503 } 1504 if (fromvp) 1505 VN_RELE(fromvp); 1506 if (tovp) 1507 VN_RELE(tovp); 1508 if (fvp) 1509 VN_RELE(fvp); 1510 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1511 goto top; 1512 return (error); 1513 } 1514 1515 /* 1516 * Remove a file or directory. 1517 */ 1518 int 1519 vn_remove(char *fnamep, enum uio_seg seg, enum rm dirflag) 1520 { 1521 return (vn_removeat(NULL, fnamep, seg, dirflag)); 1522 } 1523 1524 int 1525 vn_removeat(vnode_t *startvp, char *fnamep, enum uio_seg seg, enum rm dirflag) 1526 { 1527 struct vnode *vp; /* entry vnode */ 1528 struct vnode *dvp; /* ptr to parent dir vnode */ 1529 struct vnode *coveredvp; 1530 struct pathname pn; /* name of entry */ 1531 enum vtype vtype; 1532 int error; 1533 struct vfs *vfsp; 1534 struct vfs *dvfsp; /* ptr to parent dir vfs */ 1535 int in_crit = 0; 1536 int estale_retry = 0; 1537 1538 top: 1539 if (error = pn_get(fnamep, seg, &pn)) 1540 return (error); 1541 dvp = vp = NULL; 1542 if (error = lookuppnat(&pn, NULL, NO_FOLLOW, &dvp, &vp, startvp)) { 1543 pn_free(&pn); 1544 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1545 goto top; 1546 return (error); 1547 } 1548 1549 /* 1550 * Make sure there is an entry. 1551 */ 1552 if (vp == NULL) { 1553 error = ENOENT; 1554 goto out; 1555 } 1556 1557 vfsp = vp->v_vfsp; 1558 dvfsp = dvp->v_vfsp; 1559 1560 /* 1561 * If the named file is the root of a mounted filesystem, fail, 1562 * unless it's marked unlinkable. In that case, unmount the 1563 * filesystem and proceed to unlink the covered vnode. (If the 1564 * covered vnode is a directory, use rmdir instead of unlink, 1565 * to avoid file system corruption.) 1566 */ 1567 if (vp->v_flag & VROOT) { 1568 if (vfsp->vfs_flag & VFS_UNLINKABLE) { 1569 if (dirflag == RMDIRECTORY) { 1570 /* 1571 * User called rmdir(2) on a file that has 1572 * been namefs mounted on top of. Since 1573 * namefs doesn't allow directories to 1574 * be mounted on other files we know 1575 * vp is not of type VDIR so fail to operation. 1576 */ 1577 error = ENOTDIR; 1578 goto out; 1579 } 1580 coveredvp = vfsp->vfs_vnodecovered; 1581 VN_HOLD(coveredvp); 1582 VN_RELE(vp); 1583 vp = NULL; 1584 if ((error = vn_vfswlock(coveredvp)) == 0) 1585 error = dounmount(vfsp, 0, CRED()); 1586 /* 1587 * Unmounted the namefs file system; now get 1588 * the object it was mounted over. 1589 */ 1590 vp = coveredvp; 1591 /* 1592 * If namefs was mounted over a directory, then 1593 * we want to use rmdir() instead of unlink(). 1594 */ 1595 if (vp->v_type == VDIR) 1596 dirflag = RMDIRECTORY; 1597 } else 1598 error = EBUSY; 1599 1600 if (error) 1601 goto out; 1602 } 1603 1604 /* 1605 * Make sure filesystem is writeable. 1606 * We check the parent directory's vfs in case this is an lofs vnode. 1607 */ 1608 if (dvfsp && dvfsp->vfs_flag & VFS_RDONLY) { 1609 error = EROFS; 1610 goto out; 1611 } 1612 1613 vtype = vp->v_type; 1614 1615 /* 1616 * If there is the possibility of an nbmand share reservation, make 1617 * sure it's okay to remove the file. Keep a reference to the 1618 * vnode, so that we can exit the nbl critical region after 1619 * calling VOP_REMOVE. 1620 * If there is no possibility of an nbmand share reservation, 1621 * release the vnode reference now. Filesystems like NFS may 1622 * behave differently if there is an extra reference, so get rid of 1623 * this one. Fortunately, we can't have nbmand mounts on NFS 1624 * filesystems. 1625 */ 1626 if (nbl_need_check(vp)) { 1627 nbl_start_crit(vp, RW_READER); 1628 in_crit = 1; 1629 if (nbl_conflict(vp, NBL_REMOVE, 0, 0, 0)) { 1630 error = EACCES; 1631 goto out; 1632 } 1633 } else { 1634 VN_RELE(vp); 1635 vp = NULL; 1636 } 1637 1638 if (dirflag == RMDIRECTORY) { 1639 /* 1640 * Caller is using rmdir(2), which can only be applied to 1641 * directories. 1642 */ 1643 if (vtype != VDIR) { 1644 error = ENOTDIR; 1645 } else { 1646 vnode_t *cwd; 1647 proc_t *pp = curproc; 1648 1649 mutex_enter(&pp->p_lock); 1650 cwd = PTOU(pp)->u_cdir; 1651 VN_HOLD(cwd); 1652 mutex_exit(&pp->p_lock); 1653 error = VOP_RMDIR(dvp, pn.pn_path, cwd, CRED()); 1654 VN_RELE(cwd); 1655 } 1656 } else { 1657 /* 1658 * Unlink(2) can be applied to anything. 1659 */ 1660 error = VOP_REMOVE(dvp, pn.pn_path, CRED()); 1661 } 1662 1663 out: 1664 pn_free(&pn); 1665 if (in_crit) { 1666 nbl_end_crit(vp); 1667 in_crit = 0; 1668 } 1669 if (vp != NULL) 1670 VN_RELE(vp); 1671 if (dvp != NULL) 1672 VN_RELE(dvp); 1673 if ((error == ESTALE) && fs_need_estale_retry(estale_retry++)) 1674 goto top; 1675 return (error); 1676 } 1677 1678 /* 1679 * Utility function to compare equality of vnodes. 1680 * Compare the underlying real vnodes, if there are underlying vnodes. 1681 * This is a more thorough comparison than the VN_CMP() macro provides. 1682 */ 1683 int 1684 vn_compare(vnode_t *vp1, vnode_t *vp2) 1685 { 1686 vnode_t *realvp; 1687 1688 if (vp1 != NULL && VOP_REALVP(vp1, &realvp) == 0) 1689 vp1 = realvp; 1690 if (vp2 != NULL && VOP_REALVP(vp2, &realvp) == 0) 1691 vp2 = realvp; 1692 return (VN_CMP(vp1, vp2)); 1693 } 1694 1695 /* 1696 * The number of locks to hash into. This value must be a power 1697 * of 2 minus 1 and should probably also be prime. 1698 */ 1699 #define NUM_BUCKETS 1023 1700 1701 struct vn_vfslocks_bucket { 1702 kmutex_t vb_lock; 1703 vn_vfslocks_entry_t *vb_list; 1704 char pad[64 - sizeof (kmutex_t) - sizeof (void *)]; 1705 }; 1706 1707 /* 1708 * Total number of buckets will be NUM_BUCKETS + 1 . 1709 */ 1710 1711 #pragma align 64(vn_vfslocks_buckets) 1712 static struct vn_vfslocks_bucket vn_vfslocks_buckets[NUM_BUCKETS + 1]; 1713 1714 #define VN_VFSLOCKS_SHIFT 9 1715 1716 #define VN_VFSLOCKS_HASH(vfsvpptr) \ 1717 ((((intptr_t)(vfsvpptr)) >> VN_VFSLOCKS_SHIFT) & NUM_BUCKETS) 1718 1719 /* 1720 * vn_vfslocks_getlock() uses an HASH scheme to generate 1721 * rwstlock using vfs/vnode pointer passed to it. 1722 * 1723 * vn_vfslocks_rele() releases a reference in the 1724 * HASH table which allows the entry allocated by 1725 * vn_vfslocks_getlock() to be freed at a later 1726 * stage when the refcount drops to zero. 1727 */ 1728 1729 vn_vfslocks_entry_t * 1730 vn_vfslocks_getlock(void *vfsvpptr) 1731 { 1732 struct vn_vfslocks_bucket *bp; 1733 vn_vfslocks_entry_t *vep; 1734 vn_vfslocks_entry_t *tvep; 1735 1736 ASSERT(vfsvpptr != NULL); 1737 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vfsvpptr)]; 1738 1739 mutex_enter(&bp->vb_lock); 1740 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1741 if (vep->ve_vpvfs == vfsvpptr) { 1742 vep->ve_refcnt++; 1743 mutex_exit(&bp->vb_lock); 1744 return (vep); 1745 } 1746 } 1747 mutex_exit(&bp->vb_lock); 1748 vep = kmem_alloc(sizeof (*vep), KM_SLEEP); 1749 rwst_init(&vep->ve_lock, NULL, RW_DEFAULT, NULL); 1750 vep->ve_vpvfs = (char *)vfsvpptr; 1751 vep->ve_refcnt = 1; 1752 mutex_enter(&bp->vb_lock); 1753 for (tvep = bp->vb_list; tvep != NULL; tvep = tvep->ve_next) { 1754 if (tvep->ve_vpvfs == vfsvpptr) { 1755 tvep->ve_refcnt++; 1756 mutex_exit(&bp->vb_lock); 1757 1758 /* 1759 * There is already an entry in the hash 1760 * destroy what we just allocated. 1761 */ 1762 rwst_destroy(&vep->ve_lock); 1763 kmem_free(vep, sizeof (*vep)); 1764 return (tvep); 1765 } 1766 } 1767 vep->ve_next = bp->vb_list; 1768 bp->vb_list = vep; 1769 mutex_exit(&bp->vb_lock); 1770 return (vep); 1771 } 1772 1773 void 1774 vn_vfslocks_rele(vn_vfslocks_entry_t *vepent) 1775 { 1776 struct vn_vfslocks_bucket *bp; 1777 vn_vfslocks_entry_t *vep; 1778 vn_vfslocks_entry_t *pvep; 1779 1780 ASSERT(vepent != NULL); 1781 ASSERT(vepent->ve_vpvfs != NULL); 1782 1783 bp = &vn_vfslocks_buckets[VN_VFSLOCKS_HASH(vepent->ve_vpvfs)]; 1784 1785 mutex_enter(&bp->vb_lock); 1786 vepent->ve_refcnt--; 1787 1788 if ((int32_t)vepent->ve_refcnt < 0) 1789 cmn_err(CE_PANIC, "vn_vfslocks_rele: refcount negative"); 1790 1791 if (vepent->ve_refcnt == 0) { 1792 for (vep = bp->vb_list; vep != NULL; vep = vep->ve_next) { 1793 if (vep->ve_vpvfs == vepent->ve_vpvfs) { 1794 if (bp->vb_list == vep) 1795 bp->vb_list = vep->ve_next; 1796 else { 1797 /* LINTED */ 1798 pvep->ve_next = vep->ve_next; 1799 } 1800 mutex_exit(&bp->vb_lock); 1801 rwst_destroy(&vep->ve_lock); 1802 kmem_free(vep, sizeof (*vep)); 1803 return; 1804 } 1805 pvep = vep; 1806 } 1807 cmn_err(CE_PANIC, "vn_vfslocks_rele: vp/vfs not found"); 1808 } 1809 mutex_exit(&bp->vb_lock); 1810 } 1811 1812 /* 1813 * vn_vfswlock_wait is used to implement a lock which is logically a writers 1814 * lock protecting the v_vfsmountedhere field. 1815 * vn_vfswlock_wait has been modified to be similar to vn_vfswlock, 1816 * except that it blocks to acquire the lock VVFSLOCK. 1817 * 1818 * traverse() and routines re-implementing part of traverse (e.g. autofs) 1819 * need to hold this lock. mount(), vn_rename(), vn_remove() and so on 1820 * need the non-blocking version of the writers lock i.e. vn_vfswlock 1821 */ 1822 int 1823 vn_vfswlock_wait(vnode_t *vp) 1824 { 1825 int retval; 1826 vn_vfslocks_entry_t *vpvfsentry; 1827 ASSERT(vp != NULL); 1828 1829 vpvfsentry = vn_vfslocks_getlock(vp); 1830 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_WRITER); 1831 1832 if (retval == EINTR) { 1833 vn_vfslocks_rele(vpvfsentry); 1834 return (EINTR); 1835 } 1836 return (retval); 1837 } 1838 1839 int 1840 vn_vfsrlock_wait(vnode_t *vp) 1841 { 1842 int retval; 1843 vn_vfslocks_entry_t *vpvfsentry; 1844 ASSERT(vp != NULL); 1845 1846 vpvfsentry = vn_vfslocks_getlock(vp); 1847 retval = rwst_enter_sig(&vpvfsentry->ve_lock, RW_READER); 1848 1849 if (retval == EINTR) { 1850 vn_vfslocks_rele(vpvfsentry); 1851 return (EINTR); 1852 } 1853 1854 return (retval); 1855 } 1856 1857 1858 /* 1859 * vn_vfswlock is used to implement a lock which is logically a writers lock 1860 * protecting the v_vfsmountedhere field. 1861 */ 1862 int 1863 vn_vfswlock(vnode_t *vp) 1864 { 1865 vn_vfslocks_entry_t *vpvfsentry; 1866 1867 /* 1868 * If vp is NULL then somebody is trying to lock the covered vnode 1869 * of /. (vfs_vnodecovered is NULL for /). This situation will 1870 * only happen when unmounting /. Since that operation will fail 1871 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1872 */ 1873 if (vp == NULL) 1874 return (EBUSY); 1875 1876 vpvfsentry = vn_vfslocks_getlock(vp); 1877 1878 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 1879 return (0); 1880 1881 vn_vfslocks_rele(vpvfsentry); 1882 return (EBUSY); 1883 } 1884 1885 int 1886 vn_vfsrlock(vnode_t *vp) 1887 { 1888 vn_vfslocks_entry_t *vpvfsentry; 1889 1890 /* 1891 * If vp is NULL then somebody is trying to lock the covered vnode 1892 * of /. (vfs_vnodecovered is NULL for /). This situation will 1893 * only happen when unmounting /. Since that operation will fail 1894 * anyway, return EBUSY here instead of in VFS_UNMOUNT. 1895 */ 1896 if (vp == NULL) 1897 return (EBUSY); 1898 1899 vpvfsentry = vn_vfslocks_getlock(vp); 1900 1901 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 1902 return (0); 1903 1904 vn_vfslocks_rele(vpvfsentry); 1905 return (EBUSY); 1906 } 1907 1908 void 1909 vn_vfsunlock(vnode_t *vp) 1910 { 1911 vn_vfslocks_entry_t *vpvfsentry; 1912 1913 /* 1914 * ve_refcnt needs to be decremented twice. 1915 * 1. To release refernce after a call to vn_vfslocks_getlock() 1916 * 2. To release the reference from the locking routines like 1917 * vn_vfsrlock/vn_vfswlock etc,. 1918 */ 1919 vpvfsentry = vn_vfslocks_getlock(vp); 1920 vn_vfslocks_rele(vpvfsentry); 1921 1922 rwst_exit(&vpvfsentry->ve_lock); 1923 vn_vfslocks_rele(vpvfsentry); 1924 } 1925 1926 int 1927 vn_vfswlock_held(vnode_t *vp) 1928 { 1929 int held; 1930 vn_vfslocks_entry_t *vpvfsentry; 1931 1932 ASSERT(vp != NULL); 1933 1934 vpvfsentry = vn_vfslocks_getlock(vp); 1935 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 1936 1937 vn_vfslocks_rele(vpvfsentry); 1938 return (held); 1939 } 1940 1941 1942 int 1943 vn_make_ops( 1944 const char *name, /* Name of file system */ 1945 const fs_operation_def_t *templ, /* Operation specification */ 1946 vnodeops_t **actual) /* Return the vnodeops */ 1947 { 1948 int unused_ops; 1949 int error; 1950 1951 *actual = (vnodeops_t *)kmem_alloc(sizeof (vnodeops_t), KM_SLEEP); 1952 1953 (*actual)->vnop_name = name; 1954 1955 error = fs_build_vector(*actual, &unused_ops, vn_ops_table, templ); 1956 if (error) { 1957 kmem_free(*actual, sizeof (vnodeops_t)); 1958 } 1959 1960 #if DEBUG 1961 if (unused_ops != 0) 1962 cmn_err(CE_WARN, "vn_make_ops: %s: %d operations supplied " 1963 "but not used", name, unused_ops); 1964 #endif 1965 1966 return (error); 1967 } 1968 1969 /* 1970 * Free the vnodeops created as a result of vn_make_ops() 1971 */ 1972 void 1973 vn_freevnodeops(vnodeops_t *vnops) 1974 { 1975 kmem_free(vnops, sizeof (vnodeops_t)); 1976 } 1977 1978 /* 1979 * Vnode cache. 1980 */ 1981 1982 /* ARGSUSED */ 1983 static int 1984 vn_cache_constructor(void *buf, void *cdrarg, int kmflags) 1985 { 1986 struct vnode *vp; 1987 1988 vp = buf; 1989 1990 mutex_init(&vp->v_lock, NULL, MUTEX_DEFAULT, NULL); 1991 cv_init(&vp->v_cv, NULL, CV_DEFAULT, NULL); 1992 rw_init(&vp->v_nbllock, NULL, RW_DEFAULT, NULL); 1993 rw_init(&vp->v_mslock, NULL, RW_DEFAULT, NULL); 1994 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 1995 vp->v_path = NULL; 1996 vp->v_mpssdata = NULL; 1997 vp->v_fopdata = NULL; 1998 1999 return (0); 2000 } 2001 2002 /* ARGSUSED */ 2003 static void 2004 vn_cache_destructor(void *buf, void *cdrarg) 2005 { 2006 struct vnode *vp; 2007 2008 vp = buf; 2009 2010 rw_destroy(&vp->v_mslock); 2011 rw_destroy(&vp->v_nbllock); 2012 cv_destroy(&vp->v_cv); 2013 mutex_destroy(&vp->v_lock); 2014 } 2015 2016 void 2017 vn_create_cache(void) 2018 { 2019 vn_cache = kmem_cache_create("vn_cache", sizeof (struct vnode), 64, 2020 vn_cache_constructor, vn_cache_destructor, NULL, NULL, 2021 NULL, 0); 2022 } 2023 2024 void 2025 vn_destroy_cache(void) 2026 { 2027 kmem_cache_destroy(vn_cache); 2028 } 2029 2030 /* 2031 * Used by file systems when fs-specific nodes (e.g., ufs inodes) are 2032 * cached by the file system and vnodes remain associated. 2033 */ 2034 void 2035 vn_recycle(vnode_t *vp) 2036 { 2037 ASSERT(vp->v_pages == NULL); 2038 2039 /* 2040 * XXX - This really belongs in vn_reinit(), but we have some issues 2041 * with the counts. Best to have it here for clean initialization. 2042 */ 2043 vp->v_rdcnt = 0; 2044 vp->v_wrcnt = 0; 2045 vp->v_mmap_read = 0; 2046 vp->v_mmap_write = 0; 2047 2048 /* 2049 * If FEM was in use, make sure everything gets cleaned up 2050 * NOTE: vp->v_femhead is initialized to NULL in the vnode 2051 * constructor. 2052 */ 2053 if (vp->v_femhead) { 2054 /* XXX - There should be a free_femhead() that does all this */ 2055 ASSERT(vp->v_femhead->femh_list == NULL); 2056 mutex_destroy(&vp->v_femhead->femh_lock); 2057 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2058 vp->v_femhead = NULL; 2059 } 2060 if (vp->v_path) { 2061 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2062 vp->v_path = NULL; 2063 } 2064 2065 if (vp->v_fopdata != NULL) { 2066 free_fopdata(vp); 2067 } 2068 vp->v_mpssdata = NULL; 2069 } 2070 2071 /* 2072 * Used to reset the vnode fields including those that are directly accessible 2073 * as well as those which require an accessor function. 2074 * 2075 * Does not initialize: 2076 * synchronization objects: v_lock, v_nbllock, v_cv 2077 * v_data (since FS-nodes and vnodes point to each other and should 2078 * be updated simultaneously) 2079 * v_op (in case someone needs to make a VOP call on this object) 2080 */ 2081 void 2082 vn_reinit(vnode_t *vp) 2083 { 2084 vp->v_count = 1; 2085 vp->v_vfsp = NULL; 2086 vp->v_stream = NULL; 2087 vp->v_vfsmountedhere = NULL; 2088 vp->v_flag = 0; 2089 vp->v_type = VNON; 2090 vp->v_rdev = NODEV; 2091 2092 vp->v_filocks = NULL; 2093 vp->v_shrlocks = NULL; 2094 vp->v_pages = NULL; 2095 vp->v_npages = 0; 2096 vp->v_msnpages = 0; 2097 vp->v_scanfront = NULL; 2098 vp->v_scanback = NULL; 2099 2100 vp->v_locality = NULL; 2101 vp->v_scantime = 0; 2102 vp->v_mset = 0; 2103 vp->v_msflags = 0; 2104 vp->v_msnext = NULL; 2105 vp->v_msprev = NULL; 2106 2107 /* Handles v_femhead, v_path, and the r/w/map counts */ 2108 vn_recycle(vp); 2109 } 2110 2111 vnode_t * 2112 vn_alloc(int kmflag) 2113 { 2114 vnode_t *vp; 2115 2116 vp = kmem_cache_alloc(vn_cache, kmflag); 2117 2118 if (vp != NULL) { 2119 vp->v_femhead = NULL; /* Must be done before vn_reinit() */ 2120 vp->v_fopdata = NULL; 2121 vn_reinit(vp); 2122 } 2123 2124 return (vp); 2125 } 2126 2127 void 2128 vn_free(vnode_t *vp) 2129 { 2130 /* 2131 * Some file systems call vn_free() with v_count of zero, 2132 * some with v_count of 1. In any case, the value should 2133 * never be anything else. 2134 */ 2135 ASSERT((vp->v_count == 0) || (vp->v_count == 1)); 2136 if (vp->v_path != NULL) { 2137 kmem_free(vp->v_path, strlen(vp->v_path) + 1); 2138 vp->v_path = NULL; 2139 } 2140 2141 /* If FEM was in use, make sure everything gets cleaned up */ 2142 if (vp->v_femhead) { 2143 /* XXX - There should be a free_femhead() that does all this */ 2144 ASSERT(vp->v_femhead->femh_list == NULL); 2145 mutex_destroy(&vp->v_femhead->femh_lock); 2146 kmem_free(vp->v_femhead, sizeof (*(vp->v_femhead))); 2147 vp->v_femhead = NULL; 2148 } 2149 2150 if (vp->v_fopdata != NULL) { 2151 free_fopdata(vp); 2152 } 2153 vp->v_mpssdata = NULL; 2154 kmem_cache_free(vn_cache, vp); 2155 } 2156 2157 /* 2158 * vnode status changes, should define better states than 1, 0. 2159 */ 2160 void 2161 vn_reclaim(vnode_t *vp) 2162 { 2163 vfs_t *vfsp = vp->v_vfsp; 2164 2165 if (vfsp == NULL || 2166 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2167 return; 2168 } 2169 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_RECLAIMED); 2170 } 2171 2172 void 2173 vn_idle(vnode_t *vp) 2174 { 2175 vfs_t *vfsp = vp->v_vfsp; 2176 2177 if (vfsp == NULL || 2178 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2179 return; 2180 } 2181 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_IDLED); 2182 } 2183 void 2184 vn_exists(vnode_t *vp) 2185 { 2186 vfs_t *vfsp = vp->v_vfsp; 2187 2188 if (vfsp == NULL || 2189 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2190 return; 2191 } 2192 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_EXISTS); 2193 } 2194 2195 void 2196 vn_invalid(vnode_t *vp) 2197 { 2198 vfs_t *vfsp = vp->v_vfsp; 2199 2200 if (vfsp == NULL || 2201 vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) { 2202 return; 2203 } 2204 (void) VFS_VNSTATE(vfsp, vp, VNTRANS_DESTROYED); 2205 } 2206 2207 /* Vnode event notification */ 2208 2209 int 2210 vnevent_support(vnode_t *vp) 2211 { 2212 if (vp == NULL) 2213 return (EINVAL); 2214 2215 return (VOP_VNEVENT(vp, VE_SUPPORT, NULL, NULL)); 2216 } 2217 2218 void 2219 vnevent_rename_src(vnode_t *vp, vnode_t *dvp, char *name) 2220 { 2221 if (vp == NULL || vp->v_femhead == NULL) { 2222 return; 2223 } 2224 (void) VOP_VNEVENT(vp, VE_RENAME_SRC, dvp, name); 2225 } 2226 2227 void 2228 vnevent_rename_dest(vnode_t *vp, vnode_t *dvp, char *name) 2229 { 2230 if (vp == NULL || vp->v_femhead == NULL) { 2231 return; 2232 } 2233 (void) VOP_VNEVENT(vp, VE_RENAME_DEST, dvp, name); 2234 } 2235 2236 void 2237 vnevent_rename_dest_dir(vnode_t *vp) 2238 { 2239 if (vp == NULL || vp->v_femhead == NULL) { 2240 return; 2241 } 2242 (void) VOP_VNEVENT(vp, VE_RENAME_DEST_DIR, NULL, NULL); 2243 } 2244 2245 void 2246 vnevent_remove(vnode_t *vp, vnode_t *dvp, char *name) 2247 { 2248 if (vp == NULL || vp->v_femhead == NULL) { 2249 return; 2250 } 2251 (void) VOP_VNEVENT(vp, VE_REMOVE, dvp, name); 2252 } 2253 2254 void 2255 vnevent_rmdir(vnode_t *vp, vnode_t *dvp, char *name) 2256 { 2257 if (vp == NULL || vp->v_femhead == NULL) { 2258 return; 2259 } 2260 (void) VOP_VNEVENT(vp, VE_RMDIR, dvp, name); 2261 } 2262 2263 void 2264 vnevent_create(vnode_t *vp) 2265 { 2266 if (vp == NULL || vp->v_femhead == NULL) { 2267 return; 2268 } 2269 (void) VOP_VNEVENT(vp, VE_CREATE, NULL, NULL); 2270 } 2271 2272 void 2273 vnevent_link(vnode_t *vp) 2274 { 2275 if (vp == NULL || vp->v_femhead == NULL) { 2276 return; 2277 } 2278 (void) VOP_VNEVENT(vp, VE_LINK, NULL, NULL); 2279 } 2280 2281 void 2282 vnevent_mountedover(vnode_t *vp) 2283 { 2284 if (vp == NULL || vp->v_femhead == NULL) { 2285 return; 2286 } 2287 (void) VOP_VNEVENT(vp, VE_MOUNTEDOVER, NULL, NULL); 2288 } 2289 2290 /* 2291 * Vnode accessors. 2292 */ 2293 2294 int 2295 vn_is_readonly(vnode_t *vp) 2296 { 2297 return (vp->v_vfsp->vfs_flag & VFS_RDONLY); 2298 } 2299 2300 int 2301 vn_has_flocks(vnode_t *vp) 2302 { 2303 return (vp->v_filocks != NULL); 2304 } 2305 2306 int 2307 vn_has_mandatory_locks(vnode_t *vp, int mode) 2308 { 2309 return ((vp->v_filocks != NULL) && (MANDLOCK(vp, mode))); 2310 } 2311 2312 int 2313 vn_has_cached_data(vnode_t *vp) 2314 { 2315 return (vp->v_pages != NULL); 2316 } 2317 2318 /* 2319 * Return 0 if the vnode in question shouldn't be permitted into a zone via 2320 * zone_enter(2). 2321 */ 2322 int 2323 vn_can_change_zones(vnode_t *vp) 2324 { 2325 struct vfssw *vswp; 2326 int allow = 1; 2327 vnode_t *rvp; 2328 2329 if (nfs_global_client_only != 0) 2330 return (1); 2331 2332 /* 2333 * We always want to look at the underlying vnode if there is one. 2334 */ 2335 if (VOP_REALVP(vp, &rvp) != 0) 2336 rvp = vp; 2337 /* 2338 * Some pseudo filesystems (including doorfs) don't actually register 2339 * their vfsops_t, so the following may return NULL; we happily let 2340 * such vnodes switch zones. 2341 */ 2342 vswp = vfs_getvfsswbyvfsops(vfs_getops(rvp->v_vfsp)); 2343 if (vswp != NULL) { 2344 if (vswp->vsw_flag & VSW_NOTZONESAFE) 2345 allow = 0; 2346 vfs_unrefvfssw(vswp); 2347 } 2348 return (allow); 2349 } 2350 2351 /* 2352 * Return nonzero if the vnode is a mount point, zero if not. 2353 */ 2354 int 2355 vn_ismntpt(vnode_t *vp) 2356 { 2357 return (vp->v_vfsmountedhere != NULL); 2358 } 2359 2360 /* Retrieve the vfs (if any) mounted on this vnode */ 2361 vfs_t * 2362 vn_mountedvfs(vnode_t *vp) 2363 { 2364 return (vp->v_vfsmountedhere); 2365 } 2366 2367 /* 2368 * vn_is_opened() checks whether a particular file is opened and 2369 * whether the open is for read and/or write. 2370 * 2371 * Vnode counts are only kept on regular files (v_type=VREG). 2372 */ 2373 int 2374 vn_is_opened( 2375 vnode_t *vp, 2376 v_mode_t mode) 2377 { 2378 2379 ASSERT(vp != NULL); 2380 2381 switch (mode) { 2382 case V_WRITE: 2383 if (vp->v_wrcnt) 2384 return (V_TRUE); 2385 break; 2386 case V_RDANDWR: 2387 if (vp->v_rdcnt && vp->v_wrcnt) 2388 return (V_TRUE); 2389 break; 2390 case V_RDORWR: 2391 if (vp->v_rdcnt || vp->v_wrcnt) 2392 return (V_TRUE); 2393 break; 2394 case V_READ: 2395 if (vp->v_rdcnt) 2396 return (V_TRUE); 2397 break; 2398 } 2399 2400 return (V_FALSE); 2401 } 2402 2403 /* 2404 * vn_is_mapped() checks whether a particular file is mapped and whether 2405 * the file is mapped read and/or write. 2406 */ 2407 int 2408 vn_is_mapped( 2409 vnode_t *vp, 2410 v_mode_t mode) 2411 { 2412 2413 ASSERT(vp != NULL); 2414 2415 #if !defined(_LP64) 2416 switch (mode) { 2417 /* 2418 * The atomic_add_64_nv functions force atomicity in the 2419 * case of 32 bit architectures. Otherwise the 64 bit values 2420 * require two fetches. The value of the fields may be 2421 * (potentially) changed between the first fetch and the 2422 * second 2423 */ 2424 case V_WRITE: 2425 if (atomic_add_64_nv((&(vp->v_mmap_write)), 0)) 2426 return (V_TRUE); 2427 break; 2428 case V_RDANDWR: 2429 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) && 2430 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2431 return (V_TRUE); 2432 break; 2433 case V_RDORWR: 2434 if ((atomic_add_64_nv((&(vp->v_mmap_read)), 0)) || 2435 (atomic_add_64_nv((&(vp->v_mmap_write)), 0))) 2436 return (V_TRUE); 2437 break; 2438 case V_READ: 2439 if (atomic_add_64_nv((&(vp->v_mmap_read)), 0)) 2440 return (V_TRUE); 2441 break; 2442 } 2443 #else 2444 switch (mode) { 2445 case V_WRITE: 2446 if (vp->v_mmap_write) 2447 return (V_TRUE); 2448 break; 2449 case V_RDANDWR: 2450 if (vp->v_mmap_read && vp->v_mmap_write) 2451 return (V_TRUE); 2452 break; 2453 case V_RDORWR: 2454 if (vp->v_mmap_read || vp->v_mmap_write) 2455 return (V_TRUE); 2456 break; 2457 case V_READ: 2458 if (vp->v_mmap_read) 2459 return (V_TRUE); 2460 break; 2461 } 2462 #endif 2463 2464 return (V_FALSE); 2465 } 2466 2467 /* 2468 * Set the operations vector for a vnode. 2469 * 2470 * FEM ensures that the v_femhead pointer is filled in before the 2471 * v_op pointer is changed. This means that if the v_femhead pointer 2472 * is NULL, and the v_op field hasn't changed since before which checked 2473 * the v_femhead pointer; then our update is ok - we are not racing with 2474 * FEM. 2475 */ 2476 void 2477 vn_setops(vnode_t *vp, vnodeops_t *vnodeops) 2478 { 2479 vnodeops_t *op; 2480 2481 ASSERT(vp != NULL); 2482 ASSERT(vnodeops != NULL); 2483 2484 op = vp->v_op; 2485 membar_consumer(); 2486 /* 2487 * If vp->v_femhead == NULL, then we'll call casptr() to do the 2488 * compare-and-swap on vp->v_op. If either fails, then FEM is 2489 * in effect on the vnode and we need to have FEM deal with it. 2490 */ 2491 if (vp->v_femhead != NULL || casptr(&vp->v_op, op, vnodeops) != op) { 2492 fem_setvnops(vp, vnodeops); 2493 } 2494 } 2495 2496 /* 2497 * Retrieve the operations vector for a vnode 2498 * As with vn_setops(above); make sure we aren't racing with FEM. 2499 * FEM sets the v_op to a special, internal, vnodeops that wouldn't 2500 * make sense to the callers of this routine. 2501 */ 2502 vnodeops_t * 2503 vn_getops(vnode_t *vp) 2504 { 2505 vnodeops_t *op; 2506 2507 ASSERT(vp != NULL); 2508 2509 op = vp->v_op; 2510 membar_consumer(); 2511 if (vp->v_femhead == NULL && op == vp->v_op) { 2512 return (op); 2513 } else { 2514 return (fem_getvnops(vp)); 2515 } 2516 } 2517 2518 /* 2519 * Returns non-zero (1) if the vnodeops matches that of the vnode. 2520 * Returns zero (0) if not. 2521 */ 2522 int 2523 vn_matchops(vnode_t *vp, vnodeops_t *vnodeops) 2524 { 2525 return (vn_getops(vp) == vnodeops); 2526 } 2527 2528 /* 2529 * Returns non-zero (1) if the specified operation matches the 2530 * corresponding operation for that the vnode. 2531 * Returns zero (0) if not. 2532 */ 2533 2534 #define MATCHNAME(n1, n2) (((n1)[0] == (n2)[0]) && (strcmp((n1), (n2)) == 0)) 2535 2536 int 2537 vn_matchopval(vnode_t *vp, char *vopname, fs_generic_func_p funcp) 2538 { 2539 const fs_operation_trans_def_t *otdp; 2540 fs_generic_func_p *loc = NULL; 2541 vnodeops_t *vop = vn_getops(vp); 2542 2543 ASSERT(vopname != NULL); 2544 2545 for (otdp = vn_ops_table; otdp->name != NULL; otdp++) { 2546 if (MATCHNAME(otdp->name, vopname)) { 2547 loc = (fs_generic_func_p *)((char *)(vop) 2548 + otdp->offset); 2549 break; 2550 } 2551 } 2552 2553 return ((loc != NULL) && (*loc == funcp)); 2554 } 2555 2556 /* 2557 * fs_new_caller_id() needs to return a unique ID on a given local system. 2558 * The IDs do not need to survive across reboots. These are primarily 2559 * used so that (FEM) monitors can detect particular callers (such as 2560 * the NFS server) to a given vnode/vfs operation. 2561 */ 2562 u_longlong_t 2563 fs_new_caller_id() 2564 { 2565 static uint64_t next_caller_id = 0LL; /* First call returns 1 */ 2566 2567 return ((u_longlong_t)atomic_add_64_nv(&next_caller_id, 1)); 2568 } 2569 2570 /* 2571 * Given a starting vnode and a path, updates the path in the target vnode in 2572 * a safe manner. If the vnode already has path information embedded, then the 2573 * cached path is left untouched. 2574 */ 2575 2576 size_t max_vnode_path = 4 * MAXPATHLEN; 2577 2578 void 2579 vn_setpath(vnode_t *rootvp, struct vnode *startvp, struct vnode *vp, 2580 const char *path, size_t plen) 2581 { 2582 char *rpath; 2583 vnode_t *base; 2584 size_t rpathlen, rpathalloc; 2585 int doslash = 1; 2586 2587 if (*path == '/') { 2588 base = rootvp; 2589 path++; 2590 plen--; 2591 } else { 2592 base = startvp; 2593 } 2594 2595 /* 2596 * We cannot grab base->v_lock while we hold vp->v_lock because of 2597 * the potential for deadlock. 2598 */ 2599 mutex_enter(&base->v_lock); 2600 if (base->v_path == NULL) { 2601 mutex_exit(&base->v_lock); 2602 return; 2603 } 2604 2605 rpathlen = strlen(base->v_path); 2606 rpathalloc = rpathlen + plen + 1; 2607 /* Avoid adding a slash if there's already one there */ 2608 if (base->v_path[rpathlen-1] == '/') 2609 doslash = 0; 2610 else 2611 rpathalloc++; 2612 2613 /* 2614 * We don't want to call kmem_alloc(KM_SLEEP) with kernel locks held, 2615 * so we must do this dance. If, by chance, something changes the path, 2616 * just give up since there is no real harm. 2617 */ 2618 mutex_exit(&base->v_lock); 2619 2620 /* Paths should stay within reason */ 2621 if (rpathalloc > max_vnode_path) 2622 return; 2623 2624 rpath = kmem_alloc(rpathalloc, KM_SLEEP); 2625 2626 mutex_enter(&base->v_lock); 2627 if (base->v_path == NULL || strlen(base->v_path) != rpathlen) { 2628 mutex_exit(&base->v_lock); 2629 kmem_free(rpath, rpathalloc); 2630 return; 2631 } 2632 bcopy(base->v_path, rpath, rpathlen); 2633 mutex_exit(&base->v_lock); 2634 2635 if (doslash) 2636 rpath[rpathlen++] = '/'; 2637 bcopy(path, rpath + rpathlen, plen); 2638 rpath[rpathlen + plen] = '\0'; 2639 2640 mutex_enter(&vp->v_lock); 2641 if (vp->v_path != NULL) { 2642 mutex_exit(&vp->v_lock); 2643 kmem_free(rpath, rpathalloc); 2644 } else { 2645 vp->v_path = rpath; 2646 mutex_exit(&vp->v_lock); 2647 } 2648 } 2649 2650 /* 2651 * Sets the path to the vnode to be the given string, regardless of current 2652 * context. The string must be a complete path from rootdir. This is only used 2653 * by fsop_root() for setting the path based on the mountpoint. 2654 */ 2655 void 2656 vn_setpath_str(struct vnode *vp, const char *str, size_t len) 2657 { 2658 char *buf = kmem_alloc(len + 1, KM_SLEEP); 2659 2660 mutex_enter(&vp->v_lock); 2661 if (vp->v_path != NULL) { 2662 mutex_exit(&vp->v_lock); 2663 kmem_free(buf, len + 1); 2664 return; 2665 } 2666 2667 vp->v_path = buf; 2668 bcopy(str, vp->v_path, len); 2669 vp->v_path[len] = '\0'; 2670 2671 mutex_exit(&vp->v_lock); 2672 } 2673 2674 /* 2675 * Similar to vn_setpath_str(), this function sets the path of the destination 2676 * vnode to the be the same as the source vnode. 2677 */ 2678 void 2679 vn_copypath(struct vnode *src, struct vnode *dst) 2680 { 2681 char *buf; 2682 int alloc; 2683 2684 mutex_enter(&src->v_lock); 2685 if (src->v_path == NULL) { 2686 mutex_exit(&src->v_lock); 2687 return; 2688 } 2689 alloc = strlen(src->v_path) + 1; 2690 2691 /* avoid kmem_alloc() with lock held */ 2692 mutex_exit(&src->v_lock); 2693 buf = kmem_alloc(alloc, KM_SLEEP); 2694 mutex_enter(&src->v_lock); 2695 if (src->v_path == NULL || strlen(src->v_path) + 1 != alloc) { 2696 mutex_exit(&src->v_lock); 2697 kmem_free(buf, alloc); 2698 return; 2699 } 2700 bcopy(src->v_path, buf, alloc); 2701 mutex_exit(&src->v_lock); 2702 2703 mutex_enter(&dst->v_lock); 2704 if (dst->v_path != NULL) { 2705 mutex_exit(&dst->v_lock); 2706 kmem_free(buf, alloc); 2707 return; 2708 } 2709 dst->v_path = buf; 2710 mutex_exit(&dst->v_lock); 2711 } 2712 2713 /* 2714 * XXX Private interface for segvn routines that handle vnode 2715 * large page segments. 2716 * 2717 * return 1 if vp's file system VOP_PAGEIO() implementation 2718 * can be safely used instead of VOP_GETPAGE() for handling 2719 * pagefaults against regular non swap files. VOP_PAGEIO() 2720 * interface is considered safe here if its implementation 2721 * is very close to VOP_GETPAGE() implementation. 2722 * e.g. It zero's out the part of the page beyond EOF. Doesn't 2723 * panic if there're file holes but instead returns an error. 2724 * Doesn't assume file won't be changed by user writes, etc. 2725 * 2726 * return 0 otherwise. 2727 * 2728 * For now allow segvn to only use VOP_PAGEIO() with ufs and nfs. 2729 */ 2730 int 2731 vn_vmpss_usepageio(vnode_t *vp) 2732 { 2733 vfs_t *vfsp = vp->v_vfsp; 2734 char *fsname = vfssw[vfsp->vfs_fstype].vsw_name; 2735 char *pageio_ok_fss[] = {"ufs", "nfs", NULL}; 2736 char **fsok = pageio_ok_fss; 2737 2738 if (fsname == NULL) { 2739 return (0); 2740 } 2741 2742 for (; *fsok; fsok++) { 2743 if (strcmp(*fsok, fsname) == 0) { 2744 return (1); 2745 } 2746 } 2747 return (0); 2748 } 2749 2750 /* VOP_XXX() macros call the corresponding fop_xxx() function */ 2751 2752 int 2753 fop_open( 2754 vnode_t **vpp, 2755 int mode, 2756 cred_t *cr) 2757 { 2758 int ret; 2759 vnode_t *vp = *vpp; 2760 2761 VN_HOLD(vp); 2762 /* 2763 * Adding to the vnode counts before calling open 2764 * avoids the need for a mutex. It circumvents a race 2765 * condition where a query made on the vnode counts results in a 2766 * false negative. The inquirer goes away believing the file is 2767 * not open when there is an open on the file already under way. 2768 * 2769 * The counts are meant to prevent NFS from granting a delegation 2770 * when it would be dangerous to do so. 2771 * 2772 * The vnode counts are only kept on regular files 2773 */ 2774 if ((*vpp)->v_type == VREG) { 2775 if (mode & FREAD) 2776 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2777 if (mode & FWRITE) 2778 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2779 } 2780 2781 VOPXID_MAP_CR(vp, cr); 2782 2783 ret = (*(*(vpp))->v_op->vop_open)(vpp, mode, cr); 2784 2785 if (ret) { 2786 /* 2787 * Use the saved vp just in case the vnode ptr got trashed 2788 * by the error. 2789 */ 2790 VOPSTATS_UPDATE(vp, open); 2791 if ((vp->v_type == VREG) && (mode & FREAD)) 2792 atomic_add_32(&(vp->v_rdcnt), -1); 2793 if ((vp->v_type == VREG) && (mode & FWRITE)) 2794 atomic_add_32(&(vp->v_wrcnt), -1); 2795 } else { 2796 /* 2797 * Some filesystems will return a different vnode, 2798 * but the same path was still used to open it. 2799 * So if we do change the vnode and need to 2800 * copy over the path, do so here, rather than special 2801 * casing each filesystem. Adjust the vnode counts to 2802 * reflect the vnode switch. 2803 */ 2804 VOPSTATS_UPDATE(*vpp, open); 2805 if (*vpp != vp && *vpp != NULL) { 2806 vn_copypath(vp, *vpp); 2807 if (((*vpp)->v_type == VREG) && (mode & FREAD)) 2808 atomic_add_32(&((*vpp)->v_rdcnt), 1); 2809 if ((vp->v_type == VREG) && (mode & FREAD)) 2810 atomic_add_32(&(vp->v_rdcnt), -1); 2811 if (((*vpp)->v_type == VREG) && (mode & FWRITE)) 2812 atomic_add_32(&((*vpp)->v_wrcnt), 1); 2813 if ((vp->v_type == VREG) && (mode & FWRITE)) 2814 atomic_add_32(&(vp->v_wrcnt), -1); 2815 } 2816 } 2817 VN_RELE(vp); 2818 return (ret); 2819 } 2820 2821 int 2822 fop_close( 2823 vnode_t *vp, 2824 int flag, 2825 int count, 2826 offset_t offset, 2827 cred_t *cr) 2828 { 2829 int err; 2830 2831 VOPXID_MAP_CR(vp, cr); 2832 2833 err = (*(vp)->v_op->vop_close)(vp, flag, count, offset, cr); 2834 VOPSTATS_UPDATE(vp, close); 2835 /* 2836 * Check passed in count to handle possible dups. Vnode counts are only 2837 * kept on regular files 2838 */ 2839 if ((vp->v_type == VREG) && (count == 1)) { 2840 if (flag & FREAD) { 2841 ASSERT(vp->v_rdcnt > 0); 2842 atomic_add_32(&(vp->v_rdcnt), -1); 2843 } 2844 if (flag & FWRITE) { 2845 ASSERT(vp->v_wrcnt > 0); 2846 atomic_add_32(&(vp->v_wrcnt), -1); 2847 } 2848 } 2849 return (err); 2850 } 2851 2852 int 2853 fop_read( 2854 vnode_t *vp, 2855 uio_t *uiop, 2856 int ioflag, 2857 cred_t *cr, 2858 struct caller_context *ct) 2859 { 2860 int err; 2861 ssize_t resid_start = uiop->uio_resid; 2862 2863 VOPXID_MAP_CR(vp, cr); 2864 2865 err = (*(vp)->v_op->vop_read)(vp, uiop, ioflag, cr, ct); 2866 VOPSTATS_UPDATE_IO(vp, read, 2867 read_bytes, (resid_start - uiop->uio_resid)); 2868 return (err); 2869 } 2870 2871 int 2872 fop_write( 2873 vnode_t *vp, 2874 uio_t *uiop, 2875 int ioflag, 2876 cred_t *cr, 2877 struct caller_context *ct) 2878 { 2879 int err; 2880 ssize_t resid_start = uiop->uio_resid; 2881 2882 VOPXID_MAP_CR(vp, cr); 2883 2884 err = (*(vp)->v_op->vop_write)(vp, uiop, ioflag, cr, ct); 2885 VOPSTATS_UPDATE_IO(vp, write, 2886 write_bytes, (resid_start - uiop->uio_resid)); 2887 return (err); 2888 } 2889 2890 int 2891 fop_ioctl( 2892 vnode_t *vp, 2893 int cmd, 2894 intptr_t arg, 2895 int flag, 2896 cred_t *cr, 2897 int *rvalp) 2898 { 2899 int err; 2900 2901 VOPXID_MAP_CR(vp, cr); 2902 2903 err = (*(vp)->v_op->vop_ioctl)(vp, cmd, arg, flag, cr, rvalp); 2904 VOPSTATS_UPDATE(vp, ioctl); 2905 return (err); 2906 } 2907 2908 int 2909 fop_setfl( 2910 vnode_t *vp, 2911 int oflags, 2912 int nflags, 2913 cred_t *cr) 2914 { 2915 int err; 2916 2917 VOPXID_MAP_CR(vp, cr); 2918 2919 err = (*(vp)->v_op->vop_setfl)(vp, oflags, nflags, cr); 2920 VOPSTATS_UPDATE(vp, setfl); 2921 return (err); 2922 } 2923 2924 int 2925 fop_getattr( 2926 vnode_t *vp, 2927 vattr_t *vap, 2928 int flags, 2929 cred_t *cr) 2930 { 2931 int err; 2932 2933 VOPXID_MAP_CR(vp, cr); 2934 2935 err = (*(vp)->v_op->vop_getattr)(vp, vap, flags, cr); 2936 VOPSTATS_UPDATE(vp, getattr); 2937 return (err); 2938 } 2939 2940 int 2941 fop_setattr( 2942 vnode_t *vp, 2943 vattr_t *vap, 2944 int flags, 2945 cred_t *cr, 2946 caller_context_t *ct) 2947 { 2948 int err; 2949 2950 VOPXID_MAP_CR(vp, cr); 2951 2952 err = (*(vp)->v_op->vop_setattr)(vp, vap, flags, cr, ct); 2953 VOPSTATS_UPDATE(vp, setattr); 2954 return (err); 2955 } 2956 2957 int 2958 fop_access( 2959 vnode_t *vp, 2960 int mode, 2961 int flags, 2962 cred_t *cr) 2963 { 2964 int err; 2965 2966 VOPXID_MAP_CR(vp, cr); 2967 2968 err = (*(vp)->v_op->vop_access)(vp, mode, flags, cr); 2969 VOPSTATS_UPDATE(vp, access); 2970 return (err); 2971 } 2972 2973 int 2974 fop_lookup( 2975 vnode_t *dvp, 2976 char *nm, 2977 vnode_t **vpp, 2978 pathname_t *pnp, 2979 int flags, 2980 vnode_t *rdir, 2981 cred_t *cr) 2982 { 2983 int ret; 2984 2985 VOPXID_MAP_CR(dvp, cr); 2986 2987 ret = (*(dvp)->v_op->vop_lookup)(dvp, nm, vpp, pnp, flags, rdir, cr); 2988 if (ret == 0 && *vpp) { 2989 VOPSTATS_UPDATE(*vpp, lookup); 2990 if ((*vpp)->v_path == NULL) { 2991 vn_setpath(rootdir, dvp, *vpp, nm, strlen(nm)); 2992 } 2993 } 2994 2995 return (ret); 2996 } 2997 2998 int 2999 fop_create( 3000 vnode_t *dvp, 3001 char *name, 3002 vattr_t *vap, 3003 vcexcl_t excl, 3004 int mode, 3005 vnode_t **vpp, 3006 cred_t *cr, 3007 int flag) 3008 { 3009 int ret; 3010 3011 VOPXID_MAP_CR(dvp, cr); 3012 3013 ret = (*(dvp)->v_op->vop_create) 3014 (dvp, name, vap, excl, mode, vpp, cr, flag); 3015 if (ret == 0 && *vpp) { 3016 VOPSTATS_UPDATE(*vpp, create); 3017 if ((*vpp)->v_path == NULL) { 3018 vn_setpath(rootdir, dvp, *vpp, name, strlen(name)); 3019 } 3020 } 3021 3022 return (ret); 3023 } 3024 3025 int 3026 fop_remove( 3027 vnode_t *dvp, 3028 char *nm, 3029 cred_t *cr) 3030 { 3031 int err; 3032 3033 VOPXID_MAP_CR(dvp, cr); 3034 3035 err = (*(dvp)->v_op->vop_remove)(dvp, nm, cr); 3036 VOPSTATS_UPDATE(dvp, remove); 3037 return (err); 3038 } 3039 3040 int 3041 fop_link( 3042 vnode_t *tdvp, 3043 vnode_t *svp, 3044 char *tnm, 3045 cred_t *cr) 3046 { 3047 int err; 3048 3049 VOPXID_MAP_CR(tdvp, cr); 3050 3051 err = (*(tdvp)->v_op->vop_link)(tdvp, svp, tnm, cr); 3052 VOPSTATS_UPDATE(tdvp, link); 3053 return (err); 3054 } 3055 3056 int 3057 fop_rename( 3058 vnode_t *sdvp, 3059 char *snm, 3060 vnode_t *tdvp, 3061 char *tnm, 3062 cred_t *cr) 3063 { 3064 int err; 3065 3066 VOPXID_MAP_CR(tdvp, cr); 3067 3068 err = (*(sdvp)->v_op->vop_rename)(sdvp, snm, tdvp, tnm, cr); 3069 VOPSTATS_UPDATE(sdvp, rename); 3070 return (err); 3071 } 3072 3073 int 3074 fop_mkdir( 3075 vnode_t *dvp, 3076 char *dirname, 3077 vattr_t *vap, 3078 vnode_t **vpp, 3079 cred_t *cr) 3080 { 3081 int ret; 3082 3083 VOPXID_MAP_CR(dvp, cr); 3084 3085 ret = (*(dvp)->v_op->vop_mkdir)(dvp, dirname, vap, vpp, cr); 3086 if (ret == 0 && *vpp) { 3087 VOPSTATS_UPDATE(*vpp, mkdir); 3088 if ((*vpp)->v_path == NULL) { 3089 vn_setpath(rootdir, dvp, *vpp, dirname, 3090 strlen(dirname)); 3091 } 3092 } 3093 3094 return (ret); 3095 } 3096 3097 int 3098 fop_rmdir( 3099 vnode_t *dvp, 3100 char *nm, 3101 vnode_t *cdir, 3102 cred_t *cr) 3103 { 3104 int err; 3105 3106 VOPXID_MAP_CR(dvp, cr); 3107 3108 err = (*(dvp)->v_op->vop_rmdir)(dvp, nm, cdir, cr); 3109 VOPSTATS_UPDATE(dvp, rmdir); 3110 return (err); 3111 } 3112 3113 int 3114 fop_readdir( 3115 vnode_t *vp, 3116 uio_t *uiop, 3117 cred_t *cr, 3118 int *eofp) 3119 { 3120 int err; 3121 ssize_t resid_start = uiop->uio_resid; 3122 3123 VOPXID_MAP_CR(vp, cr); 3124 3125 err = (*(vp)->v_op->vop_readdir)(vp, uiop, cr, eofp); 3126 VOPSTATS_UPDATE_IO(vp, readdir, 3127 readdir_bytes, (resid_start - uiop->uio_resid)); 3128 return (err); 3129 } 3130 3131 int 3132 fop_symlink( 3133 vnode_t *dvp, 3134 char *linkname, 3135 vattr_t *vap, 3136 char *target, 3137 cred_t *cr) 3138 { 3139 int err; 3140 3141 VOPXID_MAP_CR(dvp, cr); 3142 3143 err = (*(dvp)->v_op->vop_symlink) (dvp, linkname, vap, target, cr); 3144 VOPSTATS_UPDATE(dvp, symlink); 3145 return (err); 3146 } 3147 3148 int 3149 fop_readlink( 3150 vnode_t *vp, 3151 uio_t *uiop, 3152 cred_t *cr) 3153 { 3154 int err; 3155 3156 VOPXID_MAP_CR(vp, cr); 3157 3158 err = (*(vp)->v_op->vop_readlink)(vp, uiop, cr); 3159 VOPSTATS_UPDATE(vp, readlink); 3160 return (err); 3161 } 3162 3163 int 3164 fop_fsync( 3165 vnode_t *vp, 3166 int syncflag, 3167 cred_t *cr) 3168 { 3169 int err; 3170 3171 VOPXID_MAP_CR(vp, cr); 3172 3173 err = (*(vp)->v_op->vop_fsync)(vp, syncflag, cr); 3174 VOPSTATS_UPDATE(vp, fsync); 3175 return (err); 3176 } 3177 3178 void 3179 fop_inactive( 3180 vnode_t *vp, 3181 cred_t *cr) 3182 { 3183 /* Need to update stats before vop call since we may lose the vnode */ 3184 VOPSTATS_UPDATE(vp, inactive); 3185 3186 VOPXID_MAP_CR(vp, cr); 3187 3188 (*(vp)->v_op->vop_inactive)(vp, cr); 3189 } 3190 3191 int 3192 fop_fid( 3193 vnode_t *vp, 3194 fid_t *fidp) 3195 { 3196 int err; 3197 3198 err = (*(vp)->v_op->vop_fid)(vp, fidp); 3199 VOPSTATS_UPDATE(vp, fid); 3200 return (err); 3201 } 3202 3203 int 3204 fop_rwlock( 3205 vnode_t *vp, 3206 int write_lock, 3207 caller_context_t *ct) 3208 { 3209 int ret; 3210 3211 ret = ((*(vp)->v_op->vop_rwlock)(vp, write_lock, ct)); 3212 VOPSTATS_UPDATE(vp, rwlock); 3213 return (ret); 3214 } 3215 3216 void 3217 fop_rwunlock( 3218 vnode_t *vp, 3219 int write_lock, 3220 caller_context_t *ct) 3221 { 3222 (*(vp)->v_op->vop_rwunlock)(vp, write_lock, ct); 3223 VOPSTATS_UPDATE(vp, rwunlock); 3224 } 3225 3226 int 3227 fop_seek( 3228 vnode_t *vp, 3229 offset_t ooff, 3230 offset_t *noffp) 3231 { 3232 int err; 3233 3234 err = (*(vp)->v_op->vop_seek)(vp, ooff, noffp); 3235 VOPSTATS_UPDATE(vp, seek); 3236 return (err); 3237 } 3238 3239 int 3240 fop_cmp( 3241 vnode_t *vp1, 3242 vnode_t *vp2) 3243 { 3244 int err; 3245 3246 err = (*(vp1)->v_op->vop_cmp)(vp1, vp2); 3247 VOPSTATS_UPDATE(vp1, cmp); 3248 return (err); 3249 } 3250 3251 int 3252 fop_frlock( 3253 vnode_t *vp, 3254 int cmd, 3255 flock64_t *bfp, 3256 int flag, 3257 offset_t offset, 3258 struct flk_callback *flk_cbp, 3259 cred_t *cr) 3260 { 3261 int err; 3262 3263 VOPXID_MAP_CR(vp, cr); 3264 3265 err = (*(vp)->v_op->vop_frlock) 3266 (vp, cmd, bfp, flag, offset, flk_cbp, cr); 3267 VOPSTATS_UPDATE(vp, frlock); 3268 return (err); 3269 } 3270 3271 int 3272 fop_space( 3273 vnode_t *vp, 3274 int cmd, 3275 flock64_t *bfp, 3276 int flag, 3277 offset_t offset, 3278 cred_t *cr, 3279 caller_context_t *ct) 3280 { 3281 int err; 3282 3283 VOPXID_MAP_CR(vp, cr); 3284 3285 err = (*(vp)->v_op->vop_space)(vp, cmd, bfp, flag, offset, cr, ct); 3286 VOPSTATS_UPDATE(vp, space); 3287 return (err); 3288 } 3289 3290 int 3291 fop_realvp( 3292 vnode_t *vp, 3293 vnode_t **vpp) 3294 { 3295 int err; 3296 3297 err = (*(vp)->v_op->vop_realvp)(vp, vpp); 3298 VOPSTATS_UPDATE(vp, realvp); 3299 return (err); 3300 } 3301 3302 int 3303 fop_getpage( 3304 vnode_t *vp, 3305 offset_t off, 3306 size_t len, 3307 uint_t *protp, 3308 page_t **plarr, 3309 size_t plsz, 3310 struct seg *seg, 3311 caddr_t addr, 3312 enum seg_rw rw, 3313 cred_t *cr) 3314 { 3315 int err; 3316 3317 VOPXID_MAP_CR(vp, cr); 3318 3319 err = (*(vp)->v_op->vop_getpage) 3320 (vp, off, len, protp, plarr, plsz, seg, addr, rw, cr); 3321 VOPSTATS_UPDATE(vp, getpage); 3322 return (err); 3323 } 3324 3325 int 3326 fop_putpage( 3327 vnode_t *vp, 3328 offset_t off, 3329 size_t len, 3330 int flags, 3331 cred_t *cr) 3332 { 3333 int err; 3334 3335 VOPXID_MAP_CR(vp, cr); 3336 3337 err = (*(vp)->v_op->vop_putpage)(vp, off, len, flags, cr); 3338 VOPSTATS_UPDATE(vp, putpage); 3339 return (err); 3340 } 3341 3342 int 3343 fop_map( 3344 vnode_t *vp, 3345 offset_t off, 3346 struct as *as, 3347 caddr_t *addrp, 3348 size_t len, 3349 uchar_t prot, 3350 uchar_t maxprot, 3351 uint_t flags, 3352 cred_t *cr) 3353 { 3354 int err; 3355 3356 VOPXID_MAP_CR(vp, cr); 3357 3358 err = (*(vp)->v_op->vop_map) 3359 (vp, off, as, addrp, len, prot, maxprot, flags, cr); 3360 VOPSTATS_UPDATE(vp, map); 3361 return (err); 3362 } 3363 3364 int 3365 fop_addmap( 3366 vnode_t *vp, 3367 offset_t off, 3368 struct as *as, 3369 caddr_t addr, 3370 size_t len, 3371 uchar_t prot, 3372 uchar_t maxprot, 3373 uint_t flags, 3374 cred_t *cr) 3375 { 3376 int error; 3377 u_longlong_t delta; 3378 3379 VOPXID_MAP_CR(vp, cr); 3380 3381 error = (*(vp)->v_op->vop_addmap) 3382 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3383 3384 if ((!error) && (vp->v_type == VREG)) { 3385 delta = (u_longlong_t)btopr(len); 3386 /* 3387 * If file is declared MAP_PRIVATE, it can't be written back 3388 * even if open for write. Handle as read. 3389 */ 3390 if (flags & MAP_PRIVATE) { 3391 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3392 (int64_t)delta); 3393 } else { 3394 /* 3395 * atomic_add_64 forces the fetch of a 64 bit value to 3396 * be atomic on 32 bit machines 3397 */ 3398 if (maxprot & PROT_WRITE) 3399 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3400 (int64_t)delta); 3401 if (maxprot & PROT_READ) 3402 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3403 (int64_t)delta); 3404 if (maxprot & PROT_EXEC) 3405 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3406 (int64_t)delta); 3407 } 3408 } 3409 VOPSTATS_UPDATE(vp, addmap); 3410 return (error); 3411 } 3412 3413 int 3414 fop_delmap( 3415 vnode_t *vp, 3416 offset_t off, 3417 struct as *as, 3418 caddr_t addr, 3419 size_t len, 3420 uint_t prot, 3421 uint_t maxprot, 3422 uint_t flags, 3423 cred_t *cr) 3424 { 3425 int error; 3426 u_longlong_t delta; 3427 3428 VOPXID_MAP_CR(vp, cr); 3429 3430 error = (*(vp)->v_op->vop_delmap) 3431 (vp, off, as, addr, len, prot, maxprot, flags, cr); 3432 3433 /* 3434 * NFS calls into delmap twice, the first time 3435 * it simply establishes a callback mechanism and returns EAGAIN 3436 * while the real work is being done upon the second invocation. 3437 * We have to detect this here and only decrement the counts upon 3438 * the second delmap request. 3439 */ 3440 if ((error != EAGAIN) && (vp->v_type == VREG)) { 3441 3442 delta = (u_longlong_t)btopr(len); 3443 3444 if (flags & MAP_PRIVATE) { 3445 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3446 (int64_t)(-delta)); 3447 } else { 3448 /* 3449 * atomic_add_64 forces the fetch of a 64 bit value 3450 * to be atomic on 32 bit machines 3451 */ 3452 if (maxprot & PROT_WRITE) 3453 atomic_add_64((uint64_t *)(&(vp->v_mmap_write)), 3454 (int64_t)(-delta)); 3455 if (maxprot & PROT_READ) 3456 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3457 (int64_t)(-delta)); 3458 if (maxprot & PROT_EXEC) 3459 atomic_add_64((uint64_t *)(&(vp->v_mmap_read)), 3460 (int64_t)(-delta)); 3461 } 3462 } 3463 VOPSTATS_UPDATE(vp, delmap); 3464 return (error); 3465 } 3466 3467 3468 int 3469 fop_poll( 3470 vnode_t *vp, 3471 short events, 3472 int anyyet, 3473 short *reventsp, 3474 struct pollhead **phpp) 3475 { 3476 int err; 3477 3478 err = (*(vp)->v_op->vop_poll)(vp, events, anyyet, reventsp, phpp); 3479 VOPSTATS_UPDATE(vp, poll); 3480 return (err); 3481 } 3482 3483 int 3484 fop_dump( 3485 vnode_t *vp, 3486 caddr_t addr, 3487 int lbdn, 3488 int dblks) 3489 { 3490 int err; 3491 3492 err = (*(vp)->v_op->vop_dump)(vp, addr, lbdn, dblks); 3493 VOPSTATS_UPDATE(vp, dump); 3494 return (err); 3495 } 3496 3497 int 3498 fop_pathconf( 3499 vnode_t *vp, 3500 int cmd, 3501 ulong_t *valp, 3502 cred_t *cr) 3503 { 3504 int err; 3505 3506 VOPXID_MAP_CR(vp, cr); 3507 3508 err = (*(vp)->v_op->vop_pathconf)(vp, cmd, valp, cr); 3509 VOPSTATS_UPDATE(vp, pathconf); 3510 return (err); 3511 } 3512 3513 int 3514 fop_pageio( 3515 vnode_t *vp, 3516 struct page *pp, 3517 u_offset_t io_off, 3518 size_t io_len, 3519 int flags, 3520 cred_t *cr) 3521 { 3522 int err; 3523 3524 VOPXID_MAP_CR(vp, cr); 3525 3526 err = (*(vp)->v_op->vop_pageio)(vp, pp, io_off, io_len, flags, cr); 3527 VOPSTATS_UPDATE(vp, pageio); 3528 return (err); 3529 } 3530 3531 int 3532 fop_dumpctl( 3533 vnode_t *vp, 3534 int action, 3535 int *blkp) 3536 { 3537 int err; 3538 err = (*(vp)->v_op->vop_dumpctl)(vp, action, blkp); 3539 VOPSTATS_UPDATE(vp, dumpctl); 3540 return (err); 3541 } 3542 3543 void 3544 fop_dispose( 3545 vnode_t *vp, 3546 page_t *pp, 3547 int flag, 3548 int dn, 3549 cred_t *cr) 3550 { 3551 /* Must do stats first since it's possible to lose the vnode */ 3552 VOPSTATS_UPDATE(vp, dispose); 3553 3554 VOPXID_MAP_CR(vp, cr); 3555 3556 (*(vp)->v_op->vop_dispose)(vp, pp, flag, dn, cr); 3557 } 3558 3559 int 3560 fop_setsecattr( 3561 vnode_t *vp, 3562 vsecattr_t *vsap, 3563 int flag, 3564 cred_t *cr) 3565 { 3566 int err; 3567 3568 VOPXID_MAP_CR(vp, cr); 3569 3570 err = (*(vp)->v_op->vop_setsecattr) (vp, vsap, flag, cr); 3571 VOPSTATS_UPDATE(vp, setsecattr); 3572 return (err); 3573 } 3574 3575 int 3576 fop_getsecattr( 3577 vnode_t *vp, 3578 vsecattr_t *vsap, 3579 int flag, 3580 cred_t *cr) 3581 { 3582 int err; 3583 3584 VOPXID_MAP_CR(vp, cr); 3585 3586 err = (*(vp)->v_op->vop_getsecattr) (vp, vsap, flag, cr); 3587 VOPSTATS_UPDATE(vp, getsecattr); 3588 return (err); 3589 } 3590 3591 int 3592 fop_shrlock( 3593 vnode_t *vp, 3594 int cmd, 3595 struct shrlock *shr, 3596 int flag, 3597 cred_t *cr) 3598 { 3599 int err; 3600 3601 VOPXID_MAP_CR(vp, cr); 3602 3603 err = (*(vp)->v_op->vop_shrlock)(vp, cmd, shr, flag, cr); 3604 VOPSTATS_UPDATE(vp, shrlock); 3605 return (err); 3606 } 3607 3608 int 3609 fop_vnevent(vnode_t *vp, vnevent_t vnevent, vnode_t *dvp, char *fnm) 3610 { 3611 int err; 3612 3613 err = (*(vp)->v_op->vop_vnevent)(vp, vnevent, dvp, fnm); 3614 VOPSTATS_UPDATE(vp, vnevent); 3615 return (err); 3616 } 3617