1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/user.h> 44 #include <sys/fstyp.h> 45 #include <sys/kmem.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/mount.h> 49 #include <sys/vfs.h> 50 #include <sys/vfs_opreg.h> 51 #include <sys/fem.h> 52 #include <sys/mntent.h> 53 #include <sys/stat.h> 54 #include <sys/statvfs.h> 55 #include <sys/statfs.h> 56 #include <sys/cred.h> 57 #include <sys/vnode.h> 58 #include <sys/rwstlock.h> 59 #include <sys/dnlc.h> 60 #include <sys/file.h> 61 #include <sys/time.h> 62 #include <sys/atomic.h> 63 #include <sys/cmn_err.h> 64 #include <sys/buf.h> 65 #include <sys/swap.h> 66 #include <sys/debug.h> 67 #include <sys/vnode.h> 68 #include <sys/modctl.h> 69 #include <sys/ddi.h> 70 #include <sys/pathname.h> 71 #include <sys/bootconf.h> 72 #include <sys/dumphdr.h> 73 #include <sys/dc_ki.h> 74 #include <sys/poll.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysmacros.h> 77 #include <sys/zone.h> 78 #include <sys/policy.h> 79 #include <sys/ctfs.h> 80 #include <sys/objfs.h> 81 #include <sys/console.h> 82 #include <sys/reboot.h> 83 #include <sys/attr.h> 84 #include <sys/zio.h> 85 #include <sys/spa.h> 86 #include <sys/lofi.h> 87 #include <sys/bootprops.h> 88 89 #include <vm/page.h> 90 91 #include <fs/fs_subr.h> 92 /* Private interfaces to create vopstats-related data structures */ 93 extern void initialize_vopstats(vopstats_t *); 94 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 95 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 96 97 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 98 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 99 const char *, int, int); 100 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 101 static void vfs_freemnttab(struct vfs *); 102 static void vfs_freeopt(mntopt_t *); 103 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 104 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 105 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 106 static void vfs_createopttbl_extend(mntopts_t *, const char *, 107 const mntopts_t *); 108 static char **vfs_copycancelopt_extend(char **const, int); 109 static void vfs_freecancelopt(char **); 110 static void getrootfs(char **, char **); 111 static int getmacpath(dev_info_t *, void *); 112 static void vfs_mnttabvp_setup(void); 113 114 struct ipmnt { 115 struct ipmnt *mip_next; 116 dev_t mip_dev; 117 struct vfs *mip_vfsp; 118 }; 119 120 static kmutex_t vfs_miplist_mutex; 121 static struct ipmnt *vfs_miplist = NULL; 122 static struct ipmnt *vfs_miplist_end = NULL; 123 124 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 125 126 /* 127 * VFS global data. 128 */ 129 vnode_t *rootdir; /* pointer to root inode vnode. */ 130 vnode_t *devicesdir; /* pointer to inode of devices root */ 131 vnode_t *devdir; /* pointer to inode of dev root */ 132 133 char *server_rootpath; /* root path for diskless clients */ 134 char *server_hostname; /* hostname of diskless server */ 135 136 static struct vfs root; 137 static struct vfs devices; 138 static struct vfs dev; 139 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 140 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 141 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 142 /* must be power of 2! */ 143 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 144 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 145 char *vfs_dummyfstype = "\0"; 146 struct pollhead vfs_pollhd; /* for mnttab pollers */ 147 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 148 int mntfstype; /* will be set once mnt fs is mounted */ 149 150 /* 151 * Table for generic options recognized in the VFS layer and acted 152 * on at this level before parsing file system specific options. 153 * The nosuid option is stronger than any of the devices and setuid 154 * options, so those are canceled when nosuid is seen. 155 * 156 * All options which are added here need to be added to the 157 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 158 */ 159 /* 160 * VFS Mount options table 161 */ 162 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 163 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 164 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 165 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 166 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 167 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 168 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 169 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 170 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 171 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 172 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 173 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 174 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 175 176 static const mntopt_t mntopts[] = { 177 /* 178 * option name cancel options default arg flags 179 */ 180 { MNTOPT_REMOUNT, NULL, NULL, 181 MO_NODISPLAY, (void *)0 }, 182 { MNTOPT_RO, ro_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_RW, rw_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_SUID, suid_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_EXEC, exec_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 205 (void *)0 }, 206 }; 207 208 const mntopts_t vfs_mntopts = { 209 sizeof (mntopts) / sizeof (mntopt_t), 210 (mntopt_t *)&mntopts[0] 211 }; 212 213 /* 214 * File system operation dispatch functions. 215 */ 216 217 int 218 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 221 } 222 223 int 224 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 225 { 226 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 227 } 228 229 int 230 fsop_root(vfs_t *vfsp, vnode_t **vpp) 231 { 232 refstr_t *mntpt; 233 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 234 /* 235 * Make sure this root has a path. With lofs, it is possible to have 236 * a NULL mountpoint. 237 */ 238 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 239 mntpt = vfs_getmntpoint(vfsp); 240 vn_setpath_str(*vpp, refstr_value(mntpt), 241 strlen(refstr_value(mntpt))); 242 refstr_rele(mntpt); 243 } 244 245 return (ret); 246 } 247 248 int 249 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 250 { 251 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 252 } 253 254 int 255 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 256 { 257 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 258 } 259 260 int 261 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 262 { 263 /* 264 * In order to handle system attribute fids in a manner 265 * transparent to the underlying fs, we embed the fid for 266 * the sysattr parent object in the sysattr fid and tack on 267 * some extra bytes that only the sysattr layer knows about. 268 * 269 * This guarantees that sysattr fids are larger than other fids 270 * for this vfs. If the vfs supports the sysattr view interface 271 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 272 * collision with XATTR_FIDSZ. 273 */ 274 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 275 fidp->fid_len == XATTR_FIDSZ) 276 return (xattr_dir_vget(vfsp, vpp, fidp)); 277 278 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 279 } 280 281 int 282 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 283 { 284 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 285 } 286 287 void 288 fsop_freefs(vfs_t *vfsp) 289 { 290 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 291 } 292 293 int 294 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 295 { 296 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 297 } 298 299 int 300 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 301 { 302 ASSERT((fstype >= 0) && (fstype < nfstype)); 303 304 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 305 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 306 else 307 return (ENOTSUP); 308 } 309 310 /* 311 * File system initialization. vfs_setfsops() must be called from a file 312 * system's init routine. 313 */ 314 315 static int 316 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 317 int *unused_ops) 318 { 319 static const fs_operation_trans_def_t vfs_ops_table[] = { 320 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 321 fs_nosys, fs_nosys, 322 323 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 324 fs_nosys, fs_nosys, 325 326 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 327 fs_nosys, fs_nosys, 328 329 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 330 fs_nosys, fs_nosys, 331 332 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 333 (fs_generic_func_p) fs_sync, 334 (fs_generic_func_p) fs_sync, /* No errors allowed */ 335 336 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 337 fs_nosys, fs_nosys, 338 339 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 340 fs_nosys, fs_nosys, 341 342 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 343 (fs_generic_func_p)fs_freevfs, 344 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 345 346 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 347 (fs_generic_func_p)fs_nosys, 348 (fs_generic_func_p)fs_nosys, 349 350 NULL, 0, NULL, NULL 351 }; 352 353 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 354 } 355 356 void 357 zfs_boot_init() { 358 359 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 360 spa_boot_init(); 361 } 362 363 int 364 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 365 { 366 int error; 367 int unused_ops; 368 369 /* 370 * Verify that fstype refers to a valid fs. Note that 371 * 0 is valid since it's used to set "stray" ops. 372 */ 373 if ((fstype < 0) || (fstype >= nfstype)) 374 return (EINVAL); 375 376 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 377 return (EINVAL); 378 379 /* Set up the operations vector. */ 380 381 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 382 383 if (error != 0) 384 return (error); 385 386 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 387 388 if (actual != NULL) 389 *actual = &vfssw[fstype].vsw_vfsops; 390 391 #if DEBUG 392 if (unused_ops != 0) 393 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 394 "but not used", vfssw[fstype].vsw_name, unused_ops); 395 #endif 396 397 return (0); 398 } 399 400 int 401 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 402 { 403 int error; 404 int unused_ops; 405 406 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 407 408 error = fs_copyfsops(template, *actual, &unused_ops); 409 if (error != 0) { 410 kmem_free(*actual, sizeof (vfsops_t)); 411 *actual = NULL; 412 return (error); 413 } 414 415 return (0); 416 } 417 418 /* 419 * Free a vfsops structure created as a result of vfs_makefsops(). 420 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 421 * vfs_freevfsops_by_type(). 422 */ 423 void 424 vfs_freevfsops(vfsops_t *vfsops) 425 { 426 kmem_free(vfsops, sizeof (vfsops_t)); 427 } 428 429 /* 430 * Since the vfsops structure is part of the vfssw table and wasn't 431 * really allocated, we're not really freeing anything. We keep 432 * the name for consistency with vfs_freevfsops(). We do, however, 433 * need to take care of a little bookkeeping. 434 * NOTE: For a vfsops structure created by vfs_setfsops(), use 435 * vfs_freevfsops_by_type(). 436 */ 437 int 438 vfs_freevfsops_by_type(int fstype) 439 { 440 441 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 442 if ((fstype <= 0) || (fstype >= nfstype)) 443 return (EINVAL); 444 445 WLOCK_VFSSW(); 446 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 447 WUNLOCK_VFSSW(); 448 return (EINVAL); 449 } 450 451 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 452 WUNLOCK_VFSSW(); 453 454 return (0); 455 } 456 457 /* Support routines used to reference vfs_op */ 458 459 /* Set the operations vector for a vfs */ 460 void 461 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 462 { 463 vfsops_t *op; 464 465 ASSERT(vfsp != NULL); 466 ASSERT(vfsops != NULL); 467 468 op = vfsp->vfs_op; 469 membar_consumer(); 470 if (vfsp->vfs_femhead == NULL && 471 casptr(&vfsp->vfs_op, op, vfsops) == op) { 472 return; 473 } 474 fsem_setvfsops(vfsp, vfsops); 475 } 476 477 /* Retrieve the operations vector for a vfs */ 478 vfsops_t * 479 vfs_getops(vfs_t *vfsp) 480 { 481 vfsops_t *op; 482 483 ASSERT(vfsp != NULL); 484 485 op = vfsp->vfs_op; 486 membar_consumer(); 487 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 488 return (op); 489 } else { 490 return (fsem_getvfsops(vfsp)); 491 } 492 } 493 494 /* 495 * Returns non-zero (1) if the vfsops matches that of the vfs. 496 * Returns zero (0) if not. 497 */ 498 int 499 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 500 { 501 return (vfs_getops(vfsp) == vfsops); 502 } 503 504 /* 505 * Returns non-zero (1) if the file system has installed a non-default, 506 * non-error vfs_sync routine. Returns zero (0) otherwise. 507 */ 508 int 509 vfs_can_sync(vfs_t *vfsp) 510 { 511 /* vfs_sync() routine is not the default/error function */ 512 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 513 } 514 515 /* 516 * Initialize a vfs structure. 517 */ 518 void 519 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 520 { 521 /* Other initialization has been moved to vfs_alloc() */ 522 vfsp->vfs_count = 0; 523 vfsp->vfs_next = vfsp; 524 vfsp->vfs_prev = vfsp; 525 vfsp->vfs_zone_next = vfsp; 526 vfsp->vfs_zone_prev = vfsp; 527 vfsp->vfs_lofi_minor = 0; 528 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 529 vfsimpl_setup(vfsp); 530 vfsp->vfs_data = (data); 531 vfs_setops((vfsp), (op)); 532 } 533 534 /* 535 * Allocate and initialize the vfs implementation private data 536 * structure, vfs_impl_t. 537 */ 538 void 539 vfsimpl_setup(vfs_t *vfsp) 540 { 541 int i; 542 543 if (vfsp->vfs_implp != NULL) { 544 return; 545 } 546 547 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 548 /* Note that these are #define'd in vfs.h */ 549 vfsp->vfs_vskap = NULL; 550 vfsp->vfs_fstypevsp = NULL; 551 552 /* Set size of counted array, then zero the array */ 553 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 554 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 555 vfsp->vfs_featureset[i] = 0; 556 } 557 } 558 559 /* 560 * Release the vfs_impl_t structure, if it exists. Some unbundled 561 * filesystems may not use the newer version of vfs and thus 562 * would not contain this implementation private data structure. 563 */ 564 void 565 vfsimpl_teardown(vfs_t *vfsp) 566 { 567 vfs_impl_t *vip = vfsp->vfs_implp; 568 569 if (vip == NULL) 570 return; 571 572 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 573 vfsp->vfs_implp = NULL; 574 } 575 576 /* 577 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 578 * fstatvfs, and sysfs moved to common/syscall. 579 */ 580 581 /* 582 * Update every mounted file system. We call the vfs_sync operation of 583 * each file system type, passing it a NULL vfsp to indicate that all 584 * mounted file systems of that type should be updated. 585 */ 586 void 587 vfs_sync(int flag) 588 { 589 struct vfssw *vswp; 590 RLOCK_VFSSW(); 591 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 592 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 593 vfs_refvfssw(vswp); 594 RUNLOCK_VFSSW(); 595 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 596 CRED()); 597 vfs_unrefvfssw(vswp); 598 RLOCK_VFSSW(); 599 } 600 } 601 RUNLOCK_VFSSW(); 602 } 603 604 void 605 sync(void) 606 { 607 vfs_sync(0); 608 } 609 610 /* 611 * External routines. 612 */ 613 614 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 615 616 /* 617 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 618 * but otherwise should be accessed only via vfs_list_lock() and 619 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 620 */ 621 static krwlock_t vfslist; 622 623 /* 624 * Mount devfs on /devices. This is done right after root is mounted 625 * to provide device access support for the system 626 */ 627 static void 628 vfs_mountdevices(void) 629 { 630 struct vfssw *vsw; 631 struct vnode *mvp; 632 struct mounta mounta = { /* fake mounta for devfs_mount() */ 633 NULL, 634 NULL, 635 MS_SYSSPACE, 636 NULL, 637 NULL, 638 0, 639 NULL, 640 0 641 }; 642 643 /* 644 * _init devfs module to fill in the vfssw 645 */ 646 if (modload("fs", "devfs") == -1) 647 panic("Cannot _init devfs module"); 648 649 /* 650 * Hold vfs 651 */ 652 RLOCK_VFSSW(); 653 vsw = vfs_getvfsswbyname("devfs"); 654 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 655 VFS_HOLD(&devices); 656 657 /* 658 * Locate mount point 659 */ 660 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 661 panic("Cannot find /devices"); 662 663 /* 664 * Perform the mount of /devices 665 */ 666 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 667 panic("Cannot mount /devices"); 668 669 RUNLOCK_VFSSW(); 670 671 /* 672 * Set appropriate members and add to vfs list for mnttab display 673 */ 674 vfs_setresource(&devices, "/devices"); 675 vfs_setmntpoint(&devices, "/devices"); 676 677 /* 678 * Hold the root of /devices so it won't go away 679 */ 680 if (VFS_ROOT(&devices, &devicesdir)) 681 panic("vfs_mountdevices: not devices root"); 682 683 if (vfs_lock(&devices) != 0) { 684 VN_RELE(devicesdir); 685 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 686 return; 687 } 688 689 if (vn_vfswlock(mvp) != 0) { 690 vfs_unlock(&devices); 691 VN_RELE(devicesdir); 692 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 693 return; 694 } 695 696 vfs_add(mvp, &devices, 0); 697 vn_vfsunlock(mvp); 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 } 701 702 /* 703 * mount the first instance of /dev to root and remain mounted 704 */ 705 static void 706 vfs_mountdev1(void) 707 { 708 struct vfssw *vsw; 709 struct vnode *mvp; 710 struct mounta mounta = { /* fake mounta for sdev_mount() */ 711 NULL, 712 NULL, 713 MS_SYSSPACE | MS_OVERLAY, 714 NULL, 715 NULL, 716 0, 717 NULL, 718 0 719 }; 720 721 /* 722 * _init dev module to fill in the vfssw 723 */ 724 if (modload("fs", "dev") == -1) 725 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 726 727 /* 728 * Hold vfs 729 */ 730 RLOCK_VFSSW(); 731 vsw = vfs_getvfsswbyname("dev"); 732 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 733 VFS_HOLD(&dev); 734 735 /* 736 * Locate mount point 737 */ 738 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 739 cmn_err(CE_PANIC, "Cannot find /dev\n"); 740 741 /* 742 * Perform the mount of /dev 743 */ 744 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 745 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 746 747 RUNLOCK_VFSSW(); 748 749 /* 750 * Set appropriate members and add to vfs list for mnttab display 751 */ 752 vfs_setresource(&dev, "/dev"); 753 vfs_setmntpoint(&dev, "/dev"); 754 755 /* 756 * Hold the root of /dev so it won't go away 757 */ 758 if (VFS_ROOT(&dev, &devdir)) 759 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 760 761 if (vfs_lock(&dev) != 0) { 762 VN_RELE(devdir); 763 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 764 return; 765 } 766 767 if (vn_vfswlock(mvp) != 0) { 768 vfs_unlock(&dev); 769 VN_RELE(devdir); 770 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 771 return; 772 } 773 774 vfs_add(mvp, &dev, 0); 775 vn_vfsunlock(mvp); 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 } 779 780 /* 781 * Mount required filesystem. This is done right after root is mounted. 782 */ 783 static void 784 vfs_mountfs(char *module, char *spec, char *path) 785 { 786 struct vnode *mvp; 787 struct mounta mounta; 788 vfs_t *vfsp; 789 790 mounta.flags = MS_SYSSPACE | MS_DATA; 791 mounta.fstype = module; 792 mounta.spec = spec; 793 mounta.dir = path; 794 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 795 cmn_err(CE_WARN, "Cannot find %s", path); 796 return; 797 } 798 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 799 cmn_err(CE_WARN, "Cannot mount %s", path); 800 else 801 VFS_RELE(vfsp); 802 VN_RELE(mvp); 803 } 804 805 /* 806 * vfs_mountroot is called by main() to mount the root filesystem. 807 */ 808 void 809 vfs_mountroot(void) 810 { 811 struct vnode *rvp = NULL; 812 char *path; 813 size_t plen; 814 struct vfssw *vswp; 815 proc_t *p; 816 817 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 818 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 819 820 /* 821 * Alloc the vfs hash bucket array and locks 822 */ 823 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 824 825 /* 826 * Call machine-dependent routine "rootconf" to choose a root 827 * file system type. 828 */ 829 if (rootconf()) 830 panic("vfs_mountroot: cannot mount root"); 831 /* 832 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 833 * to point to it. These are used by lookuppn() so that it 834 * knows where to start from ('/' or '.'). 835 */ 836 vfs_setmntpoint(rootvfs, "/"); 837 if (VFS_ROOT(rootvfs, &rootdir)) 838 panic("vfs_mountroot: no root vnode"); 839 840 /* 841 * At this point, the process tree consists of p0 and possibly some 842 * direct children of p0. (i.e. there are no grandchildren) 843 * 844 * Walk through them all, setting their current directory. 845 */ 846 mutex_enter(&pidlock); 847 for (p = practive; p != NULL; p = p->p_next) { 848 ASSERT(p == &p0 || p->p_parent == &p0); 849 850 PTOU(p)->u_cdir = rootdir; 851 VN_HOLD(PTOU(p)->u_cdir); 852 PTOU(p)->u_rdir = NULL; 853 } 854 mutex_exit(&pidlock); 855 856 /* 857 * Setup the global zone's rootvp, now that it exists. 858 */ 859 global_zone->zone_rootvp = rootdir; 860 VN_HOLD(global_zone->zone_rootvp); 861 862 /* 863 * Notify the module code that it can begin using the 864 * root filesystem instead of the boot program's services. 865 */ 866 modrootloaded = 1; 867 868 /* 869 * Special handling for a ZFS root file system. 870 */ 871 zfs_boot_init(); 872 873 /* 874 * Set up mnttab information for root 875 */ 876 vfs_setresource(rootvfs, rootfs.bo_name); 877 878 /* 879 * Notify cluster software that the root filesystem is available. 880 */ 881 clboot_mountroot(); 882 883 /* Now that we're all done with the root FS, set up its vopstats */ 884 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 885 /* Set flag for statistics collection */ 886 if (vswp->vsw_flag & VSW_STATS) { 887 initialize_vopstats(&rootvfs->vfs_vopstats); 888 rootvfs->vfs_flag |= VFS_STATS; 889 rootvfs->vfs_fstypevsp = 890 get_fstype_vopstats(rootvfs, vswp); 891 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 892 } 893 vfs_unrefvfssw(vswp); 894 } 895 896 /* 897 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 898 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 899 */ 900 vfs_mountdevices(); 901 vfs_mountdev1(); 902 903 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 904 vfs_mountfs("proc", "/proc", "/proc"); 905 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 906 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 907 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 908 909 if (getzoneid() == GLOBAL_ZONEID) { 910 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 911 } 912 913 #ifdef __sparc 914 /* 915 * This bit of magic can go away when we convert sparc to 916 * the new boot architecture based on ramdisk. 917 * 918 * Booting off a mirrored root volume: 919 * At this point, we have booted and mounted root on a 920 * single component of the mirror. Complete the boot 921 * by configuring SVM and converting the root to the 922 * dev_t of the mirrored root device. This dev_t conversion 923 * only works because the underlying device doesn't change. 924 */ 925 if (root_is_svm) { 926 if (svm_rootconf()) { 927 panic("vfs_mountroot: cannot remount root"); 928 } 929 930 /* 931 * mnttab should reflect the new root device 932 */ 933 vfs_lock_wait(rootvfs); 934 vfs_setresource(rootvfs, rootfs.bo_name); 935 vfs_unlock(rootvfs); 936 } 937 #endif /* __sparc */ 938 939 /* 940 * Look up the root device via devfs so that a dv_node is 941 * created for it. The vnode is never VN_RELE()ed. 942 * We allocate more than MAXPATHLEN so that the 943 * buffer passed to i_ddi_prompath_to_devfspath() is 944 * exactly MAXPATHLEN (the function expects a buffer 945 * of that length). 946 */ 947 plen = strlen("/devices"); 948 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 949 (void) strcpy(path, "/devices"); 950 951 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 952 != DDI_SUCCESS || 953 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 954 955 /* NUL terminate in case "path" has garbage */ 956 path[plen + MAXPATHLEN - 1] = '\0'; 957 #ifdef DEBUG 958 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 959 #endif 960 } 961 kmem_free(path, plen + MAXPATHLEN); 962 vfs_mnttabvp_setup(); 963 } 964 965 /* 966 * If remount failed and we're in a zone we need to check for the zone 967 * root path and strip it before the call to vfs_setpath(). 968 * 969 * If strpath doesn't begin with the zone_rootpath the original 970 * strpath is returned unchanged. 971 */ 972 static const char * 973 stripzonepath(const char *strpath) 974 { 975 char *str1, *str2; 976 int i; 977 zone_t *zonep = curproc->p_zone; 978 979 if (zonep->zone_rootpath == NULL || strpath == NULL) { 980 return (NULL); 981 } 982 983 /* 984 * we check for the end of the string at one past the 985 * current position because the zone_rootpath always 986 * ends with "/" but we don't want to strip that off. 987 */ 988 str1 = zonep->zone_rootpath; 989 str2 = (char *)strpath; 990 ASSERT(str1[0] != '\0'); 991 for (i = 0; str1[i + 1] != '\0'; i++) { 992 if (str1[i] != str2[i]) 993 return ((char *)strpath); 994 } 995 return (&str2[i]); 996 } 997 998 /* 999 * Check to see if our "block device" is actually a file. If so, 1000 * automatically add a lofi device, and keep track of this fact. 1001 */ 1002 static int 1003 lofi_add(const char *fsname, struct vfs *vfsp, 1004 mntopts_t *mntopts, struct mounta *uap) 1005 { 1006 int fromspace = (uap->flags & MS_SYSSPACE) ? 1007 UIO_SYSSPACE : UIO_USERSPACE; 1008 struct lofi_ioctl *li = NULL; 1009 struct vnode *vp = NULL; 1010 struct pathname pn = { NULL }; 1011 ldi_ident_t ldi_id; 1012 ldi_handle_t ldi_hdl; 1013 vfssw_t *vfssw; 1014 int minor; 1015 int err = 0; 1016 1017 if (fsname == NULL || 1018 (vfssw = vfs_getvfssw(fsname)) == NULL) 1019 return (0); 1020 1021 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1022 vfs_unrefvfssw(vfssw); 1023 return (0); 1024 } 1025 1026 vfs_unrefvfssw(vfssw); 1027 vfssw = NULL; 1028 1029 if (pn_get(uap->spec, fromspace, &pn) != 0) 1030 return (0); 1031 1032 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1033 goto out; 1034 1035 if (vp->v_type != VREG) 1036 goto out; 1037 1038 /* OK, this is a lofi mount. */ 1039 1040 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1041 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1042 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1043 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1044 err = EINVAL; 1045 goto out; 1046 } 1047 1048 ldi_id = ldi_ident_from_anon(); 1049 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1050 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1051 1052 /* 1053 * The lofi control node is currently exclusive-open. We'd like 1054 * to improve this, but in the meantime, we'll loop waiting for 1055 * access. 1056 */ 1057 for (;;) { 1058 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1059 kcred, &ldi_hdl, ldi_id); 1060 1061 if (err != EBUSY) 1062 break; 1063 1064 if ((err = delay_sig(hz / 8)) == EINTR) 1065 break; 1066 } 1067 1068 if (err) 1069 goto out2; 1070 1071 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1072 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1073 1074 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1075 1076 if (!err) 1077 vfsp->vfs_lofi_minor = minor; 1078 1079 out2: 1080 ldi_ident_release(ldi_id); 1081 out: 1082 if (li != NULL) 1083 kmem_free(li, sizeof (*li)); 1084 if (vp != NULL) 1085 VN_RELE(vp); 1086 pn_free(&pn); 1087 return (err); 1088 } 1089 1090 static void 1091 lofi_remove(struct vfs *vfsp) 1092 { 1093 struct lofi_ioctl *li = NULL; 1094 ldi_ident_t ldi_id; 1095 ldi_handle_t ldi_hdl; 1096 int err; 1097 1098 if (vfsp->vfs_lofi_minor == 0) 1099 return; 1100 1101 ldi_id = ldi_ident_from_anon(); 1102 1103 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1104 li->li_minor = vfsp->vfs_lofi_minor; 1105 li->li_cleanup = B_TRUE; 1106 1107 do { 1108 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1109 kcred, &ldi_hdl, ldi_id); 1110 } while (err == EBUSY); 1111 1112 if (err) 1113 goto out; 1114 1115 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1116 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1117 1118 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1119 1120 if (!err) 1121 vfsp->vfs_lofi_minor = 0; 1122 1123 out: 1124 ldi_ident_release(ldi_id); 1125 if (li != NULL) 1126 kmem_free(li, sizeof (*li)); 1127 } 1128 1129 /* 1130 * Common mount code. Called from the system call entry point, from autofs, 1131 * nfsv4 trigger mounts, and from pxfs. 1132 * 1133 * Takes the effective file system type, mount arguments, the mount point 1134 * vnode, flags specifying whether the mount is a remount and whether it 1135 * should be entered into the vfs list, and credentials. Fills in its vfspp 1136 * parameter with the mounted file system instance's vfs. 1137 * 1138 * Note that the effective file system type is specified as a string. It may 1139 * be null, in which case it's determined from the mount arguments, and may 1140 * differ from the type specified in the mount arguments; this is a hook to 1141 * allow interposition when instantiating file system instances. 1142 * 1143 * The caller is responsible for releasing its own hold on the mount point 1144 * vp (this routine does its own hold when necessary). 1145 * Also note that for remounts, the mount point vp should be the vnode for 1146 * the root of the file system rather than the vnode that the file system 1147 * is mounted on top of. 1148 */ 1149 int 1150 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1151 struct vfs **vfspp) 1152 { 1153 struct vfssw *vswp; 1154 vfsops_t *vfsops; 1155 struct vfs *vfsp; 1156 struct vnode *bvp; 1157 dev_t bdev = 0; 1158 mntopts_t mnt_mntopts; 1159 int error = 0; 1160 int copyout_error = 0; 1161 int ovflags; 1162 char *opts = uap->optptr; 1163 char *inargs = opts; 1164 int optlen = uap->optlen; 1165 int remount; 1166 int rdonly; 1167 int nbmand = 0; 1168 int delmip = 0; 1169 int addmip = 0; 1170 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1171 int fromspace = (uap->flags & MS_SYSSPACE) ? 1172 UIO_SYSSPACE : UIO_USERSPACE; 1173 char *resource = NULL, *mountpt = NULL; 1174 refstr_t *oldresource, *oldmntpt; 1175 struct pathname pn, rpn; 1176 vsk_anchor_t *vskap; 1177 char fstname[FSTYPSZ]; 1178 1179 /* 1180 * The v_flag value for the mount point vp is permanently set 1181 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1182 * for mount point locking. 1183 */ 1184 mutex_enter(&vp->v_lock); 1185 vp->v_flag |= VVFSLOCK; 1186 mutex_exit(&vp->v_lock); 1187 1188 mnt_mntopts.mo_count = 0; 1189 /* 1190 * Find the ops vector to use to invoke the file system-specific mount 1191 * method. If the fsname argument is non-NULL, use it directly. 1192 * Otherwise, dig the file system type information out of the mount 1193 * arguments. 1194 * 1195 * A side effect is to hold the vfssw entry. 1196 * 1197 * Mount arguments can be specified in several ways, which are 1198 * distinguished by flag bit settings. The preferred way is to set 1199 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1200 * type supplied as a character string and the last two arguments 1201 * being a pointer to a character buffer and the size of the buffer. 1202 * On entry, the buffer holds a null terminated list of options; on 1203 * return, the string is the list of options the file system 1204 * recognized. If MS_DATA is set arguments five and six point to a 1205 * block of binary data which the file system interprets. 1206 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1207 * consistently with these conventions. To handle them, we check to 1208 * see whether the pointer to the file system name has a numeric value 1209 * less than 256. If so, we treat it as an index. 1210 */ 1211 if (fsname != NULL) { 1212 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1213 return (EINVAL); 1214 } 1215 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1216 size_t n; 1217 uint_t fstype; 1218 1219 fsname = fstname; 1220 1221 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1222 RLOCK_VFSSW(); 1223 if (fstype == 0 || fstype >= nfstype || 1224 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1225 RUNLOCK_VFSSW(); 1226 return (EINVAL); 1227 } 1228 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1229 RUNLOCK_VFSSW(); 1230 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1231 return (EINVAL); 1232 } else { 1233 /* 1234 * Handle either kernel or user address space. 1235 */ 1236 if (uap->flags & MS_SYSSPACE) { 1237 error = copystr(uap->fstype, fsname, 1238 FSTYPSZ, &n); 1239 } else { 1240 error = copyinstr(uap->fstype, fsname, 1241 FSTYPSZ, &n); 1242 } 1243 if (error) { 1244 if (error == ENAMETOOLONG) 1245 return (EINVAL); 1246 return (error); 1247 } 1248 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1249 return (EINVAL); 1250 } 1251 } else { 1252 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1253 return (EINVAL); 1254 } 1255 if (!VFS_INSTALLED(vswp)) 1256 return (EINVAL); 1257 vfsops = &vswp->vsw_vfsops; 1258 1259 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1260 /* 1261 * Fetch mount options and parse them for generic vfs options 1262 */ 1263 if (uap->flags & MS_OPTIONSTR) { 1264 /* 1265 * Limit the buffer size 1266 */ 1267 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1268 error = EINVAL; 1269 goto errout; 1270 } 1271 if ((uap->flags & MS_SYSSPACE) == 0) { 1272 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1273 inargs[0] = '\0'; 1274 if (optlen) { 1275 error = copyinstr(opts, inargs, (size_t)optlen, 1276 NULL); 1277 if (error) { 1278 goto errout; 1279 } 1280 } 1281 } 1282 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1283 } 1284 /* 1285 * Flag bits override the options string. 1286 */ 1287 if (uap->flags & MS_REMOUNT) 1288 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1289 if (uap->flags & MS_RDONLY) 1290 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1291 if (uap->flags & MS_NOSUID) 1292 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1293 1294 /* 1295 * Check if this is a remount; must be set in the option string and 1296 * the file system must support a remount option. 1297 */ 1298 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1299 MNTOPT_REMOUNT, NULL)) { 1300 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1301 error = ENOTSUP; 1302 goto errout; 1303 } 1304 uap->flags |= MS_REMOUNT; 1305 } 1306 1307 /* 1308 * uap->flags and vfs_optionisset() should agree. 1309 */ 1310 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1311 uap->flags |= MS_RDONLY; 1312 } 1313 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1314 uap->flags |= MS_NOSUID; 1315 } 1316 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1317 ASSERT(splice || !remount); 1318 /* 1319 * If we are splicing the fs into the namespace, 1320 * perform mount point checks. 1321 * 1322 * We want to resolve the path for the mount point to eliminate 1323 * '.' and ".." and symlinks in mount points; we can't do the 1324 * same for the resource string, since it would turn 1325 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1326 * this before grabbing vn_vfswlock(), because otherwise we 1327 * would deadlock with lookuppn(). 1328 */ 1329 if (splice) { 1330 ASSERT(vp->v_count > 0); 1331 1332 /* 1333 * Pick up mount point and device from appropriate space. 1334 */ 1335 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1336 resource = kmem_alloc(pn.pn_pathlen + 1, 1337 KM_SLEEP); 1338 (void) strcpy(resource, pn.pn_path); 1339 pn_free(&pn); 1340 } 1341 /* 1342 * Do a lookupname prior to taking the 1343 * writelock. Mark this as completed if 1344 * successful for later cleanup and addition to 1345 * the mount in progress table. 1346 */ 1347 if ((uap->flags & MS_GLOBAL) == 0 && 1348 lookupname(uap->spec, fromspace, 1349 FOLLOW, NULL, &bvp) == 0) { 1350 addmip = 1; 1351 } 1352 1353 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1354 pathname_t *pnp; 1355 1356 if (*pn.pn_path != '/') { 1357 error = EINVAL; 1358 pn_free(&pn); 1359 goto errout; 1360 } 1361 pn_alloc(&rpn); 1362 /* 1363 * Kludge to prevent autofs from deadlocking with 1364 * itself when it calls domount(). 1365 * 1366 * If autofs is calling, it is because it is doing 1367 * (autofs) mounts in the process of an NFS mount. A 1368 * lookuppn() here would cause us to block waiting for 1369 * said NFS mount to complete, which can't since this 1370 * is the thread that was supposed to doing it. 1371 */ 1372 if (fromspace == UIO_USERSPACE) { 1373 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1374 NULL)) == 0) { 1375 pnp = &rpn; 1376 } else { 1377 /* 1378 * The file disappeared or otherwise 1379 * became inaccessible since we opened 1380 * it; might as well fail the mount 1381 * since the mount point is no longer 1382 * accessible. 1383 */ 1384 pn_free(&rpn); 1385 pn_free(&pn); 1386 goto errout; 1387 } 1388 } else { 1389 pnp = &pn; 1390 } 1391 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1392 (void) strcpy(mountpt, pnp->pn_path); 1393 1394 /* 1395 * If the addition of the zone's rootpath 1396 * would push us over a total path length 1397 * of MAXPATHLEN, we fail the mount with 1398 * ENAMETOOLONG, which is what we would have 1399 * gotten if we were trying to perform the same 1400 * mount in the global zone. 1401 * 1402 * strlen() doesn't count the trailing 1403 * '\0', but zone_rootpathlen counts both a 1404 * trailing '/' and the terminating '\0'. 1405 */ 1406 if ((curproc->p_zone->zone_rootpathlen - 1 + 1407 strlen(mountpt)) > MAXPATHLEN || 1408 (resource != NULL && 1409 (curproc->p_zone->zone_rootpathlen - 1 + 1410 strlen(resource)) > MAXPATHLEN)) { 1411 error = ENAMETOOLONG; 1412 } 1413 1414 pn_free(&rpn); 1415 pn_free(&pn); 1416 } 1417 1418 if (error) 1419 goto errout; 1420 1421 /* 1422 * Prevent path name resolution from proceeding past 1423 * the mount point. 1424 */ 1425 if (vn_vfswlock(vp) != 0) { 1426 error = EBUSY; 1427 goto errout; 1428 } 1429 1430 /* 1431 * Verify that it's legitimate to establish a mount on 1432 * the prospective mount point. 1433 */ 1434 if (vn_mountedvfs(vp) != NULL) { 1435 /* 1436 * The mount point lock was obtained after some 1437 * other thread raced through and established a mount. 1438 */ 1439 vn_vfsunlock(vp); 1440 error = EBUSY; 1441 goto errout; 1442 } 1443 if (vp->v_flag & VNOMOUNT) { 1444 vn_vfsunlock(vp); 1445 error = EINVAL; 1446 goto errout; 1447 } 1448 } 1449 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1450 uap->dataptr = NULL; 1451 uap->datalen = 0; 1452 } 1453 1454 /* 1455 * If this is a remount, we don't want to create a new VFS. 1456 * Instead, we pass the existing one with a remount flag. 1457 */ 1458 if (remount) { 1459 /* 1460 * Confirm that the mount point is the root vnode of the 1461 * file system that is being remounted. 1462 * This can happen if the user specifies a different 1463 * mount point directory pathname in the (re)mount command. 1464 * 1465 * Code below can only be reached if splice is true, so it's 1466 * safe to do vn_vfsunlock() here. 1467 */ 1468 if ((vp->v_flag & VROOT) == 0) { 1469 vn_vfsunlock(vp); 1470 error = ENOENT; 1471 goto errout; 1472 } 1473 /* 1474 * Disallow making file systems read-only unless file system 1475 * explicitly allows it in its vfssw. Ignore other flags. 1476 */ 1477 if (rdonly && vn_is_readonly(vp) == 0 && 1478 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1479 vn_vfsunlock(vp); 1480 error = EINVAL; 1481 goto errout; 1482 } 1483 /* 1484 * Disallow changing the NBMAND disposition of the file 1485 * system on remounts. 1486 */ 1487 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1488 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1489 vn_vfsunlock(vp); 1490 error = EINVAL; 1491 goto errout; 1492 } 1493 vfsp = vp->v_vfsp; 1494 ovflags = vfsp->vfs_flag; 1495 vfsp->vfs_flag |= VFS_REMOUNT; 1496 vfsp->vfs_flag &= ~VFS_RDONLY; 1497 } else { 1498 vfsp = vfs_alloc(KM_SLEEP); 1499 VFS_INIT(vfsp, vfsops, NULL); 1500 } 1501 1502 VFS_HOLD(vfsp); 1503 1504 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1505 if (!remount) { 1506 if (splice) 1507 vn_vfsunlock(vp); 1508 vfs_free(vfsp); 1509 } else { 1510 vn_vfsunlock(vp); 1511 VFS_RELE(vfsp); 1512 } 1513 goto errout; 1514 } 1515 1516 /* 1517 * PRIV_SYS_MOUNT doesn't mean you can become root. 1518 */ 1519 if (vfsp->vfs_lofi_minor != 0) { 1520 uap->flags |= MS_NOSUID; 1521 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1522 } 1523 1524 /* 1525 * The vfs_reflock is not used anymore the code below explicitly 1526 * holds it preventing others accesing it directly. 1527 */ 1528 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1529 !(vfsp->vfs_flag & VFS_REMOUNT)) 1530 cmn_err(CE_WARN, 1531 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1532 1533 /* 1534 * Lock the vfs. If this is a remount we want to avoid spurious umount 1535 * failures that happen as a side-effect of fsflush() and other mount 1536 * and unmount operations that might be going on simultaneously and 1537 * may have locked the vfs currently. To not return EBUSY immediately 1538 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1539 */ 1540 if (!remount) { 1541 if (error = vfs_lock(vfsp)) { 1542 vfsp->vfs_flag = ovflags; 1543 1544 lofi_remove(vfsp); 1545 1546 if (splice) 1547 vn_vfsunlock(vp); 1548 vfs_free(vfsp); 1549 goto errout; 1550 } 1551 } else { 1552 vfs_lock_wait(vfsp); 1553 } 1554 1555 /* 1556 * Add device to mount in progress table, global mounts require special 1557 * handling. It is possible that we have already done the lookupname 1558 * on a spliced, non-global fs. If so, we don't want to do it again 1559 * since we cannot do a lookupname after taking the 1560 * wlock above. This case is for a non-spliced, non-global filesystem. 1561 */ 1562 if (!addmip) { 1563 if ((uap->flags & MS_GLOBAL) == 0 && 1564 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1565 addmip = 1; 1566 } 1567 } 1568 1569 if (addmip) { 1570 vnode_t *lvp = NULL; 1571 1572 error = vfs_get_lofi(vfsp, &lvp); 1573 if (error > 0) { 1574 lofi_remove(vfsp); 1575 1576 if (splice) 1577 vn_vfsunlock(vp); 1578 vfs_unlock(vfsp); 1579 1580 if (remount) { 1581 VFS_RELE(vfsp); 1582 } else { 1583 vfs_free(vfsp); 1584 } 1585 1586 goto errout; 1587 } else if (error == -1) { 1588 bdev = bvp->v_rdev; 1589 VN_RELE(bvp); 1590 } else { 1591 bdev = lvp->v_rdev; 1592 VN_RELE(lvp); 1593 VN_RELE(bvp); 1594 } 1595 1596 vfs_addmip(bdev, vfsp); 1597 addmip = 0; 1598 delmip = 1; 1599 } 1600 /* 1601 * Invalidate cached entry for the mount point. 1602 */ 1603 if (splice) 1604 dnlc_purge_vp(vp); 1605 1606 /* 1607 * If have an option string but the filesystem doesn't supply a 1608 * prototype options table, create a table with the global 1609 * options and sufficient room to accept all the options in the 1610 * string. Then parse the passed in option string 1611 * accepting all the options in the string. This gives us an 1612 * option table with all the proper cancel properties for the 1613 * global options. 1614 * 1615 * Filesystems that supply a prototype options table are handled 1616 * earlier in this function. 1617 */ 1618 if (uap->flags & MS_OPTIONSTR) { 1619 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1620 mntopts_t tmp_mntopts; 1621 1622 tmp_mntopts.mo_count = 0; 1623 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1624 &mnt_mntopts); 1625 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1626 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1627 vfs_freeopttbl(&tmp_mntopts); 1628 } 1629 } 1630 1631 /* 1632 * Serialize with zone creations. 1633 */ 1634 mount_in_progress(); 1635 /* 1636 * Instantiate (or reinstantiate) the file system. If appropriate, 1637 * splice it into the file system name space. 1638 * 1639 * We want VFS_MOUNT() to be able to override the vfs_resource 1640 * string if necessary (ie, mntfs), and also for a remount to 1641 * change the same (necessary when remounting '/' during boot). 1642 * So we set up vfs_mntpt and vfs_resource to what we think they 1643 * should be, then hand off control to VFS_MOUNT() which can 1644 * override this. 1645 * 1646 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1647 * a vfs which is on the vfs list (i.e. during a remount), we must 1648 * never set those fields to NULL. Several bits of code make 1649 * assumptions that the fields are always valid. 1650 */ 1651 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1652 if (remount) { 1653 if ((oldresource = vfsp->vfs_resource) != NULL) 1654 refstr_hold(oldresource); 1655 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1656 refstr_hold(oldmntpt); 1657 } 1658 vfs_setresource(vfsp, resource); 1659 vfs_setmntpoint(vfsp, mountpt); 1660 1661 /* 1662 * going to mount on this vnode, so notify. 1663 */ 1664 vnevent_mountedover(vp, NULL); 1665 error = VFS_MOUNT(vfsp, vp, uap, credp); 1666 1667 if (uap->flags & MS_RDONLY) 1668 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1669 if (uap->flags & MS_NOSUID) 1670 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1671 if (uap->flags & MS_GLOBAL) 1672 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1673 1674 if (error) { 1675 lofi_remove(vfsp); 1676 1677 if (remount) { 1678 /* put back pre-remount options */ 1679 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1680 vfs_setmntpoint(vfsp, (stripzonepath( 1681 refstr_value(oldmntpt)))); 1682 if (oldmntpt) 1683 refstr_rele(oldmntpt); 1684 vfs_setresource(vfsp, (stripzonepath( 1685 refstr_value(oldresource)))); 1686 if (oldresource) 1687 refstr_rele(oldresource); 1688 vfsp->vfs_flag = ovflags; 1689 vfs_unlock(vfsp); 1690 VFS_RELE(vfsp); 1691 } else { 1692 vfs_unlock(vfsp); 1693 vfs_freemnttab(vfsp); 1694 vfs_free(vfsp); 1695 } 1696 } else { 1697 /* 1698 * Set the mount time to now 1699 */ 1700 vfsp->vfs_mtime = ddi_get_time(); 1701 if (remount) { 1702 vfsp->vfs_flag &= ~VFS_REMOUNT; 1703 if (oldresource) 1704 refstr_rele(oldresource); 1705 if (oldmntpt) 1706 refstr_rele(oldmntpt); 1707 } else if (splice) { 1708 /* 1709 * Link vfsp into the name space at the mount 1710 * point. Vfs_add() is responsible for 1711 * holding the mount point which will be 1712 * released when vfs_remove() is called. 1713 */ 1714 vfs_add(vp, vfsp, uap->flags); 1715 } else { 1716 /* 1717 * Hold the reference to file system which is 1718 * not linked into the name space. 1719 */ 1720 vfsp->vfs_zone = NULL; 1721 VFS_HOLD(vfsp); 1722 vfsp->vfs_vnodecovered = NULL; 1723 } 1724 /* 1725 * Set flags for global options encountered 1726 */ 1727 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1728 vfsp->vfs_flag |= VFS_RDONLY; 1729 else 1730 vfsp->vfs_flag &= ~VFS_RDONLY; 1731 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1732 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1733 } else { 1734 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1735 vfsp->vfs_flag |= VFS_NODEVICES; 1736 else 1737 vfsp->vfs_flag &= ~VFS_NODEVICES; 1738 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1739 vfsp->vfs_flag |= VFS_NOSETUID; 1740 else 1741 vfsp->vfs_flag &= ~VFS_NOSETUID; 1742 } 1743 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1744 vfsp->vfs_flag |= VFS_NBMAND; 1745 else 1746 vfsp->vfs_flag &= ~VFS_NBMAND; 1747 1748 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1749 vfsp->vfs_flag |= VFS_XATTR; 1750 else 1751 vfsp->vfs_flag &= ~VFS_XATTR; 1752 1753 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1754 vfsp->vfs_flag |= VFS_NOEXEC; 1755 else 1756 vfsp->vfs_flag &= ~VFS_NOEXEC; 1757 1758 /* 1759 * Now construct the output option string of options 1760 * we recognized. 1761 */ 1762 if (uap->flags & MS_OPTIONSTR) { 1763 vfs_list_read_lock(); 1764 copyout_error = vfs_buildoptionstr( 1765 &vfsp->vfs_mntopts, inargs, optlen); 1766 vfs_list_unlock(); 1767 if (copyout_error == 0 && 1768 (uap->flags & MS_SYSSPACE) == 0) { 1769 copyout_error = copyoutstr(inargs, opts, 1770 optlen, NULL); 1771 } 1772 } 1773 1774 /* 1775 * If this isn't a remount, set up the vopstats before 1776 * anyone can touch this. We only allow spliced file 1777 * systems (file systems which are in the namespace) to 1778 * have the VFS_STATS flag set. 1779 * NOTE: PxFS mounts the underlying file system with 1780 * MS_NOSPLICE set and copies those vfs_flags to its private 1781 * vfs structure. As a result, PxFS should never have 1782 * the VFS_STATS flag or else we might access the vfs 1783 * statistics-related fields prior to them being 1784 * properly initialized. 1785 */ 1786 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1787 initialize_vopstats(&vfsp->vfs_vopstats); 1788 /* 1789 * We need to set vfs_vskap to NULL because there's 1790 * a chance it won't be set below. This is checked 1791 * in teardown_vopstats() so we can't have garbage. 1792 */ 1793 vfsp->vfs_vskap = NULL; 1794 vfsp->vfs_flag |= VFS_STATS; 1795 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1796 } 1797 1798 if (vswp->vsw_flag & VSW_XID) 1799 vfsp->vfs_flag |= VFS_XID; 1800 1801 vfs_unlock(vfsp); 1802 } 1803 mount_completed(); 1804 if (splice) 1805 vn_vfsunlock(vp); 1806 1807 if ((error == 0) && (copyout_error == 0)) { 1808 if (!remount) { 1809 /* 1810 * Don't call get_vskstat_anchor() while holding 1811 * locks since it allocates memory and calls 1812 * VFS_STATVFS(). For NFS, the latter can generate 1813 * an over-the-wire call. 1814 */ 1815 vskap = get_vskstat_anchor(vfsp); 1816 /* Only take the lock if we have something to do */ 1817 if (vskap != NULL) { 1818 vfs_lock_wait(vfsp); 1819 if (vfsp->vfs_flag & VFS_STATS) { 1820 vfsp->vfs_vskap = vskap; 1821 } 1822 vfs_unlock(vfsp); 1823 } 1824 } 1825 /* Return vfsp to caller. */ 1826 *vfspp = vfsp; 1827 } 1828 errout: 1829 vfs_freeopttbl(&mnt_mntopts); 1830 if (resource != NULL) 1831 kmem_free(resource, strlen(resource) + 1); 1832 if (mountpt != NULL) 1833 kmem_free(mountpt, strlen(mountpt) + 1); 1834 /* 1835 * It is possible we errored prior to adding to mount in progress 1836 * table. Must free vnode we acquired with successful lookupname. 1837 */ 1838 if (addmip) 1839 VN_RELE(bvp); 1840 if (delmip) 1841 vfs_delmip(vfsp); 1842 ASSERT(vswp != NULL); 1843 vfs_unrefvfssw(vswp); 1844 if (inargs != opts) 1845 kmem_free(inargs, MAX_MNTOPT_STR); 1846 if (copyout_error) { 1847 lofi_remove(vfsp); 1848 VFS_RELE(vfsp); 1849 error = copyout_error; 1850 } 1851 return (error); 1852 } 1853 1854 static void 1855 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1856 { 1857 size_t len; 1858 refstr_t *ref; 1859 zone_t *zone = curproc->p_zone; 1860 char *sp; 1861 int have_list_lock = 0; 1862 1863 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1864 1865 /* 1866 * New path must be less than MAXPATHLEN because mntfs 1867 * will only display up to MAXPATHLEN bytes. This is currently 1868 * safe, because domount() uses pn_get(), and other callers 1869 * similarly cap the size to fewer than MAXPATHLEN bytes. 1870 */ 1871 1872 ASSERT(strlen(newpath) < MAXPATHLEN); 1873 1874 /* mntfs requires consistency while vfs list lock is held */ 1875 1876 if (VFS_ON_LIST(vfsp)) { 1877 have_list_lock = 1; 1878 vfs_list_lock(); 1879 } 1880 1881 if (*refp != NULL) 1882 refstr_rele(*refp); 1883 1884 /* Do we need to modify the path? */ 1885 1886 if (zone == global_zone || *newpath != '/') { 1887 ref = refstr_alloc(newpath); 1888 goto out; 1889 } 1890 1891 /* 1892 * Truncate the trailing '/' in the zoneroot, and merge 1893 * in the zone's rootpath with the "newpath" (resource 1894 * or mountpoint) passed in. 1895 * 1896 * The size of the required buffer is thus the size of 1897 * the buffer required for the passed-in newpath 1898 * (strlen(newpath) + 1), plus the size of the buffer 1899 * required to hold zone_rootpath (zone_rootpathlen) 1900 * minus one for one of the now-superfluous NUL 1901 * terminations, minus one for the trailing '/'. 1902 * 1903 * That gives us: 1904 * 1905 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1906 * 1907 * Which is what we have below. 1908 */ 1909 1910 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1911 sp = kmem_alloc(len, KM_SLEEP); 1912 1913 /* 1914 * Copy everything including the trailing slash, which 1915 * we then overwrite with the NUL character. 1916 */ 1917 1918 (void) strcpy(sp, zone->zone_rootpath); 1919 sp[zone->zone_rootpathlen - 2] = '\0'; 1920 (void) strcat(sp, newpath); 1921 1922 ref = refstr_alloc(sp); 1923 kmem_free(sp, len); 1924 out: 1925 *refp = ref; 1926 1927 if (have_list_lock) { 1928 vfs_mnttab_modtimeupd(); 1929 vfs_list_unlock(); 1930 } 1931 } 1932 1933 /* 1934 * Record a mounted resource name in a vfs structure. 1935 * If vfsp is already mounted, caller must hold the vfs lock. 1936 */ 1937 void 1938 vfs_setresource(struct vfs *vfsp, const char *resource) 1939 { 1940 if (resource == NULL || resource[0] == '\0') 1941 resource = VFS_NORESOURCE; 1942 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1943 } 1944 1945 /* 1946 * Record a mount point name in a vfs structure. 1947 * If vfsp is already mounted, caller must hold the vfs lock. 1948 */ 1949 void 1950 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1951 { 1952 if (mntpt == NULL || mntpt[0] == '\0') 1953 mntpt = VFS_NOMNTPT; 1954 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1955 } 1956 1957 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1958 1959 refstr_t * 1960 vfs_getresource(const struct vfs *vfsp) 1961 { 1962 refstr_t *resource; 1963 1964 vfs_list_read_lock(); 1965 resource = vfsp->vfs_resource; 1966 refstr_hold(resource); 1967 vfs_list_unlock(); 1968 1969 return (resource); 1970 } 1971 1972 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1973 1974 refstr_t * 1975 vfs_getmntpoint(const struct vfs *vfsp) 1976 { 1977 refstr_t *mntpt; 1978 1979 vfs_list_read_lock(); 1980 mntpt = vfsp->vfs_mntpt; 1981 refstr_hold(mntpt); 1982 vfs_list_unlock(); 1983 1984 return (mntpt); 1985 } 1986 1987 /* 1988 * Create an empty options table with enough empty slots to hold all 1989 * The options in the options string passed as an argument. 1990 * Potentially prepend another options table. 1991 * 1992 * Note: caller is responsible for locking the vfs list, if needed, 1993 * to protect mops. 1994 */ 1995 static void 1996 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1997 const mntopts_t *mtmpl) 1998 { 1999 const char *s = opts; 2000 uint_t count; 2001 2002 if (opts == NULL || *opts == '\0') { 2003 count = 0; 2004 } else { 2005 count = 1; 2006 2007 /* 2008 * Count number of options in the string 2009 */ 2010 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 2011 count++; 2012 s++; 2013 } 2014 } 2015 vfs_copyopttbl_extend(mtmpl, mops, count); 2016 } 2017 2018 /* 2019 * Create an empty options table with enough empty slots to hold all 2020 * The options in the options string passed as an argument. 2021 * 2022 * This function is *not* for general use by filesystems. 2023 * 2024 * Note: caller is responsible for locking the vfs list, if needed, 2025 * to protect mops. 2026 */ 2027 void 2028 vfs_createopttbl(mntopts_t *mops, const char *opts) 2029 { 2030 vfs_createopttbl_extend(mops, opts, NULL); 2031 } 2032 2033 2034 /* 2035 * Swap two mount options tables 2036 */ 2037 static void 2038 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2039 { 2040 uint_t tmpcnt; 2041 mntopt_t *tmplist; 2042 2043 tmpcnt = optbl2->mo_count; 2044 tmplist = optbl2->mo_list; 2045 optbl2->mo_count = optbl1->mo_count; 2046 optbl2->mo_list = optbl1->mo_list; 2047 optbl1->mo_count = tmpcnt; 2048 optbl1->mo_list = tmplist; 2049 } 2050 2051 static void 2052 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2053 { 2054 vfs_list_lock(); 2055 vfs_swapopttbl_nolock(optbl1, optbl2); 2056 vfs_mnttab_modtimeupd(); 2057 vfs_list_unlock(); 2058 } 2059 2060 static char ** 2061 vfs_copycancelopt_extend(char **const moc, int extend) 2062 { 2063 int i = 0; 2064 int j; 2065 char **result; 2066 2067 if (moc != NULL) { 2068 for (; moc[i] != NULL; i++) 2069 /* count number of options to cancel */; 2070 } 2071 2072 if (i + extend == 0) 2073 return (NULL); 2074 2075 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2076 2077 for (j = 0; j < i; j++) { 2078 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2079 (void) strcpy(result[j], moc[j]); 2080 } 2081 for (; j <= i + extend; j++) 2082 result[j] = NULL; 2083 2084 return (result); 2085 } 2086 2087 static void 2088 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2089 { 2090 char *sp, *dp; 2091 2092 d->mo_flags = s->mo_flags; 2093 d->mo_data = s->mo_data; 2094 sp = s->mo_name; 2095 if (sp != NULL) { 2096 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2097 (void) strcpy(dp, sp); 2098 d->mo_name = dp; 2099 } else { 2100 d->mo_name = NULL; /* should never happen */ 2101 } 2102 2103 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2104 2105 sp = s->mo_arg; 2106 if (sp != NULL) { 2107 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2108 (void) strcpy(dp, sp); 2109 d->mo_arg = dp; 2110 } else { 2111 d->mo_arg = NULL; 2112 } 2113 } 2114 2115 /* 2116 * Copy a mount options table, possibly allocating some spare 2117 * slots at the end. It is permissible to copy_extend the NULL table. 2118 */ 2119 static void 2120 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2121 { 2122 uint_t i, count; 2123 mntopt_t *motbl; 2124 2125 /* 2126 * Clear out any existing stuff in the options table being initialized 2127 */ 2128 vfs_freeopttbl(dmo); 2129 count = (smo == NULL) ? 0 : smo->mo_count; 2130 if ((count + extra) == 0) /* nothing to do */ 2131 return; 2132 dmo->mo_count = count + extra; 2133 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2134 dmo->mo_list = motbl; 2135 for (i = 0; i < count; i++) { 2136 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2137 } 2138 for (i = count; i < count + extra; i++) { 2139 motbl[i].mo_flags = MO_EMPTY; 2140 } 2141 } 2142 2143 /* 2144 * Copy a mount options table. 2145 * 2146 * This function is *not* for general use by filesystems. 2147 * 2148 * Note: caller is responsible for locking the vfs list, if needed, 2149 * to protect smo and dmo. 2150 */ 2151 void 2152 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2153 { 2154 vfs_copyopttbl_extend(smo, dmo, 0); 2155 } 2156 2157 static char ** 2158 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2159 { 2160 int c1 = 0; 2161 int c2 = 0; 2162 char **result; 2163 char **sp1, **sp2, **dp; 2164 2165 /* 2166 * First we count both lists of cancel options. 2167 * If either is NULL or has no elements, we return a copy of 2168 * the other. 2169 */ 2170 if (mop1->mo_cancel != NULL) { 2171 for (; mop1->mo_cancel[c1] != NULL; c1++) 2172 /* count cancel options in mop1 */; 2173 } 2174 2175 if (c1 == 0) 2176 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2177 2178 if (mop2->mo_cancel != NULL) { 2179 for (; mop2->mo_cancel[c2] != NULL; c2++) 2180 /* count cancel options in mop2 */; 2181 } 2182 2183 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2184 2185 if (c2 == 0) 2186 return (result); 2187 2188 /* 2189 * When we get here, we've got two sets of cancel options; 2190 * we need to merge the two sets. We know that the result 2191 * array has "c1+c2+1" entries and in the end we might shrink 2192 * it. 2193 * Result now has a copy of the c1 entries from mop1; we'll 2194 * now lookup all the entries of mop2 in mop1 and copy it if 2195 * it is unique. 2196 * This operation is O(n^2) but it's only called once per 2197 * filesystem per duplicate option. This is a situation 2198 * which doesn't arise with the filesystems in ON and 2199 * n is generally 1. 2200 */ 2201 2202 dp = &result[c1]; 2203 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2204 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2205 if (strcmp(*sp1, *sp2) == 0) 2206 break; 2207 } 2208 if (*sp1 == NULL) { 2209 /* 2210 * Option *sp2 not found in mop1, so copy it. 2211 * The calls to vfs_copycancelopt_extend() 2212 * guarantee that there's enough room. 2213 */ 2214 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2215 (void) strcpy(*dp++, *sp2); 2216 } 2217 } 2218 if (dp != &result[c1+c2]) { 2219 size_t bytes = (dp - result + 1) * sizeof (char *); 2220 char **nres = kmem_alloc(bytes, KM_SLEEP); 2221 2222 bcopy(result, nres, bytes); 2223 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2224 result = nres; 2225 } 2226 return (result); 2227 } 2228 2229 /* 2230 * Merge two mount option tables (outer and inner) into one. This is very 2231 * similar to "merging" global variables and automatic variables in C. 2232 * 2233 * This isn't (and doesn't have to be) fast. 2234 * 2235 * This function is *not* for general use by filesystems. 2236 * 2237 * Note: caller is responsible for locking the vfs list, if needed, 2238 * to protect omo, imo & dmo. 2239 */ 2240 void 2241 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2242 { 2243 uint_t i, count; 2244 mntopt_t *mop, *motbl; 2245 uint_t freeidx; 2246 2247 /* 2248 * First determine how much space we need to allocate. 2249 */ 2250 count = omo->mo_count; 2251 for (i = 0; i < imo->mo_count; i++) { 2252 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2253 continue; 2254 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2255 count++; 2256 } 2257 ASSERT(count >= omo->mo_count && 2258 count <= omo->mo_count + imo->mo_count); 2259 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2260 for (i = 0; i < omo->mo_count; i++) 2261 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2262 freeidx = omo->mo_count; 2263 for (i = 0; i < imo->mo_count; i++) { 2264 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2265 continue; 2266 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2267 char **newcanp; 2268 uint_t index = mop - omo->mo_list; 2269 2270 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2271 2272 vfs_freeopt(&motbl[index]); 2273 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2274 2275 vfs_freecancelopt(motbl[index].mo_cancel); 2276 motbl[index].mo_cancel = newcanp; 2277 } else { 2278 /* 2279 * If it's a new option, just copy it over to the first 2280 * free location. 2281 */ 2282 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2283 } 2284 } 2285 dmo->mo_count = count; 2286 dmo->mo_list = motbl; 2287 } 2288 2289 /* 2290 * Functions to set and clear mount options in a mount options table. 2291 */ 2292 2293 /* 2294 * Clear a mount option, if it exists. 2295 * 2296 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2297 * the vfs list. 2298 */ 2299 static void 2300 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2301 { 2302 struct mntopt *mop; 2303 uint_t i, count; 2304 2305 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2306 2307 count = mops->mo_count; 2308 for (i = 0; i < count; i++) { 2309 mop = &mops->mo_list[i]; 2310 2311 if (mop->mo_flags & MO_EMPTY) 2312 continue; 2313 if (strcmp(opt, mop->mo_name)) 2314 continue; 2315 mop->mo_flags &= ~MO_SET; 2316 if (mop->mo_arg != NULL) { 2317 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2318 } 2319 mop->mo_arg = NULL; 2320 if (update_mnttab) 2321 vfs_mnttab_modtimeupd(); 2322 break; 2323 } 2324 } 2325 2326 void 2327 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2328 { 2329 int gotlock = 0; 2330 2331 if (VFS_ON_LIST(vfsp)) { 2332 gotlock = 1; 2333 vfs_list_lock(); 2334 } 2335 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2336 if (gotlock) 2337 vfs_list_unlock(); 2338 } 2339 2340 2341 /* 2342 * Set a mount option on. If it's not found in the table, it's silently 2343 * ignored. If the option has MO_IGNORE set, it is still set unless the 2344 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2345 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2346 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2347 * MO_EMPTY set is created as the option passed in. 2348 * 2349 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2350 * the vfs list. 2351 */ 2352 static void 2353 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2354 const char *arg, int flags, int update_mnttab) 2355 { 2356 mntopt_t *mop; 2357 uint_t i, count; 2358 char *sp; 2359 2360 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2361 2362 if (flags & VFS_CREATEOPT) { 2363 if (vfs_hasopt(mops, opt) != NULL) { 2364 flags &= ~VFS_CREATEOPT; 2365 } 2366 } 2367 count = mops->mo_count; 2368 for (i = 0; i < count; i++) { 2369 mop = &mops->mo_list[i]; 2370 2371 if (mop->mo_flags & MO_EMPTY) { 2372 if ((flags & VFS_CREATEOPT) == 0) 2373 continue; 2374 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2375 (void) strcpy(sp, opt); 2376 mop->mo_name = sp; 2377 if (arg != NULL) 2378 mop->mo_flags = MO_HASVALUE; 2379 else 2380 mop->mo_flags = 0; 2381 } else if (strcmp(opt, mop->mo_name)) { 2382 continue; 2383 } 2384 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2385 break; 2386 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2387 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2388 (void) strcpy(sp, arg); 2389 } else { 2390 sp = NULL; 2391 } 2392 if (mop->mo_arg != NULL) 2393 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2394 mop->mo_arg = sp; 2395 if (flags & VFS_DISPLAY) 2396 mop->mo_flags &= ~MO_NODISPLAY; 2397 if (flags & VFS_NODISPLAY) 2398 mop->mo_flags |= MO_NODISPLAY; 2399 mop->mo_flags |= MO_SET; 2400 if (mop->mo_cancel != NULL) { 2401 char **cp; 2402 2403 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2404 vfs_clearmntopt_nolock(mops, *cp, 0); 2405 } 2406 if (update_mnttab) 2407 vfs_mnttab_modtimeupd(); 2408 break; 2409 } 2410 } 2411 2412 void 2413 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2414 { 2415 int gotlock = 0; 2416 2417 if (VFS_ON_LIST(vfsp)) { 2418 gotlock = 1; 2419 vfs_list_lock(); 2420 } 2421 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2422 if (gotlock) 2423 vfs_list_unlock(); 2424 } 2425 2426 2427 /* 2428 * Add a "tag" option to a mounted file system's options list. 2429 * 2430 * Note: caller is responsible for locking the vfs list, if needed, 2431 * to protect mops. 2432 */ 2433 static mntopt_t * 2434 vfs_addtag(mntopts_t *mops, const char *tag) 2435 { 2436 uint_t count; 2437 mntopt_t *mop, *motbl; 2438 2439 count = mops->mo_count + 1; 2440 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2441 if (mops->mo_count) { 2442 size_t len = (count - 1) * sizeof (mntopt_t); 2443 2444 bcopy(mops->mo_list, motbl, len); 2445 kmem_free(mops->mo_list, len); 2446 } 2447 mops->mo_count = count; 2448 mops->mo_list = motbl; 2449 mop = &motbl[count - 1]; 2450 mop->mo_flags = MO_TAG; 2451 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2452 (void) strcpy(mop->mo_name, tag); 2453 return (mop); 2454 } 2455 2456 /* 2457 * Allow users to set arbitrary "tags" in a vfs's mount options. 2458 * Broader use within the kernel is discouraged. 2459 */ 2460 int 2461 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2462 cred_t *cr) 2463 { 2464 vfs_t *vfsp; 2465 mntopts_t *mops; 2466 mntopt_t *mop; 2467 int found = 0; 2468 dev_t dev = makedevice(major, minor); 2469 int err = 0; 2470 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2471 2472 /* 2473 * Find the desired mounted file system 2474 */ 2475 vfs_list_lock(); 2476 vfsp = rootvfs; 2477 do { 2478 if (vfsp->vfs_dev == dev && 2479 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2480 found = 1; 2481 break; 2482 } 2483 vfsp = vfsp->vfs_next; 2484 } while (vfsp != rootvfs); 2485 2486 if (!found) { 2487 err = EINVAL; 2488 goto out; 2489 } 2490 err = secpolicy_fs_config(cr, vfsp); 2491 if (err != 0) 2492 goto out; 2493 2494 mops = &vfsp->vfs_mntopts; 2495 /* 2496 * Add tag if it doesn't already exist 2497 */ 2498 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2499 int len; 2500 2501 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2502 len = strlen(buf); 2503 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2504 err = ENAMETOOLONG; 2505 goto out; 2506 } 2507 mop = vfs_addtag(mops, tag); 2508 } 2509 if ((mop->mo_flags & MO_TAG) == 0) { 2510 err = EINVAL; 2511 goto out; 2512 } 2513 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2514 out: 2515 vfs_list_unlock(); 2516 kmem_free(buf, MAX_MNTOPT_STR); 2517 return (err); 2518 } 2519 2520 /* 2521 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2522 * Broader use within the kernel is discouraged. 2523 */ 2524 int 2525 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2526 cred_t *cr) 2527 { 2528 vfs_t *vfsp; 2529 mntopt_t *mop; 2530 int found = 0; 2531 dev_t dev = makedevice(major, minor); 2532 int err = 0; 2533 2534 /* 2535 * Find the desired mounted file system 2536 */ 2537 vfs_list_lock(); 2538 vfsp = rootvfs; 2539 do { 2540 if (vfsp->vfs_dev == dev && 2541 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2542 found = 1; 2543 break; 2544 } 2545 vfsp = vfsp->vfs_next; 2546 } while (vfsp != rootvfs); 2547 2548 if (!found) { 2549 err = EINVAL; 2550 goto out; 2551 } 2552 err = secpolicy_fs_config(cr, vfsp); 2553 if (err != 0) 2554 goto out; 2555 2556 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2557 err = EINVAL; 2558 goto out; 2559 } 2560 if ((mop->mo_flags & MO_TAG) == 0) { 2561 err = EINVAL; 2562 goto out; 2563 } 2564 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2565 out: 2566 vfs_list_unlock(); 2567 return (err); 2568 } 2569 2570 /* 2571 * Function to parse an option string and fill in a mount options table. 2572 * Unknown options are silently ignored. The input option string is modified 2573 * by replacing separators with nulls. If the create flag is set, options 2574 * not found in the table are just added on the fly. The table must have 2575 * an option slot marked MO_EMPTY to add an option on the fly. 2576 * 2577 * This function is *not* for general use by filesystems. 2578 * 2579 * Note: caller is responsible for locking the vfs list, if needed, 2580 * to protect mops.. 2581 */ 2582 void 2583 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2584 { 2585 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2586 int setflg = VFS_NOFORCEOPT; 2587 2588 if (osp == NULL) 2589 return; 2590 while (*s != '\0') { 2591 p = strchr(s, ','); /* find next option */ 2592 if (p == NULL) { 2593 cp = NULL; 2594 p = s + strlen(s); 2595 } else { 2596 cp = p; /* save location of comma */ 2597 *p++ = '\0'; /* mark end and point to next option */ 2598 } 2599 nextop = p; 2600 p = strchr(s, '='); /* look for value */ 2601 if (p == NULL) { 2602 valp = NULL; /* no value supplied */ 2603 } else { 2604 ep = p; /* save location of equals */ 2605 *p++ = '\0'; /* end option and point to value */ 2606 valp = p; 2607 } 2608 /* 2609 * set option into options table 2610 */ 2611 if (create) 2612 setflg |= VFS_CREATEOPT; 2613 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2614 if (cp != NULL) 2615 *cp = ','; /* restore the comma */ 2616 if (valp != NULL) 2617 *ep = '='; /* restore the equals */ 2618 s = nextop; 2619 } 2620 } 2621 2622 /* 2623 * Function to inquire if an option exists in a mount options table. 2624 * Returns a pointer to the option if it exists, else NULL. 2625 * 2626 * This function is *not* for general use by filesystems. 2627 * 2628 * Note: caller is responsible for locking the vfs list, if needed, 2629 * to protect mops. 2630 */ 2631 struct mntopt * 2632 vfs_hasopt(const mntopts_t *mops, const char *opt) 2633 { 2634 struct mntopt *mop; 2635 uint_t i, count; 2636 2637 count = mops->mo_count; 2638 for (i = 0; i < count; i++) { 2639 mop = &mops->mo_list[i]; 2640 2641 if (mop->mo_flags & MO_EMPTY) 2642 continue; 2643 if (strcmp(opt, mop->mo_name) == 0) 2644 return (mop); 2645 } 2646 return (NULL); 2647 } 2648 2649 /* 2650 * Function to inquire if an option is set in a mount options table. 2651 * Returns non-zero if set and fills in the arg pointer with a pointer to 2652 * the argument string or NULL if there is no argument string. 2653 */ 2654 static int 2655 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2656 { 2657 struct mntopt *mop; 2658 uint_t i, count; 2659 2660 count = mops->mo_count; 2661 for (i = 0; i < count; i++) { 2662 mop = &mops->mo_list[i]; 2663 2664 if (mop->mo_flags & MO_EMPTY) 2665 continue; 2666 if (strcmp(opt, mop->mo_name)) 2667 continue; 2668 if ((mop->mo_flags & MO_SET) == 0) 2669 return (0); 2670 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2671 *argp = mop->mo_arg; 2672 return (1); 2673 } 2674 return (0); 2675 } 2676 2677 2678 int 2679 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2680 { 2681 int ret; 2682 2683 vfs_list_read_lock(); 2684 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2685 vfs_list_unlock(); 2686 return (ret); 2687 } 2688 2689 2690 /* 2691 * Construct a comma separated string of the options set in the given 2692 * mount table, return the string in the given buffer. Return non-zero if 2693 * the buffer would overflow. 2694 * 2695 * This function is *not* for general use by filesystems. 2696 * 2697 * Note: caller is responsible for locking the vfs list, if needed, 2698 * to protect mp. 2699 */ 2700 int 2701 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2702 { 2703 char *cp; 2704 uint_t i; 2705 2706 buf[0] = '\0'; 2707 cp = buf; 2708 for (i = 0; i < mp->mo_count; i++) { 2709 struct mntopt *mop; 2710 2711 mop = &mp->mo_list[i]; 2712 if (mop->mo_flags & MO_SET) { 2713 int optlen, comma = 0; 2714 2715 if (buf[0] != '\0') 2716 comma = 1; 2717 optlen = strlen(mop->mo_name); 2718 if (strlen(buf) + comma + optlen + 1 > len) 2719 goto err; 2720 if (comma) 2721 *cp++ = ','; 2722 (void) strcpy(cp, mop->mo_name); 2723 cp += optlen; 2724 /* 2725 * Append option value if there is one 2726 */ 2727 if (mop->mo_arg != NULL) { 2728 int arglen; 2729 2730 arglen = strlen(mop->mo_arg); 2731 if (strlen(buf) + arglen + 2 > len) 2732 goto err; 2733 *cp++ = '='; 2734 (void) strcpy(cp, mop->mo_arg); 2735 cp += arglen; 2736 } 2737 } 2738 } 2739 return (0); 2740 err: 2741 return (EOVERFLOW); 2742 } 2743 2744 static void 2745 vfs_freecancelopt(char **moc) 2746 { 2747 if (moc != NULL) { 2748 int ccnt = 0; 2749 char **cp; 2750 2751 for (cp = moc; *cp != NULL; cp++) { 2752 kmem_free(*cp, strlen(*cp) + 1); 2753 ccnt++; 2754 } 2755 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2756 } 2757 } 2758 2759 static void 2760 vfs_freeopt(mntopt_t *mop) 2761 { 2762 if (mop->mo_name != NULL) 2763 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2764 2765 vfs_freecancelopt(mop->mo_cancel); 2766 2767 if (mop->mo_arg != NULL) 2768 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2769 } 2770 2771 /* 2772 * Free a mount options table 2773 * 2774 * This function is *not* for general use by filesystems. 2775 * 2776 * Note: caller is responsible for locking the vfs list, if needed, 2777 * to protect mp. 2778 */ 2779 void 2780 vfs_freeopttbl(mntopts_t *mp) 2781 { 2782 uint_t i, count; 2783 2784 count = mp->mo_count; 2785 for (i = 0; i < count; i++) { 2786 vfs_freeopt(&mp->mo_list[i]); 2787 } 2788 if (count) { 2789 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2790 mp->mo_count = 0; 2791 mp->mo_list = NULL; 2792 } 2793 } 2794 2795 2796 /* ARGSUSED */ 2797 static int 2798 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2799 caller_context_t *ct) 2800 { 2801 return (0); 2802 } 2803 2804 /* ARGSUSED */ 2805 static int 2806 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2807 caller_context_t *ct) 2808 { 2809 return (0); 2810 } 2811 2812 /* 2813 * The dummy vnode is currently used only by file events notification 2814 * module which is just interested in the timestamps. 2815 */ 2816 /* ARGSUSED */ 2817 static int 2818 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2819 caller_context_t *ct) 2820 { 2821 bzero(vap, sizeof (vattr_t)); 2822 vap->va_type = VREG; 2823 vap->va_nlink = 1; 2824 vap->va_ctime = vfs_mnttab_ctime; 2825 /* 2826 * it is ok to just copy mtime as the time will be monotonically 2827 * increasing. 2828 */ 2829 vap->va_mtime = vfs_mnttab_mtime; 2830 vap->va_atime = vap->va_mtime; 2831 return (0); 2832 } 2833 2834 static void 2835 vfs_mnttabvp_setup(void) 2836 { 2837 vnode_t *tvp; 2838 vnodeops_t *vfs_mntdummyvnops; 2839 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2840 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2841 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2842 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2843 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2844 NULL, NULL 2845 }; 2846 2847 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2848 &vfs_mntdummyvnops) != 0) { 2849 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2850 /* Shouldn't happen, but not bad enough to panic */ 2851 return; 2852 } 2853 2854 /* 2855 * A global dummy vnode is allocated to represent mntfs files. 2856 * The mntfs file (/etc/mnttab) can be monitored for file events 2857 * and receive an event when mnttab changes. Dummy VOP calls 2858 * will be made on this vnode. The file events notification module 2859 * intercepts this vnode and delivers relevant events. 2860 */ 2861 tvp = vn_alloc(KM_SLEEP); 2862 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2863 vn_setops(tvp, vfs_mntdummyvnops); 2864 tvp->v_type = VREG; 2865 /* 2866 * The mnt dummy ops do not reference v_data. 2867 * No other module intercepting this vnode should either. 2868 * Just set it to point to itself. 2869 */ 2870 tvp->v_data = (caddr_t)tvp; 2871 tvp->v_vfsp = rootvfs; 2872 vfs_mntdummyvp = tvp; 2873 } 2874 2875 /* 2876 * performs fake read/write ops 2877 */ 2878 static void 2879 vfs_mnttab_rwop(int rw) 2880 { 2881 struct uio uio; 2882 struct iovec iov; 2883 char buf[1]; 2884 2885 if (vfs_mntdummyvp == NULL) 2886 return; 2887 2888 bzero(&uio, sizeof (uio)); 2889 bzero(&iov, sizeof (iov)); 2890 iov.iov_base = buf; 2891 iov.iov_len = 0; 2892 uio.uio_iov = &iov; 2893 uio.uio_iovcnt = 1; 2894 uio.uio_loffset = 0; 2895 uio.uio_segflg = UIO_SYSSPACE; 2896 uio.uio_resid = 0; 2897 if (rw) { 2898 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2899 } else { 2900 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2901 } 2902 } 2903 2904 /* 2905 * Generate a write operation. 2906 */ 2907 void 2908 vfs_mnttab_writeop(void) 2909 { 2910 vfs_mnttab_rwop(1); 2911 } 2912 2913 /* 2914 * Generate a read operation. 2915 */ 2916 void 2917 vfs_mnttab_readop(void) 2918 { 2919 vfs_mnttab_rwop(0); 2920 } 2921 2922 /* 2923 * Free any mnttab information recorded in the vfs struct. 2924 * The vfs must not be on the vfs list. 2925 */ 2926 static void 2927 vfs_freemnttab(struct vfs *vfsp) 2928 { 2929 ASSERT(!VFS_ON_LIST(vfsp)); 2930 2931 /* 2932 * Free device and mount point information 2933 */ 2934 if (vfsp->vfs_mntpt != NULL) { 2935 refstr_rele(vfsp->vfs_mntpt); 2936 vfsp->vfs_mntpt = NULL; 2937 } 2938 if (vfsp->vfs_resource != NULL) { 2939 refstr_rele(vfsp->vfs_resource); 2940 vfsp->vfs_resource = NULL; 2941 } 2942 /* 2943 * Now free mount options information 2944 */ 2945 vfs_freeopttbl(&vfsp->vfs_mntopts); 2946 } 2947 2948 /* 2949 * Return the last mnttab modification time 2950 */ 2951 void 2952 vfs_mnttab_modtime(timespec_t *ts) 2953 { 2954 ASSERT(RW_LOCK_HELD(&vfslist)); 2955 *ts = vfs_mnttab_mtime; 2956 } 2957 2958 /* 2959 * See if mnttab is changed 2960 */ 2961 void 2962 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2963 { 2964 int changed; 2965 2966 *phpp = (struct pollhead *)NULL; 2967 2968 /* 2969 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2970 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2971 * to not grab the vfs list lock because tv_sec is monotonically 2972 * increasing. 2973 */ 2974 2975 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2976 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2977 if (!changed) { 2978 *phpp = &vfs_pollhd; 2979 } 2980 } 2981 2982 /* Provide a unique and monotonically-increasing timestamp. */ 2983 void 2984 vfs_mono_time(timespec_t *ts) 2985 { 2986 static volatile hrtime_t hrt; /* The saved time. */ 2987 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2988 timespec_t newts; 2989 2990 /* 2991 * Try gethrestime() first, but be prepared to fabricate a sensible 2992 * answer at the first sign of any trouble. 2993 */ 2994 gethrestime(&newts); 2995 newhrt = ts2hrt(&newts); 2996 for (;;) { 2997 oldhrt = hrt; 2998 if (newhrt <= hrt) 2999 newhrt = hrt + 1; 3000 if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 3001 break; 3002 } 3003 hrt2ts(newhrt, ts); 3004 } 3005 3006 /* 3007 * Update the mnttab modification time and wake up any waiters for 3008 * mnttab changes 3009 */ 3010 void 3011 vfs_mnttab_modtimeupd() 3012 { 3013 hrtime_t oldhrt, newhrt; 3014 3015 ASSERT(RW_WRITE_HELD(&vfslist)); 3016 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3017 gethrestime(&vfs_mnttab_mtime); 3018 newhrt = ts2hrt(&vfs_mnttab_mtime); 3019 if (oldhrt == (hrtime_t)0) 3020 vfs_mnttab_ctime = vfs_mnttab_mtime; 3021 /* 3022 * Attempt to provide unique mtime (like uniqtime but not). 3023 */ 3024 if (newhrt == oldhrt) { 3025 newhrt++; 3026 hrt2ts(newhrt, &vfs_mnttab_mtime); 3027 } 3028 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3029 vfs_mnttab_writeop(); 3030 } 3031 3032 int 3033 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3034 { 3035 vnode_t *coveredvp; 3036 int error; 3037 extern void teardown_vopstats(vfs_t *); 3038 3039 /* 3040 * Get covered vnode. This will be NULL if the vfs is not linked 3041 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3042 */ 3043 coveredvp = vfsp->vfs_vnodecovered; 3044 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3045 3046 /* 3047 * Purge all dnlc entries for this vfs. 3048 */ 3049 (void) dnlc_purge_vfsp(vfsp, 0); 3050 3051 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3052 if ((flag & MS_FORCE) == 0) 3053 (void) VFS_SYNC(vfsp, 0, cr); 3054 3055 /* 3056 * Lock the vfs to maintain fs status quo during unmount. This 3057 * has to be done after the sync because ufs_update tries to acquire 3058 * the vfs_reflock. 3059 */ 3060 vfs_lock_wait(vfsp); 3061 3062 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3063 vfs_unlock(vfsp); 3064 if (coveredvp != NULL) 3065 vn_vfsunlock(coveredvp); 3066 } else if (coveredvp != NULL) { 3067 teardown_vopstats(vfsp); 3068 /* 3069 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3070 * when it frees vfsp so we do a VN_HOLD() so we can 3071 * continue to use coveredvp afterwards. 3072 */ 3073 VN_HOLD(coveredvp); 3074 vfs_remove(vfsp); 3075 vn_vfsunlock(coveredvp); 3076 VN_RELE(coveredvp); 3077 } else { 3078 teardown_vopstats(vfsp); 3079 /* 3080 * Release the reference to vfs that is not linked 3081 * into the name space. 3082 */ 3083 vfs_unlock(vfsp); 3084 VFS_RELE(vfsp); 3085 } 3086 return (error); 3087 } 3088 3089 3090 /* 3091 * Vfs_unmountall() is called by uadmin() to unmount all 3092 * mounted file systems (except the root file system) during shutdown. 3093 * It follows the existing locking protocol when traversing the vfs list 3094 * to sync and unmount vfses. Even though there should be no 3095 * other thread running while the system is shutting down, it is prudent 3096 * to still follow the locking protocol. 3097 */ 3098 void 3099 vfs_unmountall(void) 3100 { 3101 struct vfs *vfsp; 3102 struct vfs *prev_vfsp = NULL; 3103 int error; 3104 3105 /* 3106 * Toss all dnlc entries now so that the per-vfs sync 3107 * and unmount operations don't have to slog through 3108 * a bunch of uninteresting vnodes over and over again. 3109 */ 3110 dnlc_purge(); 3111 3112 vfs_list_lock(); 3113 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3114 prev_vfsp = vfsp->vfs_prev; 3115 3116 if (vfs_lock(vfsp) != 0) 3117 continue; 3118 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3119 vfs_unlock(vfsp); 3120 if (error) 3121 continue; 3122 3123 vfs_list_unlock(); 3124 3125 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3126 (void) dounmount(vfsp, 0, CRED()); 3127 3128 /* 3129 * Since we dropped the vfslist lock above we must 3130 * verify that next_vfsp still exists, else start over. 3131 */ 3132 vfs_list_lock(); 3133 for (vfsp = rootvfs->vfs_prev; 3134 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3135 if (vfsp == prev_vfsp) 3136 break; 3137 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3138 prev_vfsp = rootvfs->vfs_prev; 3139 } 3140 vfs_list_unlock(); 3141 } 3142 3143 /* 3144 * Called to add an entry to the end of the vfs mount in progress list 3145 */ 3146 void 3147 vfs_addmip(dev_t dev, struct vfs *vfsp) 3148 { 3149 struct ipmnt *mipp; 3150 3151 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3152 mipp->mip_next = NULL; 3153 mipp->mip_dev = dev; 3154 mipp->mip_vfsp = vfsp; 3155 mutex_enter(&vfs_miplist_mutex); 3156 if (vfs_miplist_end != NULL) 3157 vfs_miplist_end->mip_next = mipp; 3158 else 3159 vfs_miplist = mipp; 3160 vfs_miplist_end = mipp; 3161 mutex_exit(&vfs_miplist_mutex); 3162 } 3163 3164 /* 3165 * Called to remove an entry from the mount in progress list 3166 * Either because the mount completed or it failed. 3167 */ 3168 void 3169 vfs_delmip(struct vfs *vfsp) 3170 { 3171 struct ipmnt *mipp, *mipprev; 3172 3173 mutex_enter(&vfs_miplist_mutex); 3174 mipprev = NULL; 3175 for (mipp = vfs_miplist; 3176 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3177 mipprev = mipp; 3178 } 3179 if (mipp == NULL) 3180 return; /* shouldn't happen */ 3181 if (mipp == vfs_miplist_end) 3182 vfs_miplist_end = mipprev; 3183 if (mipprev == NULL) 3184 vfs_miplist = mipp->mip_next; 3185 else 3186 mipprev->mip_next = mipp->mip_next; 3187 mutex_exit(&vfs_miplist_mutex); 3188 kmem_free(mipp, sizeof (struct ipmnt)); 3189 } 3190 3191 /* 3192 * vfs_add is called by a specific filesystem's mount routine to add 3193 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3194 * The vfs should already have been locked by the caller. 3195 * 3196 * coveredvp is NULL if this is the root. 3197 */ 3198 void 3199 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3200 { 3201 int newflag; 3202 3203 ASSERT(vfs_lock_held(vfsp)); 3204 VFS_HOLD(vfsp); 3205 newflag = vfsp->vfs_flag; 3206 if (mflag & MS_RDONLY) 3207 newflag |= VFS_RDONLY; 3208 else 3209 newflag &= ~VFS_RDONLY; 3210 if (mflag & MS_NOSUID) 3211 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3212 else 3213 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3214 if (mflag & MS_NOMNTTAB) 3215 newflag |= VFS_NOMNTTAB; 3216 else 3217 newflag &= ~VFS_NOMNTTAB; 3218 3219 if (coveredvp != NULL) { 3220 ASSERT(vn_vfswlock_held(coveredvp)); 3221 coveredvp->v_vfsmountedhere = vfsp; 3222 VN_HOLD(coveredvp); 3223 } 3224 vfsp->vfs_vnodecovered = coveredvp; 3225 vfsp->vfs_flag = newflag; 3226 3227 vfs_list_add(vfsp); 3228 } 3229 3230 /* 3231 * Remove a vfs from the vfs list, null out the pointer from the 3232 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3233 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3234 * reference to the vfs and to the covered vnode. 3235 * 3236 * Called from dounmount after it's confirmed with the file system 3237 * that the unmount is legal. 3238 */ 3239 void 3240 vfs_remove(struct vfs *vfsp) 3241 { 3242 vnode_t *vp; 3243 3244 ASSERT(vfs_lock_held(vfsp)); 3245 3246 /* 3247 * Can't unmount root. Should never happen because fs will 3248 * be busy. 3249 */ 3250 if (vfsp == rootvfs) 3251 panic("vfs_remove: unmounting root"); 3252 3253 vfs_list_remove(vfsp); 3254 3255 /* 3256 * Unhook from the file system name space. 3257 */ 3258 vp = vfsp->vfs_vnodecovered; 3259 ASSERT(vn_vfswlock_held(vp)); 3260 vp->v_vfsmountedhere = NULL; 3261 vfsp->vfs_vnodecovered = NULL; 3262 VN_RELE(vp); 3263 3264 /* 3265 * Release lock and wakeup anybody waiting. 3266 */ 3267 vfs_unlock(vfsp); 3268 VFS_RELE(vfsp); 3269 } 3270 3271 /* 3272 * Lock a filesystem to prevent access to it while mounting, 3273 * unmounting and syncing. Return EBUSY immediately if lock 3274 * can't be acquired. 3275 */ 3276 int 3277 vfs_lock(vfs_t *vfsp) 3278 { 3279 vn_vfslocks_entry_t *vpvfsentry; 3280 3281 vpvfsentry = vn_vfslocks_getlock(vfsp); 3282 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3283 return (0); 3284 3285 vn_vfslocks_rele(vpvfsentry); 3286 return (EBUSY); 3287 } 3288 3289 int 3290 vfs_rlock(vfs_t *vfsp) 3291 { 3292 vn_vfslocks_entry_t *vpvfsentry; 3293 3294 vpvfsentry = vn_vfslocks_getlock(vfsp); 3295 3296 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3297 return (0); 3298 3299 vn_vfslocks_rele(vpvfsentry); 3300 return (EBUSY); 3301 } 3302 3303 void 3304 vfs_lock_wait(vfs_t *vfsp) 3305 { 3306 vn_vfslocks_entry_t *vpvfsentry; 3307 3308 vpvfsentry = vn_vfslocks_getlock(vfsp); 3309 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3310 } 3311 3312 void 3313 vfs_rlock_wait(vfs_t *vfsp) 3314 { 3315 vn_vfslocks_entry_t *vpvfsentry; 3316 3317 vpvfsentry = vn_vfslocks_getlock(vfsp); 3318 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3319 } 3320 3321 /* 3322 * Unlock a locked filesystem. 3323 */ 3324 void 3325 vfs_unlock(vfs_t *vfsp) 3326 { 3327 vn_vfslocks_entry_t *vpvfsentry; 3328 3329 /* 3330 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3331 * And these changes should remain for the patch changes as it is. 3332 */ 3333 if (panicstr) 3334 return; 3335 3336 /* 3337 * ve_refcount needs to be dropped twice here. 3338 * 1. To release refernce after a call to vfs_locks_getlock() 3339 * 2. To release the reference from the locking routines like 3340 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3341 */ 3342 3343 vpvfsentry = vn_vfslocks_getlock(vfsp); 3344 vn_vfslocks_rele(vpvfsentry); 3345 3346 rwst_exit(&vpvfsentry->ve_lock); 3347 vn_vfslocks_rele(vpvfsentry); 3348 } 3349 3350 /* 3351 * Utility routine that allows a filesystem to construct its 3352 * fsid in "the usual way" - by munging some underlying dev_t and 3353 * the filesystem type number into the 64-bit fsid. Note that 3354 * this implicitly relies on dev_t persistence to make filesystem 3355 * id's persistent. 3356 * 3357 * There's nothing to prevent an individual fs from constructing its 3358 * fsid in a different way, and indeed they should. 3359 * 3360 * Since we want fsids to be 32-bit quantities (so that they can be 3361 * exported identically by either 32-bit or 64-bit APIs, as well as 3362 * the fact that fsid's are "known" to NFS), we compress the device 3363 * number given down to 32-bits, and panic if that isn't possible. 3364 */ 3365 void 3366 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3367 { 3368 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3369 panic("device number too big for fsid!"); 3370 fsi->val[1] = val; 3371 } 3372 3373 int 3374 vfs_lock_held(vfs_t *vfsp) 3375 { 3376 int held; 3377 vn_vfslocks_entry_t *vpvfsentry; 3378 3379 /* 3380 * vfs_lock_held will mimic sema_held behaviour 3381 * if panicstr is set. And these changes should remain 3382 * for the patch changes as it is. 3383 */ 3384 if (panicstr) 3385 return (1); 3386 3387 vpvfsentry = vn_vfslocks_getlock(vfsp); 3388 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3389 3390 vn_vfslocks_rele(vpvfsentry); 3391 return (held); 3392 } 3393 3394 struct _kthread * 3395 vfs_lock_owner(vfs_t *vfsp) 3396 { 3397 struct _kthread *owner; 3398 vn_vfslocks_entry_t *vpvfsentry; 3399 3400 /* 3401 * vfs_wlock_held will mimic sema_held behaviour 3402 * if panicstr is set. And these changes should remain 3403 * for the patch changes as it is. 3404 */ 3405 if (panicstr) 3406 return (NULL); 3407 3408 vpvfsentry = vn_vfslocks_getlock(vfsp); 3409 owner = rwst_owner(&vpvfsentry->ve_lock); 3410 3411 vn_vfslocks_rele(vpvfsentry); 3412 return (owner); 3413 } 3414 3415 /* 3416 * vfs list locking. 3417 * 3418 * Rather than manipulate the vfslist lock directly, we abstract into lock 3419 * and unlock routines to allow the locking implementation to be changed for 3420 * clustering. 3421 * 3422 * Whenever the vfs list is modified through its hash links, the overall list 3423 * lock must be obtained before locking the relevant hash bucket. But to see 3424 * whether a given vfs is on the list, it suffices to obtain the lock for the 3425 * hash bucket without getting the overall list lock. (See getvfs() below.) 3426 */ 3427 3428 void 3429 vfs_list_lock() 3430 { 3431 rw_enter(&vfslist, RW_WRITER); 3432 } 3433 3434 void 3435 vfs_list_read_lock() 3436 { 3437 rw_enter(&vfslist, RW_READER); 3438 } 3439 3440 void 3441 vfs_list_unlock() 3442 { 3443 rw_exit(&vfslist); 3444 } 3445 3446 /* 3447 * Low level worker routines for adding entries to and removing entries from 3448 * the vfs list. 3449 */ 3450 3451 static void 3452 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3453 { 3454 int vhno; 3455 struct vfs **hp; 3456 dev_t dev; 3457 3458 ASSERT(RW_WRITE_HELD(&vfslist)); 3459 3460 dev = expldev(vfsp->vfs_fsid.val[0]); 3461 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3462 3463 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3464 3465 /* 3466 * Link into the hash table, inserting it at the end, so that LOFS 3467 * with the same fsid as UFS (or other) file systems will not hide the 3468 * UFS. 3469 */ 3470 if (insert_at_head) { 3471 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3472 rvfs_list[vhno].rvfs_head = vfsp; 3473 } else { 3474 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3475 hp = &(*hp)->vfs_hash) 3476 continue; 3477 /* 3478 * hp now contains the address of the pointer to update 3479 * to effect the insertion. 3480 */ 3481 vfsp->vfs_hash = NULL; 3482 *hp = vfsp; 3483 } 3484 3485 rvfs_list[vhno].rvfs_len++; 3486 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3487 } 3488 3489 3490 static void 3491 vfs_hash_remove(struct vfs *vfsp) 3492 { 3493 int vhno; 3494 struct vfs *tvfsp; 3495 dev_t dev; 3496 3497 ASSERT(RW_WRITE_HELD(&vfslist)); 3498 3499 dev = expldev(vfsp->vfs_fsid.val[0]); 3500 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3501 3502 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3503 3504 /* 3505 * Remove from hash. 3506 */ 3507 if (rvfs_list[vhno].rvfs_head == vfsp) { 3508 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3509 rvfs_list[vhno].rvfs_len--; 3510 goto foundit; 3511 } 3512 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3513 tvfsp = tvfsp->vfs_hash) { 3514 if (tvfsp->vfs_hash == vfsp) { 3515 tvfsp->vfs_hash = vfsp->vfs_hash; 3516 rvfs_list[vhno].rvfs_len--; 3517 goto foundit; 3518 } 3519 } 3520 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3521 3522 foundit: 3523 3524 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3525 } 3526 3527 3528 void 3529 vfs_list_add(struct vfs *vfsp) 3530 { 3531 zone_t *zone; 3532 3533 /* 3534 * Typically, the vfs_t will have been created on behalf of the file 3535 * system in vfs_init, where it will have been provided with a 3536 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3537 * by an unbundled file system. We therefore check for such an example 3538 * before stamping the vfs_t with its creation time for the benefit of 3539 * mntfs. 3540 */ 3541 if (vfsp->vfs_implp == NULL) 3542 vfsimpl_setup(vfsp); 3543 vfs_mono_time(&vfsp->vfs_hrctime); 3544 3545 /* 3546 * The zone that owns the mount is the one that performed the mount. 3547 * Note that this isn't necessarily the same as the zone mounted into. 3548 * The corresponding zone_rele() will be done when the vfs_t is 3549 * being free'd. 3550 */ 3551 vfsp->vfs_zone = curproc->p_zone; 3552 zone_hold(vfsp->vfs_zone); 3553 3554 /* 3555 * Find the zone mounted into, and put this mount on its vfs list. 3556 */ 3557 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3558 ASSERT(zone != NULL); 3559 /* 3560 * Special casing for the root vfs. This structure is allocated 3561 * statically and hooked onto rootvfs at link time. During the 3562 * vfs_mountroot call at system startup time, the root file system's 3563 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3564 * as argument. The code below must detect and handle this special 3565 * case. The only apparent justification for this special casing is 3566 * to ensure that the root file system appears at the head of the 3567 * list. 3568 * 3569 * XXX: I'm assuming that it's ok to do normal list locking when 3570 * adding the entry for the root file system (this used to be 3571 * done with no locks held). 3572 */ 3573 vfs_list_lock(); 3574 /* 3575 * Link into the vfs list proper. 3576 */ 3577 if (vfsp == &root) { 3578 /* 3579 * Assert: This vfs is already on the list as its first entry. 3580 * Thus, there's nothing to do. 3581 */ 3582 ASSERT(rootvfs == vfsp); 3583 /* 3584 * Add it to the head of the global zone's vfslist. 3585 */ 3586 ASSERT(zone == global_zone); 3587 ASSERT(zone->zone_vfslist == NULL); 3588 zone->zone_vfslist = vfsp; 3589 } else { 3590 /* 3591 * Link to end of list using vfs_prev (as rootvfs is now a 3592 * doubly linked circular list) so list is in mount order for 3593 * mnttab use. 3594 */ 3595 rootvfs->vfs_prev->vfs_next = vfsp; 3596 vfsp->vfs_prev = rootvfs->vfs_prev; 3597 rootvfs->vfs_prev = vfsp; 3598 vfsp->vfs_next = rootvfs; 3599 3600 /* 3601 * Do it again for the zone-private list (which may be NULL). 3602 */ 3603 if (zone->zone_vfslist == NULL) { 3604 ASSERT(zone != global_zone); 3605 zone->zone_vfslist = vfsp; 3606 } else { 3607 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3608 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3609 zone->zone_vfslist->vfs_zone_prev = vfsp; 3610 vfsp->vfs_zone_next = zone->zone_vfslist; 3611 } 3612 } 3613 3614 /* 3615 * Link into the hash table, inserting it at the end, so that LOFS 3616 * with the same fsid as UFS (or other) file systems will not hide 3617 * the UFS. 3618 */ 3619 vfs_hash_add(vfsp, 0); 3620 3621 /* 3622 * update the mnttab modification time 3623 */ 3624 vfs_mnttab_modtimeupd(); 3625 vfs_list_unlock(); 3626 zone_rele(zone); 3627 } 3628 3629 void 3630 vfs_list_remove(struct vfs *vfsp) 3631 { 3632 zone_t *zone; 3633 3634 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3635 ASSERT(zone != NULL); 3636 /* 3637 * Callers are responsible for preventing attempts to unmount the 3638 * root. 3639 */ 3640 ASSERT(vfsp != rootvfs); 3641 3642 vfs_list_lock(); 3643 3644 /* 3645 * Remove from hash. 3646 */ 3647 vfs_hash_remove(vfsp); 3648 3649 /* 3650 * Remove from vfs list. 3651 */ 3652 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3653 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3654 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3655 3656 /* 3657 * Remove from zone-specific vfs list. 3658 */ 3659 if (zone->zone_vfslist == vfsp) 3660 zone->zone_vfslist = vfsp->vfs_zone_next; 3661 3662 if (vfsp->vfs_zone_next == vfsp) { 3663 ASSERT(vfsp->vfs_zone_prev == vfsp); 3664 ASSERT(zone->zone_vfslist == vfsp); 3665 zone->zone_vfslist = NULL; 3666 } 3667 3668 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3669 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3670 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3671 3672 /* 3673 * update the mnttab modification time 3674 */ 3675 vfs_mnttab_modtimeupd(); 3676 vfs_list_unlock(); 3677 zone_rele(zone); 3678 } 3679 3680 struct vfs * 3681 getvfs(fsid_t *fsid) 3682 { 3683 struct vfs *vfsp; 3684 int val0 = fsid->val[0]; 3685 int val1 = fsid->val[1]; 3686 dev_t dev = expldev(val0); 3687 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3688 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3689 3690 mutex_enter(hmp); 3691 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3692 if (vfsp->vfs_fsid.val[0] == val0 && 3693 vfsp->vfs_fsid.val[1] == val1) { 3694 VFS_HOLD(vfsp); 3695 mutex_exit(hmp); 3696 return (vfsp); 3697 } 3698 } 3699 mutex_exit(hmp); 3700 return (NULL); 3701 } 3702 3703 /* 3704 * Search the vfs mount in progress list for a specified device/vfs entry. 3705 * Returns 0 if the first entry in the list that the device matches has the 3706 * given vfs pointer as well. If the device matches but a different vfs 3707 * pointer is encountered in the list before the given vfs pointer then 3708 * a 1 is returned. 3709 */ 3710 3711 int 3712 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3713 { 3714 int retval = 0; 3715 struct ipmnt *mipp; 3716 3717 mutex_enter(&vfs_miplist_mutex); 3718 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3719 if (mipp->mip_dev == dev) { 3720 if (mipp->mip_vfsp != vfsp) 3721 retval = 1; 3722 break; 3723 } 3724 } 3725 mutex_exit(&vfs_miplist_mutex); 3726 return (retval); 3727 } 3728 3729 /* 3730 * Search the vfs list for a specified device. Returns 1, if entry is found 3731 * or 0 if no suitable entry is found. 3732 */ 3733 3734 int 3735 vfs_devismounted(dev_t dev) 3736 { 3737 struct vfs *vfsp; 3738 int found; 3739 3740 vfs_list_read_lock(); 3741 vfsp = rootvfs; 3742 found = 0; 3743 do { 3744 if (vfsp->vfs_dev == dev) { 3745 found = 1; 3746 break; 3747 } 3748 vfsp = vfsp->vfs_next; 3749 } while (vfsp != rootvfs); 3750 3751 vfs_list_unlock(); 3752 return (found); 3753 } 3754 3755 /* 3756 * Search the vfs list for a specified device. Returns a pointer to it 3757 * or NULL if no suitable entry is found. The caller of this routine 3758 * is responsible for releasing the returned vfs pointer. 3759 */ 3760 struct vfs * 3761 vfs_dev2vfsp(dev_t dev) 3762 { 3763 struct vfs *vfsp; 3764 int found; 3765 3766 vfs_list_read_lock(); 3767 vfsp = rootvfs; 3768 found = 0; 3769 do { 3770 /* 3771 * The following could be made more efficient by making 3772 * the entire loop use vfs_zone_next if the call is from 3773 * a zone. The only callers, however, ustat(2) and 3774 * umount2(2), don't seem to justify the added 3775 * complexity at present. 3776 */ 3777 if (vfsp->vfs_dev == dev && 3778 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3779 curproc->p_zone)) { 3780 VFS_HOLD(vfsp); 3781 found = 1; 3782 break; 3783 } 3784 vfsp = vfsp->vfs_next; 3785 } while (vfsp != rootvfs); 3786 vfs_list_unlock(); 3787 return (found ? vfsp: NULL); 3788 } 3789 3790 /* 3791 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3792 * or NULL if no suitable entry is found. The caller of this routine 3793 * is responsible for releasing the returned vfs pointer. 3794 * 3795 * Note that if multiple mntpoints match, the last one matching is 3796 * returned in an attempt to return the "top" mount when overlay 3797 * mounts are covering the same mount point. This is accomplished by starting 3798 * at the end of the list and working our way backwards, stopping at the first 3799 * matching mount. 3800 */ 3801 struct vfs * 3802 vfs_mntpoint2vfsp(const char *mp) 3803 { 3804 struct vfs *vfsp; 3805 struct vfs *retvfsp = NULL; 3806 zone_t *zone = curproc->p_zone; 3807 struct vfs *list; 3808 3809 vfs_list_read_lock(); 3810 if (getzoneid() == GLOBAL_ZONEID) { 3811 /* 3812 * The global zone may see filesystems in any zone. 3813 */ 3814 vfsp = rootvfs->vfs_prev; 3815 do { 3816 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3817 retvfsp = vfsp; 3818 break; 3819 } 3820 vfsp = vfsp->vfs_prev; 3821 } while (vfsp != rootvfs->vfs_prev); 3822 } else if ((list = zone->zone_vfslist) != NULL) { 3823 const char *mntpt; 3824 3825 vfsp = list->vfs_zone_prev; 3826 do { 3827 mntpt = refstr_value(vfsp->vfs_mntpt); 3828 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3829 if (strcmp(mntpt, mp) == 0) { 3830 retvfsp = vfsp; 3831 break; 3832 } 3833 vfsp = vfsp->vfs_zone_prev; 3834 } while (vfsp != list->vfs_zone_prev); 3835 } 3836 if (retvfsp) 3837 VFS_HOLD(retvfsp); 3838 vfs_list_unlock(); 3839 return (retvfsp); 3840 } 3841 3842 /* 3843 * Search the vfs list for a specified vfsops. 3844 * if vfs entry is found then return 1, else 0. 3845 */ 3846 int 3847 vfs_opsinuse(vfsops_t *ops) 3848 { 3849 struct vfs *vfsp; 3850 int found; 3851 3852 vfs_list_read_lock(); 3853 vfsp = rootvfs; 3854 found = 0; 3855 do { 3856 if (vfs_getops(vfsp) == ops) { 3857 found = 1; 3858 break; 3859 } 3860 vfsp = vfsp->vfs_next; 3861 } while (vfsp != rootvfs); 3862 vfs_list_unlock(); 3863 return (found); 3864 } 3865 3866 /* 3867 * Allocate an entry in vfssw for a file system type 3868 */ 3869 struct vfssw * 3870 allocate_vfssw(const char *type) 3871 { 3872 struct vfssw *vswp; 3873 3874 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3875 /* 3876 * The vfssw table uses the empty string to identify an 3877 * available entry; we cannot add any type which has 3878 * a leading NUL. The string length is limited to 3879 * the size of the st_fstype array in struct stat. 3880 */ 3881 return (NULL); 3882 } 3883 3884 ASSERT(VFSSW_WRITE_LOCKED()); 3885 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3886 if (!ALLOCATED_VFSSW(vswp)) { 3887 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3888 (void) strcpy(vswp->vsw_name, type); 3889 ASSERT(vswp->vsw_count == 0); 3890 vswp->vsw_count = 1; 3891 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3892 return (vswp); 3893 } 3894 return (NULL); 3895 } 3896 3897 /* 3898 * Impose additional layer of translation between vfstype names 3899 * and module names in the filesystem. 3900 */ 3901 static const char * 3902 vfs_to_modname(const char *vfstype) 3903 { 3904 if (strcmp(vfstype, "proc") == 0) { 3905 vfstype = "procfs"; 3906 } else if (strcmp(vfstype, "fd") == 0) { 3907 vfstype = "fdfs"; 3908 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3909 vfstype = "nfs"; 3910 } 3911 3912 return (vfstype); 3913 } 3914 3915 /* 3916 * Find a vfssw entry given a file system type name. 3917 * Try to autoload the filesystem if it's not found. 3918 * If it's installed, return the vfssw locked to prevent unloading. 3919 */ 3920 struct vfssw * 3921 vfs_getvfssw(const char *type) 3922 { 3923 struct vfssw *vswp; 3924 const char *modname; 3925 3926 RLOCK_VFSSW(); 3927 vswp = vfs_getvfsswbyname(type); 3928 modname = vfs_to_modname(type); 3929 3930 if (rootdir == NULL) { 3931 /* 3932 * If we haven't yet loaded the root file system, then our 3933 * _init won't be called until later. Allocate vfssw entry, 3934 * because mod_installfs won't be called. 3935 */ 3936 if (vswp == NULL) { 3937 RUNLOCK_VFSSW(); 3938 WLOCK_VFSSW(); 3939 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3940 if ((vswp = allocate_vfssw(type)) == NULL) { 3941 WUNLOCK_VFSSW(); 3942 return (NULL); 3943 } 3944 } 3945 WUNLOCK_VFSSW(); 3946 RLOCK_VFSSW(); 3947 } 3948 if (!VFS_INSTALLED(vswp)) { 3949 RUNLOCK_VFSSW(); 3950 (void) modloadonly("fs", modname); 3951 } else 3952 RUNLOCK_VFSSW(); 3953 return (vswp); 3954 } 3955 3956 /* 3957 * Try to load the filesystem. Before calling modload(), we drop 3958 * our lock on the VFS switch table, and pick it up after the 3959 * module is loaded. However, there is a potential race: the 3960 * module could be unloaded after the call to modload() completes 3961 * but before we pick up the lock and drive on. Therefore, 3962 * we keep reloading the module until we've loaded the module 3963 * _and_ we have the lock on the VFS switch table. 3964 */ 3965 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3966 RUNLOCK_VFSSW(); 3967 if (modload("fs", modname) == -1) 3968 return (NULL); 3969 RLOCK_VFSSW(); 3970 if (vswp == NULL) 3971 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3972 break; 3973 } 3974 RUNLOCK_VFSSW(); 3975 3976 return (vswp); 3977 } 3978 3979 /* 3980 * Find a vfssw entry given a file system type name. 3981 */ 3982 struct vfssw * 3983 vfs_getvfsswbyname(const char *type) 3984 { 3985 struct vfssw *vswp; 3986 3987 ASSERT(VFSSW_LOCKED()); 3988 if (type == NULL || *type == '\0') 3989 return (NULL); 3990 3991 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3992 if (strcmp(type, vswp->vsw_name) == 0) { 3993 vfs_refvfssw(vswp); 3994 return (vswp); 3995 } 3996 } 3997 3998 return (NULL); 3999 } 4000 4001 /* 4002 * Find a vfssw entry given a set of vfsops. 4003 */ 4004 struct vfssw * 4005 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 4006 { 4007 struct vfssw *vswp; 4008 4009 RLOCK_VFSSW(); 4010 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4011 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 4012 vfs_refvfssw(vswp); 4013 RUNLOCK_VFSSW(); 4014 return (vswp); 4015 } 4016 } 4017 RUNLOCK_VFSSW(); 4018 4019 return (NULL); 4020 } 4021 4022 /* 4023 * Reference a vfssw entry. 4024 */ 4025 void 4026 vfs_refvfssw(struct vfssw *vswp) 4027 { 4028 4029 mutex_enter(&vswp->vsw_lock); 4030 vswp->vsw_count++; 4031 mutex_exit(&vswp->vsw_lock); 4032 } 4033 4034 /* 4035 * Unreference a vfssw entry. 4036 */ 4037 void 4038 vfs_unrefvfssw(struct vfssw *vswp) 4039 { 4040 4041 mutex_enter(&vswp->vsw_lock); 4042 vswp->vsw_count--; 4043 mutex_exit(&vswp->vsw_lock); 4044 } 4045 4046 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4047 int sync_timeleft; /* portion of sync_timeout remaining */ 4048 4049 static int sync_retries = 20; /* number of retries when not making progress */ 4050 static int sync_triesleft; /* portion of sync_retries remaining */ 4051 4052 static pgcnt_t old_pgcnt, new_pgcnt; 4053 static int new_bufcnt, old_bufcnt; 4054 4055 /* 4056 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4057 * complete. We wait by counting the number of dirty pages and buffers, 4058 * pushing them out using bio_busy() and page_busy(), and then counting again. 4059 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4060 * the SYNC phase of the panic code (see comments in panic.c). It should only 4061 * be used after some higher-level mechanism has quiesced the system so that 4062 * new writes are not being initiated while we are waiting for completion. 4063 * 4064 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4065 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4066 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4067 * Together these ensure that syncing completes if our i/o paths are stuck. 4068 * The counters are declared above so they can be found easily in the debugger. 4069 * 4070 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4071 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4072 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4073 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4074 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4075 * deadlocking or hanging inside of a broken filesystem or driver routine. 4076 * 4077 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4078 * sync_retries consecutive calls to bio_busy() and page_busy() without 4079 * decreasing either the number of dirty buffers or dirty pages below the 4080 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4081 * 4082 * Each loop iteration ends with a call to delay() one second to allow time for 4083 * i/o completion and to permit the user time to read our progress messages. 4084 */ 4085 void 4086 vfs_syncall(void) 4087 { 4088 if (rootdir == NULL && !modrootloaded) 4089 return; /* panic during boot - no filesystems yet */ 4090 4091 printf("syncing file systems..."); 4092 vfs_syncprogress(); 4093 sync(); 4094 4095 vfs_syncprogress(); 4096 sync_triesleft = sync_retries; 4097 4098 old_bufcnt = new_bufcnt = INT_MAX; 4099 old_pgcnt = new_pgcnt = ULONG_MAX; 4100 4101 while (sync_triesleft > 0) { 4102 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4103 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4104 4105 new_bufcnt = bio_busy(B_TRUE); 4106 new_pgcnt = page_busy(B_TRUE); 4107 vfs_syncprogress(); 4108 4109 if (new_bufcnt == 0 && new_pgcnt == 0) 4110 break; 4111 4112 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4113 sync_triesleft = sync_retries; 4114 else 4115 sync_triesleft--; 4116 4117 if (new_bufcnt) 4118 printf(" [%d]", new_bufcnt); 4119 if (new_pgcnt) 4120 printf(" %lu", new_pgcnt); 4121 4122 delay(hz); 4123 } 4124 4125 if (new_bufcnt != 0 || new_pgcnt != 0) 4126 printf(" done (not all i/o completed)\n"); 4127 else 4128 printf(" done\n"); 4129 4130 sync_timeleft = 0; 4131 delay(hz); 4132 } 4133 4134 /* 4135 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4136 * sync_timeout to indicate that we are making progress and the deadman() 4137 * omnipresent cyclic should not yet time us out. Note that it is safe to 4138 * store to sync_timeleft here since the deadman() is firing at high-level 4139 * on top of us. If we are racing with the deadman(), either the deadman() 4140 * will decrement the old value and then we will reset it, or we will 4141 * reset it and then the deadman() will immediately decrement it. In either 4142 * case, correct behavior results. 4143 */ 4144 void 4145 vfs_syncprogress(void) 4146 { 4147 if (panicstr) 4148 sync_timeleft = sync_timeout; 4149 } 4150 4151 /* 4152 * Map VFS flags to statvfs flags. These shouldn't really be separate 4153 * flags at all. 4154 */ 4155 uint_t 4156 vf_to_stf(uint_t vf) 4157 { 4158 uint_t stf = 0; 4159 4160 if (vf & VFS_RDONLY) 4161 stf |= ST_RDONLY; 4162 if (vf & VFS_NOSETUID) 4163 stf |= ST_NOSUID; 4164 if (vf & VFS_NOTRUNC) 4165 stf |= ST_NOTRUNC; 4166 4167 return (stf); 4168 } 4169 4170 /* 4171 * Entries for (illegal) fstype 0. 4172 */ 4173 /* ARGSUSED */ 4174 int 4175 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4176 { 4177 cmn_err(CE_PANIC, "stray vfs operation"); 4178 return (0); 4179 } 4180 4181 /* 4182 * Entries for (illegal) fstype 0. 4183 */ 4184 int 4185 vfsstray(void) 4186 { 4187 cmn_err(CE_PANIC, "stray vfs operation"); 4188 return (0); 4189 } 4190 4191 /* 4192 * Support for dealing with forced UFS unmount and its interaction with 4193 * LOFS. Could be used by any filesystem. 4194 * See bug 1203132. 4195 */ 4196 int 4197 vfs_EIO(void) 4198 { 4199 return (EIO); 4200 } 4201 4202 /* 4203 * We've gotta define the op for sync separately, since the compiler gets 4204 * confused if we mix and match ANSI and normal style prototypes when 4205 * a "short" argument is present and spits out a warning. 4206 */ 4207 /*ARGSUSED*/ 4208 int 4209 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4210 { 4211 return (EIO); 4212 } 4213 4214 vfs_t EIO_vfs; 4215 vfsops_t *EIO_vfsops; 4216 4217 /* 4218 * Called from startup() to initialize all loaded vfs's 4219 */ 4220 void 4221 vfsinit(void) 4222 { 4223 struct vfssw *vswp; 4224 int error; 4225 extern int vopstats_enabled; 4226 extern void vopstats_startup(); 4227 4228 static const fs_operation_def_t EIO_vfsops_template[] = { 4229 VFSNAME_MOUNT, { .error = vfs_EIO }, 4230 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4231 VFSNAME_ROOT, { .error = vfs_EIO }, 4232 VFSNAME_STATVFS, { .error = vfs_EIO }, 4233 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4234 VFSNAME_VGET, { .error = vfs_EIO }, 4235 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4236 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4237 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4238 NULL, NULL 4239 }; 4240 4241 static const fs_operation_def_t stray_vfsops_template[] = { 4242 VFSNAME_MOUNT, { .error = vfsstray }, 4243 VFSNAME_UNMOUNT, { .error = vfsstray }, 4244 VFSNAME_ROOT, { .error = vfsstray }, 4245 VFSNAME_STATVFS, { .error = vfsstray }, 4246 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4247 VFSNAME_VGET, { .error = vfsstray }, 4248 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4249 VFSNAME_FREEVFS, { .error = vfsstray }, 4250 VFSNAME_VNSTATE, { .error = vfsstray }, 4251 NULL, NULL 4252 }; 4253 4254 /* Create vfs cache */ 4255 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4256 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4257 4258 /* Initialize the vnode cache (file systems may use it during init). */ 4259 vn_create_cache(); 4260 4261 /* Setup event monitor framework */ 4262 fem_init(); 4263 4264 /* Initialize the dummy stray file system type. */ 4265 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4266 4267 /* Initialize the dummy EIO file system. */ 4268 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4269 if (error != 0) { 4270 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4271 /* Shouldn't happen, but not bad enough to panic */ 4272 } 4273 4274 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4275 4276 /* 4277 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4278 * on this vfs can immediately notice it's invalid. 4279 */ 4280 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4281 4282 /* 4283 * Call the init routines of non-loadable filesystems only. 4284 * Filesystems which are loaded as separate modules will be 4285 * initialized by the module loading code instead. 4286 */ 4287 4288 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4289 RLOCK_VFSSW(); 4290 if (vswp->vsw_init != NULL) 4291 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4292 RUNLOCK_VFSSW(); 4293 } 4294 4295 vopstats_startup(); 4296 4297 if (vopstats_enabled) { 4298 /* EIO_vfs can collect stats, but we don't retrieve them */ 4299 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4300 EIO_vfs.vfs_fstypevsp = NULL; 4301 EIO_vfs.vfs_vskap = NULL; 4302 EIO_vfs.vfs_flag |= VFS_STATS; 4303 } 4304 4305 xattr_init(); 4306 4307 reparse_point_init(); 4308 } 4309 4310 vfs_t * 4311 vfs_alloc(int kmflag) 4312 { 4313 vfs_t *vfsp; 4314 4315 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4316 4317 /* 4318 * Do the simplest initialization here. 4319 * Everything else gets done in vfs_init() 4320 */ 4321 bzero(vfsp, sizeof (vfs_t)); 4322 return (vfsp); 4323 } 4324 4325 void 4326 vfs_free(vfs_t *vfsp) 4327 { 4328 /* 4329 * One would be tempted to assert that "vfsp->vfs_count == 0". 4330 * The problem is that this gets called out of domount() with 4331 * a partially initialized vfs and a vfs_count of 1. This is 4332 * also called from vfs_rele() with a vfs_count of 0. We can't 4333 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4334 * returned. This is because VFS_MOUNT() fully initializes the 4335 * vfs structure and its associated data. VFS_RELE() will call 4336 * VFS_FREEVFS() which may panic the system if the data structures 4337 * aren't fully initialized from a successful VFS_MOUNT()). 4338 */ 4339 4340 /* If FEM was in use, make sure everything gets cleaned up */ 4341 if (vfsp->vfs_femhead) { 4342 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4343 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4344 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4345 vfsp->vfs_femhead = NULL; 4346 } 4347 4348 if (vfsp->vfs_implp) 4349 vfsimpl_teardown(vfsp); 4350 sema_destroy(&vfsp->vfs_reflock); 4351 kmem_cache_free(vfs_cache, vfsp); 4352 } 4353 4354 /* 4355 * Increments the vfs reference count by one atomically. 4356 */ 4357 void 4358 vfs_hold(vfs_t *vfsp) 4359 { 4360 atomic_add_32(&vfsp->vfs_count, 1); 4361 ASSERT(vfsp->vfs_count != 0); 4362 } 4363 4364 /* 4365 * Decrements the vfs reference count by one atomically. When 4366 * vfs reference count becomes zero, it calls the file system 4367 * specific vfs_freevfs() to free up the resources. 4368 */ 4369 void 4370 vfs_rele(vfs_t *vfsp) 4371 { 4372 ASSERT(vfsp->vfs_count != 0); 4373 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4374 VFS_FREEVFS(vfsp); 4375 lofi_remove(vfsp); 4376 if (vfsp->vfs_zone) 4377 zone_rele(vfsp->vfs_zone); 4378 vfs_freemnttab(vfsp); 4379 vfs_free(vfsp); 4380 } 4381 } 4382 4383 /* 4384 * Generic operations vector support. 4385 * 4386 * This is used to build operations vectors for both the vfs and vnode. 4387 * It's normally called only when a file system is loaded. 4388 * 4389 * There are many possible algorithms for this, including the following: 4390 * 4391 * (1) scan the list of known operations; for each, see if the file system 4392 * includes an entry for it, and fill it in as appropriate. 4393 * 4394 * (2) set up defaults for all known operations. scan the list of ops 4395 * supplied by the file system; for each which is both supplied and 4396 * known, fill it in. 4397 * 4398 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4399 * in entries as we go. 4400 * 4401 * we choose (1) for simplicity, and because performance isn't critical here. 4402 * note that (2) could be sped up using a precomputed hash table on known ops. 4403 * (3) could be faster than either, but only if the lists were very large or 4404 * supplied in sorted order. 4405 * 4406 */ 4407 4408 int 4409 fs_build_vector(void *vector, int *unused_ops, 4410 const fs_operation_trans_def_t *translation, 4411 const fs_operation_def_t *operations) 4412 { 4413 int i, num_trans, num_ops, used; 4414 4415 /* 4416 * Count the number of translations and the number of supplied 4417 * operations. 4418 */ 4419 4420 { 4421 const fs_operation_trans_def_t *p; 4422 4423 for (num_trans = 0, p = translation; 4424 p->name != NULL; 4425 num_trans++, p++) 4426 ; 4427 } 4428 4429 { 4430 const fs_operation_def_t *p; 4431 4432 for (num_ops = 0, p = operations; 4433 p->name != NULL; 4434 num_ops++, p++) 4435 ; 4436 } 4437 4438 /* Walk through each operation known to our caller. There will be */ 4439 /* one entry in the supplied "translation table" for each. */ 4440 4441 used = 0; 4442 4443 for (i = 0; i < num_trans; i++) { 4444 int j, found; 4445 char *curname; 4446 fs_generic_func_p result; 4447 fs_generic_func_p *location; 4448 4449 curname = translation[i].name; 4450 4451 /* Look for a matching operation in the list supplied by the */ 4452 /* file system. */ 4453 4454 found = 0; 4455 4456 for (j = 0; j < num_ops; j++) { 4457 if (strcmp(operations[j].name, curname) == 0) { 4458 used++; 4459 found = 1; 4460 break; 4461 } 4462 } 4463 4464 /* 4465 * If the file system is using a "placeholder" for default 4466 * or error functions, grab the appropriate function out of 4467 * the translation table. If the file system didn't supply 4468 * this operation at all, use the default function. 4469 */ 4470 4471 if (found) { 4472 result = operations[j].func.fs_generic; 4473 if (result == fs_default) { 4474 result = translation[i].defaultFunc; 4475 } else if (result == fs_error) { 4476 result = translation[i].errorFunc; 4477 } else if (result == NULL) { 4478 /* Null values are PROHIBITED */ 4479 return (EINVAL); 4480 } 4481 } else { 4482 result = translation[i].defaultFunc; 4483 } 4484 4485 /* Now store the function into the operations vector. */ 4486 4487 location = (fs_generic_func_p *) 4488 (((char *)vector) + translation[i].offset); 4489 4490 *location = result; 4491 } 4492 4493 *unused_ops = num_ops - used; 4494 4495 return (0); 4496 } 4497 4498 /* Placeholder functions, should never be called. */ 4499 4500 int 4501 fs_error(void) 4502 { 4503 cmn_err(CE_PANIC, "fs_error called"); 4504 return (0); 4505 } 4506 4507 int 4508 fs_default(void) 4509 { 4510 cmn_err(CE_PANIC, "fs_default called"); 4511 return (0); 4512 } 4513 4514 #ifdef __sparc 4515 4516 /* 4517 * Part of the implementation of booting off a mirrored root 4518 * involves a change of dev_t for the root device. To 4519 * accomplish this, first remove the existing hash table 4520 * entry for the root device, convert to the new dev_t, 4521 * then re-insert in the hash table at the head of the list. 4522 */ 4523 void 4524 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4525 { 4526 vfs_list_lock(); 4527 4528 vfs_hash_remove(vfsp); 4529 4530 vfsp->vfs_dev = ndev; 4531 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4532 4533 vfs_hash_add(vfsp, 1); 4534 4535 vfs_list_unlock(); 4536 } 4537 4538 #else /* x86 NEWBOOT */ 4539 4540 #if defined(__x86) 4541 extern int hvmboot_rootconf(); 4542 #endif /* __x86 */ 4543 4544 extern ib_boot_prop_t *iscsiboot_prop; 4545 4546 int 4547 rootconf() 4548 { 4549 int error; 4550 struct vfssw *vsw; 4551 extern void pm_init(); 4552 char *fstyp, *fsmod; 4553 int ret = -1; 4554 4555 getrootfs(&fstyp, &fsmod); 4556 4557 #if defined(__x86) 4558 /* 4559 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4560 * which lives in /platform/i86hvm, and hence is only available when 4561 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4562 * is not available then the modstub for this function will return 0. 4563 * If the hvm_bootstrap misc module is available it will be loaded 4564 * and hvmboot_rootconf() will be invoked. 4565 */ 4566 if (error = hvmboot_rootconf()) 4567 return (error); 4568 #endif /* __x86 */ 4569 4570 if (error = clboot_rootconf()) 4571 return (error); 4572 4573 if (modload("fs", fsmod) == -1) 4574 panic("Cannot _init %s module", fsmod); 4575 4576 RLOCK_VFSSW(); 4577 vsw = vfs_getvfsswbyname(fstyp); 4578 RUNLOCK_VFSSW(); 4579 if (vsw == NULL) { 4580 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4581 return (ENXIO); 4582 } 4583 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4584 VFS_HOLD(rootvfs); 4585 4586 /* always mount readonly first */ 4587 rootvfs->vfs_flag |= VFS_RDONLY; 4588 4589 pm_init(); 4590 4591 if (netboot && iscsiboot_prop) { 4592 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4593 " shouldn't happen in the same time"); 4594 return (EINVAL); 4595 } 4596 4597 if (netboot || iscsiboot_prop) { 4598 ret = strplumb(); 4599 if (ret != 0) { 4600 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4601 return (EFAULT); 4602 } 4603 } 4604 4605 if ((ret == 0) && iscsiboot_prop) { 4606 ret = modload("drv", "iscsi"); 4607 /* -1 indicates fail */ 4608 if (ret == -1) { 4609 cmn_err(CE_WARN, "Failed to load iscsi module"); 4610 iscsi_boot_prop_free(); 4611 return (EINVAL); 4612 } else { 4613 if (!i_ddi_attach_pseudo_node("iscsi")) { 4614 cmn_err(CE_WARN, 4615 "Failed to attach iscsi driver"); 4616 iscsi_boot_prop_free(); 4617 return (ENODEV); 4618 } 4619 } 4620 } 4621 4622 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4623 vfs_unrefvfssw(vsw); 4624 rootdev = rootvfs->vfs_dev; 4625 4626 if (error) 4627 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4628 rootfs.bo_name, fstyp); 4629 else 4630 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4631 rootfs.bo_name, fstyp); 4632 return (error); 4633 } 4634 4635 /* 4636 * XXX this is called by nfs only and should probably be removed 4637 * If booted with ASKNAME, prompt on the console for a filesystem 4638 * name and return it. 4639 */ 4640 void 4641 getfsname(char *askfor, char *name, size_t namelen) 4642 { 4643 if (boothowto & RB_ASKNAME) { 4644 printf("%s name: ", askfor); 4645 console_gets(name, namelen); 4646 } 4647 } 4648 4649 /* 4650 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4651 * property. 4652 * 4653 * Filesystem types starting with the prefix "nfs" are diskless clients; 4654 * init the root filename name (rootfs.bo_name), too. 4655 * 4656 * If we are booting via NFS we currently have these options: 4657 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4658 * nfs2 - force NFS V2 4659 * nfs3 - force NFS V3 4660 * nfs4 - force NFS V4 4661 * Because we need to maintain backward compatibility with the naming 4662 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4663 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4664 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4665 * This is only for root filesystems, all other uses such as cachefs 4666 * will expect that "nfs" == NFS V2. 4667 */ 4668 static void 4669 getrootfs(char **fstypp, char **fsmodp) 4670 { 4671 extern char *strplumb_get_netdev_path(void); 4672 char *propstr = NULL; 4673 4674 /* 4675 * Check fstype property; for diskless it should be one of "nfs", 4676 * "nfs2", "nfs3" or "nfs4". 4677 */ 4678 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4679 DDI_PROP_DONTPASS, "fstype", &propstr) 4680 == DDI_SUCCESS) { 4681 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4682 ddi_prop_free(propstr); 4683 4684 /* 4685 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4686 * assume the type of this root filesystem is 'zfs'. 4687 */ 4688 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4689 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4690 == DDI_SUCCESS) { 4691 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4692 ddi_prop_free(propstr); 4693 } 4694 4695 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4696 *fstypp = *fsmodp = rootfs.bo_fstype; 4697 return; 4698 } 4699 4700 ++netboot; 4701 4702 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4703 (void) strcpy(rootfs.bo_fstype, "nfs"); 4704 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4705 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4706 4707 /* 4708 * check if path to network interface is specified in bootpath 4709 * or by a hypervisor domain configuration file. 4710 * XXPV - enable strlumb_get_netdev_path() 4711 */ 4712 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4713 "xpv-nfsroot")) { 4714 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4715 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4716 DDI_PROP_DONTPASS, "bootpath", &propstr) 4717 == DDI_SUCCESS) { 4718 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4719 ddi_prop_free(propstr); 4720 } else { 4721 /* attempt to determine netdev_path via boot_mac address */ 4722 netdev_path = strplumb_get_netdev_path(); 4723 if (netdev_path == NULL) 4724 panic("cannot find boot network interface"); 4725 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4726 } 4727 *fstypp = rootfs.bo_fstype; 4728 *fsmodp = "nfs"; 4729 } 4730 #endif 4731 4732 /* 4733 * VFS feature routines 4734 */ 4735 4736 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4737 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4738 4739 /* Register a feature in the vfs */ 4740 void 4741 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4742 { 4743 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4744 if (vfsp->vfs_implp == NULL) 4745 return; 4746 4747 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4748 } 4749 4750 /* 4751 * Query a vfs for a feature. 4752 * Returns 1 if feature is present, 0 if not 4753 */ 4754 int 4755 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4756 { 4757 int ret = 0; 4758 4759 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4760 if (vfsp->vfs_implp == NULL) 4761 return (ret); 4762 4763 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4764 ret = 1; 4765 4766 return (ret); 4767 } 4768 4769 /* 4770 * Propagate feature set from one vfs to another 4771 */ 4772 void 4773 vfs_propagate_features(vfs_t *from, vfs_t *to) 4774 { 4775 int i; 4776 4777 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4778 return; 4779 4780 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4781 to->vfs_featureset[i] = from->vfs_featureset[i]; 4782 } 4783 } 4784 4785 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4786 4787 /* 4788 * Return the vnode for the lofi node if there's a lofi mount in place. 4789 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4790 * failure. 4791 */ 4792 int 4793 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4794 { 4795 char *path = NULL; 4796 int strsize; 4797 int err; 4798 4799 if (vfsp->vfs_lofi_minor == 0) { 4800 *vpp = NULL; 4801 return (-1); 4802 } 4803 4804 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4805 path = kmem_alloc(strsize + 1, KM_SLEEP); 4806 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4807 4808 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4809 4810 if (err) 4811 *vpp = NULL; 4812 4813 kmem_free(path, strsize + 1); 4814 return (err); 4815 } 4816