1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 #include <sys/attr.h> 87 #include <sys/spa.h> 88 #include <sys/lofi.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 94 /* Private interfaces to create vopstats-related data structures */ 95 extern void initialize_vopstats(vopstats_t *); 96 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 97 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 98 99 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 100 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 101 const char *, int, int); 102 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 103 static void vfs_freemnttab(struct vfs *); 104 static void vfs_freeopt(mntopt_t *); 105 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 106 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 107 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 108 static void vfs_createopttbl_extend(mntopts_t *, const char *, 109 const mntopts_t *); 110 static char **vfs_copycancelopt_extend(char **const, int); 111 static void vfs_freecancelopt(char **); 112 static void getrootfs(char **, char **); 113 static int getmacpath(dev_info_t *, void *); 114 static void vfs_mnttabvp_setup(void); 115 116 struct ipmnt { 117 struct ipmnt *mip_next; 118 dev_t mip_dev; 119 struct vfs *mip_vfsp; 120 }; 121 122 static kmutex_t vfs_miplist_mutex; 123 static struct ipmnt *vfs_miplist = NULL; 124 static struct ipmnt *vfs_miplist_end = NULL; 125 126 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 127 128 /* 129 * VFS global data. 130 */ 131 vnode_t *rootdir; /* pointer to root inode vnode. */ 132 vnode_t *devicesdir; /* pointer to inode of devices root */ 133 vnode_t *devdir; /* pointer to inode of dev root */ 134 135 char *server_rootpath; /* root path for diskless clients */ 136 char *server_hostname; /* hostname of diskless server */ 137 138 static struct vfs root; 139 static struct vfs devices; 140 static struct vfs dev; 141 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 142 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 143 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 144 /* must be power of 2! */ 145 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 146 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 147 char *vfs_dummyfstype = "\0"; 148 struct pollhead vfs_pollhd; /* for mnttab pollers */ 149 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 150 int mntfstype; /* will be set once mnt fs is mounted */ 151 152 /* 153 * Table for generic options recognized in the VFS layer and acted 154 * on at this level before parsing file system specific options. 155 * The nosuid option is stronger than any of the devices and setuid 156 * options, so those are canceled when nosuid is seen. 157 * 158 * All options which are added here need to be added to the 159 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 160 */ 161 /* 162 * VFS Mount options table 163 */ 164 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 165 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 166 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 167 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 168 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 169 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 170 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 171 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 172 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 173 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 174 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 175 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 176 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 177 178 static const mntopt_t mntopts[] = { 179 /* 180 * option name cancel options default arg flags 181 */ 182 { MNTOPT_REMOUNT, NULL, NULL, 183 MO_NODISPLAY, (void *)0 }, 184 { MNTOPT_RO, ro_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_RW, rw_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SUID, suid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_EXEC, exec_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 207 (void *)0 }, 208 }; 209 210 const mntopts_t vfs_mntopts = { 211 sizeof (mntopts) / sizeof (mntopt_t), 212 (mntopt_t *)&mntopts[0] 213 }; 214 215 /* 216 * File system operation dispatch functions. 217 */ 218 219 int 220 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 221 { 222 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 223 } 224 225 int 226 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 227 { 228 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 229 } 230 231 int 232 fsop_root(vfs_t *vfsp, vnode_t **vpp) 233 { 234 refstr_t *mntpt; 235 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 236 /* 237 * Make sure this root has a path. With lofs, it is possible to have 238 * a NULL mountpoint. 239 */ 240 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 241 mntpt = vfs_getmntpoint(vfsp); 242 vn_setpath_str(*vpp, refstr_value(mntpt), 243 strlen(refstr_value(mntpt))); 244 refstr_rele(mntpt); 245 } 246 247 return (ret); 248 } 249 250 int 251 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 252 { 253 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 254 } 255 256 int 257 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 258 { 259 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 260 } 261 262 int 263 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 264 { 265 /* 266 * In order to handle system attribute fids in a manner 267 * transparent to the underlying fs, we embed the fid for 268 * the sysattr parent object in the sysattr fid and tack on 269 * some extra bytes that only the sysattr layer knows about. 270 * 271 * This guarantees that sysattr fids are larger than other fids 272 * for this vfs. If the vfs supports sysattrs (implied 273 * by VFSFT_XVATTR support), we cannot have a size collision 274 * with XATTR_FIDSZ. 275 */ 276 if (vfs_has_feature(vfsp, VFSFT_XVATTR) && 277 fidp->fid_len == XATTR_FIDSZ) 278 return (xattr_dir_vget(vfsp, vpp, fidp)); 279 280 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 281 } 282 283 int 284 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 285 { 286 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 287 } 288 289 void 290 fsop_freefs(vfs_t *vfsp) 291 { 292 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 293 } 294 295 int 296 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 297 { 298 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 299 } 300 301 int 302 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 303 { 304 ASSERT((fstype >= 0) && (fstype < nfstype)); 305 306 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 307 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 308 else 309 return (ENOTSUP); 310 } 311 312 /* 313 * File system initialization. vfs_setfsops() must be called from a file 314 * system's init routine. 315 */ 316 317 static int 318 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 319 int *unused_ops) 320 { 321 static const fs_operation_trans_def_t vfs_ops_table[] = { 322 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 323 fs_nosys, fs_nosys, 324 325 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 335 (fs_generic_func_p) fs_sync, 336 (fs_generic_func_p) fs_sync, /* No errors allowed */ 337 338 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 339 fs_nosys, fs_nosys, 340 341 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 342 fs_nosys, fs_nosys, 343 344 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 345 (fs_generic_func_p)fs_freevfs, 346 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 347 348 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 349 (fs_generic_func_p)fs_nosys, 350 (fs_generic_func_p)fs_nosys, 351 352 NULL, 0, NULL, NULL 353 }; 354 355 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 356 } 357 358 void 359 zfs_boot_init() { 360 361 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 362 spa_boot_init(); 363 } 364 365 int 366 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 367 { 368 int error; 369 int unused_ops; 370 371 /* 372 * Verify that fstype refers to a valid fs. Note that 373 * 0 is valid since it's used to set "stray" ops. 374 */ 375 if ((fstype < 0) || (fstype >= nfstype)) 376 return (EINVAL); 377 378 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 379 return (EINVAL); 380 381 /* Set up the operations vector. */ 382 383 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 384 385 if (error != 0) 386 return (error); 387 388 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 389 390 if (actual != NULL) 391 *actual = &vfssw[fstype].vsw_vfsops; 392 393 #if DEBUG 394 if (unused_ops != 0) 395 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 396 "but not used", vfssw[fstype].vsw_name, unused_ops); 397 #endif 398 399 return (0); 400 } 401 402 int 403 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 404 { 405 int error; 406 int unused_ops; 407 408 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 409 410 error = fs_copyfsops(template, *actual, &unused_ops); 411 if (error != 0) { 412 kmem_free(*actual, sizeof (vfsops_t)); 413 *actual = NULL; 414 return (error); 415 } 416 417 return (0); 418 } 419 420 /* 421 * Free a vfsops structure created as a result of vfs_makefsops(). 422 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 423 * vfs_freevfsops_by_type(). 424 */ 425 void 426 vfs_freevfsops(vfsops_t *vfsops) 427 { 428 kmem_free(vfsops, sizeof (vfsops_t)); 429 } 430 431 /* 432 * Since the vfsops structure is part of the vfssw table and wasn't 433 * really allocated, we're not really freeing anything. We keep 434 * the name for consistency with vfs_freevfsops(). We do, however, 435 * need to take care of a little bookkeeping. 436 * NOTE: For a vfsops structure created by vfs_setfsops(), use 437 * vfs_freevfsops_by_type(). 438 */ 439 int 440 vfs_freevfsops_by_type(int fstype) 441 { 442 443 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 444 if ((fstype <= 0) || (fstype >= nfstype)) 445 return (EINVAL); 446 447 WLOCK_VFSSW(); 448 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 449 WUNLOCK_VFSSW(); 450 return (EINVAL); 451 } 452 453 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 454 WUNLOCK_VFSSW(); 455 456 return (0); 457 } 458 459 /* Support routines used to reference vfs_op */ 460 461 /* Set the operations vector for a vfs */ 462 void 463 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 464 { 465 vfsops_t *op; 466 467 ASSERT(vfsp != NULL); 468 ASSERT(vfsops != NULL); 469 470 op = vfsp->vfs_op; 471 membar_consumer(); 472 if (vfsp->vfs_femhead == NULL && 473 casptr(&vfsp->vfs_op, op, vfsops) == op) { 474 return; 475 } 476 fsem_setvfsops(vfsp, vfsops); 477 } 478 479 /* Retrieve the operations vector for a vfs */ 480 vfsops_t * 481 vfs_getops(vfs_t *vfsp) 482 { 483 vfsops_t *op; 484 485 ASSERT(vfsp != NULL); 486 487 op = vfsp->vfs_op; 488 membar_consumer(); 489 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 490 return (op); 491 } else { 492 return (fsem_getvfsops(vfsp)); 493 } 494 } 495 496 /* 497 * Returns non-zero (1) if the vfsops matches that of the vfs. 498 * Returns zero (0) if not. 499 */ 500 int 501 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 502 { 503 return (vfs_getops(vfsp) == vfsops); 504 } 505 506 /* 507 * Returns non-zero (1) if the file system has installed a non-default, 508 * non-error vfs_sync routine. Returns zero (0) otherwise. 509 */ 510 int 511 vfs_can_sync(vfs_t *vfsp) 512 { 513 /* vfs_sync() routine is not the default/error function */ 514 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 515 } 516 517 /* 518 * Initialize a vfs structure. 519 */ 520 void 521 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 522 { 523 /* Other initialization has been moved to vfs_alloc() */ 524 vfsp->vfs_count = 0; 525 vfsp->vfs_next = vfsp; 526 vfsp->vfs_prev = vfsp; 527 vfsp->vfs_zone_next = vfsp; 528 vfsp->vfs_zone_prev = vfsp; 529 vfsp->vfs_lofi_minor = 0; 530 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 531 vfsimpl_setup(vfsp); 532 vfsp->vfs_data = (data); 533 vfs_setops((vfsp), (op)); 534 } 535 536 /* 537 * Allocate and initialize the vfs implementation private data 538 * structure, vfs_impl_t. 539 */ 540 void 541 vfsimpl_setup(vfs_t *vfsp) 542 { 543 int i; 544 545 if (vfsp->vfs_implp != NULL) { 546 return; 547 } 548 549 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 550 /* Note that these are #define'd in vfs.h */ 551 vfsp->vfs_vskap = NULL; 552 vfsp->vfs_fstypevsp = NULL; 553 554 /* Set size of counted array, then zero the array */ 555 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 556 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 557 vfsp->vfs_featureset[i] = 0; 558 } 559 } 560 561 /* 562 * Release the vfs_impl_t structure, if it exists. Some unbundled 563 * filesystems may not use the newer version of vfs and thus 564 * would not contain this implementation private data structure. 565 */ 566 void 567 vfsimpl_teardown(vfs_t *vfsp) 568 { 569 vfs_impl_t *vip = vfsp->vfs_implp; 570 571 if (vip == NULL) 572 return; 573 574 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 575 vfsp->vfs_implp = NULL; 576 } 577 578 /* 579 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 580 * fstatvfs, and sysfs moved to common/syscall. 581 */ 582 583 /* 584 * Update every mounted file system. We call the vfs_sync operation of 585 * each file system type, passing it a NULL vfsp to indicate that all 586 * mounted file systems of that type should be updated. 587 */ 588 void 589 vfs_sync(int flag) 590 { 591 struct vfssw *vswp; 592 RLOCK_VFSSW(); 593 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 594 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 595 vfs_refvfssw(vswp); 596 RUNLOCK_VFSSW(); 597 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 598 CRED()); 599 vfs_unrefvfssw(vswp); 600 RLOCK_VFSSW(); 601 } 602 } 603 RUNLOCK_VFSSW(); 604 } 605 606 void 607 sync(void) 608 { 609 vfs_sync(0); 610 } 611 612 /* 613 * External routines. 614 */ 615 616 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 617 618 /* 619 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 620 * but otherwise should be accessed only via vfs_list_lock() and 621 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 622 */ 623 static krwlock_t vfslist; 624 625 /* 626 * Mount devfs on /devices. This is done right after root is mounted 627 * to provide device access support for the system 628 */ 629 static void 630 vfs_mountdevices(void) 631 { 632 struct vfssw *vsw; 633 struct vnode *mvp; 634 struct mounta mounta = { /* fake mounta for devfs_mount() */ 635 NULL, 636 NULL, 637 MS_SYSSPACE, 638 NULL, 639 NULL, 640 0, 641 NULL, 642 0 643 }; 644 645 /* 646 * _init devfs module to fill in the vfssw 647 */ 648 if (modload("fs", "devfs") == -1) 649 panic("Cannot _init devfs module"); 650 651 /* 652 * Hold vfs 653 */ 654 RLOCK_VFSSW(); 655 vsw = vfs_getvfsswbyname("devfs"); 656 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 657 VFS_HOLD(&devices); 658 659 /* 660 * Locate mount point 661 */ 662 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 663 panic("Cannot find /devices"); 664 665 /* 666 * Perform the mount of /devices 667 */ 668 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 669 panic("Cannot mount /devices"); 670 671 RUNLOCK_VFSSW(); 672 673 /* 674 * Set appropriate members and add to vfs list for mnttab display 675 */ 676 vfs_setresource(&devices, "/devices"); 677 vfs_setmntpoint(&devices, "/devices"); 678 679 /* 680 * Hold the root of /devices so it won't go away 681 */ 682 if (VFS_ROOT(&devices, &devicesdir)) 683 panic("vfs_mountdevices: not devices root"); 684 685 if (vfs_lock(&devices) != 0) { 686 VN_RELE(devicesdir); 687 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 688 return; 689 } 690 691 if (vn_vfswlock(mvp) != 0) { 692 vfs_unlock(&devices); 693 VN_RELE(devicesdir); 694 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 695 return; 696 } 697 698 vfs_add(mvp, &devices, 0); 699 vn_vfsunlock(mvp); 700 vfs_unlock(&devices); 701 VN_RELE(devicesdir); 702 } 703 704 /* 705 * mount the first instance of /dev to root and remain mounted 706 */ 707 static void 708 vfs_mountdev1(void) 709 { 710 struct vfssw *vsw; 711 struct vnode *mvp; 712 struct mounta mounta = { /* fake mounta for sdev_mount() */ 713 NULL, 714 NULL, 715 MS_SYSSPACE | MS_OVERLAY, 716 NULL, 717 NULL, 718 0, 719 NULL, 720 0 721 }; 722 723 /* 724 * _init dev module to fill in the vfssw 725 */ 726 if (modload("fs", "dev") == -1) 727 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 728 729 /* 730 * Hold vfs 731 */ 732 RLOCK_VFSSW(); 733 vsw = vfs_getvfsswbyname("dev"); 734 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 735 VFS_HOLD(&dev); 736 737 /* 738 * Locate mount point 739 */ 740 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 741 cmn_err(CE_PANIC, "Cannot find /dev\n"); 742 743 /* 744 * Perform the mount of /dev 745 */ 746 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 747 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 748 749 RUNLOCK_VFSSW(); 750 751 /* 752 * Set appropriate members and add to vfs list for mnttab display 753 */ 754 vfs_setresource(&dev, "/dev"); 755 vfs_setmntpoint(&dev, "/dev"); 756 757 /* 758 * Hold the root of /dev so it won't go away 759 */ 760 if (VFS_ROOT(&dev, &devdir)) 761 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 762 763 if (vfs_lock(&dev) != 0) { 764 VN_RELE(devdir); 765 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 766 return; 767 } 768 769 if (vn_vfswlock(mvp) != 0) { 770 vfs_unlock(&dev); 771 VN_RELE(devdir); 772 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 773 return; 774 } 775 776 vfs_add(mvp, &dev, 0); 777 vn_vfsunlock(mvp); 778 vfs_unlock(&dev); 779 VN_RELE(devdir); 780 } 781 782 /* 783 * Mount required filesystem. This is done right after root is mounted. 784 */ 785 static void 786 vfs_mountfs(char *module, char *spec, char *path) 787 { 788 struct vnode *mvp; 789 struct mounta mounta; 790 vfs_t *vfsp; 791 792 mounta.flags = MS_SYSSPACE | MS_DATA; 793 mounta.fstype = module; 794 mounta.spec = spec; 795 mounta.dir = path; 796 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 797 cmn_err(CE_WARN, "Cannot find %s", path); 798 return; 799 } 800 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 801 cmn_err(CE_WARN, "Cannot mount %s", path); 802 else 803 VFS_RELE(vfsp); 804 VN_RELE(mvp); 805 } 806 807 /* 808 * vfs_mountroot is called by main() to mount the root filesystem. 809 */ 810 void 811 vfs_mountroot(void) 812 { 813 struct vnode *rvp = NULL; 814 char *path; 815 size_t plen; 816 struct vfssw *vswp; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/"); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 PTOU(curproc)->u_cdir = rootdir; 841 VN_HOLD(PTOU(curproc)->u_cdir); 842 PTOU(curproc)->u_rdir = NULL; 843 844 /* 845 * Setup the global zone's rootvp, now that it exists. 846 */ 847 global_zone->zone_rootvp = rootdir; 848 VN_HOLD(global_zone->zone_rootvp); 849 850 /* 851 * Notify the module code that it can begin using the 852 * root filesystem instead of the boot program's services. 853 */ 854 modrootloaded = 1; 855 856 /* 857 * Special handling for a ZFS root file system. 858 */ 859 zfs_boot_init(); 860 861 /* 862 * Set up mnttab information for root 863 */ 864 vfs_setresource(rootvfs, rootfs.bo_name); 865 866 /* 867 * Notify cluster software that the root filesystem is available. 868 */ 869 clboot_mountroot(); 870 871 /* Now that we're all done with the root FS, set up its vopstats */ 872 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 873 /* Set flag for statistics collection */ 874 if (vswp->vsw_flag & VSW_STATS) { 875 initialize_vopstats(&rootvfs->vfs_vopstats); 876 rootvfs->vfs_flag |= VFS_STATS; 877 rootvfs->vfs_fstypevsp = 878 get_fstype_vopstats(rootvfs, vswp); 879 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 880 } 881 vfs_unrefvfssw(vswp); 882 } 883 884 /* 885 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 886 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 887 */ 888 vfs_mountdevices(); 889 vfs_mountdev1(); 890 891 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 892 vfs_mountfs("proc", "/proc", "/proc"); 893 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 894 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 895 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 896 897 if (getzoneid() == GLOBAL_ZONEID) { 898 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 899 } 900 901 #ifdef __sparc 902 /* 903 * This bit of magic can go away when we convert sparc to 904 * the new boot architecture based on ramdisk. 905 * 906 * Booting off a mirrored root volume: 907 * At this point, we have booted and mounted root on a 908 * single component of the mirror. Complete the boot 909 * by configuring SVM and converting the root to the 910 * dev_t of the mirrored root device. This dev_t conversion 911 * only works because the underlying device doesn't change. 912 */ 913 if (root_is_svm) { 914 if (svm_rootconf()) { 915 panic("vfs_mountroot: cannot remount root"); 916 } 917 918 /* 919 * mnttab should reflect the new root device 920 */ 921 vfs_lock_wait(rootvfs); 922 vfs_setresource(rootvfs, rootfs.bo_name); 923 vfs_unlock(rootvfs); 924 } 925 #endif /* __sparc */ 926 927 /* 928 * Look up the root device via devfs so that a dv_node is 929 * created for it. The vnode is never VN_RELE()ed. 930 * We allocate more than MAXPATHLEN so that the 931 * buffer passed to i_ddi_prompath_to_devfspath() is 932 * exactly MAXPATHLEN (the function expects a buffer 933 * of that length). 934 */ 935 plen = strlen("/devices"); 936 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 937 (void) strcpy(path, "/devices"); 938 939 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 940 != DDI_SUCCESS || 941 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 942 943 /* NUL terminate in case "path" has garbage */ 944 path[plen + MAXPATHLEN - 1] = '\0'; 945 #ifdef DEBUG 946 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 947 #endif 948 } 949 kmem_free(path, plen + MAXPATHLEN); 950 vfs_mnttabvp_setup(); 951 } 952 953 /* 954 * If remount failed and we're in a zone we need to check for the zone 955 * root path and strip it before the call to vfs_setpath(). 956 * 957 * If strpath doesn't begin with the zone_rootpath the original 958 * strpath is returned unchanged. 959 */ 960 static const char * 961 stripzonepath(const char *strpath) 962 { 963 char *str1, *str2; 964 int i; 965 zone_t *zonep = curproc->p_zone; 966 967 if (zonep->zone_rootpath == NULL || strpath == NULL) { 968 return (NULL); 969 } 970 971 /* 972 * we check for the end of the string at one past the 973 * current position because the zone_rootpath always 974 * ends with "/" but we don't want to strip that off. 975 */ 976 str1 = zonep->zone_rootpath; 977 str2 = (char *)strpath; 978 ASSERT(str1[0] != '\0'); 979 for (i = 0; str1[i + 1] != '\0'; i++) { 980 if (str1[i] != str2[i]) 981 return ((char *)strpath); 982 } 983 return (&str2[i]); 984 } 985 986 /* 987 * Check to see if our "block device" is actually a file. If so, 988 * automatically add a lofi device, and keep track of this fact. 989 */ 990 static int 991 lofi_add(const char *fsname, struct vfs *vfsp, 992 mntopts_t *mntopts, struct mounta *uap) 993 { 994 int fromspace = (uap->flags & MS_SYSSPACE) ? 995 UIO_SYSSPACE : UIO_USERSPACE; 996 struct lofi_ioctl *li = NULL; 997 struct vnode *vp = NULL; 998 struct pathname pn = { NULL }; 999 ldi_ident_t ldi_id; 1000 ldi_handle_t ldi_hdl; 1001 int minor; 1002 int err = 0; 1003 1004 if (fsname == NULL) 1005 return (0); 1006 if (strcmp(fsname, "mntfs") == 0 || strcmp(fsname, "lofs") == 0 || 1007 strcmp(fsname, "autofs") == 0) 1008 return (0); 1009 1010 if (pn_get(uap->spec, fromspace, &pn) != 0) 1011 return (0); 1012 1013 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1014 goto out; 1015 1016 if (vp->v_type != VREG) 1017 goto out; 1018 1019 /* OK, this is a lofi mount. */ 1020 1021 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1022 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1023 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1024 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1025 err = EINVAL; 1026 goto out; 1027 } 1028 1029 ldi_id = ldi_ident_from_anon(); 1030 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1031 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN + 1); 1032 1033 /* 1034 * The lofi control node is currently exclusive-open. We'd like 1035 * to improve this, but in the meantime, we'll loop waiting for 1036 * access. 1037 */ 1038 for (;;) { 1039 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1040 kcred, &ldi_hdl, ldi_id); 1041 1042 if (err != EBUSY) 1043 break; 1044 1045 if ((err = delay_sig(hz / 8)) == EINTR) 1046 break; 1047 } 1048 1049 if (err) 1050 goto out2; 1051 1052 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1053 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1054 1055 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1056 1057 if (!err) 1058 vfsp->vfs_lofi_minor = minor; 1059 1060 out2: 1061 ldi_ident_release(ldi_id); 1062 out: 1063 if (li != NULL) 1064 kmem_free(li, sizeof (*li)); 1065 if (vp != NULL) 1066 VN_RELE(vp); 1067 pn_free(&pn); 1068 return (err); 1069 } 1070 1071 static void 1072 lofi_remove(struct vfs *vfsp) 1073 { 1074 struct lofi_ioctl *li = NULL; 1075 ldi_ident_t ldi_id; 1076 ldi_handle_t ldi_hdl; 1077 int err; 1078 1079 if (vfsp->vfs_lofi_minor == 0) 1080 return; 1081 1082 ldi_id = ldi_ident_from_anon(); 1083 1084 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1085 li->li_minor = vfsp->vfs_lofi_minor; 1086 li->li_cleanup = B_TRUE; 1087 1088 do { 1089 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1090 kcred, &ldi_hdl, ldi_id); 1091 } while (err == EBUSY); 1092 1093 if (err) 1094 goto out; 1095 1096 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1097 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1098 1099 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1100 1101 if (!err) 1102 vfsp->vfs_lofi_minor = 0; 1103 1104 out: 1105 ldi_ident_release(ldi_id); 1106 if (li != NULL) 1107 kmem_free(li, sizeof (*li)); 1108 } 1109 1110 /* 1111 * Common mount code. Called from the system call entry point, from autofs, 1112 * nfsv4 trigger mounts, and from pxfs. 1113 * 1114 * Takes the effective file system type, mount arguments, the mount point 1115 * vnode, flags specifying whether the mount is a remount and whether it 1116 * should be entered into the vfs list, and credentials. Fills in its vfspp 1117 * parameter with the mounted file system instance's vfs. 1118 * 1119 * Note that the effective file system type is specified as a string. It may 1120 * be null, in which case it's determined from the mount arguments, and may 1121 * differ from the type specified in the mount arguments; this is a hook to 1122 * allow interposition when instantiating file system instances. 1123 * 1124 * The caller is responsible for releasing its own hold on the mount point 1125 * vp (this routine does its own hold when necessary). 1126 * Also note that for remounts, the mount point vp should be the vnode for 1127 * the root of the file system rather than the vnode that the file system 1128 * is mounted on top of. 1129 */ 1130 int 1131 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1132 struct vfs **vfspp) 1133 { 1134 struct vfssw *vswp; 1135 vfsops_t *vfsops; 1136 struct vfs *vfsp; 1137 struct vnode *bvp; 1138 dev_t bdev = 0; 1139 mntopts_t mnt_mntopts; 1140 int error = 0; 1141 int copyout_error = 0; 1142 int ovflags; 1143 char *opts = uap->optptr; 1144 char *inargs = opts; 1145 int optlen = uap->optlen; 1146 int remount; 1147 int rdonly; 1148 int nbmand = 0; 1149 int delmip = 0; 1150 int addmip = 0; 1151 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1152 int fromspace = (uap->flags & MS_SYSSPACE) ? 1153 UIO_SYSSPACE : UIO_USERSPACE; 1154 char *resource = NULL, *mountpt = NULL; 1155 refstr_t *oldresource, *oldmntpt; 1156 struct pathname pn, rpn; 1157 vsk_anchor_t *vskap; 1158 char fstname[FSTYPSZ]; 1159 1160 /* 1161 * The v_flag value for the mount point vp is permanently set 1162 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1163 * for mount point locking. 1164 */ 1165 mutex_enter(&vp->v_lock); 1166 vp->v_flag |= VVFSLOCK; 1167 mutex_exit(&vp->v_lock); 1168 1169 mnt_mntopts.mo_count = 0; 1170 /* 1171 * Find the ops vector to use to invoke the file system-specific mount 1172 * method. If the fsname argument is non-NULL, use it directly. 1173 * Otherwise, dig the file system type information out of the mount 1174 * arguments. 1175 * 1176 * A side effect is to hold the vfssw entry. 1177 * 1178 * Mount arguments can be specified in several ways, which are 1179 * distinguished by flag bit settings. The preferred way is to set 1180 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1181 * type supplied as a character string and the last two arguments 1182 * being a pointer to a character buffer and the size of the buffer. 1183 * On entry, the buffer holds a null terminated list of options; on 1184 * return, the string is the list of options the file system 1185 * recognized. If MS_DATA is set arguments five and six point to a 1186 * block of binary data which the file system interprets. 1187 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1188 * consistently with these conventions. To handle them, we check to 1189 * see whether the pointer to the file system name has a numeric value 1190 * less than 256. If so, we treat it as an index. 1191 */ 1192 if (fsname != NULL) { 1193 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1194 return (EINVAL); 1195 } 1196 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1197 size_t n; 1198 uint_t fstype; 1199 1200 fsname = fstname; 1201 1202 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1203 RLOCK_VFSSW(); 1204 if (fstype == 0 || fstype >= nfstype || 1205 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1206 RUNLOCK_VFSSW(); 1207 return (EINVAL); 1208 } 1209 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1210 RUNLOCK_VFSSW(); 1211 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1212 return (EINVAL); 1213 } else { 1214 /* 1215 * Handle either kernel or user address space. 1216 */ 1217 if (uap->flags & MS_SYSSPACE) { 1218 error = copystr(uap->fstype, fsname, 1219 FSTYPSZ, &n); 1220 } else { 1221 error = copyinstr(uap->fstype, fsname, 1222 FSTYPSZ, &n); 1223 } 1224 if (error) { 1225 if (error == ENAMETOOLONG) 1226 return (EINVAL); 1227 return (error); 1228 } 1229 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1230 return (EINVAL); 1231 } 1232 } else { 1233 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1234 return (EINVAL); 1235 } 1236 if (!VFS_INSTALLED(vswp)) 1237 return (EINVAL); 1238 vfsops = &vswp->vsw_vfsops; 1239 1240 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1241 /* 1242 * Fetch mount options and parse them for generic vfs options 1243 */ 1244 if (uap->flags & MS_OPTIONSTR) { 1245 /* 1246 * Limit the buffer size 1247 */ 1248 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1249 error = EINVAL; 1250 goto errout; 1251 } 1252 if ((uap->flags & MS_SYSSPACE) == 0) { 1253 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1254 inargs[0] = '\0'; 1255 if (optlen) { 1256 error = copyinstr(opts, inargs, (size_t)optlen, 1257 NULL); 1258 if (error) { 1259 goto errout; 1260 } 1261 } 1262 } 1263 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1264 } 1265 /* 1266 * Flag bits override the options string. 1267 */ 1268 if (uap->flags & MS_REMOUNT) 1269 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1270 if (uap->flags & MS_RDONLY) 1271 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1272 if (uap->flags & MS_NOSUID) 1273 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1274 1275 /* 1276 * Check if this is a remount; must be set in the option string and 1277 * the file system must support a remount option. 1278 */ 1279 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1280 MNTOPT_REMOUNT, NULL)) { 1281 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1282 error = ENOTSUP; 1283 goto errout; 1284 } 1285 uap->flags |= MS_REMOUNT; 1286 } 1287 1288 /* 1289 * uap->flags and vfs_optionisset() should agree. 1290 */ 1291 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1292 uap->flags |= MS_RDONLY; 1293 } 1294 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1295 uap->flags |= MS_NOSUID; 1296 } 1297 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1298 ASSERT(splice || !remount); 1299 /* 1300 * If we are splicing the fs into the namespace, 1301 * perform mount point checks. 1302 * 1303 * We want to resolve the path for the mount point to eliminate 1304 * '.' and ".." and symlinks in mount points; we can't do the 1305 * same for the resource string, since it would turn 1306 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1307 * this before grabbing vn_vfswlock(), because otherwise we 1308 * would deadlock with lookuppn(). 1309 */ 1310 if (splice) { 1311 ASSERT(vp->v_count > 0); 1312 1313 /* 1314 * Pick up mount point and device from appropriate space. 1315 */ 1316 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1317 resource = kmem_alloc(pn.pn_pathlen + 1, 1318 KM_SLEEP); 1319 (void) strcpy(resource, pn.pn_path); 1320 pn_free(&pn); 1321 } 1322 /* 1323 * Do a lookupname prior to taking the 1324 * writelock. Mark this as completed if 1325 * successful for later cleanup and addition to 1326 * the mount in progress table. 1327 */ 1328 if ((uap->flags & MS_GLOBAL) == 0 && 1329 lookupname(uap->spec, fromspace, 1330 FOLLOW, NULL, &bvp) == 0) { 1331 addmip = 1; 1332 } 1333 1334 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1335 pathname_t *pnp; 1336 1337 if (*pn.pn_path != '/') { 1338 error = EINVAL; 1339 pn_free(&pn); 1340 goto errout; 1341 } 1342 pn_alloc(&rpn); 1343 /* 1344 * Kludge to prevent autofs from deadlocking with 1345 * itself when it calls domount(). 1346 * 1347 * If autofs is calling, it is because it is doing 1348 * (autofs) mounts in the process of an NFS mount. A 1349 * lookuppn() here would cause us to block waiting for 1350 * said NFS mount to complete, which can't since this 1351 * is the thread that was supposed to doing it. 1352 */ 1353 if (fromspace == UIO_USERSPACE) { 1354 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1355 NULL)) == 0) { 1356 pnp = &rpn; 1357 } else { 1358 /* 1359 * The file disappeared or otherwise 1360 * became inaccessible since we opened 1361 * it; might as well fail the mount 1362 * since the mount point is no longer 1363 * accessible. 1364 */ 1365 pn_free(&rpn); 1366 pn_free(&pn); 1367 goto errout; 1368 } 1369 } else { 1370 pnp = &pn; 1371 } 1372 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1373 (void) strcpy(mountpt, pnp->pn_path); 1374 1375 /* 1376 * If the addition of the zone's rootpath 1377 * would push us over a total path length 1378 * of MAXPATHLEN, we fail the mount with 1379 * ENAMETOOLONG, which is what we would have 1380 * gotten if we were trying to perform the same 1381 * mount in the global zone. 1382 * 1383 * strlen() doesn't count the trailing 1384 * '\0', but zone_rootpathlen counts both a 1385 * trailing '/' and the terminating '\0'. 1386 */ 1387 if ((curproc->p_zone->zone_rootpathlen - 1 + 1388 strlen(mountpt)) > MAXPATHLEN || 1389 (resource != NULL && 1390 (curproc->p_zone->zone_rootpathlen - 1 + 1391 strlen(resource)) > MAXPATHLEN)) { 1392 error = ENAMETOOLONG; 1393 } 1394 1395 pn_free(&rpn); 1396 pn_free(&pn); 1397 } 1398 1399 if (error) 1400 goto errout; 1401 1402 /* 1403 * Prevent path name resolution from proceeding past 1404 * the mount point. 1405 */ 1406 if (vn_vfswlock(vp) != 0) { 1407 error = EBUSY; 1408 goto errout; 1409 } 1410 1411 /* 1412 * Verify that it's legitimate to establish a mount on 1413 * the prospective mount point. 1414 */ 1415 if (vn_mountedvfs(vp) != NULL) { 1416 /* 1417 * The mount point lock was obtained after some 1418 * other thread raced through and established a mount. 1419 */ 1420 vn_vfsunlock(vp); 1421 error = EBUSY; 1422 goto errout; 1423 } 1424 if (vp->v_flag & VNOMOUNT) { 1425 vn_vfsunlock(vp); 1426 error = EINVAL; 1427 goto errout; 1428 } 1429 } 1430 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1431 uap->dataptr = NULL; 1432 uap->datalen = 0; 1433 } 1434 1435 /* 1436 * If this is a remount, we don't want to create a new VFS. 1437 * Instead, we pass the existing one with a remount flag. 1438 */ 1439 if (remount) { 1440 /* 1441 * Confirm that the mount point is the root vnode of the 1442 * file system that is being remounted. 1443 * This can happen if the user specifies a different 1444 * mount point directory pathname in the (re)mount command. 1445 * 1446 * Code below can only be reached if splice is true, so it's 1447 * safe to do vn_vfsunlock() here. 1448 */ 1449 if ((vp->v_flag & VROOT) == 0) { 1450 vn_vfsunlock(vp); 1451 error = ENOENT; 1452 goto errout; 1453 } 1454 /* 1455 * Disallow making file systems read-only unless file system 1456 * explicitly allows it in its vfssw. Ignore other flags. 1457 */ 1458 if (rdonly && vn_is_readonly(vp) == 0 && 1459 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1460 vn_vfsunlock(vp); 1461 error = EINVAL; 1462 goto errout; 1463 } 1464 /* 1465 * Disallow changing the NBMAND disposition of the file 1466 * system on remounts. 1467 */ 1468 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1469 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1470 vn_vfsunlock(vp); 1471 error = EINVAL; 1472 goto errout; 1473 } 1474 vfsp = vp->v_vfsp; 1475 ovflags = vfsp->vfs_flag; 1476 vfsp->vfs_flag |= VFS_REMOUNT; 1477 vfsp->vfs_flag &= ~VFS_RDONLY; 1478 } else { 1479 vfsp = vfs_alloc(KM_SLEEP); 1480 VFS_INIT(vfsp, vfsops, NULL); 1481 } 1482 1483 VFS_HOLD(vfsp); 1484 1485 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1486 if (!remount) { 1487 if (splice) 1488 vn_vfsunlock(vp); 1489 vfs_free(vfsp); 1490 } else { 1491 vn_vfsunlock(vp); 1492 VFS_RELE(vfsp); 1493 } 1494 goto errout; 1495 } 1496 1497 /* 1498 * PRIV_SYS_MOUNT doesn't mean you can become root. 1499 */ 1500 if (vfsp->vfs_lofi_minor != 0) { 1501 uap->flags |= MS_NOSUID; 1502 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1503 } 1504 1505 /* 1506 * The vfs_reflock is not used anymore the code below explicitly 1507 * holds it preventing others accesing it directly. 1508 */ 1509 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1510 !(vfsp->vfs_flag & VFS_REMOUNT)) 1511 cmn_err(CE_WARN, 1512 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1513 1514 /* 1515 * Lock the vfs. If this is a remount we want to avoid spurious umount 1516 * failures that happen as a side-effect of fsflush() and other mount 1517 * and unmount operations that might be going on simultaneously and 1518 * may have locked the vfs currently. To not return EBUSY immediately 1519 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1520 */ 1521 if (!remount) { 1522 if (error = vfs_lock(vfsp)) { 1523 vfsp->vfs_flag = ovflags; 1524 1525 lofi_remove(vfsp); 1526 1527 if (splice) 1528 vn_vfsunlock(vp); 1529 vfs_free(vfsp); 1530 goto errout; 1531 } 1532 } else { 1533 vfs_lock_wait(vfsp); 1534 } 1535 1536 /* 1537 * Add device to mount in progress table, global mounts require special 1538 * handling. It is possible that we have already done the lookupname 1539 * on a spliced, non-global fs. If so, we don't want to do it again 1540 * since we cannot do a lookupname after taking the 1541 * wlock above. This case is for a non-spliced, non-global filesystem. 1542 */ 1543 if (!addmip) { 1544 if ((uap->flags & MS_GLOBAL) == 0 && 1545 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1546 addmip = 1; 1547 } 1548 } 1549 1550 if (addmip) { 1551 vnode_t *lvp = NULL; 1552 1553 error = vfs_get_lofi(vfsp, &lvp); 1554 if (error > 0) { 1555 lofi_remove(vfsp); 1556 1557 if (splice) 1558 vn_vfsunlock(vp); 1559 vfs_unlock(vfsp); 1560 1561 if (remount) { 1562 VFS_RELE(vfsp); 1563 } else { 1564 vfs_free(vfsp); 1565 } 1566 1567 goto errout; 1568 } else if (error == -1) { 1569 bdev = bvp->v_rdev; 1570 VN_RELE(bvp); 1571 } else { 1572 bdev = lvp->v_rdev; 1573 VN_RELE(lvp); 1574 VN_RELE(bvp); 1575 } 1576 1577 vfs_addmip(bdev, vfsp); 1578 addmip = 0; 1579 delmip = 1; 1580 } 1581 /* 1582 * Invalidate cached entry for the mount point. 1583 */ 1584 if (splice) 1585 dnlc_purge_vp(vp); 1586 1587 /* 1588 * If have an option string but the filesystem doesn't supply a 1589 * prototype options table, create a table with the global 1590 * options and sufficient room to accept all the options in the 1591 * string. Then parse the passed in option string 1592 * accepting all the options in the string. This gives us an 1593 * option table with all the proper cancel properties for the 1594 * global options. 1595 * 1596 * Filesystems that supply a prototype options table are handled 1597 * earlier in this function. 1598 */ 1599 if (uap->flags & MS_OPTIONSTR) { 1600 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1601 mntopts_t tmp_mntopts; 1602 1603 tmp_mntopts.mo_count = 0; 1604 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1605 &mnt_mntopts); 1606 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1607 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1608 vfs_freeopttbl(&tmp_mntopts); 1609 } 1610 } 1611 1612 /* 1613 * Serialize with zone creations. 1614 */ 1615 mount_in_progress(); 1616 /* 1617 * Instantiate (or reinstantiate) the file system. If appropriate, 1618 * splice it into the file system name space. 1619 * 1620 * We want VFS_MOUNT() to be able to override the vfs_resource 1621 * string if necessary (ie, mntfs), and also for a remount to 1622 * change the same (necessary when remounting '/' during boot). 1623 * So we set up vfs_mntpt and vfs_resource to what we think they 1624 * should be, then hand off control to VFS_MOUNT() which can 1625 * override this. 1626 * 1627 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1628 * a vfs which is on the vfs list (i.e. during a remount), we must 1629 * never set those fields to NULL. Several bits of code make 1630 * assumptions that the fields are always valid. 1631 */ 1632 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1633 if (remount) { 1634 if ((oldresource = vfsp->vfs_resource) != NULL) 1635 refstr_hold(oldresource); 1636 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1637 refstr_hold(oldmntpt); 1638 } 1639 vfs_setresource(vfsp, resource); 1640 vfs_setmntpoint(vfsp, mountpt); 1641 1642 /* 1643 * going to mount on this vnode, so notify. 1644 */ 1645 vnevent_mountedover(vp, NULL); 1646 error = VFS_MOUNT(vfsp, vp, uap, credp); 1647 1648 if (uap->flags & MS_RDONLY) 1649 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1650 if (uap->flags & MS_NOSUID) 1651 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1652 if (uap->flags & MS_GLOBAL) 1653 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1654 1655 if (error) { 1656 lofi_remove(vfsp); 1657 1658 if (remount) { 1659 /* put back pre-remount options */ 1660 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1661 vfs_setmntpoint(vfsp, (stripzonepath( 1662 refstr_value(oldmntpt)))); 1663 if (oldmntpt) 1664 refstr_rele(oldmntpt); 1665 vfs_setresource(vfsp, (stripzonepath( 1666 refstr_value(oldresource)))); 1667 if (oldresource) 1668 refstr_rele(oldresource); 1669 vfsp->vfs_flag = ovflags; 1670 vfs_unlock(vfsp); 1671 VFS_RELE(vfsp); 1672 } else { 1673 vfs_unlock(vfsp); 1674 vfs_freemnttab(vfsp); 1675 vfs_free(vfsp); 1676 } 1677 } else { 1678 /* 1679 * Set the mount time to now 1680 */ 1681 vfsp->vfs_mtime = ddi_get_time(); 1682 if (remount) { 1683 vfsp->vfs_flag &= ~VFS_REMOUNT; 1684 if (oldresource) 1685 refstr_rele(oldresource); 1686 if (oldmntpt) 1687 refstr_rele(oldmntpt); 1688 } else if (splice) { 1689 /* 1690 * Link vfsp into the name space at the mount 1691 * point. Vfs_add() is responsible for 1692 * holding the mount point which will be 1693 * released when vfs_remove() is called. 1694 */ 1695 vfs_add(vp, vfsp, uap->flags); 1696 } else { 1697 /* 1698 * Hold the reference to file system which is 1699 * not linked into the name space. 1700 */ 1701 vfsp->vfs_zone = NULL; 1702 VFS_HOLD(vfsp); 1703 vfsp->vfs_vnodecovered = NULL; 1704 } 1705 /* 1706 * Set flags for global options encountered 1707 */ 1708 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1709 vfsp->vfs_flag |= VFS_RDONLY; 1710 else 1711 vfsp->vfs_flag &= ~VFS_RDONLY; 1712 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1713 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1714 } else { 1715 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1716 vfsp->vfs_flag |= VFS_NODEVICES; 1717 else 1718 vfsp->vfs_flag &= ~VFS_NODEVICES; 1719 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1720 vfsp->vfs_flag |= VFS_NOSETUID; 1721 else 1722 vfsp->vfs_flag &= ~VFS_NOSETUID; 1723 } 1724 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1725 vfsp->vfs_flag |= VFS_NBMAND; 1726 else 1727 vfsp->vfs_flag &= ~VFS_NBMAND; 1728 1729 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1730 vfsp->vfs_flag |= VFS_XATTR; 1731 else 1732 vfsp->vfs_flag &= ~VFS_XATTR; 1733 1734 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1735 vfsp->vfs_flag |= VFS_NOEXEC; 1736 else 1737 vfsp->vfs_flag &= ~VFS_NOEXEC; 1738 1739 /* 1740 * Now construct the output option string of options 1741 * we recognized. 1742 */ 1743 if (uap->flags & MS_OPTIONSTR) { 1744 vfs_list_read_lock(); 1745 copyout_error = vfs_buildoptionstr( 1746 &vfsp->vfs_mntopts, inargs, optlen); 1747 vfs_list_unlock(); 1748 if (copyout_error == 0 && 1749 (uap->flags & MS_SYSSPACE) == 0) { 1750 copyout_error = copyoutstr(inargs, opts, 1751 optlen, NULL); 1752 } 1753 } 1754 1755 /* 1756 * If this isn't a remount, set up the vopstats before 1757 * anyone can touch this. We only allow spliced file 1758 * systems (file systems which are in the namespace) to 1759 * have the VFS_STATS flag set. 1760 * NOTE: PxFS mounts the underlying file system with 1761 * MS_NOSPLICE set and copies those vfs_flags to its private 1762 * vfs structure. As a result, PxFS should never have 1763 * the VFS_STATS flag or else we might access the vfs 1764 * statistics-related fields prior to them being 1765 * properly initialized. 1766 */ 1767 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1768 initialize_vopstats(&vfsp->vfs_vopstats); 1769 /* 1770 * We need to set vfs_vskap to NULL because there's 1771 * a chance it won't be set below. This is checked 1772 * in teardown_vopstats() so we can't have garbage. 1773 */ 1774 vfsp->vfs_vskap = NULL; 1775 vfsp->vfs_flag |= VFS_STATS; 1776 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1777 } 1778 1779 if (vswp->vsw_flag & VSW_XID) 1780 vfsp->vfs_flag |= VFS_XID; 1781 1782 vfs_unlock(vfsp); 1783 } 1784 mount_completed(); 1785 if (splice) 1786 vn_vfsunlock(vp); 1787 1788 if ((error == 0) && (copyout_error == 0)) { 1789 if (!remount) { 1790 /* 1791 * Don't call get_vskstat_anchor() while holding 1792 * locks since it allocates memory and calls 1793 * VFS_STATVFS(). For NFS, the latter can generate 1794 * an over-the-wire call. 1795 */ 1796 vskap = get_vskstat_anchor(vfsp); 1797 /* Only take the lock if we have something to do */ 1798 if (vskap != NULL) { 1799 vfs_lock_wait(vfsp); 1800 if (vfsp->vfs_flag & VFS_STATS) { 1801 vfsp->vfs_vskap = vskap; 1802 } 1803 vfs_unlock(vfsp); 1804 } 1805 } 1806 /* Return vfsp to caller. */ 1807 *vfspp = vfsp; 1808 } 1809 errout: 1810 vfs_freeopttbl(&mnt_mntopts); 1811 if (resource != NULL) 1812 kmem_free(resource, strlen(resource) + 1); 1813 if (mountpt != NULL) 1814 kmem_free(mountpt, strlen(mountpt) + 1); 1815 /* 1816 * It is possible we errored prior to adding to mount in progress 1817 * table. Must free vnode we acquired with successful lookupname. 1818 */ 1819 if (addmip) 1820 VN_RELE(bvp); 1821 if (delmip) 1822 vfs_delmip(vfsp); 1823 ASSERT(vswp != NULL); 1824 vfs_unrefvfssw(vswp); 1825 if (inargs != opts) 1826 kmem_free(inargs, MAX_MNTOPT_STR); 1827 if (copyout_error) { 1828 lofi_remove(vfsp); 1829 VFS_RELE(vfsp); 1830 error = copyout_error; 1831 } 1832 return (error); 1833 } 1834 1835 static void 1836 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1837 { 1838 size_t len; 1839 refstr_t *ref; 1840 zone_t *zone = curproc->p_zone; 1841 char *sp; 1842 int have_list_lock = 0; 1843 1844 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1845 1846 /* 1847 * New path must be less than MAXPATHLEN because mntfs 1848 * will only display up to MAXPATHLEN bytes. This is currently 1849 * safe, because domount() uses pn_get(), and other callers 1850 * similarly cap the size to fewer than MAXPATHLEN bytes. 1851 */ 1852 1853 ASSERT(strlen(newpath) < MAXPATHLEN); 1854 1855 /* mntfs requires consistency while vfs list lock is held */ 1856 1857 if (VFS_ON_LIST(vfsp)) { 1858 have_list_lock = 1; 1859 vfs_list_lock(); 1860 } 1861 1862 if (*refp != NULL) 1863 refstr_rele(*refp); 1864 1865 /* Do we need to modify the path? */ 1866 1867 if (zone == global_zone || *newpath != '/') { 1868 ref = refstr_alloc(newpath); 1869 goto out; 1870 } 1871 1872 /* 1873 * Truncate the trailing '/' in the zoneroot, and merge 1874 * in the zone's rootpath with the "newpath" (resource 1875 * or mountpoint) passed in. 1876 * 1877 * The size of the required buffer is thus the size of 1878 * the buffer required for the passed-in newpath 1879 * (strlen(newpath) + 1), plus the size of the buffer 1880 * required to hold zone_rootpath (zone_rootpathlen) 1881 * minus one for one of the now-superfluous NUL 1882 * terminations, minus one for the trailing '/'. 1883 * 1884 * That gives us: 1885 * 1886 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1887 * 1888 * Which is what we have below. 1889 */ 1890 1891 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1892 sp = kmem_alloc(len, KM_SLEEP); 1893 1894 /* 1895 * Copy everything including the trailing slash, which 1896 * we then overwrite with the NUL character. 1897 */ 1898 1899 (void) strcpy(sp, zone->zone_rootpath); 1900 sp[zone->zone_rootpathlen - 2] = '\0'; 1901 (void) strcat(sp, newpath); 1902 1903 ref = refstr_alloc(sp); 1904 kmem_free(sp, len); 1905 out: 1906 *refp = ref; 1907 1908 if (have_list_lock) { 1909 vfs_mnttab_modtimeupd(); 1910 vfs_list_unlock(); 1911 } 1912 } 1913 1914 /* 1915 * Record a mounted resource name in a vfs structure. 1916 * If vfsp is already mounted, caller must hold the vfs lock. 1917 */ 1918 void 1919 vfs_setresource(struct vfs *vfsp, const char *resource) 1920 { 1921 if (resource == NULL || resource[0] == '\0') 1922 resource = VFS_NORESOURCE; 1923 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1924 } 1925 1926 /* 1927 * Record a mount point name in a vfs structure. 1928 * If vfsp is already mounted, caller must hold the vfs lock. 1929 */ 1930 void 1931 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1932 { 1933 if (mntpt == NULL || mntpt[0] == '\0') 1934 mntpt = VFS_NOMNTPT; 1935 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1936 } 1937 1938 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1939 1940 refstr_t * 1941 vfs_getresource(const struct vfs *vfsp) 1942 { 1943 refstr_t *resource; 1944 1945 vfs_list_read_lock(); 1946 resource = vfsp->vfs_resource; 1947 refstr_hold(resource); 1948 vfs_list_unlock(); 1949 1950 return (resource); 1951 } 1952 1953 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1954 1955 refstr_t * 1956 vfs_getmntpoint(const struct vfs *vfsp) 1957 { 1958 refstr_t *mntpt; 1959 1960 vfs_list_read_lock(); 1961 mntpt = vfsp->vfs_mntpt; 1962 refstr_hold(mntpt); 1963 vfs_list_unlock(); 1964 1965 return (mntpt); 1966 } 1967 1968 /* 1969 * Create an empty options table with enough empty slots to hold all 1970 * The options in the options string passed as an argument. 1971 * Potentially prepend another options table. 1972 * 1973 * Note: caller is responsible for locking the vfs list, if needed, 1974 * to protect mops. 1975 */ 1976 static void 1977 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1978 const mntopts_t *mtmpl) 1979 { 1980 const char *s = opts; 1981 uint_t count; 1982 1983 if (opts == NULL || *opts == '\0') { 1984 count = 0; 1985 } else { 1986 count = 1; 1987 1988 /* 1989 * Count number of options in the string 1990 */ 1991 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1992 count++; 1993 s++; 1994 } 1995 } 1996 vfs_copyopttbl_extend(mtmpl, mops, count); 1997 } 1998 1999 /* 2000 * Create an empty options table with enough empty slots to hold all 2001 * The options in the options string passed as an argument. 2002 * 2003 * This function is *not* for general use by filesystems. 2004 * 2005 * Note: caller is responsible for locking the vfs list, if needed, 2006 * to protect mops. 2007 */ 2008 void 2009 vfs_createopttbl(mntopts_t *mops, const char *opts) 2010 { 2011 vfs_createopttbl_extend(mops, opts, NULL); 2012 } 2013 2014 2015 /* 2016 * Swap two mount options tables 2017 */ 2018 static void 2019 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2020 { 2021 uint_t tmpcnt; 2022 mntopt_t *tmplist; 2023 2024 tmpcnt = optbl2->mo_count; 2025 tmplist = optbl2->mo_list; 2026 optbl2->mo_count = optbl1->mo_count; 2027 optbl2->mo_list = optbl1->mo_list; 2028 optbl1->mo_count = tmpcnt; 2029 optbl1->mo_list = tmplist; 2030 } 2031 2032 static void 2033 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2034 { 2035 vfs_list_lock(); 2036 vfs_swapopttbl_nolock(optbl1, optbl2); 2037 vfs_mnttab_modtimeupd(); 2038 vfs_list_unlock(); 2039 } 2040 2041 static char ** 2042 vfs_copycancelopt_extend(char **const moc, int extend) 2043 { 2044 int i = 0; 2045 int j; 2046 char **result; 2047 2048 if (moc != NULL) { 2049 for (; moc[i] != NULL; i++) 2050 /* count number of options to cancel */; 2051 } 2052 2053 if (i + extend == 0) 2054 return (NULL); 2055 2056 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2057 2058 for (j = 0; j < i; j++) { 2059 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2060 (void) strcpy(result[j], moc[j]); 2061 } 2062 for (; j <= i + extend; j++) 2063 result[j] = NULL; 2064 2065 return (result); 2066 } 2067 2068 static void 2069 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2070 { 2071 char *sp, *dp; 2072 2073 d->mo_flags = s->mo_flags; 2074 d->mo_data = s->mo_data; 2075 sp = s->mo_name; 2076 if (sp != NULL) { 2077 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2078 (void) strcpy(dp, sp); 2079 d->mo_name = dp; 2080 } else { 2081 d->mo_name = NULL; /* should never happen */ 2082 } 2083 2084 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2085 2086 sp = s->mo_arg; 2087 if (sp != NULL) { 2088 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2089 (void) strcpy(dp, sp); 2090 d->mo_arg = dp; 2091 } else { 2092 d->mo_arg = NULL; 2093 } 2094 } 2095 2096 /* 2097 * Copy a mount options table, possibly allocating some spare 2098 * slots at the end. It is permissible to copy_extend the NULL table. 2099 */ 2100 static void 2101 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2102 { 2103 uint_t i, count; 2104 mntopt_t *motbl; 2105 2106 /* 2107 * Clear out any existing stuff in the options table being initialized 2108 */ 2109 vfs_freeopttbl(dmo); 2110 count = (smo == NULL) ? 0 : smo->mo_count; 2111 if ((count + extra) == 0) /* nothing to do */ 2112 return; 2113 dmo->mo_count = count + extra; 2114 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2115 dmo->mo_list = motbl; 2116 for (i = 0; i < count; i++) { 2117 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2118 } 2119 for (i = count; i < count + extra; i++) { 2120 motbl[i].mo_flags = MO_EMPTY; 2121 } 2122 } 2123 2124 /* 2125 * Copy a mount options table. 2126 * 2127 * This function is *not* for general use by filesystems. 2128 * 2129 * Note: caller is responsible for locking the vfs list, if needed, 2130 * to protect smo and dmo. 2131 */ 2132 void 2133 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2134 { 2135 vfs_copyopttbl_extend(smo, dmo, 0); 2136 } 2137 2138 static char ** 2139 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2140 { 2141 int c1 = 0; 2142 int c2 = 0; 2143 char **result; 2144 char **sp1, **sp2, **dp; 2145 2146 /* 2147 * First we count both lists of cancel options. 2148 * If either is NULL or has no elements, we return a copy of 2149 * the other. 2150 */ 2151 if (mop1->mo_cancel != NULL) { 2152 for (; mop1->mo_cancel[c1] != NULL; c1++) 2153 /* count cancel options in mop1 */; 2154 } 2155 2156 if (c1 == 0) 2157 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2158 2159 if (mop2->mo_cancel != NULL) { 2160 for (; mop2->mo_cancel[c2] != NULL; c2++) 2161 /* count cancel options in mop2 */; 2162 } 2163 2164 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2165 2166 if (c2 == 0) 2167 return (result); 2168 2169 /* 2170 * When we get here, we've got two sets of cancel options; 2171 * we need to merge the two sets. We know that the result 2172 * array has "c1+c2+1" entries and in the end we might shrink 2173 * it. 2174 * Result now has a copy of the c1 entries from mop1; we'll 2175 * now lookup all the entries of mop2 in mop1 and copy it if 2176 * it is unique. 2177 * This operation is O(n^2) but it's only called once per 2178 * filesystem per duplicate option. This is a situation 2179 * which doesn't arise with the filesystems in ON and 2180 * n is generally 1. 2181 */ 2182 2183 dp = &result[c1]; 2184 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2185 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2186 if (strcmp(*sp1, *sp2) == 0) 2187 break; 2188 } 2189 if (*sp1 == NULL) { 2190 /* 2191 * Option *sp2 not found in mop1, so copy it. 2192 * The calls to vfs_copycancelopt_extend() 2193 * guarantee that there's enough room. 2194 */ 2195 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2196 (void) strcpy(*dp++, *sp2); 2197 } 2198 } 2199 if (dp != &result[c1+c2]) { 2200 size_t bytes = (dp - result + 1) * sizeof (char *); 2201 char **nres = kmem_alloc(bytes, KM_SLEEP); 2202 2203 bcopy(result, nres, bytes); 2204 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2205 result = nres; 2206 } 2207 return (result); 2208 } 2209 2210 /* 2211 * Merge two mount option tables (outer and inner) into one. This is very 2212 * similar to "merging" global variables and automatic variables in C. 2213 * 2214 * This isn't (and doesn't have to be) fast. 2215 * 2216 * This function is *not* for general use by filesystems. 2217 * 2218 * Note: caller is responsible for locking the vfs list, if needed, 2219 * to protect omo, imo & dmo. 2220 */ 2221 void 2222 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2223 { 2224 uint_t i, count; 2225 mntopt_t *mop, *motbl; 2226 uint_t freeidx; 2227 2228 /* 2229 * First determine how much space we need to allocate. 2230 */ 2231 count = omo->mo_count; 2232 for (i = 0; i < imo->mo_count; i++) { 2233 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2234 continue; 2235 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2236 count++; 2237 } 2238 ASSERT(count >= omo->mo_count && 2239 count <= omo->mo_count + imo->mo_count); 2240 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2241 for (i = 0; i < omo->mo_count; i++) 2242 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2243 freeidx = omo->mo_count; 2244 for (i = 0; i < imo->mo_count; i++) { 2245 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2246 continue; 2247 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2248 char **newcanp; 2249 uint_t index = mop - omo->mo_list; 2250 2251 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2252 2253 vfs_freeopt(&motbl[index]); 2254 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2255 2256 vfs_freecancelopt(motbl[index].mo_cancel); 2257 motbl[index].mo_cancel = newcanp; 2258 } else { 2259 /* 2260 * If it's a new option, just copy it over to the first 2261 * free location. 2262 */ 2263 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2264 } 2265 } 2266 dmo->mo_count = count; 2267 dmo->mo_list = motbl; 2268 } 2269 2270 /* 2271 * Functions to set and clear mount options in a mount options table. 2272 */ 2273 2274 /* 2275 * Clear a mount option, if it exists. 2276 * 2277 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2278 * the vfs list. 2279 */ 2280 static void 2281 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2282 { 2283 struct mntopt *mop; 2284 uint_t i, count; 2285 2286 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2287 2288 count = mops->mo_count; 2289 for (i = 0; i < count; i++) { 2290 mop = &mops->mo_list[i]; 2291 2292 if (mop->mo_flags & MO_EMPTY) 2293 continue; 2294 if (strcmp(opt, mop->mo_name)) 2295 continue; 2296 mop->mo_flags &= ~MO_SET; 2297 if (mop->mo_arg != NULL) { 2298 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2299 } 2300 mop->mo_arg = NULL; 2301 if (update_mnttab) 2302 vfs_mnttab_modtimeupd(); 2303 break; 2304 } 2305 } 2306 2307 void 2308 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2309 { 2310 int gotlock = 0; 2311 2312 if (VFS_ON_LIST(vfsp)) { 2313 gotlock = 1; 2314 vfs_list_lock(); 2315 } 2316 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2317 if (gotlock) 2318 vfs_list_unlock(); 2319 } 2320 2321 2322 /* 2323 * Set a mount option on. If it's not found in the table, it's silently 2324 * ignored. If the option has MO_IGNORE set, it is still set unless the 2325 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2326 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2327 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2328 * MO_EMPTY set is created as the option passed in. 2329 * 2330 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2331 * the vfs list. 2332 */ 2333 static void 2334 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2335 const char *arg, int flags, int update_mnttab) 2336 { 2337 mntopt_t *mop; 2338 uint_t i, count; 2339 char *sp; 2340 2341 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2342 2343 if (flags & VFS_CREATEOPT) { 2344 if (vfs_hasopt(mops, opt) != NULL) { 2345 flags &= ~VFS_CREATEOPT; 2346 } 2347 } 2348 count = mops->mo_count; 2349 for (i = 0; i < count; i++) { 2350 mop = &mops->mo_list[i]; 2351 2352 if (mop->mo_flags & MO_EMPTY) { 2353 if ((flags & VFS_CREATEOPT) == 0) 2354 continue; 2355 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2356 (void) strcpy(sp, opt); 2357 mop->mo_name = sp; 2358 if (arg != NULL) 2359 mop->mo_flags = MO_HASVALUE; 2360 else 2361 mop->mo_flags = 0; 2362 } else if (strcmp(opt, mop->mo_name)) { 2363 continue; 2364 } 2365 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2366 break; 2367 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2368 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2369 (void) strcpy(sp, arg); 2370 } else { 2371 sp = NULL; 2372 } 2373 if (mop->mo_arg != NULL) 2374 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2375 mop->mo_arg = sp; 2376 if (flags & VFS_DISPLAY) 2377 mop->mo_flags &= ~MO_NODISPLAY; 2378 if (flags & VFS_NODISPLAY) 2379 mop->mo_flags |= MO_NODISPLAY; 2380 mop->mo_flags |= MO_SET; 2381 if (mop->mo_cancel != NULL) { 2382 char **cp; 2383 2384 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2385 vfs_clearmntopt_nolock(mops, *cp, 0); 2386 } 2387 if (update_mnttab) 2388 vfs_mnttab_modtimeupd(); 2389 break; 2390 } 2391 } 2392 2393 void 2394 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2395 { 2396 int gotlock = 0; 2397 2398 if (VFS_ON_LIST(vfsp)) { 2399 gotlock = 1; 2400 vfs_list_lock(); 2401 } 2402 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2403 if (gotlock) 2404 vfs_list_unlock(); 2405 } 2406 2407 2408 /* 2409 * Add a "tag" option to a mounted file system's options list. 2410 * 2411 * Note: caller is responsible for locking the vfs list, if needed, 2412 * to protect mops. 2413 */ 2414 static mntopt_t * 2415 vfs_addtag(mntopts_t *mops, const char *tag) 2416 { 2417 uint_t count; 2418 mntopt_t *mop, *motbl; 2419 2420 count = mops->mo_count + 1; 2421 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2422 if (mops->mo_count) { 2423 size_t len = (count - 1) * sizeof (mntopt_t); 2424 2425 bcopy(mops->mo_list, motbl, len); 2426 kmem_free(mops->mo_list, len); 2427 } 2428 mops->mo_count = count; 2429 mops->mo_list = motbl; 2430 mop = &motbl[count - 1]; 2431 mop->mo_flags = MO_TAG; 2432 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2433 (void) strcpy(mop->mo_name, tag); 2434 return (mop); 2435 } 2436 2437 /* 2438 * Allow users to set arbitrary "tags" in a vfs's mount options. 2439 * Broader use within the kernel is discouraged. 2440 */ 2441 int 2442 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2443 cred_t *cr) 2444 { 2445 vfs_t *vfsp; 2446 mntopts_t *mops; 2447 mntopt_t *mop; 2448 int found = 0; 2449 dev_t dev = makedevice(major, minor); 2450 int err = 0; 2451 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2452 2453 /* 2454 * Find the desired mounted file system 2455 */ 2456 vfs_list_lock(); 2457 vfsp = rootvfs; 2458 do { 2459 if (vfsp->vfs_dev == dev && 2460 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2461 found = 1; 2462 break; 2463 } 2464 vfsp = vfsp->vfs_next; 2465 } while (vfsp != rootvfs); 2466 2467 if (!found) { 2468 err = EINVAL; 2469 goto out; 2470 } 2471 err = secpolicy_fs_config(cr, vfsp); 2472 if (err != 0) 2473 goto out; 2474 2475 mops = &vfsp->vfs_mntopts; 2476 /* 2477 * Add tag if it doesn't already exist 2478 */ 2479 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2480 int len; 2481 2482 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2483 len = strlen(buf); 2484 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2485 err = ENAMETOOLONG; 2486 goto out; 2487 } 2488 mop = vfs_addtag(mops, tag); 2489 } 2490 if ((mop->mo_flags & MO_TAG) == 0) { 2491 err = EINVAL; 2492 goto out; 2493 } 2494 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2495 out: 2496 vfs_list_unlock(); 2497 kmem_free(buf, MAX_MNTOPT_STR); 2498 return (err); 2499 } 2500 2501 /* 2502 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2503 * Broader use within the kernel is discouraged. 2504 */ 2505 int 2506 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2507 cred_t *cr) 2508 { 2509 vfs_t *vfsp; 2510 mntopt_t *mop; 2511 int found = 0; 2512 dev_t dev = makedevice(major, minor); 2513 int err = 0; 2514 2515 /* 2516 * Find the desired mounted file system 2517 */ 2518 vfs_list_lock(); 2519 vfsp = rootvfs; 2520 do { 2521 if (vfsp->vfs_dev == dev && 2522 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2523 found = 1; 2524 break; 2525 } 2526 vfsp = vfsp->vfs_next; 2527 } while (vfsp != rootvfs); 2528 2529 if (!found) { 2530 err = EINVAL; 2531 goto out; 2532 } 2533 err = secpolicy_fs_config(cr, vfsp); 2534 if (err != 0) 2535 goto out; 2536 2537 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2538 err = EINVAL; 2539 goto out; 2540 } 2541 if ((mop->mo_flags & MO_TAG) == 0) { 2542 err = EINVAL; 2543 goto out; 2544 } 2545 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2546 out: 2547 vfs_list_unlock(); 2548 return (err); 2549 } 2550 2551 /* 2552 * Function to parse an option string and fill in a mount options table. 2553 * Unknown options are silently ignored. The input option string is modified 2554 * by replacing separators with nulls. If the create flag is set, options 2555 * not found in the table are just added on the fly. The table must have 2556 * an option slot marked MO_EMPTY to add an option on the fly. 2557 * 2558 * This function is *not* for general use by filesystems. 2559 * 2560 * Note: caller is responsible for locking the vfs list, if needed, 2561 * to protect mops.. 2562 */ 2563 void 2564 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2565 { 2566 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2567 int setflg = VFS_NOFORCEOPT; 2568 2569 if (osp == NULL) 2570 return; 2571 while (*s != '\0') { 2572 p = strchr(s, ','); /* find next option */ 2573 if (p == NULL) { 2574 cp = NULL; 2575 p = s + strlen(s); 2576 } else { 2577 cp = p; /* save location of comma */ 2578 *p++ = '\0'; /* mark end and point to next option */ 2579 } 2580 nextop = p; 2581 p = strchr(s, '='); /* look for value */ 2582 if (p == NULL) { 2583 valp = NULL; /* no value supplied */ 2584 } else { 2585 ep = p; /* save location of equals */ 2586 *p++ = '\0'; /* end option and point to value */ 2587 valp = p; 2588 } 2589 /* 2590 * set option into options table 2591 */ 2592 if (create) 2593 setflg |= VFS_CREATEOPT; 2594 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2595 if (cp != NULL) 2596 *cp = ','; /* restore the comma */ 2597 if (valp != NULL) 2598 *ep = '='; /* restore the equals */ 2599 s = nextop; 2600 } 2601 } 2602 2603 /* 2604 * Function to inquire if an option exists in a mount options table. 2605 * Returns a pointer to the option if it exists, else NULL. 2606 * 2607 * This function is *not* for general use by filesystems. 2608 * 2609 * Note: caller is responsible for locking the vfs list, if needed, 2610 * to protect mops. 2611 */ 2612 struct mntopt * 2613 vfs_hasopt(const mntopts_t *mops, const char *opt) 2614 { 2615 struct mntopt *mop; 2616 uint_t i, count; 2617 2618 count = mops->mo_count; 2619 for (i = 0; i < count; i++) { 2620 mop = &mops->mo_list[i]; 2621 2622 if (mop->mo_flags & MO_EMPTY) 2623 continue; 2624 if (strcmp(opt, mop->mo_name) == 0) 2625 return (mop); 2626 } 2627 return (NULL); 2628 } 2629 2630 /* 2631 * Function to inquire if an option is set in a mount options table. 2632 * Returns non-zero if set and fills in the arg pointer with a pointer to 2633 * the argument string or NULL if there is no argument string. 2634 */ 2635 static int 2636 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2637 { 2638 struct mntopt *mop; 2639 uint_t i, count; 2640 2641 count = mops->mo_count; 2642 for (i = 0; i < count; i++) { 2643 mop = &mops->mo_list[i]; 2644 2645 if (mop->mo_flags & MO_EMPTY) 2646 continue; 2647 if (strcmp(opt, mop->mo_name)) 2648 continue; 2649 if ((mop->mo_flags & MO_SET) == 0) 2650 return (0); 2651 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2652 *argp = mop->mo_arg; 2653 return (1); 2654 } 2655 return (0); 2656 } 2657 2658 2659 int 2660 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2661 { 2662 int ret; 2663 2664 vfs_list_read_lock(); 2665 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2666 vfs_list_unlock(); 2667 return (ret); 2668 } 2669 2670 2671 /* 2672 * Construct a comma separated string of the options set in the given 2673 * mount table, return the string in the given buffer. Return non-zero if 2674 * the buffer would overflow. 2675 * 2676 * This function is *not* for general use by filesystems. 2677 * 2678 * Note: caller is responsible for locking the vfs list, if needed, 2679 * to protect mp. 2680 */ 2681 int 2682 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2683 { 2684 char *cp; 2685 uint_t i; 2686 2687 buf[0] = '\0'; 2688 cp = buf; 2689 for (i = 0; i < mp->mo_count; i++) { 2690 struct mntopt *mop; 2691 2692 mop = &mp->mo_list[i]; 2693 if (mop->mo_flags & MO_SET) { 2694 int optlen, comma = 0; 2695 2696 if (buf[0] != '\0') 2697 comma = 1; 2698 optlen = strlen(mop->mo_name); 2699 if (strlen(buf) + comma + optlen + 1 > len) 2700 goto err; 2701 if (comma) 2702 *cp++ = ','; 2703 (void) strcpy(cp, mop->mo_name); 2704 cp += optlen; 2705 /* 2706 * Append option value if there is one 2707 */ 2708 if (mop->mo_arg != NULL) { 2709 int arglen; 2710 2711 arglen = strlen(mop->mo_arg); 2712 if (strlen(buf) + arglen + 2 > len) 2713 goto err; 2714 *cp++ = '='; 2715 (void) strcpy(cp, mop->mo_arg); 2716 cp += arglen; 2717 } 2718 } 2719 } 2720 return (0); 2721 err: 2722 return (EOVERFLOW); 2723 } 2724 2725 static void 2726 vfs_freecancelopt(char **moc) 2727 { 2728 if (moc != NULL) { 2729 int ccnt = 0; 2730 char **cp; 2731 2732 for (cp = moc; *cp != NULL; cp++) { 2733 kmem_free(*cp, strlen(*cp) + 1); 2734 ccnt++; 2735 } 2736 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2737 } 2738 } 2739 2740 static void 2741 vfs_freeopt(mntopt_t *mop) 2742 { 2743 if (mop->mo_name != NULL) 2744 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2745 2746 vfs_freecancelopt(mop->mo_cancel); 2747 2748 if (mop->mo_arg != NULL) 2749 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2750 } 2751 2752 /* 2753 * Free a mount options table 2754 * 2755 * This function is *not* for general use by filesystems. 2756 * 2757 * Note: caller is responsible for locking the vfs list, if needed, 2758 * to protect mp. 2759 */ 2760 void 2761 vfs_freeopttbl(mntopts_t *mp) 2762 { 2763 uint_t i, count; 2764 2765 count = mp->mo_count; 2766 for (i = 0; i < count; i++) { 2767 vfs_freeopt(&mp->mo_list[i]); 2768 } 2769 if (count) { 2770 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2771 mp->mo_count = 0; 2772 mp->mo_list = NULL; 2773 } 2774 } 2775 2776 2777 /* ARGSUSED */ 2778 static int 2779 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2780 caller_context_t *ct) 2781 { 2782 return (0); 2783 } 2784 2785 /* ARGSUSED */ 2786 static int 2787 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2788 caller_context_t *ct) 2789 { 2790 return (0); 2791 } 2792 2793 /* 2794 * The dummy vnode is currently used only by file events notification 2795 * module which is just interested in the timestamps. 2796 */ 2797 /* ARGSUSED */ 2798 static int 2799 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2800 caller_context_t *ct) 2801 { 2802 bzero(vap, sizeof (vattr_t)); 2803 vap->va_type = VREG; 2804 vap->va_nlink = 1; 2805 vap->va_ctime = vfs_mnttab_ctime; 2806 /* 2807 * it is ok to just copy mtime as the time will be monotonically 2808 * increasing. 2809 */ 2810 vap->va_mtime = vfs_mnttab_mtime; 2811 vap->va_atime = vap->va_mtime; 2812 return (0); 2813 } 2814 2815 static void 2816 vfs_mnttabvp_setup(void) 2817 { 2818 vnode_t *tvp; 2819 vnodeops_t *vfs_mntdummyvnops; 2820 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2821 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2822 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2823 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2824 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2825 NULL, NULL 2826 }; 2827 2828 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2829 &vfs_mntdummyvnops) != 0) { 2830 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2831 /* Shouldn't happen, but not bad enough to panic */ 2832 return; 2833 } 2834 2835 /* 2836 * A global dummy vnode is allocated to represent mntfs files. 2837 * The mntfs file (/etc/mnttab) can be monitored for file events 2838 * and receive an event when mnttab changes. Dummy VOP calls 2839 * will be made on this vnode. The file events notification module 2840 * intercepts this vnode and delivers relevant events. 2841 */ 2842 tvp = vn_alloc(KM_SLEEP); 2843 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2844 vn_setops(tvp, vfs_mntdummyvnops); 2845 tvp->v_type = VREG; 2846 /* 2847 * The mnt dummy ops do not reference v_data. 2848 * No other module intercepting this vnode should either. 2849 * Just set it to point to itself. 2850 */ 2851 tvp->v_data = (caddr_t)tvp; 2852 tvp->v_vfsp = rootvfs; 2853 vfs_mntdummyvp = tvp; 2854 } 2855 2856 /* 2857 * performs fake read/write ops 2858 */ 2859 static void 2860 vfs_mnttab_rwop(int rw) 2861 { 2862 struct uio uio; 2863 struct iovec iov; 2864 char buf[1]; 2865 2866 if (vfs_mntdummyvp == NULL) 2867 return; 2868 2869 bzero(&uio, sizeof (uio)); 2870 bzero(&iov, sizeof (iov)); 2871 iov.iov_base = buf; 2872 iov.iov_len = 0; 2873 uio.uio_iov = &iov; 2874 uio.uio_iovcnt = 1; 2875 uio.uio_loffset = 0; 2876 uio.uio_segflg = UIO_SYSSPACE; 2877 uio.uio_resid = 0; 2878 if (rw) { 2879 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2880 } else { 2881 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2882 } 2883 } 2884 2885 /* 2886 * Generate a write operation. 2887 */ 2888 void 2889 vfs_mnttab_writeop(void) 2890 { 2891 vfs_mnttab_rwop(1); 2892 } 2893 2894 /* 2895 * Generate a read operation. 2896 */ 2897 void 2898 vfs_mnttab_readop(void) 2899 { 2900 vfs_mnttab_rwop(0); 2901 } 2902 2903 /* 2904 * Free any mnttab information recorded in the vfs struct. 2905 * The vfs must not be on the vfs list. 2906 */ 2907 static void 2908 vfs_freemnttab(struct vfs *vfsp) 2909 { 2910 ASSERT(!VFS_ON_LIST(vfsp)); 2911 2912 /* 2913 * Free device and mount point information 2914 */ 2915 if (vfsp->vfs_mntpt != NULL) { 2916 refstr_rele(vfsp->vfs_mntpt); 2917 vfsp->vfs_mntpt = NULL; 2918 } 2919 if (vfsp->vfs_resource != NULL) { 2920 refstr_rele(vfsp->vfs_resource); 2921 vfsp->vfs_resource = NULL; 2922 } 2923 /* 2924 * Now free mount options information 2925 */ 2926 vfs_freeopttbl(&vfsp->vfs_mntopts); 2927 } 2928 2929 /* 2930 * Return the last mnttab modification time 2931 */ 2932 void 2933 vfs_mnttab_modtime(timespec_t *ts) 2934 { 2935 ASSERT(RW_LOCK_HELD(&vfslist)); 2936 *ts = vfs_mnttab_mtime; 2937 } 2938 2939 /* 2940 * See if mnttab is changed 2941 */ 2942 void 2943 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2944 { 2945 int changed; 2946 2947 *phpp = (struct pollhead *)NULL; 2948 2949 /* 2950 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2951 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2952 * to not grab the vfs list lock because tv_sec is monotonically 2953 * increasing. 2954 */ 2955 2956 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2957 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2958 if (!changed) { 2959 *phpp = &vfs_pollhd; 2960 } 2961 } 2962 2963 /* 2964 * Update the mnttab modification time and wake up any waiters for 2965 * mnttab changes 2966 */ 2967 void 2968 vfs_mnttab_modtimeupd() 2969 { 2970 hrtime_t oldhrt, newhrt; 2971 2972 ASSERT(RW_WRITE_HELD(&vfslist)); 2973 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2974 gethrestime(&vfs_mnttab_mtime); 2975 newhrt = ts2hrt(&vfs_mnttab_mtime); 2976 if (oldhrt == (hrtime_t)0) 2977 vfs_mnttab_ctime = vfs_mnttab_mtime; 2978 /* 2979 * Attempt to provide unique mtime (like uniqtime but not). 2980 */ 2981 if (newhrt == oldhrt) { 2982 newhrt++; 2983 hrt2ts(newhrt, &vfs_mnttab_mtime); 2984 } 2985 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2986 vfs_mnttab_writeop(); 2987 } 2988 2989 int 2990 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2991 { 2992 vnode_t *coveredvp; 2993 int error; 2994 extern void teardown_vopstats(vfs_t *); 2995 2996 /* 2997 * Get covered vnode. This will be NULL if the vfs is not linked 2998 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2999 */ 3000 coveredvp = vfsp->vfs_vnodecovered; 3001 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3002 3003 /* 3004 * Purge all dnlc entries for this vfs. 3005 */ 3006 (void) dnlc_purge_vfsp(vfsp, 0); 3007 3008 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3009 if ((flag & MS_FORCE) == 0) 3010 (void) VFS_SYNC(vfsp, 0, cr); 3011 3012 /* 3013 * Lock the vfs to maintain fs status quo during unmount. This 3014 * has to be done after the sync because ufs_update tries to acquire 3015 * the vfs_reflock. 3016 */ 3017 vfs_lock_wait(vfsp); 3018 3019 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3020 vfs_unlock(vfsp); 3021 if (coveredvp != NULL) 3022 vn_vfsunlock(coveredvp); 3023 } else if (coveredvp != NULL) { 3024 teardown_vopstats(vfsp); 3025 /* 3026 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3027 * when it frees vfsp so we do a VN_HOLD() so we can 3028 * continue to use coveredvp afterwards. 3029 */ 3030 VN_HOLD(coveredvp); 3031 vfs_remove(vfsp); 3032 vn_vfsunlock(coveredvp); 3033 VN_RELE(coveredvp); 3034 } else { 3035 teardown_vopstats(vfsp); 3036 /* 3037 * Release the reference to vfs that is not linked 3038 * into the name space. 3039 */ 3040 vfs_unlock(vfsp); 3041 VFS_RELE(vfsp); 3042 } 3043 return (error); 3044 } 3045 3046 3047 /* 3048 * Vfs_unmountall() is called by uadmin() to unmount all 3049 * mounted file systems (except the root file system) during shutdown. 3050 * It follows the existing locking protocol when traversing the vfs list 3051 * to sync and unmount vfses. Even though there should be no 3052 * other thread running while the system is shutting down, it is prudent 3053 * to still follow the locking protocol. 3054 */ 3055 void 3056 vfs_unmountall(void) 3057 { 3058 struct vfs *vfsp; 3059 struct vfs *prev_vfsp = NULL; 3060 int error; 3061 3062 /* 3063 * Toss all dnlc entries now so that the per-vfs sync 3064 * and unmount operations don't have to slog through 3065 * a bunch of uninteresting vnodes over and over again. 3066 */ 3067 dnlc_purge(); 3068 3069 vfs_list_lock(); 3070 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3071 prev_vfsp = vfsp->vfs_prev; 3072 3073 if (vfs_lock(vfsp) != 0) 3074 continue; 3075 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3076 vfs_unlock(vfsp); 3077 if (error) 3078 continue; 3079 3080 vfs_list_unlock(); 3081 3082 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3083 (void) dounmount(vfsp, 0, CRED()); 3084 3085 /* 3086 * Since we dropped the vfslist lock above we must 3087 * verify that next_vfsp still exists, else start over. 3088 */ 3089 vfs_list_lock(); 3090 for (vfsp = rootvfs->vfs_prev; 3091 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3092 if (vfsp == prev_vfsp) 3093 break; 3094 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3095 prev_vfsp = rootvfs->vfs_prev; 3096 } 3097 vfs_list_unlock(); 3098 } 3099 3100 /* 3101 * Called to add an entry to the end of the vfs mount in progress list 3102 */ 3103 void 3104 vfs_addmip(dev_t dev, struct vfs *vfsp) 3105 { 3106 struct ipmnt *mipp; 3107 3108 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3109 mipp->mip_next = NULL; 3110 mipp->mip_dev = dev; 3111 mipp->mip_vfsp = vfsp; 3112 mutex_enter(&vfs_miplist_mutex); 3113 if (vfs_miplist_end != NULL) 3114 vfs_miplist_end->mip_next = mipp; 3115 else 3116 vfs_miplist = mipp; 3117 vfs_miplist_end = mipp; 3118 mutex_exit(&vfs_miplist_mutex); 3119 } 3120 3121 /* 3122 * Called to remove an entry from the mount in progress list 3123 * Either because the mount completed or it failed. 3124 */ 3125 void 3126 vfs_delmip(struct vfs *vfsp) 3127 { 3128 struct ipmnt *mipp, *mipprev; 3129 3130 mutex_enter(&vfs_miplist_mutex); 3131 mipprev = NULL; 3132 for (mipp = vfs_miplist; 3133 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3134 mipprev = mipp; 3135 } 3136 if (mipp == NULL) 3137 return; /* shouldn't happen */ 3138 if (mipp == vfs_miplist_end) 3139 vfs_miplist_end = mipprev; 3140 if (mipprev == NULL) 3141 vfs_miplist = mipp->mip_next; 3142 else 3143 mipprev->mip_next = mipp->mip_next; 3144 mutex_exit(&vfs_miplist_mutex); 3145 kmem_free(mipp, sizeof (struct ipmnt)); 3146 } 3147 3148 /* 3149 * vfs_add is called by a specific filesystem's mount routine to add 3150 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3151 * The vfs should already have been locked by the caller. 3152 * 3153 * coveredvp is NULL if this is the root. 3154 */ 3155 void 3156 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3157 { 3158 int newflag; 3159 3160 ASSERT(vfs_lock_held(vfsp)); 3161 VFS_HOLD(vfsp); 3162 newflag = vfsp->vfs_flag; 3163 if (mflag & MS_RDONLY) 3164 newflag |= VFS_RDONLY; 3165 else 3166 newflag &= ~VFS_RDONLY; 3167 if (mflag & MS_NOSUID) 3168 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3169 else 3170 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3171 if (mflag & MS_NOMNTTAB) 3172 newflag |= VFS_NOMNTTAB; 3173 else 3174 newflag &= ~VFS_NOMNTTAB; 3175 3176 if (coveredvp != NULL) { 3177 ASSERT(vn_vfswlock_held(coveredvp)); 3178 coveredvp->v_vfsmountedhere = vfsp; 3179 VN_HOLD(coveredvp); 3180 } 3181 vfsp->vfs_vnodecovered = coveredvp; 3182 vfsp->vfs_flag = newflag; 3183 3184 vfs_list_add(vfsp); 3185 } 3186 3187 /* 3188 * Remove a vfs from the vfs list, null out the pointer from the 3189 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3190 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3191 * reference to the vfs and to the covered vnode. 3192 * 3193 * Called from dounmount after it's confirmed with the file system 3194 * that the unmount is legal. 3195 */ 3196 void 3197 vfs_remove(struct vfs *vfsp) 3198 { 3199 vnode_t *vp; 3200 3201 ASSERT(vfs_lock_held(vfsp)); 3202 3203 /* 3204 * Can't unmount root. Should never happen because fs will 3205 * be busy. 3206 */ 3207 if (vfsp == rootvfs) 3208 panic("vfs_remove: unmounting root"); 3209 3210 vfs_list_remove(vfsp); 3211 3212 /* 3213 * Unhook from the file system name space. 3214 */ 3215 vp = vfsp->vfs_vnodecovered; 3216 ASSERT(vn_vfswlock_held(vp)); 3217 vp->v_vfsmountedhere = NULL; 3218 vfsp->vfs_vnodecovered = NULL; 3219 VN_RELE(vp); 3220 3221 /* 3222 * Release lock and wakeup anybody waiting. 3223 */ 3224 vfs_unlock(vfsp); 3225 VFS_RELE(vfsp); 3226 } 3227 3228 /* 3229 * Lock a filesystem to prevent access to it while mounting, 3230 * unmounting and syncing. Return EBUSY immediately if lock 3231 * can't be acquired. 3232 */ 3233 int 3234 vfs_lock(vfs_t *vfsp) 3235 { 3236 vn_vfslocks_entry_t *vpvfsentry; 3237 3238 vpvfsentry = vn_vfslocks_getlock(vfsp); 3239 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3240 return (0); 3241 3242 vn_vfslocks_rele(vpvfsentry); 3243 return (EBUSY); 3244 } 3245 3246 int 3247 vfs_rlock(vfs_t *vfsp) 3248 { 3249 vn_vfslocks_entry_t *vpvfsentry; 3250 3251 vpvfsentry = vn_vfslocks_getlock(vfsp); 3252 3253 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3254 return (0); 3255 3256 vn_vfslocks_rele(vpvfsentry); 3257 return (EBUSY); 3258 } 3259 3260 void 3261 vfs_lock_wait(vfs_t *vfsp) 3262 { 3263 vn_vfslocks_entry_t *vpvfsentry; 3264 3265 vpvfsentry = vn_vfslocks_getlock(vfsp); 3266 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3267 } 3268 3269 void 3270 vfs_rlock_wait(vfs_t *vfsp) 3271 { 3272 vn_vfslocks_entry_t *vpvfsentry; 3273 3274 vpvfsentry = vn_vfslocks_getlock(vfsp); 3275 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3276 } 3277 3278 /* 3279 * Unlock a locked filesystem. 3280 */ 3281 void 3282 vfs_unlock(vfs_t *vfsp) 3283 { 3284 vn_vfslocks_entry_t *vpvfsentry; 3285 3286 /* 3287 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3288 * And these changes should remain for the patch changes as it is. 3289 */ 3290 if (panicstr) 3291 return; 3292 3293 /* 3294 * ve_refcount needs to be dropped twice here. 3295 * 1. To release refernce after a call to vfs_locks_getlock() 3296 * 2. To release the reference from the locking routines like 3297 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3298 */ 3299 3300 vpvfsentry = vn_vfslocks_getlock(vfsp); 3301 vn_vfslocks_rele(vpvfsentry); 3302 3303 rwst_exit(&vpvfsentry->ve_lock); 3304 vn_vfslocks_rele(vpvfsentry); 3305 } 3306 3307 /* 3308 * Utility routine that allows a filesystem to construct its 3309 * fsid in "the usual way" - by munging some underlying dev_t and 3310 * the filesystem type number into the 64-bit fsid. Note that 3311 * this implicitly relies on dev_t persistence to make filesystem 3312 * id's persistent. 3313 * 3314 * There's nothing to prevent an individual fs from constructing its 3315 * fsid in a different way, and indeed they should. 3316 * 3317 * Since we want fsids to be 32-bit quantities (so that they can be 3318 * exported identically by either 32-bit or 64-bit APIs, as well as 3319 * the fact that fsid's are "known" to NFS), we compress the device 3320 * number given down to 32-bits, and panic if that isn't possible. 3321 */ 3322 void 3323 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3324 { 3325 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3326 panic("device number too big for fsid!"); 3327 fsi->val[1] = val; 3328 } 3329 3330 int 3331 vfs_lock_held(vfs_t *vfsp) 3332 { 3333 int held; 3334 vn_vfslocks_entry_t *vpvfsentry; 3335 3336 /* 3337 * vfs_lock_held will mimic sema_held behaviour 3338 * if panicstr is set. And these changes should remain 3339 * for the patch changes as it is. 3340 */ 3341 if (panicstr) 3342 return (1); 3343 3344 vpvfsentry = vn_vfslocks_getlock(vfsp); 3345 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3346 3347 vn_vfslocks_rele(vpvfsentry); 3348 return (held); 3349 } 3350 3351 struct _kthread * 3352 vfs_lock_owner(vfs_t *vfsp) 3353 { 3354 struct _kthread *owner; 3355 vn_vfslocks_entry_t *vpvfsentry; 3356 3357 /* 3358 * vfs_wlock_held will mimic sema_held behaviour 3359 * if panicstr is set. And these changes should remain 3360 * for the patch changes as it is. 3361 */ 3362 if (panicstr) 3363 return (NULL); 3364 3365 vpvfsentry = vn_vfslocks_getlock(vfsp); 3366 owner = rwst_owner(&vpvfsentry->ve_lock); 3367 3368 vn_vfslocks_rele(vpvfsentry); 3369 return (owner); 3370 } 3371 3372 /* 3373 * vfs list locking. 3374 * 3375 * Rather than manipulate the vfslist lock directly, we abstract into lock 3376 * and unlock routines to allow the locking implementation to be changed for 3377 * clustering. 3378 * 3379 * Whenever the vfs list is modified through its hash links, the overall list 3380 * lock must be obtained before locking the relevant hash bucket. But to see 3381 * whether a given vfs is on the list, it suffices to obtain the lock for the 3382 * hash bucket without getting the overall list lock. (See getvfs() below.) 3383 */ 3384 3385 void 3386 vfs_list_lock() 3387 { 3388 rw_enter(&vfslist, RW_WRITER); 3389 } 3390 3391 void 3392 vfs_list_read_lock() 3393 { 3394 rw_enter(&vfslist, RW_READER); 3395 } 3396 3397 void 3398 vfs_list_unlock() 3399 { 3400 rw_exit(&vfslist); 3401 } 3402 3403 /* 3404 * Low level worker routines for adding entries to and removing entries from 3405 * the vfs list. 3406 */ 3407 3408 static void 3409 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3410 { 3411 int vhno; 3412 struct vfs **hp; 3413 dev_t dev; 3414 3415 ASSERT(RW_WRITE_HELD(&vfslist)); 3416 3417 dev = expldev(vfsp->vfs_fsid.val[0]); 3418 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3419 3420 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3421 3422 /* 3423 * Link into the hash table, inserting it at the end, so that LOFS 3424 * with the same fsid as UFS (or other) file systems will not hide the 3425 * UFS. 3426 */ 3427 if (insert_at_head) { 3428 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3429 rvfs_list[vhno].rvfs_head = vfsp; 3430 } else { 3431 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3432 hp = &(*hp)->vfs_hash) 3433 continue; 3434 /* 3435 * hp now contains the address of the pointer to update 3436 * to effect the insertion. 3437 */ 3438 vfsp->vfs_hash = NULL; 3439 *hp = vfsp; 3440 } 3441 3442 rvfs_list[vhno].rvfs_len++; 3443 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3444 } 3445 3446 3447 static void 3448 vfs_hash_remove(struct vfs *vfsp) 3449 { 3450 int vhno; 3451 struct vfs *tvfsp; 3452 dev_t dev; 3453 3454 ASSERT(RW_WRITE_HELD(&vfslist)); 3455 3456 dev = expldev(vfsp->vfs_fsid.val[0]); 3457 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3458 3459 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3460 3461 /* 3462 * Remove from hash. 3463 */ 3464 if (rvfs_list[vhno].rvfs_head == vfsp) { 3465 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3466 rvfs_list[vhno].rvfs_len--; 3467 goto foundit; 3468 } 3469 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3470 tvfsp = tvfsp->vfs_hash) { 3471 if (tvfsp->vfs_hash == vfsp) { 3472 tvfsp->vfs_hash = vfsp->vfs_hash; 3473 rvfs_list[vhno].rvfs_len--; 3474 goto foundit; 3475 } 3476 } 3477 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3478 3479 foundit: 3480 3481 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3482 } 3483 3484 3485 void 3486 vfs_list_add(struct vfs *vfsp) 3487 { 3488 zone_t *zone; 3489 3490 /* 3491 * The zone that owns the mount is the one that performed the mount. 3492 * Note that this isn't necessarily the same as the zone mounted into. 3493 * The corresponding zone_rele() will be done when the vfs_t is 3494 * being free'd. 3495 */ 3496 vfsp->vfs_zone = curproc->p_zone; 3497 zone_hold(vfsp->vfs_zone); 3498 3499 /* 3500 * Find the zone mounted into, and put this mount on its vfs list. 3501 */ 3502 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3503 ASSERT(zone != NULL); 3504 /* 3505 * Special casing for the root vfs. This structure is allocated 3506 * statically and hooked onto rootvfs at link time. During the 3507 * vfs_mountroot call at system startup time, the root file system's 3508 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3509 * as argument. The code below must detect and handle this special 3510 * case. The only apparent justification for this special casing is 3511 * to ensure that the root file system appears at the head of the 3512 * list. 3513 * 3514 * XXX: I'm assuming that it's ok to do normal list locking when 3515 * adding the entry for the root file system (this used to be 3516 * done with no locks held). 3517 */ 3518 vfs_list_lock(); 3519 /* 3520 * Link into the vfs list proper. 3521 */ 3522 if (vfsp == &root) { 3523 /* 3524 * Assert: This vfs is already on the list as its first entry. 3525 * Thus, there's nothing to do. 3526 */ 3527 ASSERT(rootvfs == vfsp); 3528 /* 3529 * Add it to the head of the global zone's vfslist. 3530 */ 3531 ASSERT(zone == global_zone); 3532 ASSERT(zone->zone_vfslist == NULL); 3533 zone->zone_vfslist = vfsp; 3534 } else { 3535 /* 3536 * Link to end of list using vfs_prev (as rootvfs is now a 3537 * doubly linked circular list) so list is in mount order for 3538 * mnttab use. 3539 */ 3540 rootvfs->vfs_prev->vfs_next = vfsp; 3541 vfsp->vfs_prev = rootvfs->vfs_prev; 3542 rootvfs->vfs_prev = vfsp; 3543 vfsp->vfs_next = rootvfs; 3544 3545 /* 3546 * Do it again for the zone-private list (which may be NULL). 3547 */ 3548 if (zone->zone_vfslist == NULL) { 3549 ASSERT(zone != global_zone); 3550 zone->zone_vfslist = vfsp; 3551 } else { 3552 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3553 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3554 zone->zone_vfslist->vfs_zone_prev = vfsp; 3555 vfsp->vfs_zone_next = zone->zone_vfslist; 3556 } 3557 } 3558 3559 /* 3560 * Link into the hash table, inserting it at the end, so that LOFS 3561 * with the same fsid as UFS (or other) file systems will not hide 3562 * the UFS. 3563 */ 3564 vfs_hash_add(vfsp, 0); 3565 3566 /* 3567 * update the mnttab modification time 3568 */ 3569 vfs_mnttab_modtimeupd(); 3570 vfs_list_unlock(); 3571 zone_rele(zone); 3572 } 3573 3574 void 3575 vfs_list_remove(struct vfs *vfsp) 3576 { 3577 zone_t *zone; 3578 3579 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3580 ASSERT(zone != NULL); 3581 /* 3582 * Callers are responsible for preventing attempts to unmount the 3583 * root. 3584 */ 3585 ASSERT(vfsp != rootvfs); 3586 3587 vfs_list_lock(); 3588 3589 /* 3590 * Remove from hash. 3591 */ 3592 vfs_hash_remove(vfsp); 3593 3594 /* 3595 * Remove from vfs list. 3596 */ 3597 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3598 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3599 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3600 3601 /* 3602 * Remove from zone-specific vfs list. 3603 */ 3604 if (zone->zone_vfslist == vfsp) 3605 zone->zone_vfslist = vfsp->vfs_zone_next; 3606 3607 if (vfsp->vfs_zone_next == vfsp) { 3608 ASSERT(vfsp->vfs_zone_prev == vfsp); 3609 ASSERT(zone->zone_vfslist == vfsp); 3610 zone->zone_vfslist = NULL; 3611 } 3612 3613 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3614 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3615 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3616 3617 /* 3618 * update the mnttab modification time 3619 */ 3620 vfs_mnttab_modtimeupd(); 3621 vfs_list_unlock(); 3622 zone_rele(zone); 3623 } 3624 3625 struct vfs * 3626 getvfs(fsid_t *fsid) 3627 { 3628 struct vfs *vfsp; 3629 int val0 = fsid->val[0]; 3630 int val1 = fsid->val[1]; 3631 dev_t dev = expldev(val0); 3632 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3633 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3634 3635 mutex_enter(hmp); 3636 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3637 if (vfsp->vfs_fsid.val[0] == val0 && 3638 vfsp->vfs_fsid.val[1] == val1) { 3639 VFS_HOLD(vfsp); 3640 mutex_exit(hmp); 3641 return (vfsp); 3642 } 3643 } 3644 mutex_exit(hmp); 3645 return (NULL); 3646 } 3647 3648 /* 3649 * Search the vfs mount in progress list for a specified device/vfs entry. 3650 * Returns 0 if the first entry in the list that the device matches has the 3651 * given vfs pointer as well. If the device matches but a different vfs 3652 * pointer is encountered in the list before the given vfs pointer then 3653 * a 1 is returned. 3654 */ 3655 3656 int 3657 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3658 { 3659 int retval = 0; 3660 struct ipmnt *mipp; 3661 3662 mutex_enter(&vfs_miplist_mutex); 3663 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3664 if (mipp->mip_dev == dev) { 3665 if (mipp->mip_vfsp != vfsp) 3666 retval = 1; 3667 break; 3668 } 3669 } 3670 mutex_exit(&vfs_miplist_mutex); 3671 return (retval); 3672 } 3673 3674 /* 3675 * Search the vfs list for a specified device. Returns 1, if entry is found 3676 * or 0 if no suitable entry is found. 3677 */ 3678 3679 int 3680 vfs_devismounted(dev_t dev) 3681 { 3682 struct vfs *vfsp; 3683 int found; 3684 3685 vfs_list_read_lock(); 3686 vfsp = rootvfs; 3687 found = 0; 3688 do { 3689 if (vfsp->vfs_dev == dev) { 3690 found = 1; 3691 break; 3692 } 3693 vfsp = vfsp->vfs_next; 3694 } while (vfsp != rootvfs); 3695 3696 vfs_list_unlock(); 3697 return (found); 3698 } 3699 3700 /* 3701 * Search the vfs list for a specified device. Returns a pointer to it 3702 * or NULL if no suitable entry is found. The caller of this routine 3703 * is responsible for releasing the returned vfs pointer. 3704 */ 3705 struct vfs * 3706 vfs_dev2vfsp(dev_t dev) 3707 { 3708 struct vfs *vfsp; 3709 int found; 3710 3711 vfs_list_read_lock(); 3712 vfsp = rootvfs; 3713 found = 0; 3714 do { 3715 /* 3716 * The following could be made more efficient by making 3717 * the entire loop use vfs_zone_next if the call is from 3718 * a zone. The only callers, however, ustat(2) and 3719 * umount2(2), don't seem to justify the added 3720 * complexity at present. 3721 */ 3722 if (vfsp->vfs_dev == dev && 3723 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3724 curproc->p_zone)) { 3725 VFS_HOLD(vfsp); 3726 found = 1; 3727 break; 3728 } 3729 vfsp = vfsp->vfs_next; 3730 } while (vfsp != rootvfs); 3731 vfs_list_unlock(); 3732 return (found ? vfsp: NULL); 3733 } 3734 3735 /* 3736 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3737 * or NULL if no suitable entry is found. The caller of this routine 3738 * is responsible for releasing the returned vfs pointer. 3739 * 3740 * Note that if multiple mntpoints match, the last one matching is 3741 * returned in an attempt to return the "top" mount when overlay 3742 * mounts are covering the same mount point. This is accomplished by starting 3743 * at the end of the list and working our way backwards, stopping at the first 3744 * matching mount. 3745 */ 3746 struct vfs * 3747 vfs_mntpoint2vfsp(const char *mp) 3748 { 3749 struct vfs *vfsp; 3750 struct vfs *retvfsp = NULL; 3751 zone_t *zone = curproc->p_zone; 3752 struct vfs *list; 3753 3754 vfs_list_read_lock(); 3755 if (getzoneid() == GLOBAL_ZONEID) { 3756 /* 3757 * The global zone may see filesystems in any zone. 3758 */ 3759 vfsp = rootvfs->vfs_prev; 3760 do { 3761 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3762 retvfsp = vfsp; 3763 break; 3764 } 3765 vfsp = vfsp->vfs_prev; 3766 } while (vfsp != rootvfs->vfs_prev); 3767 } else if ((list = zone->zone_vfslist) != NULL) { 3768 const char *mntpt; 3769 3770 vfsp = list->vfs_zone_prev; 3771 do { 3772 mntpt = refstr_value(vfsp->vfs_mntpt); 3773 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3774 if (strcmp(mntpt, mp) == 0) { 3775 retvfsp = vfsp; 3776 break; 3777 } 3778 vfsp = vfsp->vfs_zone_prev; 3779 } while (vfsp != list->vfs_zone_prev); 3780 } 3781 if (retvfsp) 3782 VFS_HOLD(retvfsp); 3783 vfs_list_unlock(); 3784 return (retvfsp); 3785 } 3786 3787 /* 3788 * Search the vfs list for a specified vfsops. 3789 * if vfs entry is found then return 1, else 0. 3790 */ 3791 int 3792 vfs_opsinuse(vfsops_t *ops) 3793 { 3794 struct vfs *vfsp; 3795 int found; 3796 3797 vfs_list_read_lock(); 3798 vfsp = rootvfs; 3799 found = 0; 3800 do { 3801 if (vfs_getops(vfsp) == ops) { 3802 found = 1; 3803 break; 3804 } 3805 vfsp = vfsp->vfs_next; 3806 } while (vfsp != rootvfs); 3807 vfs_list_unlock(); 3808 return (found); 3809 } 3810 3811 /* 3812 * Allocate an entry in vfssw for a file system type 3813 */ 3814 struct vfssw * 3815 allocate_vfssw(char *type) 3816 { 3817 struct vfssw *vswp; 3818 3819 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3820 /* 3821 * The vfssw table uses the empty string to identify an 3822 * available entry; we cannot add any type which has 3823 * a leading NUL. The string length is limited to 3824 * the size of the st_fstype array in struct stat. 3825 */ 3826 return (NULL); 3827 } 3828 3829 ASSERT(VFSSW_WRITE_LOCKED()); 3830 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3831 if (!ALLOCATED_VFSSW(vswp)) { 3832 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3833 (void) strcpy(vswp->vsw_name, type); 3834 ASSERT(vswp->vsw_count == 0); 3835 vswp->vsw_count = 1; 3836 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3837 return (vswp); 3838 } 3839 return (NULL); 3840 } 3841 3842 /* 3843 * Impose additional layer of translation between vfstype names 3844 * and module names in the filesystem. 3845 */ 3846 static char * 3847 vfs_to_modname(char *vfstype) 3848 { 3849 if (strcmp(vfstype, "proc") == 0) { 3850 vfstype = "procfs"; 3851 } else if (strcmp(vfstype, "fd") == 0) { 3852 vfstype = "fdfs"; 3853 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3854 vfstype = "nfs"; 3855 } 3856 3857 return (vfstype); 3858 } 3859 3860 /* 3861 * Find a vfssw entry given a file system type name. 3862 * Try to autoload the filesystem if it's not found. 3863 * If it's installed, return the vfssw locked to prevent unloading. 3864 */ 3865 struct vfssw * 3866 vfs_getvfssw(char *type) 3867 { 3868 struct vfssw *vswp; 3869 char *modname; 3870 3871 RLOCK_VFSSW(); 3872 vswp = vfs_getvfsswbyname(type); 3873 modname = vfs_to_modname(type); 3874 3875 if (rootdir == NULL) { 3876 /* 3877 * If we haven't yet loaded the root file system, then our 3878 * _init won't be called until later. Allocate vfssw entry, 3879 * because mod_installfs won't be called. 3880 */ 3881 if (vswp == NULL) { 3882 RUNLOCK_VFSSW(); 3883 WLOCK_VFSSW(); 3884 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3885 if ((vswp = allocate_vfssw(type)) == NULL) { 3886 WUNLOCK_VFSSW(); 3887 return (NULL); 3888 } 3889 } 3890 WUNLOCK_VFSSW(); 3891 RLOCK_VFSSW(); 3892 } 3893 if (!VFS_INSTALLED(vswp)) { 3894 RUNLOCK_VFSSW(); 3895 (void) modloadonly("fs", modname); 3896 } else 3897 RUNLOCK_VFSSW(); 3898 return (vswp); 3899 } 3900 3901 /* 3902 * Try to load the filesystem. Before calling modload(), we drop 3903 * our lock on the VFS switch table, and pick it up after the 3904 * module is loaded. However, there is a potential race: the 3905 * module could be unloaded after the call to modload() completes 3906 * but before we pick up the lock and drive on. Therefore, 3907 * we keep reloading the module until we've loaded the module 3908 * _and_ we have the lock on the VFS switch table. 3909 */ 3910 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3911 RUNLOCK_VFSSW(); 3912 if (modload("fs", modname) == -1) 3913 return (NULL); 3914 RLOCK_VFSSW(); 3915 if (vswp == NULL) 3916 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3917 break; 3918 } 3919 RUNLOCK_VFSSW(); 3920 3921 return (vswp); 3922 } 3923 3924 /* 3925 * Find a vfssw entry given a file system type name. 3926 */ 3927 struct vfssw * 3928 vfs_getvfsswbyname(char *type) 3929 { 3930 struct vfssw *vswp; 3931 3932 ASSERT(VFSSW_LOCKED()); 3933 if (type == NULL || *type == '\0') 3934 return (NULL); 3935 3936 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3937 if (strcmp(type, vswp->vsw_name) == 0) { 3938 vfs_refvfssw(vswp); 3939 return (vswp); 3940 } 3941 } 3942 3943 return (NULL); 3944 } 3945 3946 /* 3947 * Find a vfssw entry given a set of vfsops. 3948 */ 3949 struct vfssw * 3950 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3951 { 3952 struct vfssw *vswp; 3953 3954 RLOCK_VFSSW(); 3955 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3956 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3957 vfs_refvfssw(vswp); 3958 RUNLOCK_VFSSW(); 3959 return (vswp); 3960 } 3961 } 3962 RUNLOCK_VFSSW(); 3963 3964 return (NULL); 3965 } 3966 3967 /* 3968 * Reference a vfssw entry. 3969 */ 3970 void 3971 vfs_refvfssw(struct vfssw *vswp) 3972 { 3973 3974 mutex_enter(&vswp->vsw_lock); 3975 vswp->vsw_count++; 3976 mutex_exit(&vswp->vsw_lock); 3977 } 3978 3979 /* 3980 * Unreference a vfssw entry. 3981 */ 3982 void 3983 vfs_unrefvfssw(struct vfssw *vswp) 3984 { 3985 3986 mutex_enter(&vswp->vsw_lock); 3987 vswp->vsw_count--; 3988 mutex_exit(&vswp->vsw_lock); 3989 } 3990 3991 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3992 int sync_timeleft; /* portion of sync_timeout remaining */ 3993 3994 static int sync_retries = 20; /* number of retries when not making progress */ 3995 static int sync_triesleft; /* portion of sync_retries remaining */ 3996 3997 static pgcnt_t old_pgcnt, new_pgcnt; 3998 static int new_bufcnt, old_bufcnt; 3999 4000 /* 4001 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4002 * complete. We wait by counting the number of dirty pages and buffers, 4003 * pushing them out using bio_busy() and page_busy(), and then counting again. 4004 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4005 * the SYNC phase of the panic code (see comments in panic.c). It should only 4006 * be used after some higher-level mechanism has quiesced the system so that 4007 * new writes are not being initiated while we are waiting for completion. 4008 * 4009 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4010 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4011 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4012 * Together these ensure that syncing completes if our i/o paths are stuck. 4013 * The counters are declared above so they can be found easily in the debugger. 4014 * 4015 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4016 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4017 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4018 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4019 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4020 * deadlocking or hanging inside of a broken filesystem or driver routine. 4021 * 4022 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4023 * sync_retries consecutive calls to bio_busy() and page_busy() without 4024 * decreasing either the number of dirty buffers or dirty pages below the 4025 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4026 * 4027 * Each loop iteration ends with a call to delay() one second to allow time for 4028 * i/o completion and to permit the user time to read our progress messages. 4029 */ 4030 void 4031 vfs_syncall(void) 4032 { 4033 if (rootdir == NULL && !modrootloaded) 4034 return; /* panic during boot - no filesystems yet */ 4035 4036 printf("syncing file systems..."); 4037 vfs_syncprogress(); 4038 sync(); 4039 4040 vfs_syncprogress(); 4041 sync_triesleft = sync_retries; 4042 4043 old_bufcnt = new_bufcnt = INT_MAX; 4044 old_pgcnt = new_pgcnt = ULONG_MAX; 4045 4046 while (sync_triesleft > 0) { 4047 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4048 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4049 4050 new_bufcnt = bio_busy(B_TRUE); 4051 new_pgcnt = page_busy(B_TRUE); 4052 vfs_syncprogress(); 4053 4054 if (new_bufcnt == 0 && new_pgcnt == 0) 4055 break; 4056 4057 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4058 sync_triesleft = sync_retries; 4059 else 4060 sync_triesleft--; 4061 4062 if (new_bufcnt) 4063 printf(" [%d]", new_bufcnt); 4064 if (new_pgcnt) 4065 printf(" %lu", new_pgcnt); 4066 4067 delay(hz); 4068 } 4069 4070 if (new_bufcnt != 0 || new_pgcnt != 0) 4071 printf(" done (not all i/o completed)\n"); 4072 else 4073 printf(" done\n"); 4074 4075 sync_timeleft = 0; 4076 delay(hz); 4077 } 4078 4079 /* 4080 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4081 * sync_timeout to indicate that we are making progress and the deadman() 4082 * omnipresent cyclic should not yet time us out. Note that it is safe to 4083 * store to sync_timeleft here since the deadman() is firing at high-level 4084 * on top of us. If we are racing with the deadman(), either the deadman() 4085 * will decrement the old value and then we will reset it, or we will 4086 * reset it and then the deadman() will immediately decrement it. In either 4087 * case, correct behavior results. 4088 */ 4089 void 4090 vfs_syncprogress(void) 4091 { 4092 if (panicstr) 4093 sync_timeleft = sync_timeout; 4094 } 4095 4096 /* 4097 * Map VFS flags to statvfs flags. These shouldn't really be separate 4098 * flags at all. 4099 */ 4100 uint_t 4101 vf_to_stf(uint_t vf) 4102 { 4103 uint_t stf = 0; 4104 4105 if (vf & VFS_RDONLY) 4106 stf |= ST_RDONLY; 4107 if (vf & VFS_NOSETUID) 4108 stf |= ST_NOSUID; 4109 if (vf & VFS_NOTRUNC) 4110 stf |= ST_NOTRUNC; 4111 4112 return (stf); 4113 } 4114 4115 /* 4116 * Entries for (illegal) fstype 0. 4117 */ 4118 /* ARGSUSED */ 4119 int 4120 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4121 { 4122 cmn_err(CE_PANIC, "stray vfs operation"); 4123 return (0); 4124 } 4125 4126 /* 4127 * Entries for (illegal) fstype 0. 4128 */ 4129 int 4130 vfsstray(void) 4131 { 4132 cmn_err(CE_PANIC, "stray vfs operation"); 4133 return (0); 4134 } 4135 4136 /* 4137 * Support for dealing with forced UFS unmount and its interaction with 4138 * LOFS. Could be used by any filesystem. 4139 * See bug 1203132. 4140 */ 4141 int 4142 vfs_EIO(void) 4143 { 4144 return (EIO); 4145 } 4146 4147 /* 4148 * We've gotta define the op for sync separately, since the compiler gets 4149 * confused if we mix and match ANSI and normal style prototypes when 4150 * a "short" argument is present and spits out a warning. 4151 */ 4152 /*ARGSUSED*/ 4153 int 4154 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4155 { 4156 return (EIO); 4157 } 4158 4159 vfs_t EIO_vfs; 4160 vfsops_t *EIO_vfsops; 4161 4162 /* 4163 * Called from startup() to initialize all loaded vfs's 4164 */ 4165 void 4166 vfsinit(void) 4167 { 4168 struct vfssw *vswp; 4169 int error; 4170 extern int vopstats_enabled; 4171 extern void vopstats_startup(); 4172 4173 static const fs_operation_def_t EIO_vfsops_template[] = { 4174 VFSNAME_MOUNT, { .error = vfs_EIO }, 4175 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4176 VFSNAME_ROOT, { .error = vfs_EIO }, 4177 VFSNAME_STATVFS, { .error = vfs_EIO }, 4178 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4179 VFSNAME_VGET, { .error = vfs_EIO }, 4180 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4181 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4182 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4183 NULL, NULL 4184 }; 4185 4186 static const fs_operation_def_t stray_vfsops_template[] = { 4187 VFSNAME_MOUNT, { .error = vfsstray }, 4188 VFSNAME_UNMOUNT, { .error = vfsstray }, 4189 VFSNAME_ROOT, { .error = vfsstray }, 4190 VFSNAME_STATVFS, { .error = vfsstray }, 4191 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4192 VFSNAME_VGET, { .error = vfsstray }, 4193 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4194 VFSNAME_FREEVFS, { .error = vfsstray }, 4195 VFSNAME_VNSTATE, { .error = vfsstray }, 4196 NULL, NULL 4197 }; 4198 4199 /* Create vfs cache */ 4200 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4201 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4202 4203 /* Initialize the vnode cache (file systems may use it during init). */ 4204 vn_create_cache(); 4205 4206 /* Setup event monitor framework */ 4207 fem_init(); 4208 4209 /* Initialize the dummy stray file system type. */ 4210 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4211 4212 /* Initialize the dummy EIO file system. */ 4213 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4214 if (error != 0) { 4215 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4216 /* Shouldn't happen, but not bad enough to panic */ 4217 } 4218 4219 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4220 4221 /* 4222 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4223 * on this vfs can immediately notice it's invalid. 4224 */ 4225 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4226 4227 /* 4228 * Call the init routines of non-loadable filesystems only. 4229 * Filesystems which are loaded as separate modules will be 4230 * initialized by the module loading code instead. 4231 */ 4232 4233 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4234 RLOCK_VFSSW(); 4235 if (vswp->vsw_init != NULL) 4236 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4237 RUNLOCK_VFSSW(); 4238 } 4239 4240 vopstats_startup(); 4241 4242 if (vopstats_enabled) { 4243 /* EIO_vfs can collect stats, but we don't retrieve them */ 4244 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4245 EIO_vfs.vfs_fstypevsp = NULL; 4246 EIO_vfs.vfs_vskap = NULL; 4247 EIO_vfs.vfs_flag |= VFS_STATS; 4248 } 4249 4250 xattr_init(); 4251 } 4252 4253 vfs_t * 4254 vfs_alloc(int kmflag) 4255 { 4256 vfs_t *vfsp; 4257 4258 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4259 4260 /* 4261 * Do the simplest initialization here. 4262 * Everything else gets done in vfs_init() 4263 */ 4264 bzero(vfsp, sizeof (vfs_t)); 4265 return (vfsp); 4266 } 4267 4268 void 4269 vfs_free(vfs_t *vfsp) 4270 { 4271 /* 4272 * One would be tempted to assert that "vfsp->vfs_count == 0". 4273 * The problem is that this gets called out of domount() with 4274 * a partially initialized vfs and a vfs_count of 1. This is 4275 * also called from vfs_rele() with a vfs_count of 0. We can't 4276 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4277 * returned. This is because VFS_MOUNT() fully initializes the 4278 * vfs structure and its associated data. VFS_RELE() will call 4279 * VFS_FREEVFS() which may panic the system if the data structures 4280 * aren't fully initialized from a successful VFS_MOUNT()). 4281 */ 4282 4283 /* If FEM was in use, make sure everything gets cleaned up */ 4284 if (vfsp->vfs_femhead) { 4285 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4286 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4287 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4288 vfsp->vfs_femhead = NULL; 4289 } 4290 4291 if (vfsp->vfs_implp) 4292 vfsimpl_teardown(vfsp); 4293 sema_destroy(&vfsp->vfs_reflock); 4294 kmem_cache_free(vfs_cache, vfsp); 4295 } 4296 4297 /* 4298 * Increments the vfs reference count by one atomically. 4299 */ 4300 void 4301 vfs_hold(vfs_t *vfsp) 4302 { 4303 atomic_add_32(&vfsp->vfs_count, 1); 4304 ASSERT(vfsp->vfs_count != 0); 4305 } 4306 4307 /* 4308 * Decrements the vfs reference count by one atomically. When 4309 * vfs reference count becomes zero, it calls the file system 4310 * specific vfs_freevfs() to free up the resources. 4311 */ 4312 void 4313 vfs_rele(vfs_t *vfsp) 4314 { 4315 ASSERT(vfsp->vfs_count != 0); 4316 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4317 VFS_FREEVFS(vfsp); 4318 lofi_remove(vfsp); 4319 if (vfsp->vfs_zone) 4320 zone_rele(vfsp->vfs_zone); 4321 vfs_freemnttab(vfsp); 4322 vfs_free(vfsp); 4323 } 4324 } 4325 4326 /* 4327 * Generic operations vector support. 4328 * 4329 * This is used to build operations vectors for both the vfs and vnode. 4330 * It's normally called only when a file system is loaded. 4331 * 4332 * There are many possible algorithms for this, including the following: 4333 * 4334 * (1) scan the list of known operations; for each, see if the file system 4335 * includes an entry for it, and fill it in as appropriate. 4336 * 4337 * (2) set up defaults for all known operations. scan the list of ops 4338 * supplied by the file system; for each which is both supplied and 4339 * known, fill it in. 4340 * 4341 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4342 * in entries as we go. 4343 * 4344 * we choose (1) for simplicity, and because performance isn't critical here. 4345 * note that (2) could be sped up using a precomputed hash table on known ops. 4346 * (3) could be faster than either, but only if the lists were very large or 4347 * supplied in sorted order. 4348 * 4349 */ 4350 4351 int 4352 fs_build_vector(void *vector, int *unused_ops, 4353 const fs_operation_trans_def_t *translation, 4354 const fs_operation_def_t *operations) 4355 { 4356 int i, num_trans, num_ops, used; 4357 4358 /* 4359 * Count the number of translations and the number of supplied 4360 * operations. 4361 */ 4362 4363 { 4364 const fs_operation_trans_def_t *p; 4365 4366 for (num_trans = 0, p = translation; 4367 p->name != NULL; 4368 num_trans++, p++) 4369 ; 4370 } 4371 4372 { 4373 const fs_operation_def_t *p; 4374 4375 for (num_ops = 0, p = operations; 4376 p->name != NULL; 4377 num_ops++, p++) 4378 ; 4379 } 4380 4381 /* Walk through each operation known to our caller. There will be */ 4382 /* one entry in the supplied "translation table" for each. */ 4383 4384 used = 0; 4385 4386 for (i = 0; i < num_trans; i++) { 4387 int j, found; 4388 char *curname; 4389 fs_generic_func_p result; 4390 fs_generic_func_p *location; 4391 4392 curname = translation[i].name; 4393 4394 /* Look for a matching operation in the list supplied by the */ 4395 /* file system. */ 4396 4397 found = 0; 4398 4399 for (j = 0; j < num_ops; j++) { 4400 if (strcmp(operations[j].name, curname) == 0) { 4401 used++; 4402 found = 1; 4403 break; 4404 } 4405 } 4406 4407 /* 4408 * If the file system is using a "placeholder" for default 4409 * or error functions, grab the appropriate function out of 4410 * the translation table. If the file system didn't supply 4411 * this operation at all, use the default function. 4412 */ 4413 4414 if (found) { 4415 result = operations[j].func.fs_generic; 4416 if (result == fs_default) { 4417 result = translation[i].defaultFunc; 4418 } else if (result == fs_error) { 4419 result = translation[i].errorFunc; 4420 } else if (result == NULL) { 4421 /* Null values are PROHIBITED */ 4422 return (EINVAL); 4423 } 4424 } else { 4425 result = translation[i].defaultFunc; 4426 } 4427 4428 /* Now store the function into the operations vector. */ 4429 4430 location = (fs_generic_func_p *) 4431 (((char *)vector) + translation[i].offset); 4432 4433 *location = result; 4434 } 4435 4436 *unused_ops = num_ops - used; 4437 4438 return (0); 4439 } 4440 4441 /* Placeholder functions, should never be called. */ 4442 4443 int 4444 fs_error(void) 4445 { 4446 cmn_err(CE_PANIC, "fs_error called"); 4447 return (0); 4448 } 4449 4450 int 4451 fs_default(void) 4452 { 4453 cmn_err(CE_PANIC, "fs_default called"); 4454 return (0); 4455 } 4456 4457 #ifdef __sparc 4458 4459 /* 4460 * Part of the implementation of booting off a mirrored root 4461 * involves a change of dev_t for the root device. To 4462 * accomplish this, first remove the existing hash table 4463 * entry for the root device, convert to the new dev_t, 4464 * then re-insert in the hash table at the head of the list. 4465 */ 4466 void 4467 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4468 { 4469 vfs_list_lock(); 4470 4471 vfs_hash_remove(vfsp); 4472 4473 vfsp->vfs_dev = ndev; 4474 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4475 4476 vfs_hash_add(vfsp, 1); 4477 4478 vfs_list_unlock(); 4479 } 4480 4481 #else /* x86 NEWBOOT */ 4482 4483 #if defined(__x86) 4484 extern int hvmboot_rootconf(); 4485 #endif /* __x86 */ 4486 4487 int 4488 rootconf() 4489 { 4490 int error; 4491 struct vfssw *vsw; 4492 extern void pm_init(); 4493 char *fstyp, *fsmod; 4494 4495 getrootfs(&fstyp, &fsmod); 4496 4497 #if defined(__x86) 4498 /* 4499 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4500 * which lives in /platform/i86hvm, and hence is only available when 4501 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4502 * is not available then the modstub for this function will return 0. 4503 * If the hvm_bootstrap misc module is available it will be loaded 4504 * and hvmboot_rootconf() will be invoked. 4505 */ 4506 if (error = hvmboot_rootconf()) 4507 return (error); 4508 #endif /* __x86 */ 4509 4510 if (error = clboot_rootconf()) 4511 return (error); 4512 4513 if (modload("fs", fsmod) == -1) 4514 panic("Cannot _init %s module", fsmod); 4515 4516 RLOCK_VFSSW(); 4517 vsw = vfs_getvfsswbyname(fstyp); 4518 RUNLOCK_VFSSW(); 4519 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4520 VFS_HOLD(rootvfs); 4521 4522 /* always mount readonly first */ 4523 rootvfs->vfs_flag |= VFS_RDONLY; 4524 4525 pm_init(); 4526 4527 if (netboot) 4528 (void) strplumb(); 4529 4530 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4531 vfs_unrefvfssw(vsw); 4532 rootdev = rootvfs->vfs_dev; 4533 4534 if (error) 4535 panic("cannot mount root path %s", rootfs.bo_name); 4536 return (error); 4537 } 4538 4539 /* 4540 * XXX this is called by nfs only and should probably be removed 4541 * If booted with ASKNAME, prompt on the console for a filesystem 4542 * name and return it. 4543 */ 4544 void 4545 getfsname(char *askfor, char *name, size_t namelen) 4546 { 4547 if (boothowto & RB_ASKNAME) { 4548 printf("%s name: ", askfor); 4549 console_gets(name, namelen); 4550 } 4551 } 4552 4553 /* 4554 * If server_path exists, then we are booting a diskless 4555 * client. Otherwise, we default to ufs. Zfs should perhaps be 4556 * another property. 4557 */ 4558 static void 4559 getrootfs(char **fstypp, char **fsmodp) 4560 { 4561 extern char *strplumb_get_netdev_path(void); 4562 char *propstr = NULL; 4563 4564 /* check fstype property; it should be nfsdyn for diskless */ 4565 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4566 DDI_PROP_DONTPASS, "fstype", &propstr) 4567 == DDI_SUCCESS) { 4568 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4569 ddi_prop_free(propstr); 4570 4571 /* 4572 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4573 * assume the type of this root filesystem is 'zfs'. 4574 */ 4575 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4576 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4577 == DDI_SUCCESS) { 4578 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4579 ddi_prop_free(propstr); 4580 } 4581 4582 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4583 *fstypp = *fsmodp = rootfs.bo_fstype; 4584 return; 4585 } 4586 4587 ++netboot; 4588 /* 4589 * check if path to network interface is specified in bootpath 4590 * or by a hypervisor domain configuration file. 4591 * XXPV - enable strlumb_get_netdev_path() 4592 */ 4593 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4594 "xpv-nfsroot")) { 4595 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4596 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4597 DDI_PROP_DONTPASS, "bootpath", &propstr) 4598 == DDI_SUCCESS) { 4599 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4600 ddi_prop_free(propstr); 4601 } else { 4602 /* attempt to determine netdev_path via boot_mac address */ 4603 netdev_path = strplumb_get_netdev_path(); 4604 if (netdev_path == NULL) 4605 panic("cannot find boot network interface"); 4606 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4607 } 4608 *fstypp = rootfs.bo_fstype; 4609 *fsmodp = "nfs"; 4610 } 4611 #endif 4612 4613 /* 4614 * VFS feature routines 4615 */ 4616 4617 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4618 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4619 4620 /* Register a feature in the vfs */ 4621 void 4622 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4623 { 4624 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4625 if (vfsp->vfs_implp == NULL) 4626 return; 4627 4628 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4629 } 4630 4631 /* 4632 * Query a vfs for a feature. 4633 * Returns 1 if feature is present, 0 if not 4634 */ 4635 int 4636 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4637 { 4638 int ret = 0; 4639 4640 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4641 if (vfsp->vfs_implp == NULL) 4642 return (ret); 4643 4644 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4645 ret = 1; 4646 4647 return (ret); 4648 } 4649 4650 /* 4651 * Propagate feature set from one vfs to another 4652 */ 4653 void 4654 vfs_propagate_features(vfs_t *from, vfs_t *to) 4655 { 4656 int i; 4657 4658 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4659 return; 4660 4661 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4662 to->vfs_featureset[i] = from->vfs_featureset[i]; 4663 } 4664 } 4665 4666 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4667 4668 /* 4669 * Return the vnode for the lofi node if there's a lofi mount in place. 4670 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4671 * failure. 4672 */ 4673 int 4674 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4675 { 4676 char *path = NULL; 4677 int strsize; 4678 int err; 4679 4680 if (vfsp->vfs_lofi_minor == 0) { 4681 *vpp = NULL; 4682 return (-1); 4683 } 4684 4685 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4686 path = kmem_alloc(strsize + 1, KM_SLEEP); 4687 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4688 4689 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4690 4691 if (err) 4692 *vpp = NULL; 4693 4694 kmem_free(path, strsize + 1); 4695 return (err); 4696 } 4697