1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/errno.h> 47 #include <sys/user.h> 48 #include <sys/fstyp.h> 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/vfs.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 92 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 93 const char *, int, int); 94 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 95 static void vfs_freemnttab(struct vfs *); 96 static void vfs_freeopt(mntopt_t *); 97 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 98 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 99 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 100 static void vfs_createopttbl_extend(mntopts_t *, const char *, 101 const mntopts_t *); 102 static char **vfs_copycancelopt_extend(char **const, int); 103 static void vfs_freecancelopt(char **); 104 static char *getrootfs(void); 105 static int getmacpath(dev_info_t *, void *); 106 107 struct ipmnt { 108 struct ipmnt *mip_next; 109 dev_t mip_dev; 110 struct vfs *mip_vfsp; 111 }; 112 113 static kmutex_t vfs_miplist_mutex; 114 static struct ipmnt *vfs_miplist = NULL; 115 static struct ipmnt *vfs_miplist_end = NULL; 116 117 /* 118 * VFS global data. 119 */ 120 vnode_t *rootdir; /* pointer to root inode vnode. */ 121 vnode_t *devicesdir; /* pointer to inode of devices root */ 122 123 char *server_rootpath; /* root path for diskless clients */ 124 char *server_hostname; /* hostname of diskless server */ 125 126 static struct vfs root; 127 static struct vfs devices; 128 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 129 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 130 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 131 /* must be power of 2! */ 132 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 133 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 134 char *vfs_dummyfstype = "\0"; 135 struct pollhead vfs_pollhd; /* for mnttab pollers */ 136 137 /* 138 * Table for generic options recognized in the VFS layer and acted 139 * on at this level before parsing file system specific options. 140 * The nosuid option is stronger than any of the devices and setuid 141 * options, so those are canceled when nosuid is seen. 142 * 143 * All options which are added here need to be added to the 144 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 145 */ 146 /* 147 * VFS Mount options table 148 */ 149 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 150 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 151 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 152 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 153 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 154 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 155 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 156 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 157 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 158 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 159 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 160 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 161 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 162 163 static const mntopt_t mntopts[] = { 164 /* 165 * option name cancel options default arg flags 166 */ 167 { MNTOPT_REMOUNT, NULL, NULL, 168 MO_NODISPLAY, (void *)0 }, 169 { MNTOPT_RO, ro_cancel, NULL, 0, 170 (void *)0 }, 171 { MNTOPT_RW, rw_cancel, NULL, 0, 172 (void *)0 }, 173 { MNTOPT_SUID, suid_cancel, NULL, 0, 174 (void *)0 }, 175 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 176 (void *)0 }, 177 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 178 (void *)0 }, 179 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_EXEC, exec_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 192 (void *)0 }, 193 }; 194 195 const mntopts_t vfs_mntopts = { 196 sizeof (mntopts) / sizeof (mntopt_t), 197 (mntopt_t *)&mntopts[0] 198 }; 199 200 /* 201 * File system operation dispatch functions. 202 */ 203 204 int 205 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 206 { 207 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 208 } 209 210 int 211 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 212 { 213 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 214 } 215 216 int 217 fsop_root(vfs_t *vfsp, vnode_t **vpp) 218 { 219 refstr_t *mntpt; 220 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 221 /* 222 * Make sure this root has a path. With lofs, it is possible to have 223 * a NULL mountpoint. 224 */ 225 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 226 mntpt = vfs_getmntpoint(vfsp); 227 vn_setpath_str(*vpp, refstr_value(mntpt), 228 strlen(refstr_value(mntpt))); 229 refstr_rele(mntpt); 230 } 231 232 return (ret); 233 } 234 235 int 236 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 237 { 238 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 239 } 240 241 int 242 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 243 { 244 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 245 } 246 247 int 248 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 249 { 250 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 251 } 252 253 int 254 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 255 { 256 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 257 } 258 259 void 260 fsop_freefs(vfs_t *vfsp) 261 { 262 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 263 } 264 265 int 266 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 267 { 268 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 269 } 270 271 int 272 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 273 { 274 ASSERT((fstype >= 0) && (fstype < nfstype)); 275 276 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 277 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 278 else 279 return (ENOTSUP); 280 } 281 282 /* 283 * File system initialization. vfs_setfsops() must be called from a file 284 * system's init routine. 285 */ 286 287 static int 288 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 289 int *unused_ops) 290 { 291 static const fs_operation_trans_def_t vfs_ops_table[] = { 292 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 293 fs_nosys, fs_nosys, 294 295 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 296 fs_nosys, fs_nosys, 297 298 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 299 fs_nosys, fs_nosys, 300 301 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 302 fs_nosys, fs_nosys, 303 304 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 305 (fs_generic_func_p) fs_sync, 306 (fs_generic_func_p) fs_sync, /* No errors allowed */ 307 308 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 309 fs_nosys, fs_nosys, 310 311 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 312 fs_nosys, fs_nosys, 313 314 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 315 (fs_generic_func_p)fs_freevfs, 316 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 317 318 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 319 (fs_generic_func_p)fs_nosys, 320 (fs_generic_func_p)fs_nosys, 321 322 NULL, 0, NULL, NULL 323 }; 324 325 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 326 } 327 328 int 329 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 330 { 331 int error; 332 int unused_ops; 333 334 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 335 336 if ((fstype <= 0) || (fstype >= nfstype)) 337 return (EINVAL); 338 339 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 340 return (EINVAL); 341 342 /* Set up the operations vector. */ 343 344 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 345 346 if (error != 0) 347 return (error); 348 349 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 350 351 if (actual != NULL) 352 *actual = &vfssw[fstype].vsw_vfsops; 353 354 #if DEBUG 355 if (unused_ops != 0) 356 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 357 "but not used", vfssw[fstype].vsw_name, unused_ops); 358 #endif 359 360 return (0); 361 } 362 363 int 364 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 365 { 366 int error; 367 int unused_ops; 368 369 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 370 371 error = fs_copyfsops(template, *actual, &unused_ops); 372 if (error != 0) { 373 kmem_free(*actual, sizeof (vfsops_t)); 374 *actual = NULL; 375 return (error); 376 } 377 378 return (0); 379 } 380 381 /* 382 * Free a vfsops structure created as a result of vfs_makefsops(). 383 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 384 * vfs_freevfsops_by_type(). 385 */ 386 void 387 vfs_freevfsops(vfsops_t *vfsops) 388 { 389 kmem_free(vfsops, sizeof (vfsops_t)); 390 } 391 392 /* 393 * Since the vfsops structure is part of the vfssw table and wasn't 394 * really allocated, we're not really freeing anything. We keep 395 * the name for consistency with vfs_freevfsops(). We do, however, 396 * need to take care of a little bookkeeping. 397 * NOTE: For a vfsops structure created by vfs_setfsops(), use 398 * vfs_freevfsops_by_type(). 399 */ 400 int 401 vfs_freevfsops_by_type(int fstype) 402 { 403 404 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 405 if ((fstype <= 0) || (fstype >= nfstype)) 406 return (EINVAL); 407 408 WLOCK_VFSSW(); 409 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 410 WUNLOCK_VFSSW(); 411 return (EINVAL); 412 } 413 414 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 415 WUNLOCK_VFSSW(); 416 417 return (0); 418 } 419 420 /* Support routines used to reference vfs_op */ 421 422 /* Set the operations vector for a vfs */ 423 void 424 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 425 { 426 vfsops_t *op; 427 428 ASSERT(vfsp != NULL); 429 ASSERT(vfsops != NULL); 430 431 op = vfsp->vfs_op; 432 membar_consumer(); 433 if (vfsp->vfs_femhead == NULL && 434 casptr(&vfsp->vfs_op, op, vfsops) == op) { 435 return; 436 } 437 fsem_setvfsops(vfsp, vfsops); 438 } 439 440 /* Retrieve the operations vector for a vfs */ 441 vfsops_t * 442 vfs_getops(vfs_t *vfsp) 443 { 444 vfsops_t *op; 445 446 ASSERT(vfsp != NULL); 447 448 op = vfsp->vfs_op; 449 membar_consumer(); 450 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 451 return (op); 452 } else { 453 return (fsem_getvfsops(vfsp)); 454 } 455 } 456 457 /* 458 * Returns non-zero (1) if the vfsops matches that of the vfs. 459 * Returns zero (0) if not. 460 */ 461 int 462 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 463 { 464 return (vfs_getops(vfsp) == vfsops); 465 } 466 467 /* 468 * Returns non-zero (1) if the file system has installed a non-default, 469 * non-error vfs_sync routine. Returns zero (0) otherwise. 470 */ 471 int 472 vfs_can_sync(vfs_t *vfsp) 473 { 474 /* vfs_sync() routine is not the default/error function */ 475 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 476 } 477 478 /* 479 * Initialize a vfs structure. 480 */ 481 void 482 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 483 { 484 vfsp->vfs_count = 0; 485 vfsp->vfs_next = vfsp; 486 vfsp->vfs_prev = vfsp; 487 vfsp->vfs_zone_next = vfsp; 488 vfsp->vfs_zone_prev = vfsp; 489 vfsp->vfs_flag = 0; 490 vfsp->vfs_data = (data); 491 vfsp->vfs_resource = NULL; 492 vfsp->vfs_mntpt = NULL; 493 vfsp->vfs_mntopts.mo_count = 0; 494 vfsp->vfs_mntopts.mo_list = NULL; 495 vfsp->vfs_femhead = NULL; 496 vfsp->vfs_zone = NULL; 497 vfs_setops((vfsp), (op)); 498 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 499 } 500 501 502 /* 503 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 504 * fstatvfs, and sysfs moved to common/syscall. 505 */ 506 507 /* 508 * Update every mounted file system. We call the vfs_sync operation of 509 * each file system type, passing it a NULL vfsp to indicate that all 510 * mounted file systems of that type should be updated. 511 */ 512 void 513 vfs_sync(int flag) 514 { 515 struct vfssw *vswp; 516 RLOCK_VFSSW(); 517 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 518 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 519 vfs_refvfssw(vswp); 520 RUNLOCK_VFSSW(); 521 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 522 CRED()); 523 vfs_unrefvfssw(vswp); 524 RLOCK_VFSSW(); 525 } 526 } 527 RUNLOCK_VFSSW(); 528 } 529 530 void 531 sync(void) 532 { 533 vfs_sync(0); 534 } 535 536 /* 537 * External routines. 538 */ 539 540 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 541 542 /* 543 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 544 * but otherwise should be accessed only via vfs_list_lock() and 545 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 546 */ 547 static krwlock_t vfslist; 548 549 /* 550 * Mount devfs on /devices. This is done right after root is mounted 551 * to provide device access support for the system 552 */ 553 static void 554 vfs_mountdevices(void) 555 { 556 struct vfssw *vsw; 557 struct vnode *mvp; 558 struct mounta mounta = { /* fake mounta for devfs_mount() */ 559 NULL, 560 NULL, 561 MS_SYSSPACE, 562 NULL, 563 NULL, 564 0, 565 NULL, 566 0 567 }; 568 569 /* 570 * _init devfs module to fill in the vfssw 571 */ 572 if (modload("fs", "devfs") == -1) 573 cmn_err(CE_PANIC, "Cannot _init devfs module\n"); 574 575 /* 576 * Hold vfs 577 */ 578 RLOCK_VFSSW(); 579 vsw = vfs_getvfsswbyname("devfs"); 580 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 581 VFS_HOLD(&devices); 582 583 /* 584 * Locate mount point 585 */ 586 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 587 cmn_err(CE_PANIC, "Cannot find /devices\n"); 588 589 /* 590 * Perform the mount of /devices 591 */ 592 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 593 cmn_err(CE_PANIC, "Cannot mount /devices\n"); 594 595 RUNLOCK_VFSSW(); 596 597 /* 598 * Set appropriate members and add to vfs list for mnttab display 599 */ 600 vfs_setresource(&devices, "/devices"); 601 vfs_setmntpoint(&devices, "/devices"); 602 603 /* 604 * Hold the root of /devices so it won't go away 605 */ 606 if (VFS_ROOT(&devices, &devicesdir)) 607 cmn_err(CE_PANIC, "vfs_mountdevices: not devices root"); 608 VN_HOLD(devicesdir); 609 610 if (vfs_lock(&devices) != 0) { 611 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 612 return; 613 } 614 615 if (vn_vfswlock(mvp) != 0) { 616 vfs_unlock(&devices); 617 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 618 return; 619 } 620 621 vfs_add(mvp, &devices, 0); 622 vn_vfsunlock(mvp); 623 vfs_unlock(&devices); 624 } 625 626 /* 627 * Mount required filesystem. This is done right after root is mounted. 628 */ 629 static void 630 vfs_mountfs(char *module, char *spec, char *path) 631 { 632 struct vnode *mvp; 633 struct mounta mounta; 634 vfs_t *vfsp; 635 636 mounta.flags = MS_SYSSPACE | MS_DATA; 637 mounta.fstype = module; 638 mounta.spec = spec; 639 mounta.dir = path; 640 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 641 cmn_err(CE_WARN, "Cannot find %s\n", path); 642 return; 643 } 644 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 645 cmn_err(CE_WARN, "Cannot mount %s\n", path); 646 else 647 VFS_RELE(vfsp); 648 VN_RELE(mvp); 649 } 650 651 /* 652 * vfs_mountroot is called by main() to mount the root filesystem. 653 */ 654 void 655 vfs_mountroot(void) 656 { 657 struct vnode *rvp = NULL; 658 char *path; 659 size_t plen; 660 661 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 662 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 663 664 /* 665 * Alloc the vfs hash bucket array and locks 666 */ 667 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 668 669 /* 670 * Call machine-dependent routine "rootconf" to choose a root 671 * file system type. 672 */ 673 if (rootconf()) 674 cmn_err(CE_PANIC, "vfs_mountroot: cannot mount root"); 675 /* 676 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 677 * to point to it. These are used by lookuppn() so that it 678 * knows where to start from ('/' or '.'). 679 */ 680 vfs_setmntpoint(rootvfs, "/"); 681 if (VFS_ROOT(rootvfs, &rootdir)) 682 cmn_err(CE_PANIC, "vfs_mountroot: no root vnode"); 683 u.u_cdir = rootdir; 684 VN_HOLD(u.u_cdir); 685 u.u_rdir = NULL; 686 687 /* 688 * Setup the global zone's rootvp, now that it exists. 689 */ 690 global_zone->zone_rootvp = rootdir; 691 VN_HOLD(global_zone->zone_rootvp); 692 693 /* 694 * Notify the module code that it can begin using the 695 * root filesystem instead of the boot program's services. 696 */ 697 modrootloaded = 1; 698 /* 699 * Set up mnttab information for root 700 */ 701 vfs_setresource(rootvfs, rootfs.bo_name); 702 703 /* 704 * Notify cluster software that the root filesystem is available. 705 */ 706 clboot_mountroot(); 707 708 /* 709 * Mount /devices, /system/contract, /etc/mnttab, /etc/svc/volatile, 710 * /system/object, and /proc. 711 */ 712 vfs_mountdevices(); 713 714 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 715 vfs_mountfs("proc", "/proc", "/proc"); 716 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 717 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 718 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 719 720 #ifdef __sparc 721 /* 722 * This bit of magic can go away when we convert sparc to 723 * the new boot architecture based on ramdisk. 724 * 725 * Booting off a mirrored root volume: 726 * At this point, we have booted and mounted root on a 727 * single component of the mirror. Complete the boot 728 * by configuring SVM and converting the root to the 729 * dev_t of the mirrored root device. This dev_t conversion 730 * only works because the underlying device doesn't change. 731 */ 732 if (root_is_svm) { 733 if (svm_rootconf()) { 734 cmn_err(CE_PANIC, "vfs_mountroot: cannot remount root"); 735 } 736 737 /* 738 * mnttab should reflect the new root device 739 */ 740 vfs_lock_wait(rootvfs); 741 vfs_setresource(rootvfs, rootfs.bo_name); 742 vfs_unlock(rootvfs); 743 } 744 #endif /* __sparc */ 745 746 /* 747 * Look up the root device via devfs so that a dv_node is 748 * created for it. The vnode is never VN_RELE()ed. 749 * We allocate more than MAXPATHLEN so that the 750 * buffer passed to i_ddi_prompath_to_devfspath() is 751 * exactly MAXPATHLEN (the function expects a buffer 752 * of that length). 753 */ 754 plen = strlen("/devices"); 755 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 756 (void) strcpy(path, "/devices"); 757 758 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 759 != DDI_SUCCESS || 760 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 761 762 /* NUL terminate in case "path" has garbage */ 763 path[plen + MAXPATHLEN - 1] = '\0'; 764 #ifdef DEBUG 765 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 766 #endif 767 } 768 kmem_free(path, plen + MAXPATHLEN); 769 } 770 771 /* 772 * If remount failed and we're in a zone we need to check for the zone 773 * root path and strip it before the call to vfs_setpath(). 774 * 775 * If strpath doesn't begin with the zone_rootpath the original 776 * strpath is returned unchanged. 777 */ 778 static const char * 779 stripzonepath(const char *strpath) 780 { 781 char *str1, *str2; 782 int i; 783 zone_t *zonep = curproc->p_zone; 784 785 if (zonep->zone_rootpath == NULL || strpath == NULL) { 786 return (NULL); 787 } 788 789 /* 790 * we check for the end of the string at one past the 791 * current position because the zone_rootpath always 792 * ends with "/" but we don't want to strip that off. 793 */ 794 str1 = zonep->zone_rootpath; 795 str2 = (char *)strpath; 796 ASSERT(str1[0] != '\0'); 797 for (i = 0; str1[i + 1] != '\0'; i++) { 798 if (str1[i] != str2[i]) 799 return ((char *)strpath); 800 } 801 return (&str2[i]); 802 } 803 804 /* 805 * Common mount code. Called from the system call entry point, from autofs, 806 * and from pxfs. 807 * 808 * Takes the effective file system type, mount arguments, the mount point 809 * vnode, flags specifying whether the mount is a remount and whether it 810 * should be entered into the vfs list, and credentials. Fills in its vfspp 811 * parameter with the mounted file system instance's vfs. 812 * 813 * Note that the effective file system type is specified as a string. It may 814 * be null, in which case it's determined from the mount arguments, and may 815 * differ from the type specified in the mount arguments; this is a hook to 816 * allow interposition when instantiating file system instances. 817 * 818 * The caller is responsible for releasing its own hold on the mount point 819 * vp (this routine does its own hold when necessary). 820 * Also note that for remounts, the mount point vp should be the vnode for 821 * the root of the file system rather than the vnode that the file system 822 * is mounted on top of. 823 */ 824 int 825 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 826 struct vfs **vfspp) 827 { 828 struct vfssw *vswp; 829 vfsops_t *vfsops; 830 struct vfs *vfsp; 831 struct vnode *bvp; 832 dev_t bdev = 0; 833 mntopts_t mnt_mntopts; 834 int error = 0; 835 int copyout_error = 0; 836 int ovflags; 837 char *opts = uap->optptr; 838 char *inargs = opts; 839 int optlen = uap->optlen; 840 int remount; 841 int rdonly; 842 int nbmand = 0; 843 int delmip = 0; 844 int addmip = 0; 845 int splice = ((uap->flags & MS_NOSPLICE) == 0); 846 int fromspace = (uap->flags & MS_SYSSPACE) ? 847 UIO_SYSSPACE : UIO_USERSPACE; 848 char *resource = NULL, *mountpt = NULL; 849 refstr_t *oldresource, *oldmntpt; 850 struct pathname pn, rpn; 851 852 /* 853 * The v_flag value for the mount point vp is permanently set 854 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 855 * for mount point locking. 856 */ 857 mutex_enter(&vp->v_lock); 858 vp->v_flag |= VVFSLOCK; 859 mutex_exit(&vp->v_lock); 860 861 mnt_mntopts.mo_count = 0; 862 /* 863 * Find the ops vector to use to invoke the file system-specific mount 864 * method. If the fsname argument is non-NULL, use it directly. 865 * Otherwise, dig the file system type information out of the mount 866 * arguments. 867 * 868 * A side effect is to hold the vfssw entry. 869 * 870 * Mount arguments can be specified in several ways, which are 871 * distinguished by flag bit settings. The preferred way is to set 872 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 873 * type supplied as a character string and the last two arguments 874 * being a pointer to a character buffer and the size of the buffer. 875 * On entry, the buffer holds a null terminated list of options; on 876 * return, the string is the list of options the file system 877 * recognized. If MS_DATA is set arguments five and six point to a 878 * block of binary data which the file system interprets. 879 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 880 * consistently with these conventions. To handle them, we check to 881 * see whether the pointer to the file system name has a numeric value 882 * less than 256. If so, we treat it as an index. 883 */ 884 if (fsname != NULL) { 885 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 886 return (EINVAL); 887 } 888 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 889 size_t n; 890 uint_t fstype; 891 char name[FSTYPSZ]; 892 893 if ((fstype = (uintptr_t)uap->fstype) < 256) { 894 RLOCK_VFSSW(); 895 if (fstype == 0 || fstype >= nfstype || 896 !ALLOCATED_VFSSW(&vfssw[fstype])) { 897 RUNLOCK_VFSSW(); 898 return (EINVAL); 899 } 900 (void) strcpy(name, vfssw[fstype].vsw_name); 901 RUNLOCK_VFSSW(); 902 if ((vswp = vfs_getvfssw(name)) == NULL) 903 return (EINVAL); 904 } else { 905 /* 906 * Handle either kernel or user address space. 907 */ 908 if (uap->flags & MS_SYSSPACE) { 909 error = copystr(uap->fstype, name, 910 FSTYPSZ, &n); 911 } else { 912 error = copyinstr(uap->fstype, name, 913 FSTYPSZ, &n); 914 } 915 if (error) { 916 if (error == ENAMETOOLONG) 917 return (EINVAL); 918 return (error); 919 } 920 if ((vswp = vfs_getvfssw(name)) == NULL) 921 return (EINVAL); 922 } 923 } else { 924 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 925 return (EINVAL); 926 } 927 if (!VFS_INSTALLED(vswp)) 928 return (EINVAL); 929 vfsops = &vswp->vsw_vfsops; 930 931 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 932 /* 933 * Fetch mount options and parse them for generic vfs options 934 */ 935 if (uap->flags & MS_OPTIONSTR) { 936 /* 937 * Limit the buffer size 938 */ 939 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 940 error = EINVAL; 941 goto errout; 942 } 943 if ((uap->flags & MS_SYSSPACE) == 0) { 944 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 945 inargs[0] = '\0'; 946 if (optlen) { 947 error = copyinstr(opts, inargs, (size_t)optlen, 948 NULL); 949 if (error) { 950 goto errout; 951 } 952 } 953 } 954 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 955 } 956 /* 957 * Flag bits override the options string. 958 */ 959 if (uap->flags & MS_REMOUNT) 960 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 961 if (uap->flags & MS_RDONLY) 962 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 963 if (uap->flags & MS_NOSUID) 964 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 965 966 /* 967 * Check if this is a remount; must be set in the option string and 968 * the file system must support a remount option. 969 */ 970 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 971 MNTOPT_REMOUNT, NULL)) { 972 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 973 error = ENOTSUP; 974 goto errout; 975 } 976 uap->flags |= MS_REMOUNT; 977 } 978 979 /* 980 * uap->flags and vfs_optionisset() should agree. 981 */ 982 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 983 uap->flags |= MS_RDONLY; 984 } 985 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 986 uap->flags |= MS_NOSUID; 987 } 988 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 989 ASSERT(splice || !remount); 990 /* 991 * If we are splicing the fs into the namespace, 992 * perform mount point checks. 993 * 994 * We want to resolve the path for the mount point to eliminate 995 * '.' and ".." and symlinks in mount points; we can't do the 996 * same for the resource string, since it would turn 997 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 998 * this before grabbing vn_vfswlock(), because otherwise we 999 * would deadlock with lookuppn(). 1000 */ 1001 if (splice) { 1002 ASSERT(vp->v_count > 0); 1003 1004 /* 1005 * Pick up mount point and device from appropriate space. 1006 */ 1007 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1008 resource = kmem_alloc(pn.pn_pathlen + 1, 1009 KM_SLEEP); 1010 (void) strcpy(resource, pn.pn_path); 1011 pn_free(&pn); 1012 } 1013 /* 1014 * Do a lookupname prior to taking the 1015 * writelock. Mark this as completed if 1016 * successful for later cleanup and addition to 1017 * the mount in progress table. 1018 */ 1019 if ((uap->flags & MS_GLOBAL) == 0 && 1020 lookupname(uap->spec, fromspace, 1021 FOLLOW, NULL, &bvp) == 0) { 1022 addmip = 1; 1023 } 1024 1025 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1026 pathname_t *pnp; 1027 1028 if (*pn.pn_path != '/') { 1029 error = EINVAL; 1030 pn_free(&pn); 1031 goto errout; 1032 } 1033 pn_alloc(&rpn); 1034 /* 1035 * Kludge to prevent autofs from deadlocking with 1036 * itself when it calls domount(). 1037 * 1038 * If autofs is calling, it is because it is doing 1039 * (autofs) mounts in the process of an NFS mount. A 1040 * lookuppn() here would cause us to block waiting for 1041 * said NFS mount to complete, which can't since this 1042 * is the thread that was supposed to doing it. 1043 */ 1044 if (fromspace == UIO_USERSPACE) { 1045 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1046 NULL)) == 0) { 1047 pnp = &rpn; 1048 } else { 1049 /* 1050 * The file disappeared or otherwise 1051 * became inaccessible since we opened 1052 * it; might as well fail the mount 1053 * since the mount point is no longer 1054 * accessible. 1055 */ 1056 pn_free(&rpn); 1057 pn_free(&pn); 1058 goto errout; 1059 } 1060 } else { 1061 pnp = &pn; 1062 } 1063 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1064 (void) strcpy(mountpt, pnp->pn_path); 1065 1066 /* 1067 * If the addition of the zone's rootpath 1068 * would push us over a total path length 1069 * of MAXPATHLEN, we fail the mount with 1070 * ENAMETOOLONG, which is what we would have 1071 * gotten if we were trying to perform the same 1072 * mount in the global zone. 1073 * 1074 * strlen() doesn't count the trailing 1075 * '\0', but zone_rootpathlen counts both a 1076 * trailing '/' and the terminating '\0'. 1077 */ 1078 if ((curproc->p_zone->zone_rootpathlen - 1 + 1079 strlen(mountpt)) > MAXPATHLEN || 1080 (resource != NULL && 1081 (curproc->p_zone->zone_rootpathlen - 1 + 1082 strlen(resource)) > MAXPATHLEN)) { 1083 error = ENAMETOOLONG; 1084 } 1085 1086 pn_free(&rpn); 1087 pn_free(&pn); 1088 } 1089 1090 if (error) 1091 goto errout; 1092 1093 /* 1094 * Prevent path name resolution from proceeding past 1095 * the mount point. 1096 */ 1097 if (vn_vfswlock(vp) != 0) { 1098 error = EBUSY; 1099 goto errout; 1100 } 1101 1102 /* 1103 * Verify that it's legitimate to establish a mount on 1104 * the prospective mount point. 1105 */ 1106 if (vn_mountedvfs(vp) != NULL) { 1107 /* 1108 * The mount point lock was obtained after some 1109 * other thread raced through and established a mount. 1110 */ 1111 vn_vfsunlock(vp); 1112 error = EBUSY; 1113 goto errout; 1114 } 1115 if (vp->v_flag & VNOMOUNT) { 1116 vn_vfsunlock(vp); 1117 error = EINVAL; 1118 goto errout; 1119 } 1120 } 1121 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1122 uap->dataptr = NULL; 1123 uap->datalen = 0; 1124 } 1125 1126 /* 1127 * If this is a remount, we don't want to create a new VFS. 1128 * Instead, we pass the existing one with a remount flag. 1129 */ 1130 if (remount) { 1131 /* 1132 * Confirm that the mount point is the root vnode of the 1133 * file system that is being remounted. 1134 * This can happen if the user specifies a different 1135 * mount point directory pathname in the (re)mount command. 1136 * 1137 * Code below can only be reached if splice is true, so it's 1138 * safe to do vn_vfsunlock() here. 1139 */ 1140 if ((vp->v_flag & VROOT) == 0) { 1141 vn_vfsunlock(vp); 1142 error = ENOENT; 1143 goto errout; 1144 } 1145 /* 1146 * Disallow making file systems read-only unless file system 1147 * explicitly allows it in its vfssw. Ignore other flags. 1148 */ 1149 if (rdonly && vn_is_readonly(vp) == 0 && 1150 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1151 vn_vfsunlock(vp); 1152 error = EINVAL; 1153 goto errout; 1154 } 1155 /* 1156 * Changing the NBMAND setting on remounts is permitted 1157 * but logged since it can lead to unexpected behavior. 1158 * We also counsel against using it for / and /usr. 1159 */ 1160 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1161 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1162 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1163 "remounting %s", nbmand ? "on" : "off", 1164 refstr_value(vp->v_vfsp->vfs_mntpt)); 1165 } 1166 vfsp = vp->v_vfsp; 1167 ovflags = vfsp->vfs_flag; 1168 vfsp->vfs_flag |= VFS_REMOUNT; 1169 vfsp->vfs_flag &= ~VFS_RDONLY; 1170 } else { 1171 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1172 VFS_INIT(vfsp, vfsops, NULL); 1173 } 1174 1175 VFS_HOLD(vfsp); 1176 1177 /* 1178 * The vfs_reflock is not used anymore the code below explicitly 1179 * holds it preventing others accesing it directly. 1180 */ 1181 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1182 !(vfsp->vfs_flag & VFS_REMOUNT)) 1183 cmn_err(CE_WARN, 1184 "mount type %s couldn't get vfs_reflock\n", vswp->vsw_name); 1185 1186 /* 1187 * Lock the vfs. If this is a remount we want to avoid spurious umount 1188 * failures that happen as a side-effect of fsflush() and other mount 1189 * and unmount operations that might be going on simultaneously and 1190 * may have locked the vfs currently. To not return EBUSY immediately 1191 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1192 */ 1193 if (!remount) { 1194 if (error = vfs_lock(vfsp)) { 1195 vfsp->vfs_flag = ovflags; 1196 if (splice) 1197 vn_vfsunlock(vp); 1198 kmem_free(vfsp, sizeof (struct vfs)); 1199 goto errout; 1200 } 1201 } else { 1202 vfs_lock_wait(vfsp); 1203 } 1204 1205 /* 1206 * Add device to mount in progress table, global mounts require special 1207 * handling. It is possible that we have already done the lookupname 1208 * on a spliced, non-global fs. If so, we don't want to do it again 1209 * since we cannot do a lookupname after taking the 1210 * wlock above. This case is for a non-spliced, non-global filesystem. 1211 */ 1212 if (!addmip) { 1213 if ((uap->flags & MS_GLOBAL) == 0 && 1214 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1215 addmip = 1; 1216 } 1217 } 1218 1219 if (addmip) { 1220 bdev = bvp->v_rdev; 1221 VN_RELE(bvp); 1222 vfs_addmip(bdev, vfsp); 1223 addmip = 0; 1224 delmip = 1; 1225 } 1226 /* 1227 * Invalidate cached entry for the mount point. 1228 */ 1229 if (splice) 1230 dnlc_purge_vp(vp); 1231 1232 /* 1233 * If have an option string but the filesystem doesn't supply a 1234 * prototype options table, create a table with the global 1235 * options and sufficient room to accept all the options in the 1236 * string. Then parse the passed in option string 1237 * accepting all the options in the string. This gives us an 1238 * option table with all the proper cancel properties for the 1239 * global options. 1240 * 1241 * Filesystems that supply a prototype options table are handled 1242 * earlier in this function. 1243 */ 1244 if (uap->flags & MS_OPTIONSTR) { 1245 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1246 mntopts_t tmp_mntopts; 1247 1248 tmp_mntopts.mo_count = 0; 1249 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1250 &mnt_mntopts); 1251 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1252 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1253 vfs_freeopttbl(&tmp_mntopts); 1254 } 1255 } 1256 1257 /* 1258 * Serialize with zone creations. 1259 */ 1260 mount_in_progress(); 1261 /* 1262 * Instantiate (or reinstantiate) the file system. If appropriate, 1263 * splice it into the file system name space. 1264 * 1265 * We want VFS_MOUNT() to be able to override the vfs_resource 1266 * string if necessary (ie, mntfs), and also for a remount to 1267 * change the same (necessary when remounting '/' during boot). 1268 * So we set up vfs_mntpt and vfs_resource to what we think they 1269 * should be, then hand off control to VFS_MOUNT() which can 1270 * override this. 1271 * 1272 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1273 * a vfs which is on the vfs list (i.e. during a remount), we must 1274 * never set those fields to NULL. Several bits of code make 1275 * assumptions that the fields are always valid. 1276 */ 1277 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1278 if (remount) { 1279 if ((oldresource = vfsp->vfs_resource) != NULL) 1280 refstr_hold(oldresource); 1281 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1282 refstr_hold(oldmntpt); 1283 } 1284 vfs_setresource(vfsp, resource); 1285 vfs_setmntpoint(vfsp, mountpt); 1286 1287 error = VFS_MOUNT(vfsp, vp, uap, credp); 1288 1289 if (uap->flags & MS_RDONLY) 1290 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1291 if (uap->flags & MS_NOSUID) 1292 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1293 if (uap->flags & MS_GLOBAL) 1294 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1295 1296 if (error) { 1297 if (remount) { 1298 /* put back pre-remount options */ 1299 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1300 vfs_setmntpoint(vfsp, (stripzonepath( 1301 refstr_value(oldmntpt)))); 1302 if (oldmntpt) 1303 refstr_rele(oldmntpt); 1304 vfs_setresource(vfsp, (stripzonepath( 1305 refstr_value(oldresource)))); 1306 if (oldresource) 1307 refstr_rele(oldresource); 1308 vfsp->vfs_flag = ovflags; 1309 vfs_unlock(vfsp); 1310 VFS_RELE(vfsp); 1311 } else { 1312 vfs_unlock(vfsp); 1313 vfs_freemnttab(vfsp); 1314 kmem_free(vfsp, sizeof (struct vfs)); 1315 } 1316 } else { 1317 /* 1318 * Set the mount time to now 1319 */ 1320 vfsp->vfs_mtime = ddi_get_time(); 1321 if (remount) { 1322 vfsp->vfs_flag &= ~VFS_REMOUNT; 1323 if (oldresource) 1324 refstr_rele(oldresource); 1325 if (oldmntpt) 1326 refstr_rele(oldmntpt); 1327 } else if (splice) { 1328 /* 1329 * Link vfsp into the name space at the mount 1330 * point. Vfs_add() is responsible for 1331 * holding the mount point which will be 1332 * released when vfs_remove() is called. 1333 */ 1334 vfs_add(vp, vfsp, uap->flags); 1335 } else { 1336 /* 1337 * Hold the reference to file system which is 1338 * not linked into the name space. 1339 */ 1340 vfsp->vfs_zone = NULL; 1341 VFS_HOLD(vfsp); 1342 vfsp->vfs_vnodecovered = NULL; 1343 } 1344 /* 1345 * Set flags for global options encountered 1346 */ 1347 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1348 vfsp->vfs_flag |= VFS_RDONLY; 1349 else 1350 vfsp->vfs_flag &= ~VFS_RDONLY; 1351 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1352 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1353 } else { 1354 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1355 vfsp->vfs_flag |= VFS_NODEVICES; 1356 else 1357 vfsp->vfs_flag &= ~VFS_NODEVICES; 1358 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1359 vfsp->vfs_flag |= VFS_NOSETUID; 1360 else 1361 vfsp->vfs_flag &= ~VFS_NOSETUID; 1362 } 1363 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1364 vfsp->vfs_flag |= VFS_NBMAND; 1365 else 1366 vfsp->vfs_flag &= ~VFS_NBMAND; 1367 1368 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1369 vfsp->vfs_flag |= VFS_XATTR; 1370 else 1371 vfsp->vfs_flag &= ~VFS_XATTR; 1372 1373 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1374 vfsp->vfs_flag |= VFS_NOEXEC; 1375 else 1376 vfsp->vfs_flag &= ~VFS_NOEXEC; 1377 1378 /* 1379 * Now construct the output option string of options 1380 * we recognized. 1381 */ 1382 if (uap->flags & MS_OPTIONSTR) { 1383 vfs_list_read_lock(); 1384 copyout_error = vfs_buildoptionstr( 1385 &vfsp->vfs_mntopts, inargs, optlen); 1386 vfs_list_unlock(); 1387 if (copyout_error == 0 && 1388 (uap->flags & MS_SYSSPACE) == 0) { 1389 copyout_error = copyoutstr(inargs, opts, 1390 optlen, NULL); 1391 } 1392 } 1393 vfs_unlock(vfsp); 1394 } 1395 mount_completed(); 1396 if (splice) 1397 vn_vfsunlock(vp); 1398 1399 /* 1400 * Return vfsp to caller. 1401 */ 1402 if ((error == 0) && (copyout_error == 0)) { 1403 *vfspp = vfsp; 1404 } 1405 errout: 1406 vfs_freeopttbl(&mnt_mntopts); 1407 if (resource != NULL) 1408 kmem_free(resource, strlen(resource) + 1); 1409 if (mountpt != NULL) 1410 kmem_free(mountpt, strlen(mountpt) + 1); 1411 /* 1412 * It is possible we errored prior to adding to mount in progress 1413 * table. Must free vnode we acquired with successful lookupname. 1414 */ 1415 if (addmip) 1416 VN_RELE(bvp); 1417 if (delmip) 1418 vfs_delmip(vfsp); 1419 ASSERT(vswp != NULL); 1420 vfs_unrefvfssw(vswp); 1421 if (inargs != opts) 1422 kmem_free(inargs, MAX_MNTOPT_STR); 1423 if (copyout_error) { 1424 VFS_RELE(vfsp); 1425 error = copyout_error; 1426 } 1427 return (error); 1428 } 1429 1430 static void 1431 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1432 { 1433 size_t len; 1434 refstr_t *ref; 1435 zone_t *zone = curproc->p_zone; 1436 char *sp; 1437 int have_list_lock = 0; 1438 1439 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1440 1441 /* 1442 * New path must be less than MAXPATHLEN because mntfs 1443 * will only display up to MAXPATHLEN bytes. This is currently 1444 * safe, because domount() uses pn_get(), and other callers 1445 * similarly cap the size to fewer than MAXPATHLEN bytes. 1446 */ 1447 1448 ASSERT(strlen(newpath) < MAXPATHLEN); 1449 1450 /* mntfs requires consistency while vfs list lock is held */ 1451 1452 if (VFS_ON_LIST(vfsp)) { 1453 have_list_lock = 1; 1454 vfs_list_lock(); 1455 } 1456 1457 if (*refp != NULL) 1458 refstr_rele(*refp); 1459 1460 /* Do we need to modify the path? */ 1461 1462 if (zone == global_zone || *newpath != '/') { 1463 ref = refstr_alloc(newpath); 1464 goto out; 1465 } 1466 1467 /* 1468 * Truncate the trailing '/' in the zoneroot, and merge 1469 * in the zone's rootpath with the "newpath" (resource 1470 * or mountpoint) passed in. 1471 * 1472 * The size of the required buffer is thus the size of 1473 * the buffer required for the passed-in newpath 1474 * (strlen(newpath) + 1), plus the size of the buffer 1475 * required to hold zone_rootpath (zone_rootpathlen) 1476 * minus one for one of the now-superfluous NUL 1477 * terminations, minus one for the trailing '/'. 1478 * 1479 * That gives us: 1480 * 1481 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1482 * 1483 * Which is what we have below. 1484 */ 1485 1486 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1487 sp = kmem_alloc(len, KM_SLEEP); 1488 1489 /* 1490 * Copy everything including the trailing slash, which 1491 * we then overwrite with the NUL character. 1492 */ 1493 1494 (void) strcpy(sp, zone->zone_rootpath); 1495 sp[zone->zone_rootpathlen - 2] = '\0'; 1496 (void) strcat(sp, newpath); 1497 1498 ref = refstr_alloc(sp); 1499 kmem_free(sp, len); 1500 out: 1501 *refp = ref; 1502 1503 if (have_list_lock) { 1504 vfs_mnttab_modtimeupd(); 1505 vfs_list_unlock(); 1506 } 1507 } 1508 1509 /* 1510 * Record a mounted resource name in a vfs structure. 1511 * If vfsp is already mounted, caller must hold the vfs lock. 1512 */ 1513 void 1514 vfs_setresource(struct vfs *vfsp, const char *resource) 1515 { 1516 if (resource == NULL || resource[0] == '\0') 1517 resource = VFS_NORESOURCE; 1518 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1519 } 1520 1521 /* 1522 * Record a mount point name in a vfs structure. 1523 * If vfsp is already mounted, caller must hold the vfs lock. 1524 */ 1525 void 1526 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1527 { 1528 if (mntpt == NULL || mntpt[0] == '\0') 1529 mntpt = VFS_NOMNTPT; 1530 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1531 } 1532 1533 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1534 1535 refstr_t * 1536 vfs_getresource(const struct vfs *vfsp) 1537 { 1538 refstr_t *resource; 1539 1540 vfs_list_read_lock(); 1541 resource = vfsp->vfs_resource; 1542 refstr_hold(resource); 1543 vfs_list_unlock(); 1544 1545 return (resource); 1546 } 1547 1548 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1549 1550 refstr_t * 1551 vfs_getmntpoint(const struct vfs *vfsp) 1552 { 1553 refstr_t *mntpt; 1554 1555 vfs_list_read_lock(); 1556 mntpt = vfsp->vfs_mntpt; 1557 refstr_hold(mntpt); 1558 vfs_list_unlock(); 1559 1560 return (mntpt); 1561 } 1562 1563 /* 1564 * Create an empty options table with enough empty slots to hold all 1565 * The options in the options string passed as an argument. 1566 * Potentially prepend another options table. 1567 * 1568 * Note: caller is responsible for locking the vfs list, if needed, 1569 * to protect mops. 1570 */ 1571 static void 1572 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1573 const mntopts_t *mtmpl) 1574 { 1575 const char *s = opts; 1576 uint_t count; 1577 1578 if (opts == NULL || *opts == '\0') { 1579 count = 0; 1580 } else { 1581 count = 1; 1582 1583 /* 1584 * Count number of options in the string 1585 */ 1586 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1587 count++; 1588 s++; 1589 } 1590 } 1591 vfs_copyopttbl_extend(mtmpl, mops, count); 1592 } 1593 1594 /* 1595 * Create an empty options table with enough empty slots to hold all 1596 * The options in the options string passed as an argument. 1597 * 1598 * This function is *not* for general use by filesystems. 1599 * 1600 * Note: caller is responsible for locking the vfs list, if needed, 1601 * to protect mops. 1602 */ 1603 void 1604 vfs_createopttbl(mntopts_t *mops, const char *opts) 1605 { 1606 vfs_createopttbl_extend(mops, opts, NULL); 1607 } 1608 1609 1610 /* 1611 * Swap two mount options tables 1612 */ 1613 static void 1614 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1615 { 1616 uint_t tmpcnt; 1617 mntopt_t *tmplist; 1618 1619 tmpcnt = optbl2->mo_count; 1620 tmplist = optbl2->mo_list; 1621 optbl2->mo_count = optbl1->mo_count; 1622 optbl2->mo_list = optbl1->mo_list; 1623 optbl1->mo_count = tmpcnt; 1624 optbl1->mo_list = tmplist; 1625 } 1626 1627 static void 1628 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1629 { 1630 vfs_list_lock(); 1631 vfs_swapopttbl_nolock(optbl1, optbl2); 1632 vfs_mnttab_modtimeupd(); 1633 vfs_list_unlock(); 1634 } 1635 1636 static char ** 1637 vfs_copycancelopt_extend(char **const moc, int extend) 1638 { 1639 int i = 0; 1640 int j; 1641 char **result; 1642 1643 if (moc != NULL) { 1644 for (; moc[i] != NULL; i++) 1645 /* count number of options to cancel */; 1646 } 1647 1648 if (i + extend == 0) 1649 return (NULL); 1650 1651 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1652 1653 for (j = 0; j < i; j++) { 1654 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1655 (void) strcpy(result[j], moc[j]); 1656 } 1657 for (; j <= i + extend; j++) 1658 result[j] = NULL; 1659 1660 return (result); 1661 } 1662 1663 static void 1664 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1665 { 1666 char *sp, *dp; 1667 1668 d->mo_flags = s->mo_flags; 1669 d->mo_data = s->mo_data; 1670 sp = s->mo_name; 1671 if (sp != NULL) { 1672 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1673 (void) strcpy(dp, sp); 1674 d->mo_name = dp; 1675 } else { 1676 d->mo_name = NULL; /* should never happen */ 1677 } 1678 1679 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1680 1681 sp = s->mo_arg; 1682 if (sp != NULL) { 1683 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1684 (void) strcpy(dp, sp); 1685 d->mo_arg = dp; 1686 } else { 1687 d->mo_arg = NULL; 1688 } 1689 } 1690 1691 /* 1692 * Copy a mount options table, possibly allocating some spare 1693 * slots at the end. It is permissible to copy_extend the NULL table. 1694 */ 1695 static void 1696 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1697 { 1698 uint_t i, count; 1699 mntopt_t *motbl; 1700 1701 /* 1702 * Clear out any existing stuff in the options table being initialized 1703 */ 1704 vfs_freeopttbl(dmo); 1705 count = (smo == NULL) ? 0 : smo->mo_count; 1706 if ((count + extra) == 0) /* nothing to do */ 1707 return; 1708 dmo->mo_count = count + extra; 1709 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1710 dmo->mo_list = motbl; 1711 for (i = 0; i < count; i++) { 1712 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1713 } 1714 for (i = count; i < count + extra; i++) { 1715 motbl[i].mo_flags = MO_EMPTY; 1716 } 1717 } 1718 1719 /* 1720 * Copy a mount options table. 1721 * 1722 * This function is *not* for general use by filesystems. 1723 * 1724 * Note: caller is responsible for locking the vfs list, if needed, 1725 * to protect smo and dmo. 1726 */ 1727 void 1728 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1729 { 1730 vfs_copyopttbl_extend(smo, dmo, 0); 1731 } 1732 1733 static char ** 1734 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1735 { 1736 int c1 = 0; 1737 int c2 = 0; 1738 char **result; 1739 char **sp1, **sp2, **dp; 1740 1741 /* 1742 * First we count both lists of cancel options. 1743 * If either is NULL or has no elements, we return a copy of 1744 * the other. 1745 */ 1746 if (mop1->mo_cancel != NULL) { 1747 for (; mop1->mo_cancel[c1] != NULL; c1++) 1748 /* count cancel options in mop1 */; 1749 } 1750 1751 if (c1 == 0) 1752 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1753 1754 if (mop2->mo_cancel != NULL) { 1755 for (; mop2->mo_cancel[c2] != NULL; c2++) 1756 /* count cancel options in mop2 */; 1757 } 1758 1759 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1760 1761 if (c2 == 0) 1762 return (result); 1763 1764 /* 1765 * When we get here, we've got two sets of cancel options; 1766 * we need to merge the two sets. We know that the result 1767 * array has "c1+c2+1" entries and in the end we might shrink 1768 * it. 1769 * Result now has a copy of the c1 entries from mop1; we'll 1770 * now lookup all the entries of mop2 in mop1 and copy it if 1771 * it is unique. 1772 * This operation is O(n^2) but it's only called once per 1773 * filesystem per duplicate option. This is a situation 1774 * which doesn't arise with the filesystems in ON and 1775 * n is generally 1. 1776 */ 1777 1778 dp = &result[c1]; 1779 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1780 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1781 if (strcmp(*sp1, *sp2) == 0) 1782 break; 1783 } 1784 if (*sp1 == NULL) { 1785 /* 1786 * Option *sp2 not found in mop1, so copy it. 1787 * The calls to vfs_copycancelopt_extend() 1788 * guarantee that there's enough room. 1789 */ 1790 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1791 (void) strcpy(*dp++, *sp2); 1792 } 1793 } 1794 if (dp != &result[c1+c2]) { 1795 size_t bytes = (dp - result + 1) * sizeof (char *); 1796 char **nres = kmem_alloc(bytes, KM_SLEEP); 1797 1798 bcopy(result, nres, bytes); 1799 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1800 result = nres; 1801 } 1802 return (result); 1803 } 1804 1805 /* 1806 * Merge two mount option tables (outer and inner) into one. This is very 1807 * similar to "merging" global variables and automatic variables in C. 1808 * 1809 * This isn't (and doesn't have to be) fast. 1810 * 1811 * This function is *not* for general use by filesystems. 1812 * 1813 * Note: caller is responsible for locking the vfs list, if needed, 1814 * to protect omo, imo & dmo. 1815 */ 1816 void 1817 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 1818 { 1819 uint_t i, count; 1820 mntopt_t *mop, *motbl; 1821 uint_t freeidx; 1822 1823 /* 1824 * First determine how much space we need to allocate. 1825 */ 1826 count = omo->mo_count; 1827 for (i = 0; i < imo->mo_count; i++) { 1828 if (imo->mo_list[i].mo_flags & MO_EMPTY) 1829 continue; 1830 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 1831 count++; 1832 } 1833 ASSERT(count >= omo->mo_count && 1834 count <= omo->mo_count + imo->mo_count); 1835 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 1836 for (i = 0; i < omo->mo_count; i++) 1837 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 1838 freeidx = omo->mo_count; 1839 for (i = 0; i < imo->mo_count; i++) { 1840 if (imo->mo_list[i].mo_flags & MO_EMPTY) 1841 continue; 1842 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 1843 char **newcanp; 1844 uint_t index = mop - omo->mo_list; 1845 1846 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 1847 1848 vfs_freeopt(&motbl[index]); 1849 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 1850 1851 vfs_freecancelopt(motbl[index].mo_cancel); 1852 motbl[index].mo_cancel = newcanp; 1853 } else { 1854 /* 1855 * If it's a new option, just copy it over to the first 1856 * free location. 1857 */ 1858 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 1859 } 1860 } 1861 dmo->mo_count = count; 1862 dmo->mo_list = motbl; 1863 } 1864 1865 /* 1866 * Functions to set and clear mount options in a mount options table. 1867 */ 1868 1869 /* 1870 * Clear a mount option, if it exists. 1871 * 1872 * The update_mnttab arg indicates whether mops is part of a vfs that is on 1873 * the vfs list. 1874 */ 1875 static void 1876 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 1877 { 1878 struct mntopt *mop; 1879 uint_t i, count; 1880 1881 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 1882 1883 count = mops->mo_count; 1884 for (i = 0; i < count; i++) { 1885 mop = &mops->mo_list[i]; 1886 1887 if (mop->mo_flags & MO_EMPTY) 1888 continue; 1889 if (strcmp(opt, mop->mo_name)) 1890 continue; 1891 mop->mo_flags &= ~MO_SET; 1892 if (mop->mo_arg != NULL) { 1893 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 1894 } 1895 mop->mo_arg = NULL; 1896 if (update_mnttab) 1897 vfs_mnttab_modtimeupd(); 1898 break; 1899 } 1900 } 1901 1902 void 1903 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 1904 { 1905 int gotlock = 0; 1906 1907 if (VFS_ON_LIST(vfsp)) { 1908 gotlock = 1; 1909 vfs_list_lock(); 1910 } 1911 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 1912 if (gotlock) 1913 vfs_list_unlock(); 1914 } 1915 1916 1917 /* 1918 * Set a mount option on. If it's not found in the table, it's silently 1919 * ignored. If the option has MO_IGNORE set, it is still set unless the 1920 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 1921 * bits can be used to toggle the MO_NODISPLAY bit for the option. 1922 * If the VFS_CREATEOPT flag bit is set then the first option slot with 1923 * MO_EMPTY set is created as the option passed in. 1924 * 1925 * The update_mnttab arg indicates whether mops is part of a vfs that is on 1926 * the vfs list. 1927 */ 1928 static void 1929 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 1930 const char *arg, int flags, int update_mnttab) 1931 { 1932 mntopt_t *mop; 1933 uint_t i, count; 1934 char *sp; 1935 1936 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 1937 1938 if (flags & VFS_CREATEOPT) { 1939 if (vfs_hasopt(mops, opt) != NULL) { 1940 flags &= ~VFS_CREATEOPT; 1941 } 1942 } 1943 count = mops->mo_count; 1944 for (i = 0; i < count; i++) { 1945 mop = &mops->mo_list[i]; 1946 1947 if (mop->mo_flags & MO_EMPTY) { 1948 if ((flags & VFS_CREATEOPT) == 0) 1949 continue; 1950 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 1951 (void) strcpy(sp, opt); 1952 mop->mo_name = sp; 1953 if (arg != NULL) 1954 mop->mo_flags = MO_HASVALUE; 1955 else 1956 mop->mo_flags = 0; 1957 } else if (strcmp(opt, mop->mo_name)) { 1958 continue; 1959 } 1960 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 1961 break; 1962 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 1963 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 1964 (void) strcpy(sp, arg); 1965 } else { 1966 sp = NULL; 1967 } 1968 if (mop->mo_arg != NULL) 1969 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 1970 mop->mo_arg = sp; 1971 if (flags & VFS_DISPLAY) 1972 mop->mo_flags &= ~MO_NODISPLAY; 1973 if (flags & VFS_NODISPLAY) 1974 mop->mo_flags |= MO_NODISPLAY; 1975 mop->mo_flags |= MO_SET; 1976 if (mop->mo_cancel != NULL) { 1977 char **cp; 1978 1979 for (cp = mop->mo_cancel; *cp != NULL; cp++) 1980 vfs_clearmntopt_nolock(mops, *cp, 0); 1981 } 1982 if (update_mnttab) 1983 vfs_mnttab_modtimeupd(); 1984 break; 1985 } 1986 } 1987 1988 void 1989 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 1990 { 1991 int gotlock = 0; 1992 1993 if (VFS_ON_LIST(vfsp)) { 1994 gotlock = 1; 1995 vfs_list_lock(); 1996 } 1997 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 1998 if (gotlock) 1999 vfs_list_unlock(); 2000 } 2001 2002 2003 /* 2004 * Add a "tag" option to a mounted file system's options list. 2005 * 2006 * Note: caller is responsible for locking the vfs list, if needed, 2007 * to protect mops. 2008 */ 2009 static mntopt_t * 2010 vfs_addtag(mntopts_t *mops, const char *tag) 2011 { 2012 uint_t count; 2013 mntopt_t *mop, *motbl; 2014 2015 count = mops->mo_count + 1; 2016 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2017 if (mops->mo_count) { 2018 size_t len = (count - 1) * sizeof (mntopt_t); 2019 2020 bcopy(mops->mo_list, motbl, len); 2021 kmem_free(mops->mo_list, len); 2022 } 2023 mops->mo_count = count; 2024 mops->mo_list = motbl; 2025 mop = &motbl[count - 1]; 2026 mop->mo_flags = MO_TAG; 2027 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2028 (void) strcpy(mop->mo_name, tag); 2029 return (mop); 2030 } 2031 2032 /* 2033 * Allow users to set arbitrary "tags" in a vfs's mount options. 2034 * Broader use within the kernel is discouraged. 2035 */ 2036 int 2037 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2038 cred_t *cr) 2039 { 2040 vfs_t *vfsp; 2041 mntopts_t *mops; 2042 mntopt_t *mop; 2043 int found = 0; 2044 dev_t dev = makedevice(major, minor); 2045 int err = 0; 2046 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2047 2048 /* 2049 * Find the desired mounted file system 2050 */ 2051 vfs_list_lock(); 2052 vfsp = rootvfs; 2053 do { 2054 if (vfsp->vfs_dev == dev && 2055 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2056 found = 1; 2057 break; 2058 } 2059 vfsp = vfsp->vfs_next; 2060 } while (vfsp != rootvfs); 2061 2062 if (!found) { 2063 err = EINVAL; 2064 goto out; 2065 } 2066 err = secpolicy_fs_config(cr, vfsp); 2067 if (err != 0) 2068 goto out; 2069 2070 mops = &vfsp->vfs_mntopts; 2071 /* 2072 * Add tag if it doesn't already exist 2073 */ 2074 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2075 int len; 2076 2077 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2078 len = strlen(buf); 2079 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2080 err = ENAMETOOLONG; 2081 goto out; 2082 } 2083 mop = vfs_addtag(mops, tag); 2084 } 2085 if ((mop->mo_flags & MO_TAG) == 0) { 2086 err = EINVAL; 2087 goto out; 2088 } 2089 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2090 out: 2091 vfs_list_unlock(); 2092 kmem_free(buf, MAX_MNTOPT_STR); 2093 return (err); 2094 } 2095 2096 /* 2097 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2098 * Broader use within the kernel is discouraged. 2099 */ 2100 int 2101 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2102 cred_t *cr) 2103 { 2104 vfs_t *vfsp; 2105 mntopt_t *mop; 2106 int found = 0; 2107 dev_t dev = makedevice(major, minor); 2108 int err = 0; 2109 2110 /* 2111 * Find the desired mounted file system 2112 */ 2113 vfs_list_lock(); 2114 vfsp = rootvfs; 2115 do { 2116 if (vfsp->vfs_dev == dev && 2117 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2118 found = 1; 2119 break; 2120 } 2121 vfsp = vfsp->vfs_next; 2122 } while (vfsp != rootvfs); 2123 2124 if (!found) { 2125 err = EINVAL; 2126 goto out; 2127 } 2128 err = secpolicy_fs_config(cr, vfsp); 2129 if (err != 0) 2130 goto out; 2131 2132 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2133 err = EINVAL; 2134 goto out; 2135 } 2136 if ((mop->mo_flags & MO_TAG) == 0) { 2137 err = EINVAL; 2138 goto out; 2139 } 2140 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2141 out: 2142 vfs_list_unlock(); 2143 return (err); 2144 } 2145 2146 /* 2147 * Function to parse an option string and fill in a mount options table. 2148 * Unknown options are silently ignored. The input option string is modified 2149 * by replacing separators with nulls. If the create flag is set, options 2150 * not found in the table are just added on the fly. The table must have 2151 * an option slot marked MO_EMPTY to add an option on the fly. 2152 * 2153 * This function is *not* for general use by filesystems. 2154 * 2155 * Note: caller is responsible for locking the vfs list, if needed, 2156 * to protect mops.. 2157 */ 2158 void 2159 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2160 { 2161 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2162 int setflg = VFS_NOFORCEOPT; 2163 2164 if (osp == NULL) 2165 return; 2166 while (*s != '\0') { 2167 p = strchr(s, ','); /* find next option */ 2168 if (p == NULL) { 2169 cp = NULL; 2170 p = s + strlen(s); 2171 } else { 2172 cp = p; /* save location of comma */ 2173 *p++ = '\0'; /* mark end and point to next option */ 2174 } 2175 nextop = p; 2176 p = strchr(s, '='); /* look for value */ 2177 if (p == NULL) { 2178 valp = NULL; /* no value supplied */ 2179 } else { 2180 ep = p; /* save location of equals */ 2181 *p++ = '\0'; /* end option and point to value */ 2182 valp = p; 2183 } 2184 /* 2185 * set option into options table 2186 */ 2187 if (create) 2188 setflg |= VFS_CREATEOPT; 2189 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2190 if (cp != NULL) 2191 *cp = ','; /* restore the comma */ 2192 if (valp != NULL) 2193 *ep = '='; /* restore the equals */ 2194 s = nextop; 2195 } 2196 } 2197 2198 /* 2199 * Function to inquire if an option exists in a mount options table. 2200 * Returns a pointer to the option if it exists, else NULL. 2201 * 2202 * This function is *not* for general use by filesystems. 2203 * 2204 * Note: caller is responsible for locking the vfs list, if needed, 2205 * to protect mops. 2206 */ 2207 struct mntopt * 2208 vfs_hasopt(const mntopts_t *mops, const char *opt) 2209 { 2210 struct mntopt *mop; 2211 uint_t i, count; 2212 2213 count = mops->mo_count; 2214 for (i = 0; i < count; i++) { 2215 mop = &mops->mo_list[i]; 2216 2217 if (mop->mo_flags & MO_EMPTY) 2218 continue; 2219 if (strcmp(opt, mop->mo_name) == 0) 2220 return (mop); 2221 } 2222 return (NULL); 2223 } 2224 2225 /* 2226 * Function to inquire if an option is set in a mount options table. 2227 * Returns non-zero if set and fills in the arg pointer with a pointer to 2228 * the argument string or NULL if there is no argument string. 2229 */ 2230 static int 2231 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2232 { 2233 struct mntopt *mop; 2234 uint_t i, count; 2235 2236 count = mops->mo_count; 2237 for (i = 0; i < count; i++) { 2238 mop = &mops->mo_list[i]; 2239 2240 if (mop->mo_flags & MO_EMPTY) 2241 continue; 2242 if (strcmp(opt, mop->mo_name)) 2243 continue; 2244 if ((mop->mo_flags & MO_SET) == 0) 2245 return (0); 2246 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2247 *argp = mop->mo_arg; 2248 return (1); 2249 } 2250 return (0); 2251 } 2252 2253 2254 int 2255 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2256 { 2257 int ret; 2258 2259 vfs_list_read_lock(); 2260 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2261 vfs_list_unlock(); 2262 return (ret); 2263 } 2264 2265 2266 /* 2267 * Construct a comma separated string of the options set in the given 2268 * mount table, return the string in the given buffer. Return non-zero if 2269 * the buffer would overflow. 2270 * 2271 * This function is *not* for general use by filesystems. 2272 * 2273 * Note: caller is responsible for locking the vfs list, if needed, 2274 * to protect mp. 2275 */ 2276 int 2277 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2278 { 2279 char *cp; 2280 uint_t i; 2281 2282 buf[0] = '\0'; 2283 cp = buf; 2284 for (i = 0; i < mp->mo_count; i++) { 2285 struct mntopt *mop; 2286 2287 mop = &mp->mo_list[i]; 2288 if (mop->mo_flags & MO_SET) { 2289 int optlen, comma = 0; 2290 2291 if (buf[0] != '\0') 2292 comma = 1; 2293 optlen = strlen(mop->mo_name); 2294 if (strlen(buf) + comma + optlen + 1 > len) 2295 goto err; 2296 if (comma) 2297 *cp++ = ','; 2298 (void) strcpy(cp, mop->mo_name); 2299 cp += optlen; 2300 /* 2301 * Append option value if there is one 2302 */ 2303 if (mop->mo_arg != NULL) { 2304 int arglen; 2305 2306 arglen = strlen(mop->mo_arg); 2307 if (strlen(buf) + arglen + 2 > len) 2308 goto err; 2309 *cp++ = '='; 2310 (void) strcpy(cp, mop->mo_arg); 2311 cp += arglen; 2312 } 2313 } 2314 } 2315 return (0); 2316 err: 2317 return (EOVERFLOW); 2318 } 2319 2320 static void 2321 vfs_freecancelopt(char **moc) 2322 { 2323 if (moc != NULL) { 2324 int ccnt = 0; 2325 char **cp; 2326 2327 for (cp = moc; *cp != NULL; cp++) { 2328 kmem_free(*cp, strlen(*cp) + 1); 2329 ccnt++; 2330 } 2331 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2332 } 2333 } 2334 2335 static void 2336 vfs_freeopt(mntopt_t *mop) 2337 { 2338 if (mop->mo_name != NULL) 2339 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2340 2341 vfs_freecancelopt(mop->mo_cancel); 2342 2343 if (mop->mo_arg != NULL) 2344 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2345 } 2346 2347 /* 2348 * Free a mount options table 2349 * 2350 * This function is *not* for general use by filesystems. 2351 * 2352 * Note: caller is responsible for locking the vfs list, if needed, 2353 * to protect mp. 2354 */ 2355 void 2356 vfs_freeopttbl(mntopts_t *mp) 2357 { 2358 uint_t i, count; 2359 2360 count = mp->mo_count; 2361 for (i = 0; i < count; i++) { 2362 vfs_freeopt(&mp->mo_list[i]); 2363 } 2364 if (count) { 2365 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2366 mp->mo_count = 0; 2367 mp->mo_list = NULL; 2368 } 2369 } 2370 2371 /* 2372 * Free any mnttab information recorded in the vfs struct. 2373 * The vfs must not be on the vfs list. 2374 */ 2375 static void 2376 vfs_freemnttab(struct vfs *vfsp) 2377 { 2378 ASSERT(!VFS_ON_LIST(vfsp)); 2379 2380 /* 2381 * Free device and mount point information 2382 */ 2383 if (vfsp->vfs_mntpt != NULL) { 2384 refstr_rele(vfsp->vfs_mntpt); 2385 vfsp->vfs_mntpt = NULL; 2386 } 2387 if (vfsp->vfs_resource != NULL) { 2388 refstr_rele(vfsp->vfs_resource); 2389 vfsp->vfs_resource = NULL; 2390 } 2391 /* 2392 * Now free mount options information 2393 */ 2394 vfs_freeopttbl(&vfsp->vfs_mntopts); 2395 } 2396 2397 /* 2398 * Return the last mnttab modification time 2399 */ 2400 void 2401 vfs_mnttab_modtime(timespec_t *ts) 2402 { 2403 ASSERT(RW_LOCK_HELD(&vfslist)); 2404 *ts = vfs_mnttab_mtime; 2405 } 2406 2407 /* 2408 * See if mnttab is changed 2409 */ 2410 void 2411 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2412 { 2413 int changed; 2414 2415 *phpp = (struct pollhead *)NULL; 2416 2417 /* 2418 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2419 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2420 * to not grab the vfs list lock because tv_sec is monotonically 2421 * increasing. 2422 */ 2423 2424 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2425 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2426 if (!changed) { 2427 *phpp = &vfs_pollhd; 2428 } 2429 } 2430 2431 /* 2432 * Update the mnttab modification time and wake up any waiters for 2433 * mnttab changes 2434 */ 2435 void 2436 vfs_mnttab_modtimeupd() 2437 { 2438 hrtime_t oldhrt, newhrt; 2439 2440 ASSERT(RW_WRITE_HELD(&vfslist)); 2441 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2442 gethrestime(&vfs_mnttab_mtime); 2443 newhrt = ts2hrt(&vfs_mnttab_mtime); 2444 if (oldhrt == (hrtime_t)0) 2445 vfs_mnttab_ctime = vfs_mnttab_mtime; 2446 /* 2447 * Attempt to provide unique mtime (like uniqtime but not). 2448 */ 2449 if (newhrt == oldhrt) { 2450 newhrt++; 2451 hrt2ts(newhrt, &vfs_mnttab_mtime); 2452 } 2453 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2454 } 2455 2456 int 2457 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2458 { 2459 vnode_t *coveredvp; 2460 int error; 2461 2462 /* 2463 * Get covered vnode. This will be NULL if the vfs is not linked 2464 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2465 */ 2466 coveredvp = vfsp->vfs_vnodecovered; 2467 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2468 2469 /* 2470 * Purge all dnlc entries for this vfs. 2471 */ 2472 (void) dnlc_purge_vfsp(vfsp, 0); 2473 2474 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2475 if ((flag & MS_FORCE) == 0) 2476 (void) VFS_SYNC(vfsp, 0, cr); 2477 2478 /* 2479 * Lock the vfs to maintain fs status quo during unmount. This 2480 * has to be done after the sync because ufs_update tries to acquire 2481 * the vfs_reflock. 2482 */ 2483 vfs_lock_wait(vfsp); 2484 2485 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2486 vfs_unlock(vfsp); 2487 if (coveredvp != NULL) 2488 vn_vfsunlock(coveredvp); 2489 } else if (coveredvp != NULL) { 2490 /* 2491 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2492 * when it frees vfsp so we do a VN_HOLD() so we can 2493 * continue to use coveredvp afterwards. 2494 */ 2495 VN_HOLD(coveredvp); 2496 vfs_remove(vfsp); 2497 vn_vfsunlock(coveredvp); 2498 VN_RELE(coveredvp); 2499 } else { 2500 /* 2501 * Release the reference to vfs that is not linked 2502 * into the name space. 2503 */ 2504 vfs_unlock(vfsp); 2505 VFS_RELE(vfsp); 2506 } 2507 return (error); 2508 } 2509 2510 2511 /* 2512 * Vfs_unmountall() is called by uadmin() to unmount all 2513 * mounted file systems (except the root file system) during shutdown. 2514 * It follows the existing locking protocol when traversing the vfs list 2515 * to sync and unmount vfses. Even though there should be no 2516 * other thread running while the system is shutting down, it is prudent 2517 * to still follow the locking protocol. 2518 */ 2519 void 2520 vfs_unmountall(void) 2521 { 2522 struct vfs *vfsp; 2523 struct vfs *prev_vfsp = NULL; 2524 int error; 2525 2526 /* 2527 * Toss all dnlc entries now so that the per-vfs sync 2528 * and unmount operations don't have to slog through 2529 * a bunch of uninteresting vnodes over and over again. 2530 */ 2531 dnlc_purge(); 2532 2533 vfs_list_lock(); 2534 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2535 prev_vfsp = vfsp->vfs_prev; 2536 2537 if (vfs_lock(vfsp) != 0) 2538 continue; 2539 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2540 vfs_unlock(vfsp); 2541 if (error) 2542 continue; 2543 2544 vfs_list_unlock(); 2545 2546 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2547 (void) dounmount(vfsp, 0, CRED()); 2548 2549 /* 2550 * Since we dropped the vfslist lock above we must 2551 * verify that next_vfsp still exists, else start over. 2552 */ 2553 vfs_list_lock(); 2554 for (vfsp = rootvfs->vfs_prev; 2555 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2556 if (vfsp == prev_vfsp) 2557 break; 2558 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2559 prev_vfsp = rootvfs->vfs_prev; 2560 } 2561 vfs_list_unlock(); 2562 } 2563 2564 /* 2565 * Called to add an entry to the end of the vfs mount in progress list 2566 */ 2567 void 2568 vfs_addmip(dev_t dev, struct vfs *vfsp) 2569 { 2570 struct ipmnt *mipp; 2571 2572 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2573 mipp->mip_next = NULL; 2574 mipp->mip_dev = dev; 2575 mipp->mip_vfsp = vfsp; 2576 mutex_enter(&vfs_miplist_mutex); 2577 if (vfs_miplist_end != NULL) 2578 vfs_miplist_end->mip_next = mipp; 2579 else 2580 vfs_miplist = mipp; 2581 vfs_miplist_end = mipp; 2582 mutex_exit(&vfs_miplist_mutex); 2583 } 2584 2585 /* 2586 * Called to remove an entry from the mount in progress list 2587 * Either because the mount completed or it failed. 2588 */ 2589 void 2590 vfs_delmip(struct vfs *vfsp) 2591 { 2592 struct ipmnt *mipp, *mipprev; 2593 2594 mutex_enter(&vfs_miplist_mutex); 2595 mipprev = NULL; 2596 for (mipp = vfs_miplist; 2597 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2598 mipprev = mipp; 2599 } 2600 if (mipp == NULL) 2601 return; /* shouldn't happen */ 2602 if (mipp == vfs_miplist_end) 2603 vfs_miplist_end = mipprev; 2604 if (mipprev == NULL) 2605 vfs_miplist = mipp->mip_next; 2606 else 2607 mipprev->mip_next = mipp->mip_next; 2608 mutex_exit(&vfs_miplist_mutex); 2609 kmem_free(mipp, sizeof (struct ipmnt)); 2610 } 2611 2612 /* 2613 * vfs_add is called by a specific filesystem's mount routine to add 2614 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2615 * The vfs should already have been locked by the caller. 2616 * 2617 * coveredvp is NULL if this is the root. 2618 */ 2619 void 2620 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2621 { 2622 int newflag; 2623 2624 ASSERT(vfs_lock_held(vfsp)); 2625 VFS_HOLD(vfsp); 2626 newflag = vfsp->vfs_flag; 2627 if (mflag & MS_RDONLY) 2628 newflag |= VFS_RDONLY; 2629 else 2630 newflag &= ~VFS_RDONLY; 2631 if (mflag & MS_NOSUID) 2632 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2633 else 2634 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2635 if (mflag & MS_NOMNTTAB) 2636 newflag |= VFS_NOMNTTAB; 2637 else 2638 newflag &= ~VFS_NOMNTTAB; 2639 2640 if (coveredvp != NULL) { 2641 ASSERT(vn_vfswlock_held(coveredvp)); 2642 coveredvp->v_vfsmountedhere = vfsp; 2643 VN_HOLD(coveredvp); 2644 } 2645 vfsp->vfs_vnodecovered = coveredvp; 2646 vfsp->vfs_flag = newflag; 2647 2648 vfs_list_add(vfsp); 2649 } 2650 2651 /* 2652 * Remove a vfs from the vfs list, null out the pointer from the 2653 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2654 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2655 * reference to the vfs and to the covered vnode. 2656 * 2657 * Called from dounmount after it's confirmed with the file system 2658 * that the unmount is legal. 2659 */ 2660 void 2661 vfs_remove(struct vfs *vfsp) 2662 { 2663 vnode_t *vp; 2664 2665 ASSERT(vfs_lock_held(vfsp)); 2666 2667 /* 2668 * Can't unmount root. Should never happen because fs will 2669 * be busy. 2670 */ 2671 if (vfsp == rootvfs) 2672 cmn_err(CE_PANIC, "vfs_remove: unmounting root"); 2673 2674 vfs_list_remove(vfsp); 2675 2676 /* 2677 * Unhook from the file system name space. 2678 */ 2679 vp = vfsp->vfs_vnodecovered; 2680 ASSERT(vn_vfswlock_held(vp)); 2681 vp->v_vfsmountedhere = NULL; 2682 vfsp->vfs_vnodecovered = NULL; 2683 VN_RELE(vp); 2684 2685 /* 2686 * Release lock and wakeup anybody waiting. 2687 */ 2688 vfs_unlock(vfsp); 2689 VFS_RELE(vfsp); 2690 } 2691 2692 /* 2693 * Lock a filesystem to prevent access to it while mounting, 2694 * unmounting and syncing. Return EBUSY immediately if lock 2695 * can't be acquired. 2696 */ 2697 int 2698 vfs_lock(vfs_t *vfsp) 2699 { 2700 vn_vfslocks_entry_t *vpvfsentry; 2701 2702 vpvfsentry = vn_vfslocks_getlock(vfsp); 2703 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2704 return (0); 2705 2706 vn_vfslocks_rele(vpvfsentry); 2707 return (EBUSY); 2708 } 2709 2710 int 2711 vfs_rlock(vfs_t *vfsp) 2712 { 2713 vn_vfslocks_entry_t *vpvfsentry; 2714 2715 vpvfsentry = vn_vfslocks_getlock(vfsp); 2716 2717 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2718 return (0); 2719 2720 vn_vfslocks_rele(vpvfsentry); 2721 return (EBUSY); 2722 } 2723 2724 void 2725 vfs_lock_wait(vfs_t *vfsp) 2726 { 2727 vn_vfslocks_entry_t *vpvfsentry; 2728 2729 vpvfsentry = vn_vfslocks_getlock(vfsp); 2730 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2731 } 2732 2733 void 2734 vfs_rlock_wait(vfs_t *vfsp) 2735 { 2736 vn_vfslocks_entry_t *vpvfsentry; 2737 2738 vpvfsentry = vn_vfslocks_getlock(vfsp); 2739 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2740 } 2741 2742 /* 2743 * Unlock a locked filesystem. 2744 */ 2745 void 2746 vfs_unlock(vfs_t *vfsp) 2747 { 2748 vn_vfslocks_entry_t *vpvfsentry; 2749 2750 /* 2751 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2752 * And these changes should remain for the patch changes as it is. 2753 */ 2754 if (panicstr) 2755 return; 2756 2757 /* 2758 * ve_refcount needs to be dropped twice here. 2759 * 1. To release refernce after a call to vfs_locks_getlock() 2760 * 2. To release the reference from the locking routines like 2761 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2762 */ 2763 2764 vpvfsentry = vn_vfslocks_getlock(vfsp); 2765 vn_vfslocks_rele(vpvfsentry); 2766 2767 rwst_exit(&vpvfsentry->ve_lock); 2768 vn_vfslocks_rele(vpvfsentry); 2769 } 2770 2771 /* 2772 * Utility routine that allows a filesystem to construct its 2773 * fsid in "the usual way" - by munging some underlying dev_t and 2774 * the filesystem type number into the 64-bit fsid. Note that 2775 * this implicitly relies on dev_t persistence to make filesystem 2776 * id's persistent. 2777 * 2778 * There's nothing to prevent an individual fs from constructing its 2779 * fsid in a different way, and indeed they should. 2780 * 2781 * Since we want fsids to be 32-bit quantities (so that they can be 2782 * exported identically by either 32-bit or 64-bit APIs, as well as 2783 * the fact that fsid's are "known" to NFS), we compress the device 2784 * number given down to 32-bits, and panic if that isn't possible. 2785 */ 2786 void 2787 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2788 { 2789 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2790 panic("device number too big for fsid!"); 2791 fsi->val[1] = val; 2792 } 2793 2794 int 2795 vfs_lock_held(vfs_t *vfsp) 2796 { 2797 int held; 2798 vn_vfslocks_entry_t *vpvfsentry; 2799 2800 /* 2801 * vfs_lock_held will mimic sema_held behaviour 2802 * if panicstr is set. And these changes should remain 2803 * for the patch changes as it is. 2804 */ 2805 if (panicstr) 2806 return (1); 2807 2808 vpvfsentry = vn_vfslocks_getlock(vfsp); 2809 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 2810 2811 vn_vfslocks_rele(vpvfsentry); 2812 return (held); 2813 } 2814 2815 struct _kthread * 2816 vfs_lock_owner(vfs_t *vfsp) 2817 { 2818 struct _kthread *owner; 2819 vn_vfslocks_entry_t *vpvfsentry; 2820 2821 /* 2822 * vfs_wlock_held will mimic sema_held behaviour 2823 * if panicstr is set. And these changes should remain 2824 * for the patch changes as it is. 2825 */ 2826 if (panicstr) 2827 return (NULL); 2828 2829 vpvfsentry = vn_vfslocks_getlock(vfsp); 2830 owner = rwst_owner(&vpvfsentry->ve_lock); 2831 2832 vn_vfslocks_rele(vpvfsentry); 2833 return (owner); 2834 } 2835 2836 /* 2837 * vfs list locking. 2838 * 2839 * Rather than manipulate the vfslist lock directly, we abstract into lock 2840 * and unlock routines to allow the locking implementation to be changed for 2841 * clustering. 2842 * 2843 * Whenever the vfs list is modified through its hash links, the overall list 2844 * lock must be obtained before locking the relevant hash bucket. But to see 2845 * whether a given vfs is on the list, it suffices to obtain the lock for the 2846 * hash bucket without getting the overall list lock. (See getvfs() below.) 2847 */ 2848 2849 void 2850 vfs_list_lock() 2851 { 2852 rw_enter(&vfslist, RW_WRITER); 2853 } 2854 2855 void 2856 vfs_list_read_lock() 2857 { 2858 rw_enter(&vfslist, RW_READER); 2859 } 2860 2861 void 2862 vfs_list_unlock() 2863 { 2864 rw_exit(&vfslist); 2865 } 2866 2867 /* 2868 * Low level worker routines for adding entries to and removing entries from 2869 * the vfs list. 2870 */ 2871 2872 static void 2873 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 2874 { 2875 int vhno; 2876 struct vfs **hp; 2877 dev_t dev; 2878 2879 ASSERT(RW_WRITE_HELD(&vfslist)); 2880 2881 dev = expldev(vfsp->vfs_fsid.val[0]); 2882 vhno = VFSHASH(getmajor(dev), getminor(dev)); 2883 2884 mutex_enter(&rvfs_list[vhno].rvfs_lock); 2885 2886 /* 2887 * Link into the hash table, inserting it at the end, so that LOFS 2888 * with the same fsid as UFS (or other) file systems will not hide the 2889 * UFS. 2890 */ 2891 if (insert_at_head) { 2892 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 2893 rvfs_list[vhno].rvfs_head = vfsp; 2894 } else { 2895 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 2896 hp = &(*hp)->vfs_hash) 2897 continue; 2898 /* 2899 * hp now contains the address of the pointer to update 2900 * to effect the insertion. 2901 */ 2902 vfsp->vfs_hash = NULL; 2903 *hp = vfsp; 2904 } 2905 2906 rvfs_list[vhno].rvfs_len++; 2907 mutex_exit(&rvfs_list[vhno].rvfs_lock); 2908 } 2909 2910 2911 static void 2912 vfs_hash_remove(struct vfs *vfsp) 2913 { 2914 int vhno; 2915 struct vfs *tvfsp; 2916 dev_t dev; 2917 2918 ASSERT(RW_WRITE_HELD(&vfslist)); 2919 2920 dev = expldev(vfsp->vfs_fsid.val[0]); 2921 vhno = VFSHASH(getmajor(dev), getminor(dev)); 2922 2923 mutex_enter(&rvfs_list[vhno].rvfs_lock); 2924 2925 /* 2926 * Remove from hash. 2927 */ 2928 if (rvfs_list[vhno].rvfs_head == vfsp) { 2929 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 2930 rvfs_list[vhno].rvfs_len--; 2931 goto foundit; 2932 } 2933 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 2934 tvfsp = tvfsp->vfs_hash) { 2935 if (tvfsp->vfs_hash == vfsp) { 2936 tvfsp->vfs_hash = vfsp->vfs_hash; 2937 rvfs_list[vhno].rvfs_len--; 2938 goto foundit; 2939 } 2940 } 2941 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 2942 2943 foundit: 2944 2945 mutex_exit(&rvfs_list[vhno].rvfs_lock); 2946 } 2947 2948 2949 void 2950 vfs_list_add(struct vfs *vfsp) 2951 { 2952 zone_t *zone; 2953 2954 /* 2955 * The zone that owns the mount is the one that performed the mount. 2956 * Note that this isn't necessarily the same as the zone mounted into. 2957 * The corresponding zone_rele() will be done when the vfs_t is 2958 * being free'd. 2959 */ 2960 vfsp->vfs_zone = curproc->p_zone; 2961 zone_hold(vfsp->vfs_zone); 2962 2963 /* 2964 * Find the zone mounted into, and put this mount on its vfs list. 2965 */ 2966 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 2967 ASSERT(zone != NULL); 2968 /* 2969 * Special casing for the root vfs. This structure is allocated 2970 * statically and hooked onto rootvfs at link time. During the 2971 * vfs_mountroot call at system startup time, the root file system's 2972 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 2973 * as argument. The code below must detect and handle this special 2974 * case. The only apparent justification for this special casing is 2975 * to ensure that the root file system appears at the head of the 2976 * list. 2977 * 2978 * XXX: I'm assuming that it's ok to do normal list locking when 2979 * adding the entry for the root file system (this used to be 2980 * done with no locks held). 2981 */ 2982 vfs_list_lock(); 2983 /* 2984 * Link into the vfs list proper. 2985 */ 2986 if (vfsp == &root) { 2987 /* 2988 * Assert: This vfs is already on the list as its first entry. 2989 * Thus, there's nothing to do. 2990 */ 2991 ASSERT(rootvfs == vfsp); 2992 /* 2993 * Add it to the head of the global zone's vfslist. 2994 */ 2995 ASSERT(zone == global_zone); 2996 ASSERT(zone->zone_vfslist == NULL); 2997 zone->zone_vfslist = vfsp; 2998 } else { 2999 /* 3000 * Link to end of list using vfs_prev (as rootvfs is now a 3001 * doubly linked circular list) so list is in mount order for 3002 * mnttab use. 3003 */ 3004 rootvfs->vfs_prev->vfs_next = vfsp; 3005 vfsp->vfs_prev = rootvfs->vfs_prev; 3006 rootvfs->vfs_prev = vfsp; 3007 vfsp->vfs_next = rootvfs; 3008 3009 /* 3010 * Do it again for the zone-private list (which may be NULL). 3011 */ 3012 if (zone->zone_vfslist == NULL) { 3013 ASSERT(zone != global_zone); 3014 zone->zone_vfslist = vfsp; 3015 } else { 3016 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3017 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3018 zone->zone_vfslist->vfs_zone_prev = vfsp; 3019 vfsp->vfs_zone_next = zone->zone_vfslist; 3020 } 3021 } 3022 3023 /* 3024 * Link into the hash table, inserting it at the end, so that LOFS 3025 * with the same fsid as UFS (or other) file systems will not hide 3026 * the UFS. 3027 */ 3028 vfs_hash_add(vfsp, 0); 3029 3030 /* 3031 * update the mnttab modification time 3032 */ 3033 vfs_mnttab_modtimeupd(); 3034 vfs_list_unlock(); 3035 zone_rele(zone); 3036 } 3037 3038 void 3039 vfs_list_remove(struct vfs *vfsp) 3040 { 3041 zone_t *zone; 3042 3043 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3044 ASSERT(zone != NULL); 3045 /* 3046 * Callers are responsible for preventing attempts to unmount the 3047 * root. 3048 */ 3049 ASSERT(vfsp != rootvfs); 3050 3051 vfs_list_lock(); 3052 3053 /* 3054 * Remove from hash. 3055 */ 3056 vfs_hash_remove(vfsp); 3057 3058 /* 3059 * Remove from vfs list. 3060 */ 3061 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3062 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3063 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3064 3065 /* 3066 * Remove from zone-specific vfs list. 3067 */ 3068 if (zone->zone_vfslist == vfsp) 3069 zone->zone_vfslist = vfsp->vfs_zone_next; 3070 3071 if (vfsp->vfs_zone_next == vfsp) { 3072 ASSERT(vfsp->vfs_zone_prev == vfsp); 3073 ASSERT(zone->zone_vfslist == vfsp); 3074 zone->zone_vfslist = NULL; 3075 } 3076 3077 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3078 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3079 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3080 3081 /* 3082 * update the mnttab modification time 3083 */ 3084 vfs_mnttab_modtimeupd(); 3085 vfs_list_unlock(); 3086 zone_rele(zone); 3087 } 3088 3089 struct vfs * 3090 getvfs(fsid_t *fsid) 3091 { 3092 struct vfs *vfsp; 3093 int val0 = fsid->val[0]; 3094 int val1 = fsid->val[1]; 3095 dev_t dev = expldev(val0); 3096 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3097 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3098 3099 mutex_enter(hmp); 3100 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3101 if (vfsp->vfs_fsid.val[0] == val0 && 3102 vfsp->vfs_fsid.val[1] == val1) { 3103 VFS_HOLD(vfsp); 3104 mutex_exit(hmp); 3105 return (vfsp); 3106 } 3107 } 3108 mutex_exit(hmp); 3109 return (NULL); 3110 } 3111 3112 /* 3113 * Search the vfs mount in progress list for a specified device/vfs entry. 3114 * Returns 0 if the first entry in the list that the device matches has the 3115 * given vfs pointer as well. If the device matches but a different vfs 3116 * pointer is encountered in the list before the given vfs pointer then 3117 * a 1 is returned. 3118 */ 3119 3120 int 3121 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3122 { 3123 int retval = 0; 3124 struct ipmnt *mipp; 3125 3126 mutex_enter(&vfs_miplist_mutex); 3127 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3128 if (mipp->mip_dev == dev) { 3129 if (mipp->mip_vfsp != vfsp) 3130 retval = 1; 3131 break; 3132 } 3133 } 3134 mutex_exit(&vfs_miplist_mutex); 3135 return (retval); 3136 } 3137 3138 /* 3139 * Search the vfs list for a specified device. Returns 1, if entry is found 3140 * or 0 if no suitable entry is found. 3141 */ 3142 3143 int 3144 vfs_devismounted(dev_t dev) 3145 { 3146 struct vfs *vfsp; 3147 int found; 3148 3149 vfs_list_read_lock(); 3150 vfsp = rootvfs; 3151 found = 0; 3152 do { 3153 if (vfsp->vfs_dev == dev) { 3154 found = 1; 3155 break; 3156 } 3157 vfsp = vfsp->vfs_next; 3158 } while (vfsp != rootvfs); 3159 3160 vfs_list_unlock(); 3161 return (found); 3162 } 3163 3164 /* 3165 * Search the vfs list for a specified device. Returns a pointer to it 3166 * or NULL if no suitable entry is found. The caller of this routine 3167 * is responsible for releasing the returned vfs pointer. 3168 */ 3169 struct vfs * 3170 vfs_dev2vfsp(dev_t dev) 3171 { 3172 struct vfs *vfsp; 3173 int found; 3174 3175 vfs_list_read_lock(); 3176 vfsp = rootvfs; 3177 found = 0; 3178 do { 3179 /* 3180 * The following could be made more efficient by making 3181 * the entire loop use vfs_zone_next if the call is from 3182 * a zone. The only callers, however, ustat(2) and 3183 * umount2(2), don't seem to justify the added 3184 * complexity at present. 3185 */ 3186 if (vfsp->vfs_dev == dev && 3187 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3188 curproc->p_zone)) { 3189 VFS_HOLD(vfsp); 3190 found = 1; 3191 break; 3192 } 3193 vfsp = vfsp->vfs_next; 3194 } while (vfsp != rootvfs); 3195 vfs_list_unlock(); 3196 return (found ? vfsp: NULL); 3197 } 3198 3199 /* 3200 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3201 * or NULL if no suitable entry is found. The caller of this routine 3202 * is responsible for releasing the returned vfs pointer. 3203 * 3204 * Note that if multiple mntpoints match, the last one matching is 3205 * returned in an attempt to return the "top" mount when overlay 3206 * mounts are covering the same mount point. This is accomplished by starting 3207 * at the end of the list and working our way backwards, stopping at the first 3208 * matching mount. 3209 */ 3210 struct vfs * 3211 vfs_mntpoint2vfsp(const char *mp) 3212 { 3213 struct vfs *vfsp; 3214 struct vfs *retvfsp = NULL; 3215 zone_t *zone = curproc->p_zone; 3216 struct vfs *list; 3217 3218 vfs_list_read_lock(); 3219 if (getzoneid() == GLOBAL_ZONEID) { 3220 /* 3221 * The global zone may see filesystems in any zone. 3222 */ 3223 vfsp = rootvfs->vfs_prev; 3224 do { 3225 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3226 retvfsp = vfsp; 3227 break; 3228 } 3229 vfsp = vfsp->vfs_prev; 3230 } while (vfsp != rootvfs->vfs_prev); 3231 } else if ((list = zone->zone_vfslist) != NULL) { 3232 const char *mntpt; 3233 3234 vfsp = list->vfs_zone_prev; 3235 do { 3236 mntpt = refstr_value(vfsp->vfs_mntpt); 3237 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3238 if (strcmp(mntpt, mp) == 0) { 3239 retvfsp = vfsp; 3240 break; 3241 } 3242 vfsp = vfsp->vfs_zone_prev; 3243 } while (vfsp != list->vfs_zone_prev); 3244 } 3245 if (retvfsp) 3246 VFS_HOLD(retvfsp); 3247 vfs_list_unlock(); 3248 return (retvfsp); 3249 } 3250 3251 /* 3252 * Search the vfs list for a specified vfsops. 3253 * if vfs entry is found then return 1, else 0. 3254 */ 3255 int 3256 vfs_opsinuse(vfsops_t *ops) 3257 { 3258 struct vfs *vfsp; 3259 int found; 3260 3261 vfs_list_read_lock(); 3262 vfsp = rootvfs; 3263 found = 0; 3264 do { 3265 if (vfs_getops(vfsp) == ops) { 3266 found = 1; 3267 break; 3268 } 3269 vfsp = vfsp->vfs_next; 3270 } while (vfsp != rootvfs); 3271 vfs_list_unlock(); 3272 return (found); 3273 } 3274 3275 /* 3276 * Allocate an entry in vfssw for a file system type 3277 */ 3278 struct vfssw * 3279 allocate_vfssw(char *type) 3280 { 3281 struct vfssw *vswp; 3282 3283 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3284 /* 3285 * The vfssw table uses the empty string to identify an 3286 * available entry; we cannot add any type which has 3287 * a leading NUL. The string length is limited to 3288 * the size of the st_fstype array in struct stat. 3289 */ 3290 return (NULL); 3291 } 3292 3293 ASSERT(VFSSW_WRITE_LOCKED()); 3294 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3295 if (!ALLOCATED_VFSSW(vswp)) { 3296 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3297 (void) strcpy(vswp->vsw_name, type); 3298 ASSERT(vswp->vsw_count == 0); 3299 vswp->vsw_count = 1; 3300 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3301 return (vswp); 3302 } 3303 return (NULL); 3304 } 3305 3306 /* 3307 * Impose additional layer of translation between vfstype names 3308 * and module names in the filesystem. 3309 */ 3310 static char * 3311 vfs_to_modname(char *vfstype) 3312 { 3313 if (strcmp(vfstype, "proc") == 0) { 3314 vfstype = "procfs"; 3315 } else if (strcmp(vfstype, "fd") == 0) { 3316 vfstype = "fdfs"; 3317 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3318 vfstype = "nfs"; 3319 } 3320 3321 return (vfstype); 3322 } 3323 3324 /* 3325 * Find a vfssw entry given a file system type name. 3326 * Try to autoload the filesystem if it's not found. 3327 * If it's installed, return the vfssw locked to prevent unloading. 3328 */ 3329 struct vfssw * 3330 vfs_getvfssw(char *type) 3331 { 3332 struct vfssw *vswp; 3333 char *modname; 3334 3335 RLOCK_VFSSW(); 3336 vswp = vfs_getvfsswbyname(type); 3337 modname = vfs_to_modname(type); 3338 3339 if (rootdir == NULL) { 3340 /* 3341 * If we haven't yet loaded the root file system, then our 3342 * _init won't be called until later. Allocate vfssw entry, 3343 * because mod_installfs won't be called. 3344 */ 3345 if (vswp == NULL) { 3346 RUNLOCK_VFSSW(); 3347 WLOCK_VFSSW(); 3348 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3349 if ((vswp = allocate_vfssw(type)) == NULL) { 3350 WUNLOCK_VFSSW(); 3351 return (NULL); 3352 } 3353 } 3354 WUNLOCK_VFSSW(); 3355 RLOCK_VFSSW(); 3356 } 3357 if (!VFS_INSTALLED(vswp)) { 3358 RUNLOCK_VFSSW(); 3359 (void) modloadonly("fs", modname); 3360 } else 3361 RUNLOCK_VFSSW(); 3362 return (vswp); 3363 } 3364 3365 /* 3366 * Try to load the filesystem. Before calling modload(), we drop 3367 * our lock on the VFS switch table, and pick it up after the 3368 * module is loaded. However, there is a potential race: the 3369 * module could be unloaded after the call to modload() completes 3370 * but before we pick up the lock and drive on. Therefore, 3371 * we keep reloading the module until we've loaded the module 3372 * _and_ we have the lock on the VFS switch table. 3373 */ 3374 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3375 RUNLOCK_VFSSW(); 3376 if (modload("fs", modname) == -1) 3377 return (NULL); 3378 RLOCK_VFSSW(); 3379 if (vswp == NULL) 3380 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3381 break; 3382 } 3383 RUNLOCK_VFSSW(); 3384 3385 return (vswp); 3386 } 3387 3388 /* 3389 * Find a vfssw entry given a file system type name. 3390 */ 3391 struct vfssw * 3392 vfs_getvfsswbyname(char *type) 3393 { 3394 struct vfssw *vswp; 3395 3396 ASSERT(VFSSW_LOCKED()); 3397 if (type == NULL || *type == '\0') 3398 return (NULL); 3399 3400 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3401 if (strcmp(type, vswp->vsw_name) == 0) { 3402 vfs_refvfssw(vswp); 3403 return (vswp); 3404 } 3405 } 3406 3407 return (NULL); 3408 } 3409 3410 /* 3411 * Find a vfssw entry given a set of vfsops. 3412 */ 3413 struct vfssw * 3414 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3415 { 3416 struct vfssw *vswp; 3417 3418 RLOCK_VFSSW(); 3419 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3420 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3421 vfs_refvfssw(vswp); 3422 RUNLOCK_VFSSW(); 3423 return (vswp); 3424 } 3425 } 3426 RUNLOCK_VFSSW(); 3427 3428 return (NULL); 3429 } 3430 3431 /* 3432 * Reference a vfssw entry. 3433 */ 3434 void 3435 vfs_refvfssw(struct vfssw *vswp) 3436 { 3437 3438 mutex_enter(&vswp->vsw_lock); 3439 vswp->vsw_count++; 3440 mutex_exit(&vswp->vsw_lock); 3441 } 3442 3443 /* 3444 * Unreference a vfssw entry. 3445 */ 3446 void 3447 vfs_unrefvfssw(struct vfssw *vswp) 3448 { 3449 3450 mutex_enter(&vswp->vsw_lock); 3451 vswp->vsw_count--; 3452 mutex_exit(&vswp->vsw_lock); 3453 } 3454 3455 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3456 int sync_timeleft; /* portion of sync_timeout remaining */ 3457 3458 static int sync_retries = 20; /* number of retries when not making progress */ 3459 static int sync_triesleft; /* portion of sync_retries remaining */ 3460 3461 static pgcnt_t old_pgcnt, new_pgcnt; 3462 static int new_bufcnt, old_bufcnt; 3463 3464 /* 3465 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3466 * complete. We wait by counting the number of dirty pages and buffers, 3467 * pushing them out using bio_busy() and page_busy(), and then counting again. 3468 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3469 * the SYNC phase of the panic code (see comments in panic.c). It should only 3470 * be used after some higher-level mechanism has quiesced the system so that 3471 * new writes are not being initiated while we are waiting for completion. 3472 * 3473 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3474 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3475 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3476 * Together these ensure that syncing completes if our i/o paths are stuck. 3477 * The counters are declared above so they can be found easily in the debugger. 3478 * 3479 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3480 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3481 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3482 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3483 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3484 * deadlocking or hanging inside of a broken filesystem or driver routine. 3485 * 3486 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3487 * sync_retries consecutive calls to bio_busy() and page_busy() without 3488 * decreasing either the number of dirty buffers or dirty pages below the 3489 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3490 * 3491 * Each loop iteration ends with a call to delay() one second to allow time for 3492 * i/o completion and to permit the user time to read our progress messages. 3493 */ 3494 void 3495 vfs_syncall(void) 3496 { 3497 if (rootdir == NULL && !modrootloaded) 3498 return; /* panic during boot - no filesystems yet */ 3499 3500 printf("syncing file systems..."); 3501 vfs_syncprogress(); 3502 sync(); 3503 3504 vfs_syncprogress(); 3505 sync_triesleft = sync_retries; 3506 3507 old_bufcnt = new_bufcnt = INT_MAX; 3508 old_pgcnt = new_pgcnt = ULONG_MAX; 3509 3510 while (sync_triesleft > 0) { 3511 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3512 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3513 3514 new_bufcnt = bio_busy(B_TRUE); 3515 new_pgcnt = page_busy(B_TRUE); 3516 vfs_syncprogress(); 3517 3518 if (new_bufcnt == 0 && new_pgcnt == 0) 3519 break; 3520 3521 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3522 sync_triesleft = sync_retries; 3523 else 3524 sync_triesleft--; 3525 3526 if (new_bufcnt) 3527 printf(" [%d]", new_bufcnt); 3528 if (new_pgcnt) 3529 printf(" %lu", new_pgcnt); 3530 3531 delay(hz); 3532 } 3533 3534 if (new_bufcnt != 0 || new_pgcnt != 0) 3535 printf(" done (not all i/o completed)\n"); 3536 else 3537 printf(" done\n"); 3538 3539 sync_timeleft = 0; 3540 delay(hz); 3541 } 3542 3543 /* 3544 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3545 * sync_timeout to indicate that we are making progress and the deadman() 3546 * omnipresent cyclic should not yet time us out. Note that it is safe to 3547 * store to sync_timeleft here since the deadman() is firing at high-level 3548 * on top of us. If we are racing with the deadman(), either the deadman() 3549 * will decrement the old value and then we will reset it, or we will 3550 * reset it and then the deadman() will immediately decrement it. In either 3551 * case, correct behavior results. 3552 */ 3553 void 3554 vfs_syncprogress(void) 3555 { 3556 if (panicstr) 3557 sync_timeleft = sync_timeout; 3558 } 3559 3560 /* 3561 * Map VFS flags to statvfs flags. These shouldn't really be separate 3562 * flags at all. 3563 */ 3564 uint_t 3565 vf_to_stf(uint_t vf) 3566 { 3567 uint_t stf = 0; 3568 3569 if (vf & VFS_RDONLY) 3570 stf |= ST_RDONLY; 3571 if (vf & VFS_NOSETUID) 3572 stf |= ST_NOSUID; 3573 if (vf & VFS_NOTRUNC) 3574 stf |= ST_NOTRUNC; 3575 3576 return (stf); 3577 } 3578 3579 /* 3580 * Use old-style function prototype for vfsstray() so 3581 * that we can use it anywhere in the vfsops structure. 3582 */ 3583 int vfsstray(); 3584 3585 /* 3586 * Entries for (illegal) fstype 0. 3587 */ 3588 /* ARGSUSED */ 3589 int 3590 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3591 { 3592 cmn_err(CE_PANIC, "stray vfs operation"); 3593 return (0); 3594 } 3595 3596 vfsops_t vfs_strayops = { 3597 vfsstray, 3598 vfsstray, 3599 vfsstray, 3600 vfsstray, 3601 vfsstray_sync, 3602 vfsstray, 3603 vfsstray, 3604 vfsstray 3605 }; 3606 3607 /* 3608 * Entries for (illegal) fstype 0. 3609 */ 3610 int 3611 vfsstray(void) 3612 { 3613 cmn_err(CE_PANIC, "stray vfs operation"); 3614 return (0); 3615 } 3616 3617 /* 3618 * Support for dealing with forced UFS unmount and its interaction with 3619 * LOFS. Could be used by any filesystem. 3620 * See bug 1203132. 3621 */ 3622 int 3623 vfs_EIO(void) 3624 { 3625 return (EIO); 3626 } 3627 3628 /* 3629 * We've gotta define the op for sync separately, since the compiler gets 3630 * confused if we mix and match ANSI and normal style prototypes when 3631 * a "short" argument is present and spits out a warning. 3632 */ 3633 /*ARGSUSED*/ 3634 int 3635 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3636 { 3637 return (EIO); 3638 } 3639 3640 vfs_t EIO_vfs; 3641 vfsops_t *EIO_vfsops; 3642 3643 /* 3644 * Called from startup() to initialize all loaded vfs's 3645 */ 3646 void 3647 vfsinit(void) 3648 { 3649 struct vfssw *vswp; 3650 int error; 3651 3652 static const fs_operation_def_t EIO_vfsops_template[] = { 3653 VFSNAME_MOUNT, vfs_EIO, 3654 VFSNAME_UNMOUNT, vfs_EIO, 3655 VFSNAME_ROOT, vfs_EIO, 3656 VFSNAME_STATVFS, vfs_EIO, 3657 VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync, 3658 VFSNAME_VGET, vfs_EIO, 3659 VFSNAME_MOUNTROOT, vfs_EIO, 3660 VFSNAME_FREEVFS, vfs_EIO, 3661 VFSNAME_VNSTATE, vfs_EIO, 3662 NULL, NULL 3663 }; 3664 3665 3666 /* Initialize the vnode cache (file systems may use it during init). */ 3667 3668 vn_create_cache(); 3669 3670 /* Setup event monitor framework */ 3671 3672 fem_init(); 3673 3674 /* Initialize the dummy stray file system type. */ 3675 3676 vfssw[0].vsw_vfsops = vfs_strayops; 3677 3678 /* Initialize the dummy EIO file system. */ 3679 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3680 if (error != 0) { 3681 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3682 /* Shouldn't happen, but not bad enough to panic */ 3683 } 3684 3685 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3686 3687 /* 3688 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3689 * on this vfs can immediately notice it's invalid. 3690 */ 3691 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3692 3693 /* 3694 * Call the init routines of non-loadable filesystems only. 3695 * Filesystems which are loaded as separate modules will be 3696 * initialized by the module loading code instead. 3697 */ 3698 3699 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3700 RLOCK_VFSSW(); 3701 if (vswp->vsw_init != NULL) 3702 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3703 RUNLOCK_VFSSW(); 3704 } 3705 } 3706 3707 /* 3708 * Increments the vfs reference count by one atomically. 3709 */ 3710 void 3711 vfs_hold(vfs_t *vfsp) 3712 { 3713 atomic_add_32(&vfsp->vfs_count, 1); 3714 ASSERT(vfsp->vfs_count != 0); 3715 } 3716 3717 /* 3718 * Decrements the vfs reference count by one atomically. When 3719 * vfs reference count becomes zero, it calls the file system 3720 * specific vfs_freevfs() to free up the resources. 3721 */ 3722 void 3723 vfs_rele(vfs_t *vfsp) 3724 { 3725 ASSERT(vfsp->vfs_count != 0); 3726 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3727 VFS_FREEVFS(vfsp); 3728 if (vfsp->vfs_zone) 3729 zone_rele(vfsp->vfs_zone); 3730 vfs_freemnttab(vfsp); 3731 sema_destroy(&vfsp->vfs_reflock); 3732 kmem_free(vfsp, sizeof (*vfsp)); 3733 } 3734 } 3735 3736 /* 3737 * Generic operations vector support. 3738 * 3739 * This is used to build operations vectors for both the vfs and vnode. 3740 * It's normally called only when a file system is loaded. 3741 * 3742 * There are many possible algorithms for this, including the following: 3743 * 3744 * (1) scan the list of known operations; for each, see if the file system 3745 * includes an entry for it, and fill it in as appropriate. 3746 * 3747 * (2) set up defaults for all known operations. scan the list of ops 3748 * supplied by the file system; for each which is both supplied and 3749 * known, fill it in. 3750 * 3751 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3752 * in entries as we go. 3753 * 3754 * we choose (1) for simplicity, and because performance isn't critical here. 3755 * note that (2) could be sped up using a precomputed hash table on known ops. 3756 * (3) could be faster than either, but only if the lists were very large or 3757 * supplied in sorted order. 3758 * 3759 */ 3760 3761 int 3762 fs_build_vector(void *vector, int *unused_ops, 3763 const fs_operation_trans_def_t *translation, 3764 const fs_operation_def_t *operations) 3765 { 3766 int i, num_trans, num_ops, used; 3767 3768 /* Count the number of translations and the number of supplied */ 3769 /* operations. */ 3770 3771 { 3772 const fs_operation_trans_def_t *p; 3773 3774 for (num_trans = 0, p = translation; 3775 p->name != NULL; 3776 num_trans++, p++) 3777 ; 3778 } 3779 3780 { 3781 const fs_operation_def_t *p; 3782 3783 for (num_ops = 0, p = operations; 3784 p->name != NULL; 3785 num_ops++, p++) 3786 ; 3787 } 3788 3789 /* Walk through each operation known to our caller. There will be */ 3790 /* one entry in the supplied "translation table" for each. */ 3791 3792 used = 0; 3793 3794 for (i = 0; i < num_trans; i++) { 3795 int j, found; 3796 char *curname; 3797 fs_generic_func_p result; 3798 fs_generic_func_p *location; 3799 3800 curname = translation[i].name; 3801 3802 /* Look for a matching operation in the list supplied by the */ 3803 /* file system. */ 3804 3805 found = 0; 3806 3807 for (j = 0; j < num_ops; j++) { 3808 if (strcmp(operations[j].name, curname) == 0) { 3809 used++; 3810 found = 1; 3811 break; 3812 } 3813 } 3814 3815 /* If the file system is using a "placeholder" for default */ 3816 /* or error functions, grab the appropriate function out of */ 3817 /* the translation table. If the file system didn't supply */ 3818 /* this operation at all, use the default function. */ 3819 3820 if (found) { 3821 result = operations[j].func; 3822 if (result == fs_default) { 3823 result = translation[i].defaultFunc; 3824 } else if (result == fs_error) { 3825 result = translation[i].errorFunc; 3826 } else if (result == NULL) { 3827 /* Null values are PROHIBITED */ 3828 return (EINVAL); 3829 } 3830 } else { 3831 result = translation[i].defaultFunc; 3832 } 3833 3834 /* Now store the function into the operations vector. */ 3835 3836 location = (fs_generic_func_p *) 3837 (((char *)vector) + translation[i].offset); 3838 3839 *location = result; 3840 } 3841 3842 *unused_ops = num_ops - used; 3843 3844 return (0); 3845 } 3846 3847 /* Placeholder functions, should never be called. */ 3848 3849 int 3850 fs_error(void) 3851 { 3852 cmn_err(CE_PANIC, "fs_error called"); 3853 return (0); 3854 } 3855 3856 int 3857 fs_default(void) 3858 { 3859 cmn_err(CE_PANIC, "fs_default called"); 3860 return (0); 3861 } 3862 3863 #ifdef __sparc 3864 3865 /* 3866 * Part of the implementation of booting off a mirrored root 3867 * involves a change of dev_t for the root device. To 3868 * accomplish this, first remove the existing hash table 3869 * entry for the root device, convert to the new dev_t, 3870 * then re-insert in the hash table at the head of the list. 3871 */ 3872 void 3873 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 3874 { 3875 vfs_list_lock(); 3876 3877 vfs_hash_remove(vfsp); 3878 3879 vfsp->vfs_dev = ndev; 3880 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 3881 3882 vfs_hash_add(vfsp, 1); 3883 3884 vfs_list_unlock(); 3885 } 3886 3887 #else /* x86 NEWBOOT */ 3888 3889 int 3890 rootconf() 3891 { 3892 int error; 3893 struct vfssw *vsw; 3894 extern void pm_init(); 3895 char *fstyp; 3896 3897 fstyp = getrootfs(); 3898 3899 if (error = clboot_rootconf()) 3900 return (error); 3901 3902 if (modload("fs", fstyp) == -1) 3903 cmn_err(CE_PANIC, "Cannot _init %s module\n", fstyp); 3904 3905 RLOCK_VFSSW(); 3906 vsw = vfs_getvfsswbyname(fstyp); 3907 RUNLOCK_VFSSW(); 3908 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 3909 VFS_HOLD(rootvfs); 3910 3911 /* always mount readonly first */ 3912 rootvfs->vfs_flag |= VFS_RDONLY; 3913 3914 pm_init(); 3915 3916 if (netboot) 3917 (void) strplumb(); 3918 3919 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 3920 vfs_unrefvfssw(vsw); 3921 rootdev = rootvfs->vfs_dev; 3922 3923 if (error) 3924 cmn_err(CE_PANIC, "cannot mount root path %s", svm_bootpath); 3925 return (error); 3926 } 3927 3928 /* 3929 * XXX this is called by nfs only and should probably be removed 3930 * If booted with ASKNAME, prompt on the console for a filesystem 3931 * name and return it. 3932 */ 3933 void 3934 getfsname(char *askfor, char *name, size_t namelen) 3935 { 3936 if (boothowto & RB_ASKNAME) { 3937 printf("%s name: ", askfor); 3938 console_gets(name, namelen); 3939 } 3940 } 3941 3942 /* 3943 * If server_path exists, then we are booting a diskless 3944 * client. Otherwise, we default to ufs. Zfs should perhaps be 3945 * another property. 3946 */ 3947 static char * 3948 getrootfs(void) 3949 { 3950 extern char *strplumb_get_netdev_path(void); 3951 char *propstr = NULL; 3952 3953 /* check fstype property; it should be nfsdyn for diskless */ 3954 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 3955 DDI_PROP_DONTPASS, "fstype", &propstr) 3956 == DDI_SUCCESS) { 3957 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 3958 ddi_prop_free(propstr); 3959 } 3960 3961 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 3962 return (rootfs.bo_fstype); 3963 3964 ++netboot; 3965 /* check if path to network interface is specified in bootpath */ 3966 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 3967 DDI_PROP_DONTPASS, "bootpath", &propstr) 3968 == DDI_SUCCESS) { 3969 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 3970 ddi_prop_free(propstr); 3971 } else { 3972 /* attempt to determine netdev_path via boot_mac address */ 3973 netdev_path = strplumb_get_netdev_path(); 3974 if (netdev_path == NULL) 3975 cmn_err(CE_PANIC, 3976 "Cannot find boot network interface\n"); 3977 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 3978 } 3979 return ("nfs"); 3980 } 3981 #endif 3982