1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/fem.h> 54 #include <sys/mntent.h> 55 #include <sys/stat.h> 56 #include <sys/statvfs.h> 57 #include <sys/statfs.h> 58 #include <sys/cred.h> 59 #include <sys/vnode.h> 60 #include <sys/rwstlock.h> 61 #include <sys/dnlc.h> 62 #include <sys/file.h> 63 #include <sys/time.h> 64 #include <sys/atomic.h> 65 #include <sys/cmn_err.h> 66 #include <sys/buf.h> 67 #include <sys/swap.h> 68 #include <sys/debug.h> 69 #include <sys/vnode.h> 70 #include <sys/modctl.h> 71 #include <sys/ddi.h> 72 #include <sys/pathname.h> 73 #include <sys/bootconf.h> 74 #include <sys/dumphdr.h> 75 #include <sys/dc_ki.h> 76 #include <sys/poll.h> 77 #include <sys/sunddi.h> 78 #include <sys/sysmacros.h> 79 #include <sys/zone.h> 80 #include <sys/policy.h> 81 #include <sys/ctfs.h> 82 #include <sys/objfs.h> 83 #include <sys/console.h> 84 #include <sys/reboot.h> 85 86 #include <vm/page.h> 87 88 #include <fs/fs_subr.h> 89 90 /* Private interfaces to create vopstats-related data structures */ 91 extern void initialize_vopstats(vopstats_t *); 92 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 93 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 94 95 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 96 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 97 const char *, int, int); 98 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 99 static void vfs_freemnttab(struct vfs *); 100 static void vfs_freeopt(mntopt_t *); 101 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 102 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 103 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 104 static void vfs_createopttbl_extend(mntopts_t *, const char *, 105 const mntopts_t *); 106 static char **vfs_copycancelopt_extend(char **const, int); 107 static void vfs_freecancelopt(char **); 108 static char *getrootfs(void); 109 static int getmacpath(dev_info_t *, void *); 110 111 struct ipmnt { 112 struct ipmnt *mip_next; 113 dev_t mip_dev; 114 struct vfs *mip_vfsp; 115 }; 116 117 static kmutex_t vfs_miplist_mutex; 118 static struct ipmnt *vfs_miplist = NULL; 119 static struct ipmnt *vfs_miplist_end = NULL; 120 121 /* 122 * VFS global data. 123 */ 124 vnode_t *rootdir; /* pointer to root inode vnode. */ 125 vnode_t *devicesdir; /* pointer to inode of devices root */ 126 vnode_t *devdir; /* pointer to inode of dev root */ 127 128 char *server_rootpath; /* root path for diskless clients */ 129 char *server_hostname; /* hostname of diskless server */ 130 131 static struct vfs root; 132 static struct vfs devices; 133 static struct vfs dev; 134 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 135 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 136 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 137 /* must be power of 2! */ 138 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 139 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 140 char *vfs_dummyfstype = "\0"; 141 struct pollhead vfs_pollhd; /* for mnttab pollers */ 142 143 /* 144 * Table for generic options recognized in the VFS layer and acted 145 * on at this level before parsing file system specific options. 146 * The nosuid option is stronger than any of the devices and setuid 147 * options, so those are canceled when nosuid is seen. 148 * 149 * All options which are added here need to be added to the 150 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 151 */ 152 /* 153 * VFS Mount options table 154 */ 155 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 156 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 157 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 158 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 159 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 160 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 161 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 162 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 163 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 164 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 165 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 166 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 167 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 168 169 static const mntopt_t mntopts[] = { 170 /* 171 * option name cancel options default arg flags 172 */ 173 { MNTOPT_REMOUNT, NULL, NULL, 174 MO_NODISPLAY, (void *)0 }, 175 { MNTOPT_RO, ro_cancel, NULL, 0, 176 (void *)0 }, 177 { MNTOPT_RW, rw_cancel, NULL, 0, 178 (void *)0 }, 179 { MNTOPT_SUID, suid_cancel, NULL, 0, 180 (void *)0 }, 181 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 182 (void *)0 }, 183 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_EXEC, exec_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 198 (void *)0 }, 199 }; 200 201 const mntopts_t vfs_mntopts = { 202 sizeof (mntopts) / sizeof (mntopt_t), 203 (mntopt_t *)&mntopts[0] 204 }; 205 206 /* 207 * File system operation dispatch functions. 208 */ 209 210 int 211 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 212 { 213 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 214 } 215 216 int 217 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 218 { 219 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 220 } 221 222 int 223 fsop_root(vfs_t *vfsp, vnode_t **vpp) 224 { 225 refstr_t *mntpt; 226 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 227 /* 228 * Make sure this root has a path. With lofs, it is possible to have 229 * a NULL mountpoint. 230 */ 231 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 232 mntpt = vfs_getmntpoint(vfsp); 233 vn_setpath_str(*vpp, refstr_value(mntpt), 234 strlen(refstr_value(mntpt))); 235 refstr_rele(mntpt); 236 } 237 238 return (ret); 239 } 240 241 int 242 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 243 { 244 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 245 } 246 247 int 248 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 249 { 250 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 251 } 252 253 int 254 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 255 { 256 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 257 } 258 259 int 260 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 261 { 262 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 263 } 264 265 void 266 fsop_freefs(vfs_t *vfsp) 267 { 268 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 269 } 270 271 int 272 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 273 { 274 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 275 } 276 277 int 278 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 279 { 280 ASSERT((fstype >= 0) && (fstype < nfstype)); 281 282 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 283 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 284 else 285 return (ENOTSUP); 286 } 287 288 /* 289 * File system initialization. vfs_setfsops() must be called from a file 290 * system's init routine. 291 */ 292 293 static int 294 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 295 int *unused_ops) 296 { 297 static const fs_operation_trans_def_t vfs_ops_table[] = { 298 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 299 fs_nosys, fs_nosys, 300 301 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 302 fs_nosys, fs_nosys, 303 304 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 305 fs_nosys, fs_nosys, 306 307 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 308 fs_nosys, fs_nosys, 309 310 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 311 (fs_generic_func_p) fs_sync, 312 (fs_generic_func_p) fs_sync, /* No errors allowed */ 313 314 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 315 fs_nosys, fs_nosys, 316 317 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 318 fs_nosys, fs_nosys, 319 320 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 321 (fs_generic_func_p)fs_freevfs, 322 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 323 324 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 325 (fs_generic_func_p)fs_nosys, 326 (fs_generic_func_p)fs_nosys, 327 328 NULL, 0, NULL, NULL 329 }; 330 331 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 332 } 333 334 int 335 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 336 { 337 int error; 338 int unused_ops; 339 340 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 341 342 if ((fstype <= 0) || (fstype >= nfstype)) 343 return (EINVAL); 344 345 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 346 return (EINVAL); 347 348 /* Set up the operations vector. */ 349 350 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 351 352 if (error != 0) 353 return (error); 354 355 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 356 357 if (actual != NULL) 358 *actual = &vfssw[fstype].vsw_vfsops; 359 360 #if DEBUG 361 if (unused_ops != 0) 362 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 363 "but not used", vfssw[fstype].vsw_name, unused_ops); 364 #endif 365 366 return (0); 367 } 368 369 int 370 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 371 { 372 int error; 373 int unused_ops; 374 375 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 376 377 error = fs_copyfsops(template, *actual, &unused_ops); 378 if (error != 0) { 379 kmem_free(*actual, sizeof (vfsops_t)); 380 *actual = NULL; 381 return (error); 382 } 383 384 return (0); 385 } 386 387 /* 388 * Free a vfsops structure created as a result of vfs_makefsops(). 389 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 390 * vfs_freevfsops_by_type(). 391 */ 392 void 393 vfs_freevfsops(vfsops_t *vfsops) 394 { 395 kmem_free(vfsops, sizeof (vfsops_t)); 396 } 397 398 /* 399 * Since the vfsops structure is part of the vfssw table and wasn't 400 * really allocated, we're not really freeing anything. We keep 401 * the name for consistency with vfs_freevfsops(). We do, however, 402 * need to take care of a little bookkeeping. 403 * NOTE: For a vfsops structure created by vfs_setfsops(), use 404 * vfs_freevfsops_by_type(). 405 */ 406 int 407 vfs_freevfsops_by_type(int fstype) 408 { 409 410 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 411 if ((fstype <= 0) || (fstype >= nfstype)) 412 return (EINVAL); 413 414 WLOCK_VFSSW(); 415 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 416 WUNLOCK_VFSSW(); 417 return (EINVAL); 418 } 419 420 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 421 WUNLOCK_VFSSW(); 422 423 return (0); 424 } 425 426 /* Support routines used to reference vfs_op */ 427 428 /* Set the operations vector for a vfs */ 429 void 430 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 431 { 432 vfsops_t *op; 433 434 ASSERT(vfsp != NULL); 435 ASSERT(vfsops != NULL); 436 437 op = vfsp->vfs_op; 438 membar_consumer(); 439 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 440 casptr(&vfsp->vfs_op, op, vfsops) == op) { 441 return; 442 } 443 fsem_setvfsops(vfsp, vfsops); 444 } 445 446 /* Retrieve the operations vector for a vfs */ 447 vfsops_t * 448 vfs_getops(vfs_t *vfsp) 449 { 450 vfsops_t *op; 451 452 ASSERT(vfsp != NULL); 453 454 op = vfsp->vfs_op; 455 membar_consumer(); 456 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 457 op == vfsp->vfs_op) { 458 return (op); 459 } else { 460 return (fsem_getvfsops(vfsp)); 461 } 462 } 463 464 /* 465 * Returns non-zero (1) if the vfsops matches that of the vfs. 466 * Returns zero (0) if not. 467 */ 468 int 469 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 470 { 471 return (vfs_getops(vfsp) == vfsops); 472 } 473 474 /* 475 * Returns non-zero (1) if the file system has installed a non-default, 476 * non-error vfs_sync routine. Returns zero (0) otherwise. 477 */ 478 int 479 vfs_can_sync(vfs_t *vfsp) 480 { 481 /* vfs_sync() routine is not the default/error function */ 482 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 483 } 484 485 /* 486 * Initialize a vfs structure. 487 */ 488 void 489 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 490 { 491 vfsp->vfs_count = 0; 492 vfsp->vfs_next = vfsp; 493 vfsp->vfs_prev = vfsp; 494 vfsp->vfs_zone_next = vfsp; 495 vfsp->vfs_zone_prev = vfsp; 496 vfsp->vfs_flag = 0; 497 vfsp->vfs_data = (data); 498 vfsp->vfs_resource = NULL; 499 vfsp->vfs_mntpt = NULL; 500 vfsp->vfs_mntopts.mo_count = 0; 501 vfsp->vfs_mntopts.mo_list = NULL; 502 vfsp->vfs_implp = NULL; 503 vfsp->vfs_zone = NULL; 504 /* 505 * Note: Don't initialize any member of the vfs_impl_t structure 506 * here as it could be a problem for unbundled file systems. 507 */ 508 vfs_setops((vfsp), (op)); 509 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 510 } 511 512 /* 513 * Allocate and initialize the vfs implementation private data 514 * structure, vfs_impl_t. 515 */ 516 void 517 vfsimpl_setup(vfs_t *vfsp) 518 { 519 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 520 /* Note that this are #define'd in vfs.h */ 521 vfsp->vfs_femhead = NULL; 522 vfsp->vfs_vskap = NULL; 523 vfsp->vfs_fstypevsp = NULL; 524 } 525 526 /* 527 * Release the vfs_impl_t structure, if it exists. Some unbundled 528 * filesystems may not use the newer version of vfs and thus 529 * would not contain this implementation private data structure. 530 */ 531 void 532 vfsimpl_teardown(vfs_t *vfsp) 533 { 534 vfs_impl_t *vip = vfsp->vfs_implp; 535 536 if (vip == NULL) 537 return; 538 539 if (vip->vi_femhead) { 540 ASSERT(vip->vi_femhead->femh_list == NULL); 541 mutex_destroy(&vip->vi_femhead->femh_lock); 542 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 543 vip->vi_femhead = NULL; 544 } 545 546 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 547 vfsp->vfs_implp = NULL; 548 } 549 550 /* 551 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 552 * fstatvfs, and sysfs moved to common/syscall. 553 */ 554 555 /* 556 * Update every mounted file system. We call the vfs_sync operation of 557 * each file system type, passing it a NULL vfsp to indicate that all 558 * mounted file systems of that type should be updated. 559 */ 560 void 561 vfs_sync(int flag) 562 { 563 struct vfssw *vswp; 564 RLOCK_VFSSW(); 565 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 566 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 567 vfs_refvfssw(vswp); 568 RUNLOCK_VFSSW(); 569 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 570 CRED()); 571 vfs_unrefvfssw(vswp); 572 RLOCK_VFSSW(); 573 } 574 } 575 RUNLOCK_VFSSW(); 576 } 577 578 void 579 sync(void) 580 { 581 vfs_sync(0); 582 } 583 584 /* 585 * External routines. 586 */ 587 588 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 589 590 /* 591 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 592 * but otherwise should be accessed only via vfs_list_lock() and 593 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 594 */ 595 static krwlock_t vfslist; 596 597 /* 598 * Mount devfs on /devices. This is done right after root is mounted 599 * to provide device access support for the system 600 */ 601 static void 602 vfs_mountdevices(void) 603 { 604 struct vfssw *vsw; 605 struct vnode *mvp; 606 struct mounta mounta = { /* fake mounta for devfs_mount() */ 607 NULL, 608 NULL, 609 MS_SYSSPACE, 610 NULL, 611 NULL, 612 0, 613 NULL, 614 0 615 }; 616 617 /* 618 * _init devfs module to fill in the vfssw 619 */ 620 if (modload("fs", "devfs") == -1) 621 panic("Cannot _init devfs module"); 622 623 /* 624 * Hold vfs 625 */ 626 RLOCK_VFSSW(); 627 vsw = vfs_getvfsswbyname("devfs"); 628 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 629 VFS_HOLD(&devices); 630 631 /* 632 * Locate mount point 633 */ 634 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 635 panic("Cannot find /devices"); 636 637 /* 638 * Perform the mount of /devices 639 */ 640 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 641 panic("Cannot mount /devices"); 642 643 RUNLOCK_VFSSW(); 644 645 /* 646 * Set appropriate members and add to vfs list for mnttab display 647 */ 648 vfs_setresource(&devices, "/devices"); 649 vfs_setmntpoint(&devices, "/devices"); 650 651 /* 652 * Hold the root of /devices so it won't go away 653 */ 654 if (VFS_ROOT(&devices, &devicesdir)) 655 panic("vfs_mountdevices: not devices root"); 656 657 if (vfs_lock(&devices) != 0) { 658 VN_RELE(devicesdir); 659 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 660 return; 661 } 662 663 if (vn_vfswlock(mvp) != 0) { 664 vfs_unlock(&devices); 665 VN_RELE(devicesdir); 666 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 667 return; 668 } 669 670 vfs_add(mvp, &devices, 0); 671 vn_vfsunlock(mvp); 672 vfs_unlock(&devices); 673 VN_RELE(devicesdir); 674 } 675 676 /* 677 * mount the first instance of /dev to root and remain mounted 678 */ 679 static void 680 vfs_mountdev1(void) 681 { 682 struct vfssw *vsw; 683 struct vnode *mvp; 684 struct mounta mounta = { /* fake mounta for sdev_mount() */ 685 NULL, 686 NULL, 687 MS_SYSSPACE | MS_OVERLAY, 688 NULL, 689 NULL, 690 0, 691 NULL, 692 0 693 }; 694 695 /* 696 * _init dev module to fill in the vfssw 697 */ 698 if (modload("fs", "dev") == -1) 699 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 700 701 /* 702 * Hold vfs 703 */ 704 RLOCK_VFSSW(); 705 vsw = vfs_getvfsswbyname("dev"); 706 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 707 VFS_HOLD(&dev); 708 709 /* 710 * Locate mount point 711 */ 712 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 713 cmn_err(CE_PANIC, "Cannot find /dev\n"); 714 715 /* 716 * Perform the mount of /dev 717 */ 718 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 719 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 720 721 RUNLOCK_VFSSW(); 722 723 /* 724 * Set appropriate members and add to vfs list for mnttab display 725 */ 726 vfs_setresource(&dev, "/dev"); 727 vfs_setmntpoint(&dev, "/dev"); 728 729 /* 730 * Hold the root of /dev so it won't go away 731 */ 732 if (VFS_ROOT(&dev, &devdir)) 733 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 734 735 if (vfs_lock(&dev) != 0) { 736 VN_RELE(devdir); 737 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 738 return; 739 } 740 741 if (vn_vfswlock(mvp) != 0) { 742 vfs_unlock(&dev); 743 VN_RELE(devdir); 744 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 745 return; 746 } 747 748 vfs_add(mvp, &dev, 0); 749 vn_vfsunlock(mvp); 750 vfs_unlock(&dev); 751 VN_RELE(devdir); 752 } 753 754 /* 755 * Mount required filesystem. This is done right after root is mounted. 756 */ 757 static void 758 vfs_mountfs(char *module, char *spec, char *path) 759 { 760 struct vnode *mvp; 761 struct mounta mounta; 762 vfs_t *vfsp; 763 764 mounta.flags = MS_SYSSPACE | MS_DATA; 765 mounta.fstype = module; 766 mounta.spec = spec; 767 mounta.dir = path; 768 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 769 cmn_err(CE_WARN, "Cannot find %s", path); 770 return; 771 } 772 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 773 cmn_err(CE_WARN, "Cannot mount %s", path); 774 else 775 VFS_RELE(vfsp); 776 VN_RELE(mvp); 777 } 778 779 /* 780 * vfs_mountroot is called by main() to mount the root filesystem. 781 */ 782 void 783 vfs_mountroot(void) 784 { 785 struct vnode *rvp = NULL; 786 char *path; 787 size_t plen; 788 struct vfssw *vswp; 789 790 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 791 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 792 793 /* 794 * Alloc the vfs hash bucket array and locks 795 */ 796 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 797 798 /* 799 * Call machine-dependent routine "rootconf" to choose a root 800 * file system type. 801 */ 802 if (rootconf()) 803 panic("vfs_mountroot: cannot mount root"); 804 /* 805 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 806 * to point to it. These are used by lookuppn() so that it 807 * knows where to start from ('/' or '.'). 808 */ 809 vfs_setmntpoint(rootvfs, "/"); 810 if (VFS_ROOT(rootvfs, &rootdir)) 811 panic("vfs_mountroot: no root vnode"); 812 PTOU(curproc)->u_cdir = rootdir; 813 VN_HOLD(PTOU(curproc)->u_cdir); 814 PTOU(curproc)->u_rdir = NULL; 815 816 /* 817 * Setup the global zone's rootvp, now that it exists. 818 */ 819 global_zone->zone_rootvp = rootdir; 820 VN_HOLD(global_zone->zone_rootvp); 821 822 /* 823 * Notify the module code that it can begin using the 824 * root filesystem instead of the boot program's services. 825 */ 826 modrootloaded = 1; 827 /* 828 * Set up mnttab information for root 829 */ 830 vfs_setresource(rootvfs, rootfs.bo_name); 831 832 /* 833 * Notify cluster software that the root filesystem is available. 834 */ 835 clboot_mountroot(); 836 837 /* Now that we're all done with the root FS, set up its vopstats */ 838 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 839 /* Set flag for statistics collection */ 840 if (vswp->vsw_flag & VSW_STATS) { 841 initialize_vopstats(&rootvfs->vfs_vopstats); 842 rootvfs->vfs_flag |= VFS_STATS; 843 rootvfs->vfs_fstypevsp = 844 get_fstype_vopstats(rootvfs, vswp); 845 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 846 } 847 vfs_unrefvfssw(vswp); 848 } 849 850 /* 851 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 852 * /etc/svc/volatile, /system/object, and /proc. 853 */ 854 vfs_mountdevices(); 855 vfs_mountdev1(); 856 857 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 858 vfs_mountfs("proc", "/proc", "/proc"); 859 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 860 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 861 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 862 863 #ifdef __sparc 864 /* 865 * This bit of magic can go away when we convert sparc to 866 * the new boot architecture based on ramdisk. 867 * 868 * Booting off a mirrored root volume: 869 * At this point, we have booted and mounted root on a 870 * single component of the mirror. Complete the boot 871 * by configuring SVM and converting the root to the 872 * dev_t of the mirrored root device. This dev_t conversion 873 * only works because the underlying device doesn't change. 874 */ 875 if (root_is_svm) { 876 if (svm_rootconf()) { 877 panic("vfs_mountroot: cannot remount root"); 878 } 879 880 /* 881 * mnttab should reflect the new root device 882 */ 883 vfs_lock_wait(rootvfs); 884 vfs_setresource(rootvfs, rootfs.bo_name); 885 vfs_unlock(rootvfs); 886 } 887 #endif /* __sparc */ 888 889 /* 890 * Look up the root device via devfs so that a dv_node is 891 * created for it. The vnode is never VN_RELE()ed. 892 * We allocate more than MAXPATHLEN so that the 893 * buffer passed to i_ddi_prompath_to_devfspath() is 894 * exactly MAXPATHLEN (the function expects a buffer 895 * of that length). 896 */ 897 plen = strlen("/devices"); 898 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 899 (void) strcpy(path, "/devices"); 900 901 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 902 != DDI_SUCCESS || 903 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 904 905 /* NUL terminate in case "path" has garbage */ 906 path[plen + MAXPATHLEN - 1] = '\0'; 907 #ifdef DEBUG 908 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 909 #endif 910 } 911 kmem_free(path, plen + MAXPATHLEN); 912 } 913 914 /* 915 * If remount failed and we're in a zone we need to check for the zone 916 * root path and strip it before the call to vfs_setpath(). 917 * 918 * If strpath doesn't begin with the zone_rootpath the original 919 * strpath is returned unchanged. 920 */ 921 static const char * 922 stripzonepath(const char *strpath) 923 { 924 char *str1, *str2; 925 int i; 926 zone_t *zonep = curproc->p_zone; 927 928 if (zonep->zone_rootpath == NULL || strpath == NULL) { 929 return (NULL); 930 } 931 932 /* 933 * we check for the end of the string at one past the 934 * current position because the zone_rootpath always 935 * ends with "/" but we don't want to strip that off. 936 */ 937 str1 = zonep->zone_rootpath; 938 str2 = (char *)strpath; 939 ASSERT(str1[0] != '\0'); 940 for (i = 0; str1[i + 1] != '\0'; i++) { 941 if (str1[i] != str2[i]) 942 return ((char *)strpath); 943 } 944 return (&str2[i]); 945 } 946 947 /* 948 * Common mount code. Called from the system call entry point, from autofs, 949 * and from pxfs. 950 * 951 * Takes the effective file system type, mount arguments, the mount point 952 * vnode, flags specifying whether the mount is a remount and whether it 953 * should be entered into the vfs list, and credentials. Fills in its vfspp 954 * parameter with the mounted file system instance's vfs. 955 * 956 * Note that the effective file system type is specified as a string. It may 957 * be null, in which case it's determined from the mount arguments, and may 958 * differ from the type specified in the mount arguments; this is a hook to 959 * allow interposition when instantiating file system instances. 960 * 961 * The caller is responsible for releasing its own hold on the mount point 962 * vp (this routine does its own hold when necessary). 963 * Also note that for remounts, the mount point vp should be the vnode for 964 * the root of the file system rather than the vnode that the file system 965 * is mounted on top of. 966 */ 967 int 968 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 969 struct vfs **vfspp) 970 { 971 struct vfssw *vswp; 972 vfsops_t *vfsops; 973 struct vfs *vfsp; 974 struct vnode *bvp; 975 dev_t bdev = 0; 976 mntopts_t mnt_mntopts; 977 int error = 0; 978 int copyout_error = 0; 979 int ovflags; 980 char *opts = uap->optptr; 981 char *inargs = opts; 982 int optlen = uap->optlen; 983 int remount; 984 int rdonly; 985 int nbmand = 0; 986 int delmip = 0; 987 int addmip = 0; 988 int splice = ((uap->flags & MS_NOSPLICE) == 0); 989 int fromspace = (uap->flags & MS_SYSSPACE) ? 990 UIO_SYSSPACE : UIO_USERSPACE; 991 char *resource = NULL, *mountpt = NULL; 992 refstr_t *oldresource, *oldmntpt; 993 struct pathname pn, rpn; 994 vsk_anchor_t *vskap; 995 996 /* 997 * The v_flag value for the mount point vp is permanently set 998 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 999 * for mount point locking. 1000 */ 1001 mutex_enter(&vp->v_lock); 1002 vp->v_flag |= VVFSLOCK; 1003 mutex_exit(&vp->v_lock); 1004 1005 mnt_mntopts.mo_count = 0; 1006 /* 1007 * Find the ops vector to use to invoke the file system-specific mount 1008 * method. If the fsname argument is non-NULL, use it directly. 1009 * Otherwise, dig the file system type information out of the mount 1010 * arguments. 1011 * 1012 * A side effect is to hold the vfssw entry. 1013 * 1014 * Mount arguments can be specified in several ways, which are 1015 * distinguished by flag bit settings. The preferred way is to set 1016 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1017 * type supplied as a character string and the last two arguments 1018 * being a pointer to a character buffer and the size of the buffer. 1019 * On entry, the buffer holds a null terminated list of options; on 1020 * return, the string is the list of options the file system 1021 * recognized. If MS_DATA is set arguments five and six point to a 1022 * block of binary data which the file system interprets. 1023 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1024 * consistently with these conventions. To handle them, we check to 1025 * see whether the pointer to the file system name has a numeric value 1026 * less than 256. If so, we treat it as an index. 1027 */ 1028 if (fsname != NULL) { 1029 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1030 return (EINVAL); 1031 } 1032 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1033 size_t n; 1034 uint_t fstype; 1035 char name[FSTYPSZ]; 1036 1037 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1038 RLOCK_VFSSW(); 1039 if (fstype == 0 || fstype >= nfstype || 1040 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1041 RUNLOCK_VFSSW(); 1042 return (EINVAL); 1043 } 1044 (void) strcpy(name, vfssw[fstype].vsw_name); 1045 RUNLOCK_VFSSW(); 1046 if ((vswp = vfs_getvfssw(name)) == NULL) 1047 return (EINVAL); 1048 } else { 1049 /* 1050 * Handle either kernel or user address space. 1051 */ 1052 if (uap->flags & MS_SYSSPACE) { 1053 error = copystr(uap->fstype, name, 1054 FSTYPSZ, &n); 1055 } else { 1056 error = copyinstr(uap->fstype, name, 1057 FSTYPSZ, &n); 1058 } 1059 if (error) { 1060 if (error == ENAMETOOLONG) 1061 return (EINVAL); 1062 return (error); 1063 } 1064 if ((vswp = vfs_getvfssw(name)) == NULL) 1065 return (EINVAL); 1066 } 1067 } else { 1068 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1069 return (EINVAL); 1070 } 1071 if (!VFS_INSTALLED(vswp)) 1072 return (EINVAL); 1073 vfsops = &vswp->vsw_vfsops; 1074 1075 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1076 /* 1077 * Fetch mount options and parse them for generic vfs options 1078 */ 1079 if (uap->flags & MS_OPTIONSTR) { 1080 /* 1081 * Limit the buffer size 1082 */ 1083 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1084 error = EINVAL; 1085 goto errout; 1086 } 1087 if ((uap->flags & MS_SYSSPACE) == 0) { 1088 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1089 inargs[0] = '\0'; 1090 if (optlen) { 1091 error = copyinstr(opts, inargs, (size_t)optlen, 1092 NULL); 1093 if (error) { 1094 goto errout; 1095 } 1096 } 1097 } 1098 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1099 } 1100 /* 1101 * Flag bits override the options string. 1102 */ 1103 if (uap->flags & MS_REMOUNT) 1104 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1105 if (uap->flags & MS_RDONLY) 1106 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1107 if (uap->flags & MS_NOSUID) 1108 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1109 1110 /* 1111 * Check if this is a remount; must be set in the option string and 1112 * the file system must support a remount option. 1113 */ 1114 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1115 MNTOPT_REMOUNT, NULL)) { 1116 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1117 error = ENOTSUP; 1118 goto errout; 1119 } 1120 uap->flags |= MS_REMOUNT; 1121 } 1122 1123 /* 1124 * uap->flags and vfs_optionisset() should agree. 1125 */ 1126 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1127 uap->flags |= MS_RDONLY; 1128 } 1129 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1130 uap->flags |= MS_NOSUID; 1131 } 1132 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1133 ASSERT(splice || !remount); 1134 /* 1135 * If we are splicing the fs into the namespace, 1136 * perform mount point checks. 1137 * 1138 * We want to resolve the path for the mount point to eliminate 1139 * '.' and ".." and symlinks in mount points; we can't do the 1140 * same for the resource string, since it would turn 1141 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1142 * this before grabbing vn_vfswlock(), because otherwise we 1143 * would deadlock with lookuppn(). 1144 */ 1145 if (splice) { 1146 ASSERT(vp->v_count > 0); 1147 1148 /* 1149 * Pick up mount point and device from appropriate space. 1150 */ 1151 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1152 resource = kmem_alloc(pn.pn_pathlen + 1, 1153 KM_SLEEP); 1154 (void) strcpy(resource, pn.pn_path); 1155 pn_free(&pn); 1156 } 1157 /* 1158 * Do a lookupname prior to taking the 1159 * writelock. Mark this as completed if 1160 * successful for later cleanup and addition to 1161 * the mount in progress table. 1162 */ 1163 if ((uap->flags & MS_GLOBAL) == 0 && 1164 lookupname(uap->spec, fromspace, 1165 FOLLOW, NULL, &bvp) == 0) { 1166 addmip = 1; 1167 } 1168 1169 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1170 pathname_t *pnp; 1171 1172 if (*pn.pn_path != '/') { 1173 error = EINVAL; 1174 pn_free(&pn); 1175 goto errout; 1176 } 1177 pn_alloc(&rpn); 1178 /* 1179 * Kludge to prevent autofs from deadlocking with 1180 * itself when it calls domount(). 1181 * 1182 * If autofs is calling, it is because it is doing 1183 * (autofs) mounts in the process of an NFS mount. A 1184 * lookuppn() here would cause us to block waiting for 1185 * said NFS mount to complete, which can't since this 1186 * is the thread that was supposed to doing it. 1187 */ 1188 if (fromspace == UIO_USERSPACE) { 1189 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1190 NULL)) == 0) { 1191 pnp = &rpn; 1192 } else { 1193 /* 1194 * The file disappeared or otherwise 1195 * became inaccessible since we opened 1196 * it; might as well fail the mount 1197 * since the mount point is no longer 1198 * accessible. 1199 */ 1200 pn_free(&rpn); 1201 pn_free(&pn); 1202 goto errout; 1203 } 1204 } else { 1205 pnp = &pn; 1206 } 1207 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1208 (void) strcpy(mountpt, pnp->pn_path); 1209 1210 /* 1211 * If the addition of the zone's rootpath 1212 * would push us over a total path length 1213 * of MAXPATHLEN, we fail the mount with 1214 * ENAMETOOLONG, which is what we would have 1215 * gotten if we were trying to perform the same 1216 * mount in the global zone. 1217 * 1218 * strlen() doesn't count the trailing 1219 * '\0', but zone_rootpathlen counts both a 1220 * trailing '/' and the terminating '\0'. 1221 */ 1222 if ((curproc->p_zone->zone_rootpathlen - 1 + 1223 strlen(mountpt)) > MAXPATHLEN || 1224 (resource != NULL && 1225 (curproc->p_zone->zone_rootpathlen - 1 + 1226 strlen(resource)) > MAXPATHLEN)) { 1227 error = ENAMETOOLONG; 1228 } 1229 1230 pn_free(&rpn); 1231 pn_free(&pn); 1232 } 1233 1234 if (error) 1235 goto errout; 1236 1237 /* 1238 * Prevent path name resolution from proceeding past 1239 * the mount point. 1240 */ 1241 if (vn_vfswlock(vp) != 0) { 1242 error = EBUSY; 1243 goto errout; 1244 } 1245 1246 /* 1247 * Verify that it's legitimate to establish a mount on 1248 * the prospective mount point. 1249 */ 1250 if (vn_mountedvfs(vp) != NULL) { 1251 /* 1252 * The mount point lock was obtained after some 1253 * other thread raced through and established a mount. 1254 */ 1255 vn_vfsunlock(vp); 1256 error = EBUSY; 1257 goto errout; 1258 } 1259 if (vp->v_flag & VNOMOUNT) { 1260 vn_vfsunlock(vp); 1261 error = EINVAL; 1262 goto errout; 1263 } 1264 } 1265 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1266 uap->dataptr = NULL; 1267 uap->datalen = 0; 1268 } 1269 1270 /* 1271 * If this is a remount, we don't want to create a new VFS. 1272 * Instead, we pass the existing one with a remount flag. 1273 */ 1274 if (remount) { 1275 /* 1276 * Confirm that the mount point is the root vnode of the 1277 * file system that is being remounted. 1278 * This can happen if the user specifies a different 1279 * mount point directory pathname in the (re)mount command. 1280 * 1281 * Code below can only be reached if splice is true, so it's 1282 * safe to do vn_vfsunlock() here. 1283 */ 1284 if ((vp->v_flag & VROOT) == 0) { 1285 vn_vfsunlock(vp); 1286 error = ENOENT; 1287 goto errout; 1288 } 1289 /* 1290 * Disallow making file systems read-only unless file system 1291 * explicitly allows it in its vfssw. Ignore other flags. 1292 */ 1293 if (rdonly && vn_is_readonly(vp) == 0 && 1294 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1295 vn_vfsunlock(vp); 1296 error = EINVAL; 1297 goto errout; 1298 } 1299 /* 1300 * Changing the NBMAND setting on remounts is permitted 1301 * but logged since it can lead to unexpected behavior. 1302 * We also counsel against using it for / and /usr. 1303 */ 1304 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1305 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1306 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1307 "remounting %s", nbmand ? "on" : "off", 1308 refstr_value(vp->v_vfsp->vfs_mntpt)); 1309 } 1310 vfsp = vp->v_vfsp; 1311 ovflags = vfsp->vfs_flag; 1312 vfsp->vfs_flag |= VFS_REMOUNT; 1313 vfsp->vfs_flag &= ~VFS_RDONLY; 1314 } else { 1315 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1316 VFS_INIT(vfsp, vfsops, NULL); 1317 } 1318 1319 VFS_HOLD(vfsp); 1320 1321 /* 1322 * The vfs_reflock is not used anymore the code below explicitly 1323 * holds it preventing others accesing it directly. 1324 */ 1325 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1326 !(vfsp->vfs_flag & VFS_REMOUNT)) 1327 cmn_err(CE_WARN, 1328 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1329 1330 /* 1331 * Lock the vfs. If this is a remount we want to avoid spurious umount 1332 * failures that happen as a side-effect of fsflush() and other mount 1333 * and unmount operations that might be going on simultaneously and 1334 * may have locked the vfs currently. To not return EBUSY immediately 1335 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1336 */ 1337 if (!remount) { 1338 if (error = vfs_lock(vfsp)) { 1339 vfsp->vfs_flag = ovflags; 1340 if (splice) 1341 vn_vfsunlock(vp); 1342 if (vfsp->vfs_implp) 1343 vfsimpl_teardown(vfsp); 1344 kmem_free(vfsp, sizeof (struct vfs)); 1345 goto errout; 1346 } 1347 } else { 1348 vfs_lock_wait(vfsp); 1349 } 1350 1351 /* 1352 * Add device to mount in progress table, global mounts require special 1353 * handling. It is possible that we have already done the lookupname 1354 * on a spliced, non-global fs. If so, we don't want to do it again 1355 * since we cannot do a lookupname after taking the 1356 * wlock above. This case is for a non-spliced, non-global filesystem. 1357 */ 1358 if (!addmip) { 1359 if ((uap->flags & MS_GLOBAL) == 0 && 1360 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1361 addmip = 1; 1362 } 1363 } 1364 1365 if (addmip) { 1366 bdev = bvp->v_rdev; 1367 VN_RELE(bvp); 1368 vfs_addmip(bdev, vfsp); 1369 addmip = 0; 1370 delmip = 1; 1371 } 1372 /* 1373 * Invalidate cached entry for the mount point. 1374 */ 1375 if (splice) 1376 dnlc_purge_vp(vp); 1377 1378 /* 1379 * If have an option string but the filesystem doesn't supply a 1380 * prototype options table, create a table with the global 1381 * options and sufficient room to accept all the options in the 1382 * string. Then parse the passed in option string 1383 * accepting all the options in the string. This gives us an 1384 * option table with all the proper cancel properties for the 1385 * global options. 1386 * 1387 * Filesystems that supply a prototype options table are handled 1388 * earlier in this function. 1389 */ 1390 if (uap->flags & MS_OPTIONSTR) { 1391 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1392 mntopts_t tmp_mntopts; 1393 1394 tmp_mntopts.mo_count = 0; 1395 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1396 &mnt_mntopts); 1397 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1398 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1399 vfs_freeopttbl(&tmp_mntopts); 1400 } 1401 } 1402 1403 /* 1404 * Serialize with zone creations. 1405 */ 1406 mount_in_progress(); 1407 /* 1408 * Instantiate (or reinstantiate) the file system. If appropriate, 1409 * splice it into the file system name space. 1410 * 1411 * We want VFS_MOUNT() to be able to override the vfs_resource 1412 * string if necessary (ie, mntfs), and also for a remount to 1413 * change the same (necessary when remounting '/' during boot). 1414 * So we set up vfs_mntpt and vfs_resource to what we think they 1415 * should be, then hand off control to VFS_MOUNT() which can 1416 * override this. 1417 * 1418 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1419 * a vfs which is on the vfs list (i.e. during a remount), we must 1420 * never set those fields to NULL. Several bits of code make 1421 * assumptions that the fields are always valid. 1422 */ 1423 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1424 if (remount) { 1425 if ((oldresource = vfsp->vfs_resource) != NULL) 1426 refstr_hold(oldresource); 1427 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1428 refstr_hold(oldmntpt); 1429 } 1430 vfs_setresource(vfsp, resource); 1431 vfs_setmntpoint(vfsp, mountpt); 1432 1433 error = VFS_MOUNT(vfsp, vp, uap, credp); 1434 1435 if (uap->flags & MS_RDONLY) 1436 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1437 if (uap->flags & MS_NOSUID) 1438 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1439 if (uap->flags & MS_GLOBAL) 1440 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1441 1442 if (error) { 1443 if (remount) { 1444 /* put back pre-remount options */ 1445 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1446 vfs_setmntpoint(vfsp, (stripzonepath( 1447 refstr_value(oldmntpt)))); 1448 if (oldmntpt) 1449 refstr_rele(oldmntpt); 1450 vfs_setresource(vfsp, (stripzonepath( 1451 refstr_value(oldresource)))); 1452 if (oldresource) 1453 refstr_rele(oldresource); 1454 vfsp->vfs_flag = ovflags; 1455 vfs_unlock(vfsp); 1456 VFS_RELE(vfsp); 1457 } else { 1458 vfs_unlock(vfsp); 1459 vfs_freemnttab(vfsp); 1460 if (vfsp->vfs_implp) 1461 vfsimpl_teardown(vfsp); 1462 kmem_free(vfsp, sizeof (struct vfs)); 1463 } 1464 } else { 1465 /* 1466 * Set the mount time to now 1467 */ 1468 vfsp->vfs_mtime = ddi_get_time(); 1469 if (remount) { 1470 vfsp->vfs_flag &= ~VFS_REMOUNT; 1471 if (oldresource) 1472 refstr_rele(oldresource); 1473 if (oldmntpt) 1474 refstr_rele(oldmntpt); 1475 } else if (splice) { 1476 /* 1477 * Link vfsp into the name space at the mount 1478 * point. Vfs_add() is responsible for 1479 * holding the mount point which will be 1480 * released when vfs_remove() is called. 1481 */ 1482 vfs_add(vp, vfsp, uap->flags); 1483 } else { 1484 /* 1485 * Hold the reference to file system which is 1486 * not linked into the name space. 1487 */ 1488 vfsp->vfs_zone = NULL; 1489 VFS_HOLD(vfsp); 1490 vfsp->vfs_vnodecovered = NULL; 1491 } 1492 /* 1493 * Set flags for global options encountered 1494 */ 1495 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1496 vfsp->vfs_flag |= VFS_RDONLY; 1497 else 1498 vfsp->vfs_flag &= ~VFS_RDONLY; 1499 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1500 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1501 } else { 1502 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1503 vfsp->vfs_flag |= VFS_NODEVICES; 1504 else 1505 vfsp->vfs_flag &= ~VFS_NODEVICES; 1506 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1507 vfsp->vfs_flag |= VFS_NOSETUID; 1508 else 1509 vfsp->vfs_flag &= ~VFS_NOSETUID; 1510 } 1511 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1512 vfsp->vfs_flag |= VFS_NBMAND; 1513 else 1514 vfsp->vfs_flag &= ~VFS_NBMAND; 1515 1516 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1517 vfsp->vfs_flag |= VFS_XATTR; 1518 else 1519 vfsp->vfs_flag &= ~VFS_XATTR; 1520 1521 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1522 vfsp->vfs_flag |= VFS_NOEXEC; 1523 else 1524 vfsp->vfs_flag &= ~VFS_NOEXEC; 1525 1526 /* 1527 * Now construct the output option string of options 1528 * we recognized. 1529 */ 1530 if (uap->flags & MS_OPTIONSTR) { 1531 vfs_list_read_lock(); 1532 copyout_error = vfs_buildoptionstr( 1533 &vfsp->vfs_mntopts, inargs, optlen); 1534 vfs_list_unlock(); 1535 if (copyout_error == 0 && 1536 (uap->flags & MS_SYSSPACE) == 0) { 1537 copyout_error = copyoutstr(inargs, opts, 1538 optlen, NULL); 1539 } 1540 } 1541 1542 /* 1543 * If this isn't a remount, set up the vopstats before 1544 * anyone can touch this. We only allow spliced file 1545 * systems (file systems which are in the namespace) to 1546 * have the VFS_STATS flag set. 1547 * NOTE: PxFS mounts the underlying file system with 1548 * MS_NOSPLICE set and copies those vfs_flags to its private 1549 * vfs structure. As a result, PxFS should never have 1550 * the VFS_STATS flag or else we might access the vfs 1551 * statistics-related fields prior to them being 1552 * properly initialized. 1553 */ 1554 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1555 initialize_vopstats(&vfsp->vfs_vopstats); 1556 /* 1557 * We need to set vfs_vskap to NULL because there's 1558 * a chance it won't be set below. This is checked 1559 * in teardown_vopstats() so we can't have garbage. 1560 */ 1561 vfsp->vfs_vskap = NULL; 1562 vfsp->vfs_flag |= VFS_STATS; 1563 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1564 } 1565 1566 vfs_unlock(vfsp); 1567 } 1568 mount_completed(); 1569 if (splice) 1570 vn_vfsunlock(vp); 1571 1572 if ((error == 0) && (copyout_error == 0)) { 1573 if (!remount) { 1574 /* 1575 * Don't call get_vskstat_anchor() while holding 1576 * locks since it allocates memory and calls 1577 * VFS_STATVFS(). For NFS, the latter can generate 1578 * an over-the-wire call. 1579 */ 1580 vskap = get_vskstat_anchor(vfsp); 1581 /* Only take the lock if we have something to do */ 1582 if (vskap != NULL) { 1583 vfs_lock_wait(vfsp); 1584 if (vfsp->vfs_flag & VFS_STATS) { 1585 vfsp->vfs_vskap = vskap; 1586 } 1587 vfs_unlock(vfsp); 1588 } 1589 } 1590 /* Return vfsp to caller. */ 1591 *vfspp = vfsp; 1592 } 1593 errout: 1594 vfs_freeopttbl(&mnt_mntopts); 1595 if (resource != NULL) 1596 kmem_free(resource, strlen(resource) + 1); 1597 if (mountpt != NULL) 1598 kmem_free(mountpt, strlen(mountpt) + 1); 1599 /* 1600 * It is possible we errored prior to adding to mount in progress 1601 * table. Must free vnode we acquired with successful lookupname. 1602 */ 1603 if (addmip) 1604 VN_RELE(bvp); 1605 if (delmip) 1606 vfs_delmip(vfsp); 1607 ASSERT(vswp != NULL); 1608 vfs_unrefvfssw(vswp); 1609 if (inargs != opts) 1610 kmem_free(inargs, MAX_MNTOPT_STR); 1611 if (copyout_error) { 1612 VFS_RELE(vfsp); 1613 error = copyout_error; 1614 } 1615 return (error); 1616 } 1617 1618 static void 1619 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1620 { 1621 size_t len; 1622 refstr_t *ref; 1623 zone_t *zone = curproc->p_zone; 1624 char *sp; 1625 int have_list_lock = 0; 1626 1627 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1628 1629 /* 1630 * New path must be less than MAXPATHLEN because mntfs 1631 * will only display up to MAXPATHLEN bytes. This is currently 1632 * safe, because domount() uses pn_get(), and other callers 1633 * similarly cap the size to fewer than MAXPATHLEN bytes. 1634 */ 1635 1636 ASSERT(strlen(newpath) < MAXPATHLEN); 1637 1638 /* mntfs requires consistency while vfs list lock is held */ 1639 1640 if (VFS_ON_LIST(vfsp)) { 1641 have_list_lock = 1; 1642 vfs_list_lock(); 1643 } 1644 1645 if (*refp != NULL) 1646 refstr_rele(*refp); 1647 1648 /* Do we need to modify the path? */ 1649 1650 if (zone == global_zone || *newpath != '/') { 1651 ref = refstr_alloc(newpath); 1652 goto out; 1653 } 1654 1655 /* 1656 * Truncate the trailing '/' in the zoneroot, and merge 1657 * in the zone's rootpath with the "newpath" (resource 1658 * or mountpoint) passed in. 1659 * 1660 * The size of the required buffer is thus the size of 1661 * the buffer required for the passed-in newpath 1662 * (strlen(newpath) + 1), plus the size of the buffer 1663 * required to hold zone_rootpath (zone_rootpathlen) 1664 * minus one for one of the now-superfluous NUL 1665 * terminations, minus one for the trailing '/'. 1666 * 1667 * That gives us: 1668 * 1669 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1670 * 1671 * Which is what we have below. 1672 */ 1673 1674 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1675 sp = kmem_alloc(len, KM_SLEEP); 1676 1677 /* 1678 * Copy everything including the trailing slash, which 1679 * we then overwrite with the NUL character. 1680 */ 1681 1682 (void) strcpy(sp, zone->zone_rootpath); 1683 sp[zone->zone_rootpathlen - 2] = '\0'; 1684 (void) strcat(sp, newpath); 1685 1686 ref = refstr_alloc(sp); 1687 kmem_free(sp, len); 1688 out: 1689 *refp = ref; 1690 1691 if (have_list_lock) { 1692 vfs_mnttab_modtimeupd(); 1693 vfs_list_unlock(); 1694 } 1695 } 1696 1697 /* 1698 * Record a mounted resource name in a vfs structure. 1699 * If vfsp is already mounted, caller must hold the vfs lock. 1700 */ 1701 void 1702 vfs_setresource(struct vfs *vfsp, const char *resource) 1703 { 1704 if (resource == NULL || resource[0] == '\0') 1705 resource = VFS_NORESOURCE; 1706 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1707 } 1708 1709 /* 1710 * Record a mount point name in a vfs structure. 1711 * If vfsp is already mounted, caller must hold the vfs lock. 1712 */ 1713 void 1714 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1715 { 1716 if (mntpt == NULL || mntpt[0] == '\0') 1717 mntpt = VFS_NOMNTPT; 1718 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1719 } 1720 1721 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1722 1723 refstr_t * 1724 vfs_getresource(const struct vfs *vfsp) 1725 { 1726 refstr_t *resource; 1727 1728 vfs_list_read_lock(); 1729 resource = vfsp->vfs_resource; 1730 refstr_hold(resource); 1731 vfs_list_unlock(); 1732 1733 return (resource); 1734 } 1735 1736 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1737 1738 refstr_t * 1739 vfs_getmntpoint(const struct vfs *vfsp) 1740 { 1741 refstr_t *mntpt; 1742 1743 vfs_list_read_lock(); 1744 mntpt = vfsp->vfs_mntpt; 1745 refstr_hold(mntpt); 1746 vfs_list_unlock(); 1747 1748 return (mntpt); 1749 } 1750 1751 /* 1752 * Create an empty options table with enough empty slots to hold all 1753 * The options in the options string passed as an argument. 1754 * Potentially prepend another options table. 1755 * 1756 * Note: caller is responsible for locking the vfs list, if needed, 1757 * to protect mops. 1758 */ 1759 static void 1760 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1761 const mntopts_t *mtmpl) 1762 { 1763 const char *s = opts; 1764 uint_t count; 1765 1766 if (opts == NULL || *opts == '\0') { 1767 count = 0; 1768 } else { 1769 count = 1; 1770 1771 /* 1772 * Count number of options in the string 1773 */ 1774 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1775 count++; 1776 s++; 1777 } 1778 } 1779 vfs_copyopttbl_extend(mtmpl, mops, count); 1780 } 1781 1782 /* 1783 * Create an empty options table with enough empty slots to hold all 1784 * The options in the options string passed as an argument. 1785 * 1786 * This function is *not* for general use by filesystems. 1787 * 1788 * Note: caller is responsible for locking the vfs list, if needed, 1789 * to protect mops. 1790 */ 1791 void 1792 vfs_createopttbl(mntopts_t *mops, const char *opts) 1793 { 1794 vfs_createopttbl_extend(mops, opts, NULL); 1795 } 1796 1797 1798 /* 1799 * Swap two mount options tables 1800 */ 1801 static void 1802 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1803 { 1804 uint_t tmpcnt; 1805 mntopt_t *tmplist; 1806 1807 tmpcnt = optbl2->mo_count; 1808 tmplist = optbl2->mo_list; 1809 optbl2->mo_count = optbl1->mo_count; 1810 optbl2->mo_list = optbl1->mo_list; 1811 optbl1->mo_count = tmpcnt; 1812 optbl1->mo_list = tmplist; 1813 } 1814 1815 static void 1816 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1817 { 1818 vfs_list_lock(); 1819 vfs_swapopttbl_nolock(optbl1, optbl2); 1820 vfs_mnttab_modtimeupd(); 1821 vfs_list_unlock(); 1822 } 1823 1824 static char ** 1825 vfs_copycancelopt_extend(char **const moc, int extend) 1826 { 1827 int i = 0; 1828 int j; 1829 char **result; 1830 1831 if (moc != NULL) { 1832 for (; moc[i] != NULL; i++) 1833 /* count number of options to cancel */; 1834 } 1835 1836 if (i + extend == 0) 1837 return (NULL); 1838 1839 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1840 1841 for (j = 0; j < i; j++) { 1842 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1843 (void) strcpy(result[j], moc[j]); 1844 } 1845 for (; j <= i + extend; j++) 1846 result[j] = NULL; 1847 1848 return (result); 1849 } 1850 1851 static void 1852 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1853 { 1854 char *sp, *dp; 1855 1856 d->mo_flags = s->mo_flags; 1857 d->mo_data = s->mo_data; 1858 sp = s->mo_name; 1859 if (sp != NULL) { 1860 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1861 (void) strcpy(dp, sp); 1862 d->mo_name = dp; 1863 } else { 1864 d->mo_name = NULL; /* should never happen */ 1865 } 1866 1867 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1868 1869 sp = s->mo_arg; 1870 if (sp != NULL) { 1871 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1872 (void) strcpy(dp, sp); 1873 d->mo_arg = dp; 1874 } else { 1875 d->mo_arg = NULL; 1876 } 1877 } 1878 1879 /* 1880 * Copy a mount options table, possibly allocating some spare 1881 * slots at the end. It is permissible to copy_extend the NULL table. 1882 */ 1883 static void 1884 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1885 { 1886 uint_t i, count; 1887 mntopt_t *motbl; 1888 1889 /* 1890 * Clear out any existing stuff in the options table being initialized 1891 */ 1892 vfs_freeopttbl(dmo); 1893 count = (smo == NULL) ? 0 : smo->mo_count; 1894 if ((count + extra) == 0) /* nothing to do */ 1895 return; 1896 dmo->mo_count = count + extra; 1897 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1898 dmo->mo_list = motbl; 1899 for (i = 0; i < count; i++) { 1900 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1901 } 1902 for (i = count; i < count + extra; i++) { 1903 motbl[i].mo_flags = MO_EMPTY; 1904 } 1905 } 1906 1907 /* 1908 * Copy a mount options table. 1909 * 1910 * This function is *not* for general use by filesystems. 1911 * 1912 * Note: caller is responsible for locking the vfs list, if needed, 1913 * to protect smo and dmo. 1914 */ 1915 void 1916 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1917 { 1918 vfs_copyopttbl_extend(smo, dmo, 0); 1919 } 1920 1921 static char ** 1922 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1923 { 1924 int c1 = 0; 1925 int c2 = 0; 1926 char **result; 1927 char **sp1, **sp2, **dp; 1928 1929 /* 1930 * First we count both lists of cancel options. 1931 * If either is NULL or has no elements, we return a copy of 1932 * the other. 1933 */ 1934 if (mop1->mo_cancel != NULL) { 1935 for (; mop1->mo_cancel[c1] != NULL; c1++) 1936 /* count cancel options in mop1 */; 1937 } 1938 1939 if (c1 == 0) 1940 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1941 1942 if (mop2->mo_cancel != NULL) { 1943 for (; mop2->mo_cancel[c2] != NULL; c2++) 1944 /* count cancel options in mop2 */; 1945 } 1946 1947 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1948 1949 if (c2 == 0) 1950 return (result); 1951 1952 /* 1953 * When we get here, we've got two sets of cancel options; 1954 * we need to merge the two sets. We know that the result 1955 * array has "c1+c2+1" entries and in the end we might shrink 1956 * it. 1957 * Result now has a copy of the c1 entries from mop1; we'll 1958 * now lookup all the entries of mop2 in mop1 and copy it if 1959 * it is unique. 1960 * This operation is O(n^2) but it's only called once per 1961 * filesystem per duplicate option. This is a situation 1962 * which doesn't arise with the filesystems in ON and 1963 * n is generally 1. 1964 */ 1965 1966 dp = &result[c1]; 1967 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1968 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1969 if (strcmp(*sp1, *sp2) == 0) 1970 break; 1971 } 1972 if (*sp1 == NULL) { 1973 /* 1974 * Option *sp2 not found in mop1, so copy it. 1975 * The calls to vfs_copycancelopt_extend() 1976 * guarantee that there's enough room. 1977 */ 1978 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1979 (void) strcpy(*dp++, *sp2); 1980 } 1981 } 1982 if (dp != &result[c1+c2]) { 1983 size_t bytes = (dp - result + 1) * sizeof (char *); 1984 char **nres = kmem_alloc(bytes, KM_SLEEP); 1985 1986 bcopy(result, nres, bytes); 1987 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1988 result = nres; 1989 } 1990 return (result); 1991 } 1992 1993 /* 1994 * Merge two mount option tables (outer and inner) into one. This is very 1995 * similar to "merging" global variables and automatic variables in C. 1996 * 1997 * This isn't (and doesn't have to be) fast. 1998 * 1999 * This function is *not* for general use by filesystems. 2000 * 2001 * Note: caller is responsible for locking the vfs list, if needed, 2002 * to protect omo, imo & dmo. 2003 */ 2004 void 2005 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2006 { 2007 uint_t i, count; 2008 mntopt_t *mop, *motbl; 2009 uint_t freeidx; 2010 2011 /* 2012 * First determine how much space we need to allocate. 2013 */ 2014 count = omo->mo_count; 2015 for (i = 0; i < imo->mo_count; i++) { 2016 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2017 continue; 2018 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2019 count++; 2020 } 2021 ASSERT(count >= omo->mo_count && 2022 count <= omo->mo_count + imo->mo_count); 2023 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2024 for (i = 0; i < omo->mo_count; i++) 2025 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2026 freeidx = omo->mo_count; 2027 for (i = 0; i < imo->mo_count; i++) { 2028 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2029 continue; 2030 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2031 char **newcanp; 2032 uint_t index = mop - omo->mo_list; 2033 2034 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2035 2036 vfs_freeopt(&motbl[index]); 2037 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2038 2039 vfs_freecancelopt(motbl[index].mo_cancel); 2040 motbl[index].mo_cancel = newcanp; 2041 } else { 2042 /* 2043 * If it's a new option, just copy it over to the first 2044 * free location. 2045 */ 2046 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2047 } 2048 } 2049 dmo->mo_count = count; 2050 dmo->mo_list = motbl; 2051 } 2052 2053 /* 2054 * Functions to set and clear mount options in a mount options table. 2055 */ 2056 2057 /* 2058 * Clear a mount option, if it exists. 2059 * 2060 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2061 * the vfs list. 2062 */ 2063 static void 2064 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2065 { 2066 struct mntopt *mop; 2067 uint_t i, count; 2068 2069 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2070 2071 count = mops->mo_count; 2072 for (i = 0; i < count; i++) { 2073 mop = &mops->mo_list[i]; 2074 2075 if (mop->mo_flags & MO_EMPTY) 2076 continue; 2077 if (strcmp(opt, mop->mo_name)) 2078 continue; 2079 mop->mo_flags &= ~MO_SET; 2080 if (mop->mo_arg != NULL) { 2081 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2082 } 2083 mop->mo_arg = NULL; 2084 if (update_mnttab) 2085 vfs_mnttab_modtimeupd(); 2086 break; 2087 } 2088 } 2089 2090 void 2091 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2092 { 2093 int gotlock = 0; 2094 2095 if (VFS_ON_LIST(vfsp)) { 2096 gotlock = 1; 2097 vfs_list_lock(); 2098 } 2099 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2100 if (gotlock) 2101 vfs_list_unlock(); 2102 } 2103 2104 2105 /* 2106 * Set a mount option on. If it's not found in the table, it's silently 2107 * ignored. If the option has MO_IGNORE set, it is still set unless the 2108 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2109 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2110 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2111 * MO_EMPTY set is created as the option passed in. 2112 * 2113 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2114 * the vfs list. 2115 */ 2116 static void 2117 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2118 const char *arg, int flags, int update_mnttab) 2119 { 2120 mntopt_t *mop; 2121 uint_t i, count; 2122 char *sp; 2123 2124 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2125 2126 if (flags & VFS_CREATEOPT) { 2127 if (vfs_hasopt(mops, opt) != NULL) { 2128 flags &= ~VFS_CREATEOPT; 2129 } 2130 } 2131 count = mops->mo_count; 2132 for (i = 0; i < count; i++) { 2133 mop = &mops->mo_list[i]; 2134 2135 if (mop->mo_flags & MO_EMPTY) { 2136 if ((flags & VFS_CREATEOPT) == 0) 2137 continue; 2138 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2139 (void) strcpy(sp, opt); 2140 mop->mo_name = sp; 2141 if (arg != NULL) 2142 mop->mo_flags = MO_HASVALUE; 2143 else 2144 mop->mo_flags = 0; 2145 } else if (strcmp(opt, mop->mo_name)) { 2146 continue; 2147 } 2148 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2149 break; 2150 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2151 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2152 (void) strcpy(sp, arg); 2153 } else { 2154 sp = NULL; 2155 } 2156 if (mop->mo_arg != NULL) 2157 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2158 mop->mo_arg = sp; 2159 if (flags & VFS_DISPLAY) 2160 mop->mo_flags &= ~MO_NODISPLAY; 2161 if (flags & VFS_NODISPLAY) 2162 mop->mo_flags |= MO_NODISPLAY; 2163 mop->mo_flags |= MO_SET; 2164 if (mop->mo_cancel != NULL) { 2165 char **cp; 2166 2167 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2168 vfs_clearmntopt_nolock(mops, *cp, 0); 2169 } 2170 if (update_mnttab) 2171 vfs_mnttab_modtimeupd(); 2172 break; 2173 } 2174 } 2175 2176 void 2177 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2178 { 2179 int gotlock = 0; 2180 2181 if (VFS_ON_LIST(vfsp)) { 2182 gotlock = 1; 2183 vfs_list_lock(); 2184 } 2185 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2186 if (gotlock) 2187 vfs_list_unlock(); 2188 } 2189 2190 2191 /* 2192 * Add a "tag" option to a mounted file system's options list. 2193 * 2194 * Note: caller is responsible for locking the vfs list, if needed, 2195 * to protect mops. 2196 */ 2197 static mntopt_t * 2198 vfs_addtag(mntopts_t *mops, const char *tag) 2199 { 2200 uint_t count; 2201 mntopt_t *mop, *motbl; 2202 2203 count = mops->mo_count + 1; 2204 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2205 if (mops->mo_count) { 2206 size_t len = (count - 1) * sizeof (mntopt_t); 2207 2208 bcopy(mops->mo_list, motbl, len); 2209 kmem_free(mops->mo_list, len); 2210 } 2211 mops->mo_count = count; 2212 mops->mo_list = motbl; 2213 mop = &motbl[count - 1]; 2214 mop->mo_flags = MO_TAG; 2215 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2216 (void) strcpy(mop->mo_name, tag); 2217 return (mop); 2218 } 2219 2220 /* 2221 * Allow users to set arbitrary "tags" in a vfs's mount options. 2222 * Broader use within the kernel is discouraged. 2223 */ 2224 int 2225 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2226 cred_t *cr) 2227 { 2228 vfs_t *vfsp; 2229 mntopts_t *mops; 2230 mntopt_t *mop; 2231 int found = 0; 2232 dev_t dev = makedevice(major, minor); 2233 int err = 0; 2234 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2235 2236 /* 2237 * Find the desired mounted file system 2238 */ 2239 vfs_list_lock(); 2240 vfsp = rootvfs; 2241 do { 2242 if (vfsp->vfs_dev == dev && 2243 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2244 found = 1; 2245 break; 2246 } 2247 vfsp = vfsp->vfs_next; 2248 } while (vfsp != rootvfs); 2249 2250 if (!found) { 2251 err = EINVAL; 2252 goto out; 2253 } 2254 err = secpolicy_fs_config(cr, vfsp); 2255 if (err != 0) 2256 goto out; 2257 2258 mops = &vfsp->vfs_mntopts; 2259 /* 2260 * Add tag if it doesn't already exist 2261 */ 2262 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2263 int len; 2264 2265 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2266 len = strlen(buf); 2267 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2268 err = ENAMETOOLONG; 2269 goto out; 2270 } 2271 mop = vfs_addtag(mops, tag); 2272 } 2273 if ((mop->mo_flags & MO_TAG) == 0) { 2274 err = EINVAL; 2275 goto out; 2276 } 2277 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2278 out: 2279 vfs_list_unlock(); 2280 kmem_free(buf, MAX_MNTOPT_STR); 2281 return (err); 2282 } 2283 2284 /* 2285 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2286 * Broader use within the kernel is discouraged. 2287 */ 2288 int 2289 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2290 cred_t *cr) 2291 { 2292 vfs_t *vfsp; 2293 mntopt_t *mop; 2294 int found = 0; 2295 dev_t dev = makedevice(major, minor); 2296 int err = 0; 2297 2298 /* 2299 * Find the desired mounted file system 2300 */ 2301 vfs_list_lock(); 2302 vfsp = rootvfs; 2303 do { 2304 if (vfsp->vfs_dev == dev && 2305 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2306 found = 1; 2307 break; 2308 } 2309 vfsp = vfsp->vfs_next; 2310 } while (vfsp != rootvfs); 2311 2312 if (!found) { 2313 err = EINVAL; 2314 goto out; 2315 } 2316 err = secpolicy_fs_config(cr, vfsp); 2317 if (err != 0) 2318 goto out; 2319 2320 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2321 err = EINVAL; 2322 goto out; 2323 } 2324 if ((mop->mo_flags & MO_TAG) == 0) { 2325 err = EINVAL; 2326 goto out; 2327 } 2328 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2329 out: 2330 vfs_list_unlock(); 2331 return (err); 2332 } 2333 2334 /* 2335 * Function to parse an option string and fill in a mount options table. 2336 * Unknown options are silently ignored. The input option string is modified 2337 * by replacing separators with nulls. If the create flag is set, options 2338 * not found in the table are just added on the fly. The table must have 2339 * an option slot marked MO_EMPTY to add an option on the fly. 2340 * 2341 * This function is *not* for general use by filesystems. 2342 * 2343 * Note: caller is responsible for locking the vfs list, if needed, 2344 * to protect mops.. 2345 */ 2346 void 2347 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2348 { 2349 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2350 int setflg = VFS_NOFORCEOPT; 2351 2352 if (osp == NULL) 2353 return; 2354 while (*s != '\0') { 2355 p = strchr(s, ','); /* find next option */ 2356 if (p == NULL) { 2357 cp = NULL; 2358 p = s + strlen(s); 2359 } else { 2360 cp = p; /* save location of comma */ 2361 *p++ = '\0'; /* mark end and point to next option */ 2362 } 2363 nextop = p; 2364 p = strchr(s, '='); /* look for value */ 2365 if (p == NULL) { 2366 valp = NULL; /* no value supplied */ 2367 } else { 2368 ep = p; /* save location of equals */ 2369 *p++ = '\0'; /* end option and point to value */ 2370 valp = p; 2371 } 2372 /* 2373 * set option into options table 2374 */ 2375 if (create) 2376 setflg |= VFS_CREATEOPT; 2377 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2378 if (cp != NULL) 2379 *cp = ','; /* restore the comma */ 2380 if (valp != NULL) 2381 *ep = '='; /* restore the equals */ 2382 s = nextop; 2383 } 2384 } 2385 2386 /* 2387 * Function to inquire if an option exists in a mount options table. 2388 * Returns a pointer to the option if it exists, else NULL. 2389 * 2390 * This function is *not* for general use by filesystems. 2391 * 2392 * Note: caller is responsible for locking the vfs list, if needed, 2393 * to protect mops. 2394 */ 2395 struct mntopt * 2396 vfs_hasopt(const mntopts_t *mops, const char *opt) 2397 { 2398 struct mntopt *mop; 2399 uint_t i, count; 2400 2401 count = mops->mo_count; 2402 for (i = 0; i < count; i++) { 2403 mop = &mops->mo_list[i]; 2404 2405 if (mop->mo_flags & MO_EMPTY) 2406 continue; 2407 if (strcmp(opt, mop->mo_name) == 0) 2408 return (mop); 2409 } 2410 return (NULL); 2411 } 2412 2413 /* 2414 * Function to inquire if an option is set in a mount options table. 2415 * Returns non-zero if set and fills in the arg pointer with a pointer to 2416 * the argument string or NULL if there is no argument string. 2417 */ 2418 static int 2419 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2420 { 2421 struct mntopt *mop; 2422 uint_t i, count; 2423 2424 count = mops->mo_count; 2425 for (i = 0; i < count; i++) { 2426 mop = &mops->mo_list[i]; 2427 2428 if (mop->mo_flags & MO_EMPTY) 2429 continue; 2430 if (strcmp(opt, mop->mo_name)) 2431 continue; 2432 if ((mop->mo_flags & MO_SET) == 0) 2433 return (0); 2434 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2435 *argp = mop->mo_arg; 2436 return (1); 2437 } 2438 return (0); 2439 } 2440 2441 2442 int 2443 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2444 { 2445 int ret; 2446 2447 vfs_list_read_lock(); 2448 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2449 vfs_list_unlock(); 2450 return (ret); 2451 } 2452 2453 2454 /* 2455 * Construct a comma separated string of the options set in the given 2456 * mount table, return the string in the given buffer. Return non-zero if 2457 * the buffer would overflow. 2458 * 2459 * This function is *not* for general use by filesystems. 2460 * 2461 * Note: caller is responsible for locking the vfs list, if needed, 2462 * to protect mp. 2463 */ 2464 int 2465 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2466 { 2467 char *cp; 2468 uint_t i; 2469 2470 buf[0] = '\0'; 2471 cp = buf; 2472 for (i = 0; i < mp->mo_count; i++) { 2473 struct mntopt *mop; 2474 2475 mop = &mp->mo_list[i]; 2476 if (mop->mo_flags & MO_SET) { 2477 int optlen, comma = 0; 2478 2479 if (buf[0] != '\0') 2480 comma = 1; 2481 optlen = strlen(mop->mo_name); 2482 if (strlen(buf) + comma + optlen + 1 > len) 2483 goto err; 2484 if (comma) 2485 *cp++ = ','; 2486 (void) strcpy(cp, mop->mo_name); 2487 cp += optlen; 2488 /* 2489 * Append option value if there is one 2490 */ 2491 if (mop->mo_arg != NULL) { 2492 int arglen; 2493 2494 arglen = strlen(mop->mo_arg); 2495 if (strlen(buf) + arglen + 2 > len) 2496 goto err; 2497 *cp++ = '='; 2498 (void) strcpy(cp, mop->mo_arg); 2499 cp += arglen; 2500 } 2501 } 2502 } 2503 return (0); 2504 err: 2505 return (EOVERFLOW); 2506 } 2507 2508 static void 2509 vfs_freecancelopt(char **moc) 2510 { 2511 if (moc != NULL) { 2512 int ccnt = 0; 2513 char **cp; 2514 2515 for (cp = moc; *cp != NULL; cp++) { 2516 kmem_free(*cp, strlen(*cp) + 1); 2517 ccnt++; 2518 } 2519 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2520 } 2521 } 2522 2523 static void 2524 vfs_freeopt(mntopt_t *mop) 2525 { 2526 if (mop->mo_name != NULL) 2527 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2528 2529 vfs_freecancelopt(mop->mo_cancel); 2530 2531 if (mop->mo_arg != NULL) 2532 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2533 } 2534 2535 /* 2536 * Free a mount options table 2537 * 2538 * This function is *not* for general use by filesystems. 2539 * 2540 * Note: caller is responsible for locking the vfs list, if needed, 2541 * to protect mp. 2542 */ 2543 void 2544 vfs_freeopttbl(mntopts_t *mp) 2545 { 2546 uint_t i, count; 2547 2548 count = mp->mo_count; 2549 for (i = 0; i < count; i++) { 2550 vfs_freeopt(&mp->mo_list[i]); 2551 } 2552 if (count) { 2553 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2554 mp->mo_count = 0; 2555 mp->mo_list = NULL; 2556 } 2557 } 2558 2559 /* 2560 * Free any mnttab information recorded in the vfs struct. 2561 * The vfs must not be on the vfs list. 2562 */ 2563 static void 2564 vfs_freemnttab(struct vfs *vfsp) 2565 { 2566 ASSERT(!VFS_ON_LIST(vfsp)); 2567 2568 /* 2569 * Free device and mount point information 2570 */ 2571 if (vfsp->vfs_mntpt != NULL) { 2572 refstr_rele(vfsp->vfs_mntpt); 2573 vfsp->vfs_mntpt = NULL; 2574 } 2575 if (vfsp->vfs_resource != NULL) { 2576 refstr_rele(vfsp->vfs_resource); 2577 vfsp->vfs_resource = NULL; 2578 } 2579 /* 2580 * Now free mount options information 2581 */ 2582 vfs_freeopttbl(&vfsp->vfs_mntopts); 2583 } 2584 2585 /* 2586 * Return the last mnttab modification time 2587 */ 2588 void 2589 vfs_mnttab_modtime(timespec_t *ts) 2590 { 2591 ASSERT(RW_LOCK_HELD(&vfslist)); 2592 *ts = vfs_mnttab_mtime; 2593 } 2594 2595 /* 2596 * See if mnttab is changed 2597 */ 2598 void 2599 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2600 { 2601 int changed; 2602 2603 *phpp = (struct pollhead *)NULL; 2604 2605 /* 2606 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2607 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2608 * to not grab the vfs list lock because tv_sec is monotonically 2609 * increasing. 2610 */ 2611 2612 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2613 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2614 if (!changed) { 2615 *phpp = &vfs_pollhd; 2616 } 2617 } 2618 2619 /* 2620 * Update the mnttab modification time and wake up any waiters for 2621 * mnttab changes 2622 */ 2623 void 2624 vfs_mnttab_modtimeupd() 2625 { 2626 hrtime_t oldhrt, newhrt; 2627 2628 ASSERT(RW_WRITE_HELD(&vfslist)); 2629 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2630 gethrestime(&vfs_mnttab_mtime); 2631 newhrt = ts2hrt(&vfs_mnttab_mtime); 2632 if (oldhrt == (hrtime_t)0) 2633 vfs_mnttab_ctime = vfs_mnttab_mtime; 2634 /* 2635 * Attempt to provide unique mtime (like uniqtime but not). 2636 */ 2637 if (newhrt == oldhrt) { 2638 newhrt++; 2639 hrt2ts(newhrt, &vfs_mnttab_mtime); 2640 } 2641 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2642 } 2643 2644 int 2645 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2646 { 2647 vnode_t *coveredvp; 2648 int error; 2649 extern void teardown_vopstats(vfs_t *); 2650 2651 /* 2652 * Get covered vnode. This will be NULL if the vfs is not linked 2653 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2654 */ 2655 coveredvp = vfsp->vfs_vnodecovered; 2656 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2657 2658 /* 2659 * Purge all dnlc entries for this vfs. 2660 */ 2661 (void) dnlc_purge_vfsp(vfsp, 0); 2662 2663 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2664 if ((flag & MS_FORCE) == 0) 2665 (void) VFS_SYNC(vfsp, 0, cr); 2666 2667 /* 2668 * Lock the vfs to maintain fs status quo during unmount. This 2669 * has to be done after the sync because ufs_update tries to acquire 2670 * the vfs_reflock. 2671 */ 2672 vfs_lock_wait(vfsp); 2673 2674 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2675 vfs_unlock(vfsp); 2676 if (coveredvp != NULL) 2677 vn_vfsunlock(coveredvp); 2678 } else if (coveredvp != NULL) { 2679 teardown_vopstats(vfsp); 2680 /* 2681 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2682 * when it frees vfsp so we do a VN_HOLD() so we can 2683 * continue to use coveredvp afterwards. 2684 */ 2685 VN_HOLD(coveredvp); 2686 vfs_remove(vfsp); 2687 vn_vfsunlock(coveredvp); 2688 VN_RELE(coveredvp); 2689 } else { 2690 teardown_vopstats(vfsp); 2691 /* 2692 * Release the reference to vfs that is not linked 2693 * into the name space. 2694 */ 2695 vfs_unlock(vfsp); 2696 VFS_RELE(vfsp); 2697 } 2698 return (error); 2699 } 2700 2701 2702 /* 2703 * Vfs_unmountall() is called by uadmin() to unmount all 2704 * mounted file systems (except the root file system) during shutdown. 2705 * It follows the existing locking protocol when traversing the vfs list 2706 * to sync and unmount vfses. Even though there should be no 2707 * other thread running while the system is shutting down, it is prudent 2708 * to still follow the locking protocol. 2709 */ 2710 void 2711 vfs_unmountall(void) 2712 { 2713 struct vfs *vfsp; 2714 struct vfs *prev_vfsp = NULL; 2715 int error; 2716 2717 /* 2718 * Toss all dnlc entries now so that the per-vfs sync 2719 * and unmount operations don't have to slog through 2720 * a bunch of uninteresting vnodes over and over again. 2721 */ 2722 dnlc_purge(); 2723 2724 vfs_list_lock(); 2725 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2726 prev_vfsp = vfsp->vfs_prev; 2727 2728 if (vfs_lock(vfsp) != 0) 2729 continue; 2730 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2731 vfs_unlock(vfsp); 2732 if (error) 2733 continue; 2734 2735 vfs_list_unlock(); 2736 2737 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2738 (void) dounmount(vfsp, 0, CRED()); 2739 2740 /* 2741 * Since we dropped the vfslist lock above we must 2742 * verify that next_vfsp still exists, else start over. 2743 */ 2744 vfs_list_lock(); 2745 for (vfsp = rootvfs->vfs_prev; 2746 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2747 if (vfsp == prev_vfsp) 2748 break; 2749 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2750 prev_vfsp = rootvfs->vfs_prev; 2751 } 2752 vfs_list_unlock(); 2753 } 2754 2755 /* 2756 * Called to add an entry to the end of the vfs mount in progress list 2757 */ 2758 void 2759 vfs_addmip(dev_t dev, struct vfs *vfsp) 2760 { 2761 struct ipmnt *mipp; 2762 2763 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2764 mipp->mip_next = NULL; 2765 mipp->mip_dev = dev; 2766 mipp->mip_vfsp = vfsp; 2767 mutex_enter(&vfs_miplist_mutex); 2768 if (vfs_miplist_end != NULL) 2769 vfs_miplist_end->mip_next = mipp; 2770 else 2771 vfs_miplist = mipp; 2772 vfs_miplist_end = mipp; 2773 mutex_exit(&vfs_miplist_mutex); 2774 } 2775 2776 /* 2777 * Called to remove an entry from the mount in progress list 2778 * Either because the mount completed or it failed. 2779 */ 2780 void 2781 vfs_delmip(struct vfs *vfsp) 2782 { 2783 struct ipmnt *mipp, *mipprev; 2784 2785 mutex_enter(&vfs_miplist_mutex); 2786 mipprev = NULL; 2787 for (mipp = vfs_miplist; 2788 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2789 mipprev = mipp; 2790 } 2791 if (mipp == NULL) 2792 return; /* shouldn't happen */ 2793 if (mipp == vfs_miplist_end) 2794 vfs_miplist_end = mipprev; 2795 if (mipprev == NULL) 2796 vfs_miplist = mipp->mip_next; 2797 else 2798 mipprev->mip_next = mipp->mip_next; 2799 mutex_exit(&vfs_miplist_mutex); 2800 kmem_free(mipp, sizeof (struct ipmnt)); 2801 } 2802 2803 /* 2804 * vfs_add is called by a specific filesystem's mount routine to add 2805 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2806 * The vfs should already have been locked by the caller. 2807 * 2808 * coveredvp is NULL if this is the root. 2809 */ 2810 void 2811 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2812 { 2813 int newflag; 2814 2815 ASSERT(vfs_lock_held(vfsp)); 2816 VFS_HOLD(vfsp); 2817 newflag = vfsp->vfs_flag; 2818 if (mflag & MS_RDONLY) 2819 newflag |= VFS_RDONLY; 2820 else 2821 newflag &= ~VFS_RDONLY; 2822 if (mflag & MS_NOSUID) 2823 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2824 else 2825 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2826 if (mflag & MS_NOMNTTAB) 2827 newflag |= VFS_NOMNTTAB; 2828 else 2829 newflag &= ~VFS_NOMNTTAB; 2830 2831 if (coveredvp != NULL) { 2832 ASSERT(vn_vfswlock_held(coveredvp)); 2833 coveredvp->v_vfsmountedhere = vfsp; 2834 VN_HOLD(coveredvp); 2835 } 2836 vfsp->vfs_vnodecovered = coveredvp; 2837 vfsp->vfs_flag = newflag; 2838 2839 vfs_list_add(vfsp); 2840 } 2841 2842 /* 2843 * Remove a vfs from the vfs list, null out the pointer from the 2844 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2845 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2846 * reference to the vfs and to the covered vnode. 2847 * 2848 * Called from dounmount after it's confirmed with the file system 2849 * that the unmount is legal. 2850 */ 2851 void 2852 vfs_remove(struct vfs *vfsp) 2853 { 2854 vnode_t *vp; 2855 2856 ASSERT(vfs_lock_held(vfsp)); 2857 2858 /* 2859 * Can't unmount root. Should never happen because fs will 2860 * be busy. 2861 */ 2862 if (vfsp == rootvfs) 2863 panic("vfs_remove: unmounting root"); 2864 2865 vfs_list_remove(vfsp); 2866 2867 /* 2868 * Unhook from the file system name space. 2869 */ 2870 vp = vfsp->vfs_vnodecovered; 2871 ASSERT(vn_vfswlock_held(vp)); 2872 vp->v_vfsmountedhere = NULL; 2873 vfsp->vfs_vnodecovered = NULL; 2874 VN_RELE(vp); 2875 2876 /* 2877 * Release lock and wakeup anybody waiting. 2878 */ 2879 vfs_unlock(vfsp); 2880 VFS_RELE(vfsp); 2881 } 2882 2883 /* 2884 * Lock a filesystem to prevent access to it while mounting, 2885 * unmounting and syncing. Return EBUSY immediately if lock 2886 * can't be acquired. 2887 */ 2888 int 2889 vfs_lock(vfs_t *vfsp) 2890 { 2891 vn_vfslocks_entry_t *vpvfsentry; 2892 2893 vpvfsentry = vn_vfslocks_getlock(vfsp); 2894 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2895 return (0); 2896 2897 vn_vfslocks_rele(vpvfsentry); 2898 return (EBUSY); 2899 } 2900 2901 int 2902 vfs_rlock(vfs_t *vfsp) 2903 { 2904 vn_vfslocks_entry_t *vpvfsentry; 2905 2906 vpvfsentry = vn_vfslocks_getlock(vfsp); 2907 2908 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2909 return (0); 2910 2911 vn_vfslocks_rele(vpvfsentry); 2912 return (EBUSY); 2913 } 2914 2915 void 2916 vfs_lock_wait(vfs_t *vfsp) 2917 { 2918 vn_vfslocks_entry_t *vpvfsentry; 2919 2920 vpvfsentry = vn_vfslocks_getlock(vfsp); 2921 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2922 } 2923 2924 void 2925 vfs_rlock_wait(vfs_t *vfsp) 2926 { 2927 vn_vfslocks_entry_t *vpvfsentry; 2928 2929 vpvfsentry = vn_vfslocks_getlock(vfsp); 2930 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2931 } 2932 2933 /* 2934 * Unlock a locked filesystem. 2935 */ 2936 void 2937 vfs_unlock(vfs_t *vfsp) 2938 { 2939 vn_vfslocks_entry_t *vpvfsentry; 2940 2941 /* 2942 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2943 * And these changes should remain for the patch changes as it is. 2944 */ 2945 if (panicstr) 2946 return; 2947 2948 /* 2949 * ve_refcount needs to be dropped twice here. 2950 * 1. To release refernce after a call to vfs_locks_getlock() 2951 * 2. To release the reference from the locking routines like 2952 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2953 */ 2954 2955 vpvfsentry = vn_vfslocks_getlock(vfsp); 2956 vn_vfslocks_rele(vpvfsentry); 2957 2958 rwst_exit(&vpvfsentry->ve_lock); 2959 vn_vfslocks_rele(vpvfsentry); 2960 } 2961 2962 /* 2963 * Utility routine that allows a filesystem to construct its 2964 * fsid in "the usual way" - by munging some underlying dev_t and 2965 * the filesystem type number into the 64-bit fsid. Note that 2966 * this implicitly relies on dev_t persistence to make filesystem 2967 * id's persistent. 2968 * 2969 * There's nothing to prevent an individual fs from constructing its 2970 * fsid in a different way, and indeed they should. 2971 * 2972 * Since we want fsids to be 32-bit quantities (so that they can be 2973 * exported identically by either 32-bit or 64-bit APIs, as well as 2974 * the fact that fsid's are "known" to NFS), we compress the device 2975 * number given down to 32-bits, and panic if that isn't possible. 2976 */ 2977 void 2978 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2979 { 2980 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2981 panic("device number too big for fsid!"); 2982 fsi->val[1] = val; 2983 } 2984 2985 int 2986 vfs_lock_held(vfs_t *vfsp) 2987 { 2988 int held; 2989 vn_vfslocks_entry_t *vpvfsentry; 2990 2991 /* 2992 * vfs_lock_held will mimic sema_held behaviour 2993 * if panicstr is set. And these changes should remain 2994 * for the patch changes as it is. 2995 */ 2996 if (panicstr) 2997 return (1); 2998 2999 vpvfsentry = vn_vfslocks_getlock(vfsp); 3000 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3001 3002 vn_vfslocks_rele(vpvfsentry); 3003 return (held); 3004 } 3005 3006 struct _kthread * 3007 vfs_lock_owner(vfs_t *vfsp) 3008 { 3009 struct _kthread *owner; 3010 vn_vfslocks_entry_t *vpvfsentry; 3011 3012 /* 3013 * vfs_wlock_held will mimic sema_held behaviour 3014 * if panicstr is set. And these changes should remain 3015 * for the patch changes as it is. 3016 */ 3017 if (panicstr) 3018 return (NULL); 3019 3020 vpvfsentry = vn_vfslocks_getlock(vfsp); 3021 owner = rwst_owner(&vpvfsentry->ve_lock); 3022 3023 vn_vfslocks_rele(vpvfsentry); 3024 return (owner); 3025 } 3026 3027 /* 3028 * vfs list locking. 3029 * 3030 * Rather than manipulate the vfslist lock directly, we abstract into lock 3031 * and unlock routines to allow the locking implementation to be changed for 3032 * clustering. 3033 * 3034 * Whenever the vfs list is modified through its hash links, the overall list 3035 * lock must be obtained before locking the relevant hash bucket. But to see 3036 * whether a given vfs is on the list, it suffices to obtain the lock for the 3037 * hash bucket without getting the overall list lock. (See getvfs() below.) 3038 */ 3039 3040 void 3041 vfs_list_lock() 3042 { 3043 rw_enter(&vfslist, RW_WRITER); 3044 } 3045 3046 void 3047 vfs_list_read_lock() 3048 { 3049 rw_enter(&vfslist, RW_READER); 3050 } 3051 3052 void 3053 vfs_list_unlock() 3054 { 3055 rw_exit(&vfslist); 3056 } 3057 3058 /* 3059 * Low level worker routines for adding entries to and removing entries from 3060 * the vfs list. 3061 */ 3062 3063 static void 3064 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3065 { 3066 int vhno; 3067 struct vfs **hp; 3068 dev_t dev; 3069 3070 ASSERT(RW_WRITE_HELD(&vfslist)); 3071 3072 dev = expldev(vfsp->vfs_fsid.val[0]); 3073 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3074 3075 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3076 3077 /* 3078 * Link into the hash table, inserting it at the end, so that LOFS 3079 * with the same fsid as UFS (or other) file systems will not hide the 3080 * UFS. 3081 */ 3082 if (insert_at_head) { 3083 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3084 rvfs_list[vhno].rvfs_head = vfsp; 3085 } else { 3086 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3087 hp = &(*hp)->vfs_hash) 3088 continue; 3089 /* 3090 * hp now contains the address of the pointer to update 3091 * to effect the insertion. 3092 */ 3093 vfsp->vfs_hash = NULL; 3094 *hp = vfsp; 3095 } 3096 3097 rvfs_list[vhno].rvfs_len++; 3098 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3099 } 3100 3101 3102 static void 3103 vfs_hash_remove(struct vfs *vfsp) 3104 { 3105 int vhno; 3106 struct vfs *tvfsp; 3107 dev_t dev; 3108 3109 ASSERT(RW_WRITE_HELD(&vfslist)); 3110 3111 dev = expldev(vfsp->vfs_fsid.val[0]); 3112 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3113 3114 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3115 3116 /* 3117 * Remove from hash. 3118 */ 3119 if (rvfs_list[vhno].rvfs_head == vfsp) { 3120 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3121 rvfs_list[vhno].rvfs_len--; 3122 goto foundit; 3123 } 3124 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3125 tvfsp = tvfsp->vfs_hash) { 3126 if (tvfsp->vfs_hash == vfsp) { 3127 tvfsp->vfs_hash = vfsp->vfs_hash; 3128 rvfs_list[vhno].rvfs_len--; 3129 goto foundit; 3130 } 3131 } 3132 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3133 3134 foundit: 3135 3136 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3137 } 3138 3139 3140 void 3141 vfs_list_add(struct vfs *vfsp) 3142 { 3143 zone_t *zone; 3144 3145 /* 3146 * The zone that owns the mount is the one that performed the mount. 3147 * Note that this isn't necessarily the same as the zone mounted into. 3148 * The corresponding zone_rele() will be done when the vfs_t is 3149 * being free'd. 3150 */ 3151 vfsp->vfs_zone = curproc->p_zone; 3152 zone_hold(vfsp->vfs_zone); 3153 3154 /* 3155 * Find the zone mounted into, and put this mount on its vfs list. 3156 */ 3157 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3158 ASSERT(zone != NULL); 3159 /* 3160 * Special casing for the root vfs. This structure is allocated 3161 * statically and hooked onto rootvfs at link time. During the 3162 * vfs_mountroot call at system startup time, the root file system's 3163 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3164 * as argument. The code below must detect and handle this special 3165 * case. The only apparent justification for this special casing is 3166 * to ensure that the root file system appears at the head of the 3167 * list. 3168 * 3169 * XXX: I'm assuming that it's ok to do normal list locking when 3170 * adding the entry for the root file system (this used to be 3171 * done with no locks held). 3172 */ 3173 vfs_list_lock(); 3174 /* 3175 * Link into the vfs list proper. 3176 */ 3177 if (vfsp == &root) { 3178 /* 3179 * Assert: This vfs is already on the list as its first entry. 3180 * Thus, there's nothing to do. 3181 */ 3182 ASSERT(rootvfs == vfsp); 3183 /* 3184 * Add it to the head of the global zone's vfslist. 3185 */ 3186 ASSERT(zone == global_zone); 3187 ASSERT(zone->zone_vfslist == NULL); 3188 zone->zone_vfslist = vfsp; 3189 } else { 3190 /* 3191 * Link to end of list using vfs_prev (as rootvfs is now a 3192 * doubly linked circular list) so list is in mount order for 3193 * mnttab use. 3194 */ 3195 rootvfs->vfs_prev->vfs_next = vfsp; 3196 vfsp->vfs_prev = rootvfs->vfs_prev; 3197 rootvfs->vfs_prev = vfsp; 3198 vfsp->vfs_next = rootvfs; 3199 3200 /* 3201 * Do it again for the zone-private list (which may be NULL). 3202 */ 3203 if (zone->zone_vfslist == NULL) { 3204 ASSERT(zone != global_zone); 3205 zone->zone_vfslist = vfsp; 3206 } else { 3207 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3208 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3209 zone->zone_vfslist->vfs_zone_prev = vfsp; 3210 vfsp->vfs_zone_next = zone->zone_vfslist; 3211 } 3212 } 3213 3214 /* 3215 * Link into the hash table, inserting it at the end, so that LOFS 3216 * with the same fsid as UFS (or other) file systems will not hide 3217 * the UFS. 3218 */ 3219 vfs_hash_add(vfsp, 0); 3220 3221 /* 3222 * update the mnttab modification time 3223 */ 3224 vfs_mnttab_modtimeupd(); 3225 vfs_list_unlock(); 3226 zone_rele(zone); 3227 } 3228 3229 void 3230 vfs_list_remove(struct vfs *vfsp) 3231 { 3232 zone_t *zone; 3233 3234 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3235 ASSERT(zone != NULL); 3236 /* 3237 * Callers are responsible for preventing attempts to unmount the 3238 * root. 3239 */ 3240 ASSERT(vfsp != rootvfs); 3241 3242 vfs_list_lock(); 3243 3244 /* 3245 * Remove from hash. 3246 */ 3247 vfs_hash_remove(vfsp); 3248 3249 /* 3250 * Remove from vfs list. 3251 */ 3252 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3253 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3254 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3255 3256 /* 3257 * Remove from zone-specific vfs list. 3258 */ 3259 if (zone->zone_vfslist == vfsp) 3260 zone->zone_vfslist = vfsp->vfs_zone_next; 3261 3262 if (vfsp->vfs_zone_next == vfsp) { 3263 ASSERT(vfsp->vfs_zone_prev == vfsp); 3264 ASSERT(zone->zone_vfslist == vfsp); 3265 zone->zone_vfslist = NULL; 3266 } 3267 3268 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3269 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3270 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3271 3272 /* 3273 * update the mnttab modification time 3274 */ 3275 vfs_mnttab_modtimeupd(); 3276 vfs_list_unlock(); 3277 zone_rele(zone); 3278 } 3279 3280 struct vfs * 3281 getvfs(fsid_t *fsid) 3282 { 3283 struct vfs *vfsp; 3284 int val0 = fsid->val[0]; 3285 int val1 = fsid->val[1]; 3286 dev_t dev = expldev(val0); 3287 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3288 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3289 3290 mutex_enter(hmp); 3291 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3292 if (vfsp->vfs_fsid.val[0] == val0 && 3293 vfsp->vfs_fsid.val[1] == val1) { 3294 VFS_HOLD(vfsp); 3295 mutex_exit(hmp); 3296 return (vfsp); 3297 } 3298 } 3299 mutex_exit(hmp); 3300 return (NULL); 3301 } 3302 3303 /* 3304 * Search the vfs mount in progress list for a specified device/vfs entry. 3305 * Returns 0 if the first entry in the list that the device matches has the 3306 * given vfs pointer as well. If the device matches but a different vfs 3307 * pointer is encountered in the list before the given vfs pointer then 3308 * a 1 is returned. 3309 */ 3310 3311 int 3312 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3313 { 3314 int retval = 0; 3315 struct ipmnt *mipp; 3316 3317 mutex_enter(&vfs_miplist_mutex); 3318 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3319 if (mipp->mip_dev == dev) { 3320 if (mipp->mip_vfsp != vfsp) 3321 retval = 1; 3322 break; 3323 } 3324 } 3325 mutex_exit(&vfs_miplist_mutex); 3326 return (retval); 3327 } 3328 3329 /* 3330 * Search the vfs list for a specified device. Returns 1, if entry is found 3331 * or 0 if no suitable entry is found. 3332 */ 3333 3334 int 3335 vfs_devismounted(dev_t dev) 3336 { 3337 struct vfs *vfsp; 3338 int found; 3339 3340 vfs_list_read_lock(); 3341 vfsp = rootvfs; 3342 found = 0; 3343 do { 3344 if (vfsp->vfs_dev == dev) { 3345 found = 1; 3346 break; 3347 } 3348 vfsp = vfsp->vfs_next; 3349 } while (vfsp != rootvfs); 3350 3351 vfs_list_unlock(); 3352 return (found); 3353 } 3354 3355 /* 3356 * Search the vfs list for a specified device. Returns a pointer to it 3357 * or NULL if no suitable entry is found. The caller of this routine 3358 * is responsible for releasing the returned vfs pointer. 3359 */ 3360 struct vfs * 3361 vfs_dev2vfsp(dev_t dev) 3362 { 3363 struct vfs *vfsp; 3364 int found; 3365 3366 vfs_list_read_lock(); 3367 vfsp = rootvfs; 3368 found = 0; 3369 do { 3370 /* 3371 * The following could be made more efficient by making 3372 * the entire loop use vfs_zone_next if the call is from 3373 * a zone. The only callers, however, ustat(2) and 3374 * umount2(2), don't seem to justify the added 3375 * complexity at present. 3376 */ 3377 if (vfsp->vfs_dev == dev && 3378 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3379 curproc->p_zone)) { 3380 VFS_HOLD(vfsp); 3381 found = 1; 3382 break; 3383 } 3384 vfsp = vfsp->vfs_next; 3385 } while (vfsp != rootvfs); 3386 vfs_list_unlock(); 3387 return (found ? vfsp: NULL); 3388 } 3389 3390 /* 3391 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3392 * or NULL if no suitable entry is found. The caller of this routine 3393 * is responsible for releasing the returned vfs pointer. 3394 * 3395 * Note that if multiple mntpoints match, the last one matching is 3396 * returned in an attempt to return the "top" mount when overlay 3397 * mounts are covering the same mount point. This is accomplished by starting 3398 * at the end of the list and working our way backwards, stopping at the first 3399 * matching mount. 3400 */ 3401 struct vfs * 3402 vfs_mntpoint2vfsp(const char *mp) 3403 { 3404 struct vfs *vfsp; 3405 struct vfs *retvfsp = NULL; 3406 zone_t *zone = curproc->p_zone; 3407 struct vfs *list; 3408 3409 vfs_list_read_lock(); 3410 if (getzoneid() == GLOBAL_ZONEID) { 3411 /* 3412 * The global zone may see filesystems in any zone. 3413 */ 3414 vfsp = rootvfs->vfs_prev; 3415 do { 3416 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3417 retvfsp = vfsp; 3418 break; 3419 } 3420 vfsp = vfsp->vfs_prev; 3421 } while (vfsp != rootvfs->vfs_prev); 3422 } else if ((list = zone->zone_vfslist) != NULL) { 3423 const char *mntpt; 3424 3425 vfsp = list->vfs_zone_prev; 3426 do { 3427 mntpt = refstr_value(vfsp->vfs_mntpt); 3428 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3429 if (strcmp(mntpt, mp) == 0) { 3430 retvfsp = vfsp; 3431 break; 3432 } 3433 vfsp = vfsp->vfs_zone_prev; 3434 } while (vfsp != list->vfs_zone_prev); 3435 } 3436 if (retvfsp) 3437 VFS_HOLD(retvfsp); 3438 vfs_list_unlock(); 3439 return (retvfsp); 3440 } 3441 3442 /* 3443 * Search the vfs list for a specified vfsops. 3444 * if vfs entry is found then return 1, else 0. 3445 */ 3446 int 3447 vfs_opsinuse(vfsops_t *ops) 3448 { 3449 struct vfs *vfsp; 3450 int found; 3451 3452 vfs_list_read_lock(); 3453 vfsp = rootvfs; 3454 found = 0; 3455 do { 3456 if (vfs_getops(vfsp) == ops) { 3457 found = 1; 3458 break; 3459 } 3460 vfsp = vfsp->vfs_next; 3461 } while (vfsp != rootvfs); 3462 vfs_list_unlock(); 3463 return (found); 3464 } 3465 3466 /* 3467 * Allocate an entry in vfssw for a file system type 3468 */ 3469 struct vfssw * 3470 allocate_vfssw(char *type) 3471 { 3472 struct vfssw *vswp; 3473 3474 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3475 /* 3476 * The vfssw table uses the empty string to identify an 3477 * available entry; we cannot add any type which has 3478 * a leading NUL. The string length is limited to 3479 * the size of the st_fstype array in struct stat. 3480 */ 3481 return (NULL); 3482 } 3483 3484 ASSERT(VFSSW_WRITE_LOCKED()); 3485 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3486 if (!ALLOCATED_VFSSW(vswp)) { 3487 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3488 (void) strcpy(vswp->vsw_name, type); 3489 ASSERT(vswp->vsw_count == 0); 3490 vswp->vsw_count = 1; 3491 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3492 return (vswp); 3493 } 3494 return (NULL); 3495 } 3496 3497 /* 3498 * Impose additional layer of translation between vfstype names 3499 * and module names in the filesystem. 3500 */ 3501 static char * 3502 vfs_to_modname(char *vfstype) 3503 { 3504 if (strcmp(vfstype, "proc") == 0) { 3505 vfstype = "procfs"; 3506 } else if (strcmp(vfstype, "fd") == 0) { 3507 vfstype = "fdfs"; 3508 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3509 vfstype = "nfs"; 3510 } 3511 3512 return (vfstype); 3513 } 3514 3515 /* 3516 * Find a vfssw entry given a file system type name. 3517 * Try to autoload the filesystem if it's not found. 3518 * If it's installed, return the vfssw locked to prevent unloading. 3519 */ 3520 struct vfssw * 3521 vfs_getvfssw(char *type) 3522 { 3523 struct vfssw *vswp; 3524 char *modname; 3525 3526 RLOCK_VFSSW(); 3527 vswp = vfs_getvfsswbyname(type); 3528 modname = vfs_to_modname(type); 3529 3530 if (rootdir == NULL) { 3531 /* 3532 * If we haven't yet loaded the root file system, then our 3533 * _init won't be called until later. Allocate vfssw entry, 3534 * because mod_installfs won't be called. 3535 */ 3536 if (vswp == NULL) { 3537 RUNLOCK_VFSSW(); 3538 WLOCK_VFSSW(); 3539 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3540 if ((vswp = allocate_vfssw(type)) == NULL) { 3541 WUNLOCK_VFSSW(); 3542 return (NULL); 3543 } 3544 } 3545 WUNLOCK_VFSSW(); 3546 RLOCK_VFSSW(); 3547 } 3548 if (!VFS_INSTALLED(vswp)) { 3549 RUNLOCK_VFSSW(); 3550 (void) modloadonly("fs", modname); 3551 } else 3552 RUNLOCK_VFSSW(); 3553 return (vswp); 3554 } 3555 3556 /* 3557 * Try to load the filesystem. Before calling modload(), we drop 3558 * our lock on the VFS switch table, and pick it up after the 3559 * module is loaded. However, there is a potential race: the 3560 * module could be unloaded after the call to modload() completes 3561 * but before we pick up the lock and drive on. Therefore, 3562 * we keep reloading the module until we've loaded the module 3563 * _and_ we have the lock on the VFS switch table. 3564 */ 3565 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3566 RUNLOCK_VFSSW(); 3567 if (modload("fs", modname) == -1) 3568 return (NULL); 3569 RLOCK_VFSSW(); 3570 if (vswp == NULL) 3571 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3572 break; 3573 } 3574 RUNLOCK_VFSSW(); 3575 3576 return (vswp); 3577 } 3578 3579 /* 3580 * Find a vfssw entry given a file system type name. 3581 */ 3582 struct vfssw * 3583 vfs_getvfsswbyname(char *type) 3584 { 3585 struct vfssw *vswp; 3586 3587 ASSERT(VFSSW_LOCKED()); 3588 if (type == NULL || *type == '\0') 3589 return (NULL); 3590 3591 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3592 if (strcmp(type, vswp->vsw_name) == 0) { 3593 vfs_refvfssw(vswp); 3594 return (vswp); 3595 } 3596 } 3597 3598 return (NULL); 3599 } 3600 3601 /* 3602 * Find a vfssw entry given a set of vfsops. 3603 */ 3604 struct vfssw * 3605 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3606 { 3607 struct vfssw *vswp; 3608 3609 RLOCK_VFSSW(); 3610 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3611 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3612 vfs_refvfssw(vswp); 3613 RUNLOCK_VFSSW(); 3614 return (vswp); 3615 } 3616 } 3617 RUNLOCK_VFSSW(); 3618 3619 return (NULL); 3620 } 3621 3622 /* 3623 * Reference a vfssw entry. 3624 */ 3625 void 3626 vfs_refvfssw(struct vfssw *vswp) 3627 { 3628 3629 mutex_enter(&vswp->vsw_lock); 3630 vswp->vsw_count++; 3631 mutex_exit(&vswp->vsw_lock); 3632 } 3633 3634 /* 3635 * Unreference a vfssw entry. 3636 */ 3637 void 3638 vfs_unrefvfssw(struct vfssw *vswp) 3639 { 3640 3641 mutex_enter(&vswp->vsw_lock); 3642 vswp->vsw_count--; 3643 mutex_exit(&vswp->vsw_lock); 3644 } 3645 3646 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3647 int sync_timeleft; /* portion of sync_timeout remaining */ 3648 3649 static int sync_retries = 20; /* number of retries when not making progress */ 3650 static int sync_triesleft; /* portion of sync_retries remaining */ 3651 3652 static pgcnt_t old_pgcnt, new_pgcnt; 3653 static int new_bufcnt, old_bufcnt; 3654 3655 /* 3656 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3657 * complete. We wait by counting the number of dirty pages and buffers, 3658 * pushing them out using bio_busy() and page_busy(), and then counting again. 3659 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3660 * the SYNC phase of the panic code (see comments in panic.c). It should only 3661 * be used after some higher-level mechanism has quiesced the system so that 3662 * new writes are not being initiated while we are waiting for completion. 3663 * 3664 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3665 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3666 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3667 * Together these ensure that syncing completes if our i/o paths are stuck. 3668 * The counters are declared above so they can be found easily in the debugger. 3669 * 3670 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3671 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3672 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3673 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3674 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3675 * deadlocking or hanging inside of a broken filesystem or driver routine. 3676 * 3677 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3678 * sync_retries consecutive calls to bio_busy() and page_busy() without 3679 * decreasing either the number of dirty buffers or dirty pages below the 3680 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3681 * 3682 * Each loop iteration ends with a call to delay() one second to allow time for 3683 * i/o completion and to permit the user time to read our progress messages. 3684 */ 3685 void 3686 vfs_syncall(void) 3687 { 3688 if (rootdir == NULL && !modrootloaded) 3689 return; /* panic during boot - no filesystems yet */ 3690 3691 printf("syncing file systems..."); 3692 vfs_syncprogress(); 3693 sync(); 3694 3695 vfs_syncprogress(); 3696 sync_triesleft = sync_retries; 3697 3698 old_bufcnt = new_bufcnt = INT_MAX; 3699 old_pgcnt = new_pgcnt = ULONG_MAX; 3700 3701 while (sync_triesleft > 0) { 3702 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3703 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3704 3705 new_bufcnt = bio_busy(B_TRUE); 3706 new_pgcnt = page_busy(B_TRUE); 3707 vfs_syncprogress(); 3708 3709 if (new_bufcnt == 0 && new_pgcnt == 0) 3710 break; 3711 3712 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3713 sync_triesleft = sync_retries; 3714 else 3715 sync_triesleft--; 3716 3717 if (new_bufcnt) 3718 printf(" [%d]", new_bufcnt); 3719 if (new_pgcnt) 3720 printf(" %lu", new_pgcnt); 3721 3722 delay(hz); 3723 } 3724 3725 if (new_bufcnt != 0 || new_pgcnt != 0) 3726 printf(" done (not all i/o completed)\n"); 3727 else 3728 printf(" done\n"); 3729 3730 sync_timeleft = 0; 3731 delay(hz); 3732 } 3733 3734 /* 3735 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3736 * sync_timeout to indicate that we are making progress and the deadman() 3737 * omnipresent cyclic should not yet time us out. Note that it is safe to 3738 * store to sync_timeleft here since the deadman() is firing at high-level 3739 * on top of us. If we are racing with the deadman(), either the deadman() 3740 * will decrement the old value and then we will reset it, or we will 3741 * reset it and then the deadman() will immediately decrement it. In either 3742 * case, correct behavior results. 3743 */ 3744 void 3745 vfs_syncprogress(void) 3746 { 3747 if (panicstr) 3748 sync_timeleft = sync_timeout; 3749 } 3750 3751 /* 3752 * Map VFS flags to statvfs flags. These shouldn't really be separate 3753 * flags at all. 3754 */ 3755 uint_t 3756 vf_to_stf(uint_t vf) 3757 { 3758 uint_t stf = 0; 3759 3760 if (vf & VFS_RDONLY) 3761 stf |= ST_RDONLY; 3762 if (vf & VFS_NOSETUID) 3763 stf |= ST_NOSUID; 3764 if (vf & VFS_NOTRUNC) 3765 stf |= ST_NOTRUNC; 3766 3767 return (stf); 3768 } 3769 3770 /* 3771 * Use old-style function prototype for vfsstray() so 3772 * that we can use it anywhere in the vfsops structure. 3773 */ 3774 int vfsstray(); 3775 3776 /* 3777 * Entries for (illegal) fstype 0. 3778 */ 3779 /* ARGSUSED */ 3780 int 3781 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3782 { 3783 cmn_err(CE_PANIC, "stray vfs operation"); 3784 return (0); 3785 } 3786 3787 vfsops_t vfs_strayops = { 3788 vfsstray, 3789 vfsstray, 3790 vfsstray, 3791 vfsstray, 3792 vfsstray_sync, 3793 vfsstray, 3794 vfsstray, 3795 vfsstray 3796 }; 3797 3798 /* 3799 * Entries for (illegal) fstype 0. 3800 */ 3801 int 3802 vfsstray(void) 3803 { 3804 cmn_err(CE_PANIC, "stray vfs operation"); 3805 return (0); 3806 } 3807 3808 /* 3809 * Support for dealing with forced UFS unmount and its interaction with 3810 * LOFS. Could be used by any filesystem. 3811 * See bug 1203132. 3812 */ 3813 int 3814 vfs_EIO(void) 3815 { 3816 return (EIO); 3817 } 3818 3819 /* 3820 * We've gotta define the op for sync separately, since the compiler gets 3821 * confused if we mix and match ANSI and normal style prototypes when 3822 * a "short" argument is present and spits out a warning. 3823 */ 3824 /*ARGSUSED*/ 3825 int 3826 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3827 { 3828 return (EIO); 3829 } 3830 3831 vfs_t EIO_vfs; 3832 vfsops_t *EIO_vfsops; 3833 3834 /* 3835 * Called from startup() to initialize all loaded vfs's 3836 */ 3837 void 3838 vfsinit(void) 3839 { 3840 struct vfssw *vswp; 3841 int error; 3842 extern int vopstats_enabled; 3843 extern void vopstats_startup(); 3844 3845 static const fs_operation_def_t EIO_vfsops_template[] = { 3846 VFSNAME_MOUNT, vfs_EIO, 3847 VFSNAME_UNMOUNT, vfs_EIO, 3848 VFSNAME_ROOT, vfs_EIO, 3849 VFSNAME_STATVFS, vfs_EIO, 3850 VFSNAME_SYNC, (fs_generic_func_p) vfs_EIO_sync, 3851 VFSNAME_VGET, vfs_EIO, 3852 VFSNAME_MOUNTROOT, vfs_EIO, 3853 VFSNAME_FREEVFS, vfs_EIO, 3854 VFSNAME_VNSTATE, vfs_EIO, 3855 NULL, NULL 3856 }; 3857 3858 3859 /* Initialize the vnode cache (file systems may use it during init). */ 3860 3861 vn_create_cache(); 3862 3863 /* Setup event monitor framework */ 3864 3865 fem_init(); 3866 3867 /* Initialize the dummy stray file system type. */ 3868 3869 vfssw[0].vsw_vfsops = vfs_strayops; 3870 3871 /* Initialize the dummy EIO file system. */ 3872 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3873 if (error != 0) { 3874 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3875 /* Shouldn't happen, but not bad enough to panic */ 3876 } 3877 3878 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3879 3880 /* 3881 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3882 * on this vfs can immediately notice it's invalid. 3883 */ 3884 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3885 3886 /* 3887 * Call the init routines of non-loadable filesystems only. 3888 * Filesystems which are loaded as separate modules will be 3889 * initialized by the module loading code instead. 3890 */ 3891 3892 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3893 RLOCK_VFSSW(); 3894 if (vswp->vsw_init != NULL) 3895 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3896 RUNLOCK_VFSSW(); 3897 } 3898 3899 vopstats_startup(); 3900 3901 if (vopstats_enabled) { 3902 /* EIO_vfs can collect stats, but we don't retrieve them */ 3903 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3904 EIO_vfs.vfs_fstypevsp = NULL; 3905 EIO_vfs.vfs_vskap = NULL; 3906 EIO_vfs.vfs_flag |= VFS_STATS; 3907 } 3908 } 3909 3910 /* 3911 * Increments the vfs reference count by one atomically. 3912 */ 3913 void 3914 vfs_hold(vfs_t *vfsp) 3915 { 3916 atomic_add_32(&vfsp->vfs_count, 1); 3917 ASSERT(vfsp->vfs_count != 0); 3918 } 3919 3920 /* 3921 * Decrements the vfs reference count by one atomically. When 3922 * vfs reference count becomes zero, it calls the file system 3923 * specific vfs_freevfs() to free up the resources. 3924 */ 3925 void 3926 vfs_rele(vfs_t *vfsp) 3927 { 3928 ASSERT(vfsp->vfs_count != 0); 3929 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3930 VFS_FREEVFS(vfsp); 3931 if (vfsp->vfs_zone) 3932 zone_rele(vfsp->vfs_zone); 3933 vfs_freemnttab(vfsp); 3934 if (vfsp->vfs_implp) 3935 vfsimpl_teardown(vfsp); 3936 sema_destroy(&vfsp->vfs_reflock); 3937 kmem_free(vfsp, sizeof (*vfsp)); 3938 } 3939 } 3940 3941 /* 3942 * Generic operations vector support. 3943 * 3944 * This is used to build operations vectors for both the vfs and vnode. 3945 * It's normally called only when a file system is loaded. 3946 * 3947 * There are many possible algorithms for this, including the following: 3948 * 3949 * (1) scan the list of known operations; for each, see if the file system 3950 * includes an entry for it, and fill it in as appropriate. 3951 * 3952 * (2) set up defaults for all known operations. scan the list of ops 3953 * supplied by the file system; for each which is both supplied and 3954 * known, fill it in. 3955 * 3956 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3957 * in entries as we go. 3958 * 3959 * we choose (1) for simplicity, and because performance isn't critical here. 3960 * note that (2) could be sped up using a precomputed hash table on known ops. 3961 * (3) could be faster than either, but only if the lists were very large or 3962 * supplied in sorted order. 3963 * 3964 */ 3965 3966 int 3967 fs_build_vector(void *vector, int *unused_ops, 3968 const fs_operation_trans_def_t *translation, 3969 const fs_operation_def_t *operations) 3970 { 3971 int i, num_trans, num_ops, used; 3972 3973 /* Count the number of translations and the number of supplied */ 3974 /* operations. */ 3975 3976 { 3977 const fs_operation_trans_def_t *p; 3978 3979 for (num_trans = 0, p = translation; 3980 p->name != NULL; 3981 num_trans++, p++) 3982 ; 3983 } 3984 3985 { 3986 const fs_operation_def_t *p; 3987 3988 for (num_ops = 0, p = operations; 3989 p->name != NULL; 3990 num_ops++, p++) 3991 ; 3992 } 3993 3994 /* Walk through each operation known to our caller. There will be */ 3995 /* one entry in the supplied "translation table" for each. */ 3996 3997 used = 0; 3998 3999 for (i = 0; i < num_trans; i++) { 4000 int j, found; 4001 char *curname; 4002 fs_generic_func_p result; 4003 fs_generic_func_p *location; 4004 4005 curname = translation[i].name; 4006 4007 /* Look for a matching operation in the list supplied by the */ 4008 /* file system. */ 4009 4010 found = 0; 4011 4012 for (j = 0; j < num_ops; j++) { 4013 if (strcmp(operations[j].name, curname) == 0) { 4014 used++; 4015 found = 1; 4016 break; 4017 } 4018 } 4019 4020 /* If the file system is using a "placeholder" for default */ 4021 /* or error functions, grab the appropriate function out of */ 4022 /* the translation table. If the file system didn't supply */ 4023 /* this operation at all, use the default function. */ 4024 4025 if (found) { 4026 result = operations[j].func; 4027 if (result == fs_default) { 4028 result = translation[i].defaultFunc; 4029 } else if (result == fs_error) { 4030 result = translation[i].errorFunc; 4031 } else if (result == NULL) { 4032 /* Null values are PROHIBITED */ 4033 return (EINVAL); 4034 } 4035 } else { 4036 result = translation[i].defaultFunc; 4037 } 4038 4039 /* Now store the function into the operations vector. */ 4040 4041 location = (fs_generic_func_p *) 4042 (((char *)vector) + translation[i].offset); 4043 4044 *location = result; 4045 } 4046 4047 *unused_ops = num_ops - used; 4048 4049 return (0); 4050 } 4051 4052 /* Placeholder functions, should never be called. */ 4053 4054 int 4055 fs_error(void) 4056 { 4057 cmn_err(CE_PANIC, "fs_error called"); 4058 return (0); 4059 } 4060 4061 int 4062 fs_default(void) 4063 { 4064 cmn_err(CE_PANIC, "fs_default called"); 4065 return (0); 4066 } 4067 4068 #ifdef __sparc 4069 4070 /* 4071 * Part of the implementation of booting off a mirrored root 4072 * involves a change of dev_t for the root device. To 4073 * accomplish this, first remove the existing hash table 4074 * entry for the root device, convert to the new dev_t, 4075 * then re-insert in the hash table at the head of the list. 4076 */ 4077 void 4078 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4079 { 4080 vfs_list_lock(); 4081 4082 vfs_hash_remove(vfsp); 4083 4084 vfsp->vfs_dev = ndev; 4085 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4086 4087 vfs_hash_add(vfsp, 1); 4088 4089 vfs_list_unlock(); 4090 } 4091 4092 #else /* x86 NEWBOOT */ 4093 4094 int 4095 rootconf() 4096 { 4097 int error; 4098 struct vfssw *vsw; 4099 extern void pm_init(); 4100 char *fstyp; 4101 4102 fstyp = getrootfs(); 4103 4104 if (error = clboot_rootconf()) 4105 return (error); 4106 4107 if (modload("fs", fstyp) == -1) 4108 panic("Cannot _init %s module", fstyp); 4109 4110 RLOCK_VFSSW(); 4111 vsw = vfs_getvfsswbyname(fstyp); 4112 RUNLOCK_VFSSW(); 4113 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4114 VFS_HOLD(rootvfs); 4115 4116 /* always mount readonly first */ 4117 rootvfs->vfs_flag |= VFS_RDONLY; 4118 4119 pm_init(); 4120 4121 if (netboot) 4122 (void) strplumb(); 4123 4124 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4125 vfs_unrefvfssw(vsw); 4126 rootdev = rootvfs->vfs_dev; 4127 4128 if (error) 4129 panic("cannot mount root path %s", rootfs.bo_name); 4130 return (error); 4131 } 4132 4133 /* 4134 * XXX this is called by nfs only and should probably be removed 4135 * If booted with ASKNAME, prompt on the console for a filesystem 4136 * name and return it. 4137 */ 4138 void 4139 getfsname(char *askfor, char *name, size_t namelen) 4140 { 4141 if (boothowto & RB_ASKNAME) { 4142 printf("%s name: ", askfor); 4143 console_gets(name, namelen); 4144 } 4145 } 4146 4147 /* 4148 * If server_path exists, then we are booting a diskless 4149 * client. Otherwise, we default to ufs. Zfs should perhaps be 4150 * another property. 4151 */ 4152 static char * 4153 getrootfs(void) 4154 { 4155 extern char *strplumb_get_netdev_path(void); 4156 char *propstr = NULL; 4157 4158 /* check fstype property; it should be nfsdyn for diskless */ 4159 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4160 DDI_PROP_DONTPASS, "fstype", &propstr) 4161 == DDI_SUCCESS) { 4162 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4163 ddi_prop_free(propstr); 4164 } 4165 4166 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4167 return (rootfs.bo_fstype); 4168 4169 ++netboot; 4170 /* check if path to network interface is specified in bootpath */ 4171 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4172 DDI_PROP_DONTPASS, "bootpath", &propstr) 4173 == DDI_SUCCESS) { 4174 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4175 ddi_prop_free(propstr); 4176 } else { 4177 /* attempt to determine netdev_path via boot_mac address */ 4178 netdev_path = strplumb_get_netdev_path(); 4179 if (netdev_path == NULL) 4180 panic("cannot find boot network interface"); 4181 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4182 } 4183 return ("nfs"); 4184 } 4185 #endif 4186