1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/t_lock.h> 44 #include <sys/param.h> 45 #include <sys/errno.h> 46 #include <sys/user.h> 47 #include <sys/fstyp.h> 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/proc.h> 51 #include <sys/mount.h> 52 #include <sys/vfs.h> 53 #include <sys/vfs_opreg.h> 54 #include <sys/fem.h> 55 #include <sys/mntent.h> 56 #include <sys/stat.h> 57 #include <sys/statvfs.h> 58 #include <sys/statfs.h> 59 #include <sys/cred.h> 60 #include <sys/vnode.h> 61 #include <sys/rwstlock.h> 62 #include <sys/dnlc.h> 63 #include <sys/file.h> 64 #include <sys/time.h> 65 #include <sys/atomic.h> 66 #include <sys/cmn_err.h> 67 #include <sys/buf.h> 68 #include <sys/swap.h> 69 #include <sys/debug.h> 70 #include <sys/vnode.h> 71 #include <sys/modctl.h> 72 #include <sys/ddi.h> 73 #include <sys/pathname.h> 74 #include <sys/bootconf.h> 75 #include <sys/dumphdr.h> 76 #include <sys/dc_ki.h> 77 #include <sys/poll.h> 78 #include <sys/sunddi.h> 79 #include <sys/sysmacros.h> 80 #include <sys/zone.h> 81 #include <sys/policy.h> 82 #include <sys/ctfs.h> 83 #include <sys/objfs.h> 84 #include <sys/console.h> 85 #include <sys/reboot.h> 86 87 #include <vm/page.h> 88 89 #include <fs/fs_subr.h> 90 91 /* Private interfaces to create vopstats-related data structures */ 92 extern void initialize_vopstats(vopstats_t *); 93 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 94 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 95 96 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 97 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 98 const char *, int, int); 99 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 100 static void vfs_freemnttab(struct vfs *); 101 static void vfs_freeopt(mntopt_t *); 102 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 103 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 104 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 105 static void vfs_createopttbl_extend(mntopts_t *, const char *, 106 const mntopts_t *); 107 static char **vfs_copycancelopt_extend(char **const, int); 108 static void vfs_freecancelopt(char **); 109 static char *getrootfs(void); 110 static int getmacpath(dev_info_t *, void *); 111 112 struct ipmnt { 113 struct ipmnt *mip_next; 114 dev_t mip_dev; 115 struct vfs *mip_vfsp; 116 }; 117 118 static kmutex_t vfs_miplist_mutex; 119 static struct ipmnt *vfs_miplist = NULL; 120 static struct ipmnt *vfs_miplist_end = NULL; 121 122 /* 123 * VFS global data. 124 */ 125 vnode_t *rootdir; /* pointer to root inode vnode. */ 126 vnode_t *devicesdir; /* pointer to inode of devices root */ 127 vnode_t *devdir; /* pointer to inode of dev root */ 128 129 char *server_rootpath; /* root path for diskless clients */ 130 char *server_hostname; /* hostname of diskless server */ 131 132 static struct vfs root; 133 static struct vfs devices; 134 static struct vfs dev; 135 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 136 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 137 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 138 /* must be power of 2! */ 139 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 140 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 141 char *vfs_dummyfstype = "\0"; 142 struct pollhead vfs_pollhd; /* for mnttab pollers */ 143 144 /* 145 * Table for generic options recognized in the VFS layer and acted 146 * on at this level before parsing file system specific options. 147 * The nosuid option is stronger than any of the devices and setuid 148 * options, so those are canceled when nosuid is seen. 149 * 150 * All options which are added here need to be added to the 151 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 152 */ 153 /* 154 * VFS Mount options table 155 */ 156 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 157 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 158 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 159 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 160 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 161 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 162 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 163 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 164 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 165 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 166 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 167 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 168 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 169 170 static const mntopt_t mntopts[] = { 171 /* 172 * option name cancel options default arg flags 173 */ 174 { MNTOPT_REMOUNT, NULL, NULL, 175 MO_NODISPLAY, (void *)0 }, 176 { MNTOPT_RO, ro_cancel, NULL, 0, 177 (void *)0 }, 178 { MNTOPT_RW, rw_cancel, NULL, 0, 179 (void *)0 }, 180 { MNTOPT_SUID, suid_cancel, NULL, 0, 181 (void *)0 }, 182 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_EXEC, exec_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 199 (void *)0 }, 200 }; 201 202 const mntopts_t vfs_mntopts = { 203 sizeof (mntopts) / sizeof (mntopt_t), 204 (mntopt_t *)&mntopts[0] 205 }; 206 207 /* 208 * File system operation dispatch functions. 209 */ 210 211 int 212 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 213 { 214 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 215 } 216 217 int 218 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 221 } 222 223 int 224 fsop_root(vfs_t *vfsp, vnode_t **vpp) 225 { 226 refstr_t *mntpt; 227 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 228 /* 229 * Make sure this root has a path. With lofs, it is possible to have 230 * a NULL mountpoint. 231 */ 232 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 233 mntpt = vfs_getmntpoint(vfsp); 234 vn_setpath_str(*vpp, refstr_value(mntpt), 235 strlen(refstr_value(mntpt))); 236 refstr_rele(mntpt); 237 } 238 239 return (ret); 240 } 241 242 int 243 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 244 { 245 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 246 } 247 248 int 249 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 250 { 251 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 252 } 253 254 int 255 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 256 { 257 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 258 } 259 260 int 261 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 262 { 263 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 264 } 265 266 void 267 fsop_freefs(vfs_t *vfsp) 268 { 269 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 270 } 271 272 int 273 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 274 { 275 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 276 } 277 278 int 279 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 280 { 281 ASSERT((fstype >= 0) && (fstype < nfstype)); 282 283 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 284 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 285 else 286 return (ENOTSUP); 287 } 288 289 /* 290 * File system initialization. vfs_setfsops() must be called from a file 291 * system's init routine. 292 */ 293 294 static int 295 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 296 int *unused_ops) 297 { 298 static const fs_operation_trans_def_t vfs_ops_table[] = { 299 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 300 fs_nosys, fs_nosys, 301 302 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 303 fs_nosys, fs_nosys, 304 305 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 306 fs_nosys, fs_nosys, 307 308 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 309 fs_nosys, fs_nosys, 310 311 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 312 (fs_generic_func_p) fs_sync, 313 (fs_generic_func_p) fs_sync, /* No errors allowed */ 314 315 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 316 fs_nosys, fs_nosys, 317 318 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 319 fs_nosys, fs_nosys, 320 321 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 322 (fs_generic_func_p)fs_freevfs, 323 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 324 325 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 326 (fs_generic_func_p)fs_nosys, 327 (fs_generic_func_p)fs_nosys, 328 329 NULL, 0, NULL, NULL 330 }; 331 332 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 333 } 334 335 int 336 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 337 { 338 int error; 339 int unused_ops; 340 341 /* 342 * Verify that fstype refers to a valid fs. Note that 343 * 0 is valid since it's used to set "stray" ops. 344 */ 345 if ((fstype < 0) || (fstype >= nfstype)) 346 return (EINVAL); 347 348 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 349 return (EINVAL); 350 351 /* Set up the operations vector. */ 352 353 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 354 355 if (error != 0) 356 return (error); 357 358 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 359 360 if (actual != NULL) 361 *actual = &vfssw[fstype].vsw_vfsops; 362 363 #if DEBUG 364 if (unused_ops != 0) 365 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 366 "but not used", vfssw[fstype].vsw_name, unused_ops); 367 #endif 368 369 return (0); 370 } 371 372 int 373 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 374 { 375 int error; 376 int unused_ops; 377 378 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 379 380 error = fs_copyfsops(template, *actual, &unused_ops); 381 if (error != 0) { 382 kmem_free(*actual, sizeof (vfsops_t)); 383 *actual = NULL; 384 return (error); 385 } 386 387 return (0); 388 } 389 390 /* 391 * Free a vfsops structure created as a result of vfs_makefsops(). 392 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 393 * vfs_freevfsops_by_type(). 394 */ 395 void 396 vfs_freevfsops(vfsops_t *vfsops) 397 { 398 kmem_free(vfsops, sizeof (vfsops_t)); 399 } 400 401 /* 402 * Since the vfsops structure is part of the vfssw table and wasn't 403 * really allocated, we're not really freeing anything. We keep 404 * the name for consistency with vfs_freevfsops(). We do, however, 405 * need to take care of a little bookkeeping. 406 * NOTE: For a vfsops structure created by vfs_setfsops(), use 407 * vfs_freevfsops_by_type(). 408 */ 409 int 410 vfs_freevfsops_by_type(int fstype) 411 { 412 413 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 414 if ((fstype <= 0) || (fstype >= nfstype)) 415 return (EINVAL); 416 417 WLOCK_VFSSW(); 418 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 419 WUNLOCK_VFSSW(); 420 return (EINVAL); 421 } 422 423 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 424 WUNLOCK_VFSSW(); 425 426 return (0); 427 } 428 429 /* Support routines used to reference vfs_op */ 430 431 /* Set the operations vector for a vfs */ 432 void 433 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 434 { 435 vfsops_t *op; 436 437 ASSERT(vfsp != NULL); 438 ASSERT(vfsops != NULL); 439 440 op = vfsp->vfs_op; 441 membar_consumer(); 442 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 443 casptr(&vfsp->vfs_op, op, vfsops) == op) { 444 return; 445 } 446 fsem_setvfsops(vfsp, vfsops); 447 } 448 449 /* Retrieve the operations vector for a vfs */ 450 vfsops_t * 451 vfs_getops(vfs_t *vfsp) 452 { 453 vfsops_t *op; 454 455 ASSERT(vfsp != NULL); 456 457 op = vfsp->vfs_op; 458 membar_consumer(); 459 if ((vfsp->vfs_implp == NULL || vfsp->vfs_femhead == NULL) && 460 op == vfsp->vfs_op) { 461 return (op); 462 } else { 463 return (fsem_getvfsops(vfsp)); 464 } 465 } 466 467 /* 468 * Returns non-zero (1) if the vfsops matches that of the vfs. 469 * Returns zero (0) if not. 470 */ 471 int 472 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 473 { 474 return (vfs_getops(vfsp) == vfsops); 475 } 476 477 /* 478 * Returns non-zero (1) if the file system has installed a non-default, 479 * non-error vfs_sync routine. Returns zero (0) otherwise. 480 */ 481 int 482 vfs_can_sync(vfs_t *vfsp) 483 { 484 /* vfs_sync() routine is not the default/error function */ 485 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 486 } 487 488 /* 489 * Initialize a vfs structure. 490 */ 491 void 492 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 493 { 494 vfsp->vfs_count = 0; 495 vfsp->vfs_next = vfsp; 496 vfsp->vfs_prev = vfsp; 497 vfsp->vfs_zone_next = vfsp; 498 vfsp->vfs_zone_prev = vfsp; 499 vfsp->vfs_flag = 0; 500 vfsp->vfs_data = (data); 501 vfsp->vfs_resource = NULL; 502 vfsp->vfs_mntpt = NULL; 503 vfsp->vfs_mntopts.mo_count = 0; 504 vfsp->vfs_mntopts.mo_list = NULL; 505 vfsp->vfs_implp = NULL; 506 vfsp->vfs_zone = NULL; 507 /* 508 * Note: Don't initialize any member of the vfs_impl_t structure 509 * here as it could be a problem for unbundled file systems. 510 */ 511 vfs_setops((vfsp), (op)); 512 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 513 } 514 515 /* 516 * Allocate and initialize the vfs implementation private data 517 * structure, vfs_impl_t. 518 */ 519 void 520 vfsimpl_setup(vfs_t *vfsp) 521 { 522 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 523 /* Note that this are #define'd in vfs.h */ 524 vfsp->vfs_femhead = NULL; 525 vfsp->vfs_vskap = NULL; 526 vfsp->vfs_fstypevsp = NULL; 527 } 528 529 /* 530 * Release the vfs_impl_t structure, if it exists. Some unbundled 531 * filesystems may not use the newer version of vfs and thus 532 * would not contain this implementation private data structure. 533 */ 534 void 535 vfsimpl_teardown(vfs_t *vfsp) 536 { 537 vfs_impl_t *vip = vfsp->vfs_implp; 538 539 if (vip == NULL) 540 return; 541 542 if (vip->vi_femhead) { 543 ASSERT(vip->vi_femhead->femh_list == NULL); 544 mutex_destroy(&vip->vi_femhead->femh_lock); 545 kmem_free(vip->vi_femhead, sizeof (*(vip->vi_femhead))); 546 vip->vi_femhead = NULL; 547 } 548 549 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 550 vfsp->vfs_implp = NULL; 551 } 552 553 /* 554 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 555 * fstatvfs, and sysfs moved to common/syscall. 556 */ 557 558 /* 559 * Update every mounted file system. We call the vfs_sync operation of 560 * each file system type, passing it a NULL vfsp to indicate that all 561 * mounted file systems of that type should be updated. 562 */ 563 void 564 vfs_sync(int flag) 565 { 566 struct vfssw *vswp; 567 RLOCK_VFSSW(); 568 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 569 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 570 vfs_refvfssw(vswp); 571 RUNLOCK_VFSSW(); 572 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 573 CRED()); 574 vfs_unrefvfssw(vswp); 575 RLOCK_VFSSW(); 576 } 577 } 578 RUNLOCK_VFSSW(); 579 } 580 581 void 582 sync(void) 583 { 584 vfs_sync(0); 585 } 586 587 /* 588 * External routines. 589 */ 590 591 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 592 593 /* 594 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 595 * but otherwise should be accessed only via vfs_list_lock() and 596 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 597 */ 598 static krwlock_t vfslist; 599 600 /* 601 * Mount devfs on /devices. This is done right after root is mounted 602 * to provide device access support for the system 603 */ 604 static void 605 vfs_mountdevices(void) 606 { 607 struct vfssw *vsw; 608 struct vnode *mvp; 609 struct mounta mounta = { /* fake mounta for devfs_mount() */ 610 NULL, 611 NULL, 612 MS_SYSSPACE, 613 NULL, 614 NULL, 615 0, 616 NULL, 617 0 618 }; 619 620 /* 621 * _init devfs module to fill in the vfssw 622 */ 623 if (modload("fs", "devfs") == -1) 624 panic("Cannot _init devfs module"); 625 626 /* 627 * Hold vfs 628 */ 629 RLOCK_VFSSW(); 630 vsw = vfs_getvfsswbyname("devfs"); 631 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 632 VFS_HOLD(&devices); 633 634 /* 635 * Locate mount point 636 */ 637 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 638 panic("Cannot find /devices"); 639 640 /* 641 * Perform the mount of /devices 642 */ 643 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 644 panic("Cannot mount /devices"); 645 646 RUNLOCK_VFSSW(); 647 648 /* 649 * Set appropriate members and add to vfs list for mnttab display 650 */ 651 vfs_setresource(&devices, "/devices"); 652 vfs_setmntpoint(&devices, "/devices"); 653 654 /* 655 * Hold the root of /devices so it won't go away 656 */ 657 if (VFS_ROOT(&devices, &devicesdir)) 658 panic("vfs_mountdevices: not devices root"); 659 660 if (vfs_lock(&devices) != 0) { 661 VN_RELE(devicesdir); 662 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 663 return; 664 } 665 666 if (vn_vfswlock(mvp) != 0) { 667 vfs_unlock(&devices); 668 VN_RELE(devicesdir); 669 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 670 return; 671 } 672 673 vfs_add(mvp, &devices, 0); 674 vn_vfsunlock(mvp); 675 vfs_unlock(&devices); 676 VN_RELE(devicesdir); 677 } 678 679 /* 680 * mount the first instance of /dev to root and remain mounted 681 */ 682 static void 683 vfs_mountdev1(void) 684 { 685 struct vfssw *vsw; 686 struct vnode *mvp; 687 struct mounta mounta = { /* fake mounta for sdev_mount() */ 688 NULL, 689 NULL, 690 MS_SYSSPACE | MS_OVERLAY, 691 NULL, 692 NULL, 693 0, 694 NULL, 695 0 696 }; 697 698 /* 699 * _init dev module to fill in the vfssw 700 */ 701 if (modload("fs", "dev") == -1) 702 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 703 704 /* 705 * Hold vfs 706 */ 707 RLOCK_VFSSW(); 708 vsw = vfs_getvfsswbyname("dev"); 709 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 710 VFS_HOLD(&dev); 711 712 /* 713 * Locate mount point 714 */ 715 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 716 cmn_err(CE_PANIC, "Cannot find /dev\n"); 717 718 /* 719 * Perform the mount of /dev 720 */ 721 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 722 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 723 724 RUNLOCK_VFSSW(); 725 726 /* 727 * Set appropriate members and add to vfs list for mnttab display 728 */ 729 vfs_setresource(&dev, "/dev"); 730 vfs_setmntpoint(&dev, "/dev"); 731 732 /* 733 * Hold the root of /dev so it won't go away 734 */ 735 if (VFS_ROOT(&dev, &devdir)) 736 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 737 738 if (vfs_lock(&dev) != 0) { 739 VN_RELE(devdir); 740 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 741 return; 742 } 743 744 if (vn_vfswlock(mvp) != 0) { 745 vfs_unlock(&dev); 746 VN_RELE(devdir); 747 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 748 return; 749 } 750 751 vfs_add(mvp, &dev, 0); 752 vn_vfsunlock(mvp); 753 vfs_unlock(&dev); 754 VN_RELE(devdir); 755 } 756 757 /* 758 * Mount required filesystem. This is done right after root is mounted. 759 */ 760 static void 761 vfs_mountfs(char *module, char *spec, char *path) 762 { 763 struct vnode *mvp; 764 struct mounta mounta; 765 vfs_t *vfsp; 766 767 mounta.flags = MS_SYSSPACE | MS_DATA; 768 mounta.fstype = module; 769 mounta.spec = spec; 770 mounta.dir = path; 771 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 772 cmn_err(CE_WARN, "Cannot find %s", path); 773 return; 774 } 775 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 776 cmn_err(CE_WARN, "Cannot mount %s", path); 777 else 778 VFS_RELE(vfsp); 779 VN_RELE(mvp); 780 } 781 782 /* 783 * vfs_mountroot is called by main() to mount the root filesystem. 784 */ 785 void 786 vfs_mountroot(void) 787 { 788 struct vnode *rvp = NULL; 789 char *path; 790 size_t plen; 791 struct vfssw *vswp; 792 793 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 794 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 795 796 /* 797 * Alloc the vfs hash bucket array and locks 798 */ 799 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 800 801 /* 802 * Call machine-dependent routine "rootconf" to choose a root 803 * file system type. 804 */ 805 if (rootconf()) 806 panic("vfs_mountroot: cannot mount root"); 807 /* 808 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 809 * to point to it. These are used by lookuppn() so that it 810 * knows where to start from ('/' or '.'). 811 */ 812 vfs_setmntpoint(rootvfs, "/"); 813 if (VFS_ROOT(rootvfs, &rootdir)) 814 panic("vfs_mountroot: no root vnode"); 815 PTOU(curproc)->u_cdir = rootdir; 816 VN_HOLD(PTOU(curproc)->u_cdir); 817 PTOU(curproc)->u_rdir = NULL; 818 819 /* 820 * Setup the global zone's rootvp, now that it exists. 821 */ 822 global_zone->zone_rootvp = rootdir; 823 VN_HOLD(global_zone->zone_rootvp); 824 825 /* 826 * Notify the module code that it can begin using the 827 * root filesystem instead of the boot program's services. 828 */ 829 modrootloaded = 1; 830 /* 831 * Set up mnttab information for root 832 */ 833 vfs_setresource(rootvfs, rootfs.bo_name); 834 835 /* 836 * Notify cluster software that the root filesystem is available. 837 */ 838 clboot_mountroot(); 839 840 /* Now that we're all done with the root FS, set up its vopstats */ 841 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 842 /* Set flag for statistics collection */ 843 if (vswp->vsw_flag & VSW_STATS) { 844 initialize_vopstats(&rootvfs->vfs_vopstats); 845 rootvfs->vfs_flag |= VFS_STATS; 846 rootvfs->vfs_fstypevsp = 847 get_fstype_vopstats(rootvfs, vswp); 848 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 849 } 850 vfs_unrefvfssw(vswp); 851 } 852 853 /* 854 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 855 * /etc/svc/volatile, /system/object, and /proc. 856 */ 857 vfs_mountdevices(); 858 vfs_mountdev1(); 859 860 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 861 vfs_mountfs("proc", "/proc", "/proc"); 862 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 863 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 864 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 865 866 #ifdef __sparc 867 /* 868 * This bit of magic can go away when we convert sparc to 869 * the new boot architecture based on ramdisk. 870 * 871 * Booting off a mirrored root volume: 872 * At this point, we have booted and mounted root on a 873 * single component of the mirror. Complete the boot 874 * by configuring SVM and converting the root to the 875 * dev_t of the mirrored root device. This dev_t conversion 876 * only works because the underlying device doesn't change. 877 */ 878 if (root_is_svm) { 879 if (svm_rootconf()) { 880 panic("vfs_mountroot: cannot remount root"); 881 } 882 883 /* 884 * mnttab should reflect the new root device 885 */ 886 vfs_lock_wait(rootvfs); 887 vfs_setresource(rootvfs, rootfs.bo_name); 888 vfs_unlock(rootvfs); 889 } 890 #endif /* __sparc */ 891 892 /* 893 * Look up the root device via devfs so that a dv_node is 894 * created for it. The vnode is never VN_RELE()ed. 895 * We allocate more than MAXPATHLEN so that the 896 * buffer passed to i_ddi_prompath_to_devfspath() is 897 * exactly MAXPATHLEN (the function expects a buffer 898 * of that length). 899 */ 900 plen = strlen("/devices"); 901 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 902 (void) strcpy(path, "/devices"); 903 904 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 905 != DDI_SUCCESS || 906 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 907 908 /* NUL terminate in case "path" has garbage */ 909 path[plen + MAXPATHLEN - 1] = '\0'; 910 #ifdef DEBUG 911 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 912 #endif 913 } 914 kmem_free(path, plen + MAXPATHLEN); 915 } 916 917 /* 918 * If remount failed and we're in a zone we need to check for the zone 919 * root path and strip it before the call to vfs_setpath(). 920 * 921 * If strpath doesn't begin with the zone_rootpath the original 922 * strpath is returned unchanged. 923 */ 924 static const char * 925 stripzonepath(const char *strpath) 926 { 927 char *str1, *str2; 928 int i; 929 zone_t *zonep = curproc->p_zone; 930 931 if (zonep->zone_rootpath == NULL || strpath == NULL) { 932 return (NULL); 933 } 934 935 /* 936 * we check for the end of the string at one past the 937 * current position because the zone_rootpath always 938 * ends with "/" but we don't want to strip that off. 939 */ 940 str1 = zonep->zone_rootpath; 941 str2 = (char *)strpath; 942 ASSERT(str1[0] != '\0'); 943 for (i = 0; str1[i + 1] != '\0'; i++) { 944 if (str1[i] != str2[i]) 945 return ((char *)strpath); 946 } 947 return (&str2[i]); 948 } 949 950 /* 951 * Common mount code. Called from the system call entry point, from autofs, 952 * and from pxfs. 953 * 954 * Takes the effective file system type, mount arguments, the mount point 955 * vnode, flags specifying whether the mount is a remount and whether it 956 * should be entered into the vfs list, and credentials. Fills in its vfspp 957 * parameter with the mounted file system instance's vfs. 958 * 959 * Note that the effective file system type is specified as a string. It may 960 * be null, in which case it's determined from the mount arguments, and may 961 * differ from the type specified in the mount arguments; this is a hook to 962 * allow interposition when instantiating file system instances. 963 * 964 * The caller is responsible for releasing its own hold on the mount point 965 * vp (this routine does its own hold when necessary). 966 * Also note that for remounts, the mount point vp should be the vnode for 967 * the root of the file system rather than the vnode that the file system 968 * is mounted on top of. 969 */ 970 int 971 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 972 struct vfs **vfspp) 973 { 974 struct vfssw *vswp; 975 vfsops_t *vfsops; 976 struct vfs *vfsp; 977 struct vnode *bvp; 978 dev_t bdev = 0; 979 mntopts_t mnt_mntopts; 980 int error = 0; 981 int copyout_error = 0; 982 int ovflags; 983 char *opts = uap->optptr; 984 char *inargs = opts; 985 int optlen = uap->optlen; 986 int remount; 987 int rdonly; 988 int nbmand = 0; 989 int delmip = 0; 990 int addmip = 0; 991 int splice = ((uap->flags & MS_NOSPLICE) == 0); 992 int fromspace = (uap->flags & MS_SYSSPACE) ? 993 UIO_SYSSPACE : UIO_USERSPACE; 994 char *resource = NULL, *mountpt = NULL; 995 refstr_t *oldresource, *oldmntpt; 996 struct pathname pn, rpn; 997 vsk_anchor_t *vskap; 998 999 /* 1000 * The v_flag value for the mount point vp is permanently set 1001 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1002 * for mount point locking. 1003 */ 1004 mutex_enter(&vp->v_lock); 1005 vp->v_flag |= VVFSLOCK; 1006 mutex_exit(&vp->v_lock); 1007 1008 mnt_mntopts.mo_count = 0; 1009 /* 1010 * Find the ops vector to use to invoke the file system-specific mount 1011 * method. If the fsname argument is non-NULL, use it directly. 1012 * Otherwise, dig the file system type information out of the mount 1013 * arguments. 1014 * 1015 * A side effect is to hold the vfssw entry. 1016 * 1017 * Mount arguments can be specified in several ways, which are 1018 * distinguished by flag bit settings. The preferred way is to set 1019 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1020 * type supplied as a character string and the last two arguments 1021 * being a pointer to a character buffer and the size of the buffer. 1022 * On entry, the buffer holds a null terminated list of options; on 1023 * return, the string is the list of options the file system 1024 * recognized. If MS_DATA is set arguments five and six point to a 1025 * block of binary data which the file system interprets. 1026 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1027 * consistently with these conventions. To handle them, we check to 1028 * see whether the pointer to the file system name has a numeric value 1029 * less than 256. If so, we treat it as an index. 1030 */ 1031 if (fsname != NULL) { 1032 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1033 return (EINVAL); 1034 } 1035 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1036 size_t n; 1037 uint_t fstype; 1038 char name[FSTYPSZ]; 1039 1040 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1041 RLOCK_VFSSW(); 1042 if (fstype == 0 || fstype >= nfstype || 1043 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1044 RUNLOCK_VFSSW(); 1045 return (EINVAL); 1046 } 1047 (void) strcpy(name, vfssw[fstype].vsw_name); 1048 RUNLOCK_VFSSW(); 1049 if ((vswp = vfs_getvfssw(name)) == NULL) 1050 return (EINVAL); 1051 } else { 1052 /* 1053 * Handle either kernel or user address space. 1054 */ 1055 if (uap->flags & MS_SYSSPACE) { 1056 error = copystr(uap->fstype, name, 1057 FSTYPSZ, &n); 1058 } else { 1059 error = copyinstr(uap->fstype, name, 1060 FSTYPSZ, &n); 1061 } 1062 if (error) { 1063 if (error == ENAMETOOLONG) 1064 return (EINVAL); 1065 return (error); 1066 } 1067 if ((vswp = vfs_getvfssw(name)) == NULL) 1068 return (EINVAL); 1069 } 1070 } else { 1071 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1072 return (EINVAL); 1073 } 1074 if (!VFS_INSTALLED(vswp)) 1075 return (EINVAL); 1076 vfsops = &vswp->vsw_vfsops; 1077 1078 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1079 /* 1080 * Fetch mount options and parse them for generic vfs options 1081 */ 1082 if (uap->flags & MS_OPTIONSTR) { 1083 /* 1084 * Limit the buffer size 1085 */ 1086 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1087 error = EINVAL; 1088 goto errout; 1089 } 1090 if ((uap->flags & MS_SYSSPACE) == 0) { 1091 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1092 inargs[0] = '\0'; 1093 if (optlen) { 1094 error = copyinstr(opts, inargs, (size_t)optlen, 1095 NULL); 1096 if (error) { 1097 goto errout; 1098 } 1099 } 1100 } 1101 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1102 } 1103 /* 1104 * Flag bits override the options string. 1105 */ 1106 if (uap->flags & MS_REMOUNT) 1107 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1108 if (uap->flags & MS_RDONLY) 1109 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1110 if (uap->flags & MS_NOSUID) 1111 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1112 1113 /* 1114 * Check if this is a remount; must be set in the option string and 1115 * the file system must support a remount option. 1116 */ 1117 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1118 MNTOPT_REMOUNT, NULL)) { 1119 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1120 error = ENOTSUP; 1121 goto errout; 1122 } 1123 uap->flags |= MS_REMOUNT; 1124 } 1125 1126 /* 1127 * uap->flags and vfs_optionisset() should agree. 1128 */ 1129 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1130 uap->flags |= MS_RDONLY; 1131 } 1132 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1133 uap->flags |= MS_NOSUID; 1134 } 1135 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1136 ASSERT(splice || !remount); 1137 /* 1138 * If we are splicing the fs into the namespace, 1139 * perform mount point checks. 1140 * 1141 * We want to resolve the path for the mount point to eliminate 1142 * '.' and ".." and symlinks in mount points; we can't do the 1143 * same for the resource string, since it would turn 1144 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1145 * this before grabbing vn_vfswlock(), because otherwise we 1146 * would deadlock with lookuppn(). 1147 */ 1148 if (splice) { 1149 ASSERT(vp->v_count > 0); 1150 1151 /* 1152 * Pick up mount point and device from appropriate space. 1153 */ 1154 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1155 resource = kmem_alloc(pn.pn_pathlen + 1, 1156 KM_SLEEP); 1157 (void) strcpy(resource, pn.pn_path); 1158 pn_free(&pn); 1159 } 1160 /* 1161 * Do a lookupname prior to taking the 1162 * writelock. Mark this as completed if 1163 * successful for later cleanup and addition to 1164 * the mount in progress table. 1165 */ 1166 if ((uap->flags & MS_GLOBAL) == 0 && 1167 lookupname(uap->spec, fromspace, 1168 FOLLOW, NULL, &bvp) == 0) { 1169 addmip = 1; 1170 } 1171 1172 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1173 pathname_t *pnp; 1174 1175 if (*pn.pn_path != '/') { 1176 error = EINVAL; 1177 pn_free(&pn); 1178 goto errout; 1179 } 1180 pn_alloc(&rpn); 1181 /* 1182 * Kludge to prevent autofs from deadlocking with 1183 * itself when it calls domount(). 1184 * 1185 * If autofs is calling, it is because it is doing 1186 * (autofs) mounts in the process of an NFS mount. A 1187 * lookuppn() here would cause us to block waiting for 1188 * said NFS mount to complete, which can't since this 1189 * is the thread that was supposed to doing it. 1190 */ 1191 if (fromspace == UIO_USERSPACE) { 1192 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1193 NULL)) == 0) { 1194 pnp = &rpn; 1195 } else { 1196 /* 1197 * The file disappeared or otherwise 1198 * became inaccessible since we opened 1199 * it; might as well fail the mount 1200 * since the mount point is no longer 1201 * accessible. 1202 */ 1203 pn_free(&rpn); 1204 pn_free(&pn); 1205 goto errout; 1206 } 1207 } else { 1208 pnp = &pn; 1209 } 1210 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1211 (void) strcpy(mountpt, pnp->pn_path); 1212 1213 /* 1214 * If the addition of the zone's rootpath 1215 * would push us over a total path length 1216 * of MAXPATHLEN, we fail the mount with 1217 * ENAMETOOLONG, which is what we would have 1218 * gotten if we were trying to perform the same 1219 * mount in the global zone. 1220 * 1221 * strlen() doesn't count the trailing 1222 * '\0', but zone_rootpathlen counts both a 1223 * trailing '/' and the terminating '\0'. 1224 */ 1225 if ((curproc->p_zone->zone_rootpathlen - 1 + 1226 strlen(mountpt)) > MAXPATHLEN || 1227 (resource != NULL && 1228 (curproc->p_zone->zone_rootpathlen - 1 + 1229 strlen(resource)) > MAXPATHLEN)) { 1230 error = ENAMETOOLONG; 1231 } 1232 1233 pn_free(&rpn); 1234 pn_free(&pn); 1235 } 1236 1237 if (error) 1238 goto errout; 1239 1240 /* 1241 * Prevent path name resolution from proceeding past 1242 * the mount point. 1243 */ 1244 if (vn_vfswlock(vp) != 0) { 1245 error = EBUSY; 1246 goto errout; 1247 } 1248 1249 /* 1250 * Verify that it's legitimate to establish a mount on 1251 * the prospective mount point. 1252 */ 1253 if (vn_mountedvfs(vp) != NULL) { 1254 /* 1255 * The mount point lock was obtained after some 1256 * other thread raced through and established a mount. 1257 */ 1258 vn_vfsunlock(vp); 1259 error = EBUSY; 1260 goto errout; 1261 } 1262 if (vp->v_flag & VNOMOUNT) { 1263 vn_vfsunlock(vp); 1264 error = EINVAL; 1265 goto errout; 1266 } 1267 } 1268 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1269 uap->dataptr = NULL; 1270 uap->datalen = 0; 1271 } 1272 1273 /* 1274 * If this is a remount, we don't want to create a new VFS. 1275 * Instead, we pass the existing one with a remount flag. 1276 */ 1277 if (remount) { 1278 /* 1279 * Confirm that the mount point is the root vnode of the 1280 * file system that is being remounted. 1281 * This can happen if the user specifies a different 1282 * mount point directory pathname in the (re)mount command. 1283 * 1284 * Code below can only be reached if splice is true, so it's 1285 * safe to do vn_vfsunlock() here. 1286 */ 1287 if ((vp->v_flag & VROOT) == 0) { 1288 vn_vfsunlock(vp); 1289 error = ENOENT; 1290 goto errout; 1291 } 1292 /* 1293 * Disallow making file systems read-only unless file system 1294 * explicitly allows it in its vfssw. Ignore other flags. 1295 */ 1296 if (rdonly && vn_is_readonly(vp) == 0 && 1297 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1298 vn_vfsunlock(vp); 1299 error = EINVAL; 1300 goto errout; 1301 } 1302 /* 1303 * Changing the NBMAND setting on remounts is permitted 1304 * but logged since it can lead to unexpected behavior. 1305 * We also counsel against using it for / and /usr. 1306 */ 1307 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1308 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1309 cmn_err(CE_WARN, "domount: nbmand turned %s via " 1310 "remounting %s", nbmand ? "on" : "off", 1311 refstr_value(vp->v_vfsp->vfs_mntpt)); 1312 } 1313 vfsp = vp->v_vfsp; 1314 ovflags = vfsp->vfs_flag; 1315 vfsp->vfs_flag |= VFS_REMOUNT; 1316 vfsp->vfs_flag &= ~VFS_RDONLY; 1317 } else { 1318 vfsp = kmem_alloc(sizeof (vfs_t), KM_SLEEP); 1319 VFS_INIT(vfsp, vfsops, NULL); 1320 } 1321 1322 VFS_HOLD(vfsp); 1323 1324 /* 1325 * The vfs_reflock is not used anymore the code below explicitly 1326 * holds it preventing others accesing it directly. 1327 */ 1328 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1329 !(vfsp->vfs_flag & VFS_REMOUNT)) 1330 cmn_err(CE_WARN, 1331 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1332 1333 /* 1334 * Lock the vfs. If this is a remount we want to avoid spurious umount 1335 * failures that happen as a side-effect of fsflush() and other mount 1336 * and unmount operations that might be going on simultaneously and 1337 * may have locked the vfs currently. To not return EBUSY immediately 1338 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1339 */ 1340 if (!remount) { 1341 if (error = vfs_lock(vfsp)) { 1342 vfsp->vfs_flag = ovflags; 1343 if (splice) 1344 vn_vfsunlock(vp); 1345 if (vfsp->vfs_implp) 1346 vfsimpl_teardown(vfsp); 1347 kmem_free(vfsp, sizeof (struct vfs)); 1348 goto errout; 1349 } 1350 } else { 1351 vfs_lock_wait(vfsp); 1352 } 1353 1354 /* 1355 * Add device to mount in progress table, global mounts require special 1356 * handling. It is possible that we have already done the lookupname 1357 * on a spliced, non-global fs. If so, we don't want to do it again 1358 * since we cannot do a lookupname after taking the 1359 * wlock above. This case is for a non-spliced, non-global filesystem. 1360 */ 1361 if (!addmip) { 1362 if ((uap->flags & MS_GLOBAL) == 0 && 1363 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1364 addmip = 1; 1365 } 1366 } 1367 1368 if (addmip) { 1369 bdev = bvp->v_rdev; 1370 VN_RELE(bvp); 1371 vfs_addmip(bdev, vfsp); 1372 addmip = 0; 1373 delmip = 1; 1374 } 1375 /* 1376 * Invalidate cached entry for the mount point. 1377 */ 1378 if (splice) 1379 dnlc_purge_vp(vp); 1380 1381 /* 1382 * If have an option string but the filesystem doesn't supply a 1383 * prototype options table, create a table with the global 1384 * options and sufficient room to accept all the options in the 1385 * string. Then parse the passed in option string 1386 * accepting all the options in the string. This gives us an 1387 * option table with all the proper cancel properties for the 1388 * global options. 1389 * 1390 * Filesystems that supply a prototype options table are handled 1391 * earlier in this function. 1392 */ 1393 if (uap->flags & MS_OPTIONSTR) { 1394 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1395 mntopts_t tmp_mntopts; 1396 1397 tmp_mntopts.mo_count = 0; 1398 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1399 &mnt_mntopts); 1400 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1401 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1402 vfs_freeopttbl(&tmp_mntopts); 1403 } 1404 } 1405 1406 /* 1407 * Serialize with zone creations. 1408 */ 1409 mount_in_progress(); 1410 /* 1411 * Instantiate (or reinstantiate) the file system. If appropriate, 1412 * splice it into the file system name space. 1413 * 1414 * We want VFS_MOUNT() to be able to override the vfs_resource 1415 * string if necessary (ie, mntfs), and also for a remount to 1416 * change the same (necessary when remounting '/' during boot). 1417 * So we set up vfs_mntpt and vfs_resource to what we think they 1418 * should be, then hand off control to VFS_MOUNT() which can 1419 * override this. 1420 * 1421 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1422 * a vfs which is on the vfs list (i.e. during a remount), we must 1423 * never set those fields to NULL. Several bits of code make 1424 * assumptions that the fields are always valid. 1425 */ 1426 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1427 if (remount) { 1428 if ((oldresource = vfsp->vfs_resource) != NULL) 1429 refstr_hold(oldresource); 1430 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1431 refstr_hold(oldmntpt); 1432 } 1433 vfs_setresource(vfsp, resource); 1434 vfs_setmntpoint(vfsp, mountpt); 1435 1436 error = VFS_MOUNT(vfsp, vp, uap, credp); 1437 1438 if (uap->flags & MS_RDONLY) 1439 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1440 if (uap->flags & MS_NOSUID) 1441 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1442 if (uap->flags & MS_GLOBAL) 1443 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1444 1445 if (error) { 1446 if (remount) { 1447 /* put back pre-remount options */ 1448 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1449 vfs_setmntpoint(vfsp, (stripzonepath( 1450 refstr_value(oldmntpt)))); 1451 if (oldmntpt) 1452 refstr_rele(oldmntpt); 1453 vfs_setresource(vfsp, (stripzonepath( 1454 refstr_value(oldresource)))); 1455 if (oldresource) 1456 refstr_rele(oldresource); 1457 vfsp->vfs_flag = ovflags; 1458 vfs_unlock(vfsp); 1459 VFS_RELE(vfsp); 1460 } else { 1461 vfs_unlock(vfsp); 1462 vfs_freemnttab(vfsp); 1463 if (vfsp->vfs_implp) 1464 vfsimpl_teardown(vfsp); 1465 kmem_free(vfsp, sizeof (struct vfs)); 1466 } 1467 } else { 1468 /* 1469 * Set the mount time to now 1470 */ 1471 vfsp->vfs_mtime = ddi_get_time(); 1472 if (remount) { 1473 vfsp->vfs_flag &= ~VFS_REMOUNT; 1474 if (oldresource) 1475 refstr_rele(oldresource); 1476 if (oldmntpt) 1477 refstr_rele(oldmntpt); 1478 } else if (splice) { 1479 /* 1480 * Link vfsp into the name space at the mount 1481 * point. Vfs_add() is responsible for 1482 * holding the mount point which will be 1483 * released when vfs_remove() is called. 1484 */ 1485 vfs_add(vp, vfsp, uap->flags); 1486 } else { 1487 /* 1488 * Hold the reference to file system which is 1489 * not linked into the name space. 1490 */ 1491 vfsp->vfs_zone = NULL; 1492 VFS_HOLD(vfsp); 1493 vfsp->vfs_vnodecovered = NULL; 1494 } 1495 /* 1496 * Set flags for global options encountered 1497 */ 1498 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1499 vfsp->vfs_flag |= VFS_RDONLY; 1500 else 1501 vfsp->vfs_flag &= ~VFS_RDONLY; 1502 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1503 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1504 } else { 1505 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1506 vfsp->vfs_flag |= VFS_NODEVICES; 1507 else 1508 vfsp->vfs_flag &= ~VFS_NODEVICES; 1509 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1510 vfsp->vfs_flag |= VFS_NOSETUID; 1511 else 1512 vfsp->vfs_flag &= ~VFS_NOSETUID; 1513 } 1514 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1515 vfsp->vfs_flag |= VFS_NBMAND; 1516 else 1517 vfsp->vfs_flag &= ~VFS_NBMAND; 1518 1519 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1520 vfsp->vfs_flag |= VFS_XATTR; 1521 else 1522 vfsp->vfs_flag &= ~VFS_XATTR; 1523 1524 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1525 vfsp->vfs_flag |= VFS_NOEXEC; 1526 else 1527 vfsp->vfs_flag &= ~VFS_NOEXEC; 1528 1529 /* 1530 * Now construct the output option string of options 1531 * we recognized. 1532 */ 1533 if (uap->flags & MS_OPTIONSTR) { 1534 vfs_list_read_lock(); 1535 copyout_error = vfs_buildoptionstr( 1536 &vfsp->vfs_mntopts, inargs, optlen); 1537 vfs_list_unlock(); 1538 if (copyout_error == 0 && 1539 (uap->flags & MS_SYSSPACE) == 0) { 1540 copyout_error = copyoutstr(inargs, opts, 1541 optlen, NULL); 1542 } 1543 } 1544 1545 /* 1546 * If this isn't a remount, set up the vopstats before 1547 * anyone can touch this. We only allow spliced file 1548 * systems (file systems which are in the namespace) to 1549 * have the VFS_STATS flag set. 1550 * NOTE: PxFS mounts the underlying file system with 1551 * MS_NOSPLICE set and copies those vfs_flags to its private 1552 * vfs structure. As a result, PxFS should never have 1553 * the VFS_STATS flag or else we might access the vfs 1554 * statistics-related fields prior to them being 1555 * properly initialized. 1556 */ 1557 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1558 initialize_vopstats(&vfsp->vfs_vopstats); 1559 /* 1560 * We need to set vfs_vskap to NULL because there's 1561 * a chance it won't be set below. This is checked 1562 * in teardown_vopstats() so we can't have garbage. 1563 */ 1564 vfsp->vfs_vskap = NULL; 1565 vfsp->vfs_flag |= VFS_STATS; 1566 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1567 } 1568 1569 vfs_unlock(vfsp); 1570 } 1571 mount_completed(); 1572 if (splice) 1573 vn_vfsunlock(vp); 1574 1575 if ((error == 0) && (copyout_error == 0)) { 1576 if (!remount) { 1577 /* 1578 * Don't call get_vskstat_anchor() while holding 1579 * locks since it allocates memory and calls 1580 * VFS_STATVFS(). For NFS, the latter can generate 1581 * an over-the-wire call. 1582 */ 1583 vskap = get_vskstat_anchor(vfsp); 1584 /* Only take the lock if we have something to do */ 1585 if (vskap != NULL) { 1586 vfs_lock_wait(vfsp); 1587 if (vfsp->vfs_flag & VFS_STATS) { 1588 vfsp->vfs_vskap = vskap; 1589 } 1590 vfs_unlock(vfsp); 1591 } 1592 } 1593 /* Return vfsp to caller. */ 1594 *vfspp = vfsp; 1595 } 1596 errout: 1597 vfs_freeopttbl(&mnt_mntopts); 1598 if (resource != NULL) 1599 kmem_free(resource, strlen(resource) + 1); 1600 if (mountpt != NULL) 1601 kmem_free(mountpt, strlen(mountpt) + 1); 1602 /* 1603 * It is possible we errored prior to adding to mount in progress 1604 * table. Must free vnode we acquired with successful lookupname. 1605 */ 1606 if (addmip) 1607 VN_RELE(bvp); 1608 if (delmip) 1609 vfs_delmip(vfsp); 1610 ASSERT(vswp != NULL); 1611 vfs_unrefvfssw(vswp); 1612 if (inargs != opts) 1613 kmem_free(inargs, MAX_MNTOPT_STR); 1614 if (copyout_error) { 1615 VFS_RELE(vfsp); 1616 error = copyout_error; 1617 } 1618 return (error); 1619 } 1620 1621 static void 1622 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1623 { 1624 size_t len; 1625 refstr_t *ref; 1626 zone_t *zone = curproc->p_zone; 1627 char *sp; 1628 int have_list_lock = 0; 1629 1630 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1631 1632 /* 1633 * New path must be less than MAXPATHLEN because mntfs 1634 * will only display up to MAXPATHLEN bytes. This is currently 1635 * safe, because domount() uses pn_get(), and other callers 1636 * similarly cap the size to fewer than MAXPATHLEN bytes. 1637 */ 1638 1639 ASSERT(strlen(newpath) < MAXPATHLEN); 1640 1641 /* mntfs requires consistency while vfs list lock is held */ 1642 1643 if (VFS_ON_LIST(vfsp)) { 1644 have_list_lock = 1; 1645 vfs_list_lock(); 1646 } 1647 1648 if (*refp != NULL) 1649 refstr_rele(*refp); 1650 1651 /* Do we need to modify the path? */ 1652 1653 if (zone == global_zone || *newpath != '/') { 1654 ref = refstr_alloc(newpath); 1655 goto out; 1656 } 1657 1658 /* 1659 * Truncate the trailing '/' in the zoneroot, and merge 1660 * in the zone's rootpath with the "newpath" (resource 1661 * or mountpoint) passed in. 1662 * 1663 * The size of the required buffer is thus the size of 1664 * the buffer required for the passed-in newpath 1665 * (strlen(newpath) + 1), plus the size of the buffer 1666 * required to hold zone_rootpath (zone_rootpathlen) 1667 * minus one for one of the now-superfluous NUL 1668 * terminations, minus one for the trailing '/'. 1669 * 1670 * That gives us: 1671 * 1672 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1673 * 1674 * Which is what we have below. 1675 */ 1676 1677 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1678 sp = kmem_alloc(len, KM_SLEEP); 1679 1680 /* 1681 * Copy everything including the trailing slash, which 1682 * we then overwrite with the NUL character. 1683 */ 1684 1685 (void) strcpy(sp, zone->zone_rootpath); 1686 sp[zone->zone_rootpathlen - 2] = '\0'; 1687 (void) strcat(sp, newpath); 1688 1689 ref = refstr_alloc(sp); 1690 kmem_free(sp, len); 1691 out: 1692 *refp = ref; 1693 1694 if (have_list_lock) { 1695 vfs_mnttab_modtimeupd(); 1696 vfs_list_unlock(); 1697 } 1698 } 1699 1700 /* 1701 * Record a mounted resource name in a vfs structure. 1702 * If vfsp is already mounted, caller must hold the vfs lock. 1703 */ 1704 void 1705 vfs_setresource(struct vfs *vfsp, const char *resource) 1706 { 1707 if (resource == NULL || resource[0] == '\0') 1708 resource = VFS_NORESOURCE; 1709 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1710 } 1711 1712 /* 1713 * Record a mount point name in a vfs structure. 1714 * If vfsp is already mounted, caller must hold the vfs lock. 1715 */ 1716 void 1717 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1718 { 1719 if (mntpt == NULL || mntpt[0] == '\0') 1720 mntpt = VFS_NOMNTPT; 1721 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1722 } 1723 1724 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1725 1726 refstr_t * 1727 vfs_getresource(const struct vfs *vfsp) 1728 { 1729 refstr_t *resource; 1730 1731 vfs_list_read_lock(); 1732 resource = vfsp->vfs_resource; 1733 refstr_hold(resource); 1734 vfs_list_unlock(); 1735 1736 return (resource); 1737 } 1738 1739 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1740 1741 refstr_t * 1742 vfs_getmntpoint(const struct vfs *vfsp) 1743 { 1744 refstr_t *mntpt; 1745 1746 vfs_list_read_lock(); 1747 mntpt = vfsp->vfs_mntpt; 1748 refstr_hold(mntpt); 1749 vfs_list_unlock(); 1750 1751 return (mntpt); 1752 } 1753 1754 /* 1755 * Create an empty options table with enough empty slots to hold all 1756 * The options in the options string passed as an argument. 1757 * Potentially prepend another options table. 1758 * 1759 * Note: caller is responsible for locking the vfs list, if needed, 1760 * to protect mops. 1761 */ 1762 static void 1763 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1764 const mntopts_t *mtmpl) 1765 { 1766 const char *s = opts; 1767 uint_t count; 1768 1769 if (opts == NULL || *opts == '\0') { 1770 count = 0; 1771 } else { 1772 count = 1; 1773 1774 /* 1775 * Count number of options in the string 1776 */ 1777 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1778 count++; 1779 s++; 1780 } 1781 } 1782 vfs_copyopttbl_extend(mtmpl, mops, count); 1783 } 1784 1785 /* 1786 * Create an empty options table with enough empty slots to hold all 1787 * The options in the options string passed as an argument. 1788 * 1789 * This function is *not* for general use by filesystems. 1790 * 1791 * Note: caller is responsible for locking the vfs list, if needed, 1792 * to protect mops. 1793 */ 1794 void 1795 vfs_createopttbl(mntopts_t *mops, const char *opts) 1796 { 1797 vfs_createopttbl_extend(mops, opts, NULL); 1798 } 1799 1800 1801 /* 1802 * Swap two mount options tables 1803 */ 1804 static void 1805 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 1806 { 1807 uint_t tmpcnt; 1808 mntopt_t *tmplist; 1809 1810 tmpcnt = optbl2->mo_count; 1811 tmplist = optbl2->mo_list; 1812 optbl2->mo_count = optbl1->mo_count; 1813 optbl2->mo_list = optbl1->mo_list; 1814 optbl1->mo_count = tmpcnt; 1815 optbl1->mo_list = tmplist; 1816 } 1817 1818 static void 1819 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 1820 { 1821 vfs_list_lock(); 1822 vfs_swapopttbl_nolock(optbl1, optbl2); 1823 vfs_mnttab_modtimeupd(); 1824 vfs_list_unlock(); 1825 } 1826 1827 static char ** 1828 vfs_copycancelopt_extend(char **const moc, int extend) 1829 { 1830 int i = 0; 1831 int j; 1832 char **result; 1833 1834 if (moc != NULL) { 1835 for (; moc[i] != NULL; i++) 1836 /* count number of options to cancel */; 1837 } 1838 1839 if (i + extend == 0) 1840 return (NULL); 1841 1842 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 1843 1844 for (j = 0; j < i; j++) { 1845 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 1846 (void) strcpy(result[j], moc[j]); 1847 } 1848 for (; j <= i + extend; j++) 1849 result[j] = NULL; 1850 1851 return (result); 1852 } 1853 1854 static void 1855 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 1856 { 1857 char *sp, *dp; 1858 1859 d->mo_flags = s->mo_flags; 1860 d->mo_data = s->mo_data; 1861 sp = s->mo_name; 1862 if (sp != NULL) { 1863 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1864 (void) strcpy(dp, sp); 1865 d->mo_name = dp; 1866 } else { 1867 d->mo_name = NULL; /* should never happen */ 1868 } 1869 1870 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 1871 1872 sp = s->mo_arg; 1873 if (sp != NULL) { 1874 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 1875 (void) strcpy(dp, sp); 1876 d->mo_arg = dp; 1877 } else { 1878 d->mo_arg = NULL; 1879 } 1880 } 1881 1882 /* 1883 * Copy a mount options table, possibly allocating some spare 1884 * slots at the end. It is permissible to copy_extend the NULL table. 1885 */ 1886 static void 1887 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 1888 { 1889 uint_t i, count; 1890 mntopt_t *motbl; 1891 1892 /* 1893 * Clear out any existing stuff in the options table being initialized 1894 */ 1895 vfs_freeopttbl(dmo); 1896 count = (smo == NULL) ? 0 : smo->mo_count; 1897 if ((count + extra) == 0) /* nothing to do */ 1898 return; 1899 dmo->mo_count = count + extra; 1900 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 1901 dmo->mo_list = motbl; 1902 for (i = 0; i < count; i++) { 1903 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 1904 } 1905 for (i = count; i < count + extra; i++) { 1906 motbl[i].mo_flags = MO_EMPTY; 1907 } 1908 } 1909 1910 /* 1911 * Copy a mount options table. 1912 * 1913 * This function is *not* for general use by filesystems. 1914 * 1915 * Note: caller is responsible for locking the vfs list, if needed, 1916 * to protect smo and dmo. 1917 */ 1918 void 1919 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 1920 { 1921 vfs_copyopttbl_extend(smo, dmo, 0); 1922 } 1923 1924 static char ** 1925 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 1926 { 1927 int c1 = 0; 1928 int c2 = 0; 1929 char **result; 1930 char **sp1, **sp2, **dp; 1931 1932 /* 1933 * First we count both lists of cancel options. 1934 * If either is NULL or has no elements, we return a copy of 1935 * the other. 1936 */ 1937 if (mop1->mo_cancel != NULL) { 1938 for (; mop1->mo_cancel[c1] != NULL; c1++) 1939 /* count cancel options in mop1 */; 1940 } 1941 1942 if (c1 == 0) 1943 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 1944 1945 if (mop2->mo_cancel != NULL) { 1946 for (; mop2->mo_cancel[c2] != NULL; c2++) 1947 /* count cancel options in mop2 */; 1948 } 1949 1950 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 1951 1952 if (c2 == 0) 1953 return (result); 1954 1955 /* 1956 * When we get here, we've got two sets of cancel options; 1957 * we need to merge the two sets. We know that the result 1958 * array has "c1+c2+1" entries and in the end we might shrink 1959 * it. 1960 * Result now has a copy of the c1 entries from mop1; we'll 1961 * now lookup all the entries of mop2 in mop1 and copy it if 1962 * it is unique. 1963 * This operation is O(n^2) but it's only called once per 1964 * filesystem per duplicate option. This is a situation 1965 * which doesn't arise with the filesystems in ON and 1966 * n is generally 1. 1967 */ 1968 1969 dp = &result[c1]; 1970 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 1971 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 1972 if (strcmp(*sp1, *sp2) == 0) 1973 break; 1974 } 1975 if (*sp1 == NULL) { 1976 /* 1977 * Option *sp2 not found in mop1, so copy it. 1978 * The calls to vfs_copycancelopt_extend() 1979 * guarantee that there's enough room. 1980 */ 1981 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 1982 (void) strcpy(*dp++, *sp2); 1983 } 1984 } 1985 if (dp != &result[c1+c2]) { 1986 size_t bytes = (dp - result + 1) * sizeof (char *); 1987 char **nres = kmem_alloc(bytes, KM_SLEEP); 1988 1989 bcopy(result, nres, bytes); 1990 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 1991 result = nres; 1992 } 1993 return (result); 1994 } 1995 1996 /* 1997 * Merge two mount option tables (outer and inner) into one. This is very 1998 * similar to "merging" global variables and automatic variables in C. 1999 * 2000 * This isn't (and doesn't have to be) fast. 2001 * 2002 * This function is *not* for general use by filesystems. 2003 * 2004 * Note: caller is responsible for locking the vfs list, if needed, 2005 * to protect omo, imo & dmo. 2006 */ 2007 void 2008 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2009 { 2010 uint_t i, count; 2011 mntopt_t *mop, *motbl; 2012 uint_t freeidx; 2013 2014 /* 2015 * First determine how much space we need to allocate. 2016 */ 2017 count = omo->mo_count; 2018 for (i = 0; i < imo->mo_count; i++) { 2019 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2020 continue; 2021 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2022 count++; 2023 } 2024 ASSERT(count >= omo->mo_count && 2025 count <= omo->mo_count + imo->mo_count); 2026 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2027 for (i = 0; i < omo->mo_count; i++) 2028 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2029 freeidx = omo->mo_count; 2030 for (i = 0; i < imo->mo_count; i++) { 2031 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2032 continue; 2033 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2034 char **newcanp; 2035 uint_t index = mop - omo->mo_list; 2036 2037 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2038 2039 vfs_freeopt(&motbl[index]); 2040 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2041 2042 vfs_freecancelopt(motbl[index].mo_cancel); 2043 motbl[index].mo_cancel = newcanp; 2044 } else { 2045 /* 2046 * If it's a new option, just copy it over to the first 2047 * free location. 2048 */ 2049 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2050 } 2051 } 2052 dmo->mo_count = count; 2053 dmo->mo_list = motbl; 2054 } 2055 2056 /* 2057 * Functions to set and clear mount options in a mount options table. 2058 */ 2059 2060 /* 2061 * Clear a mount option, if it exists. 2062 * 2063 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2064 * the vfs list. 2065 */ 2066 static void 2067 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2068 { 2069 struct mntopt *mop; 2070 uint_t i, count; 2071 2072 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2073 2074 count = mops->mo_count; 2075 for (i = 0; i < count; i++) { 2076 mop = &mops->mo_list[i]; 2077 2078 if (mop->mo_flags & MO_EMPTY) 2079 continue; 2080 if (strcmp(opt, mop->mo_name)) 2081 continue; 2082 mop->mo_flags &= ~MO_SET; 2083 if (mop->mo_arg != NULL) { 2084 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2085 } 2086 mop->mo_arg = NULL; 2087 if (update_mnttab) 2088 vfs_mnttab_modtimeupd(); 2089 break; 2090 } 2091 } 2092 2093 void 2094 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2095 { 2096 int gotlock = 0; 2097 2098 if (VFS_ON_LIST(vfsp)) { 2099 gotlock = 1; 2100 vfs_list_lock(); 2101 } 2102 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2103 if (gotlock) 2104 vfs_list_unlock(); 2105 } 2106 2107 2108 /* 2109 * Set a mount option on. If it's not found in the table, it's silently 2110 * ignored. If the option has MO_IGNORE set, it is still set unless the 2111 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2112 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2113 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2114 * MO_EMPTY set is created as the option passed in. 2115 * 2116 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2117 * the vfs list. 2118 */ 2119 static void 2120 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2121 const char *arg, int flags, int update_mnttab) 2122 { 2123 mntopt_t *mop; 2124 uint_t i, count; 2125 char *sp; 2126 2127 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2128 2129 if (flags & VFS_CREATEOPT) { 2130 if (vfs_hasopt(mops, opt) != NULL) { 2131 flags &= ~VFS_CREATEOPT; 2132 } 2133 } 2134 count = mops->mo_count; 2135 for (i = 0; i < count; i++) { 2136 mop = &mops->mo_list[i]; 2137 2138 if (mop->mo_flags & MO_EMPTY) { 2139 if ((flags & VFS_CREATEOPT) == 0) 2140 continue; 2141 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2142 (void) strcpy(sp, opt); 2143 mop->mo_name = sp; 2144 if (arg != NULL) 2145 mop->mo_flags = MO_HASVALUE; 2146 else 2147 mop->mo_flags = 0; 2148 } else if (strcmp(opt, mop->mo_name)) { 2149 continue; 2150 } 2151 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2152 break; 2153 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2154 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2155 (void) strcpy(sp, arg); 2156 } else { 2157 sp = NULL; 2158 } 2159 if (mop->mo_arg != NULL) 2160 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2161 mop->mo_arg = sp; 2162 if (flags & VFS_DISPLAY) 2163 mop->mo_flags &= ~MO_NODISPLAY; 2164 if (flags & VFS_NODISPLAY) 2165 mop->mo_flags |= MO_NODISPLAY; 2166 mop->mo_flags |= MO_SET; 2167 if (mop->mo_cancel != NULL) { 2168 char **cp; 2169 2170 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2171 vfs_clearmntopt_nolock(mops, *cp, 0); 2172 } 2173 if (update_mnttab) 2174 vfs_mnttab_modtimeupd(); 2175 break; 2176 } 2177 } 2178 2179 void 2180 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2181 { 2182 int gotlock = 0; 2183 2184 if (VFS_ON_LIST(vfsp)) { 2185 gotlock = 1; 2186 vfs_list_lock(); 2187 } 2188 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2189 if (gotlock) 2190 vfs_list_unlock(); 2191 } 2192 2193 2194 /* 2195 * Add a "tag" option to a mounted file system's options list. 2196 * 2197 * Note: caller is responsible for locking the vfs list, if needed, 2198 * to protect mops. 2199 */ 2200 static mntopt_t * 2201 vfs_addtag(mntopts_t *mops, const char *tag) 2202 { 2203 uint_t count; 2204 mntopt_t *mop, *motbl; 2205 2206 count = mops->mo_count + 1; 2207 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2208 if (mops->mo_count) { 2209 size_t len = (count - 1) * sizeof (mntopt_t); 2210 2211 bcopy(mops->mo_list, motbl, len); 2212 kmem_free(mops->mo_list, len); 2213 } 2214 mops->mo_count = count; 2215 mops->mo_list = motbl; 2216 mop = &motbl[count - 1]; 2217 mop->mo_flags = MO_TAG; 2218 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2219 (void) strcpy(mop->mo_name, tag); 2220 return (mop); 2221 } 2222 2223 /* 2224 * Allow users to set arbitrary "tags" in a vfs's mount options. 2225 * Broader use within the kernel is discouraged. 2226 */ 2227 int 2228 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2229 cred_t *cr) 2230 { 2231 vfs_t *vfsp; 2232 mntopts_t *mops; 2233 mntopt_t *mop; 2234 int found = 0; 2235 dev_t dev = makedevice(major, minor); 2236 int err = 0; 2237 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2238 2239 /* 2240 * Find the desired mounted file system 2241 */ 2242 vfs_list_lock(); 2243 vfsp = rootvfs; 2244 do { 2245 if (vfsp->vfs_dev == dev && 2246 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2247 found = 1; 2248 break; 2249 } 2250 vfsp = vfsp->vfs_next; 2251 } while (vfsp != rootvfs); 2252 2253 if (!found) { 2254 err = EINVAL; 2255 goto out; 2256 } 2257 err = secpolicy_fs_config(cr, vfsp); 2258 if (err != 0) 2259 goto out; 2260 2261 mops = &vfsp->vfs_mntopts; 2262 /* 2263 * Add tag if it doesn't already exist 2264 */ 2265 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2266 int len; 2267 2268 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2269 len = strlen(buf); 2270 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2271 err = ENAMETOOLONG; 2272 goto out; 2273 } 2274 mop = vfs_addtag(mops, tag); 2275 } 2276 if ((mop->mo_flags & MO_TAG) == 0) { 2277 err = EINVAL; 2278 goto out; 2279 } 2280 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2281 out: 2282 vfs_list_unlock(); 2283 kmem_free(buf, MAX_MNTOPT_STR); 2284 return (err); 2285 } 2286 2287 /* 2288 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2289 * Broader use within the kernel is discouraged. 2290 */ 2291 int 2292 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2293 cred_t *cr) 2294 { 2295 vfs_t *vfsp; 2296 mntopt_t *mop; 2297 int found = 0; 2298 dev_t dev = makedevice(major, minor); 2299 int err = 0; 2300 2301 /* 2302 * Find the desired mounted file system 2303 */ 2304 vfs_list_lock(); 2305 vfsp = rootvfs; 2306 do { 2307 if (vfsp->vfs_dev == dev && 2308 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2309 found = 1; 2310 break; 2311 } 2312 vfsp = vfsp->vfs_next; 2313 } while (vfsp != rootvfs); 2314 2315 if (!found) { 2316 err = EINVAL; 2317 goto out; 2318 } 2319 err = secpolicy_fs_config(cr, vfsp); 2320 if (err != 0) 2321 goto out; 2322 2323 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2324 err = EINVAL; 2325 goto out; 2326 } 2327 if ((mop->mo_flags & MO_TAG) == 0) { 2328 err = EINVAL; 2329 goto out; 2330 } 2331 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2332 out: 2333 vfs_list_unlock(); 2334 return (err); 2335 } 2336 2337 /* 2338 * Function to parse an option string and fill in a mount options table. 2339 * Unknown options are silently ignored. The input option string is modified 2340 * by replacing separators with nulls. If the create flag is set, options 2341 * not found in the table are just added on the fly. The table must have 2342 * an option slot marked MO_EMPTY to add an option on the fly. 2343 * 2344 * This function is *not* for general use by filesystems. 2345 * 2346 * Note: caller is responsible for locking the vfs list, if needed, 2347 * to protect mops.. 2348 */ 2349 void 2350 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2351 { 2352 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2353 int setflg = VFS_NOFORCEOPT; 2354 2355 if (osp == NULL) 2356 return; 2357 while (*s != '\0') { 2358 p = strchr(s, ','); /* find next option */ 2359 if (p == NULL) { 2360 cp = NULL; 2361 p = s + strlen(s); 2362 } else { 2363 cp = p; /* save location of comma */ 2364 *p++ = '\0'; /* mark end and point to next option */ 2365 } 2366 nextop = p; 2367 p = strchr(s, '='); /* look for value */ 2368 if (p == NULL) { 2369 valp = NULL; /* no value supplied */ 2370 } else { 2371 ep = p; /* save location of equals */ 2372 *p++ = '\0'; /* end option and point to value */ 2373 valp = p; 2374 } 2375 /* 2376 * set option into options table 2377 */ 2378 if (create) 2379 setflg |= VFS_CREATEOPT; 2380 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2381 if (cp != NULL) 2382 *cp = ','; /* restore the comma */ 2383 if (valp != NULL) 2384 *ep = '='; /* restore the equals */ 2385 s = nextop; 2386 } 2387 } 2388 2389 /* 2390 * Function to inquire if an option exists in a mount options table. 2391 * Returns a pointer to the option if it exists, else NULL. 2392 * 2393 * This function is *not* for general use by filesystems. 2394 * 2395 * Note: caller is responsible for locking the vfs list, if needed, 2396 * to protect mops. 2397 */ 2398 struct mntopt * 2399 vfs_hasopt(const mntopts_t *mops, const char *opt) 2400 { 2401 struct mntopt *mop; 2402 uint_t i, count; 2403 2404 count = mops->mo_count; 2405 for (i = 0; i < count; i++) { 2406 mop = &mops->mo_list[i]; 2407 2408 if (mop->mo_flags & MO_EMPTY) 2409 continue; 2410 if (strcmp(opt, mop->mo_name) == 0) 2411 return (mop); 2412 } 2413 return (NULL); 2414 } 2415 2416 /* 2417 * Function to inquire if an option is set in a mount options table. 2418 * Returns non-zero if set and fills in the arg pointer with a pointer to 2419 * the argument string or NULL if there is no argument string. 2420 */ 2421 static int 2422 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2423 { 2424 struct mntopt *mop; 2425 uint_t i, count; 2426 2427 count = mops->mo_count; 2428 for (i = 0; i < count; i++) { 2429 mop = &mops->mo_list[i]; 2430 2431 if (mop->mo_flags & MO_EMPTY) 2432 continue; 2433 if (strcmp(opt, mop->mo_name)) 2434 continue; 2435 if ((mop->mo_flags & MO_SET) == 0) 2436 return (0); 2437 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2438 *argp = mop->mo_arg; 2439 return (1); 2440 } 2441 return (0); 2442 } 2443 2444 2445 int 2446 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2447 { 2448 int ret; 2449 2450 vfs_list_read_lock(); 2451 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2452 vfs_list_unlock(); 2453 return (ret); 2454 } 2455 2456 2457 /* 2458 * Construct a comma separated string of the options set in the given 2459 * mount table, return the string in the given buffer. Return non-zero if 2460 * the buffer would overflow. 2461 * 2462 * This function is *not* for general use by filesystems. 2463 * 2464 * Note: caller is responsible for locking the vfs list, if needed, 2465 * to protect mp. 2466 */ 2467 int 2468 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2469 { 2470 char *cp; 2471 uint_t i; 2472 2473 buf[0] = '\0'; 2474 cp = buf; 2475 for (i = 0; i < mp->mo_count; i++) { 2476 struct mntopt *mop; 2477 2478 mop = &mp->mo_list[i]; 2479 if (mop->mo_flags & MO_SET) { 2480 int optlen, comma = 0; 2481 2482 if (buf[0] != '\0') 2483 comma = 1; 2484 optlen = strlen(mop->mo_name); 2485 if (strlen(buf) + comma + optlen + 1 > len) 2486 goto err; 2487 if (comma) 2488 *cp++ = ','; 2489 (void) strcpy(cp, mop->mo_name); 2490 cp += optlen; 2491 /* 2492 * Append option value if there is one 2493 */ 2494 if (mop->mo_arg != NULL) { 2495 int arglen; 2496 2497 arglen = strlen(mop->mo_arg); 2498 if (strlen(buf) + arglen + 2 > len) 2499 goto err; 2500 *cp++ = '='; 2501 (void) strcpy(cp, mop->mo_arg); 2502 cp += arglen; 2503 } 2504 } 2505 } 2506 return (0); 2507 err: 2508 return (EOVERFLOW); 2509 } 2510 2511 static void 2512 vfs_freecancelopt(char **moc) 2513 { 2514 if (moc != NULL) { 2515 int ccnt = 0; 2516 char **cp; 2517 2518 for (cp = moc; *cp != NULL; cp++) { 2519 kmem_free(*cp, strlen(*cp) + 1); 2520 ccnt++; 2521 } 2522 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2523 } 2524 } 2525 2526 static void 2527 vfs_freeopt(mntopt_t *mop) 2528 { 2529 if (mop->mo_name != NULL) 2530 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2531 2532 vfs_freecancelopt(mop->mo_cancel); 2533 2534 if (mop->mo_arg != NULL) 2535 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2536 } 2537 2538 /* 2539 * Free a mount options table 2540 * 2541 * This function is *not* for general use by filesystems. 2542 * 2543 * Note: caller is responsible for locking the vfs list, if needed, 2544 * to protect mp. 2545 */ 2546 void 2547 vfs_freeopttbl(mntopts_t *mp) 2548 { 2549 uint_t i, count; 2550 2551 count = mp->mo_count; 2552 for (i = 0; i < count; i++) { 2553 vfs_freeopt(&mp->mo_list[i]); 2554 } 2555 if (count) { 2556 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2557 mp->mo_count = 0; 2558 mp->mo_list = NULL; 2559 } 2560 } 2561 2562 /* 2563 * Free any mnttab information recorded in the vfs struct. 2564 * The vfs must not be on the vfs list. 2565 */ 2566 static void 2567 vfs_freemnttab(struct vfs *vfsp) 2568 { 2569 ASSERT(!VFS_ON_LIST(vfsp)); 2570 2571 /* 2572 * Free device and mount point information 2573 */ 2574 if (vfsp->vfs_mntpt != NULL) { 2575 refstr_rele(vfsp->vfs_mntpt); 2576 vfsp->vfs_mntpt = NULL; 2577 } 2578 if (vfsp->vfs_resource != NULL) { 2579 refstr_rele(vfsp->vfs_resource); 2580 vfsp->vfs_resource = NULL; 2581 } 2582 /* 2583 * Now free mount options information 2584 */ 2585 vfs_freeopttbl(&vfsp->vfs_mntopts); 2586 } 2587 2588 /* 2589 * Return the last mnttab modification time 2590 */ 2591 void 2592 vfs_mnttab_modtime(timespec_t *ts) 2593 { 2594 ASSERT(RW_LOCK_HELD(&vfslist)); 2595 *ts = vfs_mnttab_mtime; 2596 } 2597 2598 /* 2599 * See if mnttab is changed 2600 */ 2601 void 2602 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2603 { 2604 int changed; 2605 2606 *phpp = (struct pollhead *)NULL; 2607 2608 /* 2609 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2610 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2611 * to not grab the vfs list lock because tv_sec is monotonically 2612 * increasing. 2613 */ 2614 2615 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2616 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2617 if (!changed) { 2618 *phpp = &vfs_pollhd; 2619 } 2620 } 2621 2622 /* 2623 * Update the mnttab modification time and wake up any waiters for 2624 * mnttab changes 2625 */ 2626 void 2627 vfs_mnttab_modtimeupd() 2628 { 2629 hrtime_t oldhrt, newhrt; 2630 2631 ASSERT(RW_WRITE_HELD(&vfslist)); 2632 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2633 gethrestime(&vfs_mnttab_mtime); 2634 newhrt = ts2hrt(&vfs_mnttab_mtime); 2635 if (oldhrt == (hrtime_t)0) 2636 vfs_mnttab_ctime = vfs_mnttab_mtime; 2637 /* 2638 * Attempt to provide unique mtime (like uniqtime but not). 2639 */ 2640 if (newhrt == oldhrt) { 2641 newhrt++; 2642 hrt2ts(newhrt, &vfs_mnttab_mtime); 2643 } 2644 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2645 } 2646 2647 int 2648 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 2649 { 2650 vnode_t *coveredvp; 2651 int error; 2652 extern void teardown_vopstats(vfs_t *); 2653 2654 /* 2655 * Get covered vnode. This will be NULL if the vfs is not linked 2656 * into the file system name space (i.e., domount() with MNT_NOSPICE). 2657 */ 2658 coveredvp = vfsp->vfs_vnodecovered; 2659 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 2660 2661 /* 2662 * Purge all dnlc entries for this vfs. 2663 */ 2664 (void) dnlc_purge_vfsp(vfsp, 0); 2665 2666 /* For forcible umount, skip VFS_SYNC() since it may hang */ 2667 if ((flag & MS_FORCE) == 0) 2668 (void) VFS_SYNC(vfsp, 0, cr); 2669 2670 /* 2671 * Lock the vfs to maintain fs status quo during unmount. This 2672 * has to be done after the sync because ufs_update tries to acquire 2673 * the vfs_reflock. 2674 */ 2675 vfs_lock_wait(vfsp); 2676 2677 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 2678 vfs_unlock(vfsp); 2679 if (coveredvp != NULL) 2680 vn_vfsunlock(coveredvp); 2681 } else if (coveredvp != NULL) { 2682 teardown_vopstats(vfsp); 2683 /* 2684 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 2685 * when it frees vfsp so we do a VN_HOLD() so we can 2686 * continue to use coveredvp afterwards. 2687 */ 2688 VN_HOLD(coveredvp); 2689 vfs_remove(vfsp); 2690 vn_vfsunlock(coveredvp); 2691 VN_RELE(coveredvp); 2692 } else { 2693 teardown_vopstats(vfsp); 2694 /* 2695 * Release the reference to vfs that is not linked 2696 * into the name space. 2697 */ 2698 vfs_unlock(vfsp); 2699 VFS_RELE(vfsp); 2700 } 2701 return (error); 2702 } 2703 2704 2705 /* 2706 * Vfs_unmountall() is called by uadmin() to unmount all 2707 * mounted file systems (except the root file system) during shutdown. 2708 * It follows the existing locking protocol when traversing the vfs list 2709 * to sync and unmount vfses. Even though there should be no 2710 * other thread running while the system is shutting down, it is prudent 2711 * to still follow the locking protocol. 2712 */ 2713 void 2714 vfs_unmountall(void) 2715 { 2716 struct vfs *vfsp; 2717 struct vfs *prev_vfsp = NULL; 2718 int error; 2719 2720 /* 2721 * Toss all dnlc entries now so that the per-vfs sync 2722 * and unmount operations don't have to slog through 2723 * a bunch of uninteresting vnodes over and over again. 2724 */ 2725 dnlc_purge(); 2726 2727 vfs_list_lock(); 2728 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 2729 prev_vfsp = vfsp->vfs_prev; 2730 2731 if (vfs_lock(vfsp) != 0) 2732 continue; 2733 error = vn_vfswlock(vfsp->vfs_vnodecovered); 2734 vfs_unlock(vfsp); 2735 if (error) 2736 continue; 2737 2738 vfs_list_unlock(); 2739 2740 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 2741 (void) dounmount(vfsp, 0, CRED()); 2742 2743 /* 2744 * Since we dropped the vfslist lock above we must 2745 * verify that next_vfsp still exists, else start over. 2746 */ 2747 vfs_list_lock(); 2748 for (vfsp = rootvfs->vfs_prev; 2749 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 2750 if (vfsp == prev_vfsp) 2751 break; 2752 if (vfsp == rootvfs && prev_vfsp != rootvfs) 2753 prev_vfsp = rootvfs->vfs_prev; 2754 } 2755 vfs_list_unlock(); 2756 } 2757 2758 /* 2759 * Called to add an entry to the end of the vfs mount in progress list 2760 */ 2761 void 2762 vfs_addmip(dev_t dev, struct vfs *vfsp) 2763 { 2764 struct ipmnt *mipp; 2765 2766 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 2767 mipp->mip_next = NULL; 2768 mipp->mip_dev = dev; 2769 mipp->mip_vfsp = vfsp; 2770 mutex_enter(&vfs_miplist_mutex); 2771 if (vfs_miplist_end != NULL) 2772 vfs_miplist_end->mip_next = mipp; 2773 else 2774 vfs_miplist = mipp; 2775 vfs_miplist_end = mipp; 2776 mutex_exit(&vfs_miplist_mutex); 2777 } 2778 2779 /* 2780 * Called to remove an entry from the mount in progress list 2781 * Either because the mount completed or it failed. 2782 */ 2783 void 2784 vfs_delmip(struct vfs *vfsp) 2785 { 2786 struct ipmnt *mipp, *mipprev; 2787 2788 mutex_enter(&vfs_miplist_mutex); 2789 mipprev = NULL; 2790 for (mipp = vfs_miplist; 2791 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 2792 mipprev = mipp; 2793 } 2794 if (mipp == NULL) 2795 return; /* shouldn't happen */ 2796 if (mipp == vfs_miplist_end) 2797 vfs_miplist_end = mipprev; 2798 if (mipprev == NULL) 2799 vfs_miplist = mipp->mip_next; 2800 else 2801 mipprev->mip_next = mipp->mip_next; 2802 mutex_exit(&vfs_miplist_mutex); 2803 kmem_free(mipp, sizeof (struct ipmnt)); 2804 } 2805 2806 /* 2807 * vfs_add is called by a specific filesystem's mount routine to add 2808 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 2809 * The vfs should already have been locked by the caller. 2810 * 2811 * coveredvp is NULL if this is the root. 2812 */ 2813 void 2814 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 2815 { 2816 int newflag; 2817 2818 ASSERT(vfs_lock_held(vfsp)); 2819 VFS_HOLD(vfsp); 2820 newflag = vfsp->vfs_flag; 2821 if (mflag & MS_RDONLY) 2822 newflag |= VFS_RDONLY; 2823 else 2824 newflag &= ~VFS_RDONLY; 2825 if (mflag & MS_NOSUID) 2826 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 2827 else 2828 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 2829 if (mflag & MS_NOMNTTAB) 2830 newflag |= VFS_NOMNTTAB; 2831 else 2832 newflag &= ~VFS_NOMNTTAB; 2833 2834 if (coveredvp != NULL) { 2835 ASSERT(vn_vfswlock_held(coveredvp)); 2836 coveredvp->v_vfsmountedhere = vfsp; 2837 VN_HOLD(coveredvp); 2838 } 2839 vfsp->vfs_vnodecovered = coveredvp; 2840 vfsp->vfs_flag = newflag; 2841 2842 vfs_list_add(vfsp); 2843 } 2844 2845 /* 2846 * Remove a vfs from the vfs list, null out the pointer from the 2847 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 2848 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 2849 * reference to the vfs and to the covered vnode. 2850 * 2851 * Called from dounmount after it's confirmed with the file system 2852 * that the unmount is legal. 2853 */ 2854 void 2855 vfs_remove(struct vfs *vfsp) 2856 { 2857 vnode_t *vp; 2858 2859 ASSERT(vfs_lock_held(vfsp)); 2860 2861 /* 2862 * Can't unmount root. Should never happen because fs will 2863 * be busy. 2864 */ 2865 if (vfsp == rootvfs) 2866 panic("vfs_remove: unmounting root"); 2867 2868 vfs_list_remove(vfsp); 2869 2870 /* 2871 * Unhook from the file system name space. 2872 */ 2873 vp = vfsp->vfs_vnodecovered; 2874 ASSERT(vn_vfswlock_held(vp)); 2875 vp->v_vfsmountedhere = NULL; 2876 vfsp->vfs_vnodecovered = NULL; 2877 VN_RELE(vp); 2878 2879 /* 2880 * Release lock and wakeup anybody waiting. 2881 */ 2882 vfs_unlock(vfsp); 2883 VFS_RELE(vfsp); 2884 } 2885 2886 /* 2887 * Lock a filesystem to prevent access to it while mounting, 2888 * unmounting and syncing. Return EBUSY immediately if lock 2889 * can't be acquired. 2890 */ 2891 int 2892 vfs_lock(vfs_t *vfsp) 2893 { 2894 vn_vfslocks_entry_t *vpvfsentry; 2895 2896 vpvfsentry = vn_vfslocks_getlock(vfsp); 2897 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 2898 return (0); 2899 2900 vn_vfslocks_rele(vpvfsentry); 2901 return (EBUSY); 2902 } 2903 2904 int 2905 vfs_rlock(vfs_t *vfsp) 2906 { 2907 vn_vfslocks_entry_t *vpvfsentry; 2908 2909 vpvfsentry = vn_vfslocks_getlock(vfsp); 2910 2911 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 2912 return (0); 2913 2914 vn_vfslocks_rele(vpvfsentry); 2915 return (EBUSY); 2916 } 2917 2918 void 2919 vfs_lock_wait(vfs_t *vfsp) 2920 { 2921 vn_vfslocks_entry_t *vpvfsentry; 2922 2923 vpvfsentry = vn_vfslocks_getlock(vfsp); 2924 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 2925 } 2926 2927 void 2928 vfs_rlock_wait(vfs_t *vfsp) 2929 { 2930 vn_vfslocks_entry_t *vpvfsentry; 2931 2932 vpvfsentry = vn_vfslocks_getlock(vfsp); 2933 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 2934 } 2935 2936 /* 2937 * Unlock a locked filesystem. 2938 */ 2939 void 2940 vfs_unlock(vfs_t *vfsp) 2941 { 2942 vn_vfslocks_entry_t *vpvfsentry; 2943 2944 /* 2945 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 2946 * And these changes should remain for the patch changes as it is. 2947 */ 2948 if (panicstr) 2949 return; 2950 2951 /* 2952 * ve_refcount needs to be dropped twice here. 2953 * 1. To release refernce after a call to vfs_locks_getlock() 2954 * 2. To release the reference from the locking routines like 2955 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 2956 */ 2957 2958 vpvfsentry = vn_vfslocks_getlock(vfsp); 2959 vn_vfslocks_rele(vpvfsentry); 2960 2961 rwst_exit(&vpvfsentry->ve_lock); 2962 vn_vfslocks_rele(vpvfsentry); 2963 } 2964 2965 /* 2966 * Utility routine that allows a filesystem to construct its 2967 * fsid in "the usual way" - by munging some underlying dev_t and 2968 * the filesystem type number into the 64-bit fsid. Note that 2969 * this implicitly relies on dev_t persistence to make filesystem 2970 * id's persistent. 2971 * 2972 * There's nothing to prevent an individual fs from constructing its 2973 * fsid in a different way, and indeed they should. 2974 * 2975 * Since we want fsids to be 32-bit quantities (so that they can be 2976 * exported identically by either 32-bit or 64-bit APIs, as well as 2977 * the fact that fsid's are "known" to NFS), we compress the device 2978 * number given down to 32-bits, and panic if that isn't possible. 2979 */ 2980 void 2981 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 2982 { 2983 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 2984 panic("device number too big for fsid!"); 2985 fsi->val[1] = val; 2986 } 2987 2988 int 2989 vfs_lock_held(vfs_t *vfsp) 2990 { 2991 int held; 2992 vn_vfslocks_entry_t *vpvfsentry; 2993 2994 /* 2995 * vfs_lock_held will mimic sema_held behaviour 2996 * if panicstr is set. And these changes should remain 2997 * for the patch changes as it is. 2998 */ 2999 if (panicstr) 3000 return (1); 3001 3002 vpvfsentry = vn_vfslocks_getlock(vfsp); 3003 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3004 3005 vn_vfslocks_rele(vpvfsentry); 3006 return (held); 3007 } 3008 3009 struct _kthread * 3010 vfs_lock_owner(vfs_t *vfsp) 3011 { 3012 struct _kthread *owner; 3013 vn_vfslocks_entry_t *vpvfsentry; 3014 3015 /* 3016 * vfs_wlock_held will mimic sema_held behaviour 3017 * if panicstr is set. And these changes should remain 3018 * for the patch changes as it is. 3019 */ 3020 if (panicstr) 3021 return (NULL); 3022 3023 vpvfsentry = vn_vfslocks_getlock(vfsp); 3024 owner = rwst_owner(&vpvfsentry->ve_lock); 3025 3026 vn_vfslocks_rele(vpvfsentry); 3027 return (owner); 3028 } 3029 3030 /* 3031 * vfs list locking. 3032 * 3033 * Rather than manipulate the vfslist lock directly, we abstract into lock 3034 * and unlock routines to allow the locking implementation to be changed for 3035 * clustering. 3036 * 3037 * Whenever the vfs list is modified through its hash links, the overall list 3038 * lock must be obtained before locking the relevant hash bucket. But to see 3039 * whether a given vfs is on the list, it suffices to obtain the lock for the 3040 * hash bucket without getting the overall list lock. (See getvfs() below.) 3041 */ 3042 3043 void 3044 vfs_list_lock() 3045 { 3046 rw_enter(&vfslist, RW_WRITER); 3047 } 3048 3049 void 3050 vfs_list_read_lock() 3051 { 3052 rw_enter(&vfslist, RW_READER); 3053 } 3054 3055 void 3056 vfs_list_unlock() 3057 { 3058 rw_exit(&vfslist); 3059 } 3060 3061 /* 3062 * Low level worker routines for adding entries to and removing entries from 3063 * the vfs list. 3064 */ 3065 3066 static void 3067 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3068 { 3069 int vhno; 3070 struct vfs **hp; 3071 dev_t dev; 3072 3073 ASSERT(RW_WRITE_HELD(&vfslist)); 3074 3075 dev = expldev(vfsp->vfs_fsid.val[0]); 3076 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3077 3078 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3079 3080 /* 3081 * Link into the hash table, inserting it at the end, so that LOFS 3082 * with the same fsid as UFS (or other) file systems will not hide the 3083 * UFS. 3084 */ 3085 if (insert_at_head) { 3086 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3087 rvfs_list[vhno].rvfs_head = vfsp; 3088 } else { 3089 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3090 hp = &(*hp)->vfs_hash) 3091 continue; 3092 /* 3093 * hp now contains the address of the pointer to update 3094 * to effect the insertion. 3095 */ 3096 vfsp->vfs_hash = NULL; 3097 *hp = vfsp; 3098 } 3099 3100 rvfs_list[vhno].rvfs_len++; 3101 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3102 } 3103 3104 3105 static void 3106 vfs_hash_remove(struct vfs *vfsp) 3107 { 3108 int vhno; 3109 struct vfs *tvfsp; 3110 dev_t dev; 3111 3112 ASSERT(RW_WRITE_HELD(&vfslist)); 3113 3114 dev = expldev(vfsp->vfs_fsid.val[0]); 3115 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3116 3117 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3118 3119 /* 3120 * Remove from hash. 3121 */ 3122 if (rvfs_list[vhno].rvfs_head == vfsp) { 3123 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3124 rvfs_list[vhno].rvfs_len--; 3125 goto foundit; 3126 } 3127 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3128 tvfsp = tvfsp->vfs_hash) { 3129 if (tvfsp->vfs_hash == vfsp) { 3130 tvfsp->vfs_hash = vfsp->vfs_hash; 3131 rvfs_list[vhno].rvfs_len--; 3132 goto foundit; 3133 } 3134 } 3135 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3136 3137 foundit: 3138 3139 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3140 } 3141 3142 3143 void 3144 vfs_list_add(struct vfs *vfsp) 3145 { 3146 zone_t *zone; 3147 3148 /* 3149 * The zone that owns the mount is the one that performed the mount. 3150 * Note that this isn't necessarily the same as the zone mounted into. 3151 * The corresponding zone_rele() will be done when the vfs_t is 3152 * being free'd. 3153 */ 3154 vfsp->vfs_zone = curproc->p_zone; 3155 zone_hold(vfsp->vfs_zone); 3156 3157 /* 3158 * Find the zone mounted into, and put this mount on its vfs list. 3159 */ 3160 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3161 ASSERT(zone != NULL); 3162 /* 3163 * Special casing for the root vfs. This structure is allocated 3164 * statically and hooked onto rootvfs at link time. During the 3165 * vfs_mountroot call at system startup time, the root file system's 3166 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3167 * as argument. The code below must detect and handle this special 3168 * case. The only apparent justification for this special casing is 3169 * to ensure that the root file system appears at the head of the 3170 * list. 3171 * 3172 * XXX: I'm assuming that it's ok to do normal list locking when 3173 * adding the entry for the root file system (this used to be 3174 * done with no locks held). 3175 */ 3176 vfs_list_lock(); 3177 /* 3178 * Link into the vfs list proper. 3179 */ 3180 if (vfsp == &root) { 3181 /* 3182 * Assert: This vfs is already on the list as its first entry. 3183 * Thus, there's nothing to do. 3184 */ 3185 ASSERT(rootvfs == vfsp); 3186 /* 3187 * Add it to the head of the global zone's vfslist. 3188 */ 3189 ASSERT(zone == global_zone); 3190 ASSERT(zone->zone_vfslist == NULL); 3191 zone->zone_vfslist = vfsp; 3192 } else { 3193 /* 3194 * Link to end of list using vfs_prev (as rootvfs is now a 3195 * doubly linked circular list) so list is in mount order for 3196 * mnttab use. 3197 */ 3198 rootvfs->vfs_prev->vfs_next = vfsp; 3199 vfsp->vfs_prev = rootvfs->vfs_prev; 3200 rootvfs->vfs_prev = vfsp; 3201 vfsp->vfs_next = rootvfs; 3202 3203 /* 3204 * Do it again for the zone-private list (which may be NULL). 3205 */ 3206 if (zone->zone_vfslist == NULL) { 3207 ASSERT(zone != global_zone); 3208 zone->zone_vfslist = vfsp; 3209 } else { 3210 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3211 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3212 zone->zone_vfslist->vfs_zone_prev = vfsp; 3213 vfsp->vfs_zone_next = zone->zone_vfslist; 3214 } 3215 } 3216 3217 /* 3218 * Link into the hash table, inserting it at the end, so that LOFS 3219 * with the same fsid as UFS (or other) file systems will not hide 3220 * the UFS. 3221 */ 3222 vfs_hash_add(vfsp, 0); 3223 3224 /* 3225 * update the mnttab modification time 3226 */ 3227 vfs_mnttab_modtimeupd(); 3228 vfs_list_unlock(); 3229 zone_rele(zone); 3230 } 3231 3232 void 3233 vfs_list_remove(struct vfs *vfsp) 3234 { 3235 zone_t *zone; 3236 3237 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3238 ASSERT(zone != NULL); 3239 /* 3240 * Callers are responsible for preventing attempts to unmount the 3241 * root. 3242 */ 3243 ASSERT(vfsp != rootvfs); 3244 3245 vfs_list_lock(); 3246 3247 /* 3248 * Remove from hash. 3249 */ 3250 vfs_hash_remove(vfsp); 3251 3252 /* 3253 * Remove from vfs list. 3254 */ 3255 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3256 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3257 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3258 3259 /* 3260 * Remove from zone-specific vfs list. 3261 */ 3262 if (zone->zone_vfslist == vfsp) 3263 zone->zone_vfslist = vfsp->vfs_zone_next; 3264 3265 if (vfsp->vfs_zone_next == vfsp) { 3266 ASSERT(vfsp->vfs_zone_prev == vfsp); 3267 ASSERT(zone->zone_vfslist == vfsp); 3268 zone->zone_vfslist = NULL; 3269 } 3270 3271 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3272 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3273 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3274 3275 /* 3276 * update the mnttab modification time 3277 */ 3278 vfs_mnttab_modtimeupd(); 3279 vfs_list_unlock(); 3280 zone_rele(zone); 3281 } 3282 3283 struct vfs * 3284 getvfs(fsid_t *fsid) 3285 { 3286 struct vfs *vfsp; 3287 int val0 = fsid->val[0]; 3288 int val1 = fsid->val[1]; 3289 dev_t dev = expldev(val0); 3290 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3291 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3292 3293 mutex_enter(hmp); 3294 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3295 if (vfsp->vfs_fsid.val[0] == val0 && 3296 vfsp->vfs_fsid.val[1] == val1) { 3297 VFS_HOLD(vfsp); 3298 mutex_exit(hmp); 3299 return (vfsp); 3300 } 3301 } 3302 mutex_exit(hmp); 3303 return (NULL); 3304 } 3305 3306 /* 3307 * Search the vfs mount in progress list for a specified device/vfs entry. 3308 * Returns 0 if the first entry in the list that the device matches has the 3309 * given vfs pointer as well. If the device matches but a different vfs 3310 * pointer is encountered in the list before the given vfs pointer then 3311 * a 1 is returned. 3312 */ 3313 3314 int 3315 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3316 { 3317 int retval = 0; 3318 struct ipmnt *mipp; 3319 3320 mutex_enter(&vfs_miplist_mutex); 3321 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3322 if (mipp->mip_dev == dev) { 3323 if (mipp->mip_vfsp != vfsp) 3324 retval = 1; 3325 break; 3326 } 3327 } 3328 mutex_exit(&vfs_miplist_mutex); 3329 return (retval); 3330 } 3331 3332 /* 3333 * Search the vfs list for a specified device. Returns 1, if entry is found 3334 * or 0 if no suitable entry is found. 3335 */ 3336 3337 int 3338 vfs_devismounted(dev_t dev) 3339 { 3340 struct vfs *vfsp; 3341 int found; 3342 3343 vfs_list_read_lock(); 3344 vfsp = rootvfs; 3345 found = 0; 3346 do { 3347 if (vfsp->vfs_dev == dev) { 3348 found = 1; 3349 break; 3350 } 3351 vfsp = vfsp->vfs_next; 3352 } while (vfsp != rootvfs); 3353 3354 vfs_list_unlock(); 3355 return (found); 3356 } 3357 3358 /* 3359 * Search the vfs list for a specified device. Returns a pointer to it 3360 * or NULL if no suitable entry is found. The caller of this routine 3361 * is responsible for releasing the returned vfs pointer. 3362 */ 3363 struct vfs * 3364 vfs_dev2vfsp(dev_t dev) 3365 { 3366 struct vfs *vfsp; 3367 int found; 3368 3369 vfs_list_read_lock(); 3370 vfsp = rootvfs; 3371 found = 0; 3372 do { 3373 /* 3374 * The following could be made more efficient by making 3375 * the entire loop use vfs_zone_next if the call is from 3376 * a zone. The only callers, however, ustat(2) and 3377 * umount2(2), don't seem to justify the added 3378 * complexity at present. 3379 */ 3380 if (vfsp->vfs_dev == dev && 3381 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3382 curproc->p_zone)) { 3383 VFS_HOLD(vfsp); 3384 found = 1; 3385 break; 3386 } 3387 vfsp = vfsp->vfs_next; 3388 } while (vfsp != rootvfs); 3389 vfs_list_unlock(); 3390 return (found ? vfsp: NULL); 3391 } 3392 3393 /* 3394 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3395 * or NULL if no suitable entry is found. The caller of this routine 3396 * is responsible for releasing the returned vfs pointer. 3397 * 3398 * Note that if multiple mntpoints match, the last one matching is 3399 * returned in an attempt to return the "top" mount when overlay 3400 * mounts are covering the same mount point. This is accomplished by starting 3401 * at the end of the list and working our way backwards, stopping at the first 3402 * matching mount. 3403 */ 3404 struct vfs * 3405 vfs_mntpoint2vfsp(const char *mp) 3406 { 3407 struct vfs *vfsp; 3408 struct vfs *retvfsp = NULL; 3409 zone_t *zone = curproc->p_zone; 3410 struct vfs *list; 3411 3412 vfs_list_read_lock(); 3413 if (getzoneid() == GLOBAL_ZONEID) { 3414 /* 3415 * The global zone may see filesystems in any zone. 3416 */ 3417 vfsp = rootvfs->vfs_prev; 3418 do { 3419 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3420 retvfsp = vfsp; 3421 break; 3422 } 3423 vfsp = vfsp->vfs_prev; 3424 } while (vfsp != rootvfs->vfs_prev); 3425 } else if ((list = zone->zone_vfslist) != NULL) { 3426 const char *mntpt; 3427 3428 vfsp = list->vfs_zone_prev; 3429 do { 3430 mntpt = refstr_value(vfsp->vfs_mntpt); 3431 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3432 if (strcmp(mntpt, mp) == 0) { 3433 retvfsp = vfsp; 3434 break; 3435 } 3436 vfsp = vfsp->vfs_zone_prev; 3437 } while (vfsp != list->vfs_zone_prev); 3438 } 3439 if (retvfsp) 3440 VFS_HOLD(retvfsp); 3441 vfs_list_unlock(); 3442 return (retvfsp); 3443 } 3444 3445 /* 3446 * Search the vfs list for a specified vfsops. 3447 * if vfs entry is found then return 1, else 0. 3448 */ 3449 int 3450 vfs_opsinuse(vfsops_t *ops) 3451 { 3452 struct vfs *vfsp; 3453 int found; 3454 3455 vfs_list_read_lock(); 3456 vfsp = rootvfs; 3457 found = 0; 3458 do { 3459 if (vfs_getops(vfsp) == ops) { 3460 found = 1; 3461 break; 3462 } 3463 vfsp = vfsp->vfs_next; 3464 } while (vfsp != rootvfs); 3465 vfs_list_unlock(); 3466 return (found); 3467 } 3468 3469 /* 3470 * Allocate an entry in vfssw for a file system type 3471 */ 3472 struct vfssw * 3473 allocate_vfssw(char *type) 3474 { 3475 struct vfssw *vswp; 3476 3477 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3478 /* 3479 * The vfssw table uses the empty string to identify an 3480 * available entry; we cannot add any type which has 3481 * a leading NUL. The string length is limited to 3482 * the size of the st_fstype array in struct stat. 3483 */ 3484 return (NULL); 3485 } 3486 3487 ASSERT(VFSSW_WRITE_LOCKED()); 3488 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3489 if (!ALLOCATED_VFSSW(vswp)) { 3490 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3491 (void) strcpy(vswp->vsw_name, type); 3492 ASSERT(vswp->vsw_count == 0); 3493 vswp->vsw_count = 1; 3494 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3495 return (vswp); 3496 } 3497 return (NULL); 3498 } 3499 3500 /* 3501 * Impose additional layer of translation between vfstype names 3502 * and module names in the filesystem. 3503 */ 3504 static char * 3505 vfs_to_modname(char *vfstype) 3506 { 3507 if (strcmp(vfstype, "proc") == 0) { 3508 vfstype = "procfs"; 3509 } else if (strcmp(vfstype, "fd") == 0) { 3510 vfstype = "fdfs"; 3511 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3512 vfstype = "nfs"; 3513 } 3514 3515 return (vfstype); 3516 } 3517 3518 /* 3519 * Find a vfssw entry given a file system type name. 3520 * Try to autoload the filesystem if it's not found. 3521 * If it's installed, return the vfssw locked to prevent unloading. 3522 */ 3523 struct vfssw * 3524 vfs_getvfssw(char *type) 3525 { 3526 struct vfssw *vswp; 3527 char *modname; 3528 3529 RLOCK_VFSSW(); 3530 vswp = vfs_getvfsswbyname(type); 3531 modname = vfs_to_modname(type); 3532 3533 if (rootdir == NULL) { 3534 /* 3535 * If we haven't yet loaded the root file system, then our 3536 * _init won't be called until later. Allocate vfssw entry, 3537 * because mod_installfs won't be called. 3538 */ 3539 if (vswp == NULL) { 3540 RUNLOCK_VFSSW(); 3541 WLOCK_VFSSW(); 3542 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3543 if ((vswp = allocate_vfssw(type)) == NULL) { 3544 WUNLOCK_VFSSW(); 3545 return (NULL); 3546 } 3547 } 3548 WUNLOCK_VFSSW(); 3549 RLOCK_VFSSW(); 3550 } 3551 if (!VFS_INSTALLED(vswp)) { 3552 RUNLOCK_VFSSW(); 3553 (void) modloadonly("fs", modname); 3554 } else 3555 RUNLOCK_VFSSW(); 3556 return (vswp); 3557 } 3558 3559 /* 3560 * Try to load the filesystem. Before calling modload(), we drop 3561 * our lock on the VFS switch table, and pick it up after the 3562 * module is loaded. However, there is a potential race: the 3563 * module could be unloaded after the call to modload() completes 3564 * but before we pick up the lock and drive on. Therefore, 3565 * we keep reloading the module until we've loaded the module 3566 * _and_ we have the lock on the VFS switch table. 3567 */ 3568 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3569 RUNLOCK_VFSSW(); 3570 if (modload("fs", modname) == -1) 3571 return (NULL); 3572 RLOCK_VFSSW(); 3573 if (vswp == NULL) 3574 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3575 break; 3576 } 3577 RUNLOCK_VFSSW(); 3578 3579 return (vswp); 3580 } 3581 3582 /* 3583 * Find a vfssw entry given a file system type name. 3584 */ 3585 struct vfssw * 3586 vfs_getvfsswbyname(char *type) 3587 { 3588 struct vfssw *vswp; 3589 3590 ASSERT(VFSSW_LOCKED()); 3591 if (type == NULL || *type == '\0') 3592 return (NULL); 3593 3594 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3595 if (strcmp(type, vswp->vsw_name) == 0) { 3596 vfs_refvfssw(vswp); 3597 return (vswp); 3598 } 3599 } 3600 3601 return (NULL); 3602 } 3603 3604 /* 3605 * Find a vfssw entry given a set of vfsops. 3606 */ 3607 struct vfssw * 3608 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3609 { 3610 struct vfssw *vswp; 3611 3612 RLOCK_VFSSW(); 3613 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3614 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3615 vfs_refvfssw(vswp); 3616 RUNLOCK_VFSSW(); 3617 return (vswp); 3618 } 3619 } 3620 RUNLOCK_VFSSW(); 3621 3622 return (NULL); 3623 } 3624 3625 /* 3626 * Reference a vfssw entry. 3627 */ 3628 void 3629 vfs_refvfssw(struct vfssw *vswp) 3630 { 3631 3632 mutex_enter(&vswp->vsw_lock); 3633 vswp->vsw_count++; 3634 mutex_exit(&vswp->vsw_lock); 3635 } 3636 3637 /* 3638 * Unreference a vfssw entry. 3639 */ 3640 void 3641 vfs_unrefvfssw(struct vfssw *vswp) 3642 { 3643 3644 mutex_enter(&vswp->vsw_lock); 3645 vswp->vsw_count--; 3646 mutex_exit(&vswp->vsw_lock); 3647 } 3648 3649 int sync_timeout = 30; /* timeout for syncing a page during panic */ 3650 int sync_timeleft; /* portion of sync_timeout remaining */ 3651 3652 static int sync_retries = 20; /* number of retries when not making progress */ 3653 static int sync_triesleft; /* portion of sync_retries remaining */ 3654 3655 static pgcnt_t old_pgcnt, new_pgcnt; 3656 static int new_bufcnt, old_bufcnt; 3657 3658 /* 3659 * Sync all of the mounted filesystems, and then wait for the actual i/o to 3660 * complete. We wait by counting the number of dirty pages and buffers, 3661 * pushing them out using bio_busy() and page_busy(), and then counting again. 3662 * This routine is used during both the uadmin A_SHUTDOWN code as well as 3663 * the SYNC phase of the panic code (see comments in panic.c). It should only 3664 * be used after some higher-level mechanism has quiesced the system so that 3665 * new writes are not being initiated while we are waiting for completion. 3666 * 3667 * To ensure finite running time, our algorithm uses two timeout mechanisms: 3668 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 3669 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 3670 * Together these ensure that syncing completes if our i/o paths are stuck. 3671 * The counters are declared above so they can be found easily in the debugger. 3672 * 3673 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 3674 * vfs_syncprogress() subroutine whenever we make progress through the lists of 3675 * pages and buffers. It is decremented and expired by the deadman() cyclic. 3676 * When vfs_syncall() decides it is done, we disable the deadman() counter by 3677 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 3678 * deadlocking or hanging inside of a broken filesystem or driver routine. 3679 * 3680 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 3681 * sync_retries consecutive calls to bio_busy() and page_busy() without 3682 * decreasing either the number of dirty buffers or dirty pages below the 3683 * lowest count we have seen so far, we give up and return from vfs_syncall(). 3684 * 3685 * Each loop iteration ends with a call to delay() one second to allow time for 3686 * i/o completion and to permit the user time to read our progress messages. 3687 */ 3688 void 3689 vfs_syncall(void) 3690 { 3691 if (rootdir == NULL && !modrootloaded) 3692 return; /* panic during boot - no filesystems yet */ 3693 3694 printf("syncing file systems..."); 3695 vfs_syncprogress(); 3696 sync(); 3697 3698 vfs_syncprogress(); 3699 sync_triesleft = sync_retries; 3700 3701 old_bufcnt = new_bufcnt = INT_MAX; 3702 old_pgcnt = new_pgcnt = ULONG_MAX; 3703 3704 while (sync_triesleft > 0) { 3705 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 3706 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 3707 3708 new_bufcnt = bio_busy(B_TRUE); 3709 new_pgcnt = page_busy(B_TRUE); 3710 vfs_syncprogress(); 3711 3712 if (new_bufcnt == 0 && new_pgcnt == 0) 3713 break; 3714 3715 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 3716 sync_triesleft = sync_retries; 3717 else 3718 sync_triesleft--; 3719 3720 if (new_bufcnt) 3721 printf(" [%d]", new_bufcnt); 3722 if (new_pgcnt) 3723 printf(" %lu", new_pgcnt); 3724 3725 delay(hz); 3726 } 3727 3728 if (new_bufcnt != 0 || new_pgcnt != 0) 3729 printf(" done (not all i/o completed)\n"); 3730 else 3731 printf(" done\n"); 3732 3733 sync_timeleft = 0; 3734 delay(hz); 3735 } 3736 3737 /* 3738 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 3739 * sync_timeout to indicate that we are making progress and the deadman() 3740 * omnipresent cyclic should not yet time us out. Note that it is safe to 3741 * store to sync_timeleft here since the deadman() is firing at high-level 3742 * on top of us. If we are racing with the deadman(), either the deadman() 3743 * will decrement the old value and then we will reset it, or we will 3744 * reset it and then the deadman() will immediately decrement it. In either 3745 * case, correct behavior results. 3746 */ 3747 void 3748 vfs_syncprogress(void) 3749 { 3750 if (panicstr) 3751 sync_timeleft = sync_timeout; 3752 } 3753 3754 /* 3755 * Map VFS flags to statvfs flags. These shouldn't really be separate 3756 * flags at all. 3757 */ 3758 uint_t 3759 vf_to_stf(uint_t vf) 3760 { 3761 uint_t stf = 0; 3762 3763 if (vf & VFS_RDONLY) 3764 stf |= ST_RDONLY; 3765 if (vf & VFS_NOSETUID) 3766 stf |= ST_NOSUID; 3767 if (vf & VFS_NOTRUNC) 3768 stf |= ST_NOTRUNC; 3769 3770 return (stf); 3771 } 3772 3773 /* 3774 * Entries for (illegal) fstype 0. 3775 */ 3776 /* ARGSUSED */ 3777 int 3778 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 3779 { 3780 cmn_err(CE_PANIC, "stray vfs operation"); 3781 return (0); 3782 } 3783 3784 /* 3785 * Entries for (illegal) fstype 0. 3786 */ 3787 int 3788 vfsstray(void) 3789 { 3790 cmn_err(CE_PANIC, "stray vfs operation"); 3791 return (0); 3792 } 3793 3794 /* 3795 * Support for dealing with forced UFS unmount and its interaction with 3796 * LOFS. Could be used by any filesystem. 3797 * See bug 1203132. 3798 */ 3799 int 3800 vfs_EIO(void) 3801 { 3802 return (EIO); 3803 } 3804 3805 /* 3806 * We've gotta define the op for sync separately, since the compiler gets 3807 * confused if we mix and match ANSI and normal style prototypes when 3808 * a "short" argument is present and spits out a warning. 3809 */ 3810 /*ARGSUSED*/ 3811 int 3812 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 3813 { 3814 return (EIO); 3815 } 3816 3817 vfs_t EIO_vfs; 3818 vfsops_t *EIO_vfsops; 3819 3820 /* 3821 * Called from startup() to initialize all loaded vfs's 3822 */ 3823 void 3824 vfsinit(void) 3825 { 3826 struct vfssw *vswp; 3827 int error; 3828 extern int vopstats_enabled; 3829 extern void vopstats_startup(); 3830 3831 static const fs_operation_def_t EIO_vfsops_template[] = { 3832 VFSNAME_MOUNT, { .error = vfs_EIO }, 3833 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 3834 VFSNAME_ROOT, { .error = vfs_EIO }, 3835 VFSNAME_STATVFS, { .error = vfs_EIO }, 3836 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 3837 VFSNAME_VGET, { .error = vfs_EIO }, 3838 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 3839 VFSNAME_FREEVFS, { .error = vfs_EIO }, 3840 VFSNAME_VNSTATE, { .error = vfs_EIO }, 3841 NULL, NULL 3842 }; 3843 3844 static const fs_operation_def_t stray_vfsops_template[] = { 3845 VFSNAME_MOUNT, { .error = vfsstray }, 3846 VFSNAME_UNMOUNT, { .error = vfsstray }, 3847 VFSNAME_ROOT, { .error = vfsstray }, 3848 VFSNAME_STATVFS, { .error = vfsstray }, 3849 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 3850 VFSNAME_VGET, { .error = vfsstray }, 3851 VFSNAME_MOUNTROOT, { .error = vfsstray }, 3852 VFSNAME_FREEVFS, { .error = vfsstray }, 3853 VFSNAME_VNSTATE, { .error = vfsstray }, 3854 NULL, NULL 3855 }; 3856 3857 /* Initialize the vnode cache (file systems may use it during init). */ 3858 3859 vn_create_cache(); 3860 3861 /* Setup event monitor framework */ 3862 3863 fem_init(); 3864 3865 /* Initialize the dummy stray file system type. */ 3866 error = vfs_setfsops(0, stray_vfsops_template, NULL); 3867 3868 /* Initialize the dummy EIO file system. */ 3869 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 3870 if (error != 0) { 3871 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 3872 /* Shouldn't happen, but not bad enough to panic */ 3873 } 3874 3875 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 3876 3877 /* 3878 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 3879 * on this vfs can immediately notice it's invalid. 3880 */ 3881 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 3882 3883 /* 3884 * Call the init routines of non-loadable filesystems only. 3885 * Filesystems which are loaded as separate modules will be 3886 * initialized by the module loading code instead. 3887 */ 3888 3889 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3890 RLOCK_VFSSW(); 3891 if (vswp->vsw_init != NULL) 3892 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 3893 RUNLOCK_VFSSW(); 3894 } 3895 3896 vopstats_startup(); 3897 3898 if (vopstats_enabled) { 3899 /* EIO_vfs can collect stats, but we don't retrieve them */ 3900 initialize_vopstats(&EIO_vfs.vfs_vopstats); 3901 EIO_vfs.vfs_fstypevsp = NULL; 3902 EIO_vfs.vfs_vskap = NULL; 3903 EIO_vfs.vfs_flag |= VFS_STATS; 3904 } 3905 } 3906 3907 /* 3908 * Increments the vfs reference count by one atomically. 3909 */ 3910 void 3911 vfs_hold(vfs_t *vfsp) 3912 { 3913 atomic_add_32(&vfsp->vfs_count, 1); 3914 ASSERT(vfsp->vfs_count != 0); 3915 } 3916 3917 /* 3918 * Decrements the vfs reference count by one atomically. When 3919 * vfs reference count becomes zero, it calls the file system 3920 * specific vfs_freevfs() to free up the resources. 3921 */ 3922 void 3923 vfs_rele(vfs_t *vfsp) 3924 { 3925 ASSERT(vfsp->vfs_count != 0); 3926 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 3927 VFS_FREEVFS(vfsp); 3928 if (vfsp->vfs_zone) 3929 zone_rele(vfsp->vfs_zone); 3930 vfs_freemnttab(vfsp); 3931 if (vfsp->vfs_implp) 3932 vfsimpl_teardown(vfsp); 3933 sema_destroy(&vfsp->vfs_reflock); 3934 kmem_free(vfsp, sizeof (*vfsp)); 3935 } 3936 } 3937 3938 /* 3939 * Generic operations vector support. 3940 * 3941 * This is used to build operations vectors for both the vfs and vnode. 3942 * It's normally called only when a file system is loaded. 3943 * 3944 * There are many possible algorithms for this, including the following: 3945 * 3946 * (1) scan the list of known operations; for each, see if the file system 3947 * includes an entry for it, and fill it in as appropriate. 3948 * 3949 * (2) set up defaults for all known operations. scan the list of ops 3950 * supplied by the file system; for each which is both supplied and 3951 * known, fill it in. 3952 * 3953 * (3) sort the lists of known ops & supplied ops; scan the list, filling 3954 * in entries as we go. 3955 * 3956 * we choose (1) for simplicity, and because performance isn't critical here. 3957 * note that (2) could be sped up using a precomputed hash table on known ops. 3958 * (3) could be faster than either, but only if the lists were very large or 3959 * supplied in sorted order. 3960 * 3961 */ 3962 3963 int 3964 fs_build_vector(void *vector, int *unused_ops, 3965 const fs_operation_trans_def_t *translation, 3966 const fs_operation_def_t *operations) 3967 { 3968 int i, num_trans, num_ops, used; 3969 3970 /* 3971 * Count the number of translations and the number of supplied 3972 * operations. 3973 */ 3974 3975 { 3976 const fs_operation_trans_def_t *p; 3977 3978 for (num_trans = 0, p = translation; 3979 p->name != NULL; 3980 num_trans++, p++) 3981 ; 3982 } 3983 3984 { 3985 const fs_operation_def_t *p; 3986 3987 for (num_ops = 0, p = operations; 3988 p->name != NULL; 3989 num_ops++, p++) 3990 ; 3991 } 3992 3993 /* Walk through each operation known to our caller. There will be */ 3994 /* one entry in the supplied "translation table" for each. */ 3995 3996 used = 0; 3997 3998 for (i = 0; i < num_trans; i++) { 3999 int j, found; 4000 char *curname; 4001 fs_generic_func_p result; 4002 fs_generic_func_p *location; 4003 4004 curname = translation[i].name; 4005 4006 /* Look for a matching operation in the list supplied by the */ 4007 /* file system. */ 4008 4009 found = 0; 4010 4011 for (j = 0; j < num_ops; j++) { 4012 if (strcmp(operations[j].name, curname) == 0) { 4013 used++; 4014 found = 1; 4015 break; 4016 } 4017 } 4018 4019 /* 4020 * If the file system is using a "placeholder" for default 4021 * or error functions, grab the appropriate function out of 4022 * the translation table. If the file system didn't supply 4023 * this operation at all, use the default function. 4024 */ 4025 4026 if (found) { 4027 result = operations[j].func.fs_generic; 4028 if (result == fs_default) { 4029 result = translation[i].defaultFunc; 4030 } else if (result == fs_error) { 4031 result = translation[i].errorFunc; 4032 } else if (result == NULL) { 4033 /* Null values are PROHIBITED */ 4034 return (EINVAL); 4035 } 4036 } else { 4037 result = translation[i].defaultFunc; 4038 } 4039 4040 /* Now store the function into the operations vector. */ 4041 4042 location = (fs_generic_func_p *) 4043 (((char *)vector) + translation[i].offset); 4044 4045 *location = result; 4046 } 4047 4048 *unused_ops = num_ops - used; 4049 4050 return (0); 4051 } 4052 4053 /* Placeholder functions, should never be called. */ 4054 4055 int 4056 fs_error(void) 4057 { 4058 cmn_err(CE_PANIC, "fs_error called"); 4059 return (0); 4060 } 4061 4062 int 4063 fs_default(void) 4064 { 4065 cmn_err(CE_PANIC, "fs_default called"); 4066 return (0); 4067 } 4068 4069 #ifdef __sparc 4070 4071 /* 4072 * Part of the implementation of booting off a mirrored root 4073 * involves a change of dev_t for the root device. To 4074 * accomplish this, first remove the existing hash table 4075 * entry for the root device, convert to the new dev_t, 4076 * then re-insert in the hash table at the head of the list. 4077 */ 4078 void 4079 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4080 { 4081 vfs_list_lock(); 4082 4083 vfs_hash_remove(vfsp); 4084 4085 vfsp->vfs_dev = ndev; 4086 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4087 4088 vfs_hash_add(vfsp, 1); 4089 4090 vfs_list_unlock(); 4091 } 4092 4093 #else /* x86 NEWBOOT */ 4094 4095 int 4096 rootconf() 4097 { 4098 int error; 4099 struct vfssw *vsw; 4100 extern void pm_init(); 4101 char *fstyp; 4102 4103 fstyp = getrootfs(); 4104 4105 if (error = clboot_rootconf()) 4106 return (error); 4107 4108 if (modload("fs", fstyp) == -1) 4109 panic("Cannot _init %s module", fstyp); 4110 4111 RLOCK_VFSSW(); 4112 vsw = vfs_getvfsswbyname(fstyp); 4113 RUNLOCK_VFSSW(); 4114 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4115 VFS_HOLD(rootvfs); 4116 4117 /* always mount readonly first */ 4118 rootvfs->vfs_flag |= VFS_RDONLY; 4119 4120 pm_init(); 4121 4122 if (netboot) 4123 (void) strplumb(); 4124 4125 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4126 vfs_unrefvfssw(vsw); 4127 rootdev = rootvfs->vfs_dev; 4128 4129 if (error) 4130 panic("cannot mount root path %s", rootfs.bo_name); 4131 return (error); 4132 } 4133 4134 /* 4135 * XXX this is called by nfs only and should probably be removed 4136 * If booted with ASKNAME, prompt on the console for a filesystem 4137 * name and return it. 4138 */ 4139 void 4140 getfsname(char *askfor, char *name, size_t namelen) 4141 { 4142 if (boothowto & RB_ASKNAME) { 4143 printf("%s name: ", askfor); 4144 console_gets(name, namelen); 4145 } 4146 } 4147 4148 /* 4149 * If server_path exists, then we are booting a diskless 4150 * client. Otherwise, we default to ufs. Zfs should perhaps be 4151 * another property. 4152 */ 4153 static char * 4154 getrootfs(void) 4155 { 4156 extern char *strplumb_get_netdev_path(void); 4157 char *propstr = NULL; 4158 4159 /* check fstype property; it should be nfsdyn for diskless */ 4160 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4161 DDI_PROP_DONTPASS, "fstype", &propstr) 4162 == DDI_SUCCESS) { 4163 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4164 ddi_prop_free(propstr); 4165 4166 /* 4167 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4168 * assume the type of this root filesystem is 'zfs'. 4169 */ 4170 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4171 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4172 == DDI_SUCCESS) { 4173 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4174 ddi_prop_free(propstr); 4175 } 4176 4177 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) 4178 return (rootfs.bo_fstype); 4179 4180 ++netboot; 4181 /* check if path to network interface is specified in bootpath */ 4182 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4183 DDI_PROP_DONTPASS, "bootpath", &propstr) 4184 == DDI_SUCCESS) { 4185 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4186 ddi_prop_free(propstr); 4187 } else { 4188 /* attempt to determine netdev_path via boot_mac address */ 4189 netdev_path = strplumb_get_netdev_path(); 4190 if (netdev_path == NULL) 4191 panic("cannot find boot network interface"); 4192 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4193 } 4194 return ("nfs"); 4195 } 4196 #endif 4197