1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/errno.h> 43 #include <sys/user.h> 44 #include <sys/fstyp.h> 45 #include <sys/kmem.h> 46 #include <sys/systm.h> 47 #include <sys/proc.h> 48 #include <sys/mount.h> 49 #include <sys/vfs.h> 50 #include <sys/vfs_opreg.h> 51 #include <sys/fem.h> 52 #include <sys/mntent.h> 53 #include <sys/stat.h> 54 #include <sys/statvfs.h> 55 #include <sys/statfs.h> 56 #include <sys/cred.h> 57 #include <sys/vnode.h> 58 #include <sys/rwstlock.h> 59 #include <sys/dnlc.h> 60 #include <sys/file.h> 61 #include <sys/time.h> 62 #include <sys/atomic.h> 63 #include <sys/cmn_err.h> 64 #include <sys/buf.h> 65 #include <sys/swap.h> 66 #include <sys/debug.h> 67 #include <sys/vnode.h> 68 #include <sys/modctl.h> 69 #include <sys/ddi.h> 70 #include <sys/pathname.h> 71 #include <sys/bootconf.h> 72 #include <sys/dumphdr.h> 73 #include <sys/dc_ki.h> 74 #include <sys/poll.h> 75 #include <sys/sunddi.h> 76 #include <sys/sysmacros.h> 77 #include <sys/zone.h> 78 #include <sys/policy.h> 79 #include <sys/ctfs.h> 80 #include <sys/objfs.h> 81 #include <sys/console.h> 82 #include <sys/reboot.h> 83 #include <sys/attr.h> 84 #include <sys/zio.h> 85 #include <sys/spa.h> 86 #include <sys/lofi.h> 87 #include <sys/bootprops.h> 88 89 #include <vm/page.h> 90 91 #include <fs/fs_subr.h> 92 /* Private interfaces to create vopstats-related data structures */ 93 extern void initialize_vopstats(vopstats_t *); 94 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 95 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 96 97 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 98 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 99 const char *, int, int); 100 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 101 static void vfs_freemnttab(struct vfs *); 102 static void vfs_freeopt(mntopt_t *); 103 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 104 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 105 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 106 static void vfs_createopttbl_extend(mntopts_t *, const char *, 107 const mntopts_t *); 108 static char **vfs_copycancelopt_extend(char **const, int); 109 static void vfs_freecancelopt(char **); 110 static void getrootfs(char **, char **); 111 static int getmacpath(dev_info_t *, void *); 112 static void vfs_mnttabvp_setup(void); 113 114 struct ipmnt { 115 struct ipmnt *mip_next; 116 dev_t mip_dev; 117 struct vfs *mip_vfsp; 118 }; 119 120 static kmutex_t vfs_miplist_mutex; 121 static struct ipmnt *vfs_miplist = NULL; 122 static struct ipmnt *vfs_miplist_end = NULL; 123 124 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 125 126 /* 127 * VFS global data. 128 */ 129 vnode_t *rootdir; /* pointer to root inode vnode. */ 130 vnode_t *devicesdir; /* pointer to inode of devices root */ 131 vnode_t *devdir; /* pointer to inode of dev root */ 132 133 char *server_rootpath; /* root path for diskless clients */ 134 char *server_hostname; /* hostname of diskless server */ 135 136 static struct vfs root; 137 static struct vfs devices; 138 static struct vfs dev; 139 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 140 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 141 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 142 /* must be power of 2! */ 143 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 144 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 145 char *vfs_dummyfstype = "\0"; 146 struct pollhead vfs_pollhd; /* for mnttab pollers */ 147 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 148 int mntfstype; /* will be set once mnt fs is mounted */ 149 150 /* 151 * Table for generic options recognized in the VFS layer and acted 152 * on at this level before parsing file system specific options. 153 * The nosuid option is stronger than any of the devices and setuid 154 * options, so those are canceled when nosuid is seen. 155 * 156 * All options which are added here need to be added to the 157 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 158 */ 159 /* 160 * VFS Mount options table 161 */ 162 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 163 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 164 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 165 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 166 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 167 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 168 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 169 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 170 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 171 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 172 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 173 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 174 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 175 176 static const mntopt_t mntopts[] = { 177 /* 178 * option name cancel options default arg flags 179 */ 180 { MNTOPT_REMOUNT, NULL, NULL, 181 MO_NODISPLAY, (void *)0 }, 182 { MNTOPT_RO, ro_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_RW, rw_cancel, NULL, 0, 185 (void *)0 }, 186 { MNTOPT_SUID, suid_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_EXEC, exec_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 205 (void *)0 }, 206 }; 207 208 const mntopts_t vfs_mntopts = { 209 sizeof (mntopts) / sizeof (mntopt_t), 210 (mntopt_t *)&mntopts[0] 211 }; 212 213 /* 214 * File system operation dispatch functions. 215 */ 216 217 int 218 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 219 { 220 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 221 } 222 223 int 224 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 225 { 226 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 227 } 228 229 int 230 fsop_root(vfs_t *vfsp, vnode_t **vpp) 231 { 232 refstr_t *mntpt; 233 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 234 /* 235 * Make sure this root has a path. With lofs, it is possible to have 236 * a NULL mountpoint. 237 */ 238 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 239 mntpt = vfs_getmntpoint(vfsp); 240 vn_setpath_str(*vpp, refstr_value(mntpt), 241 strlen(refstr_value(mntpt))); 242 refstr_rele(mntpt); 243 } 244 245 return (ret); 246 } 247 248 int 249 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 250 { 251 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 252 } 253 254 int 255 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 256 { 257 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 258 } 259 260 int 261 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 262 { 263 /* 264 * In order to handle system attribute fids in a manner 265 * transparent to the underlying fs, we embed the fid for 266 * the sysattr parent object in the sysattr fid and tack on 267 * some extra bytes that only the sysattr layer knows about. 268 * 269 * This guarantees that sysattr fids are larger than other fids 270 * for this vfs. If the vfs supports the sysattr view interface 271 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 272 * collision with XATTR_FIDSZ. 273 */ 274 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 275 fidp->fid_len == XATTR_FIDSZ) 276 return (xattr_dir_vget(vfsp, vpp, fidp)); 277 278 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 279 } 280 281 int 282 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 283 { 284 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 285 } 286 287 void 288 fsop_freefs(vfs_t *vfsp) 289 { 290 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 291 } 292 293 int 294 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 295 { 296 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 297 } 298 299 int 300 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 301 { 302 ASSERT((fstype >= 0) && (fstype < nfstype)); 303 304 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 305 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 306 else 307 return (ENOTSUP); 308 } 309 310 /* 311 * File system initialization. vfs_setfsops() must be called from a file 312 * system's init routine. 313 */ 314 315 static int 316 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 317 int *unused_ops) 318 { 319 static const fs_operation_trans_def_t vfs_ops_table[] = { 320 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 321 fs_nosys, fs_nosys, 322 323 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 324 fs_nosys, fs_nosys, 325 326 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 327 fs_nosys, fs_nosys, 328 329 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 330 fs_nosys, fs_nosys, 331 332 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 333 (fs_generic_func_p) fs_sync, 334 (fs_generic_func_p) fs_sync, /* No errors allowed */ 335 336 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 337 fs_nosys, fs_nosys, 338 339 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 340 fs_nosys, fs_nosys, 341 342 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 343 (fs_generic_func_p)fs_freevfs, 344 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 345 346 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 347 (fs_generic_func_p)fs_nosys, 348 (fs_generic_func_p)fs_nosys, 349 350 NULL, 0, NULL, NULL 351 }; 352 353 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 354 } 355 356 void 357 zfs_boot_init() { 358 359 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 360 spa_boot_init(); 361 } 362 363 int 364 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 365 { 366 int error; 367 int unused_ops; 368 369 /* 370 * Verify that fstype refers to a valid fs. Note that 371 * 0 is valid since it's used to set "stray" ops. 372 */ 373 if ((fstype < 0) || (fstype >= nfstype)) 374 return (EINVAL); 375 376 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 377 return (EINVAL); 378 379 /* Set up the operations vector. */ 380 381 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 382 383 if (error != 0) 384 return (error); 385 386 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 387 388 if (actual != NULL) 389 *actual = &vfssw[fstype].vsw_vfsops; 390 391 #if DEBUG 392 if (unused_ops != 0) 393 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 394 "but not used", vfssw[fstype].vsw_name, unused_ops); 395 #endif 396 397 return (0); 398 } 399 400 int 401 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 402 { 403 int error; 404 int unused_ops; 405 406 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 407 408 error = fs_copyfsops(template, *actual, &unused_ops); 409 if (error != 0) { 410 kmem_free(*actual, sizeof (vfsops_t)); 411 *actual = NULL; 412 return (error); 413 } 414 415 return (0); 416 } 417 418 /* 419 * Free a vfsops structure created as a result of vfs_makefsops(). 420 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 421 * vfs_freevfsops_by_type(). 422 */ 423 void 424 vfs_freevfsops(vfsops_t *vfsops) 425 { 426 kmem_free(vfsops, sizeof (vfsops_t)); 427 } 428 429 /* 430 * Since the vfsops structure is part of the vfssw table and wasn't 431 * really allocated, we're not really freeing anything. We keep 432 * the name for consistency with vfs_freevfsops(). We do, however, 433 * need to take care of a little bookkeeping. 434 * NOTE: For a vfsops structure created by vfs_setfsops(), use 435 * vfs_freevfsops_by_type(). 436 */ 437 int 438 vfs_freevfsops_by_type(int fstype) 439 { 440 441 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 442 if ((fstype <= 0) || (fstype >= nfstype)) 443 return (EINVAL); 444 445 WLOCK_VFSSW(); 446 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 447 WUNLOCK_VFSSW(); 448 return (EINVAL); 449 } 450 451 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 452 WUNLOCK_VFSSW(); 453 454 return (0); 455 } 456 457 /* Support routines used to reference vfs_op */ 458 459 /* Set the operations vector for a vfs */ 460 void 461 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 462 { 463 vfsops_t *op; 464 465 ASSERT(vfsp != NULL); 466 ASSERT(vfsops != NULL); 467 468 op = vfsp->vfs_op; 469 membar_consumer(); 470 if (vfsp->vfs_femhead == NULL && 471 casptr(&vfsp->vfs_op, op, vfsops) == op) { 472 return; 473 } 474 fsem_setvfsops(vfsp, vfsops); 475 } 476 477 /* Retrieve the operations vector for a vfs */ 478 vfsops_t * 479 vfs_getops(vfs_t *vfsp) 480 { 481 vfsops_t *op; 482 483 ASSERT(vfsp != NULL); 484 485 op = vfsp->vfs_op; 486 membar_consumer(); 487 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 488 return (op); 489 } else { 490 return (fsem_getvfsops(vfsp)); 491 } 492 } 493 494 /* 495 * Returns non-zero (1) if the vfsops matches that of the vfs. 496 * Returns zero (0) if not. 497 */ 498 int 499 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 500 { 501 return (vfs_getops(vfsp) == vfsops); 502 } 503 504 /* 505 * Returns non-zero (1) if the file system has installed a non-default, 506 * non-error vfs_sync routine. Returns zero (0) otherwise. 507 */ 508 int 509 vfs_can_sync(vfs_t *vfsp) 510 { 511 /* vfs_sync() routine is not the default/error function */ 512 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 513 } 514 515 /* 516 * Initialize a vfs structure. 517 */ 518 void 519 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 520 { 521 /* Other initialization has been moved to vfs_alloc() */ 522 vfsp->vfs_count = 0; 523 vfsp->vfs_next = vfsp; 524 vfsp->vfs_prev = vfsp; 525 vfsp->vfs_zone_next = vfsp; 526 vfsp->vfs_zone_prev = vfsp; 527 vfsp->vfs_lofi_minor = 0; 528 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 529 vfsimpl_setup(vfsp); 530 vfsp->vfs_data = (data); 531 vfs_setops((vfsp), (op)); 532 } 533 534 /* 535 * Allocate and initialize the vfs implementation private data 536 * structure, vfs_impl_t. 537 */ 538 void 539 vfsimpl_setup(vfs_t *vfsp) 540 { 541 int i; 542 543 if (vfsp->vfs_implp != NULL) { 544 return; 545 } 546 547 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 548 /* Note that these are #define'd in vfs.h */ 549 vfsp->vfs_vskap = NULL; 550 vfsp->vfs_fstypevsp = NULL; 551 552 /* Set size of counted array, then zero the array */ 553 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 554 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 555 vfsp->vfs_featureset[i] = 0; 556 } 557 } 558 559 /* 560 * Release the vfs_impl_t structure, if it exists. Some unbundled 561 * filesystems may not use the newer version of vfs and thus 562 * would not contain this implementation private data structure. 563 */ 564 void 565 vfsimpl_teardown(vfs_t *vfsp) 566 { 567 vfs_impl_t *vip = vfsp->vfs_implp; 568 569 if (vip == NULL) 570 return; 571 572 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 573 vfsp->vfs_implp = NULL; 574 } 575 576 /* 577 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 578 * fstatvfs, and sysfs moved to common/syscall. 579 */ 580 581 /* 582 * Update every mounted file system. We call the vfs_sync operation of 583 * each file system type, passing it a NULL vfsp to indicate that all 584 * mounted file systems of that type should be updated. 585 */ 586 void 587 vfs_sync(int flag) 588 { 589 struct vfssw *vswp; 590 RLOCK_VFSSW(); 591 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 592 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 593 vfs_refvfssw(vswp); 594 RUNLOCK_VFSSW(); 595 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 596 CRED()); 597 vfs_unrefvfssw(vswp); 598 RLOCK_VFSSW(); 599 } 600 } 601 RUNLOCK_VFSSW(); 602 } 603 604 void 605 sync(void) 606 { 607 vfs_sync(0); 608 } 609 610 /* 611 * External routines. 612 */ 613 614 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 615 616 /* 617 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 618 * but otherwise should be accessed only via vfs_list_lock() and 619 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 620 */ 621 static krwlock_t vfslist; 622 623 /* 624 * Mount devfs on /devices. This is done right after root is mounted 625 * to provide device access support for the system 626 */ 627 static void 628 vfs_mountdevices(void) 629 { 630 struct vfssw *vsw; 631 struct vnode *mvp; 632 struct mounta mounta = { /* fake mounta for devfs_mount() */ 633 NULL, 634 NULL, 635 MS_SYSSPACE, 636 NULL, 637 NULL, 638 0, 639 NULL, 640 0 641 }; 642 643 /* 644 * _init devfs module to fill in the vfssw 645 */ 646 if (modload("fs", "devfs") == -1) 647 panic("Cannot _init devfs module"); 648 649 /* 650 * Hold vfs 651 */ 652 RLOCK_VFSSW(); 653 vsw = vfs_getvfsswbyname("devfs"); 654 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 655 VFS_HOLD(&devices); 656 657 /* 658 * Locate mount point 659 */ 660 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 661 panic("Cannot find /devices"); 662 663 /* 664 * Perform the mount of /devices 665 */ 666 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 667 panic("Cannot mount /devices"); 668 669 RUNLOCK_VFSSW(); 670 671 /* 672 * Set appropriate members and add to vfs list for mnttab display 673 */ 674 vfs_setresource(&devices, "/devices"); 675 vfs_setmntpoint(&devices, "/devices"); 676 677 /* 678 * Hold the root of /devices so it won't go away 679 */ 680 if (VFS_ROOT(&devices, &devicesdir)) 681 panic("vfs_mountdevices: not devices root"); 682 683 if (vfs_lock(&devices) != 0) { 684 VN_RELE(devicesdir); 685 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 686 return; 687 } 688 689 if (vn_vfswlock(mvp) != 0) { 690 vfs_unlock(&devices); 691 VN_RELE(devicesdir); 692 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 693 return; 694 } 695 696 vfs_add(mvp, &devices, 0); 697 vn_vfsunlock(mvp); 698 vfs_unlock(&devices); 699 VN_RELE(devicesdir); 700 } 701 702 /* 703 * mount the first instance of /dev to root and remain mounted 704 */ 705 static void 706 vfs_mountdev1(void) 707 { 708 struct vfssw *vsw; 709 struct vnode *mvp; 710 struct mounta mounta = { /* fake mounta for sdev_mount() */ 711 NULL, 712 NULL, 713 MS_SYSSPACE | MS_OVERLAY, 714 NULL, 715 NULL, 716 0, 717 NULL, 718 0 719 }; 720 721 /* 722 * _init dev module to fill in the vfssw 723 */ 724 if (modload("fs", "dev") == -1) 725 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 726 727 /* 728 * Hold vfs 729 */ 730 RLOCK_VFSSW(); 731 vsw = vfs_getvfsswbyname("dev"); 732 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 733 VFS_HOLD(&dev); 734 735 /* 736 * Locate mount point 737 */ 738 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 739 cmn_err(CE_PANIC, "Cannot find /dev\n"); 740 741 /* 742 * Perform the mount of /dev 743 */ 744 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 745 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 746 747 RUNLOCK_VFSSW(); 748 749 /* 750 * Set appropriate members and add to vfs list for mnttab display 751 */ 752 vfs_setresource(&dev, "/dev"); 753 vfs_setmntpoint(&dev, "/dev"); 754 755 /* 756 * Hold the root of /dev so it won't go away 757 */ 758 if (VFS_ROOT(&dev, &devdir)) 759 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 760 761 if (vfs_lock(&dev) != 0) { 762 VN_RELE(devdir); 763 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 764 return; 765 } 766 767 if (vn_vfswlock(mvp) != 0) { 768 vfs_unlock(&dev); 769 VN_RELE(devdir); 770 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 771 return; 772 } 773 774 vfs_add(mvp, &dev, 0); 775 vn_vfsunlock(mvp); 776 vfs_unlock(&dev); 777 VN_RELE(devdir); 778 } 779 780 /* 781 * Mount required filesystem. This is done right after root is mounted. 782 */ 783 static void 784 vfs_mountfs(char *module, char *spec, char *path) 785 { 786 struct vnode *mvp; 787 struct mounta mounta; 788 vfs_t *vfsp; 789 790 mounta.flags = MS_SYSSPACE | MS_DATA; 791 mounta.fstype = module; 792 mounta.spec = spec; 793 mounta.dir = path; 794 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 795 cmn_err(CE_WARN, "Cannot find %s", path); 796 return; 797 } 798 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 799 cmn_err(CE_WARN, "Cannot mount %s", path); 800 else 801 VFS_RELE(vfsp); 802 VN_RELE(mvp); 803 } 804 805 /* 806 * vfs_mountroot is called by main() to mount the root filesystem. 807 */ 808 void 809 vfs_mountroot(void) 810 { 811 struct vnode *rvp = NULL; 812 char *path; 813 size_t plen; 814 struct vfssw *vswp; 815 816 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 817 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 818 819 /* 820 * Alloc the vfs hash bucket array and locks 821 */ 822 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 823 824 /* 825 * Call machine-dependent routine "rootconf" to choose a root 826 * file system type. 827 */ 828 if (rootconf()) 829 panic("vfs_mountroot: cannot mount root"); 830 /* 831 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 832 * to point to it. These are used by lookuppn() so that it 833 * knows where to start from ('/' or '.'). 834 */ 835 vfs_setmntpoint(rootvfs, "/"); 836 if (VFS_ROOT(rootvfs, &rootdir)) 837 panic("vfs_mountroot: no root vnode"); 838 PTOU(curproc)->u_cdir = rootdir; 839 VN_HOLD(PTOU(curproc)->u_cdir); 840 PTOU(curproc)->u_rdir = NULL; 841 842 /* 843 * Setup the global zone's rootvp, now that it exists. 844 */ 845 global_zone->zone_rootvp = rootdir; 846 VN_HOLD(global_zone->zone_rootvp); 847 848 /* 849 * Notify the module code that it can begin using the 850 * root filesystem instead of the boot program's services. 851 */ 852 modrootloaded = 1; 853 854 /* 855 * Special handling for a ZFS root file system. 856 */ 857 zfs_boot_init(); 858 859 /* 860 * Set up mnttab information for root 861 */ 862 vfs_setresource(rootvfs, rootfs.bo_name); 863 864 /* 865 * Notify cluster software that the root filesystem is available. 866 */ 867 clboot_mountroot(); 868 869 /* Now that we're all done with the root FS, set up its vopstats */ 870 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 871 /* Set flag for statistics collection */ 872 if (vswp->vsw_flag & VSW_STATS) { 873 initialize_vopstats(&rootvfs->vfs_vopstats); 874 rootvfs->vfs_flag |= VFS_STATS; 875 rootvfs->vfs_fstypevsp = 876 get_fstype_vopstats(rootvfs, vswp); 877 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 878 } 879 vfs_unrefvfssw(vswp); 880 } 881 882 /* 883 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 884 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 885 */ 886 vfs_mountdevices(); 887 vfs_mountdev1(); 888 889 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 890 vfs_mountfs("proc", "/proc", "/proc"); 891 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 892 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 893 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 894 895 if (getzoneid() == GLOBAL_ZONEID) { 896 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 897 } 898 899 #ifdef __sparc 900 /* 901 * This bit of magic can go away when we convert sparc to 902 * the new boot architecture based on ramdisk. 903 * 904 * Booting off a mirrored root volume: 905 * At this point, we have booted and mounted root on a 906 * single component of the mirror. Complete the boot 907 * by configuring SVM and converting the root to the 908 * dev_t of the mirrored root device. This dev_t conversion 909 * only works because the underlying device doesn't change. 910 */ 911 if (root_is_svm) { 912 if (svm_rootconf()) { 913 panic("vfs_mountroot: cannot remount root"); 914 } 915 916 /* 917 * mnttab should reflect the new root device 918 */ 919 vfs_lock_wait(rootvfs); 920 vfs_setresource(rootvfs, rootfs.bo_name); 921 vfs_unlock(rootvfs); 922 } 923 #endif /* __sparc */ 924 925 /* 926 * Look up the root device via devfs so that a dv_node is 927 * created for it. The vnode is never VN_RELE()ed. 928 * We allocate more than MAXPATHLEN so that the 929 * buffer passed to i_ddi_prompath_to_devfspath() is 930 * exactly MAXPATHLEN (the function expects a buffer 931 * of that length). 932 */ 933 plen = strlen("/devices"); 934 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 935 (void) strcpy(path, "/devices"); 936 937 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 938 != DDI_SUCCESS || 939 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 940 941 /* NUL terminate in case "path" has garbage */ 942 path[plen + MAXPATHLEN - 1] = '\0'; 943 #ifdef DEBUG 944 cmn_err(CE_WARN, "!Cannot lookup root device: %s", path); 945 #endif 946 } 947 kmem_free(path, plen + MAXPATHLEN); 948 vfs_mnttabvp_setup(); 949 } 950 951 /* 952 * If remount failed and we're in a zone we need to check for the zone 953 * root path and strip it before the call to vfs_setpath(). 954 * 955 * If strpath doesn't begin with the zone_rootpath the original 956 * strpath is returned unchanged. 957 */ 958 static const char * 959 stripzonepath(const char *strpath) 960 { 961 char *str1, *str2; 962 int i; 963 zone_t *zonep = curproc->p_zone; 964 965 if (zonep->zone_rootpath == NULL || strpath == NULL) { 966 return (NULL); 967 } 968 969 /* 970 * we check for the end of the string at one past the 971 * current position because the zone_rootpath always 972 * ends with "/" but we don't want to strip that off. 973 */ 974 str1 = zonep->zone_rootpath; 975 str2 = (char *)strpath; 976 ASSERT(str1[0] != '\0'); 977 for (i = 0; str1[i + 1] != '\0'; i++) { 978 if (str1[i] != str2[i]) 979 return ((char *)strpath); 980 } 981 return (&str2[i]); 982 } 983 984 /* 985 * Check to see if our "block device" is actually a file. If so, 986 * automatically add a lofi device, and keep track of this fact. 987 */ 988 static int 989 lofi_add(const char *fsname, struct vfs *vfsp, 990 mntopts_t *mntopts, struct mounta *uap) 991 { 992 int fromspace = (uap->flags & MS_SYSSPACE) ? 993 UIO_SYSSPACE : UIO_USERSPACE; 994 struct lofi_ioctl *li = NULL; 995 struct vnode *vp = NULL; 996 struct pathname pn = { NULL }; 997 ldi_ident_t ldi_id; 998 ldi_handle_t ldi_hdl; 999 vfssw_t *vfssw; 1000 int minor; 1001 int err = 0; 1002 1003 if (fsname == NULL || 1004 (vfssw = vfs_getvfssw(fsname)) == NULL) 1005 return (0); 1006 1007 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 1008 vfs_unrefvfssw(vfssw); 1009 return (0); 1010 } 1011 1012 vfs_unrefvfssw(vfssw); 1013 vfssw = NULL; 1014 1015 if (pn_get(uap->spec, fromspace, &pn) != 0) 1016 return (0); 1017 1018 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1019 goto out; 1020 1021 if (vp->v_type != VREG) 1022 goto out; 1023 1024 /* OK, this is a lofi mount. */ 1025 1026 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1027 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1028 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1029 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1030 err = EINVAL; 1031 goto out; 1032 } 1033 1034 ldi_id = ldi_ident_from_anon(); 1035 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1036 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1037 1038 /* 1039 * The lofi control node is currently exclusive-open. We'd like 1040 * to improve this, but in the meantime, we'll loop waiting for 1041 * access. 1042 */ 1043 for (;;) { 1044 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1045 kcred, &ldi_hdl, ldi_id); 1046 1047 if (err != EBUSY) 1048 break; 1049 1050 if ((err = delay_sig(hz / 8)) == EINTR) 1051 break; 1052 } 1053 1054 if (err) 1055 goto out2; 1056 1057 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1058 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, &minor); 1059 1060 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1061 1062 if (!err) 1063 vfsp->vfs_lofi_minor = minor; 1064 1065 out2: 1066 ldi_ident_release(ldi_id); 1067 out: 1068 if (li != NULL) 1069 kmem_free(li, sizeof (*li)); 1070 if (vp != NULL) 1071 VN_RELE(vp); 1072 pn_free(&pn); 1073 return (err); 1074 } 1075 1076 static void 1077 lofi_remove(struct vfs *vfsp) 1078 { 1079 struct lofi_ioctl *li = NULL; 1080 ldi_ident_t ldi_id; 1081 ldi_handle_t ldi_hdl; 1082 int err; 1083 1084 if (vfsp->vfs_lofi_minor == 0) 1085 return; 1086 1087 ldi_id = ldi_ident_from_anon(); 1088 1089 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1090 li->li_minor = vfsp->vfs_lofi_minor; 1091 li->li_cleanup = B_TRUE; 1092 1093 do { 1094 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE | FEXCL, 1095 kcred, &ldi_hdl, ldi_id); 1096 } while (err == EBUSY); 1097 1098 if (err) 1099 goto out; 1100 1101 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1102 FREAD | FWRITE | FEXCL | FKIOCTL, kcred, NULL); 1103 1104 (void) ldi_close(ldi_hdl, FREAD | FWRITE | FEXCL, kcred); 1105 1106 if (!err) 1107 vfsp->vfs_lofi_minor = 0; 1108 1109 out: 1110 ldi_ident_release(ldi_id); 1111 if (li != NULL) 1112 kmem_free(li, sizeof (*li)); 1113 } 1114 1115 /* 1116 * Common mount code. Called from the system call entry point, from autofs, 1117 * nfsv4 trigger mounts, and from pxfs. 1118 * 1119 * Takes the effective file system type, mount arguments, the mount point 1120 * vnode, flags specifying whether the mount is a remount and whether it 1121 * should be entered into the vfs list, and credentials. Fills in its vfspp 1122 * parameter with the mounted file system instance's vfs. 1123 * 1124 * Note that the effective file system type is specified as a string. It may 1125 * be null, in which case it's determined from the mount arguments, and may 1126 * differ from the type specified in the mount arguments; this is a hook to 1127 * allow interposition when instantiating file system instances. 1128 * 1129 * The caller is responsible for releasing its own hold on the mount point 1130 * vp (this routine does its own hold when necessary). 1131 * Also note that for remounts, the mount point vp should be the vnode for 1132 * the root of the file system rather than the vnode that the file system 1133 * is mounted on top of. 1134 */ 1135 int 1136 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1137 struct vfs **vfspp) 1138 { 1139 struct vfssw *vswp; 1140 vfsops_t *vfsops; 1141 struct vfs *vfsp; 1142 struct vnode *bvp; 1143 dev_t bdev = 0; 1144 mntopts_t mnt_mntopts; 1145 int error = 0; 1146 int copyout_error = 0; 1147 int ovflags; 1148 char *opts = uap->optptr; 1149 char *inargs = opts; 1150 int optlen = uap->optlen; 1151 int remount; 1152 int rdonly; 1153 int nbmand = 0; 1154 int delmip = 0; 1155 int addmip = 0; 1156 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1157 int fromspace = (uap->flags & MS_SYSSPACE) ? 1158 UIO_SYSSPACE : UIO_USERSPACE; 1159 char *resource = NULL, *mountpt = NULL; 1160 refstr_t *oldresource, *oldmntpt; 1161 struct pathname pn, rpn; 1162 vsk_anchor_t *vskap; 1163 char fstname[FSTYPSZ]; 1164 1165 /* 1166 * The v_flag value for the mount point vp is permanently set 1167 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1168 * for mount point locking. 1169 */ 1170 mutex_enter(&vp->v_lock); 1171 vp->v_flag |= VVFSLOCK; 1172 mutex_exit(&vp->v_lock); 1173 1174 mnt_mntopts.mo_count = 0; 1175 /* 1176 * Find the ops vector to use to invoke the file system-specific mount 1177 * method. If the fsname argument is non-NULL, use it directly. 1178 * Otherwise, dig the file system type information out of the mount 1179 * arguments. 1180 * 1181 * A side effect is to hold the vfssw entry. 1182 * 1183 * Mount arguments can be specified in several ways, which are 1184 * distinguished by flag bit settings. The preferred way is to set 1185 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1186 * type supplied as a character string and the last two arguments 1187 * being a pointer to a character buffer and the size of the buffer. 1188 * On entry, the buffer holds a null terminated list of options; on 1189 * return, the string is the list of options the file system 1190 * recognized. If MS_DATA is set arguments five and six point to a 1191 * block of binary data which the file system interprets. 1192 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1193 * consistently with these conventions. To handle them, we check to 1194 * see whether the pointer to the file system name has a numeric value 1195 * less than 256. If so, we treat it as an index. 1196 */ 1197 if (fsname != NULL) { 1198 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1199 return (EINVAL); 1200 } 1201 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1202 size_t n; 1203 uint_t fstype; 1204 1205 fsname = fstname; 1206 1207 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1208 RLOCK_VFSSW(); 1209 if (fstype == 0 || fstype >= nfstype || 1210 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1211 RUNLOCK_VFSSW(); 1212 return (EINVAL); 1213 } 1214 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1215 RUNLOCK_VFSSW(); 1216 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1217 return (EINVAL); 1218 } else { 1219 /* 1220 * Handle either kernel or user address space. 1221 */ 1222 if (uap->flags & MS_SYSSPACE) { 1223 error = copystr(uap->fstype, fsname, 1224 FSTYPSZ, &n); 1225 } else { 1226 error = copyinstr(uap->fstype, fsname, 1227 FSTYPSZ, &n); 1228 } 1229 if (error) { 1230 if (error == ENAMETOOLONG) 1231 return (EINVAL); 1232 return (error); 1233 } 1234 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1235 return (EINVAL); 1236 } 1237 } else { 1238 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1239 return (EINVAL); 1240 } 1241 if (!VFS_INSTALLED(vswp)) 1242 return (EINVAL); 1243 vfsops = &vswp->vsw_vfsops; 1244 1245 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1246 /* 1247 * Fetch mount options and parse them for generic vfs options 1248 */ 1249 if (uap->flags & MS_OPTIONSTR) { 1250 /* 1251 * Limit the buffer size 1252 */ 1253 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1254 error = EINVAL; 1255 goto errout; 1256 } 1257 if ((uap->flags & MS_SYSSPACE) == 0) { 1258 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1259 inargs[0] = '\0'; 1260 if (optlen) { 1261 error = copyinstr(opts, inargs, (size_t)optlen, 1262 NULL); 1263 if (error) { 1264 goto errout; 1265 } 1266 } 1267 } 1268 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1269 } 1270 /* 1271 * Flag bits override the options string. 1272 */ 1273 if (uap->flags & MS_REMOUNT) 1274 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1275 if (uap->flags & MS_RDONLY) 1276 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1277 if (uap->flags & MS_NOSUID) 1278 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1279 1280 /* 1281 * Check if this is a remount; must be set in the option string and 1282 * the file system must support a remount option. 1283 */ 1284 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1285 MNTOPT_REMOUNT, NULL)) { 1286 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1287 error = ENOTSUP; 1288 goto errout; 1289 } 1290 uap->flags |= MS_REMOUNT; 1291 } 1292 1293 /* 1294 * uap->flags and vfs_optionisset() should agree. 1295 */ 1296 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1297 uap->flags |= MS_RDONLY; 1298 } 1299 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1300 uap->flags |= MS_NOSUID; 1301 } 1302 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1303 ASSERT(splice || !remount); 1304 /* 1305 * If we are splicing the fs into the namespace, 1306 * perform mount point checks. 1307 * 1308 * We want to resolve the path for the mount point to eliminate 1309 * '.' and ".." and symlinks in mount points; we can't do the 1310 * same for the resource string, since it would turn 1311 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1312 * this before grabbing vn_vfswlock(), because otherwise we 1313 * would deadlock with lookuppn(). 1314 */ 1315 if (splice) { 1316 ASSERT(vp->v_count > 0); 1317 1318 /* 1319 * Pick up mount point and device from appropriate space. 1320 */ 1321 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1322 resource = kmem_alloc(pn.pn_pathlen + 1, 1323 KM_SLEEP); 1324 (void) strcpy(resource, pn.pn_path); 1325 pn_free(&pn); 1326 } 1327 /* 1328 * Do a lookupname prior to taking the 1329 * writelock. Mark this as completed if 1330 * successful for later cleanup and addition to 1331 * the mount in progress table. 1332 */ 1333 if ((uap->flags & MS_GLOBAL) == 0 && 1334 lookupname(uap->spec, fromspace, 1335 FOLLOW, NULL, &bvp) == 0) { 1336 addmip = 1; 1337 } 1338 1339 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1340 pathname_t *pnp; 1341 1342 if (*pn.pn_path != '/') { 1343 error = EINVAL; 1344 pn_free(&pn); 1345 goto errout; 1346 } 1347 pn_alloc(&rpn); 1348 /* 1349 * Kludge to prevent autofs from deadlocking with 1350 * itself when it calls domount(). 1351 * 1352 * If autofs is calling, it is because it is doing 1353 * (autofs) mounts in the process of an NFS mount. A 1354 * lookuppn() here would cause us to block waiting for 1355 * said NFS mount to complete, which can't since this 1356 * is the thread that was supposed to doing it. 1357 */ 1358 if (fromspace == UIO_USERSPACE) { 1359 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1360 NULL)) == 0) { 1361 pnp = &rpn; 1362 } else { 1363 /* 1364 * The file disappeared or otherwise 1365 * became inaccessible since we opened 1366 * it; might as well fail the mount 1367 * since the mount point is no longer 1368 * accessible. 1369 */ 1370 pn_free(&rpn); 1371 pn_free(&pn); 1372 goto errout; 1373 } 1374 } else { 1375 pnp = &pn; 1376 } 1377 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1378 (void) strcpy(mountpt, pnp->pn_path); 1379 1380 /* 1381 * If the addition of the zone's rootpath 1382 * would push us over a total path length 1383 * of MAXPATHLEN, we fail the mount with 1384 * ENAMETOOLONG, which is what we would have 1385 * gotten if we were trying to perform the same 1386 * mount in the global zone. 1387 * 1388 * strlen() doesn't count the trailing 1389 * '\0', but zone_rootpathlen counts both a 1390 * trailing '/' and the terminating '\0'. 1391 */ 1392 if ((curproc->p_zone->zone_rootpathlen - 1 + 1393 strlen(mountpt)) > MAXPATHLEN || 1394 (resource != NULL && 1395 (curproc->p_zone->zone_rootpathlen - 1 + 1396 strlen(resource)) > MAXPATHLEN)) { 1397 error = ENAMETOOLONG; 1398 } 1399 1400 pn_free(&rpn); 1401 pn_free(&pn); 1402 } 1403 1404 if (error) 1405 goto errout; 1406 1407 /* 1408 * Prevent path name resolution from proceeding past 1409 * the mount point. 1410 */ 1411 if (vn_vfswlock(vp) != 0) { 1412 error = EBUSY; 1413 goto errout; 1414 } 1415 1416 /* 1417 * Verify that it's legitimate to establish a mount on 1418 * the prospective mount point. 1419 */ 1420 if (vn_mountedvfs(vp) != NULL) { 1421 /* 1422 * The mount point lock was obtained after some 1423 * other thread raced through and established a mount. 1424 */ 1425 vn_vfsunlock(vp); 1426 error = EBUSY; 1427 goto errout; 1428 } 1429 if (vp->v_flag & VNOMOUNT) { 1430 vn_vfsunlock(vp); 1431 error = EINVAL; 1432 goto errout; 1433 } 1434 } 1435 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1436 uap->dataptr = NULL; 1437 uap->datalen = 0; 1438 } 1439 1440 /* 1441 * If this is a remount, we don't want to create a new VFS. 1442 * Instead, we pass the existing one with a remount flag. 1443 */ 1444 if (remount) { 1445 /* 1446 * Confirm that the mount point is the root vnode of the 1447 * file system that is being remounted. 1448 * This can happen if the user specifies a different 1449 * mount point directory pathname in the (re)mount command. 1450 * 1451 * Code below can only be reached if splice is true, so it's 1452 * safe to do vn_vfsunlock() here. 1453 */ 1454 if ((vp->v_flag & VROOT) == 0) { 1455 vn_vfsunlock(vp); 1456 error = ENOENT; 1457 goto errout; 1458 } 1459 /* 1460 * Disallow making file systems read-only unless file system 1461 * explicitly allows it in its vfssw. Ignore other flags. 1462 */ 1463 if (rdonly && vn_is_readonly(vp) == 0 && 1464 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1465 vn_vfsunlock(vp); 1466 error = EINVAL; 1467 goto errout; 1468 } 1469 /* 1470 * Disallow changing the NBMAND disposition of the file 1471 * system on remounts. 1472 */ 1473 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1474 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1475 vn_vfsunlock(vp); 1476 error = EINVAL; 1477 goto errout; 1478 } 1479 vfsp = vp->v_vfsp; 1480 ovflags = vfsp->vfs_flag; 1481 vfsp->vfs_flag |= VFS_REMOUNT; 1482 vfsp->vfs_flag &= ~VFS_RDONLY; 1483 } else { 1484 vfsp = vfs_alloc(KM_SLEEP); 1485 VFS_INIT(vfsp, vfsops, NULL); 1486 } 1487 1488 VFS_HOLD(vfsp); 1489 1490 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1491 if (!remount) { 1492 if (splice) 1493 vn_vfsunlock(vp); 1494 vfs_free(vfsp); 1495 } else { 1496 vn_vfsunlock(vp); 1497 VFS_RELE(vfsp); 1498 } 1499 goto errout; 1500 } 1501 1502 /* 1503 * PRIV_SYS_MOUNT doesn't mean you can become root. 1504 */ 1505 if (vfsp->vfs_lofi_minor != 0) { 1506 uap->flags |= MS_NOSUID; 1507 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1508 } 1509 1510 /* 1511 * The vfs_reflock is not used anymore the code below explicitly 1512 * holds it preventing others accesing it directly. 1513 */ 1514 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1515 !(vfsp->vfs_flag & VFS_REMOUNT)) 1516 cmn_err(CE_WARN, 1517 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1518 1519 /* 1520 * Lock the vfs. If this is a remount we want to avoid spurious umount 1521 * failures that happen as a side-effect of fsflush() and other mount 1522 * and unmount operations that might be going on simultaneously and 1523 * may have locked the vfs currently. To not return EBUSY immediately 1524 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1525 */ 1526 if (!remount) { 1527 if (error = vfs_lock(vfsp)) { 1528 vfsp->vfs_flag = ovflags; 1529 1530 lofi_remove(vfsp); 1531 1532 if (splice) 1533 vn_vfsunlock(vp); 1534 vfs_free(vfsp); 1535 goto errout; 1536 } 1537 } else { 1538 vfs_lock_wait(vfsp); 1539 } 1540 1541 /* 1542 * Add device to mount in progress table, global mounts require special 1543 * handling. It is possible that we have already done the lookupname 1544 * on a spliced, non-global fs. If so, we don't want to do it again 1545 * since we cannot do a lookupname after taking the 1546 * wlock above. This case is for a non-spliced, non-global filesystem. 1547 */ 1548 if (!addmip) { 1549 if ((uap->flags & MS_GLOBAL) == 0 && 1550 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1551 addmip = 1; 1552 } 1553 } 1554 1555 if (addmip) { 1556 vnode_t *lvp = NULL; 1557 1558 error = vfs_get_lofi(vfsp, &lvp); 1559 if (error > 0) { 1560 lofi_remove(vfsp); 1561 1562 if (splice) 1563 vn_vfsunlock(vp); 1564 vfs_unlock(vfsp); 1565 1566 if (remount) { 1567 VFS_RELE(vfsp); 1568 } else { 1569 vfs_free(vfsp); 1570 } 1571 1572 goto errout; 1573 } else if (error == -1) { 1574 bdev = bvp->v_rdev; 1575 VN_RELE(bvp); 1576 } else { 1577 bdev = lvp->v_rdev; 1578 VN_RELE(lvp); 1579 VN_RELE(bvp); 1580 } 1581 1582 vfs_addmip(bdev, vfsp); 1583 addmip = 0; 1584 delmip = 1; 1585 } 1586 /* 1587 * Invalidate cached entry for the mount point. 1588 */ 1589 if (splice) 1590 dnlc_purge_vp(vp); 1591 1592 /* 1593 * If have an option string but the filesystem doesn't supply a 1594 * prototype options table, create a table with the global 1595 * options and sufficient room to accept all the options in the 1596 * string. Then parse the passed in option string 1597 * accepting all the options in the string. This gives us an 1598 * option table with all the proper cancel properties for the 1599 * global options. 1600 * 1601 * Filesystems that supply a prototype options table are handled 1602 * earlier in this function. 1603 */ 1604 if (uap->flags & MS_OPTIONSTR) { 1605 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1606 mntopts_t tmp_mntopts; 1607 1608 tmp_mntopts.mo_count = 0; 1609 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1610 &mnt_mntopts); 1611 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1612 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1613 vfs_freeopttbl(&tmp_mntopts); 1614 } 1615 } 1616 1617 /* 1618 * Serialize with zone creations. 1619 */ 1620 mount_in_progress(); 1621 /* 1622 * Instantiate (or reinstantiate) the file system. If appropriate, 1623 * splice it into the file system name space. 1624 * 1625 * We want VFS_MOUNT() to be able to override the vfs_resource 1626 * string if necessary (ie, mntfs), and also for a remount to 1627 * change the same (necessary when remounting '/' during boot). 1628 * So we set up vfs_mntpt and vfs_resource to what we think they 1629 * should be, then hand off control to VFS_MOUNT() which can 1630 * override this. 1631 * 1632 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1633 * a vfs which is on the vfs list (i.e. during a remount), we must 1634 * never set those fields to NULL. Several bits of code make 1635 * assumptions that the fields are always valid. 1636 */ 1637 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1638 if (remount) { 1639 if ((oldresource = vfsp->vfs_resource) != NULL) 1640 refstr_hold(oldresource); 1641 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1642 refstr_hold(oldmntpt); 1643 } 1644 vfs_setresource(vfsp, resource); 1645 vfs_setmntpoint(vfsp, mountpt); 1646 1647 /* 1648 * going to mount on this vnode, so notify. 1649 */ 1650 vnevent_mountedover(vp, NULL); 1651 error = VFS_MOUNT(vfsp, vp, uap, credp); 1652 1653 if (uap->flags & MS_RDONLY) 1654 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1655 if (uap->flags & MS_NOSUID) 1656 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1657 if (uap->flags & MS_GLOBAL) 1658 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1659 1660 if (error) { 1661 lofi_remove(vfsp); 1662 1663 if (remount) { 1664 /* put back pre-remount options */ 1665 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1666 vfs_setmntpoint(vfsp, (stripzonepath( 1667 refstr_value(oldmntpt)))); 1668 if (oldmntpt) 1669 refstr_rele(oldmntpt); 1670 vfs_setresource(vfsp, (stripzonepath( 1671 refstr_value(oldresource)))); 1672 if (oldresource) 1673 refstr_rele(oldresource); 1674 vfsp->vfs_flag = ovflags; 1675 vfs_unlock(vfsp); 1676 VFS_RELE(vfsp); 1677 } else { 1678 vfs_unlock(vfsp); 1679 vfs_freemnttab(vfsp); 1680 vfs_free(vfsp); 1681 } 1682 } else { 1683 /* 1684 * Set the mount time to now 1685 */ 1686 vfsp->vfs_mtime = ddi_get_time(); 1687 if (remount) { 1688 vfsp->vfs_flag &= ~VFS_REMOUNT; 1689 if (oldresource) 1690 refstr_rele(oldresource); 1691 if (oldmntpt) 1692 refstr_rele(oldmntpt); 1693 } else if (splice) { 1694 /* 1695 * Link vfsp into the name space at the mount 1696 * point. Vfs_add() is responsible for 1697 * holding the mount point which will be 1698 * released when vfs_remove() is called. 1699 */ 1700 vfs_add(vp, vfsp, uap->flags); 1701 } else { 1702 /* 1703 * Hold the reference to file system which is 1704 * not linked into the name space. 1705 */ 1706 vfsp->vfs_zone = NULL; 1707 VFS_HOLD(vfsp); 1708 vfsp->vfs_vnodecovered = NULL; 1709 } 1710 /* 1711 * Set flags for global options encountered 1712 */ 1713 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1714 vfsp->vfs_flag |= VFS_RDONLY; 1715 else 1716 vfsp->vfs_flag &= ~VFS_RDONLY; 1717 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1718 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1719 } else { 1720 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1721 vfsp->vfs_flag |= VFS_NODEVICES; 1722 else 1723 vfsp->vfs_flag &= ~VFS_NODEVICES; 1724 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1725 vfsp->vfs_flag |= VFS_NOSETUID; 1726 else 1727 vfsp->vfs_flag &= ~VFS_NOSETUID; 1728 } 1729 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1730 vfsp->vfs_flag |= VFS_NBMAND; 1731 else 1732 vfsp->vfs_flag &= ~VFS_NBMAND; 1733 1734 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1735 vfsp->vfs_flag |= VFS_XATTR; 1736 else 1737 vfsp->vfs_flag &= ~VFS_XATTR; 1738 1739 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1740 vfsp->vfs_flag |= VFS_NOEXEC; 1741 else 1742 vfsp->vfs_flag &= ~VFS_NOEXEC; 1743 1744 /* 1745 * Now construct the output option string of options 1746 * we recognized. 1747 */ 1748 if (uap->flags & MS_OPTIONSTR) { 1749 vfs_list_read_lock(); 1750 copyout_error = vfs_buildoptionstr( 1751 &vfsp->vfs_mntopts, inargs, optlen); 1752 vfs_list_unlock(); 1753 if (copyout_error == 0 && 1754 (uap->flags & MS_SYSSPACE) == 0) { 1755 copyout_error = copyoutstr(inargs, opts, 1756 optlen, NULL); 1757 } 1758 } 1759 1760 /* 1761 * If this isn't a remount, set up the vopstats before 1762 * anyone can touch this. We only allow spliced file 1763 * systems (file systems which are in the namespace) to 1764 * have the VFS_STATS flag set. 1765 * NOTE: PxFS mounts the underlying file system with 1766 * MS_NOSPLICE set and copies those vfs_flags to its private 1767 * vfs structure. As a result, PxFS should never have 1768 * the VFS_STATS flag or else we might access the vfs 1769 * statistics-related fields prior to them being 1770 * properly initialized. 1771 */ 1772 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1773 initialize_vopstats(&vfsp->vfs_vopstats); 1774 /* 1775 * We need to set vfs_vskap to NULL because there's 1776 * a chance it won't be set below. This is checked 1777 * in teardown_vopstats() so we can't have garbage. 1778 */ 1779 vfsp->vfs_vskap = NULL; 1780 vfsp->vfs_flag |= VFS_STATS; 1781 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1782 } 1783 1784 if (vswp->vsw_flag & VSW_XID) 1785 vfsp->vfs_flag |= VFS_XID; 1786 1787 vfs_unlock(vfsp); 1788 } 1789 mount_completed(); 1790 if (splice) 1791 vn_vfsunlock(vp); 1792 1793 if ((error == 0) && (copyout_error == 0)) { 1794 if (!remount) { 1795 /* 1796 * Don't call get_vskstat_anchor() while holding 1797 * locks since it allocates memory and calls 1798 * VFS_STATVFS(). For NFS, the latter can generate 1799 * an over-the-wire call. 1800 */ 1801 vskap = get_vskstat_anchor(vfsp); 1802 /* Only take the lock if we have something to do */ 1803 if (vskap != NULL) { 1804 vfs_lock_wait(vfsp); 1805 if (vfsp->vfs_flag & VFS_STATS) { 1806 vfsp->vfs_vskap = vskap; 1807 } 1808 vfs_unlock(vfsp); 1809 } 1810 } 1811 /* Return vfsp to caller. */ 1812 *vfspp = vfsp; 1813 } 1814 errout: 1815 vfs_freeopttbl(&mnt_mntopts); 1816 if (resource != NULL) 1817 kmem_free(resource, strlen(resource) + 1); 1818 if (mountpt != NULL) 1819 kmem_free(mountpt, strlen(mountpt) + 1); 1820 /* 1821 * It is possible we errored prior to adding to mount in progress 1822 * table. Must free vnode we acquired with successful lookupname. 1823 */ 1824 if (addmip) 1825 VN_RELE(bvp); 1826 if (delmip) 1827 vfs_delmip(vfsp); 1828 ASSERT(vswp != NULL); 1829 vfs_unrefvfssw(vswp); 1830 if (inargs != opts) 1831 kmem_free(inargs, MAX_MNTOPT_STR); 1832 if (copyout_error) { 1833 lofi_remove(vfsp); 1834 VFS_RELE(vfsp); 1835 error = copyout_error; 1836 } 1837 return (error); 1838 } 1839 1840 static void 1841 vfs_setpath(struct vfs *vfsp, refstr_t **refp, const char *newpath) 1842 { 1843 size_t len; 1844 refstr_t *ref; 1845 zone_t *zone = curproc->p_zone; 1846 char *sp; 1847 int have_list_lock = 0; 1848 1849 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1850 1851 /* 1852 * New path must be less than MAXPATHLEN because mntfs 1853 * will only display up to MAXPATHLEN bytes. This is currently 1854 * safe, because domount() uses pn_get(), and other callers 1855 * similarly cap the size to fewer than MAXPATHLEN bytes. 1856 */ 1857 1858 ASSERT(strlen(newpath) < MAXPATHLEN); 1859 1860 /* mntfs requires consistency while vfs list lock is held */ 1861 1862 if (VFS_ON_LIST(vfsp)) { 1863 have_list_lock = 1; 1864 vfs_list_lock(); 1865 } 1866 1867 if (*refp != NULL) 1868 refstr_rele(*refp); 1869 1870 /* Do we need to modify the path? */ 1871 1872 if (zone == global_zone || *newpath != '/') { 1873 ref = refstr_alloc(newpath); 1874 goto out; 1875 } 1876 1877 /* 1878 * Truncate the trailing '/' in the zoneroot, and merge 1879 * in the zone's rootpath with the "newpath" (resource 1880 * or mountpoint) passed in. 1881 * 1882 * The size of the required buffer is thus the size of 1883 * the buffer required for the passed-in newpath 1884 * (strlen(newpath) + 1), plus the size of the buffer 1885 * required to hold zone_rootpath (zone_rootpathlen) 1886 * minus one for one of the now-superfluous NUL 1887 * terminations, minus one for the trailing '/'. 1888 * 1889 * That gives us: 1890 * 1891 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1892 * 1893 * Which is what we have below. 1894 */ 1895 1896 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1897 sp = kmem_alloc(len, KM_SLEEP); 1898 1899 /* 1900 * Copy everything including the trailing slash, which 1901 * we then overwrite with the NUL character. 1902 */ 1903 1904 (void) strcpy(sp, zone->zone_rootpath); 1905 sp[zone->zone_rootpathlen - 2] = '\0'; 1906 (void) strcat(sp, newpath); 1907 1908 ref = refstr_alloc(sp); 1909 kmem_free(sp, len); 1910 out: 1911 *refp = ref; 1912 1913 if (have_list_lock) { 1914 vfs_mnttab_modtimeupd(); 1915 vfs_list_unlock(); 1916 } 1917 } 1918 1919 /* 1920 * Record a mounted resource name in a vfs structure. 1921 * If vfsp is already mounted, caller must hold the vfs lock. 1922 */ 1923 void 1924 vfs_setresource(struct vfs *vfsp, const char *resource) 1925 { 1926 if (resource == NULL || resource[0] == '\0') 1927 resource = VFS_NORESOURCE; 1928 vfs_setpath(vfsp, &vfsp->vfs_resource, resource); 1929 } 1930 1931 /* 1932 * Record a mount point name in a vfs structure. 1933 * If vfsp is already mounted, caller must hold the vfs lock. 1934 */ 1935 void 1936 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt) 1937 { 1938 if (mntpt == NULL || mntpt[0] == '\0') 1939 mntpt = VFS_NOMNTPT; 1940 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt); 1941 } 1942 1943 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1944 1945 refstr_t * 1946 vfs_getresource(const struct vfs *vfsp) 1947 { 1948 refstr_t *resource; 1949 1950 vfs_list_read_lock(); 1951 resource = vfsp->vfs_resource; 1952 refstr_hold(resource); 1953 vfs_list_unlock(); 1954 1955 return (resource); 1956 } 1957 1958 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1959 1960 refstr_t * 1961 vfs_getmntpoint(const struct vfs *vfsp) 1962 { 1963 refstr_t *mntpt; 1964 1965 vfs_list_read_lock(); 1966 mntpt = vfsp->vfs_mntpt; 1967 refstr_hold(mntpt); 1968 vfs_list_unlock(); 1969 1970 return (mntpt); 1971 } 1972 1973 /* 1974 * Create an empty options table with enough empty slots to hold all 1975 * The options in the options string passed as an argument. 1976 * Potentially prepend another options table. 1977 * 1978 * Note: caller is responsible for locking the vfs list, if needed, 1979 * to protect mops. 1980 */ 1981 static void 1982 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1983 const mntopts_t *mtmpl) 1984 { 1985 const char *s = opts; 1986 uint_t count; 1987 1988 if (opts == NULL || *opts == '\0') { 1989 count = 0; 1990 } else { 1991 count = 1; 1992 1993 /* 1994 * Count number of options in the string 1995 */ 1996 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1997 count++; 1998 s++; 1999 } 2000 } 2001 vfs_copyopttbl_extend(mtmpl, mops, count); 2002 } 2003 2004 /* 2005 * Create an empty options table with enough empty slots to hold all 2006 * The options in the options string passed as an argument. 2007 * 2008 * This function is *not* for general use by filesystems. 2009 * 2010 * Note: caller is responsible for locking the vfs list, if needed, 2011 * to protect mops. 2012 */ 2013 void 2014 vfs_createopttbl(mntopts_t *mops, const char *opts) 2015 { 2016 vfs_createopttbl_extend(mops, opts, NULL); 2017 } 2018 2019 2020 /* 2021 * Swap two mount options tables 2022 */ 2023 static void 2024 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2025 { 2026 uint_t tmpcnt; 2027 mntopt_t *tmplist; 2028 2029 tmpcnt = optbl2->mo_count; 2030 tmplist = optbl2->mo_list; 2031 optbl2->mo_count = optbl1->mo_count; 2032 optbl2->mo_list = optbl1->mo_list; 2033 optbl1->mo_count = tmpcnt; 2034 optbl1->mo_list = tmplist; 2035 } 2036 2037 static void 2038 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2039 { 2040 vfs_list_lock(); 2041 vfs_swapopttbl_nolock(optbl1, optbl2); 2042 vfs_mnttab_modtimeupd(); 2043 vfs_list_unlock(); 2044 } 2045 2046 static char ** 2047 vfs_copycancelopt_extend(char **const moc, int extend) 2048 { 2049 int i = 0; 2050 int j; 2051 char **result; 2052 2053 if (moc != NULL) { 2054 for (; moc[i] != NULL; i++) 2055 /* count number of options to cancel */; 2056 } 2057 2058 if (i + extend == 0) 2059 return (NULL); 2060 2061 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2062 2063 for (j = 0; j < i; j++) { 2064 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2065 (void) strcpy(result[j], moc[j]); 2066 } 2067 for (; j <= i + extend; j++) 2068 result[j] = NULL; 2069 2070 return (result); 2071 } 2072 2073 static void 2074 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2075 { 2076 char *sp, *dp; 2077 2078 d->mo_flags = s->mo_flags; 2079 d->mo_data = s->mo_data; 2080 sp = s->mo_name; 2081 if (sp != NULL) { 2082 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2083 (void) strcpy(dp, sp); 2084 d->mo_name = dp; 2085 } else { 2086 d->mo_name = NULL; /* should never happen */ 2087 } 2088 2089 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2090 2091 sp = s->mo_arg; 2092 if (sp != NULL) { 2093 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2094 (void) strcpy(dp, sp); 2095 d->mo_arg = dp; 2096 } else { 2097 d->mo_arg = NULL; 2098 } 2099 } 2100 2101 /* 2102 * Copy a mount options table, possibly allocating some spare 2103 * slots at the end. It is permissible to copy_extend the NULL table. 2104 */ 2105 static void 2106 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2107 { 2108 uint_t i, count; 2109 mntopt_t *motbl; 2110 2111 /* 2112 * Clear out any existing stuff in the options table being initialized 2113 */ 2114 vfs_freeopttbl(dmo); 2115 count = (smo == NULL) ? 0 : smo->mo_count; 2116 if ((count + extra) == 0) /* nothing to do */ 2117 return; 2118 dmo->mo_count = count + extra; 2119 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2120 dmo->mo_list = motbl; 2121 for (i = 0; i < count; i++) { 2122 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2123 } 2124 for (i = count; i < count + extra; i++) { 2125 motbl[i].mo_flags = MO_EMPTY; 2126 } 2127 } 2128 2129 /* 2130 * Copy a mount options table. 2131 * 2132 * This function is *not* for general use by filesystems. 2133 * 2134 * Note: caller is responsible for locking the vfs list, if needed, 2135 * to protect smo and dmo. 2136 */ 2137 void 2138 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2139 { 2140 vfs_copyopttbl_extend(smo, dmo, 0); 2141 } 2142 2143 static char ** 2144 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2145 { 2146 int c1 = 0; 2147 int c2 = 0; 2148 char **result; 2149 char **sp1, **sp2, **dp; 2150 2151 /* 2152 * First we count both lists of cancel options. 2153 * If either is NULL or has no elements, we return a copy of 2154 * the other. 2155 */ 2156 if (mop1->mo_cancel != NULL) { 2157 for (; mop1->mo_cancel[c1] != NULL; c1++) 2158 /* count cancel options in mop1 */; 2159 } 2160 2161 if (c1 == 0) 2162 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2163 2164 if (mop2->mo_cancel != NULL) { 2165 for (; mop2->mo_cancel[c2] != NULL; c2++) 2166 /* count cancel options in mop2 */; 2167 } 2168 2169 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2170 2171 if (c2 == 0) 2172 return (result); 2173 2174 /* 2175 * When we get here, we've got two sets of cancel options; 2176 * we need to merge the two sets. We know that the result 2177 * array has "c1+c2+1" entries and in the end we might shrink 2178 * it. 2179 * Result now has a copy of the c1 entries from mop1; we'll 2180 * now lookup all the entries of mop2 in mop1 and copy it if 2181 * it is unique. 2182 * This operation is O(n^2) but it's only called once per 2183 * filesystem per duplicate option. This is a situation 2184 * which doesn't arise with the filesystems in ON and 2185 * n is generally 1. 2186 */ 2187 2188 dp = &result[c1]; 2189 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2190 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2191 if (strcmp(*sp1, *sp2) == 0) 2192 break; 2193 } 2194 if (*sp1 == NULL) { 2195 /* 2196 * Option *sp2 not found in mop1, so copy it. 2197 * The calls to vfs_copycancelopt_extend() 2198 * guarantee that there's enough room. 2199 */ 2200 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2201 (void) strcpy(*dp++, *sp2); 2202 } 2203 } 2204 if (dp != &result[c1+c2]) { 2205 size_t bytes = (dp - result + 1) * sizeof (char *); 2206 char **nres = kmem_alloc(bytes, KM_SLEEP); 2207 2208 bcopy(result, nres, bytes); 2209 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2210 result = nres; 2211 } 2212 return (result); 2213 } 2214 2215 /* 2216 * Merge two mount option tables (outer and inner) into one. This is very 2217 * similar to "merging" global variables and automatic variables in C. 2218 * 2219 * This isn't (and doesn't have to be) fast. 2220 * 2221 * This function is *not* for general use by filesystems. 2222 * 2223 * Note: caller is responsible for locking the vfs list, if needed, 2224 * to protect omo, imo & dmo. 2225 */ 2226 void 2227 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2228 { 2229 uint_t i, count; 2230 mntopt_t *mop, *motbl; 2231 uint_t freeidx; 2232 2233 /* 2234 * First determine how much space we need to allocate. 2235 */ 2236 count = omo->mo_count; 2237 for (i = 0; i < imo->mo_count; i++) { 2238 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2239 continue; 2240 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2241 count++; 2242 } 2243 ASSERT(count >= omo->mo_count && 2244 count <= omo->mo_count + imo->mo_count); 2245 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2246 for (i = 0; i < omo->mo_count; i++) 2247 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2248 freeidx = omo->mo_count; 2249 for (i = 0; i < imo->mo_count; i++) { 2250 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2251 continue; 2252 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2253 char **newcanp; 2254 uint_t index = mop - omo->mo_list; 2255 2256 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2257 2258 vfs_freeopt(&motbl[index]); 2259 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2260 2261 vfs_freecancelopt(motbl[index].mo_cancel); 2262 motbl[index].mo_cancel = newcanp; 2263 } else { 2264 /* 2265 * If it's a new option, just copy it over to the first 2266 * free location. 2267 */ 2268 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2269 } 2270 } 2271 dmo->mo_count = count; 2272 dmo->mo_list = motbl; 2273 } 2274 2275 /* 2276 * Functions to set and clear mount options in a mount options table. 2277 */ 2278 2279 /* 2280 * Clear a mount option, if it exists. 2281 * 2282 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2283 * the vfs list. 2284 */ 2285 static void 2286 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2287 { 2288 struct mntopt *mop; 2289 uint_t i, count; 2290 2291 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2292 2293 count = mops->mo_count; 2294 for (i = 0; i < count; i++) { 2295 mop = &mops->mo_list[i]; 2296 2297 if (mop->mo_flags & MO_EMPTY) 2298 continue; 2299 if (strcmp(opt, mop->mo_name)) 2300 continue; 2301 mop->mo_flags &= ~MO_SET; 2302 if (mop->mo_arg != NULL) { 2303 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2304 } 2305 mop->mo_arg = NULL; 2306 if (update_mnttab) 2307 vfs_mnttab_modtimeupd(); 2308 break; 2309 } 2310 } 2311 2312 void 2313 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2314 { 2315 int gotlock = 0; 2316 2317 if (VFS_ON_LIST(vfsp)) { 2318 gotlock = 1; 2319 vfs_list_lock(); 2320 } 2321 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2322 if (gotlock) 2323 vfs_list_unlock(); 2324 } 2325 2326 2327 /* 2328 * Set a mount option on. If it's not found in the table, it's silently 2329 * ignored. If the option has MO_IGNORE set, it is still set unless the 2330 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2331 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2332 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2333 * MO_EMPTY set is created as the option passed in. 2334 * 2335 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2336 * the vfs list. 2337 */ 2338 static void 2339 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2340 const char *arg, int flags, int update_mnttab) 2341 { 2342 mntopt_t *mop; 2343 uint_t i, count; 2344 char *sp; 2345 2346 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2347 2348 if (flags & VFS_CREATEOPT) { 2349 if (vfs_hasopt(mops, opt) != NULL) { 2350 flags &= ~VFS_CREATEOPT; 2351 } 2352 } 2353 count = mops->mo_count; 2354 for (i = 0; i < count; i++) { 2355 mop = &mops->mo_list[i]; 2356 2357 if (mop->mo_flags & MO_EMPTY) { 2358 if ((flags & VFS_CREATEOPT) == 0) 2359 continue; 2360 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2361 (void) strcpy(sp, opt); 2362 mop->mo_name = sp; 2363 if (arg != NULL) 2364 mop->mo_flags = MO_HASVALUE; 2365 else 2366 mop->mo_flags = 0; 2367 } else if (strcmp(opt, mop->mo_name)) { 2368 continue; 2369 } 2370 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2371 break; 2372 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2373 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2374 (void) strcpy(sp, arg); 2375 } else { 2376 sp = NULL; 2377 } 2378 if (mop->mo_arg != NULL) 2379 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2380 mop->mo_arg = sp; 2381 if (flags & VFS_DISPLAY) 2382 mop->mo_flags &= ~MO_NODISPLAY; 2383 if (flags & VFS_NODISPLAY) 2384 mop->mo_flags |= MO_NODISPLAY; 2385 mop->mo_flags |= MO_SET; 2386 if (mop->mo_cancel != NULL) { 2387 char **cp; 2388 2389 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2390 vfs_clearmntopt_nolock(mops, *cp, 0); 2391 } 2392 if (update_mnttab) 2393 vfs_mnttab_modtimeupd(); 2394 break; 2395 } 2396 } 2397 2398 void 2399 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2400 { 2401 int gotlock = 0; 2402 2403 if (VFS_ON_LIST(vfsp)) { 2404 gotlock = 1; 2405 vfs_list_lock(); 2406 } 2407 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2408 if (gotlock) 2409 vfs_list_unlock(); 2410 } 2411 2412 2413 /* 2414 * Add a "tag" option to a mounted file system's options list. 2415 * 2416 * Note: caller is responsible for locking the vfs list, if needed, 2417 * to protect mops. 2418 */ 2419 static mntopt_t * 2420 vfs_addtag(mntopts_t *mops, const char *tag) 2421 { 2422 uint_t count; 2423 mntopt_t *mop, *motbl; 2424 2425 count = mops->mo_count + 1; 2426 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2427 if (mops->mo_count) { 2428 size_t len = (count - 1) * sizeof (mntopt_t); 2429 2430 bcopy(mops->mo_list, motbl, len); 2431 kmem_free(mops->mo_list, len); 2432 } 2433 mops->mo_count = count; 2434 mops->mo_list = motbl; 2435 mop = &motbl[count - 1]; 2436 mop->mo_flags = MO_TAG; 2437 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2438 (void) strcpy(mop->mo_name, tag); 2439 return (mop); 2440 } 2441 2442 /* 2443 * Allow users to set arbitrary "tags" in a vfs's mount options. 2444 * Broader use within the kernel is discouraged. 2445 */ 2446 int 2447 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2448 cred_t *cr) 2449 { 2450 vfs_t *vfsp; 2451 mntopts_t *mops; 2452 mntopt_t *mop; 2453 int found = 0; 2454 dev_t dev = makedevice(major, minor); 2455 int err = 0; 2456 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2457 2458 /* 2459 * Find the desired mounted file system 2460 */ 2461 vfs_list_lock(); 2462 vfsp = rootvfs; 2463 do { 2464 if (vfsp->vfs_dev == dev && 2465 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2466 found = 1; 2467 break; 2468 } 2469 vfsp = vfsp->vfs_next; 2470 } while (vfsp != rootvfs); 2471 2472 if (!found) { 2473 err = EINVAL; 2474 goto out; 2475 } 2476 err = secpolicy_fs_config(cr, vfsp); 2477 if (err != 0) 2478 goto out; 2479 2480 mops = &vfsp->vfs_mntopts; 2481 /* 2482 * Add tag if it doesn't already exist 2483 */ 2484 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2485 int len; 2486 2487 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2488 len = strlen(buf); 2489 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2490 err = ENAMETOOLONG; 2491 goto out; 2492 } 2493 mop = vfs_addtag(mops, tag); 2494 } 2495 if ((mop->mo_flags & MO_TAG) == 0) { 2496 err = EINVAL; 2497 goto out; 2498 } 2499 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2500 out: 2501 vfs_list_unlock(); 2502 kmem_free(buf, MAX_MNTOPT_STR); 2503 return (err); 2504 } 2505 2506 /* 2507 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2508 * Broader use within the kernel is discouraged. 2509 */ 2510 int 2511 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2512 cred_t *cr) 2513 { 2514 vfs_t *vfsp; 2515 mntopt_t *mop; 2516 int found = 0; 2517 dev_t dev = makedevice(major, minor); 2518 int err = 0; 2519 2520 /* 2521 * Find the desired mounted file system 2522 */ 2523 vfs_list_lock(); 2524 vfsp = rootvfs; 2525 do { 2526 if (vfsp->vfs_dev == dev && 2527 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2528 found = 1; 2529 break; 2530 } 2531 vfsp = vfsp->vfs_next; 2532 } while (vfsp != rootvfs); 2533 2534 if (!found) { 2535 err = EINVAL; 2536 goto out; 2537 } 2538 err = secpolicy_fs_config(cr, vfsp); 2539 if (err != 0) 2540 goto out; 2541 2542 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2543 err = EINVAL; 2544 goto out; 2545 } 2546 if ((mop->mo_flags & MO_TAG) == 0) { 2547 err = EINVAL; 2548 goto out; 2549 } 2550 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2551 out: 2552 vfs_list_unlock(); 2553 return (err); 2554 } 2555 2556 /* 2557 * Function to parse an option string and fill in a mount options table. 2558 * Unknown options are silently ignored. The input option string is modified 2559 * by replacing separators with nulls. If the create flag is set, options 2560 * not found in the table are just added on the fly. The table must have 2561 * an option slot marked MO_EMPTY to add an option on the fly. 2562 * 2563 * This function is *not* for general use by filesystems. 2564 * 2565 * Note: caller is responsible for locking the vfs list, if needed, 2566 * to protect mops.. 2567 */ 2568 void 2569 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2570 { 2571 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2572 int setflg = VFS_NOFORCEOPT; 2573 2574 if (osp == NULL) 2575 return; 2576 while (*s != '\0') { 2577 p = strchr(s, ','); /* find next option */ 2578 if (p == NULL) { 2579 cp = NULL; 2580 p = s + strlen(s); 2581 } else { 2582 cp = p; /* save location of comma */ 2583 *p++ = '\0'; /* mark end and point to next option */ 2584 } 2585 nextop = p; 2586 p = strchr(s, '='); /* look for value */ 2587 if (p == NULL) { 2588 valp = NULL; /* no value supplied */ 2589 } else { 2590 ep = p; /* save location of equals */ 2591 *p++ = '\0'; /* end option and point to value */ 2592 valp = p; 2593 } 2594 /* 2595 * set option into options table 2596 */ 2597 if (create) 2598 setflg |= VFS_CREATEOPT; 2599 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2600 if (cp != NULL) 2601 *cp = ','; /* restore the comma */ 2602 if (valp != NULL) 2603 *ep = '='; /* restore the equals */ 2604 s = nextop; 2605 } 2606 } 2607 2608 /* 2609 * Function to inquire if an option exists in a mount options table. 2610 * Returns a pointer to the option if it exists, else NULL. 2611 * 2612 * This function is *not* for general use by filesystems. 2613 * 2614 * Note: caller is responsible for locking the vfs list, if needed, 2615 * to protect mops. 2616 */ 2617 struct mntopt * 2618 vfs_hasopt(const mntopts_t *mops, const char *opt) 2619 { 2620 struct mntopt *mop; 2621 uint_t i, count; 2622 2623 count = mops->mo_count; 2624 for (i = 0; i < count; i++) { 2625 mop = &mops->mo_list[i]; 2626 2627 if (mop->mo_flags & MO_EMPTY) 2628 continue; 2629 if (strcmp(opt, mop->mo_name) == 0) 2630 return (mop); 2631 } 2632 return (NULL); 2633 } 2634 2635 /* 2636 * Function to inquire if an option is set in a mount options table. 2637 * Returns non-zero if set and fills in the arg pointer with a pointer to 2638 * the argument string or NULL if there is no argument string. 2639 */ 2640 static int 2641 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2642 { 2643 struct mntopt *mop; 2644 uint_t i, count; 2645 2646 count = mops->mo_count; 2647 for (i = 0; i < count; i++) { 2648 mop = &mops->mo_list[i]; 2649 2650 if (mop->mo_flags & MO_EMPTY) 2651 continue; 2652 if (strcmp(opt, mop->mo_name)) 2653 continue; 2654 if ((mop->mo_flags & MO_SET) == 0) 2655 return (0); 2656 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2657 *argp = mop->mo_arg; 2658 return (1); 2659 } 2660 return (0); 2661 } 2662 2663 2664 int 2665 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2666 { 2667 int ret; 2668 2669 vfs_list_read_lock(); 2670 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2671 vfs_list_unlock(); 2672 return (ret); 2673 } 2674 2675 2676 /* 2677 * Construct a comma separated string of the options set in the given 2678 * mount table, return the string in the given buffer. Return non-zero if 2679 * the buffer would overflow. 2680 * 2681 * This function is *not* for general use by filesystems. 2682 * 2683 * Note: caller is responsible for locking the vfs list, if needed, 2684 * to protect mp. 2685 */ 2686 int 2687 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2688 { 2689 char *cp; 2690 uint_t i; 2691 2692 buf[0] = '\0'; 2693 cp = buf; 2694 for (i = 0; i < mp->mo_count; i++) { 2695 struct mntopt *mop; 2696 2697 mop = &mp->mo_list[i]; 2698 if (mop->mo_flags & MO_SET) { 2699 int optlen, comma = 0; 2700 2701 if (buf[0] != '\0') 2702 comma = 1; 2703 optlen = strlen(mop->mo_name); 2704 if (strlen(buf) + comma + optlen + 1 > len) 2705 goto err; 2706 if (comma) 2707 *cp++ = ','; 2708 (void) strcpy(cp, mop->mo_name); 2709 cp += optlen; 2710 /* 2711 * Append option value if there is one 2712 */ 2713 if (mop->mo_arg != NULL) { 2714 int arglen; 2715 2716 arglen = strlen(mop->mo_arg); 2717 if (strlen(buf) + arglen + 2 > len) 2718 goto err; 2719 *cp++ = '='; 2720 (void) strcpy(cp, mop->mo_arg); 2721 cp += arglen; 2722 } 2723 } 2724 } 2725 return (0); 2726 err: 2727 return (EOVERFLOW); 2728 } 2729 2730 static void 2731 vfs_freecancelopt(char **moc) 2732 { 2733 if (moc != NULL) { 2734 int ccnt = 0; 2735 char **cp; 2736 2737 for (cp = moc; *cp != NULL; cp++) { 2738 kmem_free(*cp, strlen(*cp) + 1); 2739 ccnt++; 2740 } 2741 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2742 } 2743 } 2744 2745 static void 2746 vfs_freeopt(mntopt_t *mop) 2747 { 2748 if (mop->mo_name != NULL) 2749 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2750 2751 vfs_freecancelopt(mop->mo_cancel); 2752 2753 if (mop->mo_arg != NULL) 2754 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2755 } 2756 2757 /* 2758 * Free a mount options table 2759 * 2760 * This function is *not* for general use by filesystems. 2761 * 2762 * Note: caller is responsible for locking the vfs list, if needed, 2763 * to protect mp. 2764 */ 2765 void 2766 vfs_freeopttbl(mntopts_t *mp) 2767 { 2768 uint_t i, count; 2769 2770 count = mp->mo_count; 2771 for (i = 0; i < count; i++) { 2772 vfs_freeopt(&mp->mo_list[i]); 2773 } 2774 if (count) { 2775 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2776 mp->mo_count = 0; 2777 mp->mo_list = NULL; 2778 } 2779 } 2780 2781 2782 /* ARGSUSED */ 2783 static int 2784 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2785 caller_context_t *ct) 2786 { 2787 return (0); 2788 } 2789 2790 /* ARGSUSED */ 2791 static int 2792 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2793 caller_context_t *ct) 2794 { 2795 return (0); 2796 } 2797 2798 /* 2799 * The dummy vnode is currently used only by file events notification 2800 * module which is just interested in the timestamps. 2801 */ 2802 /* ARGSUSED */ 2803 static int 2804 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2805 caller_context_t *ct) 2806 { 2807 bzero(vap, sizeof (vattr_t)); 2808 vap->va_type = VREG; 2809 vap->va_nlink = 1; 2810 vap->va_ctime = vfs_mnttab_ctime; 2811 /* 2812 * it is ok to just copy mtime as the time will be monotonically 2813 * increasing. 2814 */ 2815 vap->va_mtime = vfs_mnttab_mtime; 2816 vap->va_atime = vap->va_mtime; 2817 return (0); 2818 } 2819 2820 static void 2821 vfs_mnttabvp_setup(void) 2822 { 2823 vnode_t *tvp; 2824 vnodeops_t *vfs_mntdummyvnops; 2825 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2826 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2827 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2828 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2829 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2830 NULL, NULL 2831 }; 2832 2833 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2834 &vfs_mntdummyvnops) != 0) { 2835 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2836 /* Shouldn't happen, but not bad enough to panic */ 2837 return; 2838 } 2839 2840 /* 2841 * A global dummy vnode is allocated to represent mntfs files. 2842 * The mntfs file (/etc/mnttab) can be monitored for file events 2843 * and receive an event when mnttab changes. Dummy VOP calls 2844 * will be made on this vnode. The file events notification module 2845 * intercepts this vnode and delivers relevant events. 2846 */ 2847 tvp = vn_alloc(KM_SLEEP); 2848 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2849 vn_setops(tvp, vfs_mntdummyvnops); 2850 tvp->v_type = VREG; 2851 /* 2852 * The mnt dummy ops do not reference v_data. 2853 * No other module intercepting this vnode should either. 2854 * Just set it to point to itself. 2855 */ 2856 tvp->v_data = (caddr_t)tvp; 2857 tvp->v_vfsp = rootvfs; 2858 vfs_mntdummyvp = tvp; 2859 } 2860 2861 /* 2862 * performs fake read/write ops 2863 */ 2864 static void 2865 vfs_mnttab_rwop(int rw) 2866 { 2867 struct uio uio; 2868 struct iovec iov; 2869 char buf[1]; 2870 2871 if (vfs_mntdummyvp == NULL) 2872 return; 2873 2874 bzero(&uio, sizeof (uio)); 2875 bzero(&iov, sizeof (iov)); 2876 iov.iov_base = buf; 2877 iov.iov_len = 0; 2878 uio.uio_iov = &iov; 2879 uio.uio_iovcnt = 1; 2880 uio.uio_loffset = 0; 2881 uio.uio_segflg = UIO_SYSSPACE; 2882 uio.uio_resid = 0; 2883 if (rw) { 2884 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2885 } else { 2886 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2887 } 2888 } 2889 2890 /* 2891 * Generate a write operation. 2892 */ 2893 void 2894 vfs_mnttab_writeop(void) 2895 { 2896 vfs_mnttab_rwop(1); 2897 } 2898 2899 /* 2900 * Generate a read operation. 2901 */ 2902 void 2903 vfs_mnttab_readop(void) 2904 { 2905 vfs_mnttab_rwop(0); 2906 } 2907 2908 /* 2909 * Free any mnttab information recorded in the vfs struct. 2910 * The vfs must not be on the vfs list. 2911 */ 2912 static void 2913 vfs_freemnttab(struct vfs *vfsp) 2914 { 2915 ASSERT(!VFS_ON_LIST(vfsp)); 2916 2917 /* 2918 * Free device and mount point information 2919 */ 2920 if (vfsp->vfs_mntpt != NULL) { 2921 refstr_rele(vfsp->vfs_mntpt); 2922 vfsp->vfs_mntpt = NULL; 2923 } 2924 if (vfsp->vfs_resource != NULL) { 2925 refstr_rele(vfsp->vfs_resource); 2926 vfsp->vfs_resource = NULL; 2927 } 2928 /* 2929 * Now free mount options information 2930 */ 2931 vfs_freeopttbl(&vfsp->vfs_mntopts); 2932 } 2933 2934 /* 2935 * Return the last mnttab modification time 2936 */ 2937 void 2938 vfs_mnttab_modtime(timespec_t *ts) 2939 { 2940 ASSERT(RW_LOCK_HELD(&vfslist)); 2941 *ts = vfs_mnttab_mtime; 2942 } 2943 2944 /* 2945 * See if mnttab is changed 2946 */ 2947 void 2948 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2949 { 2950 int changed; 2951 2952 *phpp = (struct pollhead *)NULL; 2953 2954 /* 2955 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2956 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2957 * to not grab the vfs list lock because tv_sec is monotonically 2958 * increasing. 2959 */ 2960 2961 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2962 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2963 if (!changed) { 2964 *phpp = &vfs_pollhd; 2965 } 2966 } 2967 2968 /* Provide a unique and monotonically-increasing timestamp. */ 2969 void 2970 vfs_mono_time(timespec_t *ts) 2971 { 2972 static volatile hrtime_t hrt; /* The saved time. */ 2973 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2974 timespec_t newts; 2975 2976 /* 2977 * Try gethrestime() first, but be prepared to fabricate a sensible 2978 * answer at the first sign of any trouble. 2979 */ 2980 gethrestime(&newts); 2981 newhrt = ts2hrt(&newts); 2982 for (;;) { 2983 oldhrt = hrt; 2984 if (newhrt <= hrt) 2985 newhrt = hrt + 1; 2986 if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2987 break; 2988 } 2989 hrt2ts(newhrt, ts); 2990 } 2991 2992 /* 2993 * Update the mnttab modification time and wake up any waiters for 2994 * mnttab changes 2995 */ 2996 void 2997 vfs_mnttab_modtimeupd() 2998 { 2999 hrtime_t oldhrt, newhrt; 3000 3001 ASSERT(RW_WRITE_HELD(&vfslist)); 3002 oldhrt = ts2hrt(&vfs_mnttab_mtime); 3003 gethrestime(&vfs_mnttab_mtime); 3004 newhrt = ts2hrt(&vfs_mnttab_mtime); 3005 if (oldhrt == (hrtime_t)0) 3006 vfs_mnttab_ctime = vfs_mnttab_mtime; 3007 /* 3008 * Attempt to provide unique mtime (like uniqtime but not). 3009 */ 3010 if (newhrt == oldhrt) { 3011 newhrt++; 3012 hrt2ts(newhrt, &vfs_mnttab_mtime); 3013 } 3014 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3015 vfs_mnttab_writeop(); 3016 } 3017 3018 int 3019 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3020 { 3021 vnode_t *coveredvp; 3022 int error; 3023 extern void teardown_vopstats(vfs_t *); 3024 3025 /* 3026 * Get covered vnode. This will be NULL if the vfs is not linked 3027 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3028 */ 3029 coveredvp = vfsp->vfs_vnodecovered; 3030 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3031 3032 /* 3033 * Purge all dnlc entries for this vfs. 3034 */ 3035 (void) dnlc_purge_vfsp(vfsp, 0); 3036 3037 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3038 if ((flag & MS_FORCE) == 0) 3039 (void) VFS_SYNC(vfsp, 0, cr); 3040 3041 /* 3042 * Lock the vfs to maintain fs status quo during unmount. This 3043 * has to be done after the sync because ufs_update tries to acquire 3044 * the vfs_reflock. 3045 */ 3046 vfs_lock_wait(vfsp); 3047 3048 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3049 vfs_unlock(vfsp); 3050 if (coveredvp != NULL) 3051 vn_vfsunlock(coveredvp); 3052 } else if (coveredvp != NULL) { 3053 teardown_vopstats(vfsp); 3054 /* 3055 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3056 * when it frees vfsp so we do a VN_HOLD() so we can 3057 * continue to use coveredvp afterwards. 3058 */ 3059 VN_HOLD(coveredvp); 3060 vfs_remove(vfsp); 3061 vn_vfsunlock(coveredvp); 3062 VN_RELE(coveredvp); 3063 } else { 3064 teardown_vopstats(vfsp); 3065 /* 3066 * Release the reference to vfs that is not linked 3067 * into the name space. 3068 */ 3069 vfs_unlock(vfsp); 3070 VFS_RELE(vfsp); 3071 } 3072 return (error); 3073 } 3074 3075 3076 /* 3077 * Vfs_unmountall() is called by uadmin() to unmount all 3078 * mounted file systems (except the root file system) during shutdown. 3079 * It follows the existing locking protocol when traversing the vfs list 3080 * to sync and unmount vfses. Even though there should be no 3081 * other thread running while the system is shutting down, it is prudent 3082 * to still follow the locking protocol. 3083 */ 3084 void 3085 vfs_unmountall(void) 3086 { 3087 struct vfs *vfsp; 3088 struct vfs *prev_vfsp = NULL; 3089 int error; 3090 3091 /* 3092 * Toss all dnlc entries now so that the per-vfs sync 3093 * and unmount operations don't have to slog through 3094 * a bunch of uninteresting vnodes over and over again. 3095 */ 3096 dnlc_purge(); 3097 3098 vfs_list_lock(); 3099 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3100 prev_vfsp = vfsp->vfs_prev; 3101 3102 if (vfs_lock(vfsp) != 0) 3103 continue; 3104 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3105 vfs_unlock(vfsp); 3106 if (error) 3107 continue; 3108 3109 vfs_list_unlock(); 3110 3111 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3112 (void) dounmount(vfsp, 0, CRED()); 3113 3114 /* 3115 * Since we dropped the vfslist lock above we must 3116 * verify that next_vfsp still exists, else start over. 3117 */ 3118 vfs_list_lock(); 3119 for (vfsp = rootvfs->vfs_prev; 3120 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3121 if (vfsp == prev_vfsp) 3122 break; 3123 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3124 prev_vfsp = rootvfs->vfs_prev; 3125 } 3126 vfs_list_unlock(); 3127 } 3128 3129 /* 3130 * Called to add an entry to the end of the vfs mount in progress list 3131 */ 3132 void 3133 vfs_addmip(dev_t dev, struct vfs *vfsp) 3134 { 3135 struct ipmnt *mipp; 3136 3137 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3138 mipp->mip_next = NULL; 3139 mipp->mip_dev = dev; 3140 mipp->mip_vfsp = vfsp; 3141 mutex_enter(&vfs_miplist_mutex); 3142 if (vfs_miplist_end != NULL) 3143 vfs_miplist_end->mip_next = mipp; 3144 else 3145 vfs_miplist = mipp; 3146 vfs_miplist_end = mipp; 3147 mutex_exit(&vfs_miplist_mutex); 3148 } 3149 3150 /* 3151 * Called to remove an entry from the mount in progress list 3152 * Either because the mount completed or it failed. 3153 */ 3154 void 3155 vfs_delmip(struct vfs *vfsp) 3156 { 3157 struct ipmnt *mipp, *mipprev; 3158 3159 mutex_enter(&vfs_miplist_mutex); 3160 mipprev = NULL; 3161 for (mipp = vfs_miplist; 3162 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3163 mipprev = mipp; 3164 } 3165 if (mipp == NULL) 3166 return; /* shouldn't happen */ 3167 if (mipp == vfs_miplist_end) 3168 vfs_miplist_end = mipprev; 3169 if (mipprev == NULL) 3170 vfs_miplist = mipp->mip_next; 3171 else 3172 mipprev->mip_next = mipp->mip_next; 3173 mutex_exit(&vfs_miplist_mutex); 3174 kmem_free(mipp, sizeof (struct ipmnt)); 3175 } 3176 3177 /* 3178 * vfs_add is called by a specific filesystem's mount routine to add 3179 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3180 * The vfs should already have been locked by the caller. 3181 * 3182 * coveredvp is NULL if this is the root. 3183 */ 3184 void 3185 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3186 { 3187 int newflag; 3188 3189 ASSERT(vfs_lock_held(vfsp)); 3190 VFS_HOLD(vfsp); 3191 newflag = vfsp->vfs_flag; 3192 if (mflag & MS_RDONLY) 3193 newflag |= VFS_RDONLY; 3194 else 3195 newflag &= ~VFS_RDONLY; 3196 if (mflag & MS_NOSUID) 3197 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3198 else 3199 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3200 if (mflag & MS_NOMNTTAB) 3201 newflag |= VFS_NOMNTTAB; 3202 else 3203 newflag &= ~VFS_NOMNTTAB; 3204 3205 if (coveredvp != NULL) { 3206 ASSERT(vn_vfswlock_held(coveredvp)); 3207 coveredvp->v_vfsmountedhere = vfsp; 3208 VN_HOLD(coveredvp); 3209 } 3210 vfsp->vfs_vnodecovered = coveredvp; 3211 vfsp->vfs_flag = newflag; 3212 3213 vfs_list_add(vfsp); 3214 } 3215 3216 /* 3217 * Remove a vfs from the vfs list, null out the pointer from the 3218 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3219 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3220 * reference to the vfs and to the covered vnode. 3221 * 3222 * Called from dounmount after it's confirmed with the file system 3223 * that the unmount is legal. 3224 */ 3225 void 3226 vfs_remove(struct vfs *vfsp) 3227 { 3228 vnode_t *vp; 3229 3230 ASSERT(vfs_lock_held(vfsp)); 3231 3232 /* 3233 * Can't unmount root. Should never happen because fs will 3234 * be busy. 3235 */ 3236 if (vfsp == rootvfs) 3237 panic("vfs_remove: unmounting root"); 3238 3239 vfs_list_remove(vfsp); 3240 3241 /* 3242 * Unhook from the file system name space. 3243 */ 3244 vp = vfsp->vfs_vnodecovered; 3245 ASSERT(vn_vfswlock_held(vp)); 3246 vp->v_vfsmountedhere = NULL; 3247 vfsp->vfs_vnodecovered = NULL; 3248 VN_RELE(vp); 3249 3250 /* 3251 * Release lock and wakeup anybody waiting. 3252 */ 3253 vfs_unlock(vfsp); 3254 VFS_RELE(vfsp); 3255 } 3256 3257 /* 3258 * Lock a filesystem to prevent access to it while mounting, 3259 * unmounting and syncing. Return EBUSY immediately if lock 3260 * can't be acquired. 3261 */ 3262 int 3263 vfs_lock(vfs_t *vfsp) 3264 { 3265 vn_vfslocks_entry_t *vpvfsentry; 3266 3267 vpvfsentry = vn_vfslocks_getlock(vfsp); 3268 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3269 return (0); 3270 3271 vn_vfslocks_rele(vpvfsentry); 3272 return (EBUSY); 3273 } 3274 3275 int 3276 vfs_rlock(vfs_t *vfsp) 3277 { 3278 vn_vfslocks_entry_t *vpvfsentry; 3279 3280 vpvfsentry = vn_vfslocks_getlock(vfsp); 3281 3282 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3283 return (0); 3284 3285 vn_vfslocks_rele(vpvfsentry); 3286 return (EBUSY); 3287 } 3288 3289 void 3290 vfs_lock_wait(vfs_t *vfsp) 3291 { 3292 vn_vfslocks_entry_t *vpvfsentry; 3293 3294 vpvfsentry = vn_vfslocks_getlock(vfsp); 3295 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3296 } 3297 3298 void 3299 vfs_rlock_wait(vfs_t *vfsp) 3300 { 3301 vn_vfslocks_entry_t *vpvfsentry; 3302 3303 vpvfsentry = vn_vfslocks_getlock(vfsp); 3304 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3305 } 3306 3307 /* 3308 * Unlock a locked filesystem. 3309 */ 3310 void 3311 vfs_unlock(vfs_t *vfsp) 3312 { 3313 vn_vfslocks_entry_t *vpvfsentry; 3314 3315 /* 3316 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3317 * And these changes should remain for the patch changes as it is. 3318 */ 3319 if (panicstr) 3320 return; 3321 3322 /* 3323 * ve_refcount needs to be dropped twice here. 3324 * 1. To release refernce after a call to vfs_locks_getlock() 3325 * 2. To release the reference from the locking routines like 3326 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3327 */ 3328 3329 vpvfsentry = vn_vfslocks_getlock(vfsp); 3330 vn_vfslocks_rele(vpvfsentry); 3331 3332 rwst_exit(&vpvfsentry->ve_lock); 3333 vn_vfslocks_rele(vpvfsentry); 3334 } 3335 3336 /* 3337 * Utility routine that allows a filesystem to construct its 3338 * fsid in "the usual way" - by munging some underlying dev_t and 3339 * the filesystem type number into the 64-bit fsid. Note that 3340 * this implicitly relies on dev_t persistence to make filesystem 3341 * id's persistent. 3342 * 3343 * There's nothing to prevent an individual fs from constructing its 3344 * fsid in a different way, and indeed they should. 3345 * 3346 * Since we want fsids to be 32-bit quantities (so that they can be 3347 * exported identically by either 32-bit or 64-bit APIs, as well as 3348 * the fact that fsid's are "known" to NFS), we compress the device 3349 * number given down to 32-bits, and panic if that isn't possible. 3350 */ 3351 void 3352 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3353 { 3354 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3355 panic("device number too big for fsid!"); 3356 fsi->val[1] = val; 3357 } 3358 3359 int 3360 vfs_lock_held(vfs_t *vfsp) 3361 { 3362 int held; 3363 vn_vfslocks_entry_t *vpvfsentry; 3364 3365 /* 3366 * vfs_lock_held will mimic sema_held behaviour 3367 * if panicstr is set. And these changes should remain 3368 * for the patch changes as it is. 3369 */ 3370 if (panicstr) 3371 return (1); 3372 3373 vpvfsentry = vn_vfslocks_getlock(vfsp); 3374 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3375 3376 vn_vfslocks_rele(vpvfsentry); 3377 return (held); 3378 } 3379 3380 struct _kthread * 3381 vfs_lock_owner(vfs_t *vfsp) 3382 { 3383 struct _kthread *owner; 3384 vn_vfslocks_entry_t *vpvfsentry; 3385 3386 /* 3387 * vfs_wlock_held will mimic sema_held behaviour 3388 * if panicstr is set. And these changes should remain 3389 * for the patch changes as it is. 3390 */ 3391 if (panicstr) 3392 return (NULL); 3393 3394 vpvfsentry = vn_vfslocks_getlock(vfsp); 3395 owner = rwst_owner(&vpvfsentry->ve_lock); 3396 3397 vn_vfslocks_rele(vpvfsentry); 3398 return (owner); 3399 } 3400 3401 /* 3402 * vfs list locking. 3403 * 3404 * Rather than manipulate the vfslist lock directly, we abstract into lock 3405 * and unlock routines to allow the locking implementation to be changed for 3406 * clustering. 3407 * 3408 * Whenever the vfs list is modified through its hash links, the overall list 3409 * lock must be obtained before locking the relevant hash bucket. But to see 3410 * whether a given vfs is on the list, it suffices to obtain the lock for the 3411 * hash bucket without getting the overall list lock. (See getvfs() below.) 3412 */ 3413 3414 void 3415 vfs_list_lock() 3416 { 3417 rw_enter(&vfslist, RW_WRITER); 3418 } 3419 3420 void 3421 vfs_list_read_lock() 3422 { 3423 rw_enter(&vfslist, RW_READER); 3424 } 3425 3426 void 3427 vfs_list_unlock() 3428 { 3429 rw_exit(&vfslist); 3430 } 3431 3432 /* 3433 * Low level worker routines for adding entries to and removing entries from 3434 * the vfs list. 3435 */ 3436 3437 static void 3438 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3439 { 3440 int vhno; 3441 struct vfs **hp; 3442 dev_t dev; 3443 3444 ASSERT(RW_WRITE_HELD(&vfslist)); 3445 3446 dev = expldev(vfsp->vfs_fsid.val[0]); 3447 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3448 3449 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3450 3451 /* 3452 * Link into the hash table, inserting it at the end, so that LOFS 3453 * with the same fsid as UFS (or other) file systems will not hide the 3454 * UFS. 3455 */ 3456 if (insert_at_head) { 3457 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3458 rvfs_list[vhno].rvfs_head = vfsp; 3459 } else { 3460 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3461 hp = &(*hp)->vfs_hash) 3462 continue; 3463 /* 3464 * hp now contains the address of the pointer to update 3465 * to effect the insertion. 3466 */ 3467 vfsp->vfs_hash = NULL; 3468 *hp = vfsp; 3469 } 3470 3471 rvfs_list[vhno].rvfs_len++; 3472 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3473 } 3474 3475 3476 static void 3477 vfs_hash_remove(struct vfs *vfsp) 3478 { 3479 int vhno; 3480 struct vfs *tvfsp; 3481 dev_t dev; 3482 3483 ASSERT(RW_WRITE_HELD(&vfslist)); 3484 3485 dev = expldev(vfsp->vfs_fsid.val[0]); 3486 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3487 3488 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3489 3490 /* 3491 * Remove from hash. 3492 */ 3493 if (rvfs_list[vhno].rvfs_head == vfsp) { 3494 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3495 rvfs_list[vhno].rvfs_len--; 3496 goto foundit; 3497 } 3498 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3499 tvfsp = tvfsp->vfs_hash) { 3500 if (tvfsp->vfs_hash == vfsp) { 3501 tvfsp->vfs_hash = vfsp->vfs_hash; 3502 rvfs_list[vhno].rvfs_len--; 3503 goto foundit; 3504 } 3505 } 3506 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3507 3508 foundit: 3509 3510 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3511 } 3512 3513 3514 void 3515 vfs_list_add(struct vfs *vfsp) 3516 { 3517 zone_t *zone; 3518 3519 /* 3520 * Typically, the vfs_t will have been created on behalf of the file 3521 * system in vfs_init, where it will have been provided with a 3522 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3523 * by an unbundled file system. We therefore check for such an example 3524 * before stamping the vfs_t with its creation time for the benefit of 3525 * mntfs. 3526 */ 3527 if (vfsp->vfs_implp == NULL) 3528 vfsimpl_setup(vfsp); 3529 vfs_mono_time(&vfsp->vfs_hrctime); 3530 3531 /* 3532 * The zone that owns the mount is the one that performed the mount. 3533 * Note that this isn't necessarily the same as the zone mounted into. 3534 * The corresponding zone_rele() will be done when the vfs_t is 3535 * being free'd. 3536 */ 3537 vfsp->vfs_zone = curproc->p_zone; 3538 zone_hold(vfsp->vfs_zone); 3539 3540 /* 3541 * Find the zone mounted into, and put this mount on its vfs list. 3542 */ 3543 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3544 ASSERT(zone != NULL); 3545 /* 3546 * Special casing for the root vfs. This structure is allocated 3547 * statically and hooked onto rootvfs at link time. During the 3548 * vfs_mountroot call at system startup time, the root file system's 3549 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3550 * as argument. The code below must detect and handle this special 3551 * case. The only apparent justification for this special casing is 3552 * to ensure that the root file system appears at the head of the 3553 * list. 3554 * 3555 * XXX: I'm assuming that it's ok to do normal list locking when 3556 * adding the entry for the root file system (this used to be 3557 * done with no locks held). 3558 */ 3559 vfs_list_lock(); 3560 /* 3561 * Link into the vfs list proper. 3562 */ 3563 if (vfsp == &root) { 3564 /* 3565 * Assert: This vfs is already on the list as its first entry. 3566 * Thus, there's nothing to do. 3567 */ 3568 ASSERT(rootvfs == vfsp); 3569 /* 3570 * Add it to the head of the global zone's vfslist. 3571 */ 3572 ASSERT(zone == global_zone); 3573 ASSERT(zone->zone_vfslist == NULL); 3574 zone->zone_vfslist = vfsp; 3575 } else { 3576 /* 3577 * Link to end of list using vfs_prev (as rootvfs is now a 3578 * doubly linked circular list) so list is in mount order for 3579 * mnttab use. 3580 */ 3581 rootvfs->vfs_prev->vfs_next = vfsp; 3582 vfsp->vfs_prev = rootvfs->vfs_prev; 3583 rootvfs->vfs_prev = vfsp; 3584 vfsp->vfs_next = rootvfs; 3585 3586 /* 3587 * Do it again for the zone-private list (which may be NULL). 3588 */ 3589 if (zone->zone_vfslist == NULL) { 3590 ASSERT(zone != global_zone); 3591 zone->zone_vfslist = vfsp; 3592 } else { 3593 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3594 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3595 zone->zone_vfslist->vfs_zone_prev = vfsp; 3596 vfsp->vfs_zone_next = zone->zone_vfslist; 3597 } 3598 } 3599 3600 /* 3601 * Link into the hash table, inserting it at the end, so that LOFS 3602 * with the same fsid as UFS (or other) file systems will not hide 3603 * the UFS. 3604 */ 3605 vfs_hash_add(vfsp, 0); 3606 3607 /* 3608 * update the mnttab modification time 3609 */ 3610 vfs_mnttab_modtimeupd(); 3611 vfs_list_unlock(); 3612 zone_rele(zone); 3613 } 3614 3615 void 3616 vfs_list_remove(struct vfs *vfsp) 3617 { 3618 zone_t *zone; 3619 3620 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3621 ASSERT(zone != NULL); 3622 /* 3623 * Callers are responsible for preventing attempts to unmount the 3624 * root. 3625 */ 3626 ASSERT(vfsp != rootvfs); 3627 3628 vfs_list_lock(); 3629 3630 /* 3631 * Remove from hash. 3632 */ 3633 vfs_hash_remove(vfsp); 3634 3635 /* 3636 * Remove from vfs list. 3637 */ 3638 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3639 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3640 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3641 3642 /* 3643 * Remove from zone-specific vfs list. 3644 */ 3645 if (zone->zone_vfslist == vfsp) 3646 zone->zone_vfslist = vfsp->vfs_zone_next; 3647 3648 if (vfsp->vfs_zone_next == vfsp) { 3649 ASSERT(vfsp->vfs_zone_prev == vfsp); 3650 ASSERT(zone->zone_vfslist == vfsp); 3651 zone->zone_vfslist = NULL; 3652 } 3653 3654 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3655 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3656 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3657 3658 /* 3659 * update the mnttab modification time 3660 */ 3661 vfs_mnttab_modtimeupd(); 3662 vfs_list_unlock(); 3663 zone_rele(zone); 3664 } 3665 3666 struct vfs * 3667 getvfs(fsid_t *fsid) 3668 { 3669 struct vfs *vfsp; 3670 int val0 = fsid->val[0]; 3671 int val1 = fsid->val[1]; 3672 dev_t dev = expldev(val0); 3673 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3674 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3675 3676 mutex_enter(hmp); 3677 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3678 if (vfsp->vfs_fsid.val[0] == val0 && 3679 vfsp->vfs_fsid.val[1] == val1) { 3680 VFS_HOLD(vfsp); 3681 mutex_exit(hmp); 3682 return (vfsp); 3683 } 3684 } 3685 mutex_exit(hmp); 3686 return (NULL); 3687 } 3688 3689 /* 3690 * Search the vfs mount in progress list for a specified device/vfs entry. 3691 * Returns 0 if the first entry in the list that the device matches has the 3692 * given vfs pointer as well. If the device matches but a different vfs 3693 * pointer is encountered in the list before the given vfs pointer then 3694 * a 1 is returned. 3695 */ 3696 3697 int 3698 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3699 { 3700 int retval = 0; 3701 struct ipmnt *mipp; 3702 3703 mutex_enter(&vfs_miplist_mutex); 3704 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3705 if (mipp->mip_dev == dev) { 3706 if (mipp->mip_vfsp != vfsp) 3707 retval = 1; 3708 break; 3709 } 3710 } 3711 mutex_exit(&vfs_miplist_mutex); 3712 return (retval); 3713 } 3714 3715 /* 3716 * Search the vfs list for a specified device. Returns 1, if entry is found 3717 * or 0 if no suitable entry is found. 3718 */ 3719 3720 int 3721 vfs_devismounted(dev_t dev) 3722 { 3723 struct vfs *vfsp; 3724 int found; 3725 3726 vfs_list_read_lock(); 3727 vfsp = rootvfs; 3728 found = 0; 3729 do { 3730 if (vfsp->vfs_dev == dev) { 3731 found = 1; 3732 break; 3733 } 3734 vfsp = vfsp->vfs_next; 3735 } while (vfsp != rootvfs); 3736 3737 vfs_list_unlock(); 3738 return (found); 3739 } 3740 3741 /* 3742 * Search the vfs list for a specified device. Returns a pointer to it 3743 * or NULL if no suitable entry is found. The caller of this routine 3744 * is responsible for releasing the returned vfs pointer. 3745 */ 3746 struct vfs * 3747 vfs_dev2vfsp(dev_t dev) 3748 { 3749 struct vfs *vfsp; 3750 int found; 3751 3752 vfs_list_read_lock(); 3753 vfsp = rootvfs; 3754 found = 0; 3755 do { 3756 /* 3757 * The following could be made more efficient by making 3758 * the entire loop use vfs_zone_next if the call is from 3759 * a zone. The only callers, however, ustat(2) and 3760 * umount2(2), don't seem to justify the added 3761 * complexity at present. 3762 */ 3763 if (vfsp->vfs_dev == dev && 3764 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3765 curproc->p_zone)) { 3766 VFS_HOLD(vfsp); 3767 found = 1; 3768 break; 3769 } 3770 vfsp = vfsp->vfs_next; 3771 } while (vfsp != rootvfs); 3772 vfs_list_unlock(); 3773 return (found ? vfsp: NULL); 3774 } 3775 3776 /* 3777 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3778 * or NULL if no suitable entry is found. The caller of this routine 3779 * is responsible for releasing the returned vfs pointer. 3780 * 3781 * Note that if multiple mntpoints match, the last one matching is 3782 * returned in an attempt to return the "top" mount when overlay 3783 * mounts are covering the same mount point. This is accomplished by starting 3784 * at the end of the list and working our way backwards, stopping at the first 3785 * matching mount. 3786 */ 3787 struct vfs * 3788 vfs_mntpoint2vfsp(const char *mp) 3789 { 3790 struct vfs *vfsp; 3791 struct vfs *retvfsp = NULL; 3792 zone_t *zone = curproc->p_zone; 3793 struct vfs *list; 3794 3795 vfs_list_read_lock(); 3796 if (getzoneid() == GLOBAL_ZONEID) { 3797 /* 3798 * The global zone may see filesystems in any zone. 3799 */ 3800 vfsp = rootvfs->vfs_prev; 3801 do { 3802 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3803 retvfsp = vfsp; 3804 break; 3805 } 3806 vfsp = vfsp->vfs_prev; 3807 } while (vfsp != rootvfs->vfs_prev); 3808 } else if ((list = zone->zone_vfslist) != NULL) { 3809 const char *mntpt; 3810 3811 vfsp = list->vfs_zone_prev; 3812 do { 3813 mntpt = refstr_value(vfsp->vfs_mntpt); 3814 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3815 if (strcmp(mntpt, mp) == 0) { 3816 retvfsp = vfsp; 3817 break; 3818 } 3819 vfsp = vfsp->vfs_zone_prev; 3820 } while (vfsp != list->vfs_zone_prev); 3821 } 3822 if (retvfsp) 3823 VFS_HOLD(retvfsp); 3824 vfs_list_unlock(); 3825 return (retvfsp); 3826 } 3827 3828 /* 3829 * Search the vfs list for a specified vfsops. 3830 * if vfs entry is found then return 1, else 0. 3831 */ 3832 int 3833 vfs_opsinuse(vfsops_t *ops) 3834 { 3835 struct vfs *vfsp; 3836 int found; 3837 3838 vfs_list_read_lock(); 3839 vfsp = rootvfs; 3840 found = 0; 3841 do { 3842 if (vfs_getops(vfsp) == ops) { 3843 found = 1; 3844 break; 3845 } 3846 vfsp = vfsp->vfs_next; 3847 } while (vfsp != rootvfs); 3848 vfs_list_unlock(); 3849 return (found); 3850 } 3851 3852 /* 3853 * Allocate an entry in vfssw for a file system type 3854 */ 3855 struct vfssw * 3856 allocate_vfssw(const char *type) 3857 { 3858 struct vfssw *vswp; 3859 3860 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3861 /* 3862 * The vfssw table uses the empty string to identify an 3863 * available entry; we cannot add any type which has 3864 * a leading NUL. The string length is limited to 3865 * the size of the st_fstype array in struct stat. 3866 */ 3867 return (NULL); 3868 } 3869 3870 ASSERT(VFSSW_WRITE_LOCKED()); 3871 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3872 if (!ALLOCATED_VFSSW(vswp)) { 3873 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3874 (void) strcpy(vswp->vsw_name, type); 3875 ASSERT(vswp->vsw_count == 0); 3876 vswp->vsw_count = 1; 3877 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3878 return (vswp); 3879 } 3880 return (NULL); 3881 } 3882 3883 /* 3884 * Impose additional layer of translation between vfstype names 3885 * and module names in the filesystem. 3886 */ 3887 static const char * 3888 vfs_to_modname(const char *vfstype) 3889 { 3890 if (strcmp(vfstype, "proc") == 0) { 3891 vfstype = "procfs"; 3892 } else if (strcmp(vfstype, "fd") == 0) { 3893 vfstype = "fdfs"; 3894 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3895 vfstype = "nfs"; 3896 } 3897 3898 return (vfstype); 3899 } 3900 3901 /* 3902 * Find a vfssw entry given a file system type name. 3903 * Try to autoload the filesystem if it's not found. 3904 * If it's installed, return the vfssw locked to prevent unloading. 3905 */ 3906 struct vfssw * 3907 vfs_getvfssw(const char *type) 3908 { 3909 struct vfssw *vswp; 3910 const char *modname; 3911 3912 RLOCK_VFSSW(); 3913 vswp = vfs_getvfsswbyname(type); 3914 modname = vfs_to_modname(type); 3915 3916 if (rootdir == NULL) { 3917 /* 3918 * If we haven't yet loaded the root file system, then our 3919 * _init won't be called until later. Allocate vfssw entry, 3920 * because mod_installfs won't be called. 3921 */ 3922 if (vswp == NULL) { 3923 RUNLOCK_VFSSW(); 3924 WLOCK_VFSSW(); 3925 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3926 if ((vswp = allocate_vfssw(type)) == NULL) { 3927 WUNLOCK_VFSSW(); 3928 return (NULL); 3929 } 3930 } 3931 WUNLOCK_VFSSW(); 3932 RLOCK_VFSSW(); 3933 } 3934 if (!VFS_INSTALLED(vswp)) { 3935 RUNLOCK_VFSSW(); 3936 (void) modloadonly("fs", modname); 3937 } else 3938 RUNLOCK_VFSSW(); 3939 return (vswp); 3940 } 3941 3942 /* 3943 * Try to load the filesystem. Before calling modload(), we drop 3944 * our lock on the VFS switch table, and pick it up after the 3945 * module is loaded. However, there is a potential race: the 3946 * module could be unloaded after the call to modload() completes 3947 * but before we pick up the lock and drive on. Therefore, 3948 * we keep reloading the module until we've loaded the module 3949 * _and_ we have the lock on the VFS switch table. 3950 */ 3951 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3952 RUNLOCK_VFSSW(); 3953 if (modload("fs", modname) == -1) 3954 return (NULL); 3955 RLOCK_VFSSW(); 3956 if (vswp == NULL) 3957 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3958 break; 3959 } 3960 RUNLOCK_VFSSW(); 3961 3962 return (vswp); 3963 } 3964 3965 /* 3966 * Find a vfssw entry given a file system type name. 3967 */ 3968 struct vfssw * 3969 vfs_getvfsswbyname(const char *type) 3970 { 3971 struct vfssw *vswp; 3972 3973 ASSERT(VFSSW_LOCKED()); 3974 if (type == NULL || *type == '\0') 3975 return (NULL); 3976 3977 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3978 if (strcmp(type, vswp->vsw_name) == 0) { 3979 vfs_refvfssw(vswp); 3980 return (vswp); 3981 } 3982 } 3983 3984 return (NULL); 3985 } 3986 3987 /* 3988 * Find a vfssw entry given a set of vfsops. 3989 */ 3990 struct vfssw * 3991 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3992 { 3993 struct vfssw *vswp; 3994 3995 RLOCK_VFSSW(); 3996 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3997 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3998 vfs_refvfssw(vswp); 3999 RUNLOCK_VFSSW(); 4000 return (vswp); 4001 } 4002 } 4003 RUNLOCK_VFSSW(); 4004 4005 return (NULL); 4006 } 4007 4008 /* 4009 * Reference a vfssw entry. 4010 */ 4011 void 4012 vfs_refvfssw(struct vfssw *vswp) 4013 { 4014 4015 mutex_enter(&vswp->vsw_lock); 4016 vswp->vsw_count++; 4017 mutex_exit(&vswp->vsw_lock); 4018 } 4019 4020 /* 4021 * Unreference a vfssw entry. 4022 */ 4023 void 4024 vfs_unrefvfssw(struct vfssw *vswp) 4025 { 4026 4027 mutex_enter(&vswp->vsw_lock); 4028 vswp->vsw_count--; 4029 mutex_exit(&vswp->vsw_lock); 4030 } 4031 4032 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4033 int sync_timeleft; /* portion of sync_timeout remaining */ 4034 4035 static int sync_retries = 20; /* number of retries when not making progress */ 4036 static int sync_triesleft; /* portion of sync_retries remaining */ 4037 4038 static pgcnt_t old_pgcnt, new_pgcnt; 4039 static int new_bufcnt, old_bufcnt; 4040 4041 /* 4042 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4043 * complete. We wait by counting the number of dirty pages and buffers, 4044 * pushing them out using bio_busy() and page_busy(), and then counting again. 4045 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4046 * the SYNC phase of the panic code (see comments in panic.c). It should only 4047 * be used after some higher-level mechanism has quiesced the system so that 4048 * new writes are not being initiated while we are waiting for completion. 4049 * 4050 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4051 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4052 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4053 * Together these ensure that syncing completes if our i/o paths are stuck. 4054 * The counters are declared above so they can be found easily in the debugger. 4055 * 4056 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4057 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4058 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4059 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4060 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4061 * deadlocking or hanging inside of a broken filesystem or driver routine. 4062 * 4063 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4064 * sync_retries consecutive calls to bio_busy() and page_busy() without 4065 * decreasing either the number of dirty buffers or dirty pages below the 4066 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4067 * 4068 * Each loop iteration ends with a call to delay() one second to allow time for 4069 * i/o completion and to permit the user time to read our progress messages. 4070 */ 4071 void 4072 vfs_syncall(void) 4073 { 4074 if (rootdir == NULL && !modrootloaded) 4075 return; /* panic during boot - no filesystems yet */ 4076 4077 printf("syncing file systems..."); 4078 vfs_syncprogress(); 4079 sync(); 4080 4081 vfs_syncprogress(); 4082 sync_triesleft = sync_retries; 4083 4084 old_bufcnt = new_bufcnt = INT_MAX; 4085 old_pgcnt = new_pgcnt = ULONG_MAX; 4086 4087 while (sync_triesleft > 0) { 4088 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4089 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4090 4091 new_bufcnt = bio_busy(B_TRUE); 4092 new_pgcnt = page_busy(B_TRUE); 4093 vfs_syncprogress(); 4094 4095 if (new_bufcnt == 0 && new_pgcnt == 0) 4096 break; 4097 4098 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4099 sync_triesleft = sync_retries; 4100 else 4101 sync_triesleft--; 4102 4103 if (new_bufcnt) 4104 printf(" [%d]", new_bufcnt); 4105 if (new_pgcnt) 4106 printf(" %lu", new_pgcnt); 4107 4108 delay(hz); 4109 } 4110 4111 if (new_bufcnt != 0 || new_pgcnt != 0) 4112 printf(" done (not all i/o completed)\n"); 4113 else 4114 printf(" done\n"); 4115 4116 sync_timeleft = 0; 4117 delay(hz); 4118 } 4119 4120 /* 4121 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4122 * sync_timeout to indicate that we are making progress and the deadman() 4123 * omnipresent cyclic should not yet time us out. Note that it is safe to 4124 * store to sync_timeleft here since the deadman() is firing at high-level 4125 * on top of us. If we are racing with the deadman(), either the deadman() 4126 * will decrement the old value and then we will reset it, or we will 4127 * reset it and then the deadman() will immediately decrement it. In either 4128 * case, correct behavior results. 4129 */ 4130 void 4131 vfs_syncprogress(void) 4132 { 4133 if (panicstr) 4134 sync_timeleft = sync_timeout; 4135 } 4136 4137 /* 4138 * Map VFS flags to statvfs flags. These shouldn't really be separate 4139 * flags at all. 4140 */ 4141 uint_t 4142 vf_to_stf(uint_t vf) 4143 { 4144 uint_t stf = 0; 4145 4146 if (vf & VFS_RDONLY) 4147 stf |= ST_RDONLY; 4148 if (vf & VFS_NOSETUID) 4149 stf |= ST_NOSUID; 4150 if (vf & VFS_NOTRUNC) 4151 stf |= ST_NOTRUNC; 4152 4153 return (stf); 4154 } 4155 4156 /* 4157 * Entries for (illegal) fstype 0. 4158 */ 4159 /* ARGSUSED */ 4160 int 4161 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4162 { 4163 cmn_err(CE_PANIC, "stray vfs operation"); 4164 return (0); 4165 } 4166 4167 /* 4168 * Entries for (illegal) fstype 0. 4169 */ 4170 int 4171 vfsstray(void) 4172 { 4173 cmn_err(CE_PANIC, "stray vfs operation"); 4174 return (0); 4175 } 4176 4177 /* 4178 * Support for dealing with forced UFS unmount and its interaction with 4179 * LOFS. Could be used by any filesystem. 4180 * See bug 1203132. 4181 */ 4182 int 4183 vfs_EIO(void) 4184 { 4185 return (EIO); 4186 } 4187 4188 /* 4189 * We've gotta define the op for sync separately, since the compiler gets 4190 * confused if we mix and match ANSI and normal style prototypes when 4191 * a "short" argument is present and spits out a warning. 4192 */ 4193 /*ARGSUSED*/ 4194 int 4195 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4196 { 4197 return (EIO); 4198 } 4199 4200 vfs_t EIO_vfs; 4201 vfsops_t *EIO_vfsops; 4202 4203 /* 4204 * Called from startup() to initialize all loaded vfs's 4205 */ 4206 void 4207 vfsinit(void) 4208 { 4209 struct vfssw *vswp; 4210 int error; 4211 extern int vopstats_enabled; 4212 extern void vopstats_startup(); 4213 4214 static const fs_operation_def_t EIO_vfsops_template[] = { 4215 VFSNAME_MOUNT, { .error = vfs_EIO }, 4216 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4217 VFSNAME_ROOT, { .error = vfs_EIO }, 4218 VFSNAME_STATVFS, { .error = vfs_EIO }, 4219 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4220 VFSNAME_VGET, { .error = vfs_EIO }, 4221 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4222 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4223 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4224 NULL, NULL 4225 }; 4226 4227 static const fs_operation_def_t stray_vfsops_template[] = { 4228 VFSNAME_MOUNT, { .error = vfsstray }, 4229 VFSNAME_UNMOUNT, { .error = vfsstray }, 4230 VFSNAME_ROOT, { .error = vfsstray }, 4231 VFSNAME_STATVFS, { .error = vfsstray }, 4232 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4233 VFSNAME_VGET, { .error = vfsstray }, 4234 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4235 VFSNAME_FREEVFS, { .error = vfsstray }, 4236 VFSNAME_VNSTATE, { .error = vfsstray }, 4237 NULL, NULL 4238 }; 4239 4240 /* Create vfs cache */ 4241 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4242 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4243 4244 /* Initialize the vnode cache (file systems may use it during init). */ 4245 vn_create_cache(); 4246 4247 /* Setup event monitor framework */ 4248 fem_init(); 4249 4250 /* Initialize the dummy stray file system type. */ 4251 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4252 4253 /* Initialize the dummy EIO file system. */ 4254 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4255 if (error != 0) { 4256 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4257 /* Shouldn't happen, but not bad enough to panic */ 4258 } 4259 4260 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4261 4262 /* 4263 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4264 * on this vfs can immediately notice it's invalid. 4265 */ 4266 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4267 4268 /* 4269 * Call the init routines of non-loadable filesystems only. 4270 * Filesystems which are loaded as separate modules will be 4271 * initialized by the module loading code instead. 4272 */ 4273 4274 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4275 RLOCK_VFSSW(); 4276 if (vswp->vsw_init != NULL) 4277 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4278 RUNLOCK_VFSSW(); 4279 } 4280 4281 vopstats_startup(); 4282 4283 if (vopstats_enabled) { 4284 /* EIO_vfs can collect stats, but we don't retrieve them */ 4285 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4286 EIO_vfs.vfs_fstypevsp = NULL; 4287 EIO_vfs.vfs_vskap = NULL; 4288 EIO_vfs.vfs_flag |= VFS_STATS; 4289 } 4290 4291 xattr_init(); 4292 4293 reparse_point_init(); 4294 } 4295 4296 vfs_t * 4297 vfs_alloc(int kmflag) 4298 { 4299 vfs_t *vfsp; 4300 4301 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4302 4303 /* 4304 * Do the simplest initialization here. 4305 * Everything else gets done in vfs_init() 4306 */ 4307 bzero(vfsp, sizeof (vfs_t)); 4308 return (vfsp); 4309 } 4310 4311 void 4312 vfs_free(vfs_t *vfsp) 4313 { 4314 /* 4315 * One would be tempted to assert that "vfsp->vfs_count == 0". 4316 * The problem is that this gets called out of domount() with 4317 * a partially initialized vfs and a vfs_count of 1. This is 4318 * also called from vfs_rele() with a vfs_count of 0. We can't 4319 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4320 * returned. This is because VFS_MOUNT() fully initializes the 4321 * vfs structure and its associated data. VFS_RELE() will call 4322 * VFS_FREEVFS() which may panic the system if the data structures 4323 * aren't fully initialized from a successful VFS_MOUNT()). 4324 */ 4325 4326 /* If FEM was in use, make sure everything gets cleaned up */ 4327 if (vfsp->vfs_femhead) { 4328 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4329 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4330 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4331 vfsp->vfs_femhead = NULL; 4332 } 4333 4334 if (vfsp->vfs_implp) 4335 vfsimpl_teardown(vfsp); 4336 sema_destroy(&vfsp->vfs_reflock); 4337 kmem_cache_free(vfs_cache, vfsp); 4338 } 4339 4340 /* 4341 * Increments the vfs reference count by one atomically. 4342 */ 4343 void 4344 vfs_hold(vfs_t *vfsp) 4345 { 4346 atomic_add_32(&vfsp->vfs_count, 1); 4347 ASSERT(vfsp->vfs_count != 0); 4348 } 4349 4350 /* 4351 * Decrements the vfs reference count by one atomically. When 4352 * vfs reference count becomes zero, it calls the file system 4353 * specific vfs_freevfs() to free up the resources. 4354 */ 4355 void 4356 vfs_rele(vfs_t *vfsp) 4357 { 4358 ASSERT(vfsp->vfs_count != 0); 4359 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4360 VFS_FREEVFS(vfsp); 4361 lofi_remove(vfsp); 4362 if (vfsp->vfs_zone) 4363 zone_rele(vfsp->vfs_zone); 4364 vfs_freemnttab(vfsp); 4365 vfs_free(vfsp); 4366 } 4367 } 4368 4369 /* 4370 * Generic operations vector support. 4371 * 4372 * This is used to build operations vectors for both the vfs and vnode. 4373 * It's normally called only when a file system is loaded. 4374 * 4375 * There are many possible algorithms for this, including the following: 4376 * 4377 * (1) scan the list of known operations; for each, see if the file system 4378 * includes an entry for it, and fill it in as appropriate. 4379 * 4380 * (2) set up defaults for all known operations. scan the list of ops 4381 * supplied by the file system; for each which is both supplied and 4382 * known, fill it in. 4383 * 4384 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4385 * in entries as we go. 4386 * 4387 * we choose (1) for simplicity, and because performance isn't critical here. 4388 * note that (2) could be sped up using a precomputed hash table on known ops. 4389 * (3) could be faster than either, but only if the lists were very large or 4390 * supplied in sorted order. 4391 * 4392 */ 4393 4394 int 4395 fs_build_vector(void *vector, int *unused_ops, 4396 const fs_operation_trans_def_t *translation, 4397 const fs_operation_def_t *operations) 4398 { 4399 int i, num_trans, num_ops, used; 4400 4401 /* 4402 * Count the number of translations and the number of supplied 4403 * operations. 4404 */ 4405 4406 { 4407 const fs_operation_trans_def_t *p; 4408 4409 for (num_trans = 0, p = translation; 4410 p->name != NULL; 4411 num_trans++, p++) 4412 ; 4413 } 4414 4415 { 4416 const fs_operation_def_t *p; 4417 4418 for (num_ops = 0, p = operations; 4419 p->name != NULL; 4420 num_ops++, p++) 4421 ; 4422 } 4423 4424 /* Walk through each operation known to our caller. There will be */ 4425 /* one entry in the supplied "translation table" for each. */ 4426 4427 used = 0; 4428 4429 for (i = 0; i < num_trans; i++) { 4430 int j, found; 4431 char *curname; 4432 fs_generic_func_p result; 4433 fs_generic_func_p *location; 4434 4435 curname = translation[i].name; 4436 4437 /* Look for a matching operation in the list supplied by the */ 4438 /* file system. */ 4439 4440 found = 0; 4441 4442 for (j = 0; j < num_ops; j++) { 4443 if (strcmp(operations[j].name, curname) == 0) { 4444 used++; 4445 found = 1; 4446 break; 4447 } 4448 } 4449 4450 /* 4451 * If the file system is using a "placeholder" for default 4452 * or error functions, grab the appropriate function out of 4453 * the translation table. If the file system didn't supply 4454 * this operation at all, use the default function. 4455 */ 4456 4457 if (found) { 4458 result = operations[j].func.fs_generic; 4459 if (result == fs_default) { 4460 result = translation[i].defaultFunc; 4461 } else if (result == fs_error) { 4462 result = translation[i].errorFunc; 4463 } else if (result == NULL) { 4464 /* Null values are PROHIBITED */ 4465 return (EINVAL); 4466 } 4467 } else { 4468 result = translation[i].defaultFunc; 4469 } 4470 4471 /* Now store the function into the operations vector. */ 4472 4473 location = (fs_generic_func_p *) 4474 (((char *)vector) + translation[i].offset); 4475 4476 *location = result; 4477 } 4478 4479 *unused_ops = num_ops - used; 4480 4481 return (0); 4482 } 4483 4484 /* Placeholder functions, should never be called. */ 4485 4486 int 4487 fs_error(void) 4488 { 4489 cmn_err(CE_PANIC, "fs_error called"); 4490 return (0); 4491 } 4492 4493 int 4494 fs_default(void) 4495 { 4496 cmn_err(CE_PANIC, "fs_default called"); 4497 return (0); 4498 } 4499 4500 #ifdef __sparc 4501 4502 /* 4503 * Part of the implementation of booting off a mirrored root 4504 * involves a change of dev_t for the root device. To 4505 * accomplish this, first remove the existing hash table 4506 * entry for the root device, convert to the new dev_t, 4507 * then re-insert in the hash table at the head of the list. 4508 */ 4509 void 4510 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4511 { 4512 vfs_list_lock(); 4513 4514 vfs_hash_remove(vfsp); 4515 4516 vfsp->vfs_dev = ndev; 4517 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4518 4519 vfs_hash_add(vfsp, 1); 4520 4521 vfs_list_unlock(); 4522 } 4523 4524 #else /* x86 NEWBOOT */ 4525 4526 #if defined(__x86) 4527 extern int hvmboot_rootconf(); 4528 #endif /* __x86 */ 4529 4530 extern ib_boot_prop_t *iscsiboot_prop; 4531 4532 int 4533 rootconf() 4534 { 4535 int error; 4536 struct vfssw *vsw; 4537 extern void pm_init(); 4538 char *fstyp, *fsmod; 4539 int ret = -1; 4540 4541 getrootfs(&fstyp, &fsmod); 4542 4543 #if defined(__x86) 4544 /* 4545 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4546 * which lives in /platform/i86hvm, and hence is only available when 4547 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4548 * is not available then the modstub for this function will return 0. 4549 * If the hvm_bootstrap misc module is available it will be loaded 4550 * and hvmboot_rootconf() will be invoked. 4551 */ 4552 if (error = hvmboot_rootconf()) 4553 return (error); 4554 #endif /* __x86 */ 4555 4556 if (error = clboot_rootconf()) 4557 return (error); 4558 4559 if (modload("fs", fsmod) == -1) 4560 panic("Cannot _init %s module", fsmod); 4561 4562 RLOCK_VFSSW(); 4563 vsw = vfs_getvfsswbyname(fstyp); 4564 RUNLOCK_VFSSW(); 4565 if (vsw == NULL) { 4566 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4567 return (ENXIO); 4568 } 4569 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4570 VFS_HOLD(rootvfs); 4571 4572 /* always mount readonly first */ 4573 rootvfs->vfs_flag |= VFS_RDONLY; 4574 4575 pm_init(); 4576 4577 if (netboot && iscsiboot_prop) { 4578 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4579 " shouldn't happen in the same time"); 4580 return (EINVAL); 4581 } 4582 4583 if (netboot || iscsiboot_prop) { 4584 ret = strplumb(); 4585 if (ret != 0) { 4586 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4587 return (EFAULT); 4588 } 4589 } 4590 4591 if ((ret == 0) && iscsiboot_prop) { 4592 ret = modload("drv", "iscsi"); 4593 /* -1 indicates fail */ 4594 if (ret == -1) { 4595 cmn_err(CE_WARN, "Failed to load iscsi module"); 4596 iscsi_boot_prop_free(); 4597 return (EINVAL); 4598 } else { 4599 if (!i_ddi_attach_pseudo_node("iscsi")) { 4600 cmn_err(CE_WARN, 4601 "Failed to attach iscsi driver"); 4602 iscsi_boot_prop_free(); 4603 return (ENODEV); 4604 } 4605 } 4606 } 4607 4608 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4609 vfs_unrefvfssw(vsw); 4610 rootdev = rootvfs->vfs_dev; 4611 4612 if (error) 4613 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4614 rootfs.bo_name, fstyp); 4615 else 4616 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4617 rootfs.bo_name, fstyp); 4618 return (error); 4619 } 4620 4621 /* 4622 * XXX this is called by nfs only and should probably be removed 4623 * If booted with ASKNAME, prompt on the console for a filesystem 4624 * name and return it. 4625 */ 4626 void 4627 getfsname(char *askfor, char *name, size_t namelen) 4628 { 4629 if (boothowto & RB_ASKNAME) { 4630 printf("%s name: ", askfor); 4631 console_gets(name, namelen); 4632 } 4633 } 4634 4635 /* 4636 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4637 * property. 4638 * 4639 * Filesystem types starting with the prefix "nfs" are diskless clients; 4640 * init the root filename name (rootfs.bo_name), too. 4641 * 4642 * If we are booting via NFS we currently have these options: 4643 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4644 * nfs2 - force NFS V2 4645 * nfs3 - force NFS V3 4646 * nfs4 - force NFS V4 4647 * Because we need to maintain backward compatibility with the naming 4648 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4649 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4650 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4651 * This is only for root filesystems, all other uses such as cachefs 4652 * will expect that "nfs" == NFS V2. 4653 */ 4654 static void 4655 getrootfs(char **fstypp, char **fsmodp) 4656 { 4657 extern char *strplumb_get_netdev_path(void); 4658 char *propstr = NULL; 4659 4660 /* 4661 * Check fstype property; for diskless it should be one of "nfs", 4662 * "nfs2", "nfs3" or "nfs4". 4663 */ 4664 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4665 DDI_PROP_DONTPASS, "fstype", &propstr) 4666 == DDI_SUCCESS) { 4667 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4668 ddi_prop_free(propstr); 4669 4670 /* 4671 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4672 * assume the type of this root filesystem is 'zfs'. 4673 */ 4674 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4675 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4676 == DDI_SUCCESS) { 4677 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4678 ddi_prop_free(propstr); 4679 } 4680 4681 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4682 *fstypp = *fsmodp = rootfs.bo_fstype; 4683 return; 4684 } 4685 4686 ++netboot; 4687 4688 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4689 (void) strcpy(rootfs.bo_fstype, "nfs"); 4690 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4691 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4692 4693 /* 4694 * check if path to network interface is specified in bootpath 4695 * or by a hypervisor domain configuration file. 4696 * XXPV - enable strlumb_get_netdev_path() 4697 */ 4698 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4699 "xpv-nfsroot")) { 4700 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4701 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4702 DDI_PROP_DONTPASS, "bootpath", &propstr) 4703 == DDI_SUCCESS) { 4704 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4705 ddi_prop_free(propstr); 4706 } else { 4707 /* attempt to determine netdev_path via boot_mac address */ 4708 netdev_path = strplumb_get_netdev_path(); 4709 if (netdev_path == NULL) 4710 panic("cannot find boot network interface"); 4711 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4712 } 4713 *fstypp = rootfs.bo_fstype; 4714 *fsmodp = "nfs"; 4715 } 4716 #endif 4717 4718 /* 4719 * VFS feature routines 4720 */ 4721 4722 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4723 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4724 4725 /* Register a feature in the vfs */ 4726 void 4727 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4728 { 4729 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4730 if (vfsp->vfs_implp == NULL) 4731 return; 4732 4733 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4734 } 4735 4736 /* 4737 * Query a vfs for a feature. 4738 * Returns 1 if feature is present, 0 if not 4739 */ 4740 int 4741 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4742 { 4743 int ret = 0; 4744 4745 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4746 if (vfsp->vfs_implp == NULL) 4747 return (ret); 4748 4749 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4750 ret = 1; 4751 4752 return (ret); 4753 } 4754 4755 /* 4756 * Propagate feature set from one vfs to another 4757 */ 4758 void 4759 vfs_propagate_features(vfs_t *from, vfs_t *to) 4760 { 4761 int i; 4762 4763 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4764 return; 4765 4766 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4767 to->vfs_featureset[i] = from->vfs_featureset[i]; 4768 } 4769 } 4770 4771 #define LOFICTL_PATH "/devices/pseudo/lofi@0:%d" 4772 4773 /* 4774 * Return the vnode for the lofi node if there's a lofi mount in place. 4775 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4776 * failure. 4777 */ 4778 int 4779 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4780 { 4781 char *path = NULL; 4782 int strsize; 4783 int err; 4784 4785 if (vfsp->vfs_lofi_minor == 0) { 4786 *vpp = NULL; 4787 return (-1); 4788 } 4789 4790 strsize = snprintf(NULL, 0, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4791 path = kmem_alloc(strsize + 1, KM_SLEEP); 4792 (void) snprintf(path, strsize + 1, LOFICTL_PATH, vfsp->vfs_lofi_minor); 4793 4794 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4795 4796 if (err) 4797 *vpp = NULL; 4798 4799 kmem_free(path, strsize + 1); 4800 return (err); 4801 } 4802