1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * Portions of this source code were derived from Berkeley 4.3 BSD 32 * under license from the Regents of the University of California. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/t_lock.h> 37 #include <sys/ksynch.h> 38 #include <sys/param.h> 39 #include <sys/time.h> 40 #include <sys/systm.h> 41 #include <sys/sysmacros.h> 42 #include <sys/resource.h> 43 #include <sys/signal.h> 44 #include <sys/cred.h> 45 #include <sys/user.h> 46 #include <sys/buf.h> 47 #include <sys/vfs.h> 48 #include <sys/vfs_opreg.h> 49 #include <sys/vnode.h> 50 #include <sys/proc.h> 51 #include <sys/disp.h> 52 #include <sys/file.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/atomic.h> 56 #include <sys/kmem.h> 57 #include <sys/uio.h> 58 #include <sys/dnlc.h> 59 #include <sys/conf.h> 60 #include <sys/mman.h> 61 #include <sys/pathname.h> 62 #include <sys/debug.h> 63 #include <sys/vmsystm.h> 64 #include <sys/cmn_err.h> 65 #include <sys/filio.h> 66 #include <sys/policy.h> 67 68 #include <sys/fs/ufs_fs.h> 69 #include <sys/fs/ufs_lockfs.h> 70 #include <sys/fs/ufs_filio.h> 71 #include <sys/fs/ufs_inode.h> 72 #include <sys/fs/ufs_fsdir.h> 73 #include <sys/fs/ufs_quota.h> 74 #include <sys/fs/ufs_log.h> 75 #include <sys/fs/ufs_snap.h> 76 #include <sys/fs/ufs_trans.h> 77 #include <sys/fs/ufs_panic.h> 78 #include <sys/fs/ufs_bio.h> 79 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 80 #include <sys/errno.h> 81 #include <sys/fssnap_if.h> 82 #include <sys/unistd.h> 83 #include <sys/sunddi.h> 84 85 #include <sys/filio.h> /* _FIOIO */ 86 87 #include <vm/hat.h> 88 #include <vm/page.h> 89 #include <vm/pvn.h> 90 #include <vm/as.h> 91 #include <vm/seg.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kmem.h> 95 #include <vm/rm.h> 96 #include <sys/swap.h> 97 98 #include <fs/fs_subr.h> 99 100 #include <sys/fs/decomp.h> 101 102 static struct instats ins; 103 104 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 105 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 106 caddr_t, struct page **, size_t, enum seg_rw, int); 107 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 108 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 109 caller_context_t *); 110 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 113 struct caller_context *); 114 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 115 int *, caller_context_t *); 116 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 117 caller_context_t *); 118 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 119 caller_context_t *); 120 static int ufs_access(struct vnode *, int, int, struct cred *, 121 caller_context_t *); 122 static int ufs_lookup(struct vnode *, char *, struct vnode **, 123 struct pathname *, int, struct vnode *, struct cred *, 124 caller_context_t *, int *, pathname_t *); 125 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 126 int, struct vnode **, struct cred *, int, 127 caller_context_t *, vsecattr_t *); 128 static int ufs_remove(struct vnode *, char *, struct cred *, 129 caller_context_t *, int); 130 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 131 caller_context_t *, int); 132 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 133 struct cred *, caller_context_t *, int); 134 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 135 struct cred *, caller_context_t *, int, vsecattr_t *); 136 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 137 caller_context_t *, int); 138 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 139 caller_context_t *, int); 140 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 141 struct cred *, caller_context_t *, int); 142 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 143 caller_context_t *); 144 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 145 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 146 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 147 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 148 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 149 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 150 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 151 struct flk_callback *, struct cred *, 152 caller_context_t *); 153 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 154 cred_t *, caller_context_t *); 155 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 156 struct page **, size_t, struct seg *, caddr_t, 157 enum seg_rw, struct cred *, caller_context_t *); 158 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 159 caller_context_t *); 160 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 161 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 162 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 163 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 164 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 165 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 166 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 167 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 168 caller_context_t *); 169 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t, 170 caller_context_t *); 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 172 caller_context_t *); 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 174 struct cred *, caller_context_t *); 175 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *); 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 177 daddr32_t *, int, int); 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 181 caller_context_t *); 182 static int ufs_priv_access(void *, int, struct cred *); 183 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 184 185 /* 186 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 187 * 188 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 189 */ 190 struct vnodeops *ufs_vnodeops; 191 192 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 193 const fs_operation_def_t ufs_vnodeops_template[] = { 194 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 195 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 196 VOPNAME_READ, { .vop_read = ufs_read }, 197 VOPNAME_WRITE, { .vop_write = ufs_write }, 198 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 199 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 200 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 201 VOPNAME_ACCESS, { .vop_access = ufs_access }, 202 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 203 VOPNAME_CREATE, { .vop_create = ufs_create }, 204 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 205 VOPNAME_LINK, { .vop_link = ufs_link }, 206 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 207 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 208 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 209 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 210 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 211 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 212 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 213 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 214 VOPNAME_FID, { .vop_fid = ufs_fid }, 215 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 216 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 217 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 218 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 219 VOPNAME_SPACE, { .vop_space = ufs_space }, 220 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 221 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 222 VOPNAME_MAP, { .vop_map = ufs_map }, 223 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 224 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 225 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 226 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 227 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 228 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 229 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 230 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 231 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 232 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 233 NULL, NULL 234 }; 235 236 #define MAX_BACKFILE_COUNT 9999 237 238 /* 239 * Created by ufs_dumpctl() to store a file's disk block info into memory. 240 * Used by ufs_dump() to dump data to disk directly. 241 */ 242 struct dump { 243 struct inode *ip; /* the file we contain */ 244 daddr_t fsbs; /* number of blocks stored */ 245 struct timeval32 time; /* time stamp for the struct */ 246 daddr32_t dblk[1]; /* place holder for block info */ 247 }; 248 249 static struct dump *dump_info = NULL; 250 251 /* 252 * Previously there was no special action required for ordinary files. 253 * (Devices are handled through the device file system.) 254 * Now we support Large Files and Large File API requires open to 255 * fail if file is large. 256 * We could take care to prevent data corruption 257 * by doing an atomic check of size and truncate if file is opened with 258 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 259 * layers. So taking care of truncation here is a change in the existing 260 * semantics of VOP_OPEN and therefore we chose not to implement any thing 261 * here. The check for the size of the file > 2GB is being done at the 262 * vfs layer in routine vn_open(). 263 */ 264 265 /* ARGSUSED */ 266 static int 267 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 268 { 269 return (0); 270 } 271 272 /*ARGSUSED*/ 273 static int 274 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 275 struct cred *cr, caller_context_t *ct) 276 { 277 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 278 cleanshares(vp, ttoproc(curthread)->p_pid); 279 280 /* 281 * Push partially filled cluster at last close. 282 * ``last close'' is approximated because the dnlc 283 * may have a hold on the vnode. 284 * Checking for VBAD here will also act as a forced umount check. 285 */ 286 if (vp->v_count <= 2 && vp->v_type != VBAD) { 287 struct inode *ip = VTOI(vp); 288 if (ip->i_delaylen) { 289 ins.in_poc.value.ul++; 290 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 291 B_ASYNC | B_FREE, cr); 292 ip->i_delaylen = 0; 293 } 294 } 295 296 return (0); 297 } 298 299 /*ARGSUSED*/ 300 static int 301 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 302 struct caller_context *ct) 303 { 304 struct inode *ip = VTOI(vp); 305 struct ufsvfs *ufsvfsp; 306 struct ulockfs *ulp = NULL; 307 int error = 0; 308 int intrans = 0; 309 310 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 311 312 /* 313 * Mandatory locking needs to be done before ufs_lockfs_begin() 314 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 315 */ 316 if (MANDLOCK(vp, ip->i_mode)) { 317 /* 318 * ufs_getattr ends up being called by chklock 319 */ 320 error = chklock(vp, FREAD, uiop->uio_loffset, 321 uiop->uio_resid, uiop->uio_fmode, ct); 322 if (error) 323 goto out; 324 } 325 326 ufsvfsp = ip->i_ufsvfs; 327 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 328 if (error) 329 goto out; 330 331 /* 332 * In the case that a directory is opened for reading as a file 333 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 334 * The locking order had to be changed to avoid a deadlock with 335 * an update taking place on that directory at the same time. 336 */ 337 if ((ip->i_mode & IFMT) == IFDIR) { 338 339 rw_enter(&ip->i_contents, RW_READER); 340 error = rdip(ip, uiop, ioflag, cr); 341 rw_exit(&ip->i_contents); 342 343 if (error) { 344 if (ulp) 345 ufs_lockfs_end(ulp); 346 goto out; 347 } 348 349 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 350 TRANS_ISTRANS(ufsvfsp)) { 351 rw_exit(&ip->i_rwlock); 352 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 353 error); 354 ASSERT(!error); 355 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 356 TOP_READ_SIZE); 357 rw_enter(&ip->i_rwlock, RW_READER); 358 } 359 } else { 360 /* 361 * Only transact reads to files opened for sync-read and 362 * sync-write on a file system that is not write locked. 363 * 364 * The ``not write locked'' check prevents problems with 365 * enabling/disabling logging on a busy file system. E.g., 366 * logging exists at the beginning of the read but does not 367 * at the end. 368 * 369 */ 370 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 371 TRANS_ISTRANS(ufsvfsp)) { 372 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 373 error); 374 ASSERT(!error); 375 intrans = 1; 376 } 377 378 rw_enter(&ip->i_contents, RW_READER); 379 error = rdip(ip, uiop, ioflag, cr); 380 rw_exit(&ip->i_contents); 381 382 if (intrans) { 383 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 384 TOP_READ_SIZE); 385 } 386 } 387 388 if (ulp) { 389 ufs_lockfs_end(ulp); 390 } 391 out: 392 393 return (error); 394 } 395 396 extern int ufs_HW; /* high water mark */ 397 extern int ufs_LW; /* low water mark */ 398 int ufs_WRITES = 1; /* XXX - enable/disable */ 399 int ufs_throttles = 0; /* throttling count */ 400 int ufs_allow_shared_writes = 1; /* directio shared writes */ 401 402 static int 403 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 404 { 405 int shared_write; 406 407 /* 408 * If the FDSYNC flag is set then ignore the global 409 * ufs_allow_shared_writes in this case. 410 */ 411 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 412 413 /* 414 * Filter to determine if this request is suitable as a 415 * concurrent rewrite. This write must not allocate blocks 416 * by extending the file or filling in holes. No use trying 417 * through FSYNC descriptors as the inode will be synchronously 418 * updated after the write. The uio structure has not yet been 419 * checked for sanity, so assume nothing. 420 */ 421 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 422 (uiop->uio_loffset >= (offset_t)0) && 423 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 424 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 425 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 426 shared_write); 427 } 428 429 /*ARGSUSED*/ 430 static int 431 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 432 caller_context_t *ct) 433 { 434 struct inode *ip = VTOI(vp); 435 struct ufsvfs *ufsvfsp; 436 struct ulockfs *ulp; 437 int retry = 1; 438 int error, resv, resid = 0; 439 int directio_status; 440 int exclusive; 441 int rewriteflg; 442 long start_resid = uiop->uio_resid; 443 444 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 445 446 retry_mandlock: 447 /* 448 * Mandatory locking needs to be done before ufs_lockfs_begin() 449 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 450 * Check for forced unmounts normally done in ufs_lockfs_begin(). 451 */ 452 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 453 error = EIO; 454 goto out; 455 } 456 if (MANDLOCK(vp, ip->i_mode)) { 457 458 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 459 460 /* 461 * ufs_getattr ends up being called by chklock 462 */ 463 error = chklock(vp, FWRITE, uiop->uio_loffset, 464 uiop->uio_resid, uiop->uio_fmode, ct); 465 if (error) 466 goto out; 467 } 468 469 /* i_rwlock can change in chklock */ 470 exclusive = rw_write_held(&ip->i_rwlock); 471 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 472 473 /* 474 * Check for fast-path special case of directio re-writes. 475 */ 476 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 477 !exclusive && rewriteflg) { 478 479 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 480 if (error) 481 goto out; 482 483 rw_enter(&ip->i_contents, RW_READER); 484 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 485 &directio_status); 486 if (directio_status == DIRECTIO_SUCCESS) { 487 uint_t i_flag_save; 488 489 if (start_resid != uiop->uio_resid) 490 error = 0; 491 /* 492 * Special treatment of access times for re-writes. 493 * If IMOD is not already set, then convert it 494 * to IMODACC for this operation. This defers 495 * entering a delta into the log until the inode 496 * is flushed. This mimics what is done for read 497 * operations and inode access time. 498 */ 499 mutex_enter(&ip->i_tlock); 500 i_flag_save = ip->i_flag; 501 ip->i_flag |= IUPD | ICHG; 502 ip->i_seq++; 503 ITIMES_NOLOCK(ip); 504 if ((i_flag_save & IMOD) == 0) { 505 ip->i_flag &= ~IMOD; 506 ip->i_flag |= IMODACC; 507 } 508 mutex_exit(&ip->i_tlock); 509 rw_exit(&ip->i_contents); 510 if (ulp) 511 ufs_lockfs_end(ulp); 512 goto out; 513 } 514 rw_exit(&ip->i_contents); 515 if (ulp) 516 ufs_lockfs_end(ulp); 517 } 518 519 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 520 rw_exit(&ip->i_rwlock); 521 rw_enter(&ip->i_rwlock, RW_WRITER); 522 /* 523 * Mandatory locking could have been enabled 524 * after dropping the i_rwlock. 525 */ 526 if (MANDLOCK(vp, ip->i_mode)) 527 goto retry_mandlock; 528 } 529 530 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 531 if (error) 532 goto out; 533 534 /* 535 * Amount of log space needed for this write 536 */ 537 if (!rewriteflg || !(ioflag & FDSYNC)) 538 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 539 540 /* 541 * Throttle writes. 542 */ 543 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 544 mutex_enter(&ip->i_tlock); 545 while (ip->i_writes > ufs_HW) { 546 ufs_throttles++; 547 cv_wait(&ip->i_wrcv, &ip->i_tlock); 548 } 549 mutex_exit(&ip->i_tlock); 550 } 551 552 /* 553 * Enter Transaction 554 * 555 * If the write is a rewrite there is no need to open a transaction 556 * if the FDSYNC flag is set and not the FSYNC. In this case just 557 * set the IMODACC flag to modify do the update at a later time 558 * thus avoiding the overhead of the logging transaction that is 559 * not required. 560 */ 561 if (ioflag & (FSYNC|FDSYNC)) { 562 if (ulp) { 563 if (rewriteflg) { 564 uint_t i_flag_save; 565 566 rw_enter(&ip->i_contents, RW_READER); 567 mutex_enter(&ip->i_tlock); 568 i_flag_save = ip->i_flag; 569 ip->i_flag |= IUPD | ICHG; 570 ip->i_seq++; 571 ITIMES_NOLOCK(ip); 572 if ((i_flag_save & IMOD) == 0) { 573 ip->i_flag &= ~IMOD; 574 ip->i_flag |= IMODACC; 575 } 576 mutex_exit(&ip->i_tlock); 577 rw_exit(&ip->i_contents); 578 } else { 579 int terr = 0; 580 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 581 terr); 582 ASSERT(!terr); 583 } 584 } 585 } else { 586 if (ulp) 587 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 588 } 589 590 /* 591 * Write the file 592 */ 593 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 594 rw_enter(&ip->i_contents, RW_WRITER); 595 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 596 /* 597 * In append mode start at end of file. 598 */ 599 uiop->uio_loffset = ip->i_size; 600 } 601 602 /* 603 * Mild optimisation, don't call ufs_trans_write() unless we have to 604 * Also, suppress file system full messages if we will retry. 605 */ 606 if (retry) 607 ip->i_flag |= IQUIET; 608 if (resid) { 609 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 610 } else { 611 error = wrip(ip, uiop, ioflag, cr); 612 } 613 ip->i_flag &= ~IQUIET; 614 615 rw_exit(&ip->i_contents); 616 rw_exit(&ufsvfsp->vfs_dqrwlock); 617 618 /* 619 * Leave Transaction 620 */ 621 if (ulp) { 622 if (ioflag & (FSYNC|FDSYNC)) { 623 if (!rewriteflg) { 624 int terr = 0; 625 626 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 627 resv); 628 if (error == 0) 629 error = terr; 630 } 631 } else { 632 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 633 } 634 ufs_lockfs_end(ulp); 635 } 636 out: 637 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 638 /* 639 * Any blocks tied up in pending deletes? 640 */ 641 ufs_delete_drain_wait(ufsvfsp, 1); 642 retry = 0; 643 goto retry_mandlock; 644 } 645 646 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 647 error = 0; 648 649 return (error); 650 } 651 652 /* 653 * Don't cache write blocks to files with the sticky bit set. 654 * Used to keep swap files from blowing the page cache on a server. 655 */ 656 int stickyhack = 1; 657 658 /* 659 * Free behind hacks. The pager is busted. 660 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 661 * or B_FREE_IF_TIGHT_ON_MEMORY. 662 */ 663 int freebehind = 1; 664 int smallfile = 0; 665 u_offset_t smallfile64 = 32 * 1024; 666 667 /* 668 * While we should, in most cases, cache the pages for write, we 669 * may also want to cache the pages for read as long as they are 670 * frequently re-usable. 671 * 672 * If cache_read_ahead = 1, the pages for read will go to the tail 673 * of the cache list when they are released, otherwise go to the head. 674 */ 675 int cache_read_ahead = 0; 676 677 /* 678 * Freebehind exists so that as we read large files sequentially we 679 * don't consume most of memory with pages from a few files. It takes 680 * longer to re-read from disk multiple small files as it does reading 681 * one large one sequentially. As system memory grows customers need 682 * to retain bigger chunks of files in memory. The advent of the 683 * cachelist opens up of the possibility freeing pages to the head or 684 * tail of the list. 685 * 686 * Not freeing a page is a bet that the page will be read again before 687 * it's segmap slot is needed for something else. If we loose the bet, 688 * it means some other thread is burdened with the page free we did 689 * not do. If we win we save a free and reclaim. 690 * 691 * Freeing it at the tail vs the head of cachelist is a bet that the 692 * page will survive until the next read. It's also saying that this 693 * page is more likely to be re-used than a page freed some time ago 694 * and never reclaimed. 695 * 696 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 697 * 698 * 0 < offset < smallfile1 : pages are not freed. 699 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 700 * smallfile2 < offset : pages freed to head of cachelist. 701 * 702 * The range is computed at most once per second and depends on 703 * freemem and ncpus_online. Both parameters are bounded to be 704 * >= smallfile && >= smallfile64. 705 * 706 * smallfile1 = (free memory / ncpu) / 1000 707 * smallfile2 = (free memory / ncpu) / 10 708 * 709 * A few examples values: 710 * 711 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 712 * ncpus_online = 4 ncpus_online = 64 713 * ------------------ ----------------------- ----------------------- 714 * 1G [256K; 25M] [32K; 1.5M] 715 * 10G [2.5M; 250M] [156K; 15M] 716 * 100G [25M; 2.5G] [1.5M; 150M] 717 * 718 */ 719 720 #define SMALLFILE1_D 1000 721 #define SMALLFILE2_D 10 722 static u_offset_t smallfile1 = 32 * 1024; 723 static u_offset_t smallfile2 = 32 * 1024; 724 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 725 uint_t smallfile1_d = SMALLFILE1_D; 726 uint_t smallfile2_d = SMALLFILE2_D; 727 728 /* 729 * wrip does the real work of write requests for ufs. 730 */ 731 int 732 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 733 { 734 rlim64_t limit = uio->uio_llimit; 735 u_offset_t off; 736 u_offset_t old_i_size; 737 struct fs *fs; 738 struct vnode *vp; 739 struct ufsvfs *ufsvfsp; 740 caddr_t base; 741 long start_resid = uio->uio_resid; /* save starting resid */ 742 long premove_resid; /* resid before uiomove() */ 743 uint_t flags; 744 int newpage; 745 int iupdat_flag, directio_status; 746 int n, on, mapon; 747 int error, pagecreate; 748 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 749 int32_t iblocks; 750 int new_iblocks; 751 752 /* 753 * ip->i_size is incremented before the uiomove 754 * is done on a write. If the move fails (bad user 755 * address) reset ip->i_size. 756 * The better way would be to increment ip->i_size 757 * only if the uiomove succeeds. 758 */ 759 int i_size_changed = 0; 760 o_mode_t type; 761 int i_seq_needed = 0; 762 763 vp = ITOV(ip); 764 765 /* 766 * check for forced unmount - should not happen as 767 * the request passed the lockfs checks. 768 */ 769 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 770 return (EIO); 771 772 fs = ip->i_fs; 773 774 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 775 776 /* check for valid filetype */ 777 type = ip->i_mode & IFMT; 778 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 779 (type != IFLNK) && (type != IFSHAD)) { 780 return (EIO); 781 } 782 783 /* 784 * the actual limit of UFS file size 785 * is UFS_MAXOFFSET_T 786 */ 787 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 788 limit = MAXOFFSET_T; 789 790 if (uio->uio_loffset >= limit) { 791 proc_t *p = ttoproc(curthread); 792 793 mutex_enter(&p->p_lock); 794 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 795 p, RCA_UNSAFE_SIGINFO); 796 mutex_exit(&p->p_lock); 797 return (EFBIG); 798 } 799 800 /* 801 * if largefiles are disallowed, the limit is 802 * the pre-largefiles value of 2GB 803 */ 804 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 805 limit = MIN(UFS_MAXOFFSET_T, limit); 806 else 807 limit = MIN(MAXOFF32_T, limit); 808 809 if (uio->uio_loffset < (offset_t)0) { 810 return (EINVAL); 811 } 812 if (uio->uio_resid == 0) { 813 return (0); 814 } 815 816 if (uio->uio_loffset >= limit) 817 return (EFBIG); 818 819 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 820 821 if (ioflag & (FSYNC|FDSYNC)) { 822 ip->i_flag |= ISYNC; 823 iupdat_flag = 1; 824 } 825 /* 826 * Try to go direct 827 */ 828 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 829 uio->uio_llimit = limit; 830 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 831 &directio_status); 832 /* 833 * If ufs_directio wrote to the file or set the flags, 834 * we need to update i_seq, but it may be deferred. 835 */ 836 if (start_resid != uio->uio_resid || 837 (ip->i_flag & (ICHG|IUPD))) { 838 i_seq_needed = 1; 839 ip->i_flag |= ISEQ; 840 } 841 if (directio_status == DIRECTIO_SUCCESS) 842 goto out; 843 } 844 845 /* 846 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 847 * 848 * o shadow inodes: vfs_dqrwlock is not held at all 849 * o quota updates: vfs_dqrwlock is read or write held 850 * o other updates: vfs_dqrwlock is read held 851 * 852 * The first case is the only one where we do not hold 853 * vfs_dqrwlock at all while entering wrip(). 854 * We must make sure not to downgrade/drop vfs_dqrwlock if we 855 * have it as writer, i.e. if we are updating the quota inode. 856 * There is no potential deadlock scenario in this case as 857 * ufs_getpage() takes care of this and avoids reacquiring 858 * vfs_dqrwlock in that case. 859 * 860 * This check is done here since the above conditions do not change 861 * and we possibly loop below, so save a few cycles. 862 */ 863 if ((type == IFSHAD) || 864 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 865 do_dqrwlock = 0; 866 } else { 867 do_dqrwlock = 1; 868 } 869 870 /* 871 * Large Files: We cast MAXBMASK to offset_t 872 * inorder to mask out the higher bits. Since offset_t 873 * is a signed value, the high order bit set in MAXBMASK 874 * value makes it do the right thing by having all bits 1 875 * in the higher word. May be removed for _SOLARIS64_. 876 */ 877 878 fs = ip->i_fs; 879 do { 880 u_offset_t uoff = uio->uio_loffset; 881 off = uoff & (offset_t)MAXBMASK; 882 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 883 on = (int)blkoff(fs, uoff); 884 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 885 new_iblocks = 1; 886 887 if (type == IFREG && uoff + n >= limit) { 888 if (uoff >= limit) { 889 error = EFBIG; 890 goto out; 891 } 892 /* 893 * since uoff + n >= limit, 894 * therefore n >= limit - uoff, and n is an int 895 * so it is safe to cast it to an int 896 */ 897 n = (int)(limit - (rlim64_t)uoff); 898 } 899 if (uoff + n > ip->i_size) { 900 /* 901 * We are extending the length of the file. 902 * bmap is used so that we are sure that 903 * if we need to allocate new blocks, that it 904 * is done here before we up the file size. 905 */ 906 error = bmap_write(ip, uoff, (int)(on + n), 907 mapon == 0, NULL, cr); 908 /* 909 * bmap_write never drops i_contents so if 910 * the flags are set it changed the file. 911 */ 912 if (ip->i_flag & (ICHG|IUPD)) { 913 i_seq_needed = 1; 914 ip->i_flag |= ISEQ; 915 } 916 if (error) 917 break; 918 /* 919 * There is a window of vulnerability here. 920 * The sequence of operations: allocate file 921 * system blocks, uiomove the data into pages, 922 * and then update the size of the file in the 923 * inode, must happen atomically. However, due 924 * to current locking constraints, this can not 925 * be done. 926 */ 927 ASSERT(ip->i_writer == NULL); 928 ip->i_writer = curthread; 929 i_size_changed = 1; 930 /* 931 * If we are writing from the beginning of 932 * the mapping, we can just create the 933 * pages without having to read them. 934 */ 935 pagecreate = (mapon == 0); 936 } else if (n == MAXBSIZE) { 937 /* 938 * Going to do a whole mappings worth, 939 * so we can just create the pages w/o 940 * having to read them in. But before 941 * we do that, we need to make sure any 942 * needed blocks are allocated first. 943 */ 944 iblocks = ip->i_blocks; 945 error = bmap_write(ip, uoff, (int)(on + n), 946 BI_ALLOC_ONLY, NULL, cr); 947 /* 948 * bmap_write never drops i_contents so if 949 * the flags are set it changed the file. 950 */ 951 if (ip->i_flag & (ICHG|IUPD)) { 952 i_seq_needed = 1; 953 ip->i_flag |= ISEQ; 954 } 955 if (error) 956 break; 957 pagecreate = 1; 958 /* 959 * check if the new created page needed the 960 * allocation of new disk blocks. 961 */ 962 if (iblocks == ip->i_blocks) 963 new_iblocks = 0; /* no new blocks allocated */ 964 } else { 965 pagecreate = 0; 966 /* 967 * In sync mode flush the indirect blocks which 968 * may have been allocated and not written on 969 * disk. In above cases bmap_write will allocate 970 * in sync mode. 971 */ 972 if (ioflag & (FSYNC|FDSYNC)) { 973 error = ufs_indirblk_sync(ip, uoff); 974 if (error) 975 break; 976 } 977 } 978 979 /* 980 * At this point we can enter ufs_getpage() in one 981 * of two ways: 982 * 1) segmap_getmapflt() calls ufs_getpage() when the 983 * forcefault parameter is true (pagecreate == 0) 984 * 2) uiomove() causes a page fault. 985 * 986 * We have to drop the contents lock to prevent the VM 987 * system from trying to reacquire it in ufs_getpage() 988 * should the uiomove cause a pagefault. 989 * 990 * We have to drop the reader vfs_dqrwlock here as well. 991 */ 992 rw_exit(&ip->i_contents); 993 if (do_dqrwlock) { 994 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 995 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 996 rw_exit(&ufsvfsp->vfs_dqrwlock); 997 } 998 999 newpage = 0; 1000 premove_resid = uio->uio_resid; 1001 1002 /* 1003 * Touch the page and fault it in if it is not in core 1004 * before segmap_getmapflt or vpm_data_copy can lock it. 1005 * This is to avoid the deadlock if the buffer is mapped 1006 * to the same file through mmap which we want to write. 1007 */ 1008 uio_prefaultpages((long)n, uio); 1009 1010 if (vpm_enable) { 1011 /* 1012 * Copy data. If new pages are created, part of 1013 * the page that is not written will be initizliazed 1014 * with zeros. 1015 */ 1016 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1017 uio, !pagecreate, &newpage, 0, S_WRITE); 1018 } else { 1019 1020 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1021 (uint_t)n, !pagecreate, S_WRITE); 1022 1023 /* 1024 * segmap_pagecreate() returns 1 if it calls 1025 * page_create_va() to allocate any pages. 1026 */ 1027 1028 if (pagecreate) 1029 newpage = segmap_pagecreate(segkmap, base, 1030 (size_t)n, 0); 1031 1032 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1033 } 1034 1035 /* 1036 * If "newpage" is set, then a new page was created and it 1037 * does not contain valid data, so it needs to be initialized 1038 * at this point. 1039 * Otherwise the page contains old data, which was overwritten 1040 * partially or as a whole in uiomove. 1041 * If there is only one iovec structure within uio, then 1042 * on error uiomove will not be able to update uio->uio_loffset 1043 * and we would zero the whole page here! 1044 * 1045 * If uiomove fails because of an error, the old valid data 1046 * is kept instead of filling the rest of the page with zero's. 1047 */ 1048 if (!vpm_enable && newpage && 1049 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1050 /* 1051 * We created pages w/o initializing them completely, 1052 * thus we need to zero the part that wasn't set up. 1053 * This happens on most EOF write cases and if 1054 * we had some sort of error during the uiomove. 1055 */ 1056 int nzero, nmoved; 1057 1058 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1059 ASSERT(nmoved >= 0 && nmoved <= n); 1060 nzero = roundup(on + n, PAGESIZE) - nmoved; 1061 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1062 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1063 } 1064 1065 /* 1066 * Unlock the pages allocated by page_create_va() 1067 * in segmap_pagecreate() 1068 */ 1069 if (!vpm_enable && newpage) 1070 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1071 1072 /* 1073 * If the size of the file changed, then update the 1074 * size field in the inode now. This can't be done 1075 * before the call to segmap_pageunlock or there is 1076 * a potential deadlock with callers to ufs_putpage(). 1077 * They will be holding i_contents and trying to lock 1078 * a page, while this thread is holding a page locked 1079 * and trying to acquire i_contents. 1080 */ 1081 if (i_size_changed) { 1082 rw_enter(&ip->i_contents, RW_WRITER); 1083 old_i_size = ip->i_size; 1084 UFS_SET_ISIZE(uoff + n, ip); 1085 TRANS_INODE(ufsvfsp, ip); 1086 /* 1087 * file has grown larger than 2GB. Set flag 1088 * in superblock to indicate this, if it 1089 * is not already set. 1090 */ 1091 if ((ip->i_size > MAXOFF32_T) && 1092 !(fs->fs_flags & FSLARGEFILES)) { 1093 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1094 mutex_enter(&ufsvfsp->vfs_lock); 1095 fs->fs_flags |= FSLARGEFILES; 1096 ufs_sbwrite(ufsvfsp); 1097 mutex_exit(&ufsvfsp->vfs_lock); 1098 } 1099 mutex_enter(&ip->i_tlock); 1100 ip->i_writer = NULL; 1101 cv_broadcast(&ip->i_wrcv); 1102 mutex_exit(&ip->i_tlock); 1103 rw_exit(&ip->i_contents); 1104 } 1105 1106 if (error) { 1107 /* 1108 * If we failed on a write, we may have already 1109 * allocated file blocks as well as pages. It's 1110 * hard to undo the block allocation, but we must 1111 * be sure to invalidate any pages that may have 1112 * been allocated. 1113 * 1114 * If the page was created without initialization 1115 * then we must check if it should be possible 1116 * to destroy the new page and to keep the old data 1117 * on the disk. 1118 * 1119 * It is possible to destroy the page without 1120 * having to write back its contents only when 1121 * - the size of the file keeps unchanged 1122 * - bmap_write() did not allocate new disk blocks 1123 * it is possible to create big files using "seek" and 1124 * write to the end of the file. A "write" to a 1125 * position before the end of the file would not 1126 * change the size of the file but it would allocate 1127 * new disk blocks. 1128 * - uiomove intended to overwrite the whole page. 1129 * - a new page was created (newpage == 1). 1130 */ 1131 1132 if (i_size_changed == 0 && new_iblocks == 0 && 1133 newpage) { 1134 1135 /* unwind what uiomove eventually last did */ 1136 uio->uio_resid = premove_resid; 1137 1138 /* 1139 * destroy the page, do not write ambiguous 1140 * data to the disk. 1141 */ 1142 flags = SM_DESTROY; 1143 } else { 1144 /* 1145 * write the page back to the disk, if dirty, 1146 * and remove the page from the cache. 1147 */ 1148 flags = SM_INVAL; 1149 } 1150 1151 if (vpm_enable) { 1152 /* 1153 * Flush pages. 1154 */ 1155 (void) vpm_sync_pages(vp, off, n, flags); 1156 } else { 1157 (void) segmap_release(segkmap, base, flags); 1158 } 1159 } else { 1160 flags = 0; 1161 /* 1162 * Force write back for synchronous write cases. 1163 */ 1164 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1165 /* 1166 * If the sticky bit is set but the 1167 * execute bit is not set, we do a 1168 * synchronous write back and free 1169 * the page when done. We set up swap 1170 * files to be handled this way to 1171 * prevent servers from keeping around 1172 * the client's swap pages too long. 1173 * XXX - there ought to be a better way. 1174 */ 1175 if (IS_SWAPVP(vp)) { 1176 flags = SM_WRITE | SM_FREE | 1177 SM_DONTNEED; 1178 iupdat_flag = 0; 1179 } else { 1180 flags = SM_WRITE; 1181 } 1182 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1183 /* 1184 * Have written a whole block. 1185 * Start an asynchronous write and 1186 * mark the buffer to indicate that 1187 * it won't be needed again soon. 1188 */ 1189 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1190 } 1191 if (vpm_enable) { 1192 /* 1193 * Flush pages. 1194 */ 1195 error = vpm_sync_pages(vp, off, n, flags); 1196 } else { 1197 error = segmap_release(segkmap, base, flags); 1198 } 1199 /* 1200 * If the operation failed and is synchronous, 1201 * then we need to unwind what uiomove() last 1202 * did so we can potentially return an error to 1203 * the caller. If this write operation was 1204 * done in two pieces and the first succeeded, 1205 * then we won't return an error for the second 1206 * piece that failed. However, we only want to 1207 * return a resid value that reflects what was 1208 * really done. 1209 * 1210 * Failures for non-synchronous operations can 1211 * be ignored since the page subsystem will 1212 * retry the operation until it succeeds or the 1213 * file system is unmounted. 1214 */ 1215 if (error) { 1216 if ((ioflag & (FSYNC | FDSYNC)) || 1217 type == IFDIR) { 1218 uio->uio_resid = premove_resid; 1219 } else { 1220 error = 0; 1221 } 1222 } 1223 } 1224 1225 /* 1226 * Re-acquire contents lock. 1227 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1228 */ 1229 if (do_dqrwlock) 1230 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1231 rw_enter(&ip->i_contents, RW_WRITER); 1232 1233 /* 1234 * If the uiomove() failed or if a synchronous 1235 * page push failed, fix up i_size. 1236 */ 1237 if (error) { 1238 if (i_size_changed) { 1239 /* 1240 * The uiomove failed, and we 1241 * allocated blocks,so get rid 1242 * of them. 1243 */ 1244 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1245 } 1246 } else { 1247 /* 1248 * XXX - Can this be out of the loop? 1249 */ 1250 ip->i_flag |= IUPD | ICHG; 1251 /* 1252 * Only do one increase of i_seq for multiple 1253 * pieces. Because we drop locks, record 1254 * the fact that we changed the timestamp and 1255 * are deferring the increase in case another thread 1256 * pushes our timestamp update. 1257 */ 1258 i_seq_needed = 1; 1259 ip->i_flag |= ISEQ; 1260 if (i_size_changed) 1261 ip->i_flag |= IATTCHG; 1262 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1263 (IEXEC >> 6))) != 0 && 1264 (ip->i_mode & (ISUID | ISGID)) != 0 && 1265 secpolicy_vnode_setid_retain(cr, 1266 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1267 /* 1268 * Clear Set-UID & Set-GID bits on 1269 * successful write if not privileged 1270 * and at least one of the execute bits 1271 * is set. If we always clear Set-GID, 1272 * mandatory file and record locking is 1273 * unuseable. 1274 */ 1275 ip->i_mode &= ~(ISUID | ISGID); 1276 } 1277 } 1278 /* 1279 * In the case the FDSYNC flag is set and this is a 1280 * "rewrite" we won't log a delta. 1281 * The FSYNC flag overrides all cases. 1282 */ 1283 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1284 TRANS_INODE(ufsvfsp, ip); 1285 } 1286 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1287 1288 out: 1289 /* 1290 * Make sure i_seq is increased at least once per write 1291 */ 1292 if (i_seq_needed) { 1293 ip->i_seq++; 1294 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1295 } 1296 1297 /* 1298 * Inode is updated according to this table - 1299 * 1300 * FSYNC FDSYNC(posix.4) 1301 * -------------------------- 1302 * always@ IATTCHG|IBDWRITE 1303 * 1304 * @ - If we are doing synchronous write the only time we should 1305 * not be sync'ing the ip here is if we have the stickyhack 1306 * activated, the file is marked with the sticky bit and 1307 * no exec bit, the file length has not been changed and 1308 * no new blocks have been allocated during this write. 1309 */ 1310 1311 if ((ip->i_flag & ISYNC) != 0) { 1312 /* 1313 * we have eliminated nosync 1314 */ 1315 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1316 ((ioflag & FSYNC) && iupdat_flag)) { 1317 ufs_iupdat(ip, 1); 1318 } 1319 } 1320 1321 /* 1322 * If we've already done a partial-write, terminate 1323 * the write but return no error unless the error is ENOSPC 1324 * because the caller can detect this and free resources and 1325 * try again. 1326 */ 1327 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1328 error = 0; 1329 1330 ip->i_flag &= ~(INOACC | ISYNC); 1331 ITIMES_NOLOCK(ip); 1332 return (error); 1333 } 1334 1335 /* 1336 * rdip does the real work of read requests for ufs. 1337 */ 1338 int 1339 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1340 { 1341 u_offset_t off; 1342 caddr_t base; 1343 struct fs *fs; 1344 struct ufsvfs *ufsvfsp; 1345 struct vnode *vp; 1346 long oresid = uio->uio_resid; 1347 u_offset_t n, on, mapon; 1348 int error = 0; 1349 int doupdate = 1; 1350 uint_t flags; 1351 int dofree, directio_status; 1352 krw_t rwtype; 1353 o_mode_t type; 1354 clock_t now; 1355 1356 vp = ITOV(ip); 1357 1358 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1359 1360 ufsvfsp = ip->i_ufsvfs; 1361 1362 if (ufsvfsp == NULL) 1363 return (EIO); 1364 1365 fs = ufsvfsp->vfs_fs; 1366 1367 /* check for valid filetype */ 1368 type = ip->i_mode & IFMT; 1369 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1370 (type != IFLNK) && (type != IFSHAD)) { 1371 return (EIO); 1372 } 1373 1374 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1375 error = 0; 1376 goto out; 1377 } 1378 if (uio->uio_loffset < (offset_t)0) { 1379 return (EINVAL); 1380 } 1381 if (uio->uio_resid == 0) { 1382 return (0); 1383 } 1384 1385 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1386 (!ufsvfsp->vfs_noatime)) { 1387 mutex_enter(&ip->i_tlock); 1388 ip->i_flag |= IACC; 1389 mutex_exit(&ip->i_tlock); 1390 } 1391 /* 1392 * Try to go direct 1393 */ 1394 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1395 error = ufs_directio_read(ip, uio, cr, &directio_status); 1396 if (directio_status == DIRECTIO_SUCCESS) 1397 goto out; 1398 } 1399 1400 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1401 1402 do { 1403 offset_t diff; 1404 u_offset_t uoff = uio->uio_loffset; 1405 off = uoff & (offset_t)MAXBMASK; 1406 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1407 on = (u_offset_t)blkoff(fs, uoff); 1408 n = MIN((u_offset_t)fs->fs_bsize - on, 1409 (u_offset_t)uio->uio_resid); 1410 1411 diff = ip->i_size - uoff; 1412 1413 if (diff <= (offset_t)0) { 1414 error = 0; 1415 goto out; 1416 } 1417 if (diff < (offset_t)n) 1418 n = (int)diff; 1419 1420 /* 1421 * We update smallfile2 and smallfile1 at most every second. 1422 */ 1423 now = ddi_get_lbolt(); 1424 if (now >= smallfile_update) { 1425 uint64_t percpufreeb; 1426 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1427 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1428 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1429 smallfile1 = percpufreeb / smallfile1_d; 1430 smallfile2 = percpufreeb / smallfile2_d; 1431 smallfile1 = MAX(smallfile1, smallfile); 1432 smallfile1 = MAX(smallfile1, smallfile64); 1433 smallfile2 = MAX(smallfile1, smallfile2); 1434 smallfile_update = now + hz; 1435 } 1436 1437 dofree = freebehind && 1438 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1439 1440 /* 1441 * At this point we can enter ufs_getpage() in one of two 1442 * ways: 1443 * 1) segmap_getmapflt() calls ufs_getpage() when the 1444 * forcefault parameter is true (value of 1 is passed) 1445 * 2) uiomove() causes a page fault. 1446 * 1447 * We cannot hold onto an i_contents reader lock without 1448 * risking deadlock in ufs_getpage() so drop a reader lock. 1449 * The ufs_getpage() dolock logic already allows for a 1450 * thread holding i_contents as writer to work properly 1451 * so we keep a writer lock. 1452 */ 1453 if (rwtype == RW_READER) 1454 rw_exit(&ip->i_contents); 1455 1456 if (vpm_enable) { 1457 /* 1458 * Copy data. 1459 */ 1460 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1461 uio, 1, NULL, 0, S_READ); 1462 } else { 1463 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1464 (uint_t)n, 1, S_READ); 1465 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1466 } 1467 1468 flags = 0; 1469 if (!error) { 1470 /* 1471 * If reading sequential we won't need this 1472 * buffer again soon. For offsets in range 1473 * [smallfile1, smallfile2] release the pages 1474 * at the tail of the cache list, larger 1475 * offsets are released at the head. 1476 */ 1477 if (dofree) { 1478 flags = SM_FREE | SM_ASYNC; 1479 if ((cache_read_ahead == 0) && 1480 (off > smallfile2)) 1481 flags |= SM_DONTNEED; 1482 } 1483 /* 1484 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1485 * we want to make sure that the page which has 1486 * been read, is written on disk if it is dirty. 1487 * And corresponding indirect blocks should also 1488 * be flushed out. 1489 */ 1490 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1491 flags &= ~SM_ASYNC; 1492 flags |= SM_WRITE; 1493 } 1494 if (vpm_enable) { 1495 error = vpm_sync_pages(vp, off, n, flags); 1496 } else { 1497 error = segmap_release(segkmap, base, flags); 1498 } 1499 } else { 1500 if (vpm_enable) { 1501 (void) vpm_sync_pages(vp, off, n, flags); 1502 } else { 1503 (void) segmap_release(segkmap, base, flags); 1504 } 1505 } 1506 1507 if (rwtype == RW_READER) 1508 rw_enter(&ip->i_contents, rwtype); 1509 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1510 out: 1511 /* 1512 * Inode is updated according to this table if FRSYNC is set. 1513 * 1514 * FSYNC FDSYNC(posix.4) 1515 * -------------------------- 1516 * always IATTCHG|IBDWRITE 1517 */ 1518 /* 1519 * The inode is not updated if we're logging and the inode is a 1520 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1521 */ 1522 if (ioflag & FRSYNC) { 1523 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1524 doupdate = 0; 1525 } 1526 if (doupdate) { 1527 if ((ioflag & FSYNC) || 1528 ((ioflag & FDSYNC) && 1529 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1530 ufs_iupdat(ip, 1); 1531 } 1532 } 1533 } 1534 /* 1535 * If we've already done a partial read, terminate 1536 * the read but return no error. 1537 */ 1538 if (oresid != uio->uio_resid) 1539 error = 0; 1540 ITIMES(ip); 1541 1542 return (error); 1543 } 1544 1545 /* ARGSUSED */ 1546 static int 1547 ufs_ioctl( 1548 struct vnode *vp, 1549 int cmd, 1550 intptr_t arg, 1551 int flag, 1552 struct cred *cr, 1553 int *rvalp, 1554 caller_context_t *ct) 1555 { 1556 struct lockfs lockfs, lockfs_out; 1557 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1558 char *comment, *original_comment; 1559 struct fs *fs; 1560 struct ulockfs *ulp; 1561 offset_t off; 1562 extern int maxphys; 1563 int error; 1564 int issync; 1565 int trans_size; 1566 1567 1568 /* 1569 * forcibly unmounted 1570 */ 1571 if (ufsvfsp == NULL || vp->v_vfsp == NULL || 1572 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED) 1573 return (EIO); 1574 fs = ufsvfsp->vfs_fs; 1575 1576 if (cmd == Q_QUOTACTL) { 1577 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1578 if (error) 1579 return (error); 1580 1581 if (ulp) { 1582 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1583 TOP_SETQUOTA_SIZE(fs)); 1584 } 1585 1586 error = quotactl(vp, arg, flag, cr); 1587 1588 if (ulp) { 1589 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1590 TOP_SETQUOTA_SIZE(fs)); 1591 ufs_lockfs_end(ulp); 1592 } 1593 return (error); 1594 } 1595 1596 switch (cmd) { 1597 case _FIOLFS: 1598 /* 1599 * file system locking 1600 */ 1601 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1602 return (EPERM); 1603 1604 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1605 if (copyin((caddr_t)arg, &lockfs, 1606 sizeof (struct lockfs))) 1607 return (EFAULT); 1608 } 1609 #ifdef _SYSCALL32_IMPL 1610 else { 1611 struct lockfs32 lockfs32; 1612 /* Translate ILP32 lockfs to LP64 lockfs */ 1613 if (copyin((caddr_t)arg, &lockfs32, 1614 sizeof (struct lockfs32))) 1615 return (EFAULT); 1616 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1617 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1618 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1619 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1620 lockfs.lf_comment = 1621 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1622 } 1623 #endif /* _SYSCALL32_IMPL */ 1624 1625 if (lockfs.lf_comlen) { 1626 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1627 return (ENAMETOOLONG); 1628 comment = 1629 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1630 if (copyin(lockfs.lf_comment, comment, 1631 lockfs.lf_comlen)) { 1632 kmem_free(comment, lockfs.lf_comlen); 1633 return (EFAULT); 1634 } 1635 original_comment = lockfs.lf_comment; 1636 lockfs.lf_comment = comment; 1637 } 1638 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1639 lockfs.lf_comment = original_comment; 1640 1641 if ((flag & DATAMODEL_MASK) == 1642 DATAMODEL_NATIVE) { 1643 (void) copyout(&lockfs, (caddr_t)arg, 1644 sizeof (struct lockfs)); 1645 } 1646 #ifdef _SYSCALL32_IMPL 1647 else { 1648 struct lockfs32 lockfs32; 1649 /* Translate LP64 to ILP32 lockfs */ 1650 lockfs32.lf_lock = 1651 (uint32_t)lockfs.lf_lock; 1652 lockfs32.lf_flags = 1653 (uint32_t)lockfs.lf_flags; 1654 lockfs32.lf_key = 1655 (uint32_t)lockfs.lf_key; 1656 lockfs32.lf_comlen = 1657 (uint32_t)lockfs.lf_comlen; 1658 lockfs32.lf_comment = 1659 (uint32_t)(uintptr_t) 1660 lockfs.lf_comment; 1661 (void) copyout(&lockfs32, (caddr_t)arg, 1662 sizeof (struct lockfs32)); 1663 } 1664 #endif /* _SYSCALL32_IMPL */ 1665 1666 } else { 1667 if (lockfs.lf_comlen) 1668 kmem_free(comment, lockfs.lf_comlen); 1669 } 1670 return (error); 1671 1672 case _FIOLFSS: 1673 /* 1674 * get file system locking status 1675 */ 1676 1677 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1678 if (copyin((caddr_t)arg, &lockfs, 1679 sizeof (struct lockfs))) 1680 return (EFAULT); 1681 } 1682 #ifdef _SYSCALL32_IMPL 1683 else { 1684 struct lockfs32 lockfs32; 1685 /* Translate ILP32 lockfs to LP64 lockfs */ 1686 if (copyin((caddr_t)arg, &lockfs32, 1687 sizeof (struct lockfs32))) 1688 return (EFAULT); 1689 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1690 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1691 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1692 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1693 lockfs.lf_comment = 1694 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1695 } 1696 #endif /* _SYSCALL32_IMPL */ 1697 1698 if (error = ufs_fiolfss(vp, &lockfs_out)) 1699 return (error); 1700 lockfs.lf_lock = lockfs_out.lf_lock; 1701 lockfs.lf_key = lockfs_out.lf_key; 1702 lockfs.lf_flags = lockfs_out.lf_flags; 1703 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1704 lockfs_out.lf_comlen); 1705 1706 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1707 if (copyout(&lockfs, (caddr_t)arg, 1708 sizeof (struct lockfs))) 1709 return (EFAULT); 1710 } 1711 #ifdef _SYSCALL32_IMPL 1712 else { 1713 /* Translate LP64 to ILP32 lockfs */ 1714 struct lockfs32 lockfs32; 1715 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1716 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1717 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1718 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1719 lockfs32.lf_comment = 1720 (uint32_t)(uintptr_t)lockfs.lf_comment; 1721 if (copyout(&lockfs32, (caddr_t)arg, 1722 sizeof (struct lockfs32))) 1723 return (EFAULT); 1724 } 1725 #endif /* _SYSCALL32_IMPL */ 1726 1727 if (lockfs.lf_comlen && 1728 lockfs.lf_comment && lockfs_out.lf_comment) 1729 if (copyout(lockfs_out.lf_comment, 1730 lockfs.lf_comment, lockfs.lf_comlen)) 1731 return (EFAULT); 1732 return (0); 1733 1734 case _FIOSATIME: 1735 /* 1736 * set access time 1737 */ 1738 1739 /* 1740 * if mounted w/o atime, return quietly. 1741 * I briefly thought about returning ENOSYS, but 1742 * figured that most apps would consider this fatal 1743 * but the idea is to make this as seamless as poss. 1744 */ 1745 if (ufsvfsp->vfs_noatime) 1746 return (0); 1747 1748 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1749 ULOCKFS_SETATTR_MASK); 1750 if (error) 1751 return (error); 1752 1753 if (ulp) { 1754 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1755 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1756 TOP_SETATTR, trans_size); 1757 } 1758 1759 error = ufs_fiosatime(vp, (struct timeval *)arg, 1760 flag, cr); 1761 1762 if (ulp) { 1763 TRANS_END_CSYNC(ufsvfsp, error, issync, 1764 TOP_SETATTR, trans_size); 1765 ufs_lockfs_end(ulp); 1766 } 1767 return (error); 1768 1769 case _FIOSDIO: 1770 /* 1771 * set delayed-io 1772 */ 1773 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1774 1775 case _FIOGDIO: 1776 /* 1777 * get delayed-io 1778 */ 1779 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1780 1781 case _FIOIO: 1782 /* 1783 * inode open 1784 */ 1785 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1786 ULOCKFS_VGET_MASK); 1787 if (error) 1788 return (error); 1789 1790 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1791 1792 if (ulp) { 1793 ufs_lockfs_end(ulp); 1794 } 1795 return (error); 1796 1797 case _FIOFFS: 1798 /* 1799 * file system flush (push w/invalidate) 1800 */ 1801 if ((caddr_t)arg != NULL) 1802 return (EINVAL); 1803 return (ufs_fioffs(vp, NULL, cr)); 1804 1805 case _FIOISBUSY: 1806 /* 1807 * Contract-private interface for Legato 1808 * Purge this vnode from the DNLC and decide 1809 * if this vnode is busy (*arg == 1) or not 1810 * (*arg == 0) 1811 */ 1812 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1813 return (EPERM); 1814 error = ufs_fioisbusy(vp, (int *)arg, cr); 1815 return (error); 1816 1817 case _FIODIRECTIO: 1818 return (ufs_fiodirectio(vp, (int)arg, cr)); 1819 1820 case _FIOTUNE: 1821 /* 1822 * Tune the file system (aka setting fs attributes) 1823 */ 1824 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1825 ULOCKFS_SETATTR_MASK); 1826 if (error) 1827 return (error); 1828 1829 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1830 1831 if (ulp) 1832 ufs_lockfs_end(ulp); 1833 return (error); 1834 1835 case _FIOLOGENABLE: 1836 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1837 return (EPERM); 1838 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1839 1840 case _FIOLOGDISABLE: 1841 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1842 return (EPERM); 1843 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1844 1845 case _FIOISLOG: 1846 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1847 1848 case _FIOSNAPSHOTCREATE_MULTI: 1849 { 1850 struct fiosnapcreate_multi fc, *fcp; 1851 size_t fcm_size; 1852 1853 if (copyin((void *)arg, &fc, sizeof (fc))) 1854 return (EFAULT); 1855 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1856 return (EINVAL); 1857 fcm_size = sizeof (struct fiosnapcreate_multi) + 1858 (fc.backfilecount - 1) * sizeof (int); 1859 fcp = (struct fiosnapcreate_multi *) 1860 kmem_alloc(fcm_size, KM_SLEEP); 1861 if (copyin((void *)arg, fcp, fcm_size)) { 1862 kmem_free(fcp, fcm_size); 1863 return (EFAULT); 1864 } 1865 error = ufs_snap_create(vp, fcp, cr); 1866 /* 1867 * Do copyout even if there is an error because 1868 * the details of error is stored in fcp. 1869 */ 1870 if (copyout(fcp, (void *)arg, fcm_size)) 1871 error = EFAULT; 1872 kmem_free(fcp, fcm_size); 1873 return (error); 1874 } 1875 1876 case _FIOSNAPSHOTDELETE: 1877 { 1878 struct fiosnapdelete fc; 1879 1880 if (copyin((void *)arg, &fc, sizeof (fc))) 1881 return (EFAULT); 1882 error = ufs_snap_delete(vp, &fc, cr); 1883 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1884 error = EFAULT; 1885 return (error); 1886 } 1887 1888 case _FIOGETSUPERBLOCK: 1889 if (copyout(fs, (void *)arg, SBSIZE)) 1890 return (EFAULT); 1891 return (0); 1892 1893 case _FIOGETMAXPHYS: 1894 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1895 return (EFAULT); 1896 return (0); 1897 1898 /* 1899 * The following 3 ioctls are for TSufs support 1900 * although could potentially be used elsewhere 1901 */ 1902 case _FIO_SET_LUFS_DEBUG: 1903 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1904 return (EPERM); 1905 lufs_debug = (uint32_t)arg; 1906 return (0); 1907 1908 case _FIO_SET_LUFS_ERROR: 1909 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1910 return (EPERM); 1911 TRANS_SETERROR(ufsvfsp); 1912 return (0); 1913 1914 case _FIO_GET_TOP_STATS: 1915 { 1916 fio_lufs_stats_t *ls; 1917 ml_unit_t *ul = ufsvfsp->vfs_log; 1918 1919 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1920 ls->ls_debug = ul->un_debug; /* return debug value */ 1921 /* Copy stucture if statistics are being kept */ 1922 if (ul->un_logmap->mtm_tops) { 1923 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1924 } 1925 error = 0; 1926 if (copyout(ls, (void *)arg, sizeof (*ls))) 1927 error = EFAULT; 1928 kmem_free(ls, sizeof (*ls)); 1929 return (error); 1930 } 1931 1932 case _FIO_SEEK_DATA: 1933 case _FIO_SEEK_HOLE: 1934 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1935 return (EFAULT); 1936 /* offset paramater is in/out */ 1937 error = ufs_fio_holey(vp, cmd, &off); 1938 if (error) 1939 return (error); 1940 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1941 return (EFAULT); 1942 return (0); 1943 1944 case _FIO_COMPRESSED: 1945 { 1946 /* 1947 * This is a project private ufs ioctl() to mark 1948 * the inode as that belonging to a compressed 1949 * file. This is used to mark individual 1950 * compressed files in a miniroot archive. 1951 * The files compressed in this manner are 1952 * automatically decompressed by the dcfs filesystem 1953 * (via an interception in ufs_lookup - see decompvp()) 1954 * which is layered on top of ufs on a system running 1955 * from the archive. See uts/common/fs/dcfs for details. 1956 * This ioctl only marks the file as compressed - the 1957 * actual compression is done by fiocompress (a 1958 * userland utility) which invokes this ioctl(). 1959 */ 1960 struct inode *ip = VTOI(vp); 1961 1962 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1963 ULOCKFS_SETATTR_MASK); 1964 if (error) 1965 return (error); 1966 1967 if (ulp) { 1968 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1969 TOP_IUPDAT_SIZE(ip)); 1970 } 1971 1972 error = ufs_mark_compressed(vp); 1973 1974 if (ulp) { 1975 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1976 TOP_IUPDAT_SIZE(ip)); 1977 ufs_lockfs_end(ulp); 1978 } 1979 1980 return (error); 1981 1982 } 1983 1984 default: 1985 return (ENOTTY); 1986 } 1987 } 1988 1989 1990 /* ARGSUSED */ 1991 static int 1992 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1993 struct cred *cr, caller_context_t *ct) 1994 { 1995 struct inode *ip = VTOI(vp); 1996 struct ufsvfs *ufsvfsp; 1997 int err; 1998 1999 if (vap->va_mask == AT_SIZE) { 2000 /* 2001 * for performance, if only the size is requested don't bother 2002 * with anything else. 2003 */ 2004 UFS_GET_ISIZE(&vap->va_size, ip); 2005 return (0); 2006 } 2007 2008 /* 2009 * inlined lockfs checks 2010 */ 2011 ufsvfsp = ip->i_ufsvfs; 2012 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2013 err = EIO; 2014 goto out; 2015 } 2016 2017 rw_enter(&ip->i_contents, RW_READER); 2018 /* 2019 * Return all the attributes. This should be refined so 2020 * that it only returns what's asked for. 2021 */ 2022 2023 /* 2024 * Copy from inode table. 2025 */ 2026 vap->va_type = vp->v_type; 2027 vap->va_mode = ip->i_mode & MODEMASK; 2028 /* 2029 * If there is an ACL and there is a mask entry, then do the 2030 * extra work that completes the equivalent of an acltomode(3) 2031 * call. According to POSIX P1003.1e, the acl mask should be 2032 * returned in the group permissions field. 2033 * 2034 * - start with the original permission and mode bits (from above) 2035 * - clear the group owner bits 2036 * - add in the mask bits. 2037 */ 2038 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2039 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2040 vap->va_mode |= 2041 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2042 } 2043 vap->va_uid = ip->i_uid; 2044 vap->va_gid = ip->i_gid; 2045 vap->va_fsid = ip->i_dev; 2046 vap->va_nodeid = (ino64_t)ip->i_number; 2047 vap->va_nlink = ip->i_nlink; 2048 vap->va_size = ip->i_size; 2049 if (vp->v_type == VCHR || vp->v_type == VBLK) 2050 vap->va_rdev = ip->i_rdev; 2051 else 2052 vap->va_rdev = 0; /* not a b/c spec. */ 2053 mutex_enter(&ip->i_tlock); 2054 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2055 vap->va_seq = ip->i_seq; 2056 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2057 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2058 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2059 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2060 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2061 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2062 mutex_exit(&ip->i_tlock); 2063 2064 switch (ip->i_mode & IFMT) { 2065 2066 case IFBLK: 2067 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2068 break; 2069 2070 case IFCHR: 2071 vap->va_blksize = MAXBSIZE; 2072 break; 2073 2074 default: 2075 vap->va_blksize = ip->i_fs->fs_bsize; 2076 break; 2077 } 2078 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2079 rw_exit(&ip->i_contents); 2080 err = 0; 2081 2082 out: 2083 return (err); 2084 } 2085 2086 /* 2087 * Special wrapper to provide a callback for secpolicy_vnode_setattr(). 2088 * The i_contents lock is already held by the caller and we need to 2089 * declare the inode as 'void *' argument. 2090 */ 2091 static int 2092 ufs_priv_access(void *vip, int mode, struct cred *cr) 2093 { 2094 struct inode *ip = vip; 2095 2096 return (ufs_iaccess(ip, mode, cr, 0)); 2097 } 2098 2099 /*ARGSUSED4*/ 2100 static int 2101 ufs_setattr( 2102 struct vnode *vp, 2103 struct vattr *vap, 2104 int flags, 2105 struct cred *cr, 2106 caller_context_t *ct) 2107 { 2108 struct inode *ip = VTOI(vp); 2109 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2110 struct fs *fs; 2111 struct ulockfs *ulp; 2112 char *errmsg1; 2113 char *errmsg2; 2114 long blocks; 2115 long int mask = vap->va_mask; 2116 size_t len1, len2; 2117 int issync; 2118 int trans_size; 2119 int dotrans; 2120 int dorwlock; 2121 int error; 2122 int owner_change; 2123 int dodqlock; 2124 timestruc_t now; 2125 vattr_t oldva; 2126 int retry = 1; 2127 int indeadlock; 2128 2129 /* 2130 * Cannot set these attributes. 2131 */ 2132 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2133 return (EINVAL); 2134 2135 /* 2136 * check for forced unmount 2137 */ 2138 if (ufsvfsp == NULL) 2139 return (EIO); 2140 2141 fs = ufsvfsp->vfs_fs; 2142 if (fs->fs_ronly != 0) 2143 return (EROFS); 2144 2145 again: 2146 errmsg1 = NULL; 2147 errmsg2 = NULL; 2148 dotrans = 0; 2149 dorwlock = 0; 2150 dodqlock = 0; 2151 2152 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2153 if (error) 2154 goto out; 2155 2156 /* 2157 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2158 * This follows the protocol for read()/write(). 2159 */ 2160 if (vp->v_type != VDIR) { 2161 /* 2162 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2163 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2164 * possible, retries the operation. 2165 */ 2166 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2167 if (indeadlock) { 2168 if (ulp) 2169 ufs_lockfs_end(ulp); 2170 goto again; 2171 } 2172 dorwlock = 1; 2173 } 2174 2175 /* 2176 * Truncate file. Must have write permission and not be a directory. 2177 */ 2178 if (mask & AT_SIZE) { 2179 rw_enter(&ip->i_contents, RW_WRITER); 2180 if (vp->v_type == VDIR) { 2181 error = EISDIR; 2182 goto update_inode; 2183 } 2184 if (error = ufs_iaccess(ip, IWRITE, cr, 0)) 2185 goto update_inode; 2186 2187 rw_exit(&ip->i_contents); 2188 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2189 if (error) { 2190 rw_enter(&ip->i_contents, RW_WRITER); 2191 goto update_inode; 2192 } 2193 } 2194 2195 if (ulp) { 2196 trans_size = (int)TOP_SETATTR_SIZE(ip); 2197 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2198 ++dotrans; 2199 } 2200 2201 /* 2202 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2203 * This follows the protocol established by 2204 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2205 */ 2206 if (vp->v_type == VDIR) { 2207 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2208 retry_dir); 2209 if (indeadlock) 2210 goto again; 2211 dorwlock = 1; 2212 } 2213 2214 /* 2215 * Grab quota lock if we are changing the file's owner. 2216 */ 2217 if (mask & AT_UID) { 2218 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2219 dodqlock = 1; 2220 } 2221 rw_enter(&ip->i_contents, RW_WRITER); 2222 2223 oldva.va_mode = ip->i_mode; 2224 oldva.va_uid = ip->i_uid; 2225 oldva.va_gid = ip->i_gid; 2226 2227 vap->va_mask &= ~AT_SIZE; 2228 2229 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2230 ufs_priv_access, ip); 2231 if (error) 2232 goto update_inode; 2233 2234 mask = vap->va_mask; 2235 2236 /* 2237 * Change file access modes. 2238 */ 2239 if (mask & AT_MODE) { 2240 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2241 TRANS_INODE(ufsvfsp, ip); 2242 ip->i_flag |= ICHG; 2243 if (stickyhack) { 2244 mutex_enter(&vp->v_lock); 2245 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2246 vp->v_flag |= VSWAPLIKE; 2247 else 2248 vp->v_flag &= ~VSWAPLIKE; 2249 mutex_exit(&vp->v_lock); 2250 } 2251 } 2252 if (mask & (AT_UID|AT_GID)) { 2253 if (mask & AT_UID) { 2254 /* 2255 * Don't change ownership of the quota inode. 2256 */ 2257 if (ufsvfsp->vfs_qinod == ip) { 2258 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2259 error = EINVAL; 2260 goto update_inode; 2261 } 2262 2263 /* 2264 * No real ownership change. 2265 */ 2266 if (ip->i_uid == vap->va_uid) { 2267 blocks = 0; 2268 owner_change = 0; 2269 } 2270 /* 2271 * Remove the blocks and the file, from the old user's 2272 * quota. 2273 */ 2274 else { 2275 blocks = ip->i_blocks; 2276 owner_change = 1; 2277 2278 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2279 (char **)NULL, (size_t *)NULL); 2280 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2281 (uid_t)ip->i_uid, /* force */ 1, cr, 2282 (char **)NULL, (size_t *)NULL); 2283 dqrele(ip->i_dquot); 2284 } 2285 2286 ip->i_uid = vap->va_uid; 2287 2288 /* 2289 * There is a real ownership change. 2290 */ 2291 if (owner_change) { 2292 /* 2293 * Add the blocks and the file to the new 2294 * user's quota. 2295 */ 2296 ip->i_dquot = getinoquota(ip); 2297 (void) chkdq(ip, blocks, /* force */ 1, cr, 2298 &errmsg1, &len1); 2299 (void) chkiq(ufsvfsp, /* change */ 1, 2300 (struct inode *)NULL, (uid_t)ip->i_uid, 2301 /* force */ 1, cr, &errmsg2, &len2); 2302 } 2303 } 2304 if (mask & AT_GID) { 2305 ip->i_gid = vap->va_gid; 2306 } 2307 TRANS_INODE(ufsvfsp, ip); 2308 ip->i_flag |= ICHG; 2309 } 2310 /* 2311 * Change file access or modified times. 2312 */ 2313 if (mask & (AT_ATIME|AT_MTIME)) { 2314 /* Check that the time value is within ufs range */ 2315 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2316 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2317 error = EOVERFLOW; 2318 goto update_inode; 2319 } 2320 2321 /* 2322 * if the "noaccess" mount option is set and only atime 2323 * update is requested, do nothing. No error is returned. 2324 */ 2325 if ((ufsvfsp->vfs_noatime) && 2326 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2327 goto skip_atime; 2328 2329 if (mask & AT_ATIME) { 2330 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2331 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2332 ip->i_flag &= ~IACC; 2333 } 2334 if (mask & AT_MTIME) { 2335 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2336 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2337 gethrestime(&now); 2338 if (now.tv_sec > TIME32_MAX) { 2339 /* 2340 * In 2038, ctime sticks forever.. 2341 */ 2342 ip->i_ctime.tv_sec = TIME32_MAX; 2343 ip->i_ctime.tv_usec = 0; 2344 } else { 2345 ip->i_ctime.tv_sec = now.tv_sec; 2346 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2347 } 2348 ip->i_flag &= ~(IUPD|ICHG); 2349 ip->i_flag |= IMODTIME; 2350 } 2351 TRANS_INODE(ufsvfsp, ip); 2352 ip->i_flag |= IMOD; 2353 } 2354 2355 skip_atime: 2356 /* 2357 * The presence of a shadow inode may indicate an ACL, but does 2358 * not imply an ACL. Future FSD types should be handled here too 2359 * and check for the presence of the attribute-specific data 2360 * before referencing it. 2361 */ 2362 if (ip->i_shadow) { 2363 /* 2364 * XXX if ufs_iupdat is changed to sandbagged write fix 2365 * ufs_acl_setattr to push ip to keep acls consistent 2366 * 2367 * Suppress out of inodes messages if we will retry. 2368 */ 2369 if (retry) 2370 ip->i_flag |= IQUIET; 2371 error = ufs_acl_setattr(ip, vap, cr); 2372 ip->i_flag &= ~IQUIET; 2373 } 2374 2375 update_inode: 2376 /* 2377 * Setattr always increases the sequence number 2378 */ 2379 ip->i_seq++; 2380 2381 /* 2382 * if nfsd and not logging; push synchronously 2383 */ 2384 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2385 ufs_iupdat(ip, 1); 2386 } else { 2387 ITIMES_NOLOCK(ip); 2388 } 2389 2390 rw_exit(&ip->i_contents); 2391 if (dodqlock) { 2392 rw_exit(&ufsvfsp->vfs_dqrwlock); 2393 } 2394 if (dorwlock) 2395 rw_exit(&ip->i_rwlock); 2396 2397 if (ulp) { 2398 if (dotrans) { 2399 int terr = 0; 2400 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2401 trans_size); 2402 if (error == 0) 2403 error = terr; 2404 } 2405 ufs_lockfs_end(ulp); 2406 } 2407 out: 2408 /* 2409 * If out of inodes or blocks, see if we can free something 2410 * up from the delete queue. 2411 */ 2412 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2413 ufs_delete_drain_wait(ufsvfsp, 1); 2414 retry = 0; 2415 if (errmsg1 != NULL) 2416 kmem_free(errmsg1, len1); 2417 if (errmsg2 != NULL) 2418 kmem_free(errmsg2, len2); 2419 goto again; 2420 } 2421 if (errmsg1 != NULL) { 2422 uprintf(errmsg1); 2423 kmem_free(errmsg1, len1); 2424 } 2425 if (errmsg2 != NULL) { 2426 uprintf(errmsg2); 2427 kmem_free(errmsg2, len2); 2428 } 2429 return (error); 2430 } 2431 2432 /*ARGSUSED*/ 2433 static int 2434 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2435 caller_context_t *ct) 2436 { 2437 struct inode *ip = VTOI(vp); 2438 2439 if (ip->i_ufsvfs == NULL) 2440 return (EIO); 2441 2442 /* 2443 * The ufs_iaccess function wants to be called with 2444 * mode bits expressed as "ufs specific" bits. 2445 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2446 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2447 * But since they're the same we just pass the vnode mode 2448 * bit but just verify that assumption at compile time. 2449 */ 2450 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2451 #error "ufs_access needs to map Vmodes to Imodes" 2452 #endif 2453 return (ufs_iaccess(ip, mode, cr, 1)); 2454 } 2455 2456 /* ARGSUSED */ 2457 static int 2458 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2459 caller_context_t *ct) 2460 { 2461 struct inode *ip = VTOI(vp); 2462 struct ufsvfs *ufsvfsp; 2463 struct ulockfs *ulp; 2464 int error; 2465 int fastsymlink; 2466 2467 if (vp->v_type != VLNK) { 2468 error = EINVAL; 2469 goto nolockout; 2470 } 2471 2472 /* 2473 * If the symbolic link is empty there is nothing to read. 2474 * Fast-track these empty symbolic links 2475 */ 2476 if (ip->i_size == 0) { 2477 error = 0; 2478 goto nolockout; 2479 } 2480 2481 ufsvfsp = ip->i_ufsvfs; 2482 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2483 if (error) 2484 goto nolockout; 2485 /* 2486 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2487 */ 2488 again: 2489 fastsymlink = 0; 2490 if (ip->i_flag & IFASTSYMLNK) { 2491 rw_enter(&ip->i_rwlock, RW_READER); 2492 rw_enter(&ip->i_contents, RW_READER); 2493 if (ip->i_flag & IFASTSYMLNK) { 2494 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2495 (ip->i_fs->fs_ronly == 0) && 2496 (!ufsvfsp->vfs_noatime)) { 2497 mutex_enter(&ip->i_tlock); 2498 ip->i_flag |= IACC; 2499 mutex_exit(&ip->i_tlock); 2500 } 2501 error = uiomove((caddr_t)&ip->i_db[1], 2502 MIN(ip->i_size, uiop->uio_resid), 2503 UIO_READ, uiop); 2504 ITIMES(ip); 2505 ++fastsymlink; 2506 } 2507 rw_exit(&ip->i_contents); 2508 rw_exit(&ip->i_rwlock); 2509 } 2510 if (!fastsymlink) { 2511 ssize_t size; /* number of bytes read */ 2512 caddr_t basep; /* pointer to input data */ 2513 ino_t ino; 2514 long igen; 2515 struct uio tuio; /* temp uio struct */ 2516 struct uio *tuiop; 2517 iovec_t tiov; /* temp iovec struct */ 2518 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2519 int tflag = 0; /* flag to indicate temp vars used */ 2520 2521 ino = ip->i_number; 2522 igen = ip->i_gen; 2523 size = uiop->uio_resid; 2524 basep = uiop->uio_iov->iov_base; 2525 tuiop = uiop; 2526 2527 rw_enter(&ip->i_rwlock, RW_WRITER); 2528 rw_enter(&ip->i_contents, RW_WRITER); 2529 if (ip->i_flag & IFASTSYMLNK) { 2530 rw_exit(&ip->i_contents); 2531 rw_exit(&ip->i_rwlock); 2532 goto again; 2533 } 2534 2535 /* can this be a fast symlink and is it a user buffer? */ 2536 if (ip->i_size <= FSL_SIZE && 2537 (uiop->uio_segflg == UIO_USERSPACE || 2538 uiop->uio_segflg == UIO_USERISPACE)) { 2539 2540 bzero(&tuio, sizeof (struct uio)); 2541 /* 2542 * setup a kernel buffer to read link into. this 2543 * is to fix a race condition where the user buffer 2544 * got corrupted before copying it into the inode. 2545 */ 2546 size = ip->i_size; 2547 tiov.iov_len = size; 2548 tiov.iov_base = kbuf; 2549 tuio.uio_iov = &tiov; 2550 tuio.uio_iovcnt = 1; 2551 tuio.uio_offset = uiop->uio_offset; 2552 tuio.uio_segflg = UIO_SYSSPACE; 2553 tuio.uio_fmode = uiop->uio_fmode; 2554 tuio.uio_extflg = uiop->uio_extflg; 2555 tuio.uio_limit = uiop->uio_limit; 2556 tuio.uio_resid = size; 2557 2558 basep = tuio.uio_iov->iov_base; 2559 tuiop = &tuio; 2560 tflag = 1; 2561 } 2562 2563 error = rdip(ip, tuiop, 0, cr); 2564 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2565 rw_exit(&ip->i_contents); 2566 rw_exit(&ip->i_rwlock); 2567 goto out; 2568 } 2569 2570 if (tflag == 0) 2571 size -= uiop->uio_resid; 2572 2573 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2574 ip->i_size == size) || (tflag == 1 && 2575 tuio.uio_resid == 0)) { 2576 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2577 if (error == 0) { 2578 ip->i_flag |= IFASTSYMLNK; 2579 /* 2580 * free page 2581 */ 2582 (void) VOP_PUTPAGE(ITOV(ip), 2583 (offset_t)0, PAGESIZE, 2584 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2585 cr, ct); 2586 } else { 2587 int i; 2588 /* error, clear garbage left behind */ 2589 for (i = 1; i < NDADDR; i++) 2590 ip->i_db[i] = 0; 2591 for (i = 0; i < NIADDR; i++) 2592 ip->i_ib[i] = 0; 2593 } 2594 } 2595 if (tflag == 1) { 2596 /* now, copy it into the user buffer */ 2597 error = uiomove((caddr_t)kbuf, 2598 MIN(size, uiop->uio_resid), 2599 UIO_READ, uiop); 2600 } 2601 rw_exit(&ip->i_contents); 2602 rw_exit(&ip->i_rwlock); 2603 } 2604 out: 2605 if (ulp) { 2606 ufs_lockfs_end(ulp); 2607 } 2608 nolockout: 2609 return (error); 2610 } 2611 2612 /* ARGSUSED */ 2613 static int 2614 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2615 caller_context_t *ct) 2616 { 2617 struct inode *ip = VTOI(vp); 2618 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2619 struct ulockfs *ulp; 2620 int error; 2621 2622 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2623 if (error) 2624 return (error); 2625 2626 if (TRANS_ISTRANS(ufsvfsp)) { 2627 /* 2628 * First push out any data pages 2629 */ 2630 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2631 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2632 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2633 0, CRED(), ct); 2634 if (error) 2635 goto out; 2636 } 2637 2638 /* 2639 * Delta any delayed inode times updates 2640 * and push inode to log. 2641 * All other inode deltas will have already been delta'd 2642 * and will be pushed during the commit. 2643 */ 2644 if (!(syncflag & FDSYNC) && 2645 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2646 if (ulp) { 2647 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2648 TOP_SYNCIP_SIZE); 2649 } 2650 rw_enter(&ip->i_contents, RW_READER); 2651 mutex_enter(&ip->i_tlock); 2652 ip->i_flag &= ~IMODTIME; 2653 mutex_exit(&ip->i_tlock); 2654 ufs_iupdat(ip, I_SYNC); 2655 rw_exit(&ip->i_contents); 2656 if (ulp) { 2657 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2658 TOP_SYNCIP_SIZE); 2659 } 2660 } 2661 2662 /* 2663 * Commit the Moby transaction 2664 * 2665 * Deltas have already been made so we just need to 2666 * commit them with a synchronous transaction. 2667 * TRANS_BEGIN_SYNC() will return an error 2668 * if there are no deltas to commit, for an 2669 * empty transaction. 2670 */ 2671 if (ulp) { 2672 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2673 error); 2674 if (error) { 2675 error = 0; /* commit wasn't needed */ 2676 goto out; 2677 } 2678 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2679 TOP_COMMIT_SIZE); 2680 } 2681 } else { /* not logging */ 2682 if (!(IS_SWAPVP(vp))) 2683 if (syncflag & FNODSYNC) { 2684 /* Just update the inode only */ 2685 TRANS_IUPDAT(ip, 1); 2686 error = 0; 2687 } else if (syncflag & FDSYNC) 2688 /* Do data-synchronous writes */ 2689 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2690 else 2691 /* Do synchronous writes */ 2692 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2693 2694 rw_enter(&ip->i_contents, RW_WRITER); 2695 if (!error) 2696 error = ufs_sync_indir(ip); 2697 rw_exit(&ip->i_contents); 2698 } 2699 out: 2700 if (ulp) { 2701 ufs_lockfs_end(ulp); 2702 } 2703 return (error); 2704 } 2705 2706 /*ARGSUSED*/ 2707 static void 2708 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2709 { 2710 ufs_iinactive(VTOI(vp)); 2711 } 2712 2713 /* 2714 * Unix file system operations having to do with directory manipulation. 2715 */ 2716 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2717 /* ARGSUSED */ 2718 static int 2719 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2720 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2721 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2722 { 2723 struct inode *ip; 2724 struct inode *sip; 2725 struct inode *xip; 2726 struct ufsvfs *ufsvfsp; 2727 struct ulockfs *ulp; 2728 struct vnode *vp; 2729 int error; 2730 2731 /* 2732 * Check flags for type of lookup (regular file or attribute file) 2733 */ 2734 2735 ip = VTOI(dvp); 2736 2737 if (flags & LOOKUP_XATTR) { 2738 2739 /* 2740 * If not mounted with XATTR support then return EINVAL 2741 */ 2742 2743 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2744 return (EINVAL); 2745 /* 2746 * We don't allow recursive attributes... 2747 * Maybe someday we will. 2748 */ 2749 if ((ip->i_cflags & IXATTR)) { 2750 return (EINVAL); 2751 } 2752 2753 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2754 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2755 if (error) { 2756 *vpp = NULL; 2757 goto out; 2758 } 2759 2760 vp = ITOV(sip); 2761 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2762 } 2763 2764 /* 2765 * Check accessibility of directory. 2766 */ 2767 if (vp == DNLC_NO_VNODE) { 2768 VN_RELE(vp); 2769 error = ENOENT; 2770 goto out; 2771 } 2772 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) { 2773 VN_RELE(vp); 2774 goto out; 2775 } 2776 2777 *vpp = vp; 2778 return (0); 2779 } 2780 2781 /* 2782 * Check for a null component, which we should treat as 2783 * looking at dvp from within it's parent, so we don't 2784 * need a call to ufs_iaccess(), as it has already been 2785 * done. 2786 */ 2787 if (nm[0] == 0) { 2788 VN_HOLD(dvp); 2789 error = 0; 2790 *vpp = dvp; 2791 goto out; 2792 } 2793 2794 /* 2795 * Check for "." ie itself. this is a quick check and 2796 * avoids adding "." into the dnlc (which have been seen 2797 * to occupy >10% of the cache). 2798 */ 2799 if ((nm[0] == '.') && (nm[1] == 0)) { 2800 /* 2801 * Don't return without checking accessibility 2802 * of the directory. We only need the lock if 2803 * we are going to return it. 2804 */ 2805 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) { 2806 VN_HOLD(dvp); 2807 *vpp = dvp; 2808 } 2809 goto out; 2810 } 2811 2812 /* 2813 * Fast path: Check the directory name lookup cache. 2814 */ 2815 if (vp = dnlc_lookup(dvp, nm)) { 2816 /* 2817 * Check accessibility of directory. 2818 */ 2819 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) { 2820 VN_RELE(vp); 2821 goto out; 2822 } 2823 if (vp == DNLC_NO_VNODE) { 2824 VN_RELE(vp); 2825 error = ENOENT; 2826 goto out; 2827 } 2828 xip = VTOI(vp); 2829 ulp = NULL; 2830 goto fastpath; 2831 } 2832 2833 /* 2834 * Keep the idle queue from getting too long by 2835 * idling two inodes before attempting to allocate another. 2836 * This operation must be performed before entering 2837 * lockfs or a transaction. 2838 */ 2839 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2840 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2841 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2842 ufs_idle_some(ufs_lookup_idle_count); 2843 } 2844 2845 retry_lookup: 2846 /* 2847 * Check accessibility of directory. 2848 */ 2849 if (error = ufs_diraccess(ip, IEXEC, cr)) 2850 goto out; 2851 2852 ufsvfsp = ip->i_ufsvfs; 2853 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2854 if (error) 2855 goto out; 2856 2857 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2858 2859 fastpath: 2860 if (error == 0) { 2861 ip = xip; 2862 *vpp = ITOV(ip); 2863 2864 /* 2865 * If vnode is a device return special vnode instead. 2866 */ 2867 if (IS_DEVVP(*vpp)) { 2868 struct vnode *newvp; 2869 2870 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2871 cr); 2872 VN_RELE(*vpp); 2873 if (newvp == NULL) 2874 error = ENOSYS; 2875 else 2876 *vpp = newvp; 2877 } else if (ip->i_cflags & ICOMPRESS) { 2878 struct vnode *newvp; 2879 2880 /* 2881 * Compressed file, substitute dcfs vnode 2882 */ 2883 newvp = decompvp(*vpp, cr, ct); 2884 VN_RELE(*vpp); 2885 if (newvp == NULL) 2886 error = ENOSYS; 2887 else 2888 *vpp = newvp; 2889 } 2890 } 2891 if (ulp) { 2892 ufs_lockfs_end(ulp); 2893 } 2894 2895 if (error == EAGAIN) 2896 goto retry_lookup; 2897 2898 out: 2899 return (error); 2900 } 2901 2902 /*ARGSUSED*/ 2903 static int 2904 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2905 int mode, struct vnode **vpp, struct cred *cr, int flag, 2906 caller_context_t *ct, vsecattr_t *vsecp) 2907 { 2908 struct inode *ip; 2909 struct inode *xip; 2910 struct inode *dip; 2911 struct vnode *xvp; 2912 struct ufsvfs *ufsvfsp; 2913 struct ulockfs *ulp; 2914 int error; 2915 int issync; 2916 int truncflag; 2917 int trans_size; 2918 int noentry; 2919 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2920 int retry = 1; 2921 int indeadlock; 2922 2923 again: 2924 ip = VTOI(dvp); 2925 ufsvfsp = ip->i_ufsvfs; 2926 truncflag = 0; 2927 2928 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2929 if (error) 2930 goto out; 2931 2932 if (ulp) { 2933 trans_size = (int)TOP_CREATE_SIZE(ip); 2934 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2935 } 2936 2937 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2938 vap->va_mode &= ~VSVTX; 2939 2940 if (*name == '\0') { 2941 /* 2942 * Null component name refers to the directory itself. 2943 */ 2944 VN_HOLD(dvp); 2945 /* 2946 * Even though this is an error case, we need to grab the 2947 * quota lock since the error handling code below is common. 2948 */ 2949 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2950 rw_enter(&ip->i_contents, RW_WRITER); 2951 error = EEXIST; 2952 } else { 2953 xip = NULL; 2954 noentry = 0; 2955 /* 2956 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2957 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2958 * possible, retries the operation. 2959 */ 2960 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2961 retry_dir); 2962 if (indeadlock) 2963 goto again; 2964 2965 xvp = dnlc_lookup(dvp, name); 2966 if (xvp == DNLC_NO_VNODE) { 2967 noentry = 1; 2968 VN_RELE(xvp); 2969 xvp = NULL; 2970 } 2971 if (xvp) { 2972 rw_exit(&ip->i_rwlock); 2973 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) { 2974 VN_RELE(xvp); 2975 } else { 2976 error = EEXIST; 2977 xip = VTOI(xvp); 2978 } 2979 } else { 2980 /* 2981 * Suppress file system full message if we will retry 2982 */ 2983 error = ufs_direnter_cm(ip, name, DE_CREATE, 2984 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2985 if (error == EAGAIN) { 2986 if (ulp) { 2987 TRANS_END_CSYNC(ufsvfsp, error, issync, 2988 TOP_CREATE, trans_size); 2989 ufs_lockfs_end(ulp); 2990 } 2991 goto again; 2992 } 2993 rw_exit(&ip->i_rwlock); 2994 } 2995 ip = xip; 2996 if (ip != NULL) { 2997 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2998 rw_enter(&ip->i_contents, RW_WRITER); 2999 } 3000 } 3001 3002 /* 3003 * If the file already exists and this is a non-exclusive create, 3004 * check permissions and allow access for non-directories. 3005 * Read-only create of an existing directory is also allowed. 3006 * We fail an exclusive create of anything which already exists. 3007 */ 3008 if (error == EEXIST) { 3009 dip = VTOI(dvp); 3010 if (excl == NONEXCL) { 3011 if ((((ip->i_mode & IFMT) == IFDIR) || 3012 ((ip->i_mode & IFMT) == IFATTRDIR)) && 3013 (mode & IWRITE)) 3014 error = EISDIR; 3015 else if (mode) 3016 error = ufs_iaccess(ip, mode, cr, 0); 3017 else 3018 error = 0; 3019 } 3020 if (error) { 3021 rw_exit(&ip->i_contents); 3022 rw_exit(&ufsvfsp->vfs_dqrwlock); 3023 VN_RELE(ITOV(ip)); 3024 goto unlock; 3025 } 3026 /* 3027 * If the error EEXIST was set, then i_seq can not 3028 * have been updated. The sequence number interface 3029 * is defined such that a non-error VOP_CREATE must 3030 * increase the dir va_seq it by at least one. If we 3031 * have cleared the error, increase i_seq. Note that 3032 * we are increasing the dir i_seq and in rare cases 3033 * ip may actually be from the dvp, so we already have 3034 * the locks and it will not be subject to truncation. 3035 * In case we have to update i_seq of the parent 3036 * directory dip, we have to defer it till we have 3037 * released our locks on ip due to lock ordering requirements. 3038 */ 3039 if (ip != dip) 3040 defer_dip_seq_update = 1; 3041 else 3042 ip->i_seq++; 3043 3044 if (((ip->i_mode & IFMT) == IFREG) && 3045 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3046 /* 3047 * Truncate regular files, if requested by caller. 3048 * Grab i_rwlock to make sure no one else is 3049 * currently writing to the file (we promised 3050 * bmap we would do this). 3051 * Must get the locks in the correct order. 3052 */ 3053 if (ip->i_size == 0) { 3054 ip->i_flag |= ICHG | IUPD; 3055 ip->i_seq++; 3056 TRANS_INODE(ufsvfsp, ip); 3057 } else { 3058 /* 3059 * Large Files: Why this check here? 3060 * Though we do it in vn_create() we really 3061 * want to guarantee that we do not destroy 3062 * Large file data by atomically checking 3063 * the size while holding the contents 3064 * lock. 3065 */ 3066 if (flag && !(flag & FOFFMAX) && 3067 ((ip->i_mode & IFMT) == IFREG) && 3068 (ip->i_size > (offset_t)MAXOFF32_T)) { 3069 rw_exit(&ip->i_contents); 3070 rw_exit(&ufsvfsp->vfs_dqrwlock); 3071 error = EOVERFLOW; 3072 goto unlock; 3073 } 3074 if (TRANS_ISTRANS(ufsvfsp)) 3075 truncflag++; 3076 else { 3077 rw_exit(&ip->i_contents); 3078 rw_exit(&ufsvfsp->vfs_dqrwlock); 3079 ufs_tryirwlock_trans(&ip->i_rwlock, 3080 RW_WRITER, TOP_CREATE, 3081 retry_file); 3082 if (indeadlock) { 3083 VN_RELE(ITOV(ip)); 3084 goto again; 3085 } 3086 rw_enter(&ufsvfsp->vfs_dqrwlock, 3087 RW_READER); 3088 rw_enter(&ip->i_contents, RW_WRITER); 3089 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3090 cr); 3091 rw_exit(&ip->i_rwlock); 3092 } 3093 3094 } 3095 if (error == 0) { 3096 vnevent_create(ITOV(ip), ct); 3097 } 3098 } 3099 } 3100 3101 if (error) { 3102 if (ip != NULL) { 3103 rw_exit(&ufsvfsp->vfs_dqrwlock); 3104 rw_exit(&ip->i_contents); 3105 } 3106 goto unlock; 3107 } 3108 3109 *vpp = ITOV(ip); 3110 ITIMES(ip); 3111 rw_exit(&ip->i_contents); 3112 rw_exit(&ufsvfsp->vfs_dqrwlock); 3113 3114 /* 3115 * If vnode is a device return special vnode instead. 3116 */ 3117 if (!error && IS_DEVVP(*vpp)) { 3118 struct vnode *newvp; 3119 3120 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3121 VN_RELE(*vpp); 3122 if (newvp == NULL) { 3123 error = ENOSYS; 3124 goto unlock; 3125 } 3126 truncflag = 0; 3127 *vpp = newvp; 3128 } 3129 unlock: 3130 3131 /* 3132 * Do the deferred update of the parent directory's sequence 3133 * number now. 3134 */ 3135 if (defer_dip_seq_update == 1) { 3136 rw_enter(&dip->i_contents, RW_READER); 3137 mutex_enter(&dip->i_tlock); 3138 dip->i_seq++; 3139 mutex_exit(&dip->i_tlock); 3140 rw_exit(&dip->i_contents); 3141 } 3142 3143 if (ulp) { 3144 int terr = 0; 3145 3146 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3147 trans_size); 3148 3149 /* 3150 * If we haven't had a more interesting failure 3151 * already, then anything that might've happened 3152 * here should be reported. 3153 */ 3154 if (error == 0) 3155 error = terr; 3156 } 3157 3158 if (!error && truncflag) { 3159 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3160 if (indeadlock) { 3161 if (ulp) 3162 ufs_lockfs_end(ulp); 3163 VN_RELE(ITOV(ip)); 3164 goto again; 3165 } 3166 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3167 rw_exit(&ip->i_rwlock); 3168 } 3169 3170 if (ulp) 3171 ufs_lockfs_end(ulp); 3172 3173 /* 3174 * If no inodes available, try to free one up out of the 3175 * pending delete queue. 3176 */ 3177 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3178 ufs_delete_drain_wait(ufsvfsp, 1); 3179 retry = 0; 3180 goto again; 3181 } 3182 3183 out: 3184 return (error); 3185 } 3186 3187 extern int ufs_idle_max; 3188 /*ARGSUSED*/ 3189 static int 3190 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3191 caller_context_t *ct, int flags) 3192 { 3193 struct inode *ip = VTOI(vp); 3194 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3195 struct ulockfs *ulp; 3196 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3197 int indeadlock; 3198 int error; 3199 int issync; 3200 int trans_size; 3201 3202 /* 3203 * don't let the delete queue get too long 3204 */ 3205 if (ufsvfsp == NULL) { 3206 error = EIO; 3207 goto out; 3208 } 3209 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3210 ufs_delete_drain(vp->v_vfsp, 1, 1); 3211 3212 retry_remove: 3213 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3214 if (error) 3215 goto out; 3216 3217 if (ulp) 3218 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3219 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3220 3221 /* 3222 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3223 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3224 * possible, retries the operation. 3225 */ 3226 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3227 if (indeadlock) 3228 goto retry_remove; 3229 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3230 DR_REMOVE, cr, &rmvp); 3231 rw_exit(&ip->i_rwlock); 3232 3233 if (ulp) { 3234 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3235 ufs_lockfs_end(ulp); 3236 } 3237 3238 /* 3239 * This must be called after the remove transaction is closed. 3240 */ 3241 if (rmvp != NULL) { 3242 /* Only send the event if there were no errors */ 3243 if (error == 0) 3244 vnevent_remove(rmvp, vp, nm, ct); 3245 VN_RELE(rmvp); 3246 } 3247 out: 3248 return (error); 3249 } 3250 3251 /* 3252 * Link a file or a directory. Only privileged processes are allowed to 3253 * make links to directories. 3254 */ 3255 /*ARGSUSED*/ 3256 static int 3257 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3258 caller_context_t *ct, int flags) 3259 { 3260 struct inode *sip; 3261 struct inode *tdp = VTOI(tdvp); 3262 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3263 struct ulockfs *ulp; 3264 struct vnode *realvp; 3265 int error; 3266 int issync; 3267 int trans_size; 3268 int isdev; 3269 int indeadlock; 3270 3271 retry_link: 3272 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3273 if (error) 3274 goto out; 3275 3276 if (ulp) 3277 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3278 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3279 3280 if (VOP_REALVP(svp, &realvp, ct) == 0) 3281 svp = realvp; 3282 3283 /* 3284 * Make sure link for extended attributes is valid 3285 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3286 * 3287 * Make certain we don't attempt to look at a device node as 3288 * a ufs inode. 3289 */ 3290 3291 isdev = IS_DEVVP(svp); 3292 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3293 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3294 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3295 ((tdp->i_mode & IFMT) == IFDIR))) { 3296 error = EINVAL; 3297 goto unlock; 3298 } 3299 3300 sip = VTOI(svp); 3301 if ((svp->v_type == VDIR && 3302 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3303 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3304 error = EPERM; 3305 goto unlock; 3306 } 3307 3308 /* 3309 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3310 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3311 * possible, retries the operation. 3312 */ 3313 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3314 if (indeadlock) 3315 goto retry_link; 3316 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3317 sip, cr, NULL); 3318 rw_exit(&tdp->i_rwlock); 3319 3320 unlock: 3321 if (ulp) { 3322 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3323 ufs_lockfs_end(ulp); 3324 } 3325 3326 if (!error) { 3327 vnevent_link(svp, ct); 3328 } 3329 out: 3330 return (error); 3331 } 3332 3333 uint64_t ufs_rename_retry_cnt; 3334 uint64_t ufs_rename_upgrade_retry_cnt; 3335 uint64_t ufs_rename_dircheck_retry_cnt; 3336 clock_t ufs_rename_backoff_delay = 1; 3337 3338 /* 3339 * Rename a file or directory. 3340 * We are given the vnode and entry string of the source and the 3341 * vnode and entry string of the place we want to move the source 3342 * to (the target). The essential operation is: 3343 * unlink(target); 3344 * link(source, target); 3345 * unlink(source); 3346 * but "atomically". Can't do full commit without saving state in 3347 * the inode on disk, which isn't feasible at this time. Best we 3348 * can do is always guarantee that the TARGET exists. 3349 */ 3350 3351 /*ARGSUSED*/ 3352 static int 3353 ufs_rename( 3354 struct vnode *sdvp, /* old (source) parent vnode */ 3355 char *snm, /* old (source) entry name */ 3356 struct vnode *tdvp, /* new (target) parent vnode */ 3357 char *tnm, /* new (target) entry name */ 3358 struct cred *cr, 3359 caller_context_t *ct, 3360 int flags) 3361 { 3362 struct inode *sip = NULL; /* source inode */ 3363 struct inode *ip = NULL; /* check inode */ 3364 struct inode *sdp; /* old (source) parent inode */ 3365 struct inode *tdp; /* new (target) parent inode */ 3366 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3367 struct vnode *realvp; 3368 struct ufsvfs *ufsvfsp; 3369 struct ulockfs *ulp; 3370 struct ufs_slot slot; 3371 timestruc_t now; 3372 int error; 3373 int issync; 3374 int trans_size; 3375 krwlock_t *first_lock; 3376 krwlock_t *second_lock; 3377 krwlock_t *reverse_lock; 3378 3379 sdp = VTOI(sdvp); 3380 slot.fbp = NULL; 3381 ufsvfsp = sdp->i_ufsvfs; 3382 retry_rename: 3383 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3384 if (error) 3385 goto out; 3386 3387 if (ulp) 3388 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3389 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3390 3391 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3392 tdvp = realvp; 3393 3394 tdp = VTOI(tdvp); 3395 3396 /* 3397 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3398 */ 3399 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3400 error = EINVAL; 3401 goto unlock; 3402 } 3403 3404 /* 3405 * Check accessibility of directory. 3406 */ 3407 if (error = ufs_diraccess(sdp, IEXEC, cr)) 3408 goto unlock; 3409 3410 /* 3411 * Look up inode of file we're supposed to rename. 3412 */ 3413 gethrestime(&now); 3414 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3415 if (error == EAGAIN) { 3416 if (ulp) { 3417 TRANS_END_CSYNC(ufsvfsp, error, issync, 3418 TOP_RENAME, trans_size); 3419 ufs_lockfs_end(ulp); 3420 } 3421 goto retry_rename; 3422 } 3423 3424 goto unlock; 3425 } 3426 3427 /* 3428 * Lock both the source and target directories (they may be 3429 * the same) to provide the atomicity semantics that was 3430 * previously provided by the per file system vfs_rename_lock 3431 * 3432 * with vfs_rename_lock removed to allow simultaneous renames 3433 * within a file system, ufs_dircheckpath can deadlock while 3434 * traversing back to ensure that source is not a parent directory 3435 * of target parent directory. This is because we get into 3436 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3437 * If the tdp and sdp of the simultaneous renames happen to be 3438 * in the path of each other, it can lead to a deadlock. This 3439 * can be avoided by getting the locks as RW_READER here and then 3440 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3441 * 3442 * We hold the target directory's i_rwlock after calling 3443 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3444 * VOP_RWLOCK is explicitly called by the filesystem independent code 3445 * before calling the file system operation. In these cases the order 3446 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3447 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3448 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3449 * synchronizing object which might lead to a deadlock. So we use 3450 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3451 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3452 * operation. 3453 */ 3454 retry: 3455 first_lock = &tdp->i_rwlock; 3456 second_lock = &sdp->i_rwlock; 3457 retry_firstlock: 3458 if (!rw_tryenter(first_lock, RW_READER)) { 3459 /* 3460 * We didn't get the lock. Check if the SLOCK is set in the 3461 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3462 * and wait for SLOCK to be cleared. 3463 */ 3464 3465 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3466 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3467 trans_size); 3468 ufs_lockfs_end(ulp); 3469 goto retry_rename; 3470 3471 } else { 3472 /* 3473 * SLOCK isn't set so this is a genuine synchronization 3474 * case. Let's try again after giving them a breather. 3475 */ 3476 delay(RETRY_LOCK_DELAY); 3477 goto retry_firstlock; 3478 } 3479 } 3480 /* 3481 * Need to check if the tdp and sdp are same !!! 3482 */ 3483 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3484 /* 3485 * We didn't get the lock. Check if the SLOCK is set in the 3486 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3487 * and wait for SLOCK to be cleared. 3488 */ 3489 3490 rw_exit(first_lock); 3491 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3492 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3493 trans_size); 3494 ufs_lockfs_end(ulp); 3495 goto retry_rename; 3496 3497 } else { 3498 /* 3499 * So we couldn't get the second level peer lock *and* 3500 * the SLOCK bit isn't set. Too bad we can be 3501 * contentding with someone wanting these locks otherway 3502 * round. Reverse the locks in case there is a heavy 3503 * contention for the second level lock. 3504 */ 3505 reverse_lock = first_lock; 3506 first_lock = second_lock; 3507 second_lock = reverse_lock; 3508 ufs_rename_retry_cnt++; 3509 goto retry_firstlock; 3510 } 3511 } 3512 3513 if (sip == tdp) { 3514 error = EINVAL; 3515 goto errout; 3516 } 3517 /* 3518 * Make sure we can delete the source entry. This requires 3519 * write permission on the containing directory. 3520 * Check for sticky directories. 3521 */ 3522 rw_enter(&sdp->i_contents, RW_READER); 3523 rw_enter(&sip->i_contents, RW_READER); 3524 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 || 3525 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3526 rw_exit(&sip->i_contents); 3527 rw_exit(&sdp->i_contents); 3528 goto errout; 3529 } 3530 3531 /* 3532 * If this is a rename of a directory and the parent is 3533 * different (".." must be changed), then the source 3534 * directory must not be in the directory hierarchy 3535 * above the target, as this would orphan everything 3536 * below the source directory. Also the user must have 3537 * write permission in the source so as to be able to 3538 * change "..". 3539 */ 3540 if ((((sip->i_mode & IFMT) == IFDIR) || 3541 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3542 ino_t inum; 3543 3544 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) { 3545 rw_exit(&sip->i_contents); 3546 rw_exit(&sdp->i_contents); 3547 goto errout; 3548 } 3549 inum = sip->i_number; 3550 rw_exit(&sip->i_contents); 3551 rw_exit(&sdp->i_contents); 3552 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3553 /* 3554 * If we got EAGAIN ufs_dircheckpath detected a 3555 * potential deadlock and backed out. We need 3556 * to retry the operation since sdp and tdp have 3557 * to be released to avoid the deadlock. 3558 */ 3559 if (error == EAGAIN) { 3560 rw_exit(&tdp->i_rwlock); 3561 if (tdp != sdp) 3562 rw_exit(&sdp->i_rwlock); 3563 delay(ufs_rename_backoff_delay); 3564 ufs_rename_dircheck_retry_cnt++; 3565 goto retry; 3566 } 3567 goto errout; 3568 } 3569 } else { 3570 rw_exit(&sip->i_contents); 3571 rw_exit(&sdp->i_contents); 3572 } 3573 3574 3575 /* 3576 * Check for renaming '.' or '..' or alias of '.' 3577 */ 3578 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3579 error = EINVAL; 3580 goto errout; 3581 } 3582 3583 /* 3584 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3585 * tries to traverse back the file tree with both tdp and sdp held 3586 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3587 * as RW_READERS till ufs_dircheckpath is done. 3588 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3589 * to RW_WRITER. 3590 */ 3591 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3592 /* 3593 * The upgrade failed. We got to give away the lock 3594 * as to avoid deadlocking with someone else who is 3595 * waiting for writer lock. With the lock gone, we 3596 * cannot be sure the checks done above will hold 3597 * good when we eventually get them back as writer. 3598 * So if we can't upgrade we drop the locks and retry 3599 * everything again. 3600 */ 3601 rw_exit(&tdp->i_rwlock); 3602 if (tdp != sdp) 3603 rw_exit(&sdp->i_rwlock); 3604 delay(ufs_rename_backoff_delay); 3605 ufs_rename_upgrade_retry_cnt++; 3606 goto retry; 3607 } 3608 if (tdp != sdp) { 3609 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3610 /* 3611 * The upgrade failed. We got to give away the lock 3612 * as to avoid deadlocking with someone else who is 3613 * waiting for writer lock. With the lock gone, we 3614 * cannot be sure the checks done above will hold 3615 * good when we eventually get them back as writer. 3616 * So if we can't upgrade we drop the locks and retry 3617 * everything again. 3618 */ 3619 rw_exit(&tdp->i_rwlock); 3620 rw_exit(&sdp->i_rwlock); 3621 delay(ufs_rename_backoff_delay); 3622 ufs_rename_upgrade_retry_cnt++; 3623 goto retry; 3624 } 3625 } 3626 3627 /* 3628 * Now that all the locks are held check to make sure another thread 3629 * didn't slip in and take out the sip. 3630 */ 3631 slot.status = NONE; 3632 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3633 sip->i_ctime.tv_sec > now.tv_sec) { 3634 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3635 rw_enter(&sdp->i_contents, RW_WRITER); 3636 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3637 &ip, cr, 0); 3638 rw_exit(&sdp->i_contents); 3639 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3640 if (error) { 3641 goto errout; 3642 } 3643 if (ip == NULL) { 3644 error = ENOENT; 3645 goto errout; 3646 } else { 3647 /* 3648 * If the inode was found need to drop the v_count 3649 * so as not to keep the filesystem from being 3650 * unmounted at a later time. 3651 */ 3652 VN_RELE(ITOV(ip)); 3653 } 3654 3655 /* 3656 * Release the slot.fbp that has the page mapped and 3657 * locked SE_SHARED, and could be used in in 3658 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3659 * on said page. 3660 */ 3661 if (slot.fbp) { 3662 fbrelse(slot.fbp, S_OTHER); 3663 slot.fbp = NULL; 3664 } 3665 } 3666 3667 /* 3668 * Link source to the target. If a target exists, return its 3669 * vnode pointer in tvp. We'll release it after sending the 3670 * vnevent. 3671 */ 3672 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3673 /* 3674 * ESAME isn't really an error; it indicates that the 3675 * operation should not be done because the source and target 3676 * are the same file, but that no error should be reported. 3677 */ 3678 if (error == ESAME) 3679 error = 0; 3680 goto errout; 3681 } 3682 3683 /* 3684 * Unlink the source. 3685 * Remove the source entry. ufs_dirremove() checks that the entry 3686 * still reflects sip, and returns an error if it doesn't. 3687 * If the entry has changed just forget about it. Release 3688 * the source inode. 3689 */ 3690 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3691 DR_RENAME, cr, NULL)) == ENOENT) 3692 error = 0; 3693 3694 errout: 3695 if (slot.fbp) 3696 fbrelse(slot.fbp, S_OTHER); 3697 3698 rw_exit(&tdp->i_rwlock); 3699 if (sdp != tdp) { 3700 rw_exit(&sdp->i_rwlock); 3701 } 3702 3703 unlock: 3704 if (ulp) { 3705 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3706 ufs_lockfs_end(ulp); 3707 } 3708 3709 /* 3710 * If no errors, send the appropriate events on the source 3711 * and destination (a.k.a, target) vnodes, if they exist. 3712 * This has to be done after the rename transaction has closed. 3713 */ 3714 if (error == 0) { 3715 if (tvp != NULL) 3716 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3717 3718 /* 3719 * Notify the target directory of the rename event 3720 * if source and target directories are not same. 3721 */ 3722 if (sdvp != tdvp) 3723 vnevent_rename_dest_dir(tdvp, ct); 3724 3725 /* 3726 * Note that if ufs_direnter_lr() returned ESAME then 3727 * this event will still be sent. This isn't expected 3728 * to be a problem for anticipated usage by consumers. 3729 */ 3730 if (sip != NULL) 3731 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3732 } 3733 3734 if (tvp != NULL) 3735 VN_RELE(tvp); 3736 3737 if (sip != NULL) 3738 VN_RELE(ITOV(sip)); 3739 3740 out: 3741 return (error); 3742 } 3743 3744 /*ARGSUSED*/ 3745 static int 3746 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3747 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3748 vsecattr_t *vsecp) 3749 { 3750 struct inode *ip; 3751 struct inode *xip; 3752 struct ufsvfs *ufsvfsp; 3753 struct ulockfs *ulp; 3754 int error; 3755 int issync; 3756 int trans_size; 3757 int indeadlock; 3758 int retry = 1; 3759 3760 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3761 3762 /* 3763 * Can't make directory in attr hidden dir 3764 */ 3765 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3766 return (EINVAL); 3767 3768 again: 3769 ip = VTOI(dvp); 3770 ufsvfsp = ip->i_ufsvfs; 3771 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3772 if (error) 3773 goto out; 3774 if (ulp) 3775 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3776 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3777 3778 /* 3779 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3780 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3781 * possible, retries the operation. 3782 */ 3783 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3784 if (indeadlock) 3785 goto again; 3786 3787 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3788 (retry ? IQUIET : 0)); 3789 if (error == EAGAIN) { 3790 if (ulp) { 3791 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3792 trans_size); 3793 ufs_lockfs_end(ulp); 3794 } 3795 goto again; 3796 } 3797 3798 rw_exit(&ip->i_rwlock); 3799 if (error == 0) { 3800 ip = xip; 3801 *vpp = ITOV(ip); 3802 } else if (error == EEXIST) 3803 VN_RELE(ITOV(xip)); 3804 3805 if (ulp) { 3806 int terr = 0; 3807 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3808 ufs_lockfs_end(ulp); 3809 if (error == 0) 3810 error = terr; 3811 } 3812 out: 3813 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3814 ufs_delete_drain_wait(ufsvfsp, 1); 3815 retry = 0; 3816 goto again; 3817 } 3818 3819 return (error); 3820 } 3821 3822 /*ARGSUSED*/ 3823 static int 3824 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3825 caller_context_t *ct, int flags) 3826 { 3827 struct inode *ip = VTOI(vp); 3828 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3829 struct ulockfs *ulp; 3830 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3831 int error; 3832 int issync; 3833 int trans_size; 3834 int indeadlock; 3835 3836 /* 3837 * don't let the delete queue get too long 3838 */ 3839 if (ufsvfsp == NULL) { 3840 error = EIO; 3841 goto out; 3842 } 3843 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3844 ufs_delete_drain(vp->v_vfsp, 1, 1); 3845 3846 retry_rmdir: 3847 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3848 if (error) 3849 goto out; 3850 3851 if (ulp) 3852 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3853 trans_size = TOP_RMDIR_SIZE); 3854 3855 /* 3856 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3857 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3858 * possible, retries the operation. 3859 */ 3860 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3861 if (indeadlock) 3862 goto retry_rmdir; 3863 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3864 &rmvp); 3865 rw_exit(&ip->i_rwlock); 3866 3867 if (ulp) { 3868 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3869 trans_size); 3870 ufs_lockfs_end(ulp); 3871 } 3872 3873 /* 3874 * This must be done AFTER the rmdir transaction has closed. 3875 */ 3876 if (rmvp != NULL) { 3877 /* Only send the event if there were no errors */ 3878 if (error == 0) 3879 vnevent_rmdir(rmvp, vp, nm, ct); 3880 VN_RELE(rmvp); 3881 } 3882 out: 3883 return (error); 3884 } 3885 3886 /* ARGSUSED */ 3887 static int 3888 ufs_readdir( 3889 struct vnode *vp, 3890 struct uio *uiop, 3891 struct cred *cr, 3892 int *eofp, 3893 caller_context_t *ct, 3894 int flags) 3895 { 3896 struct iovec *iovp; 3897 struct inode *ip; 3898 struct direct *idp; 3899 struct dirent64 *odp; 3900 struct fbuf *fbp; 3901 struct ufsvfs *ufsvfsp; 3902 struct ulockfs *ulp; 3903 caddr_t outbuf; 3904 size_t bufsize; 3905 uint_t offset; 3906 uint_t bytes_wanted, total_bytes_wanted; 3907 int incount = 0; 3908 int outcount = 0; 3909 int error; 3910 3911 ip = VTOI(vp); 3912 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3913 3914 if (uiop->uio_loffset >= MAXOFF32_T) { 3915 if (eofp) 3916 *eofp = 1; 3917 return (0); 3918 } 3919 3920 /* 3921 * Check if we have been called with a valid iov_len 3922 * and bail out if not, otherwise we may potentially loop 3923 * forever further down. 3924 */ 3925 if (uiop->uio_iov->iov_len <= 0) { 3926 error = EINVAL; 3927 goto out; 3928 } 3929 3930 /* 3931 * Large Files: When we come here we are guaranteed that 3932 * uio_offset can be used safely. The high word is zero. 3933 */ 3934 3935 ufsvfsp = ip->i_ufsvfs; 3936 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3937 if (error) 3938 goto out; 3939 3940 iovp = uiop->uio_iov; 3941 total_bytes_wanted = iovp->iov_len; 3942 3943 /* Large Files: directory files should not be "large" */ 3944 3945 ASSERT(ip->i_size <= MAXOFF32_T); 3946 3947 /* Force offset to be valid (to guard against bogus lseek() values) */ 3948 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3949 3950 /* Quit if at end of file or link count of zero (posix) */ 3951 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3952 if (eofp) 3953 *eofp = 1; 3954 error = 0; 3955 goto unlock; 3956 } 3957 3958 /* 3959 * Get space to change directory entries into fs independent format. 3960 * Do fast alloc for the most commonly used-request size (filesystem 3961 * block size). 3962 */ 3963 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3964 bufsize = total_bytes_wanted; 3965 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3966 odp = (struct dirent64 *)outbuf; 3967 } else { 3968 bufsize = total_bytes_wanted; 3969 odp = (struct dirent64 *)iovp->iov_base; 3970 } 3971 3972 nextblk: 3973 bytes_wanted = total_bytes_wanted; 3974 3975 /* Truncate request to file size */ 3976 if (offset + bytes_wanted > (int)ip->i_size) 3977 bytes_wanted = (int)(ip->i_size - offset); 3978 3979 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3980 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3981 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3982 3983 /* 3984 * Read in the next chunk. 3985 * We are still holding the i_rwlock. 3986 */ 3987 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3988 3989 if (error) 3990 goto update_inode; 3991 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3992 (!ufsvfsp->vfs_noatime)) { 3993 ip->i_flag |= IACC; 3994 } 3995 incount = 0; 3996 idp = (struct direct *)fbp->fb_addr; 3997 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3998 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3999 "fs = %s\n", 4000 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 4001 fbrelse(fbp, S_OTHER); 4002 error = ENXIO; 4003 goto update_inode; 4004 } 4005 /* Transform to file-system independent format */ 4006 while (incount < bytes_wanted) { 4007 /* 4008 * If the current directory entry is mangled, then skip 4009 * to the next block. It would be nice to set the FSBAD 4010 * flag in the super-block so that a fsck is forced on 4011 * next reboot, but locking is a problem. 4012 */ 4013 if (idp->d_reclen & 0x3) { 4014 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4015 break; 4016 } 4017 4018 /* Skip to requested offset and skip empty entries */ 4019 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 4020 ushort_t this_reclen = 4021 DIRENT64_RECLEN(idp->d_namlen); 4022 /* Buffer too small for any entries */ 4023 if (!outcount && this_reclen > bufsize) { 4024 fbrelse(fbp, S_OTHER); 4025 error = EINVAL; 4026 goto update_inode; 4027 } 4028 /* If would overrun the buffer, quit */ 4029 if (outcount + this_reclen > bufsize) { 4030 break; 4031 } 4032 /* Take this entry */ 4033 odp->d_ino = (ino64_t)idp->d_ino; 4034 odp->d_reclen = (ushort_t)this_reclen; 4035 odp->d_off = (offset_t)(offset + idp->d_reclen); 4036 4037 /* use strncpy(9f) to zero out uninitialized bytes */ 4038 4039 ASSERT(strlen(idp->d_name) + 1 <= 4040 DIRENT64_NAMELEN(this_reclen)); 4041 (void) strncpy(odp->d_name, idp->d_name, 4042 DIRENT64_NAMELEN(this_reclen)); 4043 outcount += odp->d_reclen; 4044 odp = (struct dirent64 *) 4045 ((intptr_t)odp + odp->d_reclen); 4046 ASSERT(outcount <= bufsize); 4047 } 4048 if (idp->d_reclen) { 4049 incount += idp->d_reclen; 4050 offset += idp->d_reclen; 4051 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4052 } else { 4053 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4054 break; 4055 } 4056 } 4057 /* Release the chunk */ 4058 fbrelse(fbp, S_OTHER); 4059 4060 /* Read whole block, but got no entries, read another if not eof */ 4061 4062 /* 4063 * Large Files: casting i_size to int here is not a problem 4064 * because directory sizes are always less than MAXOFF32_T. 4065 * See assertion above. 4066 */ 4067 4068 if (offset < (int)ip->i_size && !outcount) 4069 goto nextblk; 4070 4071 /* Copy out the entry data */ 4072 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4073 iovp->iov_base += outcount; 4074 iovp->iov_len -= outcount; 4075 uiop->uio_resid -= outcount; 4076 uiop->uio_offset = offset; 4077 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4078 uiop)) == 0) 4079 uiop->uio_offset = offset; 4080 update_inode: 4081 ITIMES(ip); 4082 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4083 kmem_free(outbuf, bufsize); 4084 4085 if (eofp && error == 0) 4086 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4087 unlock: 4088 if (ulp) { 4089 ufs_lockfs_end(ulp); 4090 } 4091 out: 4092 return (error); 4093 } 4094 4095 /*ARGSUSED*/ 4096 static int 4097 ufs_symlink( 4098 struct vnode *dvp, /* ptr to parent dir vnode */ 4099 char *linkname, /* name of symbolic link */ 4100 struct vattr *vap, /* attributes */ 4101 char *target, /* target path */ 4102 struct cred *cr, /* user credentials */ 4103 caller_context_t *ct, 4104 int flags) 4105 { 4106 struct inode *ip, *dip = VTOI(dvp); 4107 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4108 struct ulockfs *ulp; 4109 int error; 4110 int issync; 4111 int trans_size; 4112 int residual; 4113 int ioflag; 4114 int retry = 1; 4115 4116 /* 4117 * No symlinks in attrdirs at this time 4118 */ 4119 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4120 return (EINVAL); 4121 4122 again: 4123 ip = (struct inode *)NULL; 4124 vap->va_type = VLNK; 4125 vap->va_rdev = 0; 4126 4127 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4128 if (error) 4129 goto out; 4130 4131 if (ulp) 4132 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4133 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4134 4135 /* 4136 * We must create the inode before the directory entry, to avoid 4137 * racing with readlink(). ufs_dirmakeinode requires that we 4138 * hold the quota lock as reader, and directory locks as writer. 4139 */ 4140 4141 rw_enter(&dip->i_rwlock, RW_WRITER); 4142 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4143 rw_enter(&dip->i_contents, RW_WRITER); 4144 4145 /* 4146 * Suppress any out of inodes messages if we will retry on 4147 * ENOSP 4148 */ 4149 if (retry) 4150 dip->i_flag |= IQUIET; 4151 4152 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4153 4154 dip->i_flag &= ~IQUIET; 4155 4156 rw_exit(&dip->i_contents); 4157 rw_exit(&ufsvfsp->vfs_dqrwlock); 4158 rw_exit(&dip->i_rwlock); 4159 4160 if (error) 4161 goto unlock; 4162 4163 /* 4164 * OK. The inode has been created. Write out the data of the 4165 * symbolic link. Since symbolic links are metadata, and should 4166 * remain consistent across a system crash, we need to force the 4167 * data out synchronously. 4168 * 4169 * (This is a change from the semantics in earlier releases, which 4170 * only created symbolic links synchronously if the semi-documented 4171 * 'syncdir' option was set, or if we were being invoked by the NFS 4172 * server, which requires symbolic links to be created synchronously.) 4173 * 4174 * We need to pass in a pointer for the residual length; otherwise 4175 * ufs_rdwri() will always return EIO if it can't write the data, 4176 * even if the error was really ENOSPC or EDQUOT. 4177 */ 4178 4179 ioflag = FWRITE | FDSYNC; 4180 residual = 0; 4181 4182 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4183 rw_enter(&ip->i_contents, RW_WRITER); 4184 4185 /* 4186 * Suppress file system full messages if we will retry 4187 */ 4188 if (retry) 4189 ip->i_flag |= IQUIET; 4190 4191 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4192 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4193 4194 ip->i_flag &= ~IQUIET; 4195 4196 if (error) { 4197 rw_exit(&ip->i_contents); 4198 rw_exit(&ufsvfsp->vfs_dqrwlock); 4199 goto remove; 4200 } 4201 4202 /* 4203 * If the link's data is small enough, we can cache it in the inode. 4204 * This is a "fast symbolic link". We don't use the first direct 4205 * block because that's actually used to point at the symbolic link's 4206 * contents on disk; but we know that none of the other direct or 4207 * indirect blocks can be used because symbolic links are restricted 4208 * to be smaller than a file system block. 4209 */ 4210 4211 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4212 4213 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4214 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4215 ip->i_flag |= IFASTSYMLNK; 4216 } else { 4217 int i; 4218 /* error, clear garbage left behind */ 4219 for (i = 1; i < NDADDR; i++) 4220 ip->i_db[i] = 0; 4221 for (i = 0; i < NIADDR; i++) 4222 ip->i_ib[i] = 0; 4223 } 4224 } 4225 4226 rw_exit(&ip->i_contents); 4227 rw_exit(&ufsvfsp->vfs_dqrwlock); 4228 4229 /* 4230 * OK. We've successfully created the symbolic link. All that 4231 * remains is to insert it into the appropriate directory. 4232 */ 4233 4234 rw_enter(&dip->i_rwlock, RW_WRITER); 4235 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4236 rw_exit(&dip->i_rwlock); 4237 4238 /* 4239 * Fall through into remove-on-error code. We're either done, or we 4240 * need to remove the inode (if we couldn't insert it). 4241 */ 4242 4243 remove: 4244 if (error && (ip != NULL)) { 4245 rw_enter(&ip->i_contents, RW_WRITER); 4246 ip->i_nlink--; 4247 ip->i_flag |= ICHG; 4248 ip->i_seq++; 4249 ufs_setreclaim(ip); 4250 rw_exit(&ip->i_contents); 4251 } 4252 4253 unlock: 4254 if (ip != NULL) 4255 VN_RELE(ITOV(ip)); 4256 4257 if (ulp) { 4258 int terr = 0; 4259 4260 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4261 trans_size); 4262 ufs_lockfs_end(ulp); 4263 if (error == 0) 4264 error = terr; 4265 } 4266 4267 /* 4268 * We may have failed due to lack of an inode or of a block to 4269 * store the target in. Try flushing the delete queue to free 4270 * logically-available things up and try again. 4271 */ 4272 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4273 ufs_delete_drain_wait(ufsvfsp, 1); 4274 retry = 0; 4275 goto again; 4276 } 4277 4278 out: 4279 return (error); 4280 } 4281 4282 /* 4283 * Ufs specific routine used to do ufs io. 4284 */ 4285 int 4286 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4287 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4288 struct cred *cr) 4289 { 4290 struct uio auio; 4291 struct iovec aiov; 4292 int error; 4293 4294 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4295 4296 bzero((caddr_t)&auio, sizeof (uio_t)); 4297 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4298 4299 aiov.iov_base = base; 4300 aiov.iov_len = len; 4301 auio.uio_iov = &aiov; 4302 auio.uio_iovcnt = 1; 4303 auio.uio_loffset = offset; 4304 auio.uio_segflg = (short)seg; 4305 auio.uio_resid = len; 4306 4307 if (rw == UIO_WRITE) { 4308 auio.uio_fmode = FWRITE; 4309 auio.uio_extflg = UIO_COPY_DEFAULT; 4310 auio.uio_llimit = curproc->p_fsz_ctl; 4311 error = wrip(ip, &auio, ioflag, cr); 4312 } else { 4313 auio.uio_fmode = FREAD; 4314 auio.uio_extflg = UIO_COPY_CACHED; 4315 auio.uio_llimit = MAXOFFSET_T; 4316 error = rdip(ip, &auio, ioflag, cr); 4317 } 4318 4319 if (aresid) { 4320 *aresid = auio.uio_resid; 4321 } else if (auio.uio_resid) { 4322 error = EIO; 4323 } 4324 return (error); 4325 } 4326 4327 /*ARGSUSED*/ 4328 static int 4329 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4330 { 4331 struct ufid *ufid; 4332 struct inode *ip = VTOI(vp); 4333 4334 if (ip->i_ufsvfs == NULL) 4335 return (EIO); 4336 4337 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4338 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4339 return (ENOSPC); 4340 } 4341 4342 ufid = (struct ufid *)fidp; 4343 bzero((char *)ufid, sizeof (struct ufid)); 4344 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4345 ufid->ufid_ino = ip->i_number; 4346 ufid->ufid_gen = ip->i_gen; 4347 4348 return (0); 4349 } 4350 4351 /* ARGSUSED2 */ 4352 static int 4353 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4354 { 4355 struct inode *ip = VTOI(vp); 4356 struct ufsvfs *ufsvfsp; 4357 int forcedirectio; 4358 4359 /* 4360 * Read case is easy. 4361 */ 4362 if (!write_lock) { 4363 rw_enter(&ip->i_rwlock, RW_READER); 4364 return (V_WRITELOCK_FALSE); 4365 } 4366 4367 /* 4368 * Caller has requested a writer lock, but that inhibits any 4369 * concurrency in the VOPs that follow. Acquire the lock shared 4370 * and defer exclusive access until it is known to be needed in 4371 * other VOP handlers. Some cases can be determined here. 4372 */ 4373 4374 /* 4375 * If directio is not set, there is no chance of concurrency, 4376 * so just acquire the lock exclusive. Beware of a forced 4377 * unmount before looking at the mount option. 4378 */ 4379 ufsvfsp = ip->i_ufsvfs; 4380 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4381 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4382 !ufs_allow_shared_writes) { 4383 rw_enter(&ip->i_rwlock, RW_WRITER); 4384 return (V_WRITELOCK_TRUE); 4385 } 4386 4387 /* 4388 * Mandatory locking forces acquiring i_rwlock exclusive. 4389 */ 4390 if (MANDLOCK(vp, ip->i_mode)) { 4391 rw_enter(&ip->i_rwlock, RW_WRITER); 4392 return (V_WRITELOCK_TRUE); 4393 } 4394 4395 /* 4396 * Acquire the lock shared in case a concurrent write follows. 4397 * Mandatory locking could have become enabled before the lock 4398 * was acquired. Re-check and upgrade if needed. 4399 */ 4400 rw_enter(&ip->i_rwlock, RW_READER); 4401 if (MANDLOCK(vp, ip->i_mode)) { 4402 rw_exit(&ip->i_rwlock); 4403 rw_enter(&ip->i_rwlock, RW_WRITER); 4404 return (V_WRITELOCK_TRUE); 4405 } 4406 return (V_WRITELOCK_FALSE); 4407 } 4408 4409 /*ARGSUSED*/ 4410 static void 4411 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4412 { 4413 struct inode *ip = VTOI(vp); 4414 4415 rw_exit(&ip->i_rwlock); 4416 } 4417 4418 /* ARGSUSED */ 4419 static int 4420 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4421 caller_context_t *ct) 4422 { 4423 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4424 } 4425 4426 /* ARGSUSED */ 4427 static int 4428 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4429 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4430 caller_context_t *ct) 4431 { 4432 struct inode *ip = VTOI(vp); 4433 4434 if (ip->i_ufsvfs == NULL) 4435 return (EIO); 4436 4437 /* 4438 * If file is being mapped, disallow frlock. 4439 * XXX I am not holding tlock while checking i_mapcnt because the 4440 * current locking strategy drops all locks before calling fs_frlock. 4441 * So, mapcnt could change before we enter fs_frlock making is 4442 * meaningless to have held tlock in the first place. 4443 */ 4444 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4445 return (EAGAIN); 4446 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4447 } 4448 4449 /* ARGSUSED */ 4450 static int 4451 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4452 offset_t offset, cred_t *cr, caller_context_t *ct) 4453 { 4454 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4455 struct ulockfs *ulp; 4456 int error; 4457 4458 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4459 if (cmd == F_FREESP) { 4460 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4461 ULOCKFS_SPACE_MASK); 4462 if (error) 4463 return (error); 4464 error = ufs_freesp(vp, bfp, flag, cr); 4465 } else if (cmd == F_ALLOCSP) { 4466 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4467 ULOCKFS_FALLOCATE_MASK); 4468 if (error) 4469 return (error); 4470 error = ufs_allocsp(vp, bfp, cr); 4471 } else 4472 return (EINVAL); /* Command not handled here */ 4473 4474 if (ulp) 4475 ufs_lockfs_end(ulp); 4476 4477 } 4478 return (error); 4479 } 4480 4481 /* 4482 * Used to determine if read ahead should be done. Also used to 4483 * to determine when write back occurs. 4484 */ 4485 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4486 4487 /* 4488 * A faster version of ufs_getpage. 4489 * 4490 * We optimize by inlining the pvn_getpages iterator, eliminating 4491 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4492 * the overhead of page_exists(). 4493 * 4494 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4495 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4496 * victimizes performance when a file with UFS holes is faulted 4497 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4498 * two MMU faults in this case. 4499 * 4500 * XXX - the inode fields which control the sequential mode are not 4501 * protected by any mutex. The read ahead will act wild if 4502 * multiple processes will access the file concurrently and 4503 * some of them in sequential mode. One particulary bad case 4504 * is if another thread will change the value of i_nextrio between 4505 * the time this thread tests the i_nextrio value and then reads it 4506 * again to use it as the offset for the read ahead. 4507 */ 4508 /*ARGSUSED*/ 4509 static int 4510 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4511 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4512 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4513 { 4514 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4515 u_offset_t pgoff; 4516 u_offset_t eoff; 4517 struct inode *ip = VTOI(vp); 4518 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4519 struct fs *fs; 4520 struct ulockfs *ulp; 4521 page_t **pl; 4522 caddr_t pgaddr; 4523 krw_t rwtype; 4524 int err; 4525 int has_holes; 4526 int beyond_eof; 4527 int seqmode; 4528 int pgsize = PAGESIZE; 4529 int dolock; 4530 int do_qlock; 4531 int trans_size; 4532 4533 ASSERT((uoff & PAGEOFFSET) == 0); 4534 4535 if (protp) 4536 *protp = PROT_ALL; 4537 4538 /* 4539 * Obey the lockfs protocol 4540 */ 4541 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4542 rw == S_READ || rw == S_EXEC, protp); 4543 if (err) 4544 goto out; 4545 4546 fs = ufsvfsp->vfs_fs; 4547 4548 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4549 !(vp->v_flag & VISSWAP)) { 4550 /* 4551 * Try to start a transaction, will return if blocking is 4552 * expected to occur and the address space is not the 4553 * kernel address space. 4554 */ 4555 trans_size = TOP_GETPAGE_SIZE(ip); 4556 if (seg->s_as != &kas) { 4557 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4558 trans_size, err) 4559 if (err == EWOULDBLOCK) { 4560 /* 4561 * Use EDEADLK here because the VM code 4562 * can normally never see this error. 4563 */ 4564 err = EDEADLK; 4565 ufs_lockfs_end(ulp); 4566 goto out; 4567 } 4568 } else { 4569 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4570 } 4571 } 4572 4573 if (vp->v_flag & VNOMAP) { 4574 err = ENOSYS; 4575 goto unlock; 4576 } 4577 4578 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4579 4580 rwtype = RW_READER; /* start as a reader */ 4581 dolock = (rw_owner(&ip->i_contents) != curthread); 4582 /* 4583 * If this thread owns the lock, i.e., this thread grabbed it 4584 * as writer somewhere above, then we don't need to grab the 4585 * lock as reader in this routine. 4586 */ 4587 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4588 4589 retrylock: 4590 if (dolock) { 4591 /* 4592 * Grab the quota lock if we need to call 4593 * bmap_write() below (with i_contents as writer). 4594 */ 4595 if (do_qlock && rwtype == RW_WRITER) 4596 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4597 rw_enter(&ip->i_contents, rwtype); 4598 } 4599 4600 /* 4601 * We may be getting called as a side effect of a bmap using 4602 * fbread() when the blocks might be being allocated and the 4603 * size has not yet been up'ed. In this case we want to be 4604 * able to return zero pages if we get back UFS_HOLE from 4605 * calling bmap for a non write case here. We also might have 4606 * to read some frags from the disk into a page if we are 4607 * extending the number of frags for a given lbn in bmap(). 4608 * Large Files: The read of i_size here is atomic because 4609 * i_contents is held here. If dolock is zero, the lock 4610 * is held in bmap routines. 4611 */ 4612 beyond_eof = uoff + len > 4613 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t); 4614 if (beyond_eof && seg != segkmap) { 4615 if (dolock) { 4616 rw_exit(&ip->i_contents); 4617 if (do_qlock && rwtype == RW_WRITER) 4618 rw_exit(&ufsvfsp->vfs_dqrwlock); 4619 } 4620 err = EFAULT; 4621 goto unlock; 4622 } 4623 4624 /* 4625 * Must hold i_contents lock throughout the call to pvn_getpages 4626 * since locked pages are returned from each call to ufs_getapage. 4627 * Must *not* return locked pages and then try for contents lock 4628 * due to lock ordering requirements (inode > page) 4629 */ 4630 4631 has_holes = bmap_has_holes(ip); 4632 4633 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4634 int blk_size; 4635 u_offset_t offset; 4636 4637 /* 4638 * We must acquire the RW_WRITER lock in order to 4639 * call bmap_write(). 4640 */ 4641 if (dolock && rwtype == RW_READER) { 4642 rwtype = RW_WRITER; 4643 4644 /* 4645 * Grab the quota lock before 4646 * upgrading i_contents, but if we can't grab it 4647 * don't wait here due to lock order: 4648 * vfs_dqrwlock > i_contents. 4649 */ 4650 if (do_qlock && 4651 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4652 == 0) { 4653 rw_exit(&ip->i_contents); 4654 goto retrylock; 4655 } 4656 if (!rw_tryupgrade(&ip->i_contents)) { 4657 rw_exit(&ip->i_contents); 4658 if (do_qlock) 4659 rw_exit(&ufsvfsp->vfs_dqrwlock); 4660 goto retrylock; 4661 } 4662 } 4663 4664 /* 4665 * May be allocating disk blocks for holes here as 4666 * a result of mmap faults. write(2) does the bmap_write 4667 * in rdip/wrip, not here. We are not dealing with frags 4668 * in this case. 4669 */ 4670 /* 4671 * Large Files: We cast fs_bmask field to offset_t 4672 * just as we do for MAXBMASK because uoff is a 64-bit 4673 * data type. fs_bmask will still be a 32-bit type 4674 * as we cannot change any ondisk data structures. 4675 */ 4676 4677 offset = uoff & (offset_t)fs->fs_bmask; 4678 while (offset < uoff + len) { 4679 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4680 err = bmap_write(ip, offset, blk_size, 4681 BI_NORMAL, NULL, cr); 4682 if (ip->i_flag & (ICHG|IUPD)) 4683 ip->i_seq++; 4684 if (err) 4685 goto update_inode; 4686 offset += blk_size; /* XXX - make this contig */ 4687 } 4688 } 4689 4690 /* 4691 * Can be a reader from now on. 4692 */ 4693 if (dolock && rwtype == RW_WRITER) { 4694 rw_downgrade(&ip->i_contents); 4695 /* 4696 * We can release vfs_dqrwlock early so do it, but make 4697 * sure we don't try to release it again at the bottom. 4698 */ 4699 if (do_qlock) { 4700 rw_exit(&ufsvfsp->vfs_dqrwlock); 4701 do_qlock = 0; 4702 } 4703 } 4704 4705 /* 4706 * We remove PROT_WRITE in cases when the file has UFS holes 4707 * because we don't want to call bmap_read() to check each 4708 * page if it is backed with a disk block. 4709 */ 4710 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4711 *protp &= ~PROT_WRITE; 4712 4713 err = 0; 4714 4715 /* 4716 * The loop looks up pages in the range [off, off + len). 4717 * For each page, we first check if we should initiate an asynchronous 4718 * read ahead before we call page_lookup (we may sleep in page_lookup 4719 * for a previously initiated disk read). 4720 */ 4721 eoff = (uoff + len); 4722 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4723 pgoff < eoff; /* empty */) { 4724 page_t *pp; 4725 u_offset_t nextrio; 4726 se_t se; 4727 int retval; 4728 4729 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4730 4731 /* Handle async getpage (faultahead) */ 4732 if (plarr == NULL) { 4733 ip->i_nextrio = pgoff; 4734 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4735 pgoff += pgsize; 4736 pgaddr += pgsize; 4737 continue; 4738 } 4739 /* 4740 * Check if we should initiate read ahead of next cluster. 4741 * We call page_exists only when we need to confirm that 4742 * we have the current page before we initiate the read ahead. 4743 */ 4744 nextrio = ip->i_nextrio; 4745 if (seqmode && 4746 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4747 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4748 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4749 /* 4750 * We always read ahead the next cluster of data 4751 * starting from i_nextrio. If the page (vp,nextrio) 4752 * is actually in core at this point, the routine 4753 * ufs_getpage_ra() will stop pre-fetching data 4754 * until we read that page in a synchronized manner 4755 * through ufs_getpage_miss(). So, we should increase 4756 * i_nextrio if the page (vp, nextrio) exists. 4757 */ 4758 if ((retval == 0) && page_exists(vp, nextrio)) { 4759 ip->i_nextrio = nextrio + pgsize; 4760 } 4761 } 4762 4763 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4764 /* 4765 * We found the page in the page cache. 4766 */ 4767 *pl++ = pp; 4768 pgoff += pgsize; 4769 pgaddr += pgsize; 4770 len -= pgsize; 4771 plsz -= pgsize; 4772 } else { 4773 /* 4774 * We have to create the page, or read it from disk. 4775 */ 4776 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4777 pl, plsz, rw, seqmode)) 4778 goto error; 4779 4780 while (*pl != NULL) { 4781 pl++; 4782 pgoff += pgsize; 4783 pgaddr += pgsize; 4784 len -= pgsize; 4785 plsz -= pgsize; 4786 } 4787 } 4788 } 4789 4790 /* 4791 * Return pages up to plsz if they are in the page cache. 4792 * We cannot return pages if there is a chance that they are 4793 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4794 */ 4795 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4796 4797 ASSERT((protp == NULL) || 4798 !(has_holes && (*protp & PROT_WRITE))); 4799 4800 eoff = pgoff + plsz; 4801 while (pgoff < eoff) { 4802 page_t *pp; 4803 4804 if ((pp = page_lookup_nowait(vp, pgoff, 4805 SE_SHARED)) == NULL) 4806 break; 4807 4808 *pl++ = pp; 4809 pgoff += pgsize; 4810 plsz -= pgsize; 4811 } 4812 } 4813 4814 if (plarr) 4815 *pl = NULL; /* Terminate page list */ 4816 ip->i_nextr = pgoff; 4817 4818 error: 4819 if (err && plarr) { 4820 /* 4821 * Release any pages we have locked. 4822 */ 4823 while (pl > &plarr[0]) 4824 page_unlock(*--pl); 4825 4826 plarr[0] = NULL; 4827 } 4828 4829 update_inode: 4830 /* 4831 * If the inode is not already marked for IACC (in rdip() for read) 4832 * and the inode is not marked for no access time update (in wrip() 4833 * for write) then update the inode access time and mod time now. 4834 */ 4835 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4836 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4837 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4838 (fs->fs_ronly == 0) && 4839 (!ufsvfsp->vfs_noatime)) { 4840 mutex_enter(&ip->i_tlock); 4841 ip->i_flag |= IACC; 4842 ITIMES_NOLOCK(ip); 4843 mutex_exit(&ip->i_tlock); 4844 } 4845 } 4846 } 4847 4848 if (dolock) { 4849 rw_exit(&ip->i_contents); 4850 if (do_qlock && rwtype == RW_WRITER) 4851 rw_exit(&ufsvfsp->vfs_dqrwlock); 4852 } 4853 4854 unlock: 4855 if (ulp) { 4856 if ((rw == S_CREATE || rw == S_WRITE) && 4857 !(vp->v_flag & VISSWAP)) { 4858 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4859 } 4860 ufs_lockfs_end(ulp); 4861 } 4862 out: 4863 return (err); 4864 } 4865 4866 /* 4867 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4868 * cache. The page is either read from the disk, or it's created. 4869 * A page is created (without disk read) if rw == S_CREATE, or if 4870 * the page is not backed with a real disk block (UFS hole). 4871 */ 4872 /* ARGSUSED */ 4873 static int 4874 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4875 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4876 { 4877 struct inode *ip = VTOI(vp); 4878 page_t *pp; 4879 daddr_t bn; 4880 size_t io_len; 4881 int crpage = 0; 4882 int err; 4883 int contig; 4884 int bsize = ip->i_fs->fs_bsize; 4885 4886 /* 4887 * Figure out whether the page can be created, or must be 4888 * must be read from the disk. 4889 */ 4890 if (rw == S_CREATE) 4891 crpage = 1; 4892 else { 4893 contig = 0; 4894 if (err = bmap_read(ip, off, &bn, &contig)) 4895 return (err); 4896 4897 crpage = (bn == UFS_HOLE); 4898 4899 /* 4900 * If its also a fallocated block that hasn't been written to 4901 * yet, we will treat it just like a UFS_HOLE and create 4902 * a zero page for it 4903 */ 4904 if (ISFALLOCBLK(ip, bn)) 4905 crpage = 1; 4906 } 4907 4908 if (crpage) { 4909 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4910 addr)) == NULL) { 4911 return (ufs_fault(vp, 4912 "ufs_getpage_miss: page_create == NULL")); 4913 } 4914 4915 if (rw != S_CREATE) 4916 pagezero(pp, 0, PAGESIZE); 4917 4918 io_len = PAGESIZE; 4919 } else { 4920 u_offset_t io_off; 4921 uint_t xlen; 4922 struct buf *bp; 4923 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4924 4925 /* 4926 * If access is not in sequential order, we read from disk 4927 * in bsize units. 4928 * 4929 * We limit the size of the transfer to bsize if we are reading 4930 * from the beginning of the file. Note in this situation we 4931 * will hedge our bets and initiate an async read ahead of 4932 * the second block. 4933 */ 4934 if (!seq || off == 0) 4935 contig = MIN(contig, bsize); 4936 4937 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4938 &io_len, off, contig, 0); 4939 4940 /* 4941 * Some other thread has entered the page. 4942 * ufs_getpage will retry page_lookup. 4943 */ 4944 if (pp == NULL) { 4945 pl[0] = NULL; 4946 return (0); 4947 } 4948 4949 /* 4950 * Zero part of the page which we are not 4951 * going to read from the disk. 4952 */ 4953 xlen = io_len & PAGEOFFSET; 4954 if (xlen != 0) 4955 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4956 4957 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4958 bp->b_edev = ip->i_dev; 4959 bp->b_dev = cmpdev(ip->i_dev); 4960 bp->b_blkno = bn; 4961 bp->b_un.b_addr = (caddr_t)0; 4962 bp->b_file = ip->i_vnode; 4963 bp->b_offset = off; 4964 4965 if (ufsvfsp->vfs_log) { 4966 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4967 } else if (ufsvfsp->vfs_snapshot) { 4968 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4969 } else { 4970 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 4971 ub.ub_getpages.value.ul++; 4972 (void) bdev_strategy(bp); 4973 lwp_stat_update(LWP_STAT_INBLK, 1); 4974 } 4975 4976 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4977 4978 /* 4979 * If the file access is sequential, initiate read ahead 4980 * of the next cluster. 4981 */ 4982 if (seq && ip->i_nextrio < ip->i_size) 4983 (void) ufs_getpage_ra(vp, off, seg, addr); 4984 err = biowait(bp); 4985 pageio_done(bp); 4986 4987 if (err) { 4988 pvn_read_done(pp, B_ERROR); 4989 return (err); 4990 } 4991 } 4992 4993 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4994 return (0); 4995 } 4996 4997 /* 4998 * Read ahead a cluster from the disk. Returns the length in bytes. 4999 */ 5000 static int 5001 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 5002 { 5003 struct inode *ip = VTOI(vp); 5004 page_t *pp; 5005 u_offset_t io_off = ip->i_nextrio; 5006 ufsvfs_t *ufsvfsp; 5007 caddr_t addr2 = addr + (io_off - off); 5008 struct buf *bp; 5009 daddr_t bn; 5010 size_t io_len; 5011 int err; 5012 int contig; 5013 int xlen; 5014 int bsize = ip->i_fs->fs_bsize; 5015 5016 /* 5017 * If the directio advisory is in effect on this file, 5018 * then do not do buffered read ahead. Read ahead makes 5019 * it more difficult on threads using directio as they 5020 * will be forced to flush the pages from this vnode. 5021 */ 5022 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5023 return (0); 5024 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5025 return (0); 5026 5027 /* 5028 * Is this test needed? 5029 */ 5030 if (addr2 >= seg->s_base + seg->s_size) 5031 return (0); 5032 5033 contig = 0; 5034 err = bmap_read(ip, io_off, &bn, &contig); 5035 /* 5036 * If its a UFS_HOLE or a fallocated block, do not perform 5037 * any read ahead's since there probably is nothing to read ahead 5038 */ 5039 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5040 return (0); 5041 5042 /* 5043 * Limit the transfer size to bsize if this is the 2nd block. 5044 */ 5045 if (io_off == (u_offset_t)bsize) 5046 contig = MIN(contig, bsize); 5047 5048 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5049 &io_len, io_off, contig, 1)) == NULL) 5050 return (0); 5051 5052 /* 5053 * Zero part of page which we are not going to read from disk 5054 */ 5055 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5056 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5057 5058 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5059 5060 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5061 bp->b_edev = ip->i_dev; 5062 bp->b_dev = cmpdev(ip->i_dev); 5063 bp->b_blkno = bn; 5064 bp->b_un.b_addr = (caddr_t)0; 5065 bp->b_file = ip->i_vnode; 5066 bp->b_offset = off; 5067 5068 if (ufsvfsp->vfs_log) { 5069 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5070 } else if (ufsvfsp->vfs_snapshot) { 5071 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5072 } else { 5073 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5074 ub.ub_getras.value.ul++; 5075 (void) bdev_strategy(bp); 5076 lwp_stat_update(LWP_STAT_INBLK, 1); 5077 } 5078 5079 return (io_len); 5080 } 5081 5082 int ufs_delay = 1; 5083 /* 5084 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5085 * 5086 * LMXXX - the inode really ought to contain a pointer to one of these 5087 * async args. Stuff gunk in there and just hand the whole mess off. 5088 * This would replace i_delaylen, i_delayoff. 5089 */ 5090 /*ARGSUSED*/ 5091 static int 5092 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5093 struct cred *cr, caller_context_t *ct) 5094 { 5095 struct inode *ip = VTOI(vp); 5096 int err = 0; 5097 5098 if (vp->v_count == 0) { 5099 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5100 } 5101 5102 /* 5103 * XXX - Why should this check be made here? 5104 */ 5105 if (vp->v_flag & VNOMAP) { 5106 err = ENOSYS; 5107 goto errout; 5108 } 5109 5110 if (ip->i_ufsvfs == NULL) { 5111 err = EIO; 5112 goto errout; 5113 } 5114 5115 if (flags & B_ASYNC) { 5116 if (ufs_delay && len && 5117 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5118 mutex_enter(&ip->i_tlock); 5119 /* 5120 * If nobody stalled, start a new cluster. 5121 */ 5122 if (ip->i_delaylen == 0) { 5123 ip->i_delayoff = off; 5124 ip->i_delaylen = len; 5125 mutex_exit(&ip->i_tlock); 5126 goto errout; 5127 } 5128 /* 5129 * If we have a full cluster or they are not contig, 5130 * then push last cluster and start over. 5131 */ 5132 if (ip->i_delaylen >= CLUSTSZ(ip) || 5133 ip->i_delayoff + ip->i_delaylen != off) { 5134 u_offset_t doff; 5135 size_t dlen; 5136 5137 doff = ip->i_delayoff; 5138 dlen = ip->i_delaylen; 5139 ip->i_delayoff = off; 5140 ip->i_delaylen = len; 5141 mutex_exit(&ip->i_tlock); 5142 err = ufs_putpages(vp, doff, dlen, 5143 flags, cr); 5144 /* LMXXX - flags are new val, not old */ 5145 goto errout; 5146 } 5147 /* 5148 * There is something there, it's not full, and 5149 * it is contig. 5150 */ 5151 ip->i_delaylen += len; 5152 mutex_exit(&ip->i_tlock); 5153 goto errout; 5154 } 5155 /* 5156 * Must have weird flags or we are not clustering. 5157 */ 5158 } 5159 5160 err = ufs_putpages(vp, off, len, flags, cr); 5161 5162 errout: 5163 return (err); 5164 } 5165 5166 /* 5167 * If len == 0, do from off to EOF. 5168 * 5169 * The normal cases should be len == 0 & off == 0 (entire vp list), 5170 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5171 * (from pageout). 5172 */ 5173 /*ARGSUSED*/ 5174 static int 5175 ufs_putpages( 5176 struct vnode *vp, 5177 offset_t off, 5178 size_t len, 5179 int flags, 5180 struct cred *cr) 5181 { 5182 u_offset_t io_off; 5183 u_offset_t eoff; 5184 struct inode *ip = VTOI(vp); 5185 page_t *pp; 5186 size_t io_len; 5187 int err = 0; 5188 int dolock; 5189 5190 if (vp->v_count == 0) 5191 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5192 /* 5193 * Acquire the readers/write inode lock before locking 5194 * any pages in this inode. 5195 * The inode lock is held during i/o. 5196 */ 5197 if (len == 0) { 5198 mutex_enter(&ip->i_tlock); 5199 ip->i_delayoff = ip->i_delaylen = 0; 5200 mutex_exit(&ip->i_tlock); 5201 } 5202 dolock = (rw_owner(&ip->i_contents) != curthread); 5203 if (dolock) { 5204 /* 5205 * Must synchronize this thread and any possible thread 5206 * operating in the window of vulnerability in wrip(). 5207 * It is dangerous to allow both a thread doing a putpage 5208 * and a thread writing, so serialize them. The exception 5209 * is when the thread in wrip() does something which causes 5210 * a putpage operation. Then, the thread must be allowed 5211 * to continue. It may encounter a bmap_read problem in 5212 * ufs_putapage, but that is handled in ufs_putapage. 5213 * Allow async writers to proceed, we don't want to block 5214 * the pageout daemon. 5215 */ 5216 if (ip->i_writer == curthread) 5217 rw_enter(&ip->i_contents, RW_READER); 5218 else { 5219 for (;;) { 5220 rw_enter(&ip->i_contents, RW_READER); 5221 mutex_enter(&ip->i_tlock); 5222 /* 5223 * If there is no thread in the critical 5224 * section of wrip(), then proceed. 5225 * Otherwise, wait until there isn't one. 5226 */ 5227 if (ip->i_writer == NULL) { 5228 mutex_exit(&ip->i_tlock); 5229 break; 5230 } 5231 rw_exit(&ip->i_contents); 5232 /* 5233 * Bounce async writers when we have a writer 5234 * working on this file so we don't deadlock 5235 * the pageout daemon. 5236 */ 5237 if (flags & B_ASYNC) { 5238 mutex_exit(&ip->i_tlock); 5239 return (0); 5240 } 5241 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5242 mutex_exit(&ip->i_tlock); 5243 } 5244 } 5245 } 5246 5247 if (!vn_has_cached_data(vp)) { 5248 if (dolock) 5249 rw_exit(&ip->i_contents); 5250 return (0); 5251 } 5252 5253 if (len == 0) { 5254 /* 5255 * Search the entire vp list for pages >= off. 5256 */ 5257 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5258 flags, cr); 5259 } else { 5260 /* 5261 * Loop over all offsets in the range looking for 5262 * pages to deal with. 5263 */ 5264 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5265 eoff = MIN(off + len, eoff); 5266 else 5267 eoff = off + len; 5268 5269 for (io_off = off; io_off < eoff; io_off += io_len) { 5270 /* 5271 * If we are not invalidating, synchronously 5272 * freeing or writing pages, use the routine 5273 * page_lookup_nowait() to prevent reclaiming 5274 * them from the free list. 5275 */ 5276 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5277 pp = page_lookup(vp, io_off, 5278 (flags & (B_INVAL | B_FREE)) ? 5279 SE_EXCL : SE_SHARED); 5280 } else { 5281 pp = page_lookup_nowait(vp, io_off, 5282 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5283 } 5284 5285 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5286 io_len = PAGESIZE; 5287 else { 5288 u_offset_t *io_offp = &io_off; 5289 5290 err = ufs_putapage(vp, pp, io_offp, &io_len, 5291 flags, cr); 5292 if (err != 0) 5293 break; 5294 /* 5295 * "io_off" and "io_len" are returned as 5296 * the range of pages we actually wrote. 5297 * This allows us to skip ahead more quickly 5298 * since several pages may've been dealt 5299 * with by this iteration of the loop. 5300 */ 5301 } 5302 } 5303 } 5304 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5305 /* 5306 * We have just sync'ed back all the pages on 5307 * the inode, turn off the IMODTIME flag. 5308 */ 5309 mutex_enter(&ip->i_tlock); 5310 ip->i_flag &= ~IMODTIME; 5311 mutex_exit(&ip->i_tlock); 5312 } 5313 if (dolock) 5314 rw_exit(&ip->i_contents); 5315 return (err); 5316 } 5317 5318 static void 5319 ufs_iodone(buf_t *bp) 5320 { 5321 struct inode *ip; 5322 5323 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5324 5325 bp->b_iodone = NULL; 5326 5327 ip = VTOI(bp->b_pages->p_vnode); 5328 5329 mutex_enter(&ip->i_tlock); 5330 if (ip->i_writes >= ufs_LW) { 5331 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5332 if (ufs_WRITES) 5333 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5334 } else { 5335 ip->i_writes -= bp->b_bcount; 5336 } 5337 5338 mutex_exit(&ip->i_tlock); 5339 iodone(bp); 5340 } 5341 5342 /* 5343 * Write out a single page, possibly klustering adjacent 5344 * dirty pages. The inode lock must be held. 5345 * 5346 * LMXXX - bsize < pagesize not done. 5347 */ 5348 /*ARGSUSED*/ 5349 int 5350 ufs_putapage( 5351 struct vnode *vp, 5352 page_t *pp, 5353 u_offset_t *offp, 5354 size_t *lenp, /* return values */ 5355 int flags, 5356 struct cred *cr) 5357 { 5358 u_offset_t io_off; 5359 u_offset_t off; 5360 struct inode *ip = VTOI(vp); 5361 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5362 struct fs *fs; 5363 struct buf *bp; 5364 size_t io_len; 5365 daddr_t bn; 5366 int err; 5367 int contig; 5368 int dotrans; 5369 5370 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5371 5372 if (ufsvfsp == NULL) { 5373 err = EIO; 5374 goto out_trace; 5375 } 5376 5377 fs = ip->i_fs; 5378 ASSERT(fs->fs_ronly == 0); 5379 5380 /* 5381 * If the modified time on the inode has not already been 5382 * set elsewhere (e.g. for write/setattr) we set the time now. 5383 * This gives us approximate modified times for mmap'ed files 5384 * which are modified via stores in the user address space. 5385 */ 5386 if ((ip->i_flag & IMODTIME) == 0) { 5387 mutex_enter(&ip->i_tlock); 5388 ip->i_flag |= IUPD; 5389 ip->i_seq++; 5390 ITIMES_NOLOCK(ip); 5391 mutex_exit(&ip->i_tlock); 5392 } 5393 5394 /* 5395 * Align the request to a block boundry (for old file systems), 5396 * and go ask bmap() how contiguous things are for this file. 5397 */ 5398 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5399 contig = 0; 5400 err = bmap_read(ip, off, &bn, &contig); 5401 if (err) 5402 goto out; 5403 if (bn == UFS_HOLE) { /* putpage never allocates */ 5404 /* 5405 * logging device is in error mode; simply return EIO 5406 */ 5407 if (TRANS_ISERROR(ufsvfsp)) { 5408 err = EIO; 5409 goto out; 5410 } 5411 /* 5412 * Oops, the thread in the window in wrip() did some 5413 * sort of operation which caused a putpage in the bad 5414 * range. In this case, just return an error which will 5415 * cause the software modified bit on the page to set 5416 * and the page will get written out again later. 5417 */ 5418 if (ip->i_writer == curthread) { 5419 err = EIO; 5420 goto out; 5421 } 5422 /* 5423 * If the pager is trying to push a page in the bad range 5424 * just tell him to try again later when things are better. 5425 */ 5426 if (flags & B_ASYNC) { 5427 err = EAGAIN; 5428 goto out; 5429 } 5430 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5431 goto out; 5432 } 5433 5434 /* 5435 * If it is an fallocate'd block, reverse the negativity since 5436 * we are now writing to it 5437 */ 5438 if (ISFALLOCBLK(ip, bn)) { 5439 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5440 if (err) 5441 goto out; 5442 5443 bn = -bn; 5444 } 5445 5446 /* 5447 * Take the length (of contiguous bytes) passed back from bmap() 5448 * and _try_ and get a set of pages covering that extent. 5449 */ 5450 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5451 5452 /* 5453 * May have run out of memory and not clustered backwards. 5454 * off p_offset 5455 * [ pp - 1 ][ pp ] 5456 * [ block ] 5457 * We told bmap off, so we have to adjust the bn accordingly. 5458 */ 5459 if (io_off > off) { 5460 bn += btod(io_off - off); 5461 contig -= (io_off - off); 5462 } 5463 5464 /* 5465 * bmap was carefull to tell us the right size so use that. 5466 * There might be unallocated frags at the end. 5467 * LMXXX - bzero the end of the page? We must be writing after EOF. 5468 */ 5469 if (io_len > contig) { 5470 ASSERT(io_len - contig < fs->fs_bsize); 5471 io_len -= (io_len - contig); 5472 } 5473 5474 /* 5475 * Handle the case where we are writing the last page after EOF. 5476 * 5477 * XXX - just a patch for i-mt3. 5478 */ 5479 if (io_len == 0) { 5480 ASSERT(pp->p_offset >= 5481 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5482 io_len = PAGESIZE; 5483 } 5484 5485 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5486 5487 ULOCKFS_SET_MOD(ITOUL(ip)); 5488 5489 bp->b_edev = ip->i_dev; 5490 bp->b_dev = cmpdev(ip->i_dev); 5491 bp->b_blkno = bn; 5492 bp->b_un.b_addr = (caddr_t)0; 5493 bp->b_file = ip->i_vnode; 5494 5495 /* 5496 * File contents of shadow or quota inodes are metadata, and updates 5497 * to these need to be put into a logging transaction. All direct 5498 * callers in UFS do that, but fsflush can come here _before_ the 5499 * normal codepath. An example would be updating ACL information, for 5500 * which the normal codepath would be: 5501 * ufs_si_store() 5502 * ufs_rdwri() 5503 * wrip() 5504 * segmap_release() 5505 * VOP_PUTPAGE() 5506 * Here, fsflush can pick up the dirty page before segmap_release() 5507 * forces it out. If that happens, there's no transaction. 5508 * We therefore need to test whether a transaction exists, and if not 5509 * create one - for fsflush. 5510 */ 5511 dotrans = 5512 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5513 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5514 (TRANS_ISTRANS(ufsvfsp))); 5515 5516 if (dotrans) { 5517 curthread->t_flag |= T_DONTBLOCK; 5518 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5519 } 5520 if (TRANS_ISTRANS(ufsvfsp)) { 5521 if ((ip->i_mode & IFMT) == IFSHAD) { 5522 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5523 } else if (ufsvfsp->vfs_qinod == ip) { 5524 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5525 0, 0); 5526 } 5527 } 5528 if (dotrans) { 5529 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5530 curthread->t_flag &= ~T_DONTBLOCK; 5531 } 5532 5533 /* write throttle */ 5534 5535 ASSERT(bp->b_iodone == NULL); 5536 bp->b_iodone = (int (*)())ufs_iodone; 5537 mutex_enter(&ip->i_tlock); 5538 ip->i_writes += bp->b_bcount; 5539 mutex_exit(&ip->i_tlock); 5540 5541 if (bp->b_flags & B_ASYNC) { 5542 if (ufsvfsp->vfs_log) { 5543 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5544 } else if (ufsvfsp->vfs_snapshot) { 5545 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5546 } else { 5547 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5548 ub.ub_putasyncs.value.ul++; 5549 (void) bdev_strategy(bp); 5550 lwp_stat_update(LWP_STAT_OUBLK, 1); 5551 } 5552 } else { 5553 if (ufsvfsp->vfs_log) { 5554 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5555 } else if (ufsvfsp->vfs_snapshot) { 5556 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5557 } else { 5558 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 5559 ub.ub_putsyncs.value.ul++; 5560 (void) bdev_strategy(bp); 5561 lwp_stat_update(LWP_STAT_OUBLK, 1); 5562 } 5563 err = biowait(bp); 5564 pageio_done(bp); 5565 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5566 } 5567 5568 pp = NULL; 5569 5570 out: 5571 if (err != 0 && pp != NULL) 5572 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5573 5574 if (offp) 5575 *offp = io_off; 5576 if (lenp) 5577 *lenp = io_len; 5578 out_trace: 5579 return (err); 5580 } 5581 5582 uint64_t ufs_map_alock_retry_cnt; 5583 uint64_t ufs_map_lockfs_retry_cnt; 5584 5585 /* ARGSUSED */ 5586 static int 5587 ufs_map(struct vnode *vp, 5588 offset_t off, 5589 struct as *as, 5590 caddr_t *addrp, 5591 size_t len, 5592 uchar_t prot, 5593 uchar_t maxprot, 5594 uint_t flags, 5595 struct cred *cr, 5596 caller_context_t *ct) 5597 { 5598 struct segvn_crargs vn_a; 5599 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5600 struct ulockfs *ulp; 5601 int error, sig; 5602 k_sigset_t smask; 5603 caddr_t hint = *addrp; 5604 5605 if (vp->v_flag & VNOMAP) { 5606 error = ENOSYS; 5607 goto out; 5608 } 5609 5610 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5611 error = ENXIO; 5612 goto out; 5613 } 5614 5615 if (vp->v_type != VREG) { 5616 error = ENODEV; 5617 goto out; 5618 } 5619 5620 retry_map: 5621 *addrp = hint; 5622 /* 5623 * If file is being locked, disallow mapping. 5624 */ 5625 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5626 error = EAGAIN; 5627 goto out; 5628 } 5629 5630 as_rangelock(as); 5631 /* 5632 * Note that if we are retrying (because ufs_lockfs_trybegin failed in 5633 * the previous attempt), some other thread could have grabbed 5634 * the same VA range if MAP_FIXED is set. In that case, choose_addr 5635 * would unmap the valid VA range, that is ok. 5636 */ 5637 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 5638 if (error != 0) { 5639 as_rangeunlock(as); 5640 goto out; 5641 } 5642 5643 /* 5644 * a_lock has to be acquired before entering the lockfs protocol 5645 * because that is the order in which pagefault works. Also we cannot 5646 * block on a_lock here because this waiting writer will prevent 5647 * further readers like ufs_read from progressing and could cause 5648 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5649 * pending. 5650 */ 5651 while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) { 5652 ufs_map_alock_retry_cnt++; 5653 delay(RETRY_LOCK_DELAY); 5654 } 5655 5656 /* 5657 * We can't hold as->a_lock and wait for lockfs to succeed because 5658 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5659 * instead. 5660 */ 5661 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5662 /* 5663 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5664 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5665 */ 5666 ufs_map_lockfs_retry_cnt++; 5667 AS_LOCK_EXIT(as, &as->a_lock); 5668 as_rangeunlock(as); 5669 if (error == EIO) 5670 goto out; 5671 5672 mutex_enter(&ulp->ul_lock); 5673 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5674 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5675 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5676 } else { 5677 sigintr(&smask, 1); 5678 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5679 sigunintr(&smask); 5680 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5681 !sig) || ufsvfsp->vfs_dontblock) { 5682 mutex_exit(&ulp->ul_lock); 5683 return (EINTR); 5684 } 5685 } 5686 } 5687 mutex_exit(&ulp->ul_lock); 5688 goto retry_map; 5689 } 5690 5691 vn_a.vp = vp; 5692 vn_a.offset = (u_offset_t)off; 5693 vn_a.type = flags & MAP_TYPE; 5694 vn_a.prot = prot; 5695 vn_a.maxprot = maxprot; 5696 vn_a.cred = cr; 5697 vn_a.amp = NULL; 5698 vn_a.flags = flags & ~MAP_TYPE; 5699 vn_a.szc = 0; 5700 vn_a.lgrp_mem_policy_flags = 0; 5701 5702 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5703 if (ulp) 5704 ufs_lockfs_end(ulp); 5705 as_rangeunlock(as); 5706 out: 5707 return (error); 5708 } 5709 5710 /* ARGSUSED */ 5711 static int 5712 ufs_addmap(struct vnode *vp, 5713 offset_t off, 5714 struct as *as, 5715 caddr_t addr, 5716 size_t len, 5717 uchar_t prot, 5718 uchar_t maxprot, 5719 uint_t flags, 5720 struct cred *cr, 5721 caller_context_t *ct) 5722 { 5723 struct inode *ip = VTOI(vp); 5724 5725 if (vp->v_flag & VNOMAP) { 5726 return (ENOSYS); 5727 } 5728 5729 mutex_enter(&ip->i_tlock); 5730 ip->i_mapcnt += btopr(len); 5731 mutex_exit(&ip->i_tlock); 5732 return (0); 5733 } 5734 5735 /*ARGSUSED*/ 5736 static int 5737 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5738 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5739 struct cred *cr, caller_context_t *ct) 5740 { 5741 struct inode *ip = VTOI(vp); 5742 5743 if (vp->v_flag & VNOMAP) { 5744 return (ENOSYS); 5745 } 5746 5747 mutex_enter(&ip->i_tlock); 5748 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5749 ASSERT(ip->i_mapcnt >= 0); 5750 mutex_exit(&ip->i_tlock); 5751 return (0); 5752 } 5753 /* 5754 * Return the answer requested to poll() for non-device files 5755 */ 5756 struct pollhead ufs_pollhd; 5757 5758 /* ARGSUSED */ 5759 int 5760 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5761 caller_context_t *ct) 5762 { 5763 struct ufsvfs *ufsvfsp; 5764 5765 *revp = 0; 5766 ufsvfsp = VTOI(vp)->i_ufsvfs; 5767 5768 if (!ufsvfsp) { 5769 *revp = POLLHUP; 5770 goto out; 5771 } 5772 5773 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5774 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5775 *revp |= POLLERR; 5776 5777 } else { 5778 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5779 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5780 *revp |= POLLOUT; 5781 5782 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5783 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5784 *revp |= POLLWRBAND; 5785 5786 if (ev & POLLIN) 5787 *revp |= POLLIN; 5788 5789 if (ev & POLLRDNORM) 5790 *revp |= POLLRDNORM; 5791 5792 if (ev & POLLRDBAND) 5793 *revp |= POLLRDBAND; 5794 } 5795 5796 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5797 *revp |= POLLPRI; 5798 out: 5799 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5800 5801 return (0); 5802 } 5803 5804 /* ARGSUSED */ 5805 static int 5806 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5807 caller_context_t *ct) 5808 { 5809 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5810 struct ulockfs *ulp = NULL; 5811 struct inode *sip = NULL; 5812 int error; 5813 struct inode *ip = VTOI(vp); 5814 int issync; 5815 5816 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5817 if (error) 5818 return (error); 5819 5820 switch (cmd) { 5821 /* 5822 * Have to handle _PC_NAME_MAX here, because the normal way 5823 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5824 * results in a lock ordering reversal between 5825 * ufs_lockfs_{begin,end}() and 5826 * ufs_thread_{suspend,continue}(). 5827 * 5828 * Keep in sync with ufs_statvfs(). 5829 */ 5830 case _PC_NAME_MAX: 5831 *valp = MAXNAMLEN; 5832 break; 5833 5834 case _PC_FILESIZEBITS: 5835 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5836 *valp = UFS_FILESIZE_BITS; 5837 else 5838 *valp = 32; 5839 break; 5840 5841 case _PC_XATTR_EXISTS: 5842 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5843 5844 error = 5845 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5846 if (error == 0 && sip != NULL) { 5847 /* Start transaction */ 5848 if (ulp) { 5849 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5850 TOP_RMDIR, TOP_RMDIR_SIZE); 5851 } 5852 /* 5853 * Is directory empty 5854 */ 5855 rw_enter(&sip->i_rwlock, RW_WRITER); 5856 rw_enter(&sip->i_contents, RW_WRITER); 5857 if (ufs_xattrdirempty(sip, 5858 sip->i_number, CRED())) { 5859 rw_enter(&ip->i_contents, RW_WRITER); 5860 ufs_unhook_shadow(ip, sip); 5861 rw_exit(&ip->i_contents); 5862 5863 *valp = 0; 5864 5865 } else 5866 *valp = 1; 5867 rw_exit(&sip->i_contents); 5868 rw_exit(&sip->i_rwlock); 5869 if (ulp) { 5870 TRANS_END_CSYNC(ufsvfsp, error, issync, 5871 TOP_RMDIR, TOP_RMDIR_SIZE); 5872 } 5873 VN_RELE(ITOV(sip)); 5874 } else if (error == ENOENT) { 5875 *valp = 0; 5876 error = 0; 5877 } 5878 } else { 5879 error = fs_pathconf(vp, cmd, valp, cr, ct); 5880 } 5881 break; 5882 5883 case _PC_ACL_ENABLED: 5884 *valp = _ACL_ACLENT_ENABLED; 5885 break; 5886 5887 case _PC_MIN_HOLE_SIZE: 5888 *valp = (ulong_t)ip->i_fs->fs_bsize; 5889 break; 5890 5891 case _PC_SATTR_ENABLED: 5892 case _PC_SATTR_EXISTS: 5893 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 5894 (vp->v_type == VREG || vp->v_type == VDIR); 5895 break; 5896 5897 case _PC_TIMESTAMP_RESOLUTION: 5898 /* 5899 * UFS keeps only microsecond timestamp resolution. 5900 * This is historical and will probably never change. 5901 */ 5902 *valp = 1000L; 5903 break; 5904 5905 default: 5906 error = fs_pathconf(vp, cmd, valp, cr, ct); 5907 break; 5908 } 5909 5910 if (ulp != NULL) { 5911 ufs_lockfs_end(ulp); 5912 } 5913 return (error); 5914 } 5915 5916 int ufs_pageio_writes, ufs_pageio_reads; 5917 5918 /*ARGSUSED*/ 5919 static int 5920 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5921 int flags, struct cred *cr, caller_context_t *ct) 5922 { 5923 struct inode *ip = VTOI(vp); 5924 struct ufsvfs *ufsvfsp; 5925 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5926 struct buf *bp; 5927 daddr_t bn; 5928 size_t done_len = 0, cur_len = 0; 5929 int err = 0; 5930 int contig = 0; 5931 int dolock; 5932 int vmpss = 0; 5933 struct ulockfs *ulp; 5934 5935 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5936 vp->v_mpssdata != NULL) { 5937 vmpss = 1; 5938 } 5939 5940 dolock = (rw_owner(&ip->i_contents) != curthread); 5941 /* 5942 * We need a better check. Ideally, we would use another 5943 * vnodeops so that hlocked and forcibly unmounted file 5944 * systems would return EIO where appropriate and w/o the 5945 * need for these checks. 5946 */ 5947 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5948 return (EIO); 5949 5950 /* 5951 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5952 * ul_lock must be taken before locking pages so we can't use it here 5953 * if pp is non NULL because segvn already locked pages 5954 * SE_EXCL. Instead we rely on the fact that a forced umount or 5955 * applying a filesystem lock via ufs_fiolfs() will block in the 5956 * implicit call to ufs_flush() until we unlock the pages after the 5957 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5958 * above 0 until they are done. We have to be careful not to increment 5959 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5960 * 5961 * If pp is NULL use ul_lock to make sure we don't increment 5962 * ul_vnops_cnt after forceful unmount hlocks the file system. 5963 */ 5964 if (vmpss || pp == NULL) { 5965 ulp = &ufsvfsp->vfs_ulockfs; 5966 if (pp == NULL) 5967 mutex_enter(&ulp->ul_lock); 5968 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5969 if (pp == NULL) { 5970 mutex_exit(&ulp->ul_lock); 5971 } 5972 return (vmpss ? EIO : EINVAL); 5973 } 5974 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5975 if (pp == NULL) 5976 mutex_exit(&ulp->ul_lock); 5977 if (ufs_quiesce_pend) { 5978 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5979 cv_broadcast(&ulp->ul_cv); 5980 return (vmpss ? EIO : EINVAL); 5981 } 5982 } 5983 5984 if (dolock) { 5985 /* 5986 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5987 * handle a fault against a segment that maps vnode pages with 5988 * large mappings. Segvn creates pages and holds them locked 5989 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5990 * use rw_tryenter() to avoid a potential deadlock since in 5991 * lock order i_contents needs to be taken first. 5992 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5993 */ 5994 if (!vmpss) { 5995 rw_enter(&ip->i_contents, RW_READER); 5996 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5997 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5998 cv_broadcast(&ulp->ul_cv); 5999 return (EDEADLK); 6000 } 6001 } 6002 6003 /* 6004 * Return an error to segvn because the pagefault request is beyond 6005 * PAGESIZE rounded EOF. 6006 */ 6007 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 6008 if (dolock) 6009 rw_exit(&ip->i_contents); 6010 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6011 cv_broadcast(&ulp->ul_cv); 6012 return (EFAULT); 6013 } 6014 6015 if (pp == NULL) { 6016 if (bmap_has_holes(ip)) { 6017 err = ENOSYS; 6018 } else { 6019 err = EINVAL; 6020 } 6021 if (dolock) 6022 rw_exit(&ip->i_contents); 6023 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6024 cv_broadcast(&ulp->ul_cv); 6025 return (err); 6026 } 6027 6028 /* 6029 * Break the io request into chunks, one for each contiguous 6030 * stretch of disk blocks in the target file. 6031 */ 6032 while (done_len < io_len) { 6033 ASSERT(cpp); 6034 contig = 0; 6035 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6036 &bn, &contig)) 6037 break; 6038 6039 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6040 if (vmpss) { 6041 err = EFAULT; 6042 break; 6043 } 6044 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6045 break; 6046 } 6047 6048 cur_len = MIN(io_len - done_len, contig); 6049 /* 6050 * Zero out a page beyond EOF, when the last block of 6051 * a file is a UFS fragment so that ufs_pageio() can be used 6052 * instead of ufs_getpage() to handle faults against 6053 * segvn segments that use large pages. 6054 */ 6055 page_list_break(&cpp, &npp, btopr(cur_len)); 6056 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6057 size_t xlen = cur_len & PAGEOFFSET; 6058 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6059 } 6060 6061 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6062 ASSERT(bp != NULL); 6063 6064 bp->b_edev = ip->i_dev; 6065 bp->b_dev = cmpdev(ip->i_dev); 6066 bp->b_blkno = bn; 6067 bp->b_un.b_addr = (caddr_t)0; 6068 bp->b_file = ip->i_vnode; 6069 6070 ufsvfsp->vfs_iotstamp = ddi_get_lbolt(); 6071 ub.ub_pageios.value.ul++; 6072 if (ufsvfsp->vfs_snapshot) 6073 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6074 else 6075 (void) bdev_strategy(bp); 6076 6077 if (flags & B_READ) 6078 ufs_pageio_reads++; 6079 else 6080 ufs_pageio_writes++; 6081 if (flags & B_READ) 6082 lwp_stat_update(LWP_STAT_INBLK, 1); 6083 else 6084 lwp_stat_update(LWP_STAT_OUBLK, 1); 6085 /* 6086 * If the request is not B_ASYNC, wait for i/o to complete 6087 * and re-assemble the page list to return to the caller. 6088 * If it is B_ASYNC we leave the page list in pieces and 6089 * cleanup() will dispose of them. 6090 */ 6091 if ((flags & B_ASYNC) == 0) { 6092 err = biowait(bp); 6093 pageio_done(bp); 6094 if (err) 6095 break; 6096 page_list_concat(&opp, &cpp); 6097 } 6098 cpp = npp; 6099 npp = NULL; 6100 if (flags & B_READ) 6101 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6102 done_len += cur_len; 6103 } 6104 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6105 if (err) { 6106 if (flags & B_ASYNC) { 6107 /* Cleanup unprocessed parts of list */ 6108 page_list_concat(&cpp, &npp); 6109 if (flags & B_READ) 6110 pvn_read_done(cpp, B_ERROR); 6111 else 6112 pvn_write_done(cpp, B_ERROR); 6113 } else { 6114 /* Re-assemble list and let caller clean up */ 6115 page_list_concat(&opp, &cpp); 6116 page_list_concat(&opp, &npp); 6117 } 6118 } 6119 6120 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6121 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6122 mutex_enter(&ip->i_tlock); 6123 ip->i_flag |= IACC; 6124 ITIMES_NOLOCK(ip); 6125 mutex_exit(&ip->i_tlock); 6126 } 6127 6128 if (dolock) 6129 rw_exit(&ip->i_contents); 6130 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6131 cv_broadcast(&ulp->ul_cv); 6132 return (err); 6133 } 6134 6135 /* 6136 * Called when the kernel is in a frozen state to dump data 6137 * directly to the device. It uses a private dump data structure, 6138 * set up by dump_ctl, to locate the correct disk block to which to dump. 6139 */ 6140 /*ARGSUSED*/ 6141 static int 6142 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks, 6143 caller_context_t *ct) 6144 { 6145 u_offset_t file_size; 6146 struct inode *ip = VTOI(vp); 6147 struct fs *fs = ip->i_fs; 6148 daddr_t dbn, lfsbn; 6149 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6150 int error = 0; 6151 int ndbs, nfsbs; 6152 6153 /* 6154 * forced unmount case 6155 */ 6156 if (ip->i_ufsvfs == NULL) 6157 return (EIO); 6158 /* 6159 * Validate the inode that it has not been modified since 6160 * the dump structure is allocated. 6161 */ 6162 mutex_enter(&ip->i_tlock); 6163 if ((dump_info == NULL) || 6164 (dump_info->ip != ip) || 6165 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6166 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6167 mutex_exit(&ip->i_tlock); 6168 return (-1); 6169 } 6170 mutex_exit(&ip->i_tlock); 6171 6172 /* 6173 * See that the file has room for this write 6174 */ 6175 UFS_GET_ISIZE(&file_size, ip); 6176 6177 if (ldbtob(ldbn + dblks) > file_size) 6178 return (ENOSPC); 6179 6180 /* 6181 * Find the physical disk block numbers from the dump 6182 * private data structure directly and write out the data 6183 * in contiguous block lumps 6184 */ 6185 while (dblks > 0 && !error) { 6186 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn)); 6187 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6188 nfsbs = 1; 6189 ndbs = disk_blks - ldbn % disk_blks; 6190 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6191 nfsbs]) == dbn + ndbs) { 6192 nfsbs++; 6193 ndbs += disk_blks; 6194 } 6195 if (ndbs > dblks) 6196 ndbs = dblks; 6197 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6198 addr += ldbtob((offset_t)ndbs); 6199 dblks -= ndbs; 6200 ldbn += ndbs; 6201 } 6202 return (error); 6203 6204 } 6205 6206 /* 6207 * Prepare the file system before and after the dump operation. 6208 * 6209 * action = DUMP_ALLOC: 6210 * Preparation before dump, allocate dump private data structure 6211 * to hold all the direct and indirect block info for dump. 6212 * 6213 * action = DUMP_FREE: 6214 * Clean up after dump, deallocate the dump private data structure. 6215 * 6216 * action = DUMP_SCAN: 6217 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6218 * if found, the starting file-relative DEV_BSIZE lbn is written 6219 * to *bklp; that lbn is intended for use with VOP_DUMP() 6220 */ 6221 /*ARGSUSED*/ 6222 static int 6223 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct) 6224 { 6225 struct inode *ip = VTOI(vp); 6226 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6227 struct fs *fs; 6228 daddr32_t *dblk, *storeblk; 6229 daddr32_t *nextblk, *endblk; 6230 struct buf *bp; 6231 int i, entry, entries; 6232 int n, ncontig; 6233 6234 /* 6235 * check for forced unmount 6236 */ 6237 if (ufsvfsp == NULL) 6238 return (EIO); 6239 6240 if (action == DUMP_ALLOC) { 6241 /* 6242 * alloc and record dump_info 6243 */ 6244 if (dump_info != NULL) 6245 return (EINVAL); 6246 6247 ASSERT(vp->v_type == VREG); 6248 fs = ufsvfsp->vfs_fs; 6249 6250 rw_enter(&ip->i_contents, RW_READER); 6251 6252 if (bmap_has_holes(ip)) { 6253 rw_exit(&ip->i_contents); 6254 return (EFAULT); 6255 } 6256 6257 /* 6258 * calculate and allocate space needed according to i_size 6259 */ 6260 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6261 dump_info = kmem_alloc(sizeof (struct dump) + 6262 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6263 if (dump_info == NULL) { 6264 rw_exit(&ip->i_contents); 6265 return (ENOMEM); 6266 } 6267 6268 /* Start saving the info */ 6269 dump_info->fsbs = entries; 6270 dump_info->ip = ip; 6271 storeblk = &dump_info->dblk[0]; 6272 6273 /* Direct Blocks */ 6274 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6275 *storeblk++ = ip->i_db[entry]; 6276 6277 /* Indirect Blocks */ 6278 for (i = 0; i < NIADDR; i++) { 6279 int error = 0; 6280 6281 bp = UFS_BREAD(ufsvfsp, 6282 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6283 if (bp->b_flags & B_ERROR) 6284 error = EIO; 6285 else { 6286 dblk = bp->b_un.b_daddr; 6287 if ((storeblk = save_dblks(ip, ufsvfsp, 6288 storeblk, dblk, i, entries)) == NULL) 6289 error = EIO; 6290 } 6291 6292 brelse(bp); 6293 6294 if (error != 0) { 6295 kmem_free(dump_info, sizeof (struct dump) + 6296 (entries - 1) * sizeof (daddr32_t)); 6297 rw_exit(&ip->i_contents); 6298 dump_info = NULL; 6299 return (error); 6300 } 6301 } 6302 /* and time stamp the information */ 6303 mutex_enter(&ip->i_tlock); 6304 dump_info->time = ip->i_mtime; 6305 mutex_exit(&ip->i_tlock); 6306 6307 rw_exit(&ip->i_contents); 6308 } else if (action == DUMP_FREE) { 6309 /* 6310 * free dump_info 6311 */ 6312 if (dump_info == NULL) 6313 return (EINVAL); 6314 entries = dump_info->fsbs - 1; 6315 kmem_free(dump_info, sizeof (struct dump) + 6316 entries * sizeof (daddr32_t)); 6317 dump_info = NULL; 6318 } else if (action == DUMP_SCAN) { 6319 /* 6320 * scan dump_info 6321 */ 6322 if (dump_info == NULL) 6323 return (EINVAL); 6324 6325 dblk = dump_info->dblk; 6326 nextblk = dblk + 1; 6327 endblk = dblk + dump_info->fsbs - 1; 6328 fs = ufsvfsp->vfs_fs; 6329 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6330 6331 /* 6332 * scan dblk[] entries; contig fs space is found when: 6333 * ((current blkno + frags per block) == next blkno) 6334 */ 6335 n = 0; 6336 while (n < ncontig && dblk < endblk) { 6337 if ((*dblk + fs->fs_frag) == *nextblk) 6338 n++; 6339 else 6340 n = 0; 6341 dblk++; 6342 nextblk++; 6343 } 6344 6345 /* 6346 * index is where size bytes of contig space begins; 6347 * conversion from index to the file's DEV_BSIZE lbn 6348 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6349 */ 6350 if (n == ncontig) { 6351 i = (dblk - dump_info->dblk) - ncontig; 6352 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6353 } else 6354 return (EFAULT); 6355 } 6356 return (0); 6357 } 6358 6359 /* 6360 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6361 * system blocks until it reaches the the disk block addresses, which are 6362 * then stored into the given buffer, storeblk. 6363 */ 6364 static daddr32_t * 6365 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6366 daddr32_t *dblk, int level, int entries) 6367 { 6368 struct fs *fs = ufsvfsp->vfs_fs; 6369 struct buf *bp; 6370 int i; 6371 6372 if (level == 0) { 6373 for (i = 0; i < NINDIR(fs); i++) { 6374 if (storeblk - dump_info->dblk >= entries) 6375 break; 6376 *storeblk++ = dblk[i]; 6377 } 6378 return (storeblk); 6379 } 6380 for (i = 0; i < NINDIR(fs); i++) { 6381 if (storeblk - dump_info->dblk >= entries) 6382 break; 6383 bp = UFS_BREAD(ufsvfsp, 6384 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6385 if (bp->b_flags & B_ERROR) { 6386 brelse(bp); 6387 return (NULL); 6388 } 6389 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6390 level - 1, entries); 6391 brelse(bp); 6392 6393 if (storeblk == NULL) 6394 return (NULL); 6395 } 6396 return (storeblk); 6397 } 6398 6399 /* ARGSUSED */ 6400 static int 6401 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6402 struct cred *cr, caller_context_t *ct) 6403 { 6404 struct inode *ip = VTOI(vp); 6405 struct ulockfs *ulp; 6406 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6407 ulong_t vsa_mask = vsap->vsa_mask; 6408 int err = EINVAL; 6409 6410 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6411 6412 /* 6413 * Only grab locks if needed - they're not needed to check vsa_mask 6414 * or if the mask contains no acl flags. 6415 */ 6416 if (vsa_mask != 0) { 6417 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6418 ULOCKFS_GETATTR_MASK)) 6419 return (err); 6420 6421 rw_enter(&ip->i_contents, RW_READER); 6422 err = ufs_acl_get(ip, vsap, flag, cr); 6423 rw_exit(&ip->i_contents); 6424 6425 if (ulp) 6426 ufs_lockfs_end(ulp); 6427 } 6428 return (err); 6429 } 6430 6431 /* ARGSUSED */ 6432 static int 6433 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6434 caller_context_t *ct) 6435 { 6436 struct inode *ip = VTOI(vp); 6437 struct ulockfs *ulp = NULL; 6438 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6439 ulong_t vsa_mask = vsap->vsa_mask; 6440 int err; 6441 int haverwlock = 1; 6442 int trans_size; 6443 int donetrans = 0; 6444 int retry = 1; 6445 6446 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6447 6448 /* Abort now if the request is either empty or invalid. */ 6449 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6450 if ((vsa_mask == 0) || 6451 ((vsap->vsa_aclentp == NULL) && 6452 (vsap->vsa_dfaclentp == NULL))) { 6453 err = EINVAL; 6454 goto out; 6455 } 6456 6457 /* 6458 * Following convention, if this is a directory then we acquire the 6459 * inode's i_rwlock after starting a UFS logging transaction; 6460 * otherwise, we acquire it beforehand. Since we were called (and 6461 * must therefore return) with the lock held, we will have to drop it, 6462 * and later reacquire it, if operating on a directory. 6463 */ 6464 if (vp->v_type == VDIR) { 6465 rw_exit(&ip->i_rwlock); 6466 haverwlock = 0; 6467 } else { 6468 /* Upgrade the lock if required. */ 6469 if (!rw_write_held(&ip->i_rwlock)) { 6470 rw_exit(&ip->i_rwlock); 6471 rw_enter(&ip->i_rwlock, RW_WRITER); 6472 } 6473 } 6474 6475 again: 6476 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6477 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6478 ulp = NULL; 6479 retry = 0; 6480 goto out; 6481 } 6482 6483 /* 6484 * Check that the file system supports this operation. Note that 6485 * ufs_lockfs_begin() will have checked that the file system had 6486 * not been forcibly unmounted. 6487 */ 6488 if (ufsvfsp->vfs_fs->fs_ronly) { 6489 err = EROFS; 6490 goto out; 6491 } 6492 if (ufsvfsp->vfs_nosetsec) { 6493 err = ENOSYS; 6494 goto out; 6495 } 6496 6497 if (ulp) { 6498 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6499 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6500 donetrans = 1; 6501 } 6502 6503 if (vp->v_type == VDIR) { 6504 rw_enter(&ip->i_rwlock, RW_WRITER); 6505 haverwlock = 1; 6506 } 6507 6508 ASSERT(haverwlock); 6509 6510 /* Do the actual work. */ 6511 rw_enter(&ip->i_contents, RW_WRITER); 6512 /* 6513 * Suppress out of inodes messages if we will retry. 6514 */ 6515 if (retry) 6516 ip->i_flag |= IQUIET; 6517 err = ufs_acl_set(ip, vsap, flag, cr); 6518 ip->i_flag &= ~IQUIET; 6519 rw_exit(&ip->i_contents); 6520 6521 out: 6522 if (ulp) { 6523 if (donetrans) { 6524 /* 6525 * top_end_async() can eventually call 6526 * top_end_sync(), which can block. We must 6527 * therefore observe the lock-ordering protocol 6528 * here as well. 6529 */ 6530 if (vp->v_type == VDIR) { 6531 rw_exit(&ip->i_rwlock); 6532 haverwlock = 0; 6533 } 6534 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6535 } 6536 ufs_lockfs_end(ulp); 6537 } 6538 /* 6539 * If no inodes available, try scaring a logically- 6540 * free one out of the delete queue to someplace 6541 * that we can find it. 6542 */ 6543 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6544 ufs_delete_drain_wait(ufsvfsp, 1); 6545 retry = 0; 6546 if (vp->v_type == VDIR && haverwlock) { 6547 rw_exit(&ip->i_rwlock); 6548 haverwlock = 0; 6549 } 6550 goto again; 6551 } 6552 /* 6553 * If we need to reacquire the lock then it is safe to do so 6554 * as a reader. This is because ufs_rwunlock(), which will be 6555 * called by our caller after we return, does not differentiate 6556 * between shared and exclusive locks. 6557 */ 6558 if (!haverwlock) { 6559 ASSERT(vp->v_type == VDIR); 6560 rw_enter(&ip->i_rwlock, RW_READER); 6561 } 6562 6563 return (err); 6564 } 6565