1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 #include <sys/types.h> 37 #include <sys/t_lock.h> 38 #include <sys/ksynch.h> 39 #include <sys/param.h> 40 #include <sys/time.h> 41 #include <sys/systm.h> 42 #include <sys/sysmacros.h> 43 #include <sys/resource.h> 44 #include <sys/signal.h> 45 #include <sys/cred.h> 46 #include <sys/user.h> 47 #include <sys/buf.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/atomic.h> 57 #include <sys/kmem.h> 58 #include <sys/uio.h> 59 #include <sys/dnlc.h> 60 #include <sys/conf.h> 61 #include <sys/mman.h> 62 #include <sys/pathname.h> 63 #include <sys/debug.h> 64 #include <sys/vmsystm.h> 65 #include <sys/cmn_err.h> 66 #include <sys/filio.h> 67 #include <sys/policy.h> 68 69 #include <sys/fs/ufs_fs.h> 70 #include <sys/fs/ufs_lockfs.h> 71 #include <sys/fs/ufs_filio.h> 72 #include <sys/fs/ufs_inode.h> 73 #include <sys/fs/ufs_fsdir.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #include <sys/fs/ufs_snap.h> 77 #include <sys/fs/ufs_trans.h> 78 #include <sys/fs/ufs_panic.h> 79 #include <sys/fs/ufs_bio.h> 80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 81 #include <sys/errno.h> 82 #include <sys/fssnap_if.h> 83 #include <sys/unistd.h> 84 #include <sys/sunddi.h> 85 86 #include <sys/filio.h> /* _FIOIO */ 87 88 #include <vm/hat.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/as.h> 92 #include <vm/seg.h> 93 #include <vm/seg_map.h> 94 #include <vm/seg_vn.h> 95 #include <vm/seg_kmem.h> 96 #include <vm/rm.h> 97 #include <sys/swap.h> 98 99 #include <fs/fs_subr.h> 100 101 static struct instats ins; 102 103 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 104 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 105 caddr_t, struct page **, size_t, enum seg_rw, int); 106 static int ufs_open(struct vnode **, int, struct cred *); 107 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *); 108 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 109 struct caller_context *); 110 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 111 struct caller_context *); 112 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *); 113 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *); 114 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 115 caller_context_t *); 116 static int ufs_access(struct vnode *, int, int, struct cred *); 117 static int ufs_lookup(struct vnode *, char *, struct vnode **, 118 struct pathname *, int, struct vnode *, struct cred *); 119 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 120 int, struct vnode **, struct cred *, int); 121 static int ufs_remove(struct vnode *, char *, struct cred *); 122 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *); 123 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 124 struct cred *); 125 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 126 struct cred *); 127 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *); 128 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *); 129 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 130 struct cred *); 131 static int ufs_readlink(struct vnode *, struct uio *, struct cred *); 132 static int ufs_fsync(struct vnode *, int, struct cred *); 133 static void ufs_inactive(struct vnode *, struct cred *); 134 static int ufs_fid(struct vnode *, struct fid *); 135 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 136 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 137 static int ufs_seek(struct vnode *, offset_t, offset_t *); 138 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 139 struct flk_callback *, struct cred *); 140 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 141 cred_t *, caller_context_t *); 142 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 143 struct page **, size_t, struct seg *, caddr_t, 144 enum seg_rw, struct cred *); 145 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *); 146 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 147 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 148 uchar_t, uchar_t, uint_t, struct cred *); 149 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 150 uchar_t, uchar_t, uint_t, struct cred *); 151 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 152 uint_t, uint_t, uint_t, struct cred *); 153 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **); 154 static int ufs_dump(vnode_t *, caddr_t, int, int); 155 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *); 156 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 157 struct cred *); 158 static int ufs_dump(vnode_t *, caddr_t, int, int); 159 static int ufs_dumpctl(vnode_t *, int, int *); 160 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 161 daddr32_t *, int, int); 162 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 163 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 164 165 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 166 167 /* 168 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 169 * 170 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 171 */ 172 struct vnodeops *ufs_vnodeops; 173 174 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 175 const fs_operation_def_t ufs_vnodeops_template[] = { 176 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 177 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 178 VOPNAME_READ, { .vop_read = ufs_read }, 179 VOPNAME_WRITE, { .vop_write = ufs_write }, 180 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 181 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 182 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 183 VOPNAME_ACCESS, { .vop_access = ufs_access }, 184 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 185 VOPNAME_CREATE, { .vop_create = ufs_create }, 186 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 187 VOPNAME_LINK, { .vop_link = ufs_link }, 188 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 189 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 190 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 191 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 192 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 193 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 194 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 195 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 196 VOPNAME_FID, { .vop_fid = ufs_fid }, 197 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 198 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 199 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 200 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 201 VOPNAME_SPACE, { .vop_space = ufs_space }, 202 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 203 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 204 VOPNAME_MAP, { .vop_map = ufs_map }, 205 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 206 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 207 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 208 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 209 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 210 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 211 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 212 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 213 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 214 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 215 NULL, NULL 216 }; 217 218 #define MAX_BACKFILE_COUNT 9999 219 220 /* 221 * Created by ufs_dumpctl() to store a file's disk block info into memory. 222 * Used by ufs_dump() to dump data to disk directly. 223 */ 224 struct dump { 225 struct inode *ip; /* the file we contain */ 226 daddr_t fsbs; /* number of blocks stored */ 227 struct timeval32 time; /* time stamp for the struct */ 228 daddr32_t dblk[1]; /* place holder for block info */ 229 }; 230 231 static struct dump *dump_info = NULL; 232 233 /* 234 * Previously there was no special action required for ordinary files. 235 * (Devices are handled through the device file system.) 236 * Now we support Large Files and Large File API requires open to 237 * fail if file is large. 238 * We could take care to prevent data corruption 239 * by doing an atomic check of size and truncate if file is opened with 240 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 241 * layers. So taking care of truncation here is a change in the existing 242 * semantics of VOP_OPEN and therefore we chose not to implement any thing 243 * here. The check for the size of the file > 2GB is being done at the 244 * vfs layer in routine vn_open(). 245 */ 246 247 /* ARGSUSED */ 248 static int 249 ufs_open(struct vnode **vpp, int flag, struct cred *cr) 250 { 251 return (0); 252 } 253 254 /*ARGSUSED*/ 255 static int 256 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 257 struct cred *cr) 258 { 259 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 260 cleanshares(vp, ttoproc(curthread)->p_pid); 261 262 /* 263 * Push partially filled cluster at last close. 264 * ``last close'' is approximated because the dnlc 265 * may have a hold on the vnode. 266 * Checking for VBAD here will also act as a forced umount check. 267 */ 268 if (vp->v_count <= 2 && vp->v_type != VBAD) { 269 struct inode *ip = VTOI(vp); 270 if (ip->i_delaylen) { 271 ins.in_poc.value.ul++; 272 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 273 B_ASYNC | B_FREE, cr); 274 ip->i_delaylen = 0; 275 } 276 } 277 278 return (0); 279 } 280 281 /*ARGSUSED*/ 282 static int 283 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 284 struct caller_context *ct) 285 { 286 struct inode *ip = VTOI(vp); 287 struct ufsvfs *ufsvfsp; 288 struct ulockfs *ulp = NULL; 289 int error = 0; 290 int intrans = 0; 291 292 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 293 294 /* 295 * Mandatory locking needs to be done before ufs_lockfs_begin() 296 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 297 */ 298 if (MANDLOCK(vp, ip->i_mode)) { 299 /* 300 * ufs_getattr ends up being called by chklock 301 */ 302 error = chklock(vp, FREAD, uiop->uio_loffset, 303 uiop->uio_resid, uiop->uio_fmode, ct); 304 if (error) 305 goto out; 306 } 307 308 ufsvfsp = ip->i_ufsvfs; 309 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 310 if (error) 311 goto out; 312 313 /* 314 * In the case that a directory is opened for reading as a file 315 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 316 * The locking order had to be changed to avoid a deadlock with 317 * an update taking place on that directory at the same time. 318 */ 319 if ((ip->i_mode & IFMT) == IFDIR) { 320 321 rw_enter(&ip->i_contents, RW_READER); 322 error = rdip(ip, uiop, ioflag, cr); 323 rw_exit(&ip->i_contents); 324 325 if (error) { 326 if (ulp) 327 ufs_lockfs_end(ulp); 328 goto out; 329 } 330 331 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 332 TRANS_ISTRANS(ufsvfsp)) { 333 rw_exit(&ip->i_rwlock); 334 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 335 error); 336 ASSERT(!error); 337 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 338 TOP_READ_SIZE); 339 rw_enter(&ip->i_rwlock, RW_READER); 340 } 341 } else { 342 /* 343 * Only transact reads to files opened for sync-read and 344 * sync-write on a file system that is not write locked. 345 * 346 * The ``not write locked'' check prevents problems with 347 * enabling/disabling logging on a busy file system. E.g., 348 * logging exists at the beginning of the read but does not 349 * at the end. 350 * 351 */ 352 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 353 TRANS_ISTRANS(ufsvfsp)) { 354 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 355 error); 356 ASSERT(!error); 357 intrans = 1; 358 } 359 360 rw_enter(&ip->i_contents, RW_READER); 361 error = rdip(ip, uiop, ioflag, cr); 362 rw_exit(&ip->i_contents); 363 364 if (intrans) { 365 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 366 TOP_READ_SIZE); 367 } 368 } 369 370 if (ulp) { 371 ufs_lockfs_end(ulp); 372 } 373 out: 374 375 return (error); 376 } 377 378 extern int ufs_HW; /* high water mark */ 379 extern int ufs_LW; /* low water mark */ 380 int ufs_WRITES = 1; /* XXX - enable/disable */ 381 int ufs_throttles = 0; /* throttling count */ 382 int ufs_allow_shared_writes = 1; /* directio shared writes */ 383 384 static int 385 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 386 { 387 int shared_write; 388 389 /* 390 * If the FDSYNC flag is set then ignore the global 391 * ufs_allow_shared_writes in this case. 392 */ 393 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 394 395 /* 396 * Filter to determine if this request is suitable as a 397 * concurrent rewrite. This write must not allocate blocks 398 * by extending the file or filling in holes. No use trying 399 * through FSYNC descriptors as the inode will be synchronously 400 * updated after the write. The uio structure has not yet been 401 * checked for sanity, so assume nothing. 402 */ 403 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 404 (uiop->uio_loffset >= (offset_t)0) && 405 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 406 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 407 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 408 shared_write); 409 } 410 411 /*ARGSUSED*/ 412 static int 413 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 414 caller_context_t *ct) 415 { 416 struct inode *ip = VTOI(vp); 417 struct ufsvfs *ufsvfsp; 418 struct ulockfs *ulp; 419 int retry = 1; 420 int error, resv, resid = 0; 421 int directio_status; 422 int exclusive; 423 int rewriteflg; 424 long start_resid = uiop->uio_resid; 425 426 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 427 428 retry_mandlock: 429 /* 430 * Mandatory locking needs to be done before ufs_lockfs_begin() 431 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 432 * Check for forced unmounts normally done in ufs_lockfs_begin(). 433 */ 434 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 435 error = EIO; 436 goto out; 437 } 438 if (MANDLOCK(vp, ip->i_mode)) { 439 440 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 441 442 /* 443 * ufs_getattr ends up being called by chklock 444 */ 445 error = chklock(vp, FWRITE, uiop->uio_loffset, 446 uiop->uio_resid, uiop->uio_fmode, ct); 447 if (error) 448 goto out; 449 } 450 451 /* i_rwlock can change in chklock */ 452 exclusive = rw_write_held(&ip->i_rwlock); 453 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 454 455 /* 456 * Check for fast-path special case of directio re-writes. 457 */ 458 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 459 !exclusive && rewriteflg) { 460 461 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 462 if (error) 463 goto out; 464 465 rw_enter(&ip->i_contents, RW_READER); 466 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 467 &directio_status); 468 if (directio_status == DIRECTIO_SUCCESS) { 469 uint_t i_flag_save; 470 471 if (start_resid != uiop->uio_resid) 472 error = 0; 473 /* 474 * Special treatment of access times for re-writes. 475 * If IMOD is not already set, then convert it 476 * to IMODACC for this operation. This defers 477 * entering a delta into the log until the inode 478 * is flushed. This mimics what is done for read 479 * operations and inode access time. 480 */ 481 mutex_enter(&ip->i_tlock); 482 i_flag_save = ip->i_flag; 483 ip->i_flag |= IUPD | ICHG; 484 ip->i_seq++; 485 ITIMES_NOLOCK(ip); 486 if ((i_flag_save & IMOD) == 0) { 487 ip->i_flag &= ~IMOD; 488 ip->i_flag |= IMODACC; 489 } 490 mutex_exit(&ip->i_tlock); 491 rw_exit(&ip->i_contents); 492 if (ulp) 493 ufs_lockfs_end(ulp); 494 goto out; 495 } 496 rw_exit(&ip->i_contents); 497 if (ulp) 498 ufs_lockfs_end(ulp); 499 } 500 501 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 502 rw_exit(&ip->i_rwlock); 503 rw_enter(&ip->i_rwlock, RW_WRITER); 504 /* 505 * Mandatory locking could have been enabled 506 * after dropping the i_rwlock. 507 */ 508 if (MANDLOCK(vp, ip->i_mode)) 509 goto retry_mandlock; 510 } 511 512 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 513 if (error) 514 goto out; 515 516 /* 517 * Amount of log space needed for this write 518 */ 519 if (!rewriteflg || !(ioflag & FDSYNC)) 520 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 521 522 /* 523 * Throttle writes. 524 */ 525 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 526 mutex_enter(&ip->i_tlock); 527 while (ip->i_writes > ufs_HW) { 528 ufs_throttles++; 529 cv_wait(&ip->i_wrcv, &ip->i_tlock); 530 } 531 mutex_exit(&ip->i_tlock); 532 } 533 534 /* 535 * Enter Transaction 536 * 537 * If the write is a rewrite there is no need to open a transaction 538 * if the FDSYNC flag is set and not the FSYNC. In this case just 539 * set the IMODACC flag to modify do the update at a later time 540 * thus avoiding the overhead of the logging transaction that is 541 * not required. 542 */ 543 if (ioflag & (FSYNC|FDSYNC)) { 544 if (ulp) { 545 if (rewriteflg) { 546 uint_t i_flag_save; 547 548 rw_enter(&ip->i_contents, RW_READER); 549 mutex_enter(&ip->i_tlock); 550 i_flag_save = ip->i_flag; 551 ip->i_flag |= IUPD | ICHG; 552 ip->i_seq++; 553 ITIMES_NOLOCK(ip); 554 if ((i_flag_save & IMOD) == 0) { 555 ip->i_flag &= ~IMOD; 556 ip->i_flag |= IMODACC; 557 } 558 mutex_exit(&ip->i_tlock); 559 rw_exit(&ip->i_contents); 560 } else { 561 int terr = 0; 562 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 563 terr); 564 ASSERT(!terr); 565 } 566 } 567 } else { 568 if (ulp) 569 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 570 } 571 572 /* 573 * Write the file 574 */ 575 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 576 rw_enter(&ip->i_contents, RW_WRITER); 577 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 578 /* 579 * In append mode start at end of file. 580 */ 581 uiop->uio_loffset = ip->i_size; 582 } 583 584 /* 585 * Mild optimisation, don't call ufs_trans_write() unless we have to 586 * Also, suppress file system full messages if we will retry. 587 */ 588 if (retry) 589 ip->i_flag |= IQUIET; 590 if (resid) { 591 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 592 } else { 593 error = wrip(ip, uiop, ioflag, cr); 594 } 595 ip->i_flag &= ~IQUIET; 596 597 rw_exit(&ip->i_contents); 598 rw_exit(&ufsvfsp->vfs_dqrwlock); 599 600 /* 601 * Leave Transaction 602 */ 603 if (ulp) { 604 if (ioflag & (FSYNC|FDSYNC)) { 605 if (!rewriteflg) { 606 int terr = 0; 607 608 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 609 resv); 610 if (error == 0) 611 error = terr; 612 } 613 } else { 614 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 615 } 616 ufs_lockfs_end(ulp); 617 } 618 out: 619 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 620 /* 621 * Any blocks tied up in pending deletes? 622 */ 623 ufs_delete_drain_wait(ufsvfsp, 1); 624 retry = 0; 625 goto retry_mandlock; 626 } 627 628 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 629 error = 0; 630 631 return (error); 632 } 633 634 /* 635 * Don't cache write blocks to files with the sticky bit set. 636 * Used to keep swap files from blowing the page cache on a server. 637 */ 638 int stickyhack = 1; 639 640 /* 641 * Free behind hacks. The pager is busted. 642 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 643 * or B_FREE_IF_TIGHT_ON_MEMORY. 644 */ 645 int freebehind = 1; 646 int smallfile = 0; 647 u_offset_t smallfile64 = 32 * 1024; 648 649 /* 650 * While we should, in most cases, cache the pages for write, we 651 * may also want to cache the pages for read as long as they are 652 * frequently re-usable. 653 * 654 * If cache_read_ahead = 1, the pages for read will go to the tail 655 * of the cache list when they are released, otherwise go to the head. 656 */ 657 int cache_read_ahead = 0; 658 659 /* 660 * Freebehind exists so that as we read large files sequentially we 661 * don't consume most of memory with pages from a few files. It takes 662 * longer to re-read from disk multiple small files as it does reading 663 * one large one sequentially. As system memory grows customers need 664 * to retain bigger chunks of files in memory. The advent of the 665 * cachelist opens up of the possibility freeing pages to the head or 666 * tail of the list. 667 * 668 * Not freeing a page is a bet that the page will be read again before 669 * it's segmap slot is needed for something else. If we loose the bet, 670 * it means some other thread is burdened with the page free we did 671 * not do. If we win we save a free and reclaim. 672 * 673 * Freeing it at the tail vs the head of cachelist is a bet that the 674 * page will survive until the next read. It's also saying that this 675 * page is more likely to be re-used than a page freed some time ago 676 * and never reclaimed. 677 * 678 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 679 * 680 * 0 < offset < smallfile1 : pages are not freed. 681 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 682 * smallfile2 < offset : pages freed to head of cachelist. 683 * 684 * The range is computed at most once per second and depends on 685 * freemem and ncpus_online. Both parameters are bounded to be 686 * >= smallfile && >= smallfile64. 687 * 688 * smallfile1 = (free memory / ncpu) / 1000 689 * smallfile2 = (free memory / ncpu) / 10 690 * 691 * A few examples values: 692 * 693 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 694 * ncpus_online = 4 ncpus_online = 64 695 * ------------------ ----------------------- ----------------------- 696 * 1G [256K; 25M] [32K; 1.5M] 697 * 10G [2.5M; 250M] [156K; 15M] 698 * 100G [25M; 2.5G] [1.5M; 150M] 699 * 700 */ 701 702 #define SMALLFILE1_D 1000 703 #define SMALLFILE2_D 10 704 static u_offset_t smallfile1 = 32 * 1024; 705 static u_offset_t smallfile2 = 32 * 1024; 706 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 707 uint_t smallfile1_d = SMALLFILE1_D; 708 uint_t smallfile2_d = SMALLFILE2_D; 709 710 /* 711 * wrip does the real work of write requests for ufs. 712 */ 713 int 714 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 715 { 716 rlim64_t limit = uio->uio_llimit; 717 u_offset_t off; 718 u_offset_t old_i_size; 719 struct fs *fs; 720 struct vnode *vp; 721 struct ufsvfs *ufsvfsp; 722 caddr_t base; 723 long start_resid = uio->uio_resid; /* save starting resid */ 724 long premove_resid; /* resid before uiomove() */ 725 uint_t flags; 726 int newpage; 727 int iupdat_flag, directio_status; 728 int n, on, mapon; 729 int error, pagecreate; 730 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 731 int32_t iblocks; 732 int new_iblocks; 733 734 /* 735 * ip->i_size is incremented before the uiomove 736 * is done on a write. If the move fails (bad user 737 * address) reset ip->i_size. 738 * The better way would be to increment ip->i_size 739 * only if the uiomove succeeds. 740 */ 741 int i_size_changed = 0; 742 o_mode_t type; 743 int i_seq_needed = 0; 744 745 vp = ITOV(ip); 746 747 /* 748 * check for forced unmount - should not happen as 749 * the request passed the lockfs checks. 750 */ 751 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 752 return (EIO); 753 754 fs = ip->i_fs; 755 756 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 757 758 /* check for valid filetype */ 759 type = ip->i_mode & IFMT; 760 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 761 (type != IFLNK) && (type != IFSHAD)) { 762 return (EIO); 763 } 764 765 /* 766 * the actual limit of UFS file size 767 * is UFS_MAXOFFSET_T 768 */ 769 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 770 limit = MAXOFFSET_T; 771 772 if (uio->uio_loffset >= limit) { 773 proc_t *p = ttoproc(curthread); 774 775 mutex_enter(&p->p_lock); 776 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 777 p, RCA_UNSAFE_SIGINFO); 778 mutex_exit(&p->p_lock); 779 return (EFBIG); 780 } 781 782 /* 783 * if largefiles are disallowed, the limit is 784 * the pre-largefiles value of 2GB 785 */ 786 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 787 limit = MIN(UFS_MAXOFFSET_T, limit); 788 else 789 limit = MIN(MAXOFF32_T, limit); 790 791 if (uio->uio_loffset < (offset_t)0) { 792 return (EINVAL); 793 } 794 if (uio->uio_resid == 0) { 795 return (0); 796 } 797 798 if (uio->uio_loffset >= limit) 799 return (EFBIG); 800 801 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 802 803 if (ioflag & (FSYNC|FDSYNC)) { 804 ip->i_flag |= ISYNC; 805 iupdat_flag = 1; 806 } 807 /* 808 * Try to go direct 809 */ 810 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 811 uio->uio_llimit = limit; 812 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 813 &directio_status); 814 /* 815 * If ufs_directio wrote to the file or set the flags, 816 * we need to update i_seq, but it may be deferred. 817 */ 818 if (start_resid != uio->uio_resid || 819 (ip->i_flag & (ICHG|IUPD))) { 820 i_seq_needed = 1; 821 ip->i_flag |= ISEQ; 822 } 823 if (directio_status == DIRECTIO_SUCCESS) 824 goto out; 825 } 826 827 /* 828 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 829 * 830 * o shadow inodes: vfs_dqrwlock is not held at all 831 * o quota updates: vfs_dqrwlock is read or write held 832 * o other updates: vfs_dqrwlock is read held 833 * 834 * The first case is the only one where we do not hold 835 * vfs_dqrwlock at all while entering wrip(). 836 * We must make sure not to downgrade/drop vfs_dqrwlock if we 837 * have it as writer, i.e. if we are updating the quota inode. 838 * There is no potential deadlock scenario in this case as 839 * ufs_getpage() takes care of this and avoids reacquiring 840 * vfs_dqrwlock in that case. 841 * 842 * This check is done here since the above conditions do not change 843 * and we possibly loop below, so save a few cycles. 844 */ 845 if ((type == IFSHAD) || 846 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 847 do_dqrwlock = 0; 848 } else { 849 do_dqrwlock = 1; 850 } 851 852 /* 853 * Large Files: We cast MAXBMASK to offset_t 854 * inorder to mask out the higher bits. Since offset_t 855 * is a signed value, the high order bit set in MAXBMASK 856 * value makes it do the right thing by having all bits 1 857 * in the higher word. May be removed for _SOLARIS64_. 858 */ 859 860 fs = ip->i_fs; 861 do { 862 u_offset_t uoff = uio->uio_loffset; 863 off = uoff & (offset_t)MAXBMASK; 864 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 865 on = (int)blkoff(fs, uoff); 866 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 867 new_iblocks = 1; 868 869 if (type == IFREG && uoff + n >= limit) { 870 if (uoff >= limit) { 871 error = EFBIG; 872 goto out; 873 } 874 /* 875 * since uoff + n >= limit, 876 * therefore n >= limit - uoff, and n is an int 877 * so it is safe to cast it to an int 878 */ 879 n = (int)(limit - (rlim64_t)uoff); 880 } 881 if (uoff + n > ip->i_size) { 882 /* 883 * We are extending the length of the file. 884 * bmap is used so that we are sure that 885 * if we need to allocate new blocks, that it 886 * is done here before we up the file size. 887 */ 888 error = bmap_write(ip, uoff, (int)(on + n), 889 mapon == 0, NULL, cr); 890 /* 891 * bmap_write never drops i_contents so if 892 * the flags are set it changed the file. 893 */ 894 if (ip->i_flag & (ICHG|IUPD)) { 895 i_seq_needed = 1; 896 ip->i_flag |= ISEQ; 897 } 898 if (error) 899 break; 900 /* 901 * There is a window of vulnerability here. 902 * The sequence of operations: allocate file 903 * system blocks, uiomove the data into pages, 904 * and then update the size of the file in the 905 * inode, must happen atomically. However, due 906 * to current locking constraints, this can not 907 * be done. 908 */ 909 ASSERT(ip->i_writer == NULL); 910 ip->i_writer = curthread; 911 i_size_changed = 1; 912 /* 913 * If we are writing from the beginning of 914 * the mapping, we can just create the 915 * pages without having to read them. 916 */ 917 pagecreate = (mapon == 0); 918 } else if (n == MAXBSIZE) { 919 /* 920 * Going to do a whole mappings worth, 921 * so we can just create the pages w/o 922 * having to read them in. But before 923 * we do that, we need to make sure any 924 * needed blocks are allocated first. 925 */ 926 iblocks = ip->i_blocks; 927 error = bmap_write(ip, uoff, (int)(on + n), 928 BI_ALLOC_ONLY, NULL, cr); 929 /* 930 * bmap_write never drops i_contents so if 931 * the flags are set it changed the file. 932 */ 933 if (ip->i_flag & (ICHG|IUPD)) { 934 i_seq_needed = 1; 935 ip->i_flag |= ISEQ; 936 } 937 if (error) 938 break; 939 pagecreate = 1; 940 /* 941 * check if the new created page needed the 942 * allocation of new disk blocks. 943 */ 944 if (iblocks == ip->i_blocks) 945 new_iblocks = 0; /* no new blocks allocated */ 946 } else { 947 pagecreate = 0; 948 /* 949 * In sync mode flush the indirect blocks which 950 * may have been allocated and not written on 951 * disk. In above cases bmap_write will allocate 952 * in sync mode. 953 */ 954 if (ioflag & (FSYNC|FDSYNC)) { 955 error = ufs_indirblk_sync(ip, uoff); 956 if (error) 957 break; 958 } 959 } 960 961 /* 962 * At this point we can enter ufs_getpage() in one 963 * of two ways: 964 * 1) segmap_getmapflt() calls ufs_getpage() when the 965 * forcefault parameter is true (pagecreate == 0) 966 * 2) uiomove() causes a page fault. 967 * 968 * We have to drop the contents lock to prevent the VM 969 * system from trying to reaquire it in ufs_getpage() 970 * should the uiomove cause a pagefault. 971 * 972 * We have to drop the reader vfs_dqrwlock here as well. 973 */ 974 rw_exit(&ip->i_contents); 975 if (do_dqrwlock) { 976 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 977 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 978 rw_exit(&ufsvfsp->vfs_dqrwlock); 979 } 980 981 newpage = 0; 982 premove_resid = uio->uio_resid; 983 if (vpm_enable) { 984 /* 985 * Copy data. If new pages are created, part of 986 * the page that is not written will be initizliazed 987 * with zeros. 988 */ 989 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 990 uio, !pagecreate, &newpage, 0, S_WRITE); 991 } else { 992 993 base = segmap_getmapflt(segkmap, vp, (off + mapon), 994 (uint_t)n, !pagecreate, S_WRITE); 995 996 /* 997 * segmap_pagecreate() returns 1 if it calls 998 * page_create_va() to allocate any pages. 999 */ 1000 1001 if (pagecreate) 1002 newpage = segmap_pagecreate(segkmap, base, 1003 (size_t)n, 0); 1004 1005 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1006 } 1007 1008 /* 1009 * If "newpage" is set, then a new page was created and it 1010 * does not contain valid data, so it needs to be initialized 1011 * at this point. 1012 * Otherwise the page contains old data, which was overwritten 1013 * partially or as a whole in uiomove. 1014 * If there is only one iovec structure within uio, then 1015 * on error uiomove will not be able to update uio->uio_loffset 1016 * and we would zero the whole page here! 1017 * 1018 * If uiomove fails because of an error, the old valid data 1019 * is kept instead of filling the rest of the page with zero's. 1020 */ 1021 if (!vpm_enable && newpage && 1022 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1023 /* 1024 * We created pages w/o initializing them completely, 1025 * thus we need to zero the part that wasn't set up. 1026 * This happens on most EOF write cases and if 1027 * we had some sort of error during the uiomove. 1028 */ 1029 int nzero, nmoved; 1030 1031 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1032 ASSERT(nmoved >= 0 && nmoved <= n); 1033 nzero = roundup(on + n, PAGESIZE) - nmoved; 1034 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1035 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1036 } 1037 1038 /* 1039 * Unlock the pages allocated by page_create_va() 1040 * in segmap_pagecreate() 1041 */ 1042 if (!vpm_enable && newpage) 1043 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1044 1045 /* 1046 * If the size of the file changed, then update the 1047 * size field in the inode now. This can't be done 1048 * before the call to segmap_pageunlock or there is 1049 * a potential deadlock with callers to ufs_putpage(). 1050 * They will be holding i_contents and trying to lock 1051 * a page, while this thread is holding a page locked 1052 * and trying to acquire i_contents. 1053 */ 1054 if (i_size_changed) { 1055 rw_enter(&ip->i_contents, RW_WRITER); 1056 old_i_size = ip->i_size; 1057 UFS_SET_ISIZE(uoff + n, ip); 1058 TRANS_INODE(ufsvfsp, ip); 1059 /* 1060 * file has grown larger than 2GB. Set flag 1061 * in superblock to indicate this, if it 1062 * is not already set. 1063 */ 1064 if ((ip->i_size > MAXOFF32_T) && 1065 !(fs->fs_flags & FSLARGEFILES)) { 1066 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1067 mutex_enter(&ufsvfsp->vfs_lock); 1068 fs->fs_flags |= FSLARGEFILES; 1069 ufs_sbwrite(ufsvfsp); 1070 mutex_exit(&ufsvfsp->vfs_lock); 1071 } 1072 mutex_enter(&ip->i_tlock); 1073 ip->i_writer = NULL; 1074 cv_broadcast(&ip->i_wrcv); 1075 mutex_exit(&ip->i_tlock); 1076 rw_exit(&ip->i_contents); 1077 } 1078 1079 if (error) { 1080 /* 1081 * If we failed on a write, we may have already 1082 * allocated file blocks as well as pages. It's 1083 * hard to undo the block allocation, but we must 1084 * be sure to invalidate any pages that may have 1085 * been allocated. 1086 * 1087 * If the page was created without initialization 1088 * then we must check if it should be possible 1089 * to destroy the new page and to keep the old data 1090 * on the disk. 1091 * 1092 * It is possible to destroy the page without 1093 * having to write back its contents only when 1094 * - the size of the file keeps unchanged 1095 * - bmap_write() did not allocate new disk blocks 1096 * it is possible to create big files using "seek" and 1097 * write to the end of the file. A "write" to a 1098 * position before the end of the file would not 1099 * change the size of the file but it would allocate 1100 * new disk blocks. 1101 * - uiomove intended to overwrite the whole page. 1102 * - a new page was created (newpage == 1). 1103 */ 1104 1105 if (i_size_changed == 0 && new_iblocks == 0 && 1106 newpage) { 1107 1108 /* unwind what uiomove eventually last did */ 1109 uio->uio_resid = premove_resid; 1110 1111 /* 1112 * destroy the page, do not write ambiguous 1113 * data to the disk. 1114 */ 1115 flags = SM_DESTROY; 1116 } else { 1117 /* 1118 * write the page back to the disk, if dirty, 1119 * and remove the page from the cache. 1120 */ 1121 flags = SM_INVAL; 1122 } 1123 1124 if (vpm_enable) { 1125 /* 1126 * Flush pages. 1127 */ 1128 (void) vpm_sync_pages(vp, off, n, flags); 1129 } else { 1130 (void) segmap_release(segkmap, base, flags); 1131 } 1132 } else { 1133 flags = 0; 1134 /* 1135 * Force write back for synchronous write cases. 1136 */ 1137 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1138 /* 1139 * If the sticky bit is set but the 1140 * execute bit is not set, we do a 1141 * synchronous write back and free 1142 * the page when done. We set up swap 1143 * files to be handled this way to 1144 * prevent servers from keeping around 1145 * the client's swap pages too long. 1146 * XXX - there ought to be a better way. 1147 */ 1148 if (IS_SWAPVP(vp)) { 1149 flags = SM_WRITE | SM_FREE | 1150 SM_DONTNEED; 1151 iupdat_flag = 0; 1152 } else { 1153 flags = SM_WRITE; 1154 } 1155 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1156 /* 1157 * Have written a whole block. 1158 * Start an asynchronous write and 1159 * mark the buffer to indicate that 1160 * it won't be needed again soon. 1161 */ 1162 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1163 } 1164 if (vpm_enable) { 1165 /* 1166 * Flush pages. 1167 */ 1168 error = vpm_sync_pages(vp, off, n, flags); 1169 } else { 1170 error = segmap_release(segkmap, base, flags); 1171 } 1172 /* 1173 * If the operation failed and is synchronous, 1174 * then we need to unwind what uiomove() last 1175 * did so we can potentially return an error to 1176 * the caller. If this write operation was 1177 * done in two pieces and the first succeeded, 1178 * then we won't return an error for the second 1179 * piece that failed. However, we only want to 1180 * return a resid value that reflects what was 1181 * really done. 1182 * 1183 * Failures for non-synchronous operations can 1184 * be ignored since the page subsystem will 1185 * retry the operation until it succeeds or the 1186 * file system is unmounted. 1187 */ 1188 if (error) { 1189 if ((ioflag & (FSYNC | FDSYNC)) || 1190 type == IFDIR) { 1191 uio->uio_resid = premove_resid; 1192 } else { 1193 error = 0; 1194 } 1195 } 1196 } 1197 1198 /* 1199 * Re-acquire contents lock. 1200 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1201 */ 1202 if (do_dqrwlock) 1203 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1204 rw_enter(&ip->i_contents, RW_WRITER); 1205 1206 /* 1207 * If the uiomove() failed or if a synchronous 1208 * page push failed, fix up i_size. 1209 */ 1210 if (error) { 1211 if (i_size_changed) { 1212 /* 1213 * The uiomove failed, and we 1214 * allocated blocks,so get rid 1215 * of them. 1216 */ 1217 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1218 } 1219 } else { 1220 /* 1221 * XXX - Can this be out of the loop? 1222 */ 1223 ip->i_flag |= IUPD | ICHG; 1224 /* 1225 * Only do one increase of i_seq for multiple 1226 * pieces. Because we drop locks, record 1227 * the fact that we changed the timestamp and 1228 * are deferring the increase in case another thread 1229 * pushes our timestamp update. 1230 */ 1231 i_seq_needed = 1; 1232 ip->i_flag |= ISEQ; 1233 if (i_size_changed) 1234 ip->i_flag |= IATTCHG; 1235 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1236 (IEXEC >> 6))) != 0 && 1237 (ip->i_mode & (ISUID | ISGID)) != 0 && 1238 secpolicy_vnode_setid_retain(cr, 1239 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1240 /* 1241 * Clear Set-UID & Set-GID bits on 1242 * successful write if not privileged 1243 * and at least one of the execute bits 1244 * is set. If we always clear Set-GID, 1245 * mandatory file and record locking is 1246 * unuseable. 1247 */ 1248 ip->i_mode &= ~(ISUID | ISGID); 1249 } 1250 } 1251 /* 1252 * In the case the FDSYNC flag is set and this is a 1253 * "rewrite" we won't log a delta. 1254 * The FSYNC flag overrides all cases. 1255 */ 1256 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1257 TRANS_INODE(ufsvfsp, ip); 1258 } 1259 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1260 1261 out: 1262 /* 1263 * Make sure i_seq is increased at least once per write 1264 */ 1265 if (i_seq_needed) { 1266 ip->i_seq++; 1267 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1268 } 1269 1270 /* 1271 * Inode is updated according to this table - 1272 * 1273 * FSYNC FDSYNC(posix.4) 1274 * -------------------------- 1275 * always@ IATTCHG|IBDWRITE 1276 * 1277 * @ - If we are doing synchronous write the only time we should 1278 * not be sync'ing the ip here is if we have the stickyhack 1279 * activated, the file is marked with the sticky bit and 1280 * no exec bit, the file length has not been changed and 1281 * no new blocks have been allocated during this write. 1282 */ 1283 1284 if ((ip->i_flag & ISYNC) != 0) { 1285 /* 1286 * we have eliminated nosync 1287 */ 1288 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1289 ((ioflag & FSYNC) && iupdat_flag)) { 1290 ufs_iupdat(ip, 1); 1291 } 1292 } 1293 1294 /* 1295 * If we've already done a partial-write, terminate 1296 * the write but return no error unless the error is ENOSPC 1297 * because the caller can detect this and free resources and 1298 * try again. 1299 */ 1300 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1301 error = 0; 1302 1303 ip->i_flag &= ~(INOACC | ISYNC); 1304 ITIMES_NOLOCK(ip); 1305 return (error); 1306 } 1307 1308 /* 1309 * rdip does the real work of read requests for ufs. 1310 */ 1311 int 1312 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1313 { 1314 u_offset_t off; 1315 caddr_t base; 1316 struct fs *fs; 1317 struct ufsvfs *ufsvfsp; 1318 struct vnode *vp; 1319 long oresid = uio->uio_resid; 1320 u_offset_t n, on, mapon; 1321 int error = 0; 1322 int doupdate = 1; 1323 uint_t flags; 1324 int dofree, directio_status; 1325 krw_t rwtype; 1326 o_mode_t type; 1327 1328 vp = ITOV(ip); 1329 1330 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1331 1332 ufsvfsp = ip->i_ufsvfs; 1333 1334 if (ufsvfsp == NULL) 1335 return (EIO); 1336 1337 fs = ufsvfsp->vfs_fs; 1338 1339 /* check for valid filetype */ 1340 type = ip->i_mode & IFMT; 1341 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1342 (type != IFLNK) && (type != IFSHAD)) { 1343 return (EIO); 1344 } 1345 1346 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1347 error = 0; 1348 goto out; 1349 } 1350 if (uio->uio_loffset < (offset_t)0) { 1351 return (EINVAL); 1352 } 1353 if (uio->uio_resid == 0) { 1354 return (0); 1355 } 1356 1357 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1358 (!ufsvfsp->vfs_noatime)) { 1359 mutex_enter(&ip->i_tlock); 1360 ip->i_flag |= IACC; 1361 mutex_exit(&ip->i_tlock); 1362 } 1363 /* 1364 * Try to go direct 1365 */ 1366 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1367 error = ufs_directio_read(ip, uio, cr, &directio_status); 1368 if (directio_status == DIRECTIO_SUCCESS) 1369 goto out; 1370 } 1371 1372 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1373 1374 do { 1375 offset_t diff; 1376 u_offset_t uoff = uio->uio_loffset; 1377 off = uoff & (offset_t)MAXBMASK; 1378 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1379 on = (u_offset_t)blkoff(fs, uoff); 1380 n = MIN((u_offset_t)fs->fs_bsize - on, 1381 (u_offset_t)uio->uio_resid); 1382 1383 diff = ip->i_size - uoff; 1384 1385 if (diff <= (offset_t)0) { 1386 error = 0; 1387 goto out; 1388 } 1389 if (diff < (offset_t)n) 1390 n = (int)diff; 1391 1392 /* 1393 * We update smallfile2 and smallfile1 at most every second. 1394 */ 1395 if (lbolt >= smallfile_update) { 1396 uint64_t percpufreeb; 1397 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1398 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1399 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1400 smallfile1 = percpufreeb / smallfile1_d; 1401 smallfile2 = percpufreeb / smallfile2_d; 1402 smallfile1 = MAX(smallfile1, smallfile); 1403 smallfile1 = MAX(smallfile1, smallfile64); 1404 smallfile2 = MAX(smallfile1, smallfile2); 1405 smallfile_update = lbolt + hz; 1406 } 1407 1408 dofree = freebehind && 1409 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1410 1411 /* 1412 * At this point we can enter ufs_getpage() in one of two 1413 * ways: 1414 * 1) segmap_getmapflt() calls ufs_getpage() when the 1415 * forcefault parameter is true (value of 1 is passed) 1416 * 2) uiomove() causes a page fault. 1417 * 1418 * We cannot hold onto an i_contents reader lock without 1419 * risking deadlock in ufs_getpage() so drop a reader lock. 1420 * The ufs_getpage() dolock logic already allows for a 1421 * thread holding i_contents as writer to work properly 1422 * so we keep a writer lock. 1423 */ 1424 if (rwtype == RW_READER) 1425 rw_exit(&ip->i_contents); 1426 1427 if (vpm_enable) { 1428 /* 1429 * Copy data. 1430 */ 1431 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1432 uio, 1, NULL, 0, S_READ); 1433 } else { 1434 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1435 (uint_t)n, 1, S_READ); 1436 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1437 } 1438 1439 flags = 0; 1440 if (!error) { 1441 /* 1442 * If reading sequential we won't need this 1443 * buffer again soon. For offsets in range 1444 * [smallfile1, smallfile2] release the pages 1445 * at the tail of the cache list, larger 1446 * offsets are released at the head. 1447 */ 1448 if (dofree) { 1449 flags = SM_FREE | SM_ASYNC; 1450 if ((cache_read_ahead == 0) && 1451 (off > smallfile2)) 1452 flags |= SM_DONTNEED; 1453 } 1454 /* 1455 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1456 * we want to make sure that the page which has 1457 * been read, is written on disk if it is dirty. 1458 * And corresponding indirect blocks should also 1459 * be flushed out. 1460 */ 1461 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1462 flags &= ~SM_ASYNC; 1463 flags |= SM_WRITE; 1464 } 1465 if (vpm_enable) { 1466 error = vpm_sync_pages(vp, off, n, flags); 1467 } else { 1468 error = segmap_release(segkmap, base, flags); 1469 } 1470 } else { 1471 if (vpm_enable) { 1472 (void) vpm_sync_pages(vp, off, n, flags); 1473 } else { 1474 (void) segmap_release(segkmap, base, flags); 1475 } 1476 } 1477 1478 if (rwtype == RW_READER) 1479 rw_enter(&ip->i_contents, rwtype); 1480 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1481 out: 1482 /* 1483 * Inode is updated according to this table if FRSYNC is set. 1484 * 1485 * FSYNC FDSYNC(posix.4) 1486 * -------------------------- 1487 * always IATTCHG|IBDWRITE 1488 */ 1489 /* 1490 * The inode is not updated if we're logging and the inode is a 1491 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1492 */ 1493 if (ioflag & FRSYNC) { 1494 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1495 doupdate = 0; 1496 } 1497 if (doupdate) { 1498 if ((ioflag & FSYNC) || 1499 ((ioflag & FDSYNC) && 1500 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1501 ufs_iupdat(ip, 1); 1502 } 1503 } 1504 } 1505 /* 1506 * If we've already done a partial read, terminate 1507 * the read but return no error. 1508 */ 1509 if (oresid != uio->uio_resid) 1510 error = 0; 1511 ITIMES(ip); 1512 1513 return (error); 1514 } 1515 1516 /* ARGSUSED */ 1517 static int 1518 ufs_ioctl( 1519 struct vnode *vp, 1520 int cmd, 1521 intptr_t arg, 1522 int flag, 1523 struct cred *cr, 1524 int *rvalp) 1525 { 1526 struct lockfs lockfs, lockfs_out; 1527 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1528 char *comment, *original_comment; 1529 struct fs *fs; 1530 struct ulockfs *ulp; 1531 offset_t off; 1532 extern int maxphys; 1533 int error; 1534 int issync; 1535 int trans_size; 1536 1537 1538 /* 1539 * forcibly unmounted 1540 */ 1541 if (ufsvfsp == NULL) { 1542 return (EIO); 1543 } 1544 1545 fs = ufsvfsp->vfs_fs; 1546 1547 if (cmd == Q_QUOTACTL) { 1548 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1549 if (error) 1550 return (error); 1551 1552 if (ulp) { 1553 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1554 TOP_SETQUOTA_SIZE(fs)); 1555 } 1556 1557 error = quotactl(vp, arg, flag, cr); 1558 1559 if (ulp) { 1560 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1561 TOP_SETQUOTA_SIZE(fs)); 1562 ufs_lockfs_end(ulp); 1563 } 1564 return (error); 1565 } 1566 1567 switch (cmd) { 1568 case _FIOLFS: 1569 /* 1570 * file system locking 1571 */ 1572 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1573 return (EPERM); 1574 1575 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1576 if (copyin((caddr_t)arg, &lockfs, 1577 sizeof (struct lockfs))) 1578 return (EFAULT); 1579 } 1580 #ifdef _SYSCALL32_IMPL 1581 else { 1582 struct lockfs32 lockfs32; 1583 /* Translate ILP32 lockfs to LP64 lockfs */ 1584 if (copyin((caddr_t)arg, &lockfs32, 1585 sizeof (struct lockfs32))) 1586 return (EFAULT); 1587 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1588 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1589 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1590 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1591 lockfs.lf_comment = 1592 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1593 } 1594 #endif /* _SYSCALL32_IMPL */ 1595 1596 if (lockfs.lf_comlen) { 1597 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1598 return (ENAMETOOLONG); 1599 comment = 1600 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1601 if (copyin(lockfs.lf_comment, comment, 1602 lockfs.lf_comlen)) { 1603 kmem_free(comment, lockfs.lf_comlen); 1604 return (EFAULT); 1605 } 1606 original_comment = lockfs.lf_comment; 1607 lockfs.lf_comment = comment; 1608 } 1609 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1610 lockfs.lf_comment = original_comment; 1611 1612 if ((flag & DATAMODEL_MASK) == 1613 DATAMODEL_NATIVE) { 1614 (void) copyout(&lockfs, (caddr_t)arg, 1615 sizeof (struct lockfs)); 1616 } 1617 #ifdef _SYSCALL32_IMPL 1618 else { 1619 struct lockfs32 lockfs32; 1620 /* Translate LP64 to ILP32 lockfs */ 1621 lockfs32.lf_lock = 1622 (uint32_t)lockfs.lf_lock; 1623 lockfs32.lf_flags = 1624 (uint32_t)lockfs.lf_flags; 1625 lockfs32.lf_key = 1626 (uint32_t)lockfs.lf_key; 1627 lockfs32.lf_comlen = 1628 (uint32_t)lockfs.lf_comlen; 1629 lockfs32.lf_comment = 1630 (uint32_t)(uintptr_t) 1631 lockfs.lf_comment; 1632 (void) copyout(&lockfs32, (caddr_t)arg, 1633 sizeof (struct lockfs32)); 1634 } 1635 #endif /* _SYSCALL32_IMPL */ 1636 1637 } else { 1638 if (lockfs.lf_comlen) 1639 kmem_free(comment, lockfs.lf_comlen); 1640 } 1641 return (error); 1642 1643 case _FIOLFSS: 1644 /* 1645 * get file system locking status 1646 */ 1647 1648 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1649 if (copyin((caddr_t)arg, &lockfs, 1650 sizeof (struct lockfs))) 1651 return (EFAULT); 1652 } 1653 #ifdef _SYSCALL32_IMPL 1654 else { 1655 struct lockfs32 lockfs32; 1656 /* Translate ILP32 lockfs to LP64 lockfs */ 1657 if (copyin((caddr_t)arg, &lockfs32, 1658 sizeof (struct lockfs32))) 1659 return (EFAULT); 1660 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1661 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1662 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1663 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1664 lockfs.lf_comment = 1665 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1666 } 1667 #endif /* _SYSCALL32_IMPL */ 1668 1669 if (error = ufs_fiolfss(vp, &lockfs_out)) 1670 return (error); 1671 lockfs.lf_lock = lockfs_out.lf_lock; 1672 lockfs.lf_key = lockfs_out.lf_key; 1673 lockfs.lf_flags = lockfs_out.lf_flags; 1674 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1675 lockfs_out.lf_comlen); 1676 1677 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1678 if (copyout(&lockfs, (caddr_t)arg, 1679 sizeof (struct lockfs))) 1680 return (EFAULT); 1681 } 1682 #ifdef _SYSCALL32_IMPL 1683 else { 1684 /* Translate LP64 to ILP32 lockfs */ 1685 struct lockfs32 lockfs32; 1686 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1687 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1688 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1689 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1690 lockfs32.lf_comment = 1691 (uint32_t)(uintptr_t)lockfs.lf_comment; 1692 if (copyout(&lockfs32, (caddr_t)arg, 1693 sizeof (struct lockfs32))) 1694 return (EFAULT); 1695 } 1696 #endif /* _SYSCALL32_IMPL */ 1697 1698 if (lockfs.lf_comlen && 1699 lockfs.lf_comment && lockfs_out.lf_comment) 1700 if (copyout(lockfs_out.lf_comment, 1701 lockfs.lf_comment, lockfs.lf_comlen)) 1702 return (EFAULT); 1703 return (0); 1704 1705 case _FIOSATIME: 1706 /* 1707 * set access time 1708 */ 1709 1710 /* 1711 * if mounted w/o atime, return quietly. 1712 * I briefly thought about returning ENOSYS, but 1713 * figured that most apps would consider this fatal 1714 * but the idea is to make this as seamless as poss. 1715 */ 1716 if (ufsvfsp->vfs_noatime) 1717 return (0); 1718 1719 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1720 ULOCKFS_SETATTR_MASK); 1721 if (error) 1722 return (error); 1723 1724 if (ulp) { 1725 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1726 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1727 TOP_SETATTR, trans_size); 1728 } 1729 1730 error = ufs_fiosatime(vp, (struct timeval *)arg, 1731 flag, cr); 1732 1733 if (ulp) { 1734 TRANS_END_CSYNC(ufsvfsp, error, issync, 1735 TOP_SETATTR, trans_size); 1736 ufs_lockfs_end(ulp); 1737 } 1738 return (error); 1739 1740 case _FIOSDIO: 1741 /* 1742 * set delayed-io 1743 */ 1744 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1745 1746 case _FIOGDIO: 1747 /* 1748 * get delayed-io 1749 */ 1750 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1751 1752 case _FIOIO: 1753 /* 1754 * inode open 1755 */ 1756 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1757 ULOCKFS_VGET_MASK); 1758 if (error) 1759 return (error); 1760 1761 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1762 1763 if (ulp) { 1764 ufs_lockfs_end(ulp); 1765 } 1766 return (error); 1767 1768 case _FIOFFS: 1769 /* 1770 * file system flush (push w/invalidate) 1771 */ 1772 if ((caddr_t)arg != NULL) 1773 return (EINVAL); 1774 return (ufs_fioffs(vp, NULL, cr)); 1775 1776 case _FIOISBUSY: 1777 /* 1778 * Contract-private interface for Legato 1779 * Purge this vnode from the DNLC and decide 1780 * if this vnode is busy (*arg == 1) or not 1781 * (*arg == 0) 1782 */ 1783 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1784 return (EPERM); 1785 error = ufs_fioisbusy(vp, (int *)arg, cr); 1786 return (error); 1787 1788 case _FIODIRECTIO: 1789 return (ufs_fiodirectio(vp, (int)arg, cr)); 1790 1791 case _FIOTUNE: 1792 /* 1793 * Tune the file system (aka setting fs attributes) 1794 */ 1795 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1796 ULOCKFS_SETATTR_MASK); 1797 if (error) 1798 return (error); 1799 1800 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1801 1802 if (ulp) 1803 ufs_lockfs_end(ulp); 1804 return (error); 1805 1806 case _FIOLOGENABLE: 1807 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1808 return (EPERM); 1809 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1810 1811 case _FIOLOGDISABLE: 1812 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1813 return (EPERM); 1814 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1815 1816 case _FIOISLOG: 1817 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1818 1819 case _FIOSNAPSHOTCREATE_MULTI: 1820 { 1821 struct fiosnapcreate_multi fc, *fcp; 1822 size_t fcm_size; 1823 1824 if (copyin((void *)arg, &fc, sizeof (fc))) 1825 return (EFAULT); 1826 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1827 return (EINVAL); 1828 fcm_size = sizeof (struct fiosnapcreate_multi) + 1829 (fc.backfilecount - 1) * sizeof (int); 1830 fcp = (struct fiosnapcreate_multi *) 1831 kmem_alloc(fcm_size, KM_SLEEP); 1832 if (copyin((void *)arg, fcp, fcm_size)) { 1833 kmem_free(fcp, fcm_size); 1834 return (EFAULT); 1835 } 1836 error = ufs_snap_create(vp, fcp, cr); 1837 if (!error && copyout(fcp, (void *)arg, fcm_size)) 1838 error = EFAULT; 1839 kmem_free(fcp, fcm_size); 1840 return (error); 1841 } 1842 1843 case _FIOSNAPSHOTDELETE: 1844 { 1845 struct fiosnapdelete fc; 1846 1847 if (copyin((void *)arg, &fc, sizeof (fc))) 1848 return (EFAULT); 1849 error = ufs_snap_delete(vp, &fc, cr); 1850 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1851 error = EFAULT; 1852 return (error); 1853 } 1854 1855 case _FIOGETSUPERBLOCK: 1856 if (copyout(fs, (void *)arg, SBSIZE)) 1857 return (EFAULT); 1858 return (0); 1859 1860 case _FIOGETMAXPHYS: 1861 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1862 return (EFAULT); 1863 return (0); 1864 1865 /* 1866 * The following 3 ioctls are for TSufs support 1867 * although could potentially be used elsewhere 1868 */ 1869 case _FIO_SET_LUFS_DEBUG: 1870 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1871 return (EPERM); 1872 lufs_debug = (uint32_t)arg; 1873 return (0); 1874 1875 case _FIO_SET_LUFS_ERROR: 1876 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1877 return (EPERM); 1878 TRANS_SETERROR(ufsvfsp); 1879 return (0); 1880 1881 case _FIO_GET_TOP_STATS: 1882 { 1883 fio_lufs_stats_t *ls; 1884 ml_unit_t *ul = ufsvfsp->vfs_log; 1885 1886 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1887 ls->ls_debug = ul->un_debug; /* return debug value */ 1888 /* Copy stucture if statistics are being kept */ 1889 if (ul->un_logmap->mtm_tops) { 1890 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1891 } 1892 error = 0; 1893 if (copyout(ls, (void *)arg, sizeof (*ls))) 1894 error = EFAULT; 1895 kmem_free(ls, sizeof (*ls)); 1896 return (error); 1897 } 1898 1899 case _FIO_SEEK_DATA: 1900 case _FIO_SEEK_HOLE: 1901 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1902 return (EFAULT); 1903 /* offset paramater is in/out */ 1904 error = ufs_fio_holey(vp, cmd, &off); 1905 if (error) 1906 return (error); 1907 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1908 return (EFAULT); 1909 return (0); 1910 1911 default: 1912 return (ENOTTY); 1913 } 1914 } 1915 1916 /* ARGSUSED */ 1917 static int 1918 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1919 struct cred *cr) 1920 { 1921 struct inode *ip = VTOI(vp); 1922 struct ufsvfs *ufsvfsp; 1923 int err; 1924 1925 if (vap->va_mask == AT_SIZE) { 1926 /* 1927 * for performance, if only the size is requested don't bother 1928 * with anything else. 1929 */ 1930 UFS_GET_ISIZE(&vap->va_size, ip); 1931 return (0); 1932 } 1933 1934 /* 1935 * inlined lockfs checks 1936 */ 1937 ufsvfsp = ip->i_ufsvfs; 1938 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 1939 err = EIO; 1940 goto out; 1941 } 1942 1943 rw_enter(&ip->i_contents, RW_READER); 1944 /* 1945 * Return all the attributes. This should be refined so 1946 * that it only returns what's asked for. 1947 */ 1948 1949 /* 1950 * Copy from inode table. 1951 */ 1952 vap->va_type = vp->v_type; 1953 vap->va_mode = ip->i_mode & MODEMASK; 1954 /* 1955 * If there is an ACL and there is a mask entry, then do the 1956 * extra work that completes the equivalent of an acltomode(3) 1957 * call. According to POSIX P1003.1e, the acl mask should be 1958 * returned in the group permissions field. 1959 * 1960 * - start with the original permission and mode bits (from above) 1961 * - clear the group owner bits 1962 * - add in the mask bits. 1963 */ 1964 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 1965 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 1966 vap->va_mode |= 1967 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 1968 } 1969 vap->va_uid = ip->i_uid; 1970 vap->va_gid = ip->i_gid; 1971 vap->va_fsid = ip->i_dev; 1972 vap->va_nodeid = (ino64_t)ip->i_number; 1973 vap->va_nlink = ip->i_nlink; 1974 vap->va_size = ip->i_size; 1975 if (vp->v_type == VCHR || vp->v_type == VBLK) 1976 vap->va_rdev = ip->i_rdev; 1977 else 1978 vap->va_rdev = 0; /* not a b/c spec. */ 1979 mutex_enter(&ip->i_tlock); 1980 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 1981 vap->va_seq = ip->i_seq; 1982 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 1983 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 1984 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 1985 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 1986 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 1987 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 1988 mutex_exit(&ip->i_tlock); 1989 1990 switch (ip->i_mode & IFMT) { 1991 1992 case IFBLK: 1993 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 1994 break; 1995 1996 case IFCHR: 1997 vap->va_blksize = MAXBSIZE; 1998 break; 1999 2000 default: 2001 vap->va_blksize = ip->i_fs->fs_bsize; 2002 break; 2003 } 2004 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2005 rw_exit(&ip->i_contents); 2006 err = 0; 2007 2008 out: 2009 return (err); 2010 } 2011 2012 /*ARGSUSED4*/ 2013 static int 2014 ufs_setattr( 2015 struct vnode *vp, 2016 struct vattr *vap, 2017 int flags, 2018 struct cred *cr, 2019 caller_context_t *ct) 2020 { 2021 struct inode *ip = VTOI(vp); 2022 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2023 struct fs *fs; 2024 struct ulockfs *ulp; 2025 char *errmsg1; 2026 char *errmsg2; 2027 long blocks; 2028 long int mask = vap->va_mask; 2029 size_t len1, len2; 2030 int issync; 2031 int trans_size; 2032 int dotrans; 2033 int dorwlock; 2034 int error; 2035 int owner_change; 2036 int dodqlock; 2037 timestruc_t now; 2038 vattr_t oldva; 2039 int retry = 1; 2040 int indeadlock; 2041 2042 /* 2043 * Cannot set these attributes. 2044 */ 2045 if (mask & AT_NOSET) { 2046 error = EINVAL; 2047 goto out; 2048 } 2049 2050 /* 2051 * check for forced unmount 2052 */ 2053 if (ufsvfsp == NULL) 2054 return (EIO); 2055 2056 fs = ufsvfsp->vfs_fs; 2057 if (fs->fs_ronly != 0) 2058 return (EROFS); 2059 2060 again: 2061 errmsg1 = NULL; 2062 errmsg2 = NULL; 2063 dotrans = 0; 2064 dorwlock = 0; 2065 dodqlock = 0; 2066 2067 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2068 if (error) 2069 goto out; 2070 2071 /* 2072 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2073 * This follows the protocol for read()/write(). 2074 */ 2075 if (vp->v_type != VDIR) { 2076 /* 2077 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2078 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2079 * possible, retries the operation. 2080 */ 2081 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2082 if (indeadlock) { 2083 if (ulp) 2084 ufs_lockfs_end(ulp); 2085 goto again; 2086 } 2087 dorwlock = 1; 2088 } 2089 2090 /* 2091 * Truncate file. Must have write permission and not be a directory. 2092 */ 2093 if (mask & AT_SIZE) { 2094 rw_enter(&ip->i_contents, RW_WRITER); 2095 if (vp->v_type == VDIR) { 2096 error = EISDIR; 2097 goto update_inode; 2098 } 2099 if (error = ufs_iaccess(ip, IWRITE, cr)) 2100 goto update_inode; 2101 2102 rw_exit(&ip->i_contents); 2103 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2104 if (error) { 2105 rw_enter(&ip->i_contents, RW_WRITER); 2106 goto update_inode; 2107 } 2108 } 2109 2110 if (ulp) { 2111 trans_size = (int)TOP_SETATTR_SIZE(ip); 2112 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2113 ++dotrans; 2114 } 2115 2116 /* 2117 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2118 * This follows the protocol established by 2119 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2120 */ 2121 if (vp->v_type == VDIR) { 2122 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2123 retry_dir); 2124 if (indeadlock) 2125 goto again; 2126 dorwlock = 1; 2127 } 2128 2129 /* 2130 * Grab quota lock if we are changing the file's owner. 2131 */ 2132 if (mask & AT_UID) { 2133 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2134 dodqlock = 1; 2135 } 2136 rw_enter(&ip->i_contents, RW_WRITER); 2137 2138 oldva.va_mode = ip->i_mode; 2139 oldva.va_uid = ip->i_uid; 2140 oldva.va_gid = ip->i_gid; 2141 2142 vap->va_mask &= ~AT_SIZE; 2143 /* 2144 * ufs_iaccess is "close enough"; that's because it doesn't 2145 * map the defines. 2146 */ 2147 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2148 ufs_iaccess, ip); 2149 if (error) 2150 goto update_inode; 2151 2152 mask = vap->va_mask; 2153 2154 /* 2155 * Change file access modes. 2156 */ 2157 if (mask & AT_MODE) { 2158 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2159 TRANS_INODE(ufsvfsp, ip); 2160 ip->i_flag |= ICHG; 2161 if (stickyhack) { 2162 mutex_enter(&vp->v_lock); 2163 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2164 vp->v_flag |= VSWAPLIKE; 2165 else 2166 vp->v_flag &= ~VSWAPLIKE; 2167 mutex_exit(&vp->v_lock); 2168 } 2169 } 2170 if (mask & (AT_UID|AT_GID)) { 2171 if (mask & AT_UID) { 2172 /* 2173 * Don't change ownership of the quota inode. 2174 */ 2175 if (ufsvfsp->vfs_qinod == ip) { 2176 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2177 error = EINVAL; 2178 goto update_inode; 2179 } 2180 2181 /* 2182 * No real ownership change. 2183 */ 2184 if (ip->i_uid == vap->va_uid) { 2185 blocks = 0; 2186 owner_change = 0; 2187 } 2188 /* 2189 * Remove the blocks and the file, from the old user's 2190 * quota. 2191 */ 2192 else { 2193 blocks = ip->i_blocks; 2194 owner_change = 1; 2195 2196 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2197 (char **)NULL, (size_t *)NULL); 2198 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2199 (uid_t)ip->i_uid, /* force */ 1, cr, 2200 (char **)NULL, (size_t *)NULL); 2201 dqrele(ip->i_dquot); 2202 } 2203 2204 ip->i_uid = vap->va_uid; 2205 2206 /* 2207 * There is a real ownership change. 2208 */ 2209 if (owner_change) { 2210 /* 2211 * Add the blocks and the file to the new 2212 * user's quota. 2213 */ 2214 ip->i_dquot = getinoquota(ip); 2215 (void) chkdq(ip, blocks, /* force */ 1, cr, 2216 &errmsg1, &len1); 2217 (void) chkiq(ufsvfsp, /* change */ 1, 2218 (struct inode *)NULL, (uid_t)ip->i_uid, 2219 /* force */ 1, cr, &errmsg2, &len2); 2220 } 2221 } 2222 if (mask & AT_GID) { 2223 ip->i_gid = vap->va_gid; 2224 } 2225 TRANS_INODE(ufsvfsp, ip); 2226 ip->i_flag |= ICHG; 2227 } 2228 /* 2229 * Change file access or modified times. 2230 */ 2231 if (mask & (AT_ATIME|AT_MTIME)) { 2232 /* Check that the time value is within ufs range */ 2233 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2234 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2235 error = EOVERFLOW; 2236 goto update_inode; 2237 } 2238 2239 /* 2240 * if the "noaccess" mount option is set and only atime 2241 * update is requested, do nothing. No error is returned. 2242 */ 2243 if ((ufsvfsp->vfs_noatime) && 2244 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2245 goto skip_atime; 2246 2247 if (mask & AT_ATIME) { 2248 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2249 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2250 ip->i_flag &= ~IACC; 2251 } 2252 if (mask & AT_MTIME) { 2253 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2254 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2255 gethrestime(&now); 2256 if (now.tv_sec > TIME32_MAX) { 2257 /* 2258 * In 2038, ctime sticks forever.. 2259 */ 2260 ip->i_ctime.tv_sec = TIME32_MAX; 2261 ip->i_ctime.tv_usec = 0; 2262 } else { 2263 ip->i_ctime.tv_sec = now.tv_sec; 2264 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2265 } 2266 ip->i_flag &= ~(IUPD|ICHG); 2267 ip->i_flag |= IMODTIME; 2268 } 2269 TRANS_INODE(ufsvfsp, ip); 2270 ip->i_flag |= IMOD; 2271 } 2272 2273 skip_atime: 2274 /* 2275 * The presence of a shadow inode may indicate an ACL, but does 2276 * not imply an ACL. Future FSD types should be handled here too 2277 * and check for the presence of the attribute-specific data 2278 * before referencing it. 2279 */ 2280 if (ip->i_shadow) { 2281 /* 2282 * XXX if ufs_iupdat is changed to sandbagged write fix 2283 * ufs_acl_setattr to push ip to keep acls consistent 2284 * 2285 * Suppress out of inodes messages if we will retry. 2286 */ 2287 if (retry) 2288 ip->i_flag |= IQUIET; 2289 error = ufs_acl_setattr(ip, vap, cr); 2290 ip->i_flag &= ~IQUIET; 2291 } 2292 2293 update_inode: 2294 /* 2295 * Setattr always increases the sequence number 2296 */ 2297 ip->i_seq++; 2298 2299 /* 2300 * if nfsd and not logging; push synchronously 2301 */ 2302 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2303 ufs_iupdat(ip, 1); 2304 } else { 2305 ITIMES_NOLOCK(ip); 2306 } 2307 2308 rw_exit(&ip->i_contents); 2309 if (dodqlock) { 2310 rw_exit(&ufsvfsp->vfs_dqrwlock); 2311 } 2312 if (dorwlock) 2313 rw_exit(&ip->i_rwlock); 2314 2315 if (ulp) { 2316 if (dotrans) { 2317 int terr = 0; 2318 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2319 trans_size); 2320 if (error == 0) 2321 error = terr; 2322 } 2323 ufs_lockfs_end(ulp); 2324 } 2325 out: 2326 /* 2327 * If out of inodes or blocks, see if we can free something 2328 * up from the delete queue. 2329 */ 2330 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2331 ufs_delete_drain_wait(ufsvfsp, 1); 2332 retry = 0; 2333 if (errmsg1 != NULL) 2334 kmem_free(errmsg1, len1); 2335 if (errmsg2 != NULL) 2336 kmem_free(errmsg2, len2); 2337 goto again; 2338 } 2339 if (errmsg1 != NULL) { 2340 uprintf(errmsg1); 2341 kmem_free(errmsg1, len1); 2342 } 2343 if (errmsg2 != NULL) { 2344 uprintf(errmsg2); 2345 kmem_free(errmsg2, len2); 2346 } 2347 return (error); 2348 } 2349 2350 /*ARGSUSED*/ 2351 static int 2352 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr) 2353 { 2354 struct inode *ip = VTOI(vp); 2355 int error; 2356 2357 if (ip->i_ufsvfs == NULL) 2358 return (EIO); 2359 2360 rw_enter(&ip->i_contents, RW_READER); 2361 2362 /* 2363 * The ufs_iaccess function wants to be called with 2364 * mode bits expressed as "ufs specific" bits. 2365 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2366 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2367 * But since they're the same we just pass the vnode mode 2368 * bit but just verify that assumption at compile time. 2369 */ 2370 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2371 #error "ufs_access needs to map Vmodes to Imodes" 2372 #endif 2373 error = ufs_iaccess(ip, mode, cr); 2374 2375 rw_exit(&ip->i_contents); 2376 2377 return (error); 2378 } 2379 2380 /* ARGSUSED */ 2381 static int 2382 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr) 2383 { 2384 struct inode *ip = VTOI(vp); 2385 struct ufsvfs *ufsvfsp; 2386 struct ulockfs *ulp; 2387 int error; 2388 int fastsymlink; 2389 2390 if (vp->v_type != VLNK) { 2391 error = EINVAL; 2392 goto nolockout; 2393 } 2394 2395 /* 2396 * If the symbolic link is empty there is nothing to read. 2397 * Fast-track these empty symbolic links 2398 */ 2399 if (ip->i_size == 0) { 2400 error = 0; 2401 goto nolockout; 2402 } 2403 2404 ufsvfsp = ip->i_ufsvfs; 2405 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2406 if (error) 2407 goto nolockout; 2408 /* 2409 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2410 */ 2411 again: 2412 fastsymlink = 0; 2413 if (ip->i_flag & IFASTSYMLNK) { 2414 rw_enter(&ip->i_rwlock, RW_READER); 2415 rw_enter(&ip->i_contents, RW_READER); 2416 if (ip->i_flag & IFASTSYMLNK) { 2417 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2418 (ip->i_fs->fs_ronly == 0) && 2419 (!ufsvfsp->vfs_noatime)) { 2420 mutex_enter(&ip->i_tlock); 2421 ip->i_flag |= IACC; 2422 mutex_exit(&ip->i_tlock); 2423 } 2424 error = uiomove((caddr_t)&ip->i_db[1], 2425 MIN(ip->i_size, uiop->uio_resid), 2426 UIO_READ, uiop); 2427 ITIMES(ip); 2428 ++fastsymlink; 2429 } 2430 rw_exit(&ip->i_contents); 2431 rw_exit(&ip->i_rwlock); 2432 } 2433 if (!fastsymlink) { 2434 ssize_t size; /* number of bytes read */ 2435 caddr_t basep; /* pointer to input data */ 2436 ino_t ino; 2437 long igen; 2438 struct uio tuio; /* temp uio struct */ 2439 struct uio *tuiop; 2440 iovec_t tiov; /* temp iovec struct */ 2441 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2442 int tflag = 0; /* flag to indicate temp vars used */ 2443 2444 ino = ip->i_number; 2445 igen = ip->i_gen; 2446 size = uiop->uio_resid; 2447 basep = uiop->uio_iov->iov_base; 2448 tuiop = uiop; 2449 2450 rw_enter(&ip->i_rwlock, RW_WRITER); 2451 rw_enter(&ip->i_contents, RW_WRITER); 2452 if (ip->i_flag & IFASTSYMLNK) { 2453 rw_exit(&ip->i_contents); 2454 rw_exit(&ip->i_rwlock); 2455 goto again; 2456 } 2457 2458 /* can this be a fast symlink and is it a user buffer? */ 2459 if (ip->i_size <= FSL_SIZE && 2460 (uiop->uio_segflg == UIO_USERSPACE || 2461 uiop->uio_segflg == UIO_USERISPACE)) { 2462 2463 bzero(&tuio, sizeof (struct uio)); 2464 /* 2465 * setup a kernel buffer to read link into. this 2466 * is to fix a race condition where the user buffer 2467 * got corrupted before copying it into the inode. 2468 */ 2469 size = ip->i_size; 2470 tiov.iov_len = size; 2471 tiov.iov_base = kbuf; 2472 tuio.uio_iov = &tiov; 2473 tuio.uio_iovcnt = 1; 2474 tuio.uio_offset = uiop->uio_offset; 2475 tuio.uio_segflg = UIO_SYSSPACE; 2476 tuio.uio_fmode = uiop->uio_fmode; 2477 tuio.uio_extflg = uiop->uio_extflg; 2478 tuio.uio_limit = uiop->uio_limit; 2479 tuio.uio_resid = size; 2480 2481 basep = tuio.uio_iov->iov_base; 2482 tuiop = &tuio; 2483 tflag = 1; 2484 } 2485 2486 error = rdip(ip, tuiop, 0, cr); 2487 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2488 rw_exit(&ip->i_contents); 2489 rw_exit(&ip->i_rwlock); 2490 goto out; 2491 } 2492 2493 if (tflag == 0) 2494 size -= uiop->uio_resid; 2495 2496 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2497 ip->i_size == size) || (tflag == 1 && 2498 tuio.uio_resid == 0)) { 2499 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2500 if (error == 0) { 2501 ip->i_flag |= IFASTSYMLNK; 2502 /* 2503 * free page 2504 */ 2505 (void) VOP_PUTPAGE(ITOV(ip), 2506 (offset_t)0, PAGESIZE, 2507 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2508 cr); 2509 } else { 2510 int i; 2511 /* error, clear garbage left behind */ 2512 for (i = 1; i < NDADDR; i++) 2513 ip->i_db[i] = 0; 2514 for (i = 0; i < NIADDR; i++) 2515 ip->i_ib[i] = 0; 2516 } 2517 } 2518 if (tflag == 1) { 2519 /* now, copy it into the user buffer */ 2520 error = uiomove((caddr_t)kbuf, 2521 MIN(size, uiop->uio_resid), 2522 UIO_READ, uiop); 2523 } 2524 rw_exit(&ip->i_contents); 2525 rw_exit(&ip->i_rwlock); 2526 } 2527 out: 2528 if (ulp) { 2529 ufs_lockfs_end(ulp); 2530 } 2531 nolockout: 2532 return (error); 2533 } 2534 2535 /* ARGSUSED */ 2536 static int 2537 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr) 2538 { 2539 struct inode *ip = VTOI(vp); 2540 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2541 struct ulockfs *ulp; 2542 int error; 2543 2544 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2545 if (error) 2546 return (error); 2547 2548 if (TRANS_ISTRANS(ufsvfsp)) { 2549 /* 2550 * First push out any data pages 2551 */ 2552 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2553 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2554 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2555 0, CRED()); 2556 if (error) 2557 goto out; 2558 } 2559 2560 /* 2561 * Delta any delayed inode times updates 2562 * and push inode to log. 2563 * All other inode deltas will have already been delta'd 2564 * and will be pushed during the commit. 2565 */ 2566 if (!(syncflag & FDSYNC) && 2567 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2568 if (ulp) { 2569 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2570 TOP_SYNCIP_SIZE); 2571 } 2572 rw_enter(&ip->i_contents, RW_READER); 2573 mutex_enter(&ip->i_tlock); 2574 ip->i_flag &= ~IMODTIME; 2575 mutex_exit(&ip->i_tlock); 2576 ufs_iupdat(ip, I_SYNC); 2577 rw_exit(&ip->i_contents); 2578 if (ulp) { 2579 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2580 TOP_SYNCIP_SIZE); 2581 } 2582 } 2583 2584 /* 2585 * Commit the Moby transaction 2586 * 2587 * Deltas have already been made so we just need to 2588 * commit them with a synchronous transaction. 2589 * TRANS_BEGIN_SYNC() will return an error 2590 * if there are no deltas to commit, for an 2591 * empty transaction. 2592 */ 2593 if (ulp) { 2594 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2595 error); 2596 if (error) { 2597 error = 0; /* commit wasn't needed */ 2598 goto out; 2599 } 2600 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2601 TOP_COMMIT_SIZE); 2602 } 2603 } else { /* not logging */ 2604 if (!(IS_SWAPVP(vp))) 2605 if (syncflag & FNODSYNC) { 2606 /* Just update the inode only */ 2607 TRANS_IUPDAT(ip, 1); 2608 error = 0; 2609 } else if (syncflag & FDSYNC) 2610 /* Do data-synchronous writes */ 2611 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2612 else 2613 /* Do synchronous writes */ 2614 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2615 2616 rw_enter(&ip->i_contents, RW_WRITER); 2617 if (!error) 2618 error = ufs_sync_indir(ip); 2619 rw_exit(&ip->i_contents); 2620 } 2621 out: 2622 if (ulp) { 2623 ufs_lockfs_end(ulp); 2624 } 2625 return (error); 2626 } 2627 2628 /*ARGSUSED*/ 2629 static void 2630 ufs_inactive(struct vnode *vp, struct cred *cr) 2631 { 2632 ufs_iinactive(VTOI(vp)); 2633 } 2634 2635 /* 2636 * Unix file system operations having to do with directory manipulation. 2637 */ 2638 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2639 /* ARGSUSED */ 2640 static int 2641 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2642 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr) 2643 { 2644 struct inode *ip; 2645 struct inode *sip; 2646 struct inode *xip; 2647 struct ufsvfs *ufsvfsp; 2648 struct ulockfs *ulp; 2649 struct vnode *vp; 2650 int error; 2651 2652 /* 2653 * Check flags for type of lookup (regular file or attribute file) 2654 */ 2655 2656 ip = VTOI(dvp); 2657 2658 if (flags & LOOKUP_XATTR) { 2659 2660 /* 2661 * We don't allow recursive attributes... 2662 * Maybe someday we will. 2663 */ 2664 if ((ip->i_cflags & IXATTR)) { 2665 return (EINVAL); 2666 } 2667 2668 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2669 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2670 if (error) { 2671 *vpp = NULL; 2672 goto out; 2673 } 2674 2675 vp = ITOV(sip); 2676 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2677 } 2678 2679 /* 2680 * Check accessibility of directory. 2681 */ 2682 if (vp == DNLC_NO_VNODE) { 2683 VN_RELE(vp); 2684 error = ENOENT; 2685 goto out; 2686 } 2687 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) { 2688 VN_RELE(vp); 2689 goto out; 2690 } 2691 2692 *vpp = vp; 2693 return (0); 2694 } 2695 2696 /* 2697 * Check for a null component, which we should treat as 2698 * looking at dvp from within it's parent, so we don't 2699 * need a call to ufs_iaccess(), as it has already been 2700 * done. 2701 */ 2702 if (nm[0] == 0) { 2703 VN_HOLD(dvp); 2704 error = 0; 2705 *vpp = dvp; 2706 goto out; 2707 } 2708 2709 /* 2710 * Check for "." ie itself. this is a quick check and 2711 * avoids adding "." into the dnlc (which have been seen 2712 * to occupy >10% of the cache). 2713 */ 2714 if ((nm[0] == '.') && (nm[1] == 0)) { 2715 /* 2716 * Don't return without checking accessibility 2717 * of the directory. We only need the lock if 2718 * we are going to return it. 2719 */ 2720 if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) { 2721 VN_HOLD(dvp); 2722 *vpp = dvp; 2723 } 2724 goto out; 2725 } 2726 2727 /* 2728 * Fast path: Check the directory name lookup cache. 2729 */ 2730 if (vp = dnlc_lookup(dvp, nm)) { 2731 /* 2732 * Check accessibility of directory. 2733 */ 2734 if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) { 2735 VN_RELE(vp); 2736 goto out; 2737 } 2738 if (vp == DNLC_NO_VNODE) { 2739 VN_RELE(vp); 2740 error = ENOENT; 2741 goto out; 2742 } 2743 xip = VTOI(vp); 2744 ulp = NULL; 2745 goto fastpath; 2746 } 2747 2748 /* 2749 * Keep the idle queue from getting too long by 2750 * idling two inodes before attempting to allocate another. 2751 * This operation must be performed before entering 2752 * lockfs or a transaction. 2753 */ 2754 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2755 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2756 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2757 ufs_idle_some(ufs_lookup_idle_count); 2758 } 2759 2760 retry_lookup: 2761 ufsvfsp = ip->i_ufsvfs; 2762 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2763 if (error) 2764 goto out; 2765 2766 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2767 2768 fastpath: 2769 if (error == 0) { 2770 ip = xip; 2771 *vpp = ITOV(ip); 2772 2773 /* 2774 * If vnode is a device return special vnode instead. 2775 */ 2776 if (IS_DEVVP(*vpp)) { 2777 struct vnode *newvp; 2778 2779 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2780 cr); 2781 VN_RELE(*vpp); 2782 if (newvp == NULL) 2783 error = ENOSYS; 2784 else 2785 *vpp = newvp; 2786 } 2787 } 2788 if (ulp) { 2789 ufs_lockfs_end(ulp); 2790 } 2791 2792 if (error == EAGAIN) 2793 goto retry_lookup; 2794 2795 out: 2796 return (error); 2797 } 2798 2799 static int 2800 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2801 int mode, struct vnode **vpp, struct cred *cr, int flag) 2802 { 2803 struct inode *ip; 2804 struct inode *xip; 2805 struct inode *dip; 2806 struct vnode *xvp; 2807 struct ufsvfs *ufsvfsp; 2808 struct ulockfs *ulp; 2809 int error; 2810 int issync; 2811 int truncflag; 2812 int trans_size; 2813 int noentry; 2814 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2815 int retry = 1; 2816 int indeadlock; 2817 2818 again: 2819 ip = VTOI(dvp); 2820 ufsvfsp = ip->i_ufsvfs; 2821 truncflag = 0; 2822 2823 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2824 if (error) 2825 goto out; 2826 2827 if (ulp) { 2828 trans_size = (int)TOP_CREATE_SIZE(ip); 2829 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2830 } 2831 2832 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2833 vap->va_mode &= ~VSVTX; 2834 2835 if (*name == '\0') { 2836 /* 2837 * Null component name refers to the directory itself. 2838 */ 2839 VN_HOLD(dvp); 2840 /* 2841 * Even though this is an error case, we need to grab the 2842 * quota lock since the error handling code below is common. 2843 */ 2844 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2845 rw_enter(&ip->i_contents, RW_WRITER); 2846 error = EEXIST; 2847 } else { 2848 xip = NULL; 2849 noentry = 0; 2850 /* 2851 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2852 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2853 * possible, retries the operation. 2854 */ 2855 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2856 retry_dir); 2857 if (indeadlock) 2858 goto again; 2859 2860 xvp = dnlc_lookup(dvp, name); 2861 if (xvp == DNLC_NO_VNODE) { 2862 noentry = 1; 2863 VN_RELE(xvp); 2864 xvp = NULL; 2865 } 2866 if (xvp) { 2867 rw_exit(&ip->i_rwlock); 2868 if (error = ufs_iaccess(ip, IEXEC, cr)) { 2869 VN_RELE(xvp); 2870 } else { 2871 error = EEXIST; 2872 xip = VTOI(xvp); 2873 } 2874 } else { 2875 /* 2876 * Suppress file system full message if we will retry 2877 */ 2878 error = ufs_direnter_cm(ip, name, DE_CREATE, 2879 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2880 if (error == EAGAIN) { 2881 if (ulp) { 2882 TRANS_END_CSYNC(ufsvfsp, error, issync, 2883 TOP_CREATE, trans_size); 2884 ufs_lockfs_end(ulp); 2885 } 2886 goto again; 2887 } 2888 rw_exit(&ip->i_rwlock); 2889 } 2890 ip = xip; 2891 if (ip != NULL) { 2892 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2893 rw_enter(&ip->i_contents, RW_WRITER); 2894 } 2895 } 2896 2897 /* 2898 * If the file already exists and this is a non-exclusive create, 2899 * check permissions and allow access for non-directories. 2900 * Read-only create of an existing directory is also allowed. 2901 * We fail an exclusive create of anything which already exists. 2902 */ 2903 if (error == EEXIST) { 2904 dip = VTOI(dvp); 2905 if (excl == NONEXCL) { 2906 if ((((ip->i_mode & IFMT) == IFDIR) || 2907 ((ip->i_mode & IFMT) == IFATTRDIR)) && 2908 (mode & IWRITE)) 2909 error = EISDIR; 2910 else if (mode) 2911 error = ufs_iaccess(ip, mode, cr); 2912 else 2913 error = 0; 2914 } 2915 if (error) { 2916 rw_exit(&ip->i_contents); 2917 rw_exit(&ufsvfsp->vfs_dqrwlock); 2918 VN_RELE(ITOV(ip)); 2919 goto unlock; 2920 } 2921 /* 2922 * If the error EEXIST was set, then i_seq can not 2923 * have been updated. The sequence number interface 2924 * is defined such that a non-error VOP_CREATE must 2925 * increase the dir va_seq it by at least one. If we 2926 * have cleared the error, increase i_seq. Note that 2927 * we are increasing the dir i_seq and in rare cases 2928 * ip may actually be from the dvp, so we already have 2929 * the locks and it will not be subject to truncation. 2930 * In case we have to update i_seq of the parent 2931 * directory dip, we have to defer it till we have 2932 * released our locks on ip due to lock ordering requirements. 2933 */ 2934 if (ip != dip) 2935 defer_dip_seq_update = 1; 2936 else 2937 ip->i_seq++; 2938 2939 if (((ip->i_mode & IFMT) == IFREG) && 2940 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 2941 /* 2942 * Truncate regular files, if requested by caller. 2943 * Grab i_rwlock to make sure no one else is 2944 * currently writing to the file (we promised 2945 * bmap we would do this). 2946 * Must get the locks in the correct order. 2947 */ 2948 if (ip->i_size == 0) { 2949 ip->i_flag |= ICHG | IUPD; 2950 ip->i_seq++; 2951 TRANS_INODE(ufsvfsp, ip); 2952 } else { 2953 /* 2954 * Large Files: Why this check here? 2955 * Though we do it in vn_create() we really 2956 * want to guarantee that we do not destroy 2957 * Large file data by atomically checking 2958 * the size while holding the contents 2959 * lock. 2960 */ 2961 if (flag && !(flag & FOFFMAX) && 2962 ((ip->i_mode & IFMT) == IFREG) && 2963 (ip->i_size > (offset_t)MAXOFF32_T)) { 2964 rw_exit(&ip->i_contents); 2965 rw_exit(&ufsvfsp->vfs_dqrwlock); 2966 error = EOVERFLOW; 2967 goto unlock; 2968 } 2969 if (TRANS_ISTRANS(ufsvfsp)) 2970 truncflag++; 2971 else { 2972 rw_exit(&ip->i_contents); 2973 rw_exit(&ufsvfsp->vfs_dqrwlock); 2974 ufs_tryirwlock_trans(&ip->i_rwlock, 2975 RW_WRITER, TOP_CREATE, 2976 retry_file); 2977 if (indeadlock) { 2978 VN_RELE(ITOV(ip)); 2979 goto again; 2980 } 2981 rw_enter(&ufsvfsp->vfs_dqrwlock, 2982 RW_READER); 2983 rw_enter(&ip->i_contents, RW_WRITER); 2984 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 2985 cr); 2986 rw_exit(&ip->i_rwlock); 2987 } 2988 } 2989 } 2990 } 2991 2992 if (error) { 2993 if (ip != NULL) { 2994 rw_exit(&ufsvfsp->vfs_dqrwlock); 2995 rw_exit(&ip->i_contents); 2996 } 2997 goto unlock; 2998 } 2999 3000 *vpp = ITOV(ip); 3001 ITIMES(ip); 3002 rw_exit(&ip->i_contents); 3003 rw_exit(&ufsvfsp->vfs_dqrwlock); 3004 3005 /* 3006 * If vnode is a device return special vnode instead. 3007 */ 3008 if (!error && IS_DEVVP(*vpp)) { 3009 struct vnode *newvp; 3010 3011 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3012 VN_RELE(*vpp); 3013 if (newvp == NULL) { 3014 error = ENOSYS; 3015 goto unlock; 3016 } 3017 truncflag = 0; 3018 *vpp = newvp; 3019 } 3020 unlock: 3021 3022 /* 3023 * Do the deferred update of the parent directory's sequence 3024 * number now. 3025 */ 3026 if (defer_dip_seq_update == 1) { 3027 rw_enter(&dip->i_contents, RW_READER); 3028 mutex_enter(&dip->i_tlock); 3029 dip->i_seq++; 3030 mutex_exit(&dip->i_tlock); 3031 rw_exit(&dip->i_contents); 3032 } 3033 3034 if (ulp) { 3035 int terr = 0; 3036 3037 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3038 trans_size); 3039 3040 /* 3041 * If we haven't had a more interesting failure 3042 * already, then anything that might've happened 3043 * here should be reported. 3044 */ 3045 if (error == 0) 3046 error = terr; 3047 } 3048 3049 if (!error && truncflag) { 3050 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3051 if (indeadlock) { 3052 if (ulp) 3053 ufs_lockfs_end(ulp); 3054 VN_RELE(ITOV(ip)); 3055 goto again; 3056 } 3057 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3058 rw_exit(&ip->i_rwlock); 3059 } 3060 3061 if (ulp) 3062 ufs_lockfs_end(ulp); 3063 3064 /* 3065 * If no inodes available, try to free one up out of the 3066 * pending delete queue. 3067 */ 3068 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3069 ufs_delete_drain_wait(ufsvfsp, 1); 3070 retry = 0; 3071 goto again; 3072 } 3073 3074 out: 3075 return (error); 3076 } 3077 3078 extern int ufs_idle_max; 3079 /*ARGSUSED*/ 3080 static int 3081 ufs_remove(struct vnode *vp, char *nm, struct cred *cr) 3082 { 3083 struct inode *ip = VTOI(vp); 3084 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3085 struct ulockfs *ulp; 3086 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3087 int indeadlock; 3088 int error; 3089 int issync; 3090 int trans_size; 3091 3092 /* 3093 * don't let the delete queue get too long 3094 */ 3095 if (ufsvfsp == NULL) { 3096 error = EIO; 3097 goto out; 3098 } 3099 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3100 ufs_delete_drain(vp->v_vfsp, 1, 1); 3101 3102 retry_remove: 3103 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3104 if (error) 3105 goto out; 3106 3107 if (ulp) 3108 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3109 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3110 3111 /* 3112 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3113 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3114 * possible, retries the operation. 3115 */ 3116 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3117 if (indeadlock) 3118 goto retry_remove; 3119 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3120 DR_REMOVE, cr, &rmvp); 3121 rw_exit(&ip->i_rwlock); 3122 3123 if (ulp) { 3124 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3125 ufs_lockfs_end(ulp); 3126 } 3127 3128 /* 3129 * This must be called after the remove transaction is closed. 3130 */ 3131 if (rmvp != NULL) { 3132 /* Only send the event if there were no errors */ 3133 if (error == 0) 3134 vnevent_remove(rmvp); 3135 VN_RELE(rmvp); 3136 } 3137 out: 3138 return (error); 3139 } 3140 3141 /* 3142 * Link a file or a directory. Only privileged processes are allowed to 3143 * make links to directories. 3144 */ 3145 static int 3146 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr) 3147 { 3148 struct inode *sip; 3149 struct inode *tdp = VTOI(tdvp); 3150 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3151 struct ulockfs *ulp; 3152 struct vnode *realvp; 3153 int error; 3154 int issync; 3155 int trans_size; 3156 int isdev; 3157 int indeadlock; 3158 3159 retry_link: 3160 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3161 if (error) 3162 goto out; 3163 3164 if (ulp) 3165 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3166 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3167 3168 if (VOP_REALVP(svp, &realvp) == 0) 3169 svp = realvp; 3170 3171 /* 3172 * Make sure link for extended attributes is valid 3173 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3174 * 3175 * Make certain we don't attempt to look at a device node as 3176 * a ufs inode. 3177 */ 3178 3179 isdev = IS_DEVVP(svp); 3180 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3181 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3182 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3183 ((tdp->i_mode & IFMT) == IFDIR))) { 3184 error = EINVAL; 3185 goto unlock; 3186 } 3187 3188 sip = VTOI(svp); 3189 if ((svp->v_type == VDIR && 3190 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3191 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3192 error = EPERM; 3193 goto unlock; 3194 } 3195 3196 /* 3197 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3198 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3199 * possible, retries the operation. 3200 */ 3201 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3202 if (indeadlock) 3203 goto retry_link; 3204 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3205 sip, cr, NULL); 3206 rw_exit(&tdp->i_rwlock); 3207 3208 unlock: 3209 if (ulp) { 3210 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3211 ufs_lockfs_end(ulp); 3212 } 3213 out: 3214 return (error); 3215 } 3216 3217 uint64_t ufs_rename_retry_cnt; 3218 uint64_t ufs_rename_upgrade_retry_cnt; 3219 uint64_t ufs_rename_dircheck_retry_cnt; 3220 clock_t ufs_rename_backoff_delay = 1; 3221 3222 /* 3223 * Rename a file or directory. 3224 * We are given the vnode and entry string of the source and the 3225 * vnode and entry string of the place we want to move the source 3226 * to (the target). The essential operation is: 3227 * unlink(target); 3228 * link(source, target); 3229 * unlink(source); 3230 * but "atomically". Can't do full commit without saving state in 3231 * the inode on disk, which isn't feasible at this time. Best we 3232 * can do is always guarantee that the TARGET exists. 3233 */ 3234 3235 /*ARGSUSED*/ 3236 static int 3237 ufs_rename( 3238 struct vnode *sdvp, /* old (source) parent vnode */ 3239 char *snm, /* old (source) entry name */ 3240 struct vnode *tdvp, /* new (target) parent vnode */ 3241 char *tnm, /* new (target) entry name */ 3242 struct cred *cr) 3243 { 3244 struct inode *sip = NULL; /* source inode */ 3245 struct inode *ip = NULL; /* check inode */ 3246 struct inode *sdp; /* old (source) parent inode */ 3247 struct inode *tdp; /* new (target) parent inode */ 3248 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3249 struct vnode *realvp; 3250 struct ufsvfs *ufsvfsp; 3251 struct ulockfs *ulp; 3252 struct ufs_slot slot; 3253 timestruc_t now; 3254 int error; 3255 int issync; 3256 int trans_size; 3257 krwlock_t *first_lock; 3258 krwlock_t *second_lock; 3259 krwlock_t *reverse_lock; 3260 3261 sdp = VTOI(sdvp); 3262 slot.fbp = NULL; 3263 ufsvfsp = sdp->i_ufsvfs; 3264 retry_rename: 3265 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3266 if (error) 3267 goto out; 3268 3269 if (ulp) 3270 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3271 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3272 3273 if (VOP_REALVP(tdvp, &realvp) == 0) 3274 tdvp = realvp; 3275 3276 tdp = VTOI(tdvp); 3277 3278 3279 /* 3280 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3281 */ 3282 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3283 error = EINVAL; 3284 goto unlock; 3285 } 3286 3287 /* 3288 * Look up inode of file we're supposed to rename. 3289 */ 3290 gethrestime(&now); 3291 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3292 if (error == EAGAIN) { 3293 if (ulp) { 3294 TRANS_END_CSYNC(ufsvfsp, error, issync, 3295 TOP_RENAME, trans_size); 3296 ufs_lockfs_end(ulp); 3297 } 3298 goto retry_rename; 3299 } 3300 3301 goto unlock; 3302 } 3303 3304 /* 3305 * Lock both the source and target directories (they may be 3306 * the same) to provide the atomicity semantics that was 3307 * previously provided by the per file system vfs_rename_lock 3308 * 3309 * with vfs_rename_lock removed to allow simultaneous renames 3310 * within a file system, ufs_dircheckpath can deadlock while 3311 * traversing back to ensure that source is not a parent directory 3312 * of target parent directory. This is because we get into 3313 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3314 * If the tdp and sdp of the simultaneous renames happen to be 3315 * in the path of each other, it can lead to a deadlock. This 3316 * can be avoided by getting the locks as RW_READER here and then 3317 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3318 * 3319 * We hold the target directory's i_rwlock after calling 3320 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3321 * VOP_RWLOCK is explicitly called by the filesystem independent code 3322 * before calling the file system operation. In these cases the order 3323 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3324 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3325 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3326 * synchronizing object which might lead to a deadlock. So we use 3327 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3328 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3329 * operation. 3330 */ 3331 retry: 3332 first_lock = &tdp->i_rwlock; 3333 second_lock = &sdp->i_rwlock; 3334 retry_firstlock: 3335 if (!rw_tryenter(first_lock, RW_READER)) { 3336 /* 3337 * We didn't get the lock. Check if the SLOCK is set in the 3338 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3339 * and wait for SLOCK to be cleared. 3340 */ 3341 3342 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3343 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3344 trans_size); 3345 ufs_lockfs_end(ulp); 3346 goto retry_rename; 3347 3348 } else { 3349 /* 3350 * SLOCK isn't set so this is a genuine synchronization 3351 * case. Let's try again after giving them a breather. 3352 */ 3353 delay(RETRY_LOCK_DELAY); 3354 goto retry_firstlock; 3355 } 3356 } 3357 /* 3358 * Need to check if the tdp and sdp are same !!! 3359 */ 3360 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3361 /* 3362 * We didn't get the lock. Check if the SLOCK is set in the 3363 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3364 * and wait for SLOCK to be cleared. 3365 */ 3366 3367 rw_exit(first_lock); 3368 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3369 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3370 trans_size); 3371 ufs_lockfs_end(ulp); 3372 goto retry_rename; 3373 3374 } else { 3375 /* 3376 * So we couldn't get the second level peer lock *and* 3377 * the SLOCK bit isn't set. Too bad we can be 3378 * contentding with someone wanting these locks otherway 3379 * round. Reverse the locks in case there is a heavy 3380 * contention for the second level lock. 3381 */ 3382 reverse_lock = first_lock; 3383 first_lock = second_lock; 3384 second_lock = reverse_lock; 3385 ufs_rename_retry_cnt++; 3386 goto retry_firstlock; 3387 } 3388 } 3389 3390 if (sip == tdp) { 3391 error = EINVAL; 3392 goto errout; 3393 } 3394 /* 3395 * Make sure we can delete the source entry. This requires 3396 * write permission on the containing directory. 3397 * Check for sticky directories. 3398 */ 3399 rw_enter(&sdp->i_contents, RW_READER); 3400 rw_enter(&sip->i_contents, RW_READER); 3401 if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 || 3402 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3403 rw_exit(&sip->i_contents); 3404 rw_exit(&sdp->i_contents); 3405 goto errout; 3406 } 3407 3408 /* 3409 * If this is a rename of a directory and the parent is 3410 * different (".." must be changed), then the source 3411 * directory must not be in the directory hierarchy 3412 * above the target, as this would orphan everything 3413 * below the source directory. Also the user must have 3414 * write permission in the source so as to be able to 3415 * change "..". 3416 */ 3417 if ((((sip->i_mode & IFMT) == IFDIR) || 3418 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3419 ino_t inum; 3420 3421 if ((error = ufs_iaccess(sip, IWRITE, cr))) { 3422 rw_exit(&sip->i_contents); 3423 rw_exit(&sdp->i_contents); 3424 goto errout; 3425 } 3426 inum = sip->i_number; 3427 rw_exit(&sip->i_contents); 3428 rw_exit(&sdp->i_contents); 3429 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3430 /* 3431 * If we got EAGAIN ufs_dircheckpath detected a 3432 * potential deadlock and backed out. We need 3433 * to retry the operation since sdp and tdp have 3434 * to be released to avoid the deadlock. 3435 */ 3436 if (error == EAGAIN) { 3437 rw_exit(&tdp->i_rwlock); 3438 if (tdp != sdp) 3439 rw_exit(&sdp->i_rwlock); 3440 delay(ufs_rename_backoff_delay); 3441 ufs_rename_dircheck_retry_cnt++; 3442 goto retry; 3443 } 3444 goto errout; 3445 } 3446 } else { 3447 rw_exit(&sip->i_contents); 3448 rw_exit(&sdp->i_contents); 3449 } 3450 3451 3452 /* 3453 * Check for renaming '.' or '..' or alias of '.' 3454 */ 3455 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3456 error = EINVAL; 3457 goto errout; 3458 } 3459 3460 /* 3461 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3462 * tries to traverse back the file tree with both tdp and sdp held 3463 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3464 * as RW_READERS till ufs_dircheckpath is done. 3465 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3466 * to RW_WRITER. 3467 */ 3468 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3469 /* 3470 * The upgrade failed. We got to give away the lock 3471 * as to avoid deadlocking with someone else who is 3472 * waiting for writer lock. With the lock gone, we 3473 * cannot be sure the checks done above will hold 3474 * good when we eventually get them back as writer. 3475 * So if we can't upgrade we drop the locks and retry 3476 * everything again. 3477 */ 3478 rw_exit(&tdp->i_rwlock); 3479 if (tdp != sdp) 3480 rw_exit(&sdp->i_rwlock); 3481 delay(ufs_rename_backoff_delay); 3482 ufs_rename_upgrade_retry_cnt++; 3483 goto retry; 3484 } 3485 if (tdp != sdp) { 3486 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3487 /* 3488 * The upgrade failed. We got to give away the lock 3489 * as to avoid deadlocking with someone else who is 3490 * waiting for writer lock. With the lock gone, we 3491 * cannot be sure the checks done above will hold 3492 * good when we eventually get them back as writer. 3493 * So if we can't upgrade we drop the locks and retry 3494 * everything again. 3495 */ 3496 rw_exit(&tdp->i_rwlock); 3497 rw_exit(&sdp->i_rwlock); 3498 delay(ufs_rename_backoff_delay); 3499 ufs_rename_upgrade_retry_cnt++; 3500 goto retry; 3501 } 3502 } 3503 3504 /* 3505 * Now that all the locks are held check to make sure another thread 3506 * didn't slip in and take out the sip. 3507 */ 3508 slot.status = NONE; 3509 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3510 sip->i_ctime.tv_sec > now.tv_sec) { 3511 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3512 rw_enter(&sdp->i_contents, RW_WRITER); 3513 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3514 &ip, cr, 0); 3515 rw_exit(&sdp->i_contents); 3516 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3517 if (error) { 3518 goto errout; 3519 } 3520 if (ip == NULL) { 3521 error = ENOENT; 3522 goto errout; 3523 } else { 3524 /* 3525 * If the inode was found need to drop the v_count 3526 * so as not to keep the filesystem from being 3527 * unmounted at a later time. 3528 */ 3529 VN_RELE(ITOV(ip)); 3530 } 3531 3532 /* 3533 * Release the slot.fbp that has the page mapped and 3534 * locked SE_SHARED, and could be used in in 3535 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3536 * on said page. 3537 */ 3538 if (slot.fbp) { 3539 fbrelse(slot.fbp, S_OTHER); 3540 slot.fbp = NULL; 3541 } 3542 } 3543 3544 /* 3545 * Link source to the target. If a target exists, return its 3546 * vnode pointer in tvp. We'll release it after sending the 3547 * vnevent. 3548 */ 3549 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3550 /* 3551 * ESAME isn't really an error; it indicates that the 3552 * operation should not be done because the source and target 3553 * are the same file, but that no error should be reported. 3554 */ 3555 if (error == ESAME) 3556 error = 0; 3557 goto errout; 3558 } 3559 3560 /* 3561 * Unlink the source. 3562 * Remove the source entry. ufs_dirremove() checks that the entry 3563 * still reflects sip, and returns an error if it doesn't. 3564 * If the entry has changed just forget about it. Release 3565 * the source inode. 3566 */ 3567 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3568 DR_RENAME, cr, NULL)) == ENOENT) 3569 error = 0; 3570 3571 errout: 3572 if (slot.fbp) 3573 fbrelse(slot.fbp, S_OTHER); 3574 3575 rw_exit(&tdp->i_rwlock); 3576 if (sdp != tdp) { 3577 rw_exit(&sdp->i_rwlock); 3578 } 3579 3580 unlock: 3581 if (ulp) { 3582 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3583 ufs_lockfs_end(ulp); 3584 } 3585 3586 /* 3587 * If no errors, send the appropriate events on the source 3588 * and destination (a.k.a, target) vnodes, if they exist. 3589 * This has to be done after the rename transaction has closed. 3590 */ 3591 if (error == 0) { 3592 if (tvp != NULL) 3593 vnevent_rename_dest(tvp); 3594 /* 3595 * Note that if ufs_direnter_lr() returned ESAME then 3596 * this event will still be sent. This isn't expected 3597 * to be a problem for anticipated usage by consumers. 3598 */ 3599 if (sip != NULL) 3600 vnevent_rename_src(ITOV(sip)); 3601 } 3602 3603 if (tvp != NULL) 3604 VN_RELE(tvp); 3605 3606 if (sip != NULL) 3607 VN_RELE(ITOV(sip)); 3608 3609 out: 3610 return (error); 3611 } 3612 3613 /*ARGSUSED*/ 3614 static int 3615 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3616 struct vnode **vpp, struct cred *cr) 3617 { 3618 struct inode *ip; 3619 struct inode *xip; 3620 struct ufsvfs *ufsvfsp; 3621 struct ulockfs *ulp; 3622 int error; 3623 int issync; 3624 int trans_size; 3625 int indeadlock; 3626 int retry = 1; 3627 3628 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3629 3630 /* 3631 * Can't make directory in attr hidden dir 3632 */ 3633 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3634 return (EINVAL); 3635 3636 again: 3637 ip = VTOI(dvp); 3638 ufsvfsp = ip->i_ufsvfs; 3639 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3640 if (error) 3641 goto out; 3642 if (ulp) 3643 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3644 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3645 3646 /* 3647 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3648 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3649 * possible, retries the operation. 3650 */ 3651 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3652 if (indeadlock) 3653 goto again; 3654 3655 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3656 (retry ? IQUIET : 0)); 3657 if (error == EAGAIN) { 3658 if (ulp) { 3659 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3660 trans_size); 3661 ufs_lockfs_end(ulp); 3662 } 3663 goto again; 3664 } 3665 3666 rw_exit(&ip->i_rwlock); 3667 if (error == 0) { 3668 ip = xip; 3669 *vpp = ITOV(ip); 3670 } else if (error == EEXIST) 3671 VN_RELE(ITOV(xip)); 3672 3673 if (ulp) { 3674 int terr = 0; 3675 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3676 ufs_lockfs_end(ulp); 3677 if (error == 0) 3678 error = terr; 3679 } 3680 out: 3681 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3682 ufs_delete_drain_wait(ufsvfsp, 1); 3683 retry = 0; 3684 goto again; 3685 } 3686 3687 return (error); 3688 } 3689 3690 /*ARGSUSED*/ 3691 static int 3692 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr) 3693 { 3694 struct inode *ip = VTOI(vp); 3695 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3696 struct ulockfs *ulp; 3697 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3698 int error; 3699 int issync; 3700 int trans_size; 3701 int indeadlock; 3702 3703 /* 3704 * don't let the delete queue get too long 3705 */ 3706 if (ufsvfsp == NULL) { 3707 error = EIO; 3708 goto out; 3709 } 3710 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3711 ufs_delete_drain(vp->v_vfsp, 1, 1); 3712 3713 retry_rmdir: 3714 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3715 if (error) 3716 goto out; 3717 3718 if (ulp) 3719 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3720 trans_size = TOP_RMDIR_SIZE); 3721 3722 /* 3723 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3724 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3725 * possible, retries the operation. 3726 */ 3727 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3728 if (indeadlock) 3729 goto retry_rmdir; 3730 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3731 &rmvp); 3732 rw_exit(&ip->i_rwlock); 3733 3734 if (ulp) { 3735 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3736 trans_size); 3737 ufs_lockfs_end(ulp); 3738 } 3739 3740 /* 3741 * This must be done AFTER the rmdir transaction has closed. 3742 */ 3743 if (rmvp != NULL) { 3744 /* Only send the event if there were no errors */ 3745 if (error == 0) 3746 vnevent_rmdir(rmvp); 3747 VN_RELE(rmvp); 3748 } 3749 out: 3750 return (error); 3751 } 3752 3753 /* ARGSUSED */ 3754 static int 3755 ufs_readdir( 3756 struct vnode *vp, 3757 struct uio *uiop, 3758 struct cred *cr, 3759 int *eofp) 3760 { 3761 struct iovec *iovp; 3762 struct inode *ip; 3763 struct direct *idp; 3764 struct dirent64 *odp; 3765 struct fbuf *fbp; 3766 struct ufsvfs *ufsvfsp; 3767 struct ulockfs *ulp; 3768 caddr_t outbuf; 3769 size_t bufsize; 3770 uint_t offset; 3771 uint_t bytes_wanted, total_bytes_wanted; 3772 int incount = 0; 3773 int outcount = 0; 3774 int error; 3775 3776 ip = VTOI(vp); 3777 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3778 3779 if (uiop->uio_loffset >= MAXOFF32_T) { 3780 if (eofp) 3781 *eofp = 1; 3782 return (0); 3783 } 3784 3785 /* 3786 * Check if we have been called with a valid iov_len 3787 * and bail out if not, otherwise we may potentially loop 3788 * forever further down. 3789 */ 3790 if (uiop->uio_iov->iov_len <= 0) { 3791 error = EINVAL; 3792 goto out; 3793 } 3794 3795 /* 3796 * Large Files: When we come here we are guaranteed that 3797 * uio_offset can be used safely. The high word is zero. 3798 */ 3799 3800 ufsvfsp = ip->i_ufsvfs; 3801 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3802 if (error) 3803 goto out; 3804 3805 iovp = uiop->uio_iov; 3806 total_bytes_wanted = iovp->iov_len; 3807 3808 /* Large Files: directory files should not be "large" */ 3809 3810 ASSERT(ip->i_size <= MAXOFF32_T); 3811 3812 /* Force offset to be valid (to guard against bogus lseek() values) */ 3813 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3814 3815 /* Quit if at end of file or link count of zero (posix) */ 3816 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3817 if (eofp) 3818 *eofp = 1; 3819 error = 0; 3820 goto unlock; 3821 } 3822 3823 /* 3824 * Get space to change directory entries into fs independent format. 3825 * Do fast alloc for the most commonly used-request size (filesystem 3826 * block size). 3827 */ 3828 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3829 bufsize = total_bytes_wanted; 3830 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3831 odp = (struct dirent64 *)outbuf; 3832 } else { 3833 bufsize = total_bytes_wanted; 3834 odp = (struct dirent64 *)iovp->iov_base; 3835 } 3836 3837 nextblk: 3838 bytes_wanted = total_bytes_wanted; 3839 3840 /* Truncate request to file size */ 3841 if (offset + bytes_wanted > (int)ip->i_size) 3842 bytes_wanted = (int)(ip->i_size - offset); 3843 3844 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3845 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3846 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3847 3848 /* 3849 * Read in the next chunk. 3850 * We are still holding the i_rwlock. 3851 */ 3852 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3853 3854 if (error) 3855 goto update_inode; 3856 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3857 (!ufsvfsp->vfs_noatime)) { 3858 ip->i_flag |= IACC; 3859 } 3860 incount = 0; 3861 idp = (struct direct *)fbp->fb_addr; 3862 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3863 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3864 "fs = %s\n", 3865 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3866 fbrelse(fbp, S_OTHER); 3867 error = ENXIO; 3868 goto update_inode; 3869 } 3870 /* Transform to file-system independent format */ 3871 while (incount < bytes_wanted) { 3872 /* 3873 * If the current directory entry is mangled, then skip 3874 * to the next block. It would be nice to set the FSBAD 3875 * flag in the super-block so that a fsck is forced on 3876 * next reboot, but locking is a problem. 3877 */ 3878 if (idp->d_reclen & 0x3) { 3879 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3880 break; 3881 } 3882 3883 /* Skip to requested offset and skip empty entries */ 3884 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 3885 ushort_t this_reclen = 3886 DIRENT64_RECLEN(idp->d_namlen); 3887 /* Buffer too small for any entries */ 3888 if (!outcount && this_reclen > bufsize) { 3889 fbrelse(fbp, S_OTHER); 3890 error = EINVAL; 3891 goto update_inode; 3892 } 3893 /* If would overrun the buffer, quit */ 3894 if (outcount + this_reclen > bufsize) { 3895 break; 3896 } 3897 /* Take this entry */ 3898 odp->d_ino = (ino64_t)idp->d_ino; 3899 odp->d_reclen = (ushort_t)this_reclen; 3900 odp->d_off = (offset_t)(offset + idp->d_reclen); 3901 3902 /* use strncpy(9f) to zero out uninitialized bytes */ 3903 3904 ASSERT(strlen(idp->d_name) + 1 <= 3905 DIRENT64_NAMELEN(this_reclen)); 3906 (void) strncpy(odp->d_name, idp->d_name, 3907 DIRENT64_NAMELEN(this_reclen)); 3908 outcount += odp->d_reclen; 3909 odp = (struct dirent64 *) 3910 ((intptr_t)odp + odp->d_reclen); 3911 ASSERT(outcount <= bufsize); 3912 } 3913 if (idp->d_reclen) { 3914 incount += idp->d_reclen; 3915 offset += idp->d_reclen; 3916 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 3917 } else { 3918 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3919 break; 3920 } 3921 } 3922 /* Release the chunk */ 3923 fbrelse(fbp, S_OTHER); 3924 3925 /* Read whole block, but got no entries, read another if not eof */ 3926 3927 /* 3928 * Large Files: casting i_size to int here is not a problem 3929 * because directory sizes are always less than MAXOFF32_T. 3930 * See assertion above. 3931 */ 3932 3933 if (offset < (int)ip->i_size && !outcount) 3934 goto nextblk; 3935 3936 /* Copy out the entry data */ 3937 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 3938 iovp->iov_base += outcount; 3939 iovp->iov_len -= outcount; 3940 uiop->uio_resid -= outcount; 3941 uiop->uio_offset = offset; 3942 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 3943 uiop)) == 0) 3944 uiop->uio_offset = offset; 3945 update_inode: 3946 ITIMES(ip); 3947 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 3948 kmem_free(outbuf, bufsize); 3949 3950 if (eofp && error == 0) 3951 *eofp = (uiop->uio_offset >= (int)ip->i_size); 3952 unlock: 3953 if (ulp) { 3954 ufs_lockfs_end(ulp); 3955 } 3956 out: 3957 return (error); 3958 } 3959 3960 /*ARGSUSED*/ 3961 static int 3962 ufs_symlink( 3963 struct vnode *dvp, /* ptr to parent dir vnode */ 3964 char *linkname, /* name of symbolic link */ 3965 struct vattr *vap, /* attributes */ 3966 char *target, /* target path */ 3967 struct cred *cr) /* user credentials */ 3968 { 3969 struct inode *ip, *dip = VTOI(dvp); 3970 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 3971 struct ulockfs *ulp; 3972 int error; 3973 int issync; 3974 int trans_size; 3975 int residual; 3976 int ioflag; 3977 int retry = 1; 3978 3979 /* 3980 * No symlinks in attrdirs at this time 3981 */ 3982 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3983 return (EINVAL); 3984 3985 again: 3986 ip = (struct inode *)NULL; 3987 vap->va_type = VLNK; 3988 vap->va_rdev = 0; 3989 3990 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 3991 if (error) 3992 goto out; 3993 3994 if (ulp) 3995 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 3996 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 3997 3998 /* 3999 * We must create the inode before the directory entry, to avoid 4000 * racing with readlink(). ufs_dirmakeinode requires that we 4001 * hold the quota lock as reader, and directory locks as writer. 4002 */ 4003 4004 rw_enter(&dip->i_rwlock, RW_WRITER); 4005 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4006 rw_enter(&dip->i_contents, RW_WRITER); 4007 4008 /* 4009 * Suppress any out of inodes messages if we will retry on 4010 * ENOSP 4011 */ 4012 if (retry) 4013 dip->i_flag |= IQUIET; 4014 4015 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4016 4017 dip->i_flag &= ~IQUIET; 4018 4019 rw_exit(&dip->i_contents); 4020 rw_exit(&ufsvfsp->vfs_dqrwlock); 4021 rw_exit(&dip->i_rwlock); 4022 4023 if (error) 4024 goto unlock; 4025 4026 /* 4027 * OK. The inode has been created. Write out the data of the 4028 * symbolic link. Since symbolic links are metadata, and should 4029 * remain consistent across a system crash, we need to force the 4030 * data out synchronously. 4031 * 4032 * (This is a change from the semantics in earlier releases, which 4033 * only created symbolic links synchronously if the semi-documented 4034 * 'syncdir' option was set, or if we were being invoked by the NFS 4035 * server, which requires symbolic links to be created synchronously.) 4036 * 4037 * We need to pass in a pointer for the residual length; otherwise 4038 * ufs_rdwri() will always return EIO if it can't write the data, 4039 * even if the error was really ENOSPC or EDQUOT. 4040 */ 4041 4042 ioflag = FWRITE | FDSYNC; 4043 residual = 0; 4044 4045 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4046 rw_enter(&ip->i_contents, RW_WRITER); 4047 4048 /* 4049 * Suppress file system full messages if we will retry 4050 */ 4051 if (retry) 4052 ip->i_flag |= IQUIET; 4053 4054 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4055 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4056 4057 ip->i_flag &= ~IQUIET; 4058 4059 if (error) { 4060 rw_exit(&ip->i_contents); 4061 rw_exit(&ufsvfsp->vfs_dqrwlock); 4062 goto remove; 4063 } 4064 4065 /* 4066 * If the link's data is small enough, we can cache it in the inode. 4067 * This is a "fast symbolic link". We don't use the first direct 4068 * block because that's actually used to point at the symbolic link's 4069 * contents on disk; but we know that none of the other direct or 4070 * indirect blocks can be used because symbolic links are restricted 4071 * to be smaller than a file system block. 4072 */ 4073 4074 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4075 4076 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4077 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4078 ip->i_flag |= IFASTSYMLNK; 4079 } else { 4080 int i; 4081 /* error, clear garbage left behind */ 4082 for (i = 1; i < NDADDR; i++) 4083 ip->i_db[i] = 0; 4084 for (i = 0; i < NIADDR; i++) 4085 ip->i_ib[i] = 0; 4086 } 4087 } 4088 4089 rw_exit(&ip->i_contents); 4090 rw_exit(&ufsvfsp->vfs_dqrwlock); 4091 4092 /* 4093 * OK. We've successfully created the symbolic link. All that 4094 * remains is to insert it into the appropriate directory. 4095 */ 4096 4097 rw_enter(&dip->i_rwlock, RW_WRITER); 4098 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4099 rw_exit(&dip->i_rwlock); 4100 4101 /* 4102 * Fall through into remove-on-error code. We're either done, or we 4103 * need to remove the inode (if we couldn't insert it). 4104 */ 4105 4106 remove: 4107 if (error && (ip != NULL)) { 4108 rw_enter(&ip->i_contents, RW_WRITER); 4109 ip->i_nlink--; 4110 ip->i_flag |= ICHG; 4111 ip->i_seq++; 4112 ufs_setreclaim(ip); 4113 rw_exit(&ip->i_contents); 4114 } 4115 4116 unlock: 4117 if (ip != NULL) 4118 VN_RELE(ITOV(ip)); 4119 4120 if (ulp) { 4121 int terr = 0; 4122 4123 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4124 trans_size); 4125 ufs_lockfs_end(ulp); 4126 if (error == 0) 4127 error = terr; 4128 } 4129 4130 /* 4131 * We may have failed due to lack of an inode or of a block to 4132 * store the target in. Try flushing the delete queue to free 4133 * logically-available things up and try again. 4134 */ 4135 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4136 ufs_delete_drain_wait(ufsvfsp, 1); 4137 retry = 0; 4138 goto again; 4139 } 4140 4141 out: 4142 return (error); 4143 } 4144 4145 /* 4146 * Ufs specific routine used to do ufs io. 4147 */ 4148 int 4149 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4150 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4151 struct cred *cr) 4152 { 4153 struct uio auio; 4154 struct iovec aiov; 4155 int error; 4156 4157 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4158 4159 bzero((caddr_t)&auio, sizeof (uio_t)); 4160 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4161 4162 aiov.iov_base = base; 4163 aiov.iov_len = len; 4164 auio.uio_iov = &aiov; 4165 auio.uio_iovcnt = 1; 4166 auio.uio_loffset = offset; 4167 auio.uio_segflg = (short)seg; 4168 auio.uio_resid = len; 4169 4170 if (rw == UIO_WRITE) { 4171 auio.uio_fmode = FWRITE; 4172 auio.uio_extflg = UIO_COPY_DEFAULT; 4173 auio.uio_llimit = curproc->p_fsz_ctl; 4174 error = wrip(ip, &auio, ioflag, cr); 4175 } else { 4176 auio.uio_fmode = FREAD; 4177 auio.uio_extflg = UIO_COPY_CACHED; 4178 auio.uio_llimit = MAXOFFSET_T; 4179 error = rdip(ip, &auio, ioflag, cr); 4180 } 4181 4182 if (aresid) { 4183 *aresid = auio.uio_resid; 4184 } else if (auio.uio_resid) { 4185 error = EIO; 4186 } 4187 return (error); 4188 } 4189 4190 static int 4191 ufs_fid(vp, fidp) 4192 struct vnode *vp; 4193 struct fid *fidp; 4194 { 4195 struct ufid *ufid; 4196 struct inode *ip = VTOI(vp); 4197 4198 if (ip->i_ufsvfs == NULL) 4199 return (EIO); 4200 4201 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4202 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4203 return (ENOSPC); 4204 } 4205 4206 ufid = (struct ufid *)fidp; 4207 bzero((char *)ufid, sizeof (struct ufid)); 4208 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4209 ufid->ufid_ino = ip->i_number; 4210 ufid->ufid_gen = ip->i_gen; 4211 4212 return (0); 4213 } 4214 4215 /* ARGSUSED2 */ 4216 static int 4217 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4218 { 4219 struct inode *ip = VTOI(vp); 4220 struct ufsvfs *ufsvfsp; 4221 int forcedirectio; 4222 4223 /* 4224 * Read case is easy. 4225 */ 4226 if (!write_lock) { 4227 rw_enter(&ip->i_rwlock, RW_READER); 4228 return (V_WRITELOCK_FALSE); 4229 } 4230 4231 /* 4232 * Caller has requested a writer lock, but that inhibits any 4233 * concurrency in the VOPs that follow. Acquire the lock shared 4234 * and defer exclusive access until it is known to be needed in 4235 * other VOP handlers. Some cases can be determined here. 4236 */ 4237 4238 /* 4239 * If directio is not set, there is no chance of concurrency, 4240 * so just acquire the lock exclusive. Beware of a forced 4241 * unmount before looking at the mount option. 4242 */ 4243 ufsvfsp = ip->i_ufsvfs; 4244 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4245 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4246 !ufs_allow_shared_writes) { 4247 rw_enter(&ip->i_rwlock, RW_WRITER); 4248 return (V_WRITELOCK_TRUE); 4249 } 4250 4251 /* 4252 * Mandatory locking forces acquiring i_rwlock exclusive. 4253 */ 4254 if (MANDLOCK(vp, ip->i_mode)) { 4255 rw_enter(&ip->i_rwlock, RW_WRITER); 4256 return (V_WRITELOCK_TRUE); 4257 } 4258 4259 /* 4260 * Acquire the lock shared in case a concurrent write follows. 4261 * Mandatory locking could have become enabled before the lock 4262 * was acquired. Re-check and upgrade if needed. 4263 */ 4264 rw_enter(&ip->i_rwlock, RW_READER); 4265 if (MANDLOCK(vp, ip->i_mode)) { 4266 rw_exit(&ip->i_rwlock); 4267 rw_enter(&ip->i_rwlock, RW_WRITER); 4268 return (V_WRITELOCK_TRUE); 4269 } 4270 return (V_WRITELOCK_FALSE); 4271 } 4272 4273 /*ARGSUSED*/ 4274 static void 4275 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4276 { 4277 struct inode *ip = VTOI(vp); 4278 4279 rw_exit(&ip->i_rwlock); 4280 } 4281 4282 /* ARGSUSED */ 4283 static int 4284 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 4285 { 4286 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4287 } 4288 4289 /* ARGSUSED */ 4290 static int 4291 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4292 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr) 4293 { 4294 struct inode *ip = VTOI(vp); 4295 4296 if (ip->i_ufsvfs == NULL) 4297 return (EIO); 4298 4299 /* 4300 * If file is being mapped, disallow frlock. 4301 * XXX I am not holding tlock while checking i_mapcnt because the 4302 * current locking strategy drops all locks before calling fs_frlock. 4303 * So, mapcnt could change before we enter fs_frlock making is 4304 * meaningless to have held tlock in the first place. 4305 */ 4306 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4307 return (EAGAIN); 4308 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 4309 } 4310 4311 /* ARGSUSED */ 4312 static int 4313 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4314 offset_t offset, cred_t *cr, caller_context_t *ct) 4315 { 4316 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4317 struct ulockfs *ulp; 4318 int error; 4319 4320 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4321 if (cmd == F_FREESP) { 4322 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4323 ULOCKFS_SPACE_MASK); 4324 if (error) 4325 return (error); 4326 error = ufs_freesp(vp, bfp, flag, cr); 4327 } else if (cmd == F_ALLOCSP) { 4328 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4329 ULOCKFS_FALLOCATE_MASK); 4330 if (error) 4331 return (error); 4332 error = ufs_allocsp(vp, bfp, cr); 4333 } else 4334 return (EINVAL); /* Command not handled here */ 4335 4336 if (ulp) 4337 ufs_lockfs_end(ulp); 4338 4339 } 4340 return (error); 4341 } 4342 4343 /* 4344 * Used to determine if read ahead should be done. Also used to 4345 * to determine when write back occurs. 4346 */ 4347 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4348 4349 /* 4350 * A faster version of ufs_getpage. 4351 * 4352 * We optimize by inlining the pvn_getpages iterator, eliminating 4353 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4354 * the overhead of page_exists(). 4355 * 4356 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4357 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4358 * victimizes performance when a file with UFS holes is faulted 4359 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4360 * two MMU faults in this case. 4361 * 4362 * XXX - the inode fields which control the sequential mode are not 4363 * protected by any mutex. The read ahead will act wild if 4364 * multiple processes will access the file concurrently and 4365 * some of them in sequential mode. One particulary bad case 4366 * is if another thread will change the value of i_nextrio between 4367 * the time this thread tests the i_nextrio value and then reads it 4368 * again to use it as the offset for the read ahead. 4369 */ 4370 static int 4371 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4372 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4373 enum seg_rw rw, struct cred *cr) 4374 { 4375 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4376 u_offset_t pgoff; 4377 u_offset_t eoff; 4378 struct inode *ip = VTOI(vp); 4379 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4380 struct fs *fs; 4381 struct ulockfs *ulp; 4382 page_t **pl; 4383 caddr_t pgaddr; 4384 krw_t rwtype; 4385 int err; 4386 int has_holes; 4387 int beyond_eof; 4388 int seqmode; 4389 int pgsize = PAGESIZE; 4390 int dolock; 4391 int do_qlock; 4392 int trans_size; 4393 4394 ASSERT((uoff & PAGEOFFSET) == 0); 4395 4396 if (protp) 4397 *protp = PROT_ALL; 4398 4399 /* 4400 * Obey the lockfs protocol 4401 */ 4402 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4403 rw == S_READ || rw == S_EXEC, protp); 4404 if (err) 4405 goto out; 4406 4407 fs = ufsvfsp->vfs_fs; 4408 4409 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4410 !(vp->v_flag & VISSWAP)) { 4411 /* 4412 * Try to start a transaction, will return if blocking is 4413 * expected to occur and the address space is not the 4414 * kernel address space. 4415 */ 4416 trans_size = TOP_GETPAGE_SIZE(ip); 4417 if (seg->s_as != &kas) { 4418 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4419 trans_size, err) 4420 if (err == EWOULDBLOCK) { 4421 /* 4422 * Use EDEADLK here because the VM code 4423 * can normally never see this error. 4424 */ 4425 err = EDEADLK; 4426 ufs_lockfs_end(ulp); 4427 goto out; 4428 } 4429 } else { 4430 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4431 } 4432 } 4433 4434 if (vp->v_flag & VNOMAP) { 4435 err = ENOSYS; 4436 goto unlock; 4437 } 4438 4439 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4440 4441 rwtype = RW_READER; /* start as a reader */ 4442 dolock = (rw_owner(&ip->i_contents) != curthread); 4443 /* 4444 * If this thread owns the lock, i.e., this thread grabbed it 4445 * as writer somewhere above, then we don't need to grab the 4446 * lock as reader in this routine. 4447 */ 4448 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4449 4450 retrylock: 4451 if (dolock) { 4452 /* 4453 * Grab the quota lock if we need to call 4454 * bmap_write() below (with i_contents as writer). 4455 */ 4456 if (do_qlock && rwtype == RW_WRITER) 4457 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4458 rw_enter(&ip->i_contents, rwtype); 4459 } 4460 4461 /* 4462 * We may be getting called as a side effect of a bmap using 4463 * fbread() when the blocks might be being allocated and the 4464 * size has not yet been up'ed. In this case we want to be 4465 * able to return zero pages if we get back UFS_HOLE from 4466 * calling bmap for a non write case here. We also might have 4467 * to read some frags from the disk into a page if we are 4468 * extending the number of frags for a given lbn in bmap(). 4469 * Large Files: The read of i_size here is atomic because 4470 * i_contents is held here. If dolock is zero, the lock 4471 * is held in bmap routines. 4472 */ 4473 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET; 4474 if (beyond_eof && seg != segkmap) { 4475 if (dolock) { 4476 rw_exit(&ip->i_contents); 4477 if (do_qlock && rwtype == RW_WRITER) 4478 rw_exit(&ufsvfsp->vfs_dqrwlock); 4479 } 4480 err = EFAULT; 4481 goto unlock; 4482 } 4483 4484 /* 4485 * Must hold i_contents lock throughout the call to pvn_getpages 4486 * since locked pages are returned from each call to ufs_getapage. 4487 * Must *not* return locked pages and then try for contents lock 4488 * due to lock ordering requirements (inode > page) 4489 */ 4490 4491 has_holes = bmap_has_holes(ip); 4492 4493 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4494 int blk_size; 4495 u_offset_t offset; 4496 4497 /* 4498 * We must acquire the RW_WRITER lock in order to 4499 * call bmap_write(). 4500 */ 4501 if (dolock && rwtype == RW_READER) { 4502 rwtype = RW_WRITER; 4503 4504 /* 4505 * Grab the quota lock before 4506 * upgrading i_contents, but if we can't grab it 4507 * don't wait here due to lock order: 4508 * vfs_dqrwlock > i_contents. 4509 */ 4510 if (do_qlock && 4511 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4512 == 0) { 4513 rw_exit(&ip->i_contents); 4514 goto retrylock; 4515 } 4516 if (!rw_tryupgrade(&ip->i_contents)) { 4517 rw_exit(&ip->i_contents); 4518 if (do_qlock) 4519 rw_exit(&ufsvfsp->vfs_dqrwlock); 4520 goto retrylock; 4521 } 4522 } 4523 4524 /* 4525 * May be allocating disk blocks for holes here as 4526 * a result of mmap faults. write(2) does the bmap_write 4527 * in rdip/wrip, not here. We are not dealing with frags 4528 * in this case. 4529 */ 4530 /* 4531 * Large Files: We cast fs_bmask field to offset_t 4532 * just as we do for MAXBMASK because uoff is a 64-bit 4533 * data type. fs_bmask will still be a 32-bit type 4534 * as we cannot change any ondisk data structures. 4535 */ 4536 4537 offset = uoff & (offset_t)fs->fs_bmask; 4538 while (offset < uoff + len) { 4539 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4540 err = bmap_write(ip, offset, blk_size, 4541 BI_NORMAL, NULL, cr); 4542 if (ip->i_flag & (ICHG|IUPD)) 4543 ip->i_seq++; 4544 if (err) 4545 goto update_inode; 4546 offset += blk_size; /* XXX - make this contig */ 4547 } 4548 } 4549 4550 /* 4551 * Can be a reader from now on. 4552 */ 4553 if (dolock && rwtype == RW_WRITER) { 4554 rw_downgrade(&ip->i_contents); 4555 /* 4556 * We can release vfs_dqrwlock early so do it, but make 4557 * sure we don't try to release it again at the bottom. 4558 */ 4559 if (do_qlock) { 4560 rw_exit(&ufsvfsp->vfs_dqrwlock); 4561 do_qlock = 0; 4562 } 4563 } 4564 4565 /* 4566 * We remove PROT_WRITE in cases when the file has UFS holes 4567 * because we don't want to call bmap_read() to check each 4568 * page if it is backed with a disk block. 4569 */ 4570 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4571 *protp &= ~PROT_WRITE; 4572 4573 err = 0; 4574 4575 /* 4576 * The loop looks up pages in the range [off, off + len). 4577 * For each page, we first check if we should initiate an asynchronous 4578 * read ahead before we call page_lookup (we may sleep in page_lookup 4579 * for a previously initiated disk read). 4580 */ 4581 eoff = (uoff + len); 4582 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4583 pgoff < eoff; /* empty */) { 4584 page_t *pp; 4585 u_offset_t nextrio; 4586 se_t se; 4587 int retval; 4588 4589 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4590 4591 /* Handle async getpage (faultahead) */ 4592 if (plarr == NULL) { 4593 ip->i_nextrio = pgoff; 4594 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4595 pgoff += pgsize; 4596 pgaddr += pgsize; 4597 continue; 4598 } 4599 /* 4600 * Check if we should initiate read ahead of next cluster. 4601 * We call page_exists only when we need to confirm that 4602 * we have the current page before we initiate the read ahead. 4603 */ 4604 nextrio = ip->i_nextrio; 4605 if (seqmode && 4606 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4607 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4608 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4609 /* 4610 * We always read ahead the next cluster of data 4611 * starting from i_nextrio. If the page (vp,nextrio) 4612 * is actually in core at this point, the routine 4613 * ufs_getpage_ra() will stop pre-fetching data 4614 * until we read that page in a synchronized manner 4615 * through ufs_getpage_miss(). So, we should increase 4616 * i_nextrio if the page (vp, nextrio) exists. 4617 */ 4618 if ((retval == 0) && page_exists(vp, nextrio)) { 4619 ip->i_nextrio = nextrio + pgsize; 4620 } 4621 } 4622 4623 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4624 /* 4625 * We found the page in the page cache. 4626 */ 4627 *pl++ = pp; 4628 pgoff += pgsize; 4629 pgaddr += pgsize; 4630 len -= pgsize; 4631 plsz -= pgsize; 4632 } else { 4633 /* 4634 * We have to create the page, or read it from disk. 4635 */ 4636 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4637 pl, plsz, rw, seqmode)) 4638 goto error; 4639 4640 while (*pl != NULL) { 4641 pl++; 4642 pgoff += pgsize; 4643 pgaddr += pgsize; 4644 len -= pgsize; 4645 plsz -= pgsize; 4646 } 4647 } 4648 } 4649 4650 /* 4651 * Return pages up to plsz if they are in the page cache. 4652 * We cannot return pages if there is a chance that they are 4653 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4654 */ 4655 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4656 4657 ASSERT((protp == NULL) || 4658 !(has_holes && (*protp & PROT_WRITE))); 4659 4660 eoff = pgoff + plsz; 4661 while (pgoff < eoff) { 4662 page_t *pp; 4663 4664 if ((pp = page_lookup_nowait(vp, pgoff, 4665 SE_SHARED)) == NULL) 4666 break; 4667 4668 *pl++ = pp; 4669 pgoff += pgsize; 4670 plsz -= pgsize; 4671 } 4672 } 4673 4674 if (plarr) 4675 *pl = NULL; /* Terminate page list */ 4676 ip->i_nextr = pgoff; 4677 4678 error: 4679 if (err && plarr) { 4680 /* 4681 * Release any pages we have locked. 4682 */ 4683 while (pl > &plarr[0]) 4684 page_unlock(*--pl); 4685 4686 plarr[0] = NULL; 4687 } 4688 4689 update_inode: 4690 /* 4691 * If the inode is not already marked for IACC (in rdip() for read) 4692 * and the inode is not marked for no access time update (in wrip() 4693 * for write) then update the inode access time and mod time now. 4694 */ 4695 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4696 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4697 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4698 (fs->fs_ronly == 0) && 4699 (!ufsvfsp->vfs_noatime)) { 4700 mutex_enter(&ip->i_tlock); 4701 ip->i_flag |= IACC; 4702 ITIMES_NOLOCK(ip); 4703 mutex_exit(&ip->i_tlock); 4704 } 4705 } 4706 } 4707 4708 if (dolock) { 4709 rw_exit(&ip->i_contents); 4710 if (do_qlock && rwtype == RW_WRITER) 4711 rw_exit(&ufsvfsp->vfs_dqrwlock); 4712 } 4713 4714 unlock: 4715 if (ulp) { 4716 if ((rw == S_CREATE || rw == S_WRITE) && 4717 !(vp->v_flag & VISSWAP)) { 4718 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4719 } 4720 ufs_lockfs_end(ulp); 4721 } 4722 out: 4723 return (err); 4724 } 4725 4726 /* 4727 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4728 * cache. The page is either read from the disk, or it's created. 4729 * A page is created (without disk read) if rw == S_CREATE, or if 4730 * the page is not backed with a real disk block (UFS hole). 4731 */ 4732 /* ARGSUSED */ 4733 static int 4734 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4735 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4736 { 4737 struct inode *ip = VTOI(vp); 4738 page_t *pp; 4739 daddr_t bn; 4740 size_t io_len; 4741 int crpage = 0; 4742 int err; 4743 int contig; 4744 int bsize = ip->i_fs->fs_bsize; 4745 4746 /* 4747 * Figure out whether the page can be created, or must be 4748 * must be read from the disk. 4749 */ 4750 if (rw == S_CREATE) 4751 crpage = 1; 4752 else { 4753 contig = 0; 4754 if (err = bmap_read(ip, off, &bn, &contig)) 4755 return (err); 4756 4757 crpage = (bn == UFS_HOLE); 4758 4759 /* 4760 * If its also a fallocated block that hasn't been written to 4761 * yet, we will treat it just like a UFS_HOLE and create 4762 * a zero page for it 4763 */ 4764 if (ISFALLOCBLK(ip, bn)) 4765 crpage = 1; 4766 } 4767 4768 if (crpage) { 4769 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4770 addr)) == NULL) { 4771 return (ufs_fault(vp, 4772 "ufs_getpage_miss: page_create == NULL")); 4773 } 4774 4775 if (rw != S_CREATE) 4776 pagezero(pp, 0, PAGESIZE); 4777 4778 io_len = PAGESIZE; 4779 } else { 4780 u_offset_t io_off; 4781 uint_t xlen; 4782 struct buf *bp; 4783 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4784 4785 /* 4786 * If access is not in sequential order, we read from disk 4787 * in bsize units. 4788 * 4789 * We limit the size of the transfer to bsize if we are reading 4790 * from the beginning of the file. Note in this situation we 4791 * will hedge our bets and initiate an async read ahead of 4792 * the second block. 4793 */ 4794 if (!seq || off == 0) 4795 contig = MIN(contig, bsize); 4796 4797 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4798 &io_len, off, contig, 0); 4799 4800 /* 4801 * Some other thread has entered the page. 4802 * ufs_getpage will retry page_lookup. 4803 */ 4804 if (pp == NULL) { 4805 pl[0] = NULL; 4806 return (0); 4807 } 4808 4809 /* 4810 * Zero part of the page which we are not 4811 * going to read from the disk. 4812 */ 4813 xlen = io_len & PAGEOFFSET; 4814 if (xlen != 0) 4815 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4816 4817 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4818 bp->b_edev = ip->i_dev; 4819 bp->b_dev = cmpdev(ip->i_dev); 4820 bp->b_blkno = bn; 4821 bp->b_un.b_addr = (caddr_t)0; 4822 bp->b_file = ip->i_vnode; 4823 bp->b_offset = off; 4824 4825 if (ufsvfsp->vfs_log) { 4826 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4827 } else if (ufsvfsp->vfs_snapshot) { 4828 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4829 } else { 4830 ufsvfsp->vfs_iotstamp = lbolt; 4831 ub.ub_getpages.value.ul++; 4832 (void) bdev_strategy(bp); 4833 lwp_stat_update(LWP_STAT_INBLK, 1); 4834 } 4835 4836 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4837 4838 /* 4839 * If the file access is sequential, initiate read ahead 4840 * of the next cluster. 4841 */ 4842 if (seq && ip->i_nextrio < ip->i_size) 4843 (void) ufs_getpage_ra(vp, off, seg, addr); 4844 err = biowait(bp); 4845 pageio_done(bp); 4846 4847 if (err) { 4848 pvn_read_done(pp, B_ERROR); 4849 return (err); 4850 } 4851 } 4852 4853 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4854 return (0); 4855 } 4856 4857 /* 4858 * Read ahead a cluster from the disk. Returns the length in bytes. 4859 */ 4860 static int 4861 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4862 { 4863 struct inode *ip = VTOI(vp); 4864 page_t *pp; 4865 u_offset_t io_off = ip->i_nextrio; 4866 ufsvfs_t *ufsvfsp; 4867 caddr_t addr2 = addr + (io_off - off); 4868 struct buf *bp; 4869 daddr_t bn; 4870 size_t io_len; 4871 int err; 4872 int contig; 4873 int xlen; 4874 int bsize = ip->i_fs->fs_bsize; 4875 4876 /* 4877 * If the directio advisory is in effect on this file, 4878 * then do not do buffered read ahead. Read ahead makes 4879 * it more difficult on threads using directio as they 4880 * will be forced to flush the pages from this vnode. 4881 */ 4882 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 4883 return (0); 4884 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 4885 return (0); 4886 4887 /* 4888 * Is this test needed? 4889 */ 4890 if (addr2 >= seg->s_base + seg->s_size) 4891 return (0); 4892 4893 contig = 0; 4894 err = bmap_read(ip, io_off, &bn, &contig); 4895 /* 4896 * If its a UFS_HOLE or a fallocated block, do not perform 4897 * any read ahead's since there probably is nothing to read ahead 4898 */ 4899 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 4900 return (0); 4901 4902 /* 4903 * Limit the transfer size to bsize if this is the 2nd block. 4904 */ 4905 if (io_off == (u_offset_t)bsize) 4906 contig = MIN(contig, bsize); 4907 4908 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 4909 &io_len, io_off, contig, 1)) == NULL) 4910 return (0); 4911 4912 /* 4913 * Zero part of page which we are not going to read from disk 4914 */ 4915 if ((xlen = (io_len & PAGEOFFSET)) > 0) 4916 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4917 4918 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 4919 4920 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 4921 bp->b_edev = ip->i_dev; 4922 bp->b_dev = cmpdev(ip->i_dev); 4923 bp->b_blkno = bn; 4924 bp->b_un.b_addr = (caddr_t)0; 4925 bp->b_file = ip->i_vnode; 4926 bp->b_offset = off; 4927 4928 if (ufsvfsp->vfs_log) { 4929 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4930 } else if (ufsvfsp->vfs_snapshot) { 4931 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4932 } else { 4933 ufsvfsp->vfs_iotstamp = lbolt; 4934 ub.ub_getras.value.ul++; 4935 (void) bdev_strategy(bp); 4936 lwp_stat_update(LWP_STAT_INBLK, 1); 4937 } 4938 4939 return (io_len); 4940 } 4941 4942 int ufs_delay = 1; 4943 /* 4944 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 4945 * 4946 * LMXXX - the inode really ought to contain a pointer to one of these 4947 * async args. Stuff gunk in there and just hand the whole mess off. 4948 * This would replace i_delaylen, i_delayoff. 4949 */ 4950 /*ARGSUSED*/ 4951 static int 4952 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 4953 struct cred *cr) 4954 { 4955 struct inode *ip = VTOI(vp); 4956 int err = 0; 4957 4958 if (vp->v_count == 0) { 4959 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 4960 } 4961 4962 /* 4963 * XXX - Why should this check be made here? 4964 */ 4965 if (vp->v_flag & VNOMAP) { 4966 err = ENOSYS; 4967 goto errout; 4968 } 4969 4970 if (ip->i_ufsvfs == NULL) { 4971 err = EIO; 4972 goto errout; 4973 } 4974 4975 if (flags & B_ASYNC) { 4976 if (ufs_delay && len && 4977 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 4978 mutex_enter(&ip->i_tlock); 4979 /* 4980 * If nobody stalled, start a new cluster. 4981 */ 4982 if (ip->i_delaylen == 0) { 4983 ip->i_delayoff = off; 4984 ip->i_delaylen = len; 4985 mutex_exit(&ip->i_tlock); 4986 goto errout; 4987 } 4988 /* 4989 * If we have a full cluster or they are not contig, 4990 * then push last cluster and start over. 4991 */ 4992 if (ip->i_delaylen >= CLUSTSZ(ip) || 4993 ip->i_delayoff + ip->i_delaylen != off) { 4994 u_offset_t doff; 4995 size_t dlen; 4996 4997 doff = ip->i_delayoff; 4998 dlen = ip->i_delaylen; 4999 ip->i_delayoff = off; 5000 ip->i_delaylen = len; 5001 mutex_exit(&ip->i_tlock); 5002 err = ufs_putpages(vp, doff, dlen, 5003 flags, cr); 5004 /* LMXXX - flags are new val, not old */ 5005 goto errout; 5006 } 5007 /* 5008 * There is something there, it's not full, and 5009 * it is contig. 5010 */ 5011 ip->i_delaylen += len; 5012 mutex_exit(&ip->i_tlock); 5013 goto errout; 5014 } 5015 /* 5016 * Must have weird flags or we are not clustering. 5017 */ 5018 } 5019 5020 err = ufs_putpages(vp, off, len, flags, cr); 5021 5022 errout: 5023 return (err); 5024 } 5025 5026 /* 5027 * If len == 0, do from off to EOF. 5028 * 5029 * The normal cases should be len == 0 & off == 0 (entire vp list), 5030 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5031 * (from pageout). 5032 */ 5033 /*ARGSUSED*/ 5034 static int 5035 ufs_putpages( 5036 struct vnode *vp, 5037 offset_t off, 5038 size_t len, 5039 int flags, 5040 struct cred *cr) 5041 { 5042 u_offset_t io_off; 5043 u_offset_t eoff; 5044 struct inode *ip = VTOI(vp); 5045 page_t *pp; 5046 size_t io_len; 5047 int err = 0; 5048 int dolock; 5049 5050 if (vp->v_count == 0) 5051 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5052 /* 5053 * Acquire the readers/write inode lock before locking 5054 * any pages in this inode. 5055 * The inode lock is held during i/o. 5056 */ 5057 if (len == 0) { 5058 mutex_enter(&ip->i_tlock); 5059 ip->i_delayoff = ip->i_delaylen = 0; 5060 mutex_exit(&ip->i_tlock); 5061 } 5062 dolock = (rw_owner(&ip->i_contents) != curthread); 5063 if (dolock) { 5064 /* 5065 * Must synchronize this thread and any possible thread 5066 * operating in the window of vulnerability in wrip(). 5067 * It is dangerous to allow both a thread doing a putpage 5068 * and a thread writing, so serialize them. The exception 5069 * is when the thread in wrip() does something which causes 5070 * a putpage operation. Then, the thread must be allowed 5071 * to continue. It may encounter a bmap_read problem in 5072 * ufs_putapage, but that is handled in ufs_putapage. 5073 * Allow async writers to proceed, we don't want to block 5074 * the pageout daemon. 5075 */ 5076 if (ip->i_writer == curthread) 5077 rw_enter(&ip->i_contents, RW_READER); 5078 else { 5079 for (;;) { 5080 rw_enter(&ip->i_contents, RW_READER); 5081 mutex_enter(&ip->i_tlock); 5082 /* 5083 * If there is no thread in the critical 5084 * section of wrip(), then proceed. 5085 * Otherwise, wait until there isn't one. 5086 */ 5087 if (ip->i_writer == NULL) { 5088 mutex_exit(&ip->i_tlock); 5089 break; 5090 } 5091 rw_exit(&ip->i_contents); 5092 /* 5093 * Bounce async writers when we have a writer 5094 * working on this file so we don't deadlock 5095 * the pageout daemon. 5096 */ 5097 if (flags & B_ASYNC) { 5098 mutex_exit(&ip->i_tlock); 5099 return (0); 5100 } 5101 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5102 mutex_exit(&ip->i_tlock); 5103 } 5104 } 5105 } 5106 5107 if (!vn_has_cached_data(vp)) { 5108 if (dolock) 5109 rw_exit(&ip->i_contents); 5110 return (0); 5111 } 5112 5113 if (len == 0) { 5114 /* 5115 * Search the entire vp list for pages >= off. 5116 */ 5117 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5118 flags, cr); 5119 } else { 5120 /* 5121 * Loop over all offsets in the range looking for 5122 * pages to deal with. 5123 */ 5124 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5125 eoff = MIN(off + len, eoff); 5126 else 5127 eoff = off + len; 5128 5129 for (io_off = off; io_off < eoff; io_off += io_len) { 5130 /* 5131 * If we are not invalidating, synchronously 5132 * freeing or writing pages, use the routine 5133 * page_lookup_nowait() to prevent reclaiming 5134 * them from the free list. 5135 */ 5136 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5137 pp = page_lookup(vp, io_off, 5138 (flags & (B_INVAL | B_FREE)) ? 5139 SE_EXCL : SE_SHARED); 5140 } else { 5141 pp = page_lookup_nowait(vp, io_off, 5142 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5143 } 5144 5145 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5146 io_len = PAGESIZE; 5147 else { 5148 u_offset_t *io_offp = &io_off; 5149 5150 err = ufs_putapage(vp, pp, io_offp, &io_len, 5151 flags, cr); 5152 if (err != 0) 5153 break; 5154 /* 5155 * "io_off" and "io_len" are returned as 5156 * the range of pages we actually wrote. 5157 * This allows us to skip ahead more quickly 5158 * since several pages may've been dealt 5159 * with by this iteration of the loop. 5160 */ 5161 } 5162 } 5163 } 5164 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5165 /* 5166 * We have just sync'ed back all the pages on 5167 * the inode, turn off the IMODTIME flag. 5168 */ 5169 mutex_enter(&ip->i_tlock); 5170 ip->i_flag &= ~IMODTIME; 5171 mutex_exit(&ip->i_tlock); 5172 } 5173 if (dolock) 5174 rw_exit(&ip->i_contents); 5175 return (err); 5176 } 5177 5178 static void 5179 ufs_iodone(buf_t *bp) 5180 { 5181 struct inode *ip; 5182 5183 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5184 5185 bp->b_iodone = NULL; 5186 5187 ip = VTOI(bp->b_pages->p_vnode); 5188 5189 mutex_enter(&ip->i_tlock); 5190 if (ip->i_writes >= ufs_LW) { 5191 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5192 if (ufs_WRITES) 5193 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5194 } else { 5195 ip->i_writes -= bp->b_bcount; 5196 } 5197 5198 mutex_exit(&ip->i_tlock); 5199 iodone(bp); 5200 } 5201 5202 /* 5203 * Write out a single page, possibly klustering adjacent 5204 * dirty pages. The inode lock must be held. 5205 * 5206 * LMXXX - bsize < pagesize not done. 5207 */ 5208 /*ARGSUSED*/ 5209 int 5210 ufs_putapage( 5211 struct vnode *vp, 5212 page_t *pp, 5213 u_offset_t *offp, 5214 size_t *lenp, /* return values */ 5215 int flags, 5216 struct cred *cr) 5217 { 5218 u_offset_t io_off; 5219 u_offset_t off; 5220 struct inode *ip = VTOI(vp); 5221 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5222 struct fs *fs; 5223 struct buf *bp; 5224 size_t io_len; 5225 daddr_t bn; 5226 int err; 5227 int contig; 5228 5229 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5230 5231 if (ufsvfsp == NULL) { 5232 err = EIO; 5233 goto out_trace; 5234 } 5235 5236 fs = ip->i_fs; 5237 ASSERT(fs->fs_ronly == 0); 5238 5239 /* 5240 * If the modified time on the inode has not already been 5241 * set elsewhere (e.g. for write/setattr) we set the time now. 5242 * This gives us approximate modified times for mmap'ed files 5243 * which are modified via stores in the user address space. 5244 */ 5245 if ((ip->i_flag & IMODTIME) == 0) { 5246 mutex_enter(&ip->i_tlock); 5247 ip->i_flag |= IUPD; 5248 ip->i_seq++; 5249 ITIMES_NOLOCK(ip); 5250 mutex_exit(&ip->i_tlock); 5251 } 5252 5253 /* 5254 * Align the request to a block boundry (for old file systems), 5255 * and go ask bmap() how contiguous things are for this file. 5256 */ 5257 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5258 contig = 0; 5259 err = bmap_read(ip, off, &bn, &contig); 5260 if (err) 5261 goto out; 5262 if (bn == UFS_HOLE) { /* putpage never allocates */ 5263 /* 5264 * logging device is in error mode; simply return EIO 5265 */ 5266 if (TRANS_ISERROR(ufsvfsp)) { 5267 err = EIO; 5268 goto out; 5269 } 5270 /* 5271 * Oops, the thread in the window in wrip() did some 5272 * sort of operation which caused a putpage in the bad 5273 * range. In this case, just return an error which will 5274 * cause the software modified bit on the page to set 5275 * and the page will get written out again later. 5276 */ 5277 if (ip->i_writer == curthread) { 5278 err = EIO; 5279 goto out; 5280 } 5281 /* 5282 * If the pager is trying to push a page in the bad range 5283 * just tell him to try again later when things are better. 5284 */ 5285 if (flags & B_ASYNC) { 5286 err = EAGAIN; 5287 goto out; 5288 } 5289 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5290 goto out; 5291 } 5292 5293 /* 5294 * If it is an fallocate'd block, reverse the negativity since 5295 * we are now writing to it 5296 */ 5297 if (ISFALLOCBLK(ip, bn)) { 5298 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5299 if (err) 5300 goto out; 5301 5302 bn = -bn; 5303 } 5304 5305 /* 5306 * Take the length (of contiguous bytes) passed back from bmap() 5307 * and _try_ and get a set of pages covering that extent. 5308 */ 5309 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5310 5311 /* 5312 * May have run out of memory and not clustered backwards. 5313 * off p_offset 5314 * [ pp - 1 ][ pp ] 5315 * [ block ] 5316 * We told bmap off, so we have to adjust the bn accordingly. 5317 */ 5318 if (io_off > off) { 5319 bn += btod(io_off - off); 5320 contig -= (io_off - off); 5321 } 5322 5323 /* 5324 * bmap was carefull to tell us the right size so use that. 5325 * There might be unallocated frags at the end. 5326 * LMXXX - bzero the end of the page? We must be writing after EOF. 5327 */ 5328 if (io_len > contig) { 5329 ASSERT(io_len - contig < fs->fs_bsize); 5330 io_len -= (io_len - contig); 5331 } 5332 5333 /* 5334 * Handle the case where we are writing the last page after EOF. 5335 * 5336 * XXX - just a patch for i-mt3. 5337 */ 5338 if (io_len == 0) { 5339 ASSERT(pp->p_offset >= 5340 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5341 io_len = PAGESIZE; 5342 } 5343 5344 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5345 5346 ULOCKFS_SET_MOD(ITOUL(ip)); 5347 5348 bp->b_edev = ip->i_dev; 5349 bp->b_dev = cmpdev(ip->i_dev); 5350 bp->b_blkno = bn; 5351 bp->b_un.b_addr = (caddr_t)0; 5352 bp->b_file = ip->i_vnode; 5353 5354 if (TRANS_ISTRANS(ufsvfsp)) { 5355 if ((ip->i_mode & IFMT) == IFSHAD) { 5356 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5357 } else if (ufsvfsp->vfs_qinod == ip) { 5358 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5359 0, 0); 5360 } 5361 } 5362 5363 /* write throttle */ 5364 5365 ASSERT(bp->b_iodone == NULL); 5366 bp->b_iodone = (int (*)())ufs_iodone; 5367 mutex_enter(&ip->i_tlock); 5368 ip->i_writes += bp->b_bcount; 5369 mutex_exit(&ip->i_tlock); 5370 5371 if (bp->b_flags & B_ASYNC) { 5372 if (ufsvfsp->vfs_log) { 5373 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5374 } else if (ufsvfsp->vfs_snapshot) { 5375 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5376 } else { 5377 ufsvfsp->vfs_iotstamp = lbolt; 5378 ub.ub_putasyncs.value.ul++; 5379 (void) bdev_strategy(bp); 5380 lwp_stat_update(LWP_STAT_OUBLK, 1); 5381 } 5382 } else { 5383 if (ufsvfsp->vfs_log) { 5384 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5385 } else if (ufsvfsp->vfs_snapshot) { 5386 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5387 } else { 5388 ufsvfsp->vfs_iotstamp = lbolt; 5389 ub.ub_putsyncs.value.ul++; 5390 (void) bdev_strategy(bp); 5391 lwp_stat_update(LWP_STAT_OUBLK, 1); 5392 } 5393 err = biowait(bp); 5394 pageio_done(bp); 5395 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5396 } 5397 5398 pp = NULL; 5399 5400 out: 5401 if (err != 0 && pp != NULL) 5402 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5403 5404 if (offp) 5405 *offp = io_off; 5406 if (lenp) 5407 *lenp = io_len; 5408 out_trace: 5409 return (err); 5410 } 5411 5412 /* ARGSUSED */ 5413 static int 5414 ufs_map(struct vnode *vp, 5415 offset_t off, 5416 struct as *as, 5417 caddr_t *addrp, 5418 size_t len, 5419 uchar_t prot, 5420 uchar_t maxprot, 5421 uint_t flags, 5422 struct cred *cr) 5423 { 5424 struct segvn_crargs vn_a; 5425 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5426 struct ulockfs *ulp; 5427 int error; 5428 5429 retry_map: 5430 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK); 5431 if (error) 5432 goto out; 5433 5434 if (vp->v_flag & VNOMAP) { 5435 error = ENOSYS; 5436 goto unlock; 5437 } 5438 5439 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5440 error = ENXIO; 5441 goto unlock; 5442 } 5443 5444 if (vp->v_type != VREG) { 5445 error = ENODEV; 5446 goto unlock; 5447 } 5448 5449 /* 5450 * If file is being locked, disallow mapping. 5451 */ 5452 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5453 error = EAGAIN; 5454 goto unlock; 5455 } 5456 5457 as_rangelock(as); 5458 if ((flags & MAP_FIXED) == 0) { 5459 map_addr(addrp, len, off, 1, flags); 5460 if (*addrp == NULL) { 5461 as_rangeunlock(as); 5462 error = ENOMEM; 5463 goto unlock; 5464 } 5465 } else { 5466 /* 5467 * User specified address - blow away any previous mappings 5468 */ 5469 (void) as_unmap(as, *addrp, len); 5470 } 5471 5472 vn_a.vp = vp; 5473 vn_a.offset = (u_offset_t)off; 5474 vn_a.type = flags & MAP_TYPE; 5475 vn_a.prot = prot; 5476 vn_a.maxprot = maxprot; 5477 vn_a.cred = cr; 5478 vn_a.amp = NULL; 5479 vn_a.flags = flags & ~MAP_TYPE; 5480 vn_a.szc = 0; 5481 vn_a.lgrp_mem_policy_flags = 0; 5482 5483 retry_lock: 5484 if (!AS_LOCK_TRYENTER(ias, &as->a_lock, RW_WRITER)) { 5485 /* 5486 * We didn't get the lock. Check if the SLOCK is set in the 5487 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 5488 * and wait for SLOCK to be cleared. 5489 */ 5490 5491 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 5492 as_rangeunlock(as); 5493 ufs_lockfs_end(ulp); 5494 goto retry_map; 5495 } else { 5496 /* 5497 * SLOCK isn't set so this is a genuine synchronization 5498 * case. Let's try again after giving them a breather. 5499 */ 5500 delay(RETRY_LOCK_DELAY); 5501 goto retry_lock; 5502 } 5503 } 5504 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5505 as_rangeunlock(as); 5506 5507 unlock: 5508 if (ulp) { 5509 ufs_lockfs_end(ulp); 5510 } 5511 out: 5512 return (error); 5513 } 5514 5515 /* ARGSUSED */ 5516 static int 5517 ufs_addmap(struct vnode *vp, 5518 offset_t off, 5519 struct as *as, 5520 caddr_t addr, 5521 size_t len, 5522 uchar_t prot, 5523 uchar_t maxprot, 5524 uint_t flags, 5525 struct cred *cr) 5526 { 5527 struct inode *ip = VTOI(vp); 5528 5529 if (vp->v_flag & VNOMAP) { 5530 return (ENOSYS); 5531 } 5532 5533 mutex_enter(&ip->i_tlock); 5534 ip->i_mapcnt += btopr(len); 5535 mutex_exit(&ip->i_tlock); 5536 return (0); 5537 } 5538 5539 /*ARGSUSED*/ 5540 static int 5541 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5542 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5543 struct cred *cr) 5544 { 5545 struct inode *ip = VTOI(vp); 5546 5547 if (vp->v_flag & VNOMAP) { 5548 return (ENOSYS); 5549 } 5550 5551 mutex_enter(&ip->i_tlock); 5552 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5553 ASSERT(ip->i_mapcnt >= 0); 5554 mutex_exit(&ip->i_tlock); 5555 return (0); 5556 } 5557 /* 5558 * Return the answer requested to poll() for non-device files 5559 */ 5560 struct pollhead ufs_pollhd; 5561 5562 /* ARGSUSED */ 5563 int 5564 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp) 5565 { 5566 struct ufsvfs *ufsvfsp; 5567 5568 *revp = 0; 5569 ufsvfsp = VTOI(vp)->i_ufsvfs; 5570 5571 if (!ufsvfsp) { 5572 *revp = POLLHUP; 5573 goto out; 5574 } 5575 5576 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5577 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5578 *revp |= POLLERR; 5579 5580 } else { 5581 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5582 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5583 *revp |= POLLOUT; 5584 5585 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5586 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5587 *revp |= POLLWRBAND; 5588 5589 if (ev & POLLIN) 5590 *revp |= POLLIN; 5591 5592 if (ev & POLLRDNORM) 5593 *revp |= POLLRDNORM; 5594 5595 if (ev & POLLRDBAND) 5596 *revp |= POLLRDBAND; 5597 } 5598 5599 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5600 *revp |= POLLPRI; 5601 out: 5602 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5603 5604 return (0); 5605 } 5606 5607 /* ARGSUSED */ 5608 static int 5609 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr) 5610 { 5611 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5612 struct ulockfs *ulp = NULL; 5613 struct inode *sip = NULL; 5614 int error; 5615 struct inode *ip = VTOI(vp); 5616 int issync; 5617 5618 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5619 if (error) 5620 return (error); 5621 5622 switch (cmd) { 5623 /* 5624 * Have to handle _PC_NAME_MAX here, because the normal way 5625 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5626 * results in a lock ordering reversal between 5627 * ufs_lockfs_{begin,end}() and 5628 * ufs_thread_{suspend,continue}(). 5629 * 5630 * Keep in sync with ufs_statvfs(). 5631 */ 5632 case _PC_NAME_MAX: 5633 *valp = MAXNAMLEN; 5634 break; 5635 5636 case _PC_FILESIZEBITS: 5637 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5638 *valp = UFS_FILESIZE_BITS; 5639 else 5640 *valp = 32; 5641 break; 5642 5643 case _PC_XATTR_EXISTS: 5644 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5645 5646 error = 5647 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5648 if (error == 0 && sip != NULL) { 5649 /* Start transaction */ 5650 if (ulp) { 5651 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5652 TOP_RMDIR, TOP_RMDIR_SIZE); 5653 } 5654 /* 5655 * Is directory empty 5656 */ 5657 rw_enter(&sip->i_rwlock, RW_WRITER); 5658 rw_enter(&sip->i_contents, RW_WRITER); 5659 if (ufs_xattrdirempty(sip, 5660 sip->i_number, CRED())) { 5661 rw_enter(&ip->i_contents, RW_WRITER); 5662 ufs_unhook_shadow(ip, sip); 5663 rw_exit(&ip->i_contents); 5664 5665 *valp = 0; 5666 5667 } else 5668 *valp = 1; 5669 rw_exit(&sip->i_contents); 5670 rw_exit(&sip->i_rwlock); 5671 if (ulp) { 5672 TRANS_END_CSYNC(ufsvfsp, error, issync, 5673 TOP_RMDIR, TOP_RMDIR_SIZE); 5674 } 5675 VN_RELE(ITOV(sip)); 5676 } else if (error == ENOENT) { 5677 *valp = 0; 5678 error = 0; 5679 } 5680 } else { 5681 error = fs_pathconf(vp, cmd, valp, cr); 5682 } 5683 break; 5684 5685 case _PC_ACL_ENABLED: 5686 *valp = _ACL_ACLENT_ENABLED; 5687 break; 5688 5689 case _PC_MIN_HOLE_SIZE: 5690 *valp = (ulong_t)ip->i_fs->fs_bsize; 5691 break; 5692 5693 default: 5694 error = fs_pathconf(vp, cmd, valp, cr); 5695 } 5696 5697 if (ulp != NULL) { 5698 ufs_lockfs_end(ulp); 5699 } 5700 return (error); 5701 } 5702 5703 int ufs_pageio_writes, ufs_pageio_reads; 5704 5705 /*ARGSUSED*/ 5706 static int 5707 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5708 int flags, struct cred *cr) 5709 { 5710 struct inode *ip = VTOI(vp); 5711 struct ufsvfs *ufsvfsp; 5712 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5713 struct buf *bp; 5714 daddr_t bn; 5715 size_t done_len = 0, cur_len = 0; 5716 int err = 0; 5717 int contig = 0; 5718 int dolock; 5719 int vmpss = 0; 5720 struct ulockfs *ulp; 5721 5722 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5723 vp->v_mpssdata != NULL) { 5724 vmpss = 1; 5725 } 5726 5727 dolock = (rw_owner(&ip->i_contents) != curthread); 5728 /* 5729 * We need a better check. Ideally, we would use another 5730 * vnodeops so that hlocked and forcibly unmounted file 5731 * systems would return EIO where appropriate and w/o the 5732 * need for these checks. 5733 */ 5734 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5735 return (EIO); 5736 5737 /* 5738 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5739 * ul_lock must be taken before locking pages so we can't use it here 5740 * if pp is non NULL because segvn already locked pages 5741 * SE_EXCL. Instead we rely on the fact that a forced umount or 5742 * applying a filesystem lock via ufs_fiolfs() will block in the 5743 * implicit call to ufs_flush() until we unlock the pages after the 5744 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5745 * above 0 until they are done. We have to be careful not to increment 5746 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5747 * 5748 * If pp is NULL use ul_lock to make sure we don't increment 5749 * ul_vnops_cnt after forceful unmount hlocks the file system. 5750 */ 5751 if (vmpss || pp == NULL) { 5752 ulp = &ufsvfsp->vfs_ulockfs; 5753 if (pp == NULL) 5754 mutex_enter(&ulp->ul_lock); 5755 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5756 if (pp == NULL) { 5757 mutex_exit(&ulp->ul_lock); 5758 } 5759 return (vmpss ? EIO : EINVAL); 5760 } 5761 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5762 if (pp == NULL) 5763 mutex_exit(&ulp->ul_lock); 5764 if (ufs_quiesce_pend) { 5765 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5766 cv_broadcast(&ulp->ul_cv); 5767 return (vmpss ? EIO : EINVAL); 5768 } 5769 } 5770 5771 if (dolock) { 5772 /* 5773 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5774 * handle a fault against a segment that maps vnode pages with 5775 * large mappings. Segvn creates pages and holds them locked 5776 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5777 * use rw_tryenter() to avoid a potential deadlock since in 5778 * lock order i_contents needs to be taken first. 5779 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5780 */ 5781 if (!vmpss) { 5782 rw_enter(&ip->i_contents, RW_READER); 5783 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5784 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5785 cv_broadcast(&ulp->ul_cv); 5786 return (EDEADLK); 5787 } 5788 } 5789 5790 /* 5791 * Return an error to segvn because the pagefault request is beyond 5792 * PAGESIZE rounded EOF. 5793 */ 5794 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5795 if (dolock) 5796 rw_exit(&ip->i_contents); 5797 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5798 cv_broadcast(&ulp->ul_cv); 5799 return (EFAULT); 5800 } 5801 5802 if (pp == NULL) { 5803 if (bmap_has_holes(ip)) { 5804 err = ENOSYS; 5805 } else { 5806 err = EINVAL; 5807 } 5808 if (dolock) 5809 rw_exit(&ip->i_contents); 5810 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5811 cv_broadcast(&ulp->ul_cv); 5812 return (err); 5813 } 5814 5815 /* 5816 * Break the io request into chunks, one for each contiguous 5817 * stretch of disk blocks in the target file. 5818 */ 5819 while (done_len < io_len) { 5820 ASSERT(cpp); 5821 contig = 0; 5822 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 5823 &bn, &contig)) 5824 break; 5825 5826 if (bn == UFS_HOLE) { /* No holey swapfiles */ 5827 if (vmpss) { 5828 err = EFAULT; 5829 break; 5830 } 5831 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 5832 break; 5833 } 5834 5835 cur_len = MIN(io_len - done_len, contig); 5836 /* 5837 * Zero out a page beyond EOF, when the last block of 5838 * a file is a UFS fragment so that ufs_pageio() can be used 5839 * instead of ufs_getpage() to handle faults against 5840 * segvn segments that use large pages. 5841 */ 5842 page_list_break(&cpp, &npp, btopr(cur_len)); 5843 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 5844 size_t xlen = cur_len & PAGEOFFSET; 5845 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 5846 } 5847 5848 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 5849 ASSERT(bp != NULL); 5850 5851 bp->b_edev = ip->i_dev; 5852 bp->b_dev = cmpdev(ip->i_dev); 5853 bp->b_blkno = bn; 5854 bp->b_un.b_addr = (caddr_t)0; 5855 bp->b_file = ip->i_vnode; 5856 5857 ufsvfsp->vfs_iotstamp = lbolt; 5858 ub.ub_pageios.value.ul++; 5859 if (ufsvfsp->vfs_snapshot) 5860 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 5861 else 5862 (void) bdev_strategy(bp); 5863 5864 if (flags & B_READ) 5865 ufs_pageio_reads++; 5866 else 5867 ufs_pageio_writes++; 5868 if (flags & B_READ) 5869 lwp_stat_update(LWP_STAT_INBLK, 1); 5870 else 5871 lwp_stat_update(LWP_STAT_OUBLK, 1); 5872 /* 5873 * If the request is not B_ASYNC, wait for i/o to complete 5874 * and re-assemble the page list to return to the caller. 5875 * If it is B_ASYNC we leave the page list in pieces and 5876 * cleanup() will dispose of them. 5877 */ 5878 if ((flags & B_ASYNC) == 0) { 5879 err = biowait(bp); 5880 pageio_done(bp); 5881 if (err) 5882 break; 5883 page_list_concat(&opp, &cpp); 5884 } 5885 cpp = npp; 5886 npp = NULL; 5887 if (flags & B_READ) 5888 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 5889 done_len += cur_len; 5890 } 5891 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 5892 if (err) { 5893 if (flags & B_ASYNC) { 5894 /* Cleanup unprocessed parts of list */ 5895 page_list_concat(&cpp, &npp); 5896 if (flags & B_READ) 5897 pvn_read_done(cpp, B_ERROR); 5898 else 5899 pvn_write_done(cpp, B_ERROR); 5900 } else { 5901 /* Re-assemble list and let caller clean up */ 5902 page_list_concat(&opp, &cpp); 5903 page_list_concat(&opp, &npp); 5904 } 5905 } 5906 5907 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 5908 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 5909 mutex_enter(&ip->i_tlock); 5910 ip->i_flag |= IACC; 5911 ITIMES_NOLOCK(ip); 5912 mutex_exit(&ip->i_tlock); 5913 } 5914 5915 if (dolock) 5916 rw_exit(&ip->i_contents); 5917 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5918 cv_broadcast(&ulp->ul_cv); 5919 return (err); 5920 } 5921 5922 /* 5923 * Called when the kernel is in a frozen state to dump data 5924 * directly to the device. It uses a private dump data structure, 5925 * set up by dump_ctl, to locate the correct disk block to which to dump. 5926 */ 5927 static int 5928 ufs_dump(vnode_t *vp, caddr_t addr, int ldbn, int dblks) 5929 { 5930 u_offset_t file_size; 5931 struct inode *ip = VTOI(vp); 5932 struct fs *fs = ip->i_fs; 5933 daddr_t dbn, lfsbn; 5934 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 5935 int error = 0; 5936 int ndbs, nfsbs; 5937 5938 /* 5939 * forced unmount case 5940 */ 5941 if (ip->i_ufsvfs == NULL) 5942 return (EIO); 5943 /* 5944 * Validate the inode that it has not been modified since 5945 * the dump structure is allocated. 5946 */ 5947 mutex_enter(&ip->i_tlock); 5948 if ((dump_info == NULL) || 5949 (dump_info->ip != ip) || 5950 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 5951 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 5952 mutex_exit(&ip->i_tlock); 5953 return (-1); 5954 } 5955 mutex_exit(&ip->i_tlock); 5956 5957 /* 5958 * See that the file has room for this write 5959 */ 5960 UFS_GET_ISIZE(&file_size, ip); 5961 5962 if (ldbtob((offset_t)(ldbn + dblks)) > file_size) 5963 return (ENOSPC); 5964 5965 /* 5966 * Find the physical disk block numbers from the dump 5967 * private data structure directly and write out the data 5968 * in contiguous block lumps 5969 */ 5970 while (dblks > 0 && !error) { 5971 lfsbn = (daddr_t)lblkno(fs, ldbtob((offset_t)ldbn)); 5972 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 5973 nfsbs = 1; 5974 ndbs = disk_blks - ldbn % disk_blks; 5975 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 5976 nfsbs]) == dbn + ndbs) { 5977 nfsbs++; 5978 ndbs += disk_blks; 5979 } 5980 if (ndbs > dblks) 5981 ndbs = dblks; 5982 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 5983 addr += ldbtob((offset_t)ndbs); 5984 dblks -= ndbs; 5985 ldbn += ndbs; 5986 } 5987 return (error); 5988 5989 } 5990 5991 /* 5992 * Prepare the file system before and after the dump operation. 5993 * 5994 * action = DUMP_ALLOC: 5995 * Preparation before dump, allocate dump private data structure 5996 * to hold all the direct and indirect block info for dump. 5997 * 5998 * action = DUMP_FREE: 5999 * Clean up after dump, deallocate the dump private data structure. 6000 * 6001 * action = DUMP_SCAN: 6002 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6003 * if found, the starting file-relative DEV_BSIZE lbn is written 6004 * to *bklp; that lbn is intended for use with VOP_DUMP() 6005 */ 6006 static int 6007 ufs_dumpctl(vnode_t *vp, int action, int *blkp) 6008 { 6009 struct inode *ip = VTOI(vp); 6010 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6011 struct fs *fs; 6012 daddr32_t *dblk, *storeblk; 6013 daddr32_t *nextblk, *endblk; 6014 struct buf *bp; 6015 int i, entry, entries; 6016 int n, ncontig; 6017 6018 /* 6019 * check for forced unmount 6020 */ 6021 if (ufsvfsp == NULL) 6022 return (EIO); 6023 6024 if (action == DUMP_ALLOC) { 6025 /* 6026 * alloc and record dump_info 6027 */ 6028 if (dump_info != NULL) 6029 return (EINVAL); 6030 6031 ASSERT(vp->v_type == VREG); 6032 fs = ufsvfsp->vfs_fs; 6033 6034 rw_enter(&ip->i_contents, RW_READER); 6035 6036 if (bmap_has_holes(ip)) { 6037 rw_exit(&ip->i_contents); 6038 return (EFAULT); 6039 } 6040 6041 /* 6042 * calculate and allocate space needed according to i_size 6043 */ 6044 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6045 dump_info = kmem_alloc(sizeof (struct dump) + 6046 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6047 if (dump_info == NULL) { 6048 rw_exit(&ip->i_contents); 6049 return (ENOMEM); 6050 } 6051 6052 /* Start saving the info */ 6053 dump_info->fsbs = entries; 6054 dump_info->ip = ip; 6055 storeblk = &dump_info->dblk[0]; 6056 6057 /* Direct Blocks */ 6058 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6059 *storeblk++ = ip->i_db[entry]; 6060 6061 /* Indirect Blocks */ 6062 for (i = 0; i < NIADDR; i++) { 6063 int error = 0; 6064 6065 bp = UFS_BREAD(ufsvfsp, 6066 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6067 if (bp->b_flags & B_ERROR) 6068 error = EIO; 6069 else { 6070 dblk = bp->b_un.b_daddr; 6071 if ((storeblk = save_dblks(ip, ufsvfsp, 6072 storeblk, dblk, i, entries)) == NULL) 6073 error = EIO; 6074 } 6075 6076 brelse(bp); 6077 6078 if (error != 0) { 6079 kmem_free(dump_info, sizeof (struct dump) + 6080 (entries - 1) * sizeof (daddr32_t)); 6081 rw_exit(&ip->i_contents); 6082 dump_info = NULL; 6083 return (error); 6084 } 6085 } 6086 /* and time stamp the information */ 6087 mutex_enter(&ip->i_tlock); 6088 dump_info->time = ip->i_mtime; 6089 mutex_exit(&ip->i_tlock); 6090 6091 rw_exit(&ip->i_contents); 6092 } else if (action == DUMP_FREE) { 6093 /* 6094 * free dump_info 6095 */ 6096 if (dump_info == NULL) 6097 return (EINVAL); 6098 entries = dump_info->fsbs - 1; 6099 kmem_free(dump_info, sizeof (struct dump) + 6100 entries * sizeof (daddr32_t)); 6101 dump_info = NULL; 6102 } else if (action == DUMP_SCAN) { 6103 /* 6104 * scan dump_info 6105 */ 6106 if (dump_info == NULL) 6107 return (EINVAL); 6108 6109 dblk = dump_info->dblk; 6110 nextblk = dblk + 1; 6111 endblk = dblk + dump_info->fsbs - 1; 6112 fs = ufsvfsp->vfs_fs; 6113 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6114 6115 /* 6116 * scan dblk[] entries; contig fs space is found when: 6117 * ((current blkno + frags per block) == next blkno) 6118 */ 6119 n = 0; 6120 while (n < ncontig && dblk < endblk) { 6121 if ((*dblk + fs->fs_frag) == *nextblk) 6122 n++; 6123 else 6124 n = 0; 6125 dblk++; 6126 nextblk++; 6127 } 6128 6129 /* 6130 * index is where size bytes of contig space begins; 6131 * conversion from index to the file's DEV_BSIZE lbn 6132 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6133 */ 6134 if (n == ncontig) { 6135 i = (dblk - dump_info->dblk) - ncontig; 6136 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6137 } else 6138 return (EFAULT); 6139 } 6140 return (0); 6141 } 6142 6143 /* 6144 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6145 * system blocks until it reaches the the disk block addresses, which are 6146 * then stored into the given buffer, storeblk. 6147 */ 6148 static daddr32_t * 6149 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6150 daddr32_t *dblk, int level, int entries) 6151 { 6152 struct fs *fs = ufsvfsp->vfs_fs; 6153 struct buf *bp; 6154 int i; 6155 6156 if (level == 0) { 6157 for (i = 0; i < NINDIR(fs); i++) { 6158 if (storeblk - dump_info->dblk >= entries) 6159 break; 6160 *storeblk++ = dblk[i]; 6161 } 6162 return (storeblk); 6163 } 6164 for (i = 0; i < NINDIR(fs); i++) { 6165 if (storeblk - dump_info->dblk >= entries) 6166 break; 6167 bp = UFS_BREAD(ufsvfsp, 6168 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6169 if (bp->b_flags & B_ERROR) { 6170 brelse(bp); 6171 return (NULL); 6172 } 6173 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6174 level - 1, entries); 6175 brelse(bp); 6176 6177 if (storeblk == NULL) 6178 return (NULL); 6179 } 6180 return (storeblk); 6181 } 6182 6183 /* ARGSUSED */ 6184 static int 6185 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6186 struct cred *cr) 6187 { 6188 struct inode *ip = VTOI(vp); 6189 struct ulockfs *ulp; 6190 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6191 ulong_t vsa_mask = vsap->vsa_mask; 6192 int err = EINVAL; 6193 6194 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6195 6196 /* 6197 * Only grab locks if needed - they're not needed to check vsa_mask 6198 * or if the mask contains no acl flags. 6199 */ 6200 if (vsa_mask != 0) { 6201 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6202 ULOCKFS_GETATTR_MASK)) 6203 return (err); 6204 6205 rw_enter(&ip->i_contents, RW_READER); 6206 err = ufs_acl_get(ip, vsap, flag, cr); 6207 rw_exit(&ip->i_contents); 6208 6209 if (ulp) 6210 ufs_lockfs_end(ulp); 6211 } 6212 return (err); 6213 } 6214 6215 /* ARGSUSED */ 6216 static int 6217 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 6218 { 6219 struct inode *ip = VTOI(vp); 6220 struct ulockfs *ulp = NULL; 6221 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6222 ulong_t vsa_mask = vsap->vsa_mask; 6223 int err; 6224 int haverwlock = 1; 6225 int trans_size; 6226 int donetrans = 0; 6227 int retry = 1; 6228 6229 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6230 6231 /* Abort now if the request is either empty or invalid. */ 6232 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6233 if ((vsa_mask == 0) || 6234 ((vsap->vsa_aclentp == NULL) && 6235 (vsap->vsa_dfaclentp == NULL))) { 6236 err = EINVAL; 6237 goto out; 6238 } 6239 6240 /* 6241 * Following convention, if this is a directory then we acquire the 6242 * inode's i_rwlock after starting a UFS logging transaction; 6243 * otherwise, we acquire it beforehand. Since we were called (and 6244 * must therefore return) with the lock held, we will have to drop it, 6245 * and later reacquire it, if operating on a directory. 6246 */ 6247 if (vp->v_type == VDIR) { 6248 rw_exit(&ip->i_rwlock); 6249 haverwlock = 0; 6250 } else { 6251 /* Upgrade the lock if required. */ 6252 if (!rw_write_held(&ip->i_rwlock)) { 6253 rw_exit(&ip->i_rwlock); 6254 rw_enter(&ip->i_rwlock, RW_WRITER); 6255 } 6256 } 6257 6258 again: 6259 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6260 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6261 ulp = NULL; 6262 retry = 0; 6263 goto out; 6264 } 6265 6266 /* 6267 * Check that the file system supports this operation. Note that 6268 * ufs_lockfs_begin() will have checked that the file system had 6269 * not been forcibly unmounted. 6270 */ 6271 if (ufsvfsp->vfs_fs->fs_ronly) { 6272 err = EROFS; 6273 goto out; 6274 } 6275 if (ufsvfsp->vfs_nosetsec) { 6276 err = ENOSYS; 6277 goto out; 6278 } 6279 6280 if (ulp) { 6281 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6282 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6283 donetrans = 1; 6284 } 6285 6286 if (vp->v_type == VDIR) { 6287 rw_enter(&ip->i_rwlock, RW_WRITER); 6288 haverwlock = 1; 6289 } 6290 6291 ASSERT(haverwlock); 6292 6293 /* Do the actual work. */ 6294 rw_enter(&ip->i_contents, RW_WRITER); 6295 /* 6296 * Suppress out of inodes messages if we will retry. 6297 */ 6298 if (retry) 6299 ip->i_flag |= IQUIET; 6300 err = ufs_acl_set(ip, vsap, flag, cr); 6301 ip->i_flag &= ~IQUIET; 6302 rw_exit(&ip->i_contents); 6303 6304 out: 6305 if (ulp) { 6306 if (donetrans) { 6307 /* 6308 * top_end_async() can eventually call 6309 * top_end_sync(), which can block. We must 6310 * therefore observe the lock-ordering protocol 6311 * here as well. 6312 */ 6313 if (vp->v_type == VDIR) { 6314 rw_exit(&ip->i_rwlock); 6315 haverwlock = 0; 6316 } 6317 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6318 } 6319 ufs_lockfs_end(ulp); 6320 } 6321 /* 6322 * If no inodes available, try scaring a logically- 6323 * free one out of the delete queue to someplace 6324 * that we can find it. 6325 */ 6326 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6327 ufs_delete_drain_wait(ufsvfsp, 1); 6328 retry = 0; 6329 if (vp->v_type == VDIR && haverwlock) { 6330 rw_exit(&ip->i_rwlock); 6331 haverwlock = 0; 6332 } 6333 goto again; 6334 } 6335 /* 6336 * If we need to reacquire the lock then it is safe to do so 6337 * as a reader. This is because ufs_rwunlock(), which will be 6338 * called by our caller after we return, does not differentiate 6339 * between shared and exclusive locks. 6340 */ 6341 if (!haverwlock) { 6342 ASSERT(vp->v_type == VDIR); 6343 rw_enter(&ip->i_rwlock, RW_READER); 6344 } 6345 6346 return (err); 6347 } 6348