1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 #include <sys/types.h> 37 #include <sys/t_lock.h> 38 #include <sys/ksynch.h> 39 #include <sys/param.h> 40 #include <sys/time.h> 41 #include <sys/systm.h> 42 #include <sys/sysmacros.h> 43 #include <sys/resource.h> 44 #include <sys/signal.h> 45 #include <sys/cred.h> 46 #include <sys/user.h> 47 #include <sys/buf.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/vnode.h> 51 #include <sys/proc.h> 52 #include <sys/disp.h> 53 #include <sys/file.h> 54 #include <sys/fcntl.h> 55 #include <sys/flock.h> 56 #include <sys/atomic.h> 57 #include <sys/kmem.h> 58 #include <sys/uio.h> 59 #include <sys/dnlc.h> 60 #include <sys/conf.h> 61 #include <sys/mman.h> 62 #include <sys/pathname.h> 63 #include <sys/debug.h> 64 #include <sys/vmsystm.h> 65 #include <sys/cmn_err.h> 66 #include <sys/filio.h> 67 #include <sys/policy.h> 68 69 #include <sys/fs/ufs_fs.h> 70 #include <sys/fs/ufs_lockfs.h> 71 #include <sys/fs/ufs_filio.h> 72 #include <sys/fs/ufs_inode.h> 73 #include <sys/fs/ufs_fsdir.h> 74 #include <sys/fs/ufs_quota.h> 75 #include <sys/fs/ufs_log.h> 76 #include <sys/fs/ufs_snap.h> 77 #include <sys/fs/ufs_trans.h> 78 #include <sys/fs/ufs_panic.h> 79 #include <sys/fs/ufs_bio.h> 80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */ 81 #include <sys/errno.h> 82 #include <sys/fssnap_if.h> 83 #include <sys/unistd.h> 84 #include <sys/sunddi.h> 85 86 #include <sys/filio.h> /* _FIOIO */ 87 88 #include <vm/hat.h> 89 #include <vm/page.h> 90 #include <vm/pvn.h> 91 #include <vm/as.h> 92 #include <vm/seg.h> 93 #include <vm/seg_map.h> 94 #include <vm/seg_vn.h> 95 #include <vm/seg_kmem.h> 96 #include <vm/rm.h> 97 #include <sys/swap.h> 98 99 #include <fs/fs_subr.h> 100 101 #include <sys/fs/decomp.h> 102 103 static struct instats ins; 104 105 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t); 106 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *, 107 caddr_t, struct page **, size_t, enum seg_rw, int); 108 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *); 109 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *, 110 caller_context_t *); 111 static int ufs_read(struct vnode *, struct uio *, int, struct cred *, 112 struct caller_context *); 113 static int ufs_write(struct vnode *, struct uio *, int, struct cred *, 114 struct caller_context *); 115 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *, 116 int *, caller_context_t *); 117 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *, 118 caller_context_t *); 119 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *, 120 caller_context_t *); 121 static int ufs_access(struct vnode *, int, int, struct cred *, 122 caller_context_t *); 123 static int ufs_lookup(struct vnode *, char *, struct vnode **, 124 struct pathname *, int, struct vnode *, struct cred *, 125 caller_context_t *, int *, pathname_t *); 126 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl, 127 int, struct vnode **, struct cred *, int, 128 caller_context_t *, vsecattr_t *); 129 static int ufs_remove(struct vnode *, char *, struct cred *, 130 caller_context_t *, int); 131 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *, 132 caller_context_t *, int); 133 static int ufs_rename(struct vnode *, char *, struct vnode *, char *, 134 struct cred *, caller_context_t *, int); 135 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **, 136 struct cred *, caller_context_t *, int, vsecattr_t *); 137 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *, 138 caller_context_t *, int); 139 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *, 140 caller_context_t *, int); 141 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *, 142 struct cred *, caller_context_t *, int); 143 static int ufs_readlink(struct vnode *, struct uio *, struct cred *, 144 caller_context_t *); 145 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *); 146 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *); 147 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *); 148 static int ufs_rwlock(struct vnode *, int, caller_context_t *); 149 static void ufs_rwunlock(struct vnode *, int, caller_context_t *); 150 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 151 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 152 struct flk_callback *, struct cred *, 153 caller_context_t *); 154 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t, 155 cred_t *, caller_context_t *); 156 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *, 157 struct page **, size_t, struct seg *, caddr_t, 158 enum seg_rw, struct cred *, caller_context_t *); 159 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *, 160 caller_context_t *); 161 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *); 162 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 164 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 165 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 166 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 167 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 168 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **, 169 caller_context_t *); 170 static int ufs_dump(vnode_t *, caddr_t, int, int, caller_context_t *); 171 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *, 172 caller_context_t *); 173 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int, 174 struct cred *, caller_context_t *); 175 static int ufs_dumpctl(vnode_t *, int, int *, caller_context_t *); 176 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *, 177 daddr32_t *, int, int); 178 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 179 caller_context_t *); 180 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 181 caller_context_t *); 182 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *); 183 184 /* 185 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions. 186 * 187 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet. 188 */ 189 struct vnodeops *ufs_vnodeops; 190 191 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */ 192 const fs_operation_def_t ufs_vnodeops_template[] = { 193 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */ 194 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */ 195 VOPNAME_READ, { .vop_read = ufs_read }, 196 VOPNAME_WRITE, { .vop_write = ufs_write }, 197 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl }, 198 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr }, 199 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr }, 200 VOPNAME_ACCESS, { .vop_access = ufs_access }, 201 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup }, 202 VOPNAME_CREATE, { .vop_create = ufs_create }, 203 VOPNAME_REMOVE, { .vop_remove = ufs_remove }, 204 VOPNAME_LINK, { .vop_link = ufs_link }, 205 VOPNAME_RENAME, { .vop_rename = ufs_rename }, 206 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir }, 207 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir }, 208 VOPNAME_READDIR, { .vop_readdir = ufs_readdir }, 209 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink }, 210 VOPNAME_READLINK, { .vop_readlink = ufs_readlink }, 211 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync }, 212 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */ 213 VOPNAME_FID, { .vop_fid = ufs_fid }, 214 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */ 215 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */ 216 VOPNAME_SEEK, { .vop_seek = ufs_seek }, 217 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock }, 218 VOPNAME_SPACE, { .vop_space = ufs_space }, 219 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage }, 220 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage }, 221 VOPNAME_MAP, { .vop_map = ufs_map }, 222 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */ 223 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */ 224 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */ 225 VOPNAME_DUMP, { .vop_dump = ufs_dump }, 226 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf }, 227 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio }, 228 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl }, 229 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr }, 230 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr }, 231 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 232 NULL, NULL 233 }; 234 235 #define MAX_BACKFILE_COUNT 9999 236 237 /* 238 * Created by ufs_dumpctl() to store a file's disk block info into memory. 239 * Used by ufs_dump() to dump data to disk directly. 240 */ 241 struct dump { 242 struct inode *ip; /* the file we contain */ 243 daddr_t fsbs; /* number of blocks stored */ 244 struct timeval32 time; /* time stamp for the struct */ 245 daddr32_t dblk[1]; /* place holder for block info */ 246 }; 247 248 static struct dump *dump_info = NULL; 249 250 /* 251 * Previously there was no special action required for ordinary files. 252 * (Devices are handled through the device file system.) 253 * Now we support Large Files and Large File API requires open to 254 * fail if file is large. 255 * We could take care to prevent data corruption 256 * by doing an atomic check of size and truncate if file is opened with 257 * FTRUNC flag set but traditionally this is being done by the vfs/vnode 258 * layers. So taking care of truncation here is a change in the existing 259 * semantics of VOP_OPEN and therefore we chose not to implement any thing 260 * here. The check for the size of the file > 2GB is being done at the 261 * vfs layer in routine vn_open(). 262 */ 263 264 /* ARGSUSED */ 265 static int 266 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct) 267 { 268 return (0); 269 } 270 271 /*ARGSUSED*/ 272 static int 273 ufs_close(struct vnode *vp, int flag, int count, offset_t offset, 274 struct cred *cr, caller_context_t *ct) 275 { 276 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 277 cleanshares(vp, ttoproc(curthread)->p_pid); 278 279 /* 280 * Push partially filled cluster at last close. 281 * ``last close'' is approximated because the dnlc 282 * may have a hold on the vnode. 283 * Checking for VBAD here will also act as a forced umount check. 284 */ 285 if (vp->v_count <= 2 && vp->v_type != VBAD) { 286 struct inode *ip = VTOI(vp); 287 if (ip->i_delaylen) { 288 ins.in_poc.value.ul++; 289 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen, 290 B_ASYNC | B_FREE, cr); 291 ip->i_delaylen = 0; 292 } 293 } 294 295 return (0); 296 } 297 298 /*ARGSUSED*/ 299 static int 300 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr, 301 struct caller_context *ct) 302 { 303 struct inode *ip = VTOI(vp); 304 struct ufsvfs *ufsvfsp; 305 struct ulockfs *ulp = NULL; 306 int error = 0; 307 int intrans = 0; 308 309 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 310 311 /* 312 * Mandatory locking needs to be done before ufs_lockfs_begin() 313 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep. 314 */ 315 if (MANDLOCK(vp, ip->i_mode)) { 316 /* 317 * ufs_getattr ends up being called by chklock 318 */ 319 error = chklock(vp, FREAD, uiop->uio_loffset, 320 uiop->uio_resid, uiop->uio_fmode, ct); 321 if (error) 322 goto out; 323 } 324 325 ufsvfsp = ip->i_ufsvfs; 326 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK); 327 if (error) 328 goto out; 329 330 /* 331 * In the case that a directory is opened for reading as a file 332 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set. 333 * The locking order had to be changed to avoid a deadlock with 334 * an update taking place on that directory at the same time. 335 */ 336 if ((ip->i_mode & IFMT) == IFDIR) { 337 338 rw_enter(&ip->i_contents, RW_READER); 339 error = rdip(ip, uiop, ioflag, cr); 340 rw_exit(&ip->i_contents); 341 342 if (error) { 343 if (ulp) 344 ufs_lockfs_end(ulp); 345 goto out; 346 } 347 348 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 349 TRANS_ISTRANS(ufsvfsp)) { 350 rw_exit(&ip->i_rwlock); 351 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 352 error); 353 ASSERT(!error); 354 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 355 TOP_READ_SIZE); 356 rw_enter(&ip->i_rwlock, RW_READER); 357 } 358 } else { 359 /* 360 * Only transact reads to files opened for sync-read and 361 * sync-write on a file system that is not write locked. 362 * 363 * The ``not write locked'' check prevents problems with 364 * enabling/disabling logging on a busy file system. E.g., 365 * logging exists at the beginning of the read but does not 366 * at the end. 367 * 368 */ 369 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) && 370 TRANS_ISTRANS(ufsvfsp)) { 371 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE, 372 error); 373 ASSERT(!error); 374 intrans = 1; 375 } 376 377 rw_enter(&ip->i_contents, RW_READER); 378 error = rdip(ip, uiop, ioflag, cr); 379 rw_exit(&ip->i_contents); 380 381 if (intrans) { 382 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC, 383 TOP_READ_SIZE); 384 } 385 } 386 387 if (ulp) { 388 ufs_lockfs_end(ulp); 389 } 390 out: 391 392 return (error); 393 } 394 395 extern int ufs_HW; /* high water mark */ 396 extern int ufs_LW; /* low water mark */ 397 int ufs_WRITES = 1; /* XXX - enable/disable */ 398 int ufs_throttles = 0; /* throttling count */ 399 int ufs_allow_shared_writes = 1; /* directio shared writes */ 400 401 static int 402 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag) 403 { 404 int shared_write; 405 406 /* 407 * If the FDSYNC flag is set then ignore the global 408 * ufs_allow_shared_writes in this case. 409 */ 410 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes; 411 412 /* 413 * Filter to determine if this request is suitable as a 414 * concurrent rewrite. This write must not allocate blocks 415 * by extending the file or filling in holes. No use trying 416 * through FSYNC descriptors as the inode will be synchronously 417 * updated after the write. The uio structure has not yet been 418 * checked for sanity, so assume nothing. 419 */ 420 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) && 421 (uiop->uio_loffset >= (offset_t)0) && 422 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) && 423 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) && 424 !(ioflag & FSYNC) && !bmap_has_holes(ip) && 425 shared_write); 426 } 427 428 /*ARGSUSED*/ 429 static int 430 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr, 431 caller_context_t *ct) 432 { 433 struct inode *ip = VTOI(vp); 434 struct ufsvfs *ufsvfsp; 435 struct ulockfs *ulp; 436 int retry = 1; 437 int error, resv, resid = 0; 438 int directio_status; 439 int exclusive; 440 int rewriteflg; 441 long start_resid = uiop->uio_resid; 442 443 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 444 445 retry_mandlock: 446 /* 447 * Mandatory locking needs to be done before ufs_lockfs_begin() 448 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep. 449 * Check for forced unmounts normally done in ufs_lockfs_begin(). 450 */ 451 if ((ufsvfsp = ip->i_ufsvfs) == NULL) { 452 error = EIO; 453 goto out; 454 } 455 if (MANDLOCK(vp, ip->i_mode)) { 456 457 ASSERT(RW_WRITE_HELD(&ip->i_rwlock)); 458 459 /* 460 * ufs_getattr ends up being called by chklock 461 */ 462 error = chklock(vp, FWRITE, uiop->uio_loffset, 463 uiop->uio_resid, uiop->uio_fmode, ct); 464 if (error) 465 goto out; 466 } 467 468 /* i_rwlock can change in chklock */ 469 exclusive = rw_write_held(&ip->i_rwlock); 470 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag); 471 472 /* 473 * Check for fast-path special case of directio re-writes. 474 */ 475 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) && 476 !exclusive && rewriteflg) { 477 478 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 479 if (error) 480 goto out; 481 482 rw_enter(&ip->i_contents, RW_READER); 483 error = ufs_directio_write(ip, uiop, ioflag, 1, cr, 484 &directio_status); 485 if (directio_status == DIRECTIO_SUCCESS) { 486 uint_t i_flag_save; 487 488 if (start_resid != uiop->uio_resid) 489 error = 0; 490 /* 491 * Special treatment of access times for re-writes. 492 * If IMOD is not already set, then convert it 493 * to IMODACC for this operation. This defers 494 * entering a delta into the log until the inode 495 * is flushed. This mimics what is done for read 496 * operations and inode access time. 497 */ 498 mutex_enter(&ip->i_tlock); 499 i_flag_save = ip->i_flag; 500 ip->i_flag |= IUPD | ICHG; 501 ip->i_seq++; 502 ITIMES_NOLOCK(ip); 503 if ((i_flag_save & IMOD) == 0) { 504 ip->i_flag &= ~IMOD; 505 ip->i_flag |= IMODACC; 506 } 507 mutex_exit(&ip->i_tlock); 508 rw_exit(&ip->i_contents); 509 if (ulp) 510 ufs_lockfs_end(ulp); 511 goto out; 512 } 513 rw_exit(&ip->i_contents); 514 if (ulp) 515 ufs_lockfs_end(ulp); 516 } 517 518 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) { 519 rw_exit(&ip->i_rwlock); 520 rw_enter(&ip->i_rwlock, RW_WRITER); 521 /* 522 * Mandatory locking could have been enabled 523 * after dropping the i_rwlock. 524 */ 525 if (MANDLOCK(vp, ip->i_mode)) 526 goto retry_mandlock; 527 } 528 529 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK); 530 if (error) 531 goto out; 532 533 /* 534 * Amount of log space needed for this write 535 */ 536 if (!rewriteflg || !(ioflag & FDSYNC)) 537 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid); 538 539 /* 540 * Throttle writes. 541 */ 542 if (ufs_WRITES && (ip->i_writes > ufs_HW)) { 543 mutex_enter(&ip->i_tlock); 544 while (ip->i_writes > ufs_HW) { 545 ufs_throttles++; 546 cv_wait(&ip->i_wrcv, &ip->i_tlock); 547 } 548 mutex_exit(&ip->i_tlock); 549 } 550 551 /* 552 * Enter Transaction 553 * 554 * If the write is a rewrite there is no need to open a transaction 555 * if the FDSYNC flag is set and not the FSYNC. In this case just 556 * set the IMODACC flag to modify do the update at a later time 557 * thus avoiding the overhead of the logging transaction that is 558 * not required. 559 */ 560 if (ioflag & (FSYNC|FDSYNC)) { 561 if (ulp) { 562 if (rewriteflg) { 563 uint_t i_flag_save; 564 565 rw_enter(&ip->i_contents, RW_READER); 566 mutex_enter(&ip->i_tlock); 567 i_flag_save = ip->i_flag; 568 ip->i_flag |= IUPD | ICHG; 569 ip->i_seq++; 570 ITIMES_NOLOCK(ip); 571 if ((i_flag_save & IMOD) == 0) { 572 ip->i_flag &= ~IMOD; 573 ip->i_flag |= IMODACC; 574 } 575 mutex_exit(&ip->i_tlock); 576 rw_exit(&ip->i_contents); 577 } else { 578 int terr = 0; 579 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv, 580 terr); 581 ASSERT(!terr); 582 } 583 } 584 } else { 585 if (ulp) 586 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv); 587 } 588 589 /* 590 * Write the file 591 */ 592 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 593 rw_enter(&ip->i_contents, RW_WRITER); 594 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) { 595 /* 596 * In append mode start at end of file. 597 */ 598 uiop->uio_loffset = ip->i_size; 599 } 600 601 /* 602 * Mild optimisation, don't call ufs_trans_write() unless we have to 603 * Also, suppress file system full messages if we will retry. 604 */ 605 if (retry) 606 ip->i_flag |= IQUIET; 607 if (resid) { 608 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid); 609 } else { 610 error = wrip(ip, uiop, ioflag, cr); 611 } 612 ip->i_flag &= ~IQUIET; 613 614 rw_exit(&ip->i_contents); 615 rw_exit(&ufsvfsp->vfs_dqrwlock); 616 617 /* 618 * Leave Transaction 619 */ 620 if (ulp) { 621 if (ioflag & (FSYNC|FDSYNC)) { 622 if (!rewriteflg) { 623 int terr = 0; 624 625 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC, 626 resv); 627 if (error == 0) 628 error = terr; 629 } 630 } else { 631 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv); 632 } 633 ufs_lockfs_end(ulp); 634 } 635 out: 636 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 637 /* 638 * Any blocks tied up in pending deletes? 639 */ 640 ufs_delete_drain_wait(ufsvfsp, 1); 641 retry = 0; 642 goto retry_mandlock; 643 } 644 645 if (error == ENOSPC && (start_resid != uiop->uio_resid)) 646 error = 0; 647 648 return (error); 649 } 650 651 /* 652 * Don't cache write blocks to files with the sticky bit set. 653 * Used to keep swap files from blowing the page cache on a server. 654 */ 655 int stickyhack = 1; 656 657 /* 658 * Free behind hacks. The pager is busted. 659 * XXX - need to pass the information down to writedone() in a flag like B_SEQ 660 * or B_FREE_IF_TIGHT_ON_MEMORY. 661 */ 662 int freebehind = 1; 663 int smallfile = 0; 664 u_offset_t smallfile64 = 32 * 1024; 665 666 /* 667 * While we should, in most cases, cache the pages for write, we 668 * may also want to cache the pages for read as long as they are 669 * frequently re-usable. 670 * 671 * If cache_read_ahead = 1, the pages for read will go to the tail 672 * of the cache list when they are released, otherwise go to the head. 673 */ 674 int cache_read_ahead = 0; 675 676 /* 677 * Freebehind exists so that as we read large files sequentially we 678 * don't consume most of memory with pages from a few files. It takes 679 * longer to re-read from disk multiple small files as it does reading 680 * one large one sequentially. As system memory grows customers need 681 * to retain bigger chunks of files in memory. The advent of the 682 * cachelist opens up of the possibility freeing pages to the head or 683 * tail of the list. 684 * 685 * Not freeing a page is a bet that the page will be read again before 686 * it's segmap slot is needed for something else. If we loose the bet, 687 * it means some other thread is burdened with the page free we did 688 * not do. If we win we save a free and reclaim. 689 * 690 * Freeing it at the tail vs the head of cachelist is a bet that the 691 * page will survive until the next read. It's also saying that this 692 * page is more likely to be re-used than a page freed some time ago 693 * and never reclaimed. 694 * 695 * Freebehind maintains a range of file offset [smallfile1; smallfile2] 696 * 697 * 0 < offset < smallfile1 : pages are not freed. 698 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist. 699 * smallfile2 < offset : pages freed to head of cachelist. 700 * 701 * The range is computed at most once per second and depends on 702 * freemem and ncpus_online. Both parameters are bounded to be 703 * >= smallfile && >= smallfile64. 704 * 705 * smallfile1 = (free memory / ncpu) / 1000 706 * smallfile2 = (free memory / ncpu) / 10 707 * 708 * A few examples values: 709 * 710 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2] 711 * ncpus_online = 4 ncpus_online = 64 712 * ------------------ ----------------------- ----------------------- 713 * 1G [256K; 25M] [32K; 1.5M] 714 * 10G [2.5M; 250M] [156K; 15M] 715 * 100G [25M; 2.5G] [1.5M; 150M] 716 * 717 */ 718 719 #define SMALLFILE1_D 1000 720 #define SMALLFILE2_D 10 721 static u_offset_t smallfile1 = 32 * 1024; 722 static u_offset_t smallfile2 = 32 * 1024; 723 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */ 724 uint_t smallfile1_d = SMALLFILE1_D; 725 uint_t smallfile2_d = SMALLFILE2_D; 726 727 /* 728 * wrip does the real work of write requests for ufs. 729 */ 730 int 731 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr) 732 { 733 rlim64_t limit = uio->uio_llimit; 734 u_offset_t off; 735 u_offset_t old_i_size; 736 struct fs *fs; 737 struct vnode *vp; 738 struct ufsvfs *ufsvfsp; 739 caddr_t base; 740 long start_resid = uio->uio_resid; /* save starting resid */ 741 long premove_resid; /* resid before uiomove() */ 742 uint_t flags; 743 int newpage; 744 int iupdat_flag, directio_status; 745 int n, on, mapon; 746 int error, pagecreate; 747 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */ 748 int32_t iblocks; 749 int new_iblocks; 750 751 /* 752 * ip->i_size is incremented before the uiomove 753 * is done on a write. If the move fails (bad user 754 * address) reset ip->i_size. 755 * The better way would be to increment ip->i_size 756 * only if the uiomove succeeds. 757 */ 758 int i_size_changed = 0; 759 o_mode_t type; 760 int i_seq_needed = 0; 761 762 vp = ITOV(ip); 763 764 /* 765 * check for forced unmount - should not happen as 766 * the request passed the lockfs checks. 767 */ 768 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 769 return (EIO); 770 771 fs = ip->i_fs; 772 773 ASSERT(RW_WRITE_HELD(&ip->i_contents)); 774 775 /* check for valid filetype */ 776 type = ip->i_mode & IFMT; 777 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 778 (type != IFLNK) && (type != IFSHAD)) { 779 return (EIO); 780 } 781 782 /* 783 * the actual limit of UFS file size 784 * is UFS_MAXOFFSET_T 785 */ 786 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 787 limit = MAXOFFSET_T; 788 789 if (uio->uio_loffset >= limit) { 790 proc_t *p = ttoproc(curthread); 791 792 mutex_enter(&p->p_lock); 793 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls, 794 p, RCA_UNSAFE_SIGINFO); 795 mutex_exit(&p->p_lock); 796 return (EFBIG); 797 } 798 799 /* 800 * if largefiles are disallowed, the limit is 801 * the pre-largefiles value of 2GB 802 */ 803 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 804 limit = MIN(UFS_MAXOFFSET_T, limit); 805 else 806 limit = MIN(MAXOFF32_T, limit); 807 808 if (uio->uio_loffset < (offset_t)0) { 809 return (EINVAL); 810 } 811 if (uio->uio_resid == 0) { 812 return (0); 813 } 814 815 if (uio->uio_loffset >= limit) 816 return (EFBIG); 817 818 ip->i_flag |= INOACC; /* don't update ref time in getpage */ 819 820 if (ioflag & (FSYNC|FDSYNC)) { 821 ip->i_flag |= ISYNC; 822 iupdat_flag = 1; 823 } 824 /* 825 * Try to go direct 826 */ 827 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 828 uio->uio_llimit = limit; 829 error = ufs_directio_write(ip, uio, ioflag, 0, cr, 830 &directio_status); 831 /* 832 * If ufs_directio wrote to the file or set the flags, 833 * we need to update i_seq, but it may be deferred. 834 */ 835 if (start_resid != uio->uio_resid || 836 (ip->i_flag & (ICHG|IUPD))) { 837 i_seq_needed = 1; 838 ip->i_flag |= ISEQ; 839 } 840 if (directio_status == DIRECTIO_SUCCESS) 841 goto out; 842 } 843 844 /* 845 * Behavior with respect to dropping/reacquiring vfs_dqrwlock: 846 * 847 * o shadow inodes: vfs_dqrwlock is not held at all 848 * o quota updates: vfs_dqrwlock is read or write held 849 * o other updates: vfs_dqrwlock is read held 850 * 851 * The first case is the only one where we do not hold 852 * vfs_dqrwlock at all while entering wrip(). 853 * We must make sure not to downgrade/drop vfs_dqrwlock if we 854 * have it as writer, i.e. if we are updating the quota inode. 855 * There is no potential deadlock scenario in this case as 856 * ufs_getpage() takes care of this and avoids reacquiring 857 * vfs_dqrwlock in that case. 858 * 859 * This check is done here since the above conditions do not change 860 * and we possibly loop below, so save a few cycles. 861 */ 862 if ((type == IFSHAD) || 863 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) { 864 do_dqrwlock = 0; 865 } else { 866 do_dqrwlock = 1; 867 } 868 869 /* 870 * Large Files: We cast MAXBMASK to offset_t 871 * inorder to mask out the higher bits. Since offset_t 872 * is a signed value, the high order bit set in MAXBMASK 873 * value makes it do the right thing by having all bits 1 874 * in the higher word. May be removed for _SOLARIS64_. 875 */ 876 877 fs = ip->i_fs; 878 do { 879 u_offset_t uoff = uio->uio_loffset; 880 off = uoff & (offset_t)MAXBMASK; 881 mapon = (int)(uoff & (offset_t)MAXBOFFSET); 882 on = (int)blkoff(fs, uoff); 883 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid); 884 new_iblocks = 1; 885 886 if (type == IFREG && uoff + n >= limit) { 887 if (uoff >= limit) { 888 error = EFBIG; 889 goto out; 890 } 891 /* 892 * since uoff + n >= limit, 893 * therefore n >= limit - uoff, and n is an int 894 * so it is safe to cast it to an int 895 */ 896 n = (int)(limit - (rlim64_t)uoff); 897 } 898 if (uoff + n > ip->i_size) { 899 /* 900 * We are extending the length of the file. 901 * bmap is used so that we are sure that 902 * if we need to allocate new blocks, that it 903 * is done here before we up the file size. 904 */ 905 error = bmap_write(ip, uoff, (int)(on + n), 906 mapon == 0, NULL, cr); 907 /* 908 * bmap_write never drops i_contents so if 909 * the flags are set it changed the file. 910 */ 911 if (ip->i_flag & (ICHG|IUPD)) { 912 i_seq_needed = 1; 913 ip->i_flag |= ISEQ; 914 } 915 if (error) 916 break; 917 /* 918 * There is a window of vulnerability here. 919 * The sequence of operations: allocate file 920 * system blocks, uiomove the data into pages, 921 * and then update the size of the file in the 922 * inode, must happen atomically. However, due 923 * to current locking constraints, this can not 924 * be done. 925 */ 926 ASSERT(ip->i_writer == NULL); 927 ip->i_writer = curthread; 928 i_size_changed = 1; 929 /* 930 * If we are writing from the beginning of 931 * the mapping, we can just create the 932 * pages without having to read them. 933 */ 934 pagecreate = (mapon == 0); 935 } else if (n == MAXBSIZE) { 936 /* 937 * Going to do a whole mappings worth, 938 * so we can just create the pages w/o 939 * having to read them in. But before 940 * we do that, we need to make sure any 941 * needed blocks are allocated first. 942 */ 943 iblocks = ip->i_blocks; 944 error = bmap_write(ip, uoff, (int)(on + n), 945 BI_ALLOC_ONLY, NULL, cr); 946 /* 947 * bmap_write never drops i_contents so if 948 * the flags are set it changed the file. 949 */ 950 if (ip->i_flag & (ICHG|IUPD)) { 951 i_seq_needed = 1; 952 ip->i_flag |= ISEQ; 953 } 954 if (error) 955 break; 956 pagecreate = 1; 957 /* 958 * check if the new created page needed the 959 * allocation of new disk blocks. 960 */ 961 if (iblocks == ip->i_blocks) 962 new_iblocks = 0; /* no new blocks allocated */ 963 } else { 964 pagecreate = 0; 965 /* 966 * In sync mode flush the indirect blocks which 967 * may have been allocated and not written on 968 * disk. In above cases bmap_write will allocate 969 * in sync mode. 970 */ 971 if (ioflag & (FSYNC|FDSYNC)) { 972 error = ufs_indirblk_sync(ip, uoff); 973 if (error) 974 break; 975 } 976 } 977 978 /* 979 * At this point we can enter ufs_getpage() in one 980 * of two ways: 981 * 1) segmap_getmapflt() calls ufs_getpage() when the 982 * forcefault parameter is true (pagecreate == 0) 983 * 2) uiomove() causes a page fault. 984 * 985 * We have to drop the contents lock to prevent the VM 986 * system from trying to reacquire it in ufs_getpage() 987 * should the uiomove cause a pagefault. 988 * 989 * We have to drop the reader vfs_dqrwlock here as well. 990 */ 991 rw_exit(&ip->i_contents); 992 if (do_dqrwlock) { 993 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)); 994 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock))); 995 rw_exit(&ufsvfsp->vfs_dqrwlock); 996 } 997 998 newpage = 0; 999 premove_resid = uio->uio_resid; 1000 if (vpm_enable) { 1001 /* 1002 * Copy data. If new pages are created, part of 1003 * the page that is not written will be initizliazed 1004 * with zeros. 1005 */ 1006 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1007 uio, !pagecreate, &newpage, 0, S_WRITE); 1008 } else { 1009 1010 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1011 (uint_t)n, !pagecreate, S_WRITE); 1012 1013 /* 1014 * segmap_pagecreate() returns 1 if it calls 1015 * page_create_va() to allocate any pages. 1016 */ 1017 1018 if (pagecreate) 1019 newpage = segmap_pagecreate(segkmap, base, 1020 (size_t)n, 0); 1021 1022 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio); 1023 } 1024 1025 /* 1026 * If "newpage" is set, then a new page was created and it 1027 * does not contain valid data, so it needs to be initialized 1028 * at this point. 1029 * Otherwise the page contains old data, which was overwritten 1030 * partially or as a whole in uiomove. 1031 * If there is only one iovec structure within uio, then 1032 * on error uiomove will not be able to update uio->uio_loffset 1033 * and we would zero the whole page here! 1034 * 1035 * If uiomove fails because of an error, the old valid data 1036 * is kept instead of filling the rest of the page with zero's. 1037 */ 1038 if (!vpm_enable && newpage && 1039 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) { 1040 /* 1041 * We created pages w/o initializing them completely, 1042 * thus we need to zero the part that wasn't set up. 1043 * This happens on most EOF write cases and if 1044 * we had some sort of error during the uiomove. 1045 */ 1046 int nzero, nmoved; 1047 1048 nmoved = (int)(uio->uio_loffset - (off + mapon)); 1049 ASSERT(nmoved >= 0 && nmoved <= n); 1050 nzero = roundup(on + n, PAGESIZE) - nmoved; 1051 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE); 1052 (void) kzero(base + mapon + nmoved, (uint_t)nzero); 1053 } 1054 1055 /* 1056 * Unlock the pages allocated by page_create_va() 1057 * in segmap_pagecreate() 1058 */ 1059 if (!vpm_enable && newpage) 1060 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE); 1061 1062 /* 1063 * If the size of the file changed, then update the 1064 * size field in the inode now. This can't be done 1065 * before the call to segmap_pageunlock or there is 1066 * a potential deadlock with callers to ufs_putpage(). 1067 * They will be holding i_contents and trying to lock 1068 * a page, while this thread is holding a page locked 1069 * and trying to acquire i_contents. 1070 */ 1071 if (i_size_changed) { 1072 rw_enter(&ip->i_contents, RW_WRITER); 1073 old_i_size = ip->i_size; 1074 UFS_SET_ISIZE(uoff + n, ip); 1075 TRANS_INODE(ufsvfsp, ip); 1076 /* 1077 * file has grown larger than 2GB. Set flag 1078 * in superblock to indicate this, if it 1079 * is not already set. 1080 */ 1081 if ((ip->i_size > MAXOFF32_T) && 1082 !(fs->fs_flags & FSLARGEFILES)) { 1083 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES); 1084 mutex_enter(&ufsvfsp->vfs_lock); 1085 fs->fs_flags |= FSLARGEFILES; 1086 ufs_sbwrite(ufsvfsp); 1087 mutex_exit(&ufsvfsp->vfs_lock); 1088 } 1089 mutex_enter(&ip->i_tlock); 1090 ip->i_writer = NULL; 1091 cv_broadcast(&ip->i_wrcv); 1092 mutex_exit(&ip->i_tlock); 1093 rw_exit(&ip->i_contents); 1094 } 1095 1096 if (error) { 1097 /* 1098 * If we failed on a write, we may have already 1099 * allocated file blocks as well as pages. It's 1100 * hard to undo the block allocation, but we must 1101 * be sure to invalidate any pages that may have 1102 * been allocated. 1103 * 1104 * If the page was created without initialization 1105 * then we must check if it should be possible 1106 * to destroy the new page and to keep the old data 1107 * on the disk. 1108 * 1109 * It is possible to destroy the page without 1110 * having to write back its contents only when 1111 * - the size of the file keeps unchanged 1112 * - bmap_write() did not allocate new disk blocks 1113 * it is possible to create big files using "seek" and 1114 * write to the end of the file. A "write" to a 1115 * position before the end of the file would not 1116 * change the size of the file but it would allocate 1117 * new disk blocks. 1118 * - uiomove intended to overwrite the whole page. 1119 * - a new page was created (newpage == 1). 1120 */ 1121 1122 if (i_size_changed == 0 && new_iblocks == 0 && 1123 newpage) { 1124 1125 /* unwind what uiomove eventually last did */ 1126 uio->uio_resid = premove_resid; 1127 1128 /* 1129 * destroy the page, do not write ambiguous 1130 * data to the disk. 1131 */ 1132 flags = SM_DESTROY; 1133 } else { 1134 /* 1135 * write the page back to the disk, if dirty, 1136 * and remove the page from the cache. 1137 */ 1138 flags = SM_INVAL; 1139 } 1140 1141 if (vpm_enable) { 1142 /* 1143 * Flush pages. 1144 */ 1145 (void) vpm_sync_pages(vp, off, n, flags); 1146 } else { 1147 (void) segmap_release(segkmap, base, flags); 1148 } 1149 } else { 1150 flags = 0; 1151 /* 1152 * Force write back for synchronous write cases. 1153 */ 1154 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) { 1155 /* 1156 * If the sticky bit is set but the 1157 * execute bit is not set, we do a 1158 * synchronous write back and free 1159 * the page when done. We set up swap 1160 * files to be handled this way to 1161 * prevent servers from keeping around 1162 * the client's swap pages too long. 1163 * XXX - there ought to be a better way. 1164 */ 1165 if (IS_SWAPVP(vp)) { 1166 flags = SM_WRITE | SM_FREE | 1167 SM_DONTNEED; 1168 iupdat_flag = 0; 1169 } else { 1170 flags = SM_WRITE; 1171 } 1172 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1173 /* 1174 * Have written a whole block. 1175 * Start an asynchronous write and 1176 * mark the buffer to indicate that 1177 * it won't be needed again soon. 1178 */ 1179 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1180 } 1181 if (vpm_enable) { 1182 /* 1183 * Flush pages. 1184 */ 1185 error = vpm_sync_pages(vp, off, n, flags); 1186 } else { 1187 error = segmap_release(segkmap, base, flags); 1188 } 1189 /* 1190 * If the operation failed and is synchronous, 1191 * then we need to unwind what uiomove() last 1192 * did so we can potentially return an error to 1193 * the caller. If this write operation was 1194 * done in two pieces and the first succeeded, 1195 * then we won't return an error for the second 1196 * piece that failed. However, we only want to 1197 * return a resid value that reflects what was 1198 * really done. 1199 * 1200 * Failures for non-synchronous operations can 1201 * be ignored since the page subsystem will 1202 * retry the operation until it succeeds or the 1203 * file system is unmounted. 1204 */ 1205 if (error) { 1206 if ((ioflag & (FSYNC | FDSYNC)) || 1207 type == IFDIR) { 1208 uio->uio_resid = premove_resid; 1209 } else { 1210 error = 0; 1211 } 1212 } 1213 } 1214 1215 /* 1216 * Re-acquire contents lock. 1217 * If it was dropped, reacquire reader vfs_dqrwlock as well. 1218 */ 1219 if (do_dqrwlock) 1220 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1221 rw_enter(&ip->i_contents, RW_WRITER); 1222 1223 /* 1224 * If the uiomove() failed or if a synchronous 1225 * page push failed, fix up i_size. 1226 */ 1227 if (error) { 1228 if (i_size_changed) { 1229 /* 1230 * The uiomove failed, and we 1231 * allocated blocks,so get rid 1232 * of them. 1233 */ 1234 (void) ufs_itrunc(ip, old_i_size, 0, cr); 1235 } 1236 } else { 1237 /* 1238 * XXX - Can this be out of the loop? 1239 */ 1240 ip->i_flag |= IUPD | ICHG; 1241 /* 1242 * Only do one increase of i_seq for multiple 1243 * pieces. Because we drop locks, record 1244 * the fact that we changed the timestamp and 1245 * are deferring the increase in case another thread 1246 * pushes our timestamp update. 1247 */ 1248 i_seq_needed = 1; 1249 ip->i_flag |= ISEQ; 1250 if (i_size_changed) 1251 ip->i_flag |= IATTCHG; 1252 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) | 1253 (IEXEC >> 6))) != 0 && 1254 (ip->i_mode & (ISUID | ISGID)) != 0 && 1255 secpolicy_vnode_setid_retain(cr, 1256 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) { 1257 /* 1258 * Clear Set-UID & Set-GID bits on 1259 * successful write if not privileged 1260 * and at least one of the execute bits 1261 * is set. If we always clear Set-GID, 1262 * mandatory file and record locking is 1263 * unuseable. 1264 */ 1265 ip->i_mode &= ~(ISUID | ISGID); 1266 } 1267 } 1268 /* 1269 * In the case the FDSYNC flag is set and this is a 1270 * "rewrite" we won't log a delta. 1271 * The FSYNC flag overrides all cases. 1272 */ 1273 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) { 1274 TRANS_INODE(ufsvfsp, ip); 1275 } 1276 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1277 1278 out: 1279 /* 1280 * Make sure i_seq is increased at least once per write 1281 */ 1282 if (i_seq_needed) { 1283 ip->i_seq++; 1284 ip->i_flag &= ~ISEQ; /* no longer deferred */ 1285 } 1286 1287 /* 1288 * Inode is updated according to this table - 1289 * 1290 * FSYNC FDSYNC(posix.4) 1291 * -------------------------- 1292 * always@ IATTCHG|IBDWRITE 1293 * 1294 * @ - If we are doing synchronous write the only time we should 1295 * not be sync'ing the ip here is if we have the stickyhack 1296 * activated, the file is marked with the sticky bit and 1297 * no exec bit, the file length has not been changed and 1298 * no new blocks have been allocated during this write. 1299 */ 1300 1301 if ((ip->i_flag & ISYNC) != 0) { 1302 /* 1303 * we have eliminated nosync 1304 */ 1305 if ((ip->i_flag & (IATTCHG|IBDWRITE)) || 1306 ((ioflag & FSYNC) && iupdat_flag)) { 1307 ufs_iupdat(ip, 1); 1308 } 1309 } 1310 1311 /* 1312 * If we've already done a partial-write, terminate 1313 * the write but return no error unless the error is ENOSPC 1314 * because the caller can detect this and free resources and 1315 * try again. 1316 */ 1317 if ((start_resid != uio->uio_resid) && (error != ENOSPC)) 1318 error = 0; 1319 1320 ip->i_flag &= ~(INOACC | ISYNC); 1321 ITIMES_NOLOCK(ip); 1322 return (error); 1323 } 1324 1325 /* 1326 * rdip does the real work of read requests for ufs. 1327 */ 1328 int 1329 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr) 1330 { 1331 u_offset_t off; 1332 caddr_t base; 1333 struct fs *fs; 1334 struct ufsvfs *ufsvfsp; 1335 struct vnode *vp; 1336 long oresid = uio->uio_resid; 1337 u_offset_t n, on, mapon; 1338 int error = 0; 1339 int doupdate = 1; 1340 uint_t flags; 1341 int dofree, directio_status; 1342 krw_t rwtype; 1343 o_mode_t type; 1344 1345 vp = ITOV(ip); 1346 1347 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 1348 1349 ufsvfsp = ip->i_ufsvfs; 1350 1351 if (ufsvfsp == NULL) 1352 return (EIO); 1353 1354 fs = ufsvfsp->vfs_fs; 1355 1356 /* check for valid filetype */ 1357 type = ip->i_mode & IFMT; 1358 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) && 1359 (type != IFLNK) && (type != IFSHAD)) { 1360 return (EIO); 1361 } 1362 1363 if (uio->uio_loffset > UFS_MAXOFFSET_T) { 1364 error = 0; 1365 goto out; 1366 } 1367 if (uio->uio_loffset < (offset_t)0) { 1368 return (EINVAL); 1369 } 1370 if (uio->uio_resid == 0) { 1371 return (0); 1372 } 1373 1374 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) && 1375 (!ufsvfsp->vfs_noatime)) { 1376 mutex_enter(&ip->i_tlock); 1377 ip->i_flag |= IACC; 1378 mutex_exit(&ip->i_tlock); 1379 } 1380 /* 1381 * Try to go direct 1382 */ 1383 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) { 1384 error = ufs_directio_read(ip, uio, cr, &directio_status); 1385 if (directio_status == DIRECTIO_SUCCESS) 1386 goto out; 1387 } 1388 1389 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER); 1390 1391 do { 1392 offset_t diff; 1393 u_offset_t uoff = uio->uio_loffset; 1394 off = uoff & (offset_t)MAXBMASK; 1395 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET); 1396 on = (u_offset_t)blkoff(fs, uoff); 1397 n = MIN((u_offset_t)fs->fs_bsize - on, 1398 (u_offset_t)uio->uio_resid); 1399 1400 diff = ip->i_size - uoff; 1401 1402 if (diff <= (offset_t)0) { 1403 error = 0; 1404 goto out; 1405 } 1406 if (diff < (offset_t)n) 1407 n = (int)diff; 1408 1409 /* 1410 * We update smallfile2 and smallfile1 at most every second. 1411 */ 1412 if (lbolt >= smallfile_update) { 1413 uint64_t percpufreeb; 1414 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D; 1415 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D; 1416 percpufreeb = ptob((uint64_t)freemem) / ncpus_online; 1417 smallfile1 = percpufreeb / smallfile1_d; 1418 smallfile2 = percpufreeb / smallfile2_d; 1419 smallfile1 = MAX(smallfile1, smallfile); 1420 smallfile1 = MAX(smallfile1, smallfile64); 1421 smallfile2 = MAX(smallfile1, smallfile2); 1422 smallfile_update = lbolt + hz; 1423 } 1424 1425 dofree = freebehind && 1426 ip->i_nextr == (off & PAGEMASK) && off > smallfile1; 1427 1428 /* 1429 * At this point we can enter ufs_getpage() in one of two 1430 * ways: 1431 * 1) segmap_getmapflt() calls ufs_getpage() when the 1432 * forcefault parameter is true (value of 1 is passed) 1433 * 2) uiomove() causes a page fault. 1434 * 1435 * We cannot hold onto an i_contents reader lock without 1436 * risking deadlock in ufs_getpage() so drop a reader lock. 1437 * The ufs_getpage() dolock logic already allows for a 1438 * thread holding i_contents as writer to work properly 1439 * so we keep a writer lock. 1440 */ 1441 if (rwtype == RW_READER) 1442 rw_exit(&ip->i_contents); 1443 1444 if (vpm_enable) { 1445 /* 1446 * Copy data. 1447 */ 1448 error = vpm_data_copy(vp, (off + mapon), (uint_t)n, 1449 uio, 1, NULL, 0, S_READ); 1450 } else { 1451 base = segmap_getmapflt(segkmap, vp, (off + mapon), 1452 (uint_t)n, 1, S_READ); 1453 error = uiomove(base + mapon, (long)n, UIO_READ, uio); 1454 } 1455 1456 flags = 0; 1457 if (!error) { 1458 /* 1459 * If reading sequential we won't need this 1460 * buffer again soon. For offsets in range 1461 * [smallfile1, smallfile2] release the pages 1462 * at the tail of the cache list, larger 1463 * offsets are released at the head. 1464 */ 1465 if (dofree) { 1466 flags = SM_FREE | SM_ASYNC; 1467 if ((cache_read_ahead == 0) && 1468 (off > smallfile2)) 1469 flags |= SM_DONTNEED; 1470 } 1471 /* 1472 * In POSIX SYNC (FSYNC and FDSYNC) read mode, 1473 * we want to make sure that the page which has 1474 * been read, is written on disk if it is dirty. 1475 * And corresponding indirect blocks should also 1476 * be flushed out. 1477 */ 1478 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) { 1479 flags &= ~SM_ASYNC; 1480 flags |= SM_WRITE; 1481 } 1482 if (vpm_enable) { 1483 error = vpm_sync_pages(vp, off, n, flags); 1484 } else { 1485 error = segmap_release(segkmap, base, flags); 1486 } 1487 } else { 1488 if (vpm_enable) { 1489 (void) vpm_sync_pages(vp, off, n, flags); 1490 } else { 1491 (void) segmap_release(segkmap, base, flags); 1492 } 1493 } 1494 1495 if (rwtype == RW_READER) 1496 rw_enter(&ip->i_contents, rwtype); 1497 } while (error == 0 && uio->uio_resid > 0 && n != 0); 1498 out: 1499 /* 1500 * Inode is updated according to this table if FRSYNC is set. 1501 * 1502 * FSYNC FDSYNC(posix.4) 1503 * -------------------------- 1504 * always IATTCHG|IBDWRITE 1505 */ 1506 /* 1507 * The inode is not updated if we're logging and the inode is a 1508 * directory with FRSYNC, FSYNC and FDSYNC flags set. 1509 */ 1510 if (ioflag & FRSYNC) { 1511 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) { 1512 doupdate = 0; 1513 } 1514 if (doupdate) { 1515 if ((ioflag & FSYNC) || 1516 ((ioflag & FDSYNC) && 1517 (ip->i_flag & (IATTCHG|IBDWRITE)))) { 1518 ufs_iupdat(ip, 1); 1519 } 1520 } 1521 } 1522 /* 1523 * If we've already done a partial read, terminate 1524 * the read but return no error. 1525 */ 1526 if (oresid != uio->uio_resid) 1527 error = 0; 1528 ITIMES(ip); 1529 1530 return (error); 1531 } 1532 1533 /* ARGSUSED */ 1534 static int 1535 ufs_ioctl( 1536 struct vnode *vp, 1537 int cmd, 1538 intptr_t arg, 1539 int flag, 1540 struct cred *cr, 1541 int *rvalp, 1542 caller_context_t *ct) 1543 { 1544 struct lockfs lockfs, lockfs_out; 1545 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 1546 char *comment, *original_comment; 1547 struct fs *fs; 1548 struct ulockfs *ulp; 1549 offset_t off; 1550 extern int maxphys; 1551 int error; 1552 int issync; 1553 int trans_size; 1554 1555 1556 /* 1557 * forcibly unmounted 1558 */ 1559 if (ufsvfsp == NULL) { 1560 return (EIO); 1561 } 1562 1563 fs = ufsvfsp->vfs_fs; 1564 1565 if (cmd == Q_QUOTACTL) { 1566 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK); 1567 if (error) 1568 return (error); 1569 1570 if (ulp) { 1571 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA, 1572 TOP_SETQUOTA_SIZE(fs)); 1573 } 1574 1575 error = quotactl(vp, arg, flag, cr); 1576 1577 if (ulp) { 1578 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA, 1579 TOP_SETQUOTA_SIZE(fs)); 1580 ufs_lockfs_end(ulp); 1581 } 1582 return (error); 1583 } 1584 1585 switch (cmd) { 1586 case _FIOLFS: 1587 /* 1588 * file system locking 1589 */ 1590 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1591 return (EPERM); 1592 1593 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1594 if (copyin((caddr_t)arg, &lockfs, 1595 sizeof (struct lockfs))) 1596 return (EFAULT); 1597 } 1598 #ifdef _SYSCALL32_IMPL 1599 else { 1600 struct lockfs32 lockfs32; 1601 /* Translate ILP32 lockfs to LP64 lockfs */ 1602 if (copyin((caddr_t)arg, &lockfs32, 1603 sizeof (struct lockfs32))) 1604 return (EFAULT); 1605 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1606 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1607 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1608 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1609 lockfs.lf_comment = 1610 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1611 } 1612 #endif /* _SYSCALL32_IMPL */ 1613 1614 if (lockfs.lf_comlen) { 1615 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN) 1616 return (ENAMETOOLONG); 1617 comment = 1618 kmem_alloc(lockfs.lf_comlen, KM_SLEEP); 1619 if (copyin(lockfs.lf_comment, comment, 1620 lockfs.lf_comlen)) { 1621 kmem_free(comment, lockfs.lf_comlen); 1622 return (EFAULT); 1623 } 1624 original_comment = lockfs.lf_comment; 1625 lockfs.lf_comment = comment; 1626 } 1627 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) { 1628 lockfs.lf_comment = original_comment; 1629 1630 if ((flag & DATAMODEL_MASK) == 1631 DATAMODEL_NATIVE) { 1632 (void) copyout(&lockfs, (caddr_t)arg, 1633 sizeof (struct lockfs)); 1634 } 1635 #ifdef _SYSCALL32_IMPL 1636 else { 1637 struct lockfs32 lockfs32; 1638 /* Translate LP64 to ILP32 lockfs */ 1639 lockfs32.lf_lock = 1640 (uint32_t)lockfs.lf_lock; 1641 lockfs32.lf_flags = 1642 (uint32_t)lockfs.lf_flags; 1643 lockfs32.lf_key = 1644 (uint32_t)lockfs.lf_key; 1645 lockfs32.lf_comlen = 1646 (uint32_t)lockfs.lf_comlen; 1647 lockfs32.lf_comment = 1648 (uint32_t)(uintptr_t) 1649 lockfs.lf_comment; 1650 (void) copyout(&lockfs32, (caddr_t)arg, 1651 sizeof (struct lockfs32)); 1652 } 1653 #endif /* _SYSCALL32_IMPL */ 1654 1655 } else { 1656 if (lockfs.lf_comlen) 1657 kmem_free(comment, lockfs.lf_comlen); 1658 } 1659 return (error); 1660 1661 case _FIOLFSS: 1662 /* 1663 * get file system locking status 1664 */ 1665 1666 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1667 if (copyin((caddr_t)arg, &lockfs, 1668 sizeof (struct lockfs))) 1669 return (EFAULT); 1670 } 1671 #ifdef _SYSCALL32_IMPL 1672 else { 1673 struct lockfs32 lockfs32; 1674 /* Translate ILP32 lockfs to LP64 lockfs */ 1675 if (copyin((caddr_t)arg, &lockfs32, 1676 sizeof (struct lockfs32))) 1677 return (EFAULT); 1678 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock; 1679 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags; 1680 lockfs.lf_key = (ulong_t)lockfs32.lf_key; 1681 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen; 1682 lockfs.lf_comment = 1683 (caddr_t)(uintptr_t)lockfs32.lf_comment; 1684 } 1685 #endif /* _SYSCALL32_IMPL */ 1686 1687 if (error = ufs_fiolfss(vp, &lockfs_out)) 1688 return (error); 1689 lockfs.lf_lock = lockfs_out.lf_lock; 1690 lockfs.lf_key = lockfs_out.lf_key; 1691 lockfs.lf_flags = lockfs_out.lf_flags; 1692 lockfs.lf_comlen = MIN(lockfs.lf_comlen, 1693 lockfs_out.lf_comlen); 1694 1695 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) { 1696 if (copyout(&lockfs, (caddr_t)arg, 1697 sizeof (struct lockfs))) 1698 return (EFAULT); 1699 } 1700 #ifdef _SYSCALL32_IMPL 1701 else { 1702 /* Translate LP64 to ILP32 lockfs */ 1703 struct lockfs32 lockfs32; 1704 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock; 1705 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags; 1706 lockfs32.lf_key = (uint32_t)lockfs.lf_key; 1707 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen; 1708 lockfs32.lf_comment = 1709 (uint32_t)(uintptr_t)lockfs.lf_comment; 1710 if (copyout(&lockfs32, (caddr_t)arg, 1711 sizeof (struct lockfs32))) 1712 return (EFAULT); 1713 } 1714 #endif /* _SYSCALL32_IMPL */ 1715 1716 if (lockfs.lf_comlen && 1717 lockfs.lf_comment && lockfs_out.lf_comment) 1718 if (copyout(lockfs_out.lf_comment, 1719 lockfs.lf_comment, lockfs.lf_comlen)) 1720 return (EFAULT); 1721 return (0); 1722 1723 case _FIOSATIME: 1724 /* 1725 * set access time 1726 */ 1727 1728 /* 1729 * if mounted w/o atime, return quietly. 1730 * I briefly thought about returning ENOSYS, but 1731 * figured that most apps would consider this fatal 1732 * but the idea is to make this as seamless as poss. 1733 */ 1734 if (ufsvfsp->vfs_noatime) 1735 return (0); 1736 1737 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1738 ULOCKFS_SETATTR_MASK); 1739 if (error) 1740 return (error); 1741 1742 if (ulp) { 1743 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp)); 1744 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 1745 TOP_SETATTR, trans_size); 1746 } 1747 1748 error = ufs_fiosatime(vp, (struct timeval *)arg, 1749 flag, cr); 1750 1751 if (ulp) { 1752 TRANS_END_CSYNC(ufsvfsp, error, issync, 1753 TOP_SETATTR, trans_size); 1754 ufs_lockfs_end(ulp); 1755 } 1756 return (error); 1757 1758 case _FIOSDIO: 1759 /* 1760 * set delayed-io 1761 */ 1762 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr)); 1763 1764 case _FIOGDIO: 1765 /* 1766 * get delayed-io 1767 */ 1768 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr)); 1769 1770 case _FIOIO: 1771 /* 1772 * inode open 1773 */ 1774 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1775 ULOCKFS_VGET_MASK); 1776 if (error) 1777 return (error); 1778 1779 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr); 1780 1781 if (ulp) { 1782 ufs_lockfs_end(ulp); 1783 } 1784 return (error); 1785 1786 case _FIOFFS: 1787 /* 1788 * file system flush (push w/invalidate) 1789 */ 1790 if ((caddr_t)arg != NULL) 1791 return (EINVAL); 1792 return (ufs_fioffs(vp, NULL, cr)); 1793 1794 case _FIOISBUSY: 1795 /* 1796 * Contract-private interface for Legato 1797 * Purge this vnode from the DNLC and decide 1798 * if this vnode is busy (*arg == 1) or not 1799 * (*arg == 0) 1800 */ 1801 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1802 return (EPERM); 1803 error = ufs_fioisbusy(vp, (int *)arg, cr); 1804 return (error); 1805 1806 case _FIODIRECTIO: 1807 return (ufs_fiodirectio(vp, (int)arg, cr)); 1808 1809 case _FIOTUNE: 1810 /* 1811 * Tune the file system (aka setting fs attributes) 1812 */ 1813 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1814 ULOCKFS_SETATTR_MASK); 1815 if (error) 1816 return (error); 1817 1818 error = ufs_fiotune(vp, (struct fiotune *)arg, cr); 1819 1820 if (ulp) 1821 ufs_lockfs_end(ulp); 1822 return (error); 1823 1824 case _FIOLOGENABLE: 1825 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1826 return (EPERM); 1827 return (ufs_fiologenable(vp, (void *)arg, cr, flag)); 1828 1829 case _FIOLOGDISABLE: 1830 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1831 return (EPERM); 1832 return (ufs_fiologdisable(vp, (void *)arg, cr, flag)); 1833 1834 case _FIOISLOG: 1835 return (ufs_fioislog(vp, (void *)arg, cr, flag)); 1836 1837 case _FIOSNAPSHOTCREATE_MULTI: 1838 { 1839 struct fiosnapcreate_multi fc, *fcp; 1840 size_t fcm_size; 1841 1842 if (copyin((void *)arg, &fc, sizeof (fc))) 1843 return (EFAULT); 1844 if (fc.backfilecount > MAX_BACKFILE_COUNT) 1845 return (EINVAL); 1846 fcm_size = sizeof (struct fiosnapcreate_multi) + 1847 (fc.backfilecount - 1) * sizeof (int); 1848 fcp = (struct fiosnapcreate_multi *) 1849 kmem_alloc(fcm_size, KM_SLEEP); 1850 if (copyin((void *)arg, fcp, fcm_size)) { 1851 kmem_free(fcp, fcm_size); 1852 return (EFAULT); 1853 } 1854 error = ufs_snap_create(vp, fcp, cr); 1855 /* 1856 * Do copyout even if there is an error because 1857 * the details of error is stored in fcp. 1858 */ 1859 if (copyout(fcp, (void *)arg, fcm_size)) 1860 error = EFAULT; 1861 kmem_free(fcp, fcm_size); 1862 return (error); 1863 } 1864 1865 case _FIOSNAPSHOTDELETE: 1866 { 1867 struct fiosnapdelete fc; 1868 1869 if (copyin((void *)arg, &fc, sizeof (fc))) 1870 return (EFAULT); 1871 error = ufs_snap_delete(vp, &fc, cr); 1872 if (!error && copyout(&fc, (void *)arg, sizeof (fc))) 1873 error = EFAULT; 1874 return (error); 1875 } 1876 1877 case _FIOGETSUPERBLOCK: 1878 if (copyout(fs, (void *)arg, SBSIZE)) 1879 return (EFAULT); 1880 return (0); 1881 1882 case _FIOGETMAXPHYS: 1883 if (copyout(&maxphys, (void *)arg, sizeof (maxphys))) 1884 return (EFAULT); 1885 return (0); 1886 1887 /* 1888 * The following 3 ioctls are for TSufs support 1889 * although could potentially be used elsewhere 1890 */ 1891 case _FIO_SET_LUFS_DEBUG: 1892 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1893 return (EPERM); 1894 lufs_debug = (uint32_t)arg; 1895 return (0); 1896 1897 case _FIO_SET_LUFS_ERROR: 1898 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0) 1899 return (EPERM); 1900 TRANS_SETERROR(ufsvfsp); 1901 return (0); 1902 1903 case _FIO_GET_TOP_STATS: 1904 { 1905 fio_lufs_stats_t *ls; 1906 ml_unit_t *ul = ufsvfsp->vfs_log; 1907 1908 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP); 1909 ls->ls_debug = ul->un_debug; /* return debug value */ 1910 /* Copy stucture if statistics are being kept */ 1911 if (ul->un_logmap->mtm_tops) { 1912 ls->ls_topstats = *(ul->un_logmap->mtm_tops); 1913 } 1914 error = 0; 1915 if (copyout(ls, (void *)arg, sizeof (*ls))) 1916 error = EFAULT; 1917 kmem_free(ls, sizeof (*ls)); 1918 return (error); 1919 } 1920 1921 case _FIO_SEEK_DATA: 1922 case _FIO_SEEK_HOLE: 1923 if (ddi_copyin((void *)arg, &off, sizeof (off), flag)) 1924 return (EFAULT); 1925 /* offset paramater is in/out */ 1926 error = ufs_fio_holey(vp, cmd, &off); 1927 if (error) 1928 return (error); 1929 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag)) 1930 return (EFAULT); 1931 return (0); 1932 1933 case _FIO_COMPRESSED: 1934 { 1935 /* 1936 * This is a project private ufs ioctl() to mark 1937 * the inode as that belonging to a compressed 1938 * file. This is used to mark individual 1939 * files in a miniroot archive for SPARC boot. 1940 * The files compressed in this manner are 1941 * automatically decompressed by the dcfs filesystem 1942 * (via an interception in ufs_lookup - see decompvp()) 1943 * which is layered on top of ufs on a system running 1944 * the new archive booted SPARC system. See 1945 * uts/common/fs/dcfs for details. 1946 * This ioctl only marks the file as compressed - the 1947 * actual compression is done by fiocompress (a 1948 * userland utility) which invokes this ioctl(). 1949 */ 1950 struct inode *ip = VTOI(vp); 1951 1952 error = ufs_lockfs_begin(ufsvfsp, &ulp, 1953 ULOCKFS_SETATTR_MASK); 1954 if (error) 1955 return (error); 1956 1957 if (ulp) { 1958 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT, 1959 TOP_IUPDAT_SIZE(ip)); 1960 } 1961 1962 error = ufs_mark_compressed(vp); 1963 1964 if (ulp) { 1965 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT, 1966 TOP_IUPDAT_SIZE(ip)); 1967 ufs_lockfs_end(ulp); 1968 } 1969 1970 return (error); 1971 1972 } 1973 1974 default: 1975 return (ENOTTY); 1976 } 1977 } 1978 1979 1980 /* ARGSUSED */ 1981 static int 1982 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags, 1983 struct cred *cr, caller_context_t *ct) 1984 { 1985 struct inode *ip = VTOI(vp); 1986 struct ufsvfs *ufsvfsp; 1987 int err; 1988 1989 if (vap->va_mask == AT_SIZE) { 1990 /* 1991 * for performance, if only the size is requested don't bother 1992 * with anything else. 1993 */ 1994 UFS_GET_ISIZE(&vap->va_size, ip); 1995 return (0); 1996 } 1997 1998 /* 1999 * inlined lockfs checks 2000 */ 2001 ufsvfsp = ip->i_ufsvfs; 2002 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) { 2003 err = EIO; 2004 goto out; 2005 } 2006 2007 rw_enter(&ip->i_contents, RW_READER); 2008 /* 2009 * Return all the attributes. This should be refined so 2010 * that it only returns what's asked for. 2011 */ 2012 2013 /* 2014 * Copy from inode table. 2015 */ 2016 vap->va_type = vp->v_type; 2017 vap->va_mode = ip->i_mode & MODEMASK; 2018 /* 2019 * If there is an ACL and there is a mask entry, then do the 2020 * extra work that completes the equivalent of an acltomode(3) 2021 * call. According to POSIX P1003.1e, the acl mask should be 2022 * returned in the group permissions field. 2023 * 2024 * - start with the original permission and mode bits (from above) 2025 * - clear the group owner bits 2026 * - add in the mask bits. 2027 */ 2028 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) { 2029 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3); 2030 vap->va_mode |= 2031 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3; 2032 } 2033 vap->va_uid = ip->i_uid; 2034 vap->va_gid = ip->i_gid; 2035 vap->va_fsid = ip->i_dev; 2036 vap->va_nodeid = (ino64_t)ip->i_number; 2037 vap->va_nlink = ip->i_nlink; 2038 vap->va_size = ip->i_size; 2039 if (vp->v_type == VCHR || vp->v_type == VBLK) 2040 vap->va_rdev = ip->i_rdev; 2041 else 2042 vap->va_rdev = 0; /* not a b/c spec. */ 2043 mutex_enter(&ip->i_tlock); 2044 ITIMES_NOLOCK(ip); /* mark correct time in inode */ 2045 vap->va_seq = ip->i_seq; 2046 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec; 2047 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000; 2048 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec; 2049 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000; 2050 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec; 2051 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000; 2052 mutex_exit(&ip->i_tlock); 2053 2054 switch (ip->i_mode & IFMT) { 2055 2056 case IFBLK: 2057 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */ 2058 break; 2059 2060 case IFCHR: 2061 vap->va_blksize = MAXBSIZE; 2062 break; 2063 2064 default: 2065 vap->va_blksize = ip->i_fs->fs_bsize; 2066 break; 2067 } 2068 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks; 2069 rw_exit(&ip->i_contents); 2070 err = 0; 2071 2072 out: 2073 return (err); 2074 } 2075 2076 /*ARGSUSED4*/ 2077 static int 2078 ufs_setattr( 2079 struct vnode *vp, 2080 struct vattr *vap, 2081 int flags, 2082 struct cred *cr, 2083 caller_context_t *ct) 2084 { 2085 struct inode *ip = VTOI(vp); 2086 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2087 struct fs *fs; 2088 struct ulockfs *ulp; 2089 char *errmsg1; 2090 char *errmsg2; 2091 long blocks; 2092 long int mask = vap->va_mask; 2093 size_t len1, len2; 2094 int issync; 2095 int trans_size; 2096 int dotrans; 2097 int dorwlock; 2098 int error; 2099 int owner_change; 2100 int dodqlock; 2101 timestruc_t now; 2102 vattr_t oldva; 2103 int retry = 1; 2104 int indeadlock; 2105 2106 /* 2107 * Cannot set these attributes. 2108 */ 2109 if ((mask & AT_NOSET) || (mask & AT_XVATTR)) 2110 return (EINVAL); 2111 2112 /* 2113 * check for forced unmount 2114 */ 2115 if (ufsvfsp == NULL) 2116 return (EIO); 2117 2118 fs = ufsvfsp->vfs_fs; 2119 if (fs->fs_ronly != 0) 2120 return (EROFS); 2121 2122 again: 2123 errmsg1 = NULL; 2124 errmsg2 = NULL; 2125 dotrans = 0; 2126 dorwlock = 0; 2127 dodqlock = 0; 2128 2129 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK); 2130 if (error) 2131 goto out; 2132 2133 /* 2134 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file. 2135 * This follows the protocol for read()/write(). 2136 */ 2137 if (vp->v_type != VDIR) { 2138 /* 2139 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to 2140 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2141 * possible, retries the operation. 2142 */ 2143 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file); 2144 if (indeadlock) { 2145 if (ulp) 2146 ufs_lockfs_end(ulp); 2147 goto again; 2148 } 2149 dorwlock = 1; 2150 } 2151 2152 /* 2153 * Truncate file. Must have write permission and not be a directory. 2154 */ 2155 if (mask & AT_SIZE) { 2156 rw_enter(&ip->i_contents, RW_WRITER); 2157 if (vp->v_type == VDIR) { 2158 error = EISDIR; 2159 goto update_inode; 2160 } 2161 if (error = ufs_iaccess(ip, IWRITE, cr)) 2162 goto update_inode; 2163 2164 rw_exit(&ip->i_contents); 2165 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr); 2166 if (error) { 2167 rw_enter(&ip->i_contents, RW_WRITER); 2168 goto update_inode; 2169 } 2170 } 2171 2172 if (ulp) { 2173 trans_size = (int)TOP_SETATTR_SIZE(ip); 2174 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size); 2175 ++dotrans; 2176 } 2177 2178 /* 2179 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory. 2180 * This follows the protocol established by 2181 * ufs_link/create/remove/rename/mkdir/rmdir/symlink. 2182 */ 2183 if (vp->v_type == VDIR) { 2184 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR, 2185 retry_dir); 2186 if (indeadlock) 2187 goto again; 2188 dorwlock = 1; 2189 } 2190 2191 /* 2192 * Grab quota lock if we are changing the file's owner. 2193 */ 2194 if (mask & AT_UID) { 2195 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2196 dodqlock = 1; 2197 } 2198 rw_enter(&ip->i_contents, RW_WRITER); 2199 2200 oldva.va_mode = ip->i_mode; 2201 oldva.va_uid = ip->i_uid; 2202 oldva.va_gid = ip->i_gid; 2203 2204 vap->va_mask &= ~AT_SIZE; 2205 /* 2206 * ufs_iaccess is "close enough"; that's because it doesn't 2207 * map the defines. 2208 */ 2209 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2210 ufs_iaccess, ip); 2211 if (error) 2212 goto update_inode; 2213 2214 mask = vap->va_mask; 2215 2216 /* 2217 * Change file access modes. 2218 */ 2219 if (mask & AT_MODE) { 2220 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT); 2221 TRANS_INODE(ufsvfsp, ip); 2222 ip->i_flag |= ICHG; 2223 if (stickyhack) { 2224 mutex_enter(&vp->v_lock); 2225 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX) 2226 vp->v_flag |= VSWAPLIKE; 2227 else 2228 vp->v_flag &= ~VSWAPLIKE; 2229 mutex_exit(&vp->v_lock); 2230 } 2231 } 2232 if (mask & (AT_UID|AT_GID)) { 2233 if (mask & AT_UID) { 2234 /* 2235 * Don't change ownership of the quota inode. 2236 */ 2237 if (ufsvfsp->vfs_qinod == ip) { 2238 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED); 2239 error = EINVAL; 2240 goto update_inode; 2241 } 2242 2243 /* 2244 * No real ownership change. 2245 */ 2246 if (ip->i_uid == vap->va_uid) { 2247 blocks = 0; 2248 owner_change = 0; 2249 } 2250 /* 2251 * Remove the blocks and the file, from the old user's 2252 * quota. 2253 */ 2254 else { 2255 blocks = ip->i_blocks; 2256 owner_change = 1; 2257 2258 (void) chkdq(ip, -blocks, /* force */ 1, cr, 2259 (char **)NULL, (size_t *)NULL); 2260 (void) chkiq(ufsvfsp, /* change */ -1, ip, 2261 (uid_t)ip->i_uid, /* force */ 1, cr, 2262 (char **)NULL, (size_t *)NULL); 2263 dqrele(ip->i_dquot); 2264 } 2265 2266 ip->i_uid = vap->va_uid; 2267 2268 /* 2269 * There is a real ownership change. 2270 */ 2271 if (owner_change) { 2272 /* 2273 * Add the blocks and the file to the new 2274 * user's quota. 2275 */ 2276 ip->i_dquot = getinoquota(ip); 2277 (void) chkdq(ip, blocks, /* force */ 1, cr, 2278 &errmsg1, &len1); 2279 (void) chkiq(ufsvfsp, /* change */ 1, 2280 (struct inode *)NULL, (uid_t)ip->i_uid, 2281 /* force */ 1, cr, &errmsg2, &len2); 2282 } 2283 } 2284 if (mask & AT_GID) { 2285 ip->i_gid = vap->va_gid; 2286 } 2287 TRANS_INODE(ufsvfsp, ip); 2288 ip->i_flag |= ICHG; 2289 } 2290 /* 2291 * Change file access or modified times. 2292 */ 2293 if (mask & (AT_ATIME|AT_MTIME)) { 2294 /* Check that the time value is within ufs range */ 2295 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2296 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2297 error = EOVERFLOW; 2298 goto update_inode; 2299 } 2300 2301 /* 2302 * if the "noaccess" mount option is set and only atime 2303 * update is requested, do nothing. No error is returned. 2304 */ 2305 if ((ufsvfsp->vfs_noatime) && 2306 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME)) 2307 goto skip_atime; 2308 2309 if (mask & AT_ATIME) { 2310 ip->i_atime.tv_sec = vap->va_atime.tv_sec; 2311 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000; 2312 ip->i_flag &= ~IACC; 2313 } 2314 if (mask & AT_MTIME) { 2315 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec; 2316 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000; 2317 gethrestime(&now); 2318 if (now.tv_sec > TIME32_MAX) { 2319 /* 2320 * In 2038, ctime sticks forever.. 2321 */ 2322 ip->i_ctime.tv_sec = TIME32_MAX; 2323 ip->i_ctime.tv_usec = 0; 2324 } else { 2325 ip->i_ctime.tv_sec = now.tv_sec; 2326 ip->i_ctime.tv_usec = now.tv_nsec / 1000; 2327 } 2328 ip->i_flag &= ~(IUPD|ICHG); 2329 ip->i_flag |= IMODTIME; 2330 } 2331 TRANS_INODE(ufsvfsp, ip); 2332 ip->i_flag |= IMOD; 2333 } 2334 2335 skip_atime: 2336 /* 2337 * The presence of a shadow inode may indicate an ACL, but does 2338 * not imply an ACL. Future FSD types should be handled here too 2339 * and check for the presence of the attribute-specific data 2340 * before referencing it. 2341 */ 2342 if (ip->i_shadow) { 2343 /* 2344 * XXX if ufs_iupdat is changed to sandbagged write fix 2345 * ufs_acl_setattr to push ip to keep acls consistent 2346 * 2347 * Suppress out of inodes messages if we will retry. 2348 */ 2349 if (retry) 2350 ip->i_flag |= IQUIET; 2351 error = ufs_acl_setattr(ip, vap, cr); 2352 ip->i_flag &= ~IQUIET; 2353 } 2354 2355 update_inode: 2356 /* 2357 * Setattr always increases the sequence number 2358 */ 2359 ip->i_seq++; 2360 2361 /* 2362 * if nfsd and not logging; push synchronously 2363 */ 2364 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) { 2365 ufs_iupdat(ip, 1); 2366 } else { 2367 ITIMES_NOLOCK(ip); 2368 } 2369 2370 rw_exit(&ip->i_contents); 2371 if (dodqlock) { 2372 rw_exit(&ufsvfsp->vfs_dqrwlock); 2373 } 2374 if (dorwlock) 2375 rw_exit(&ip->i_rwlock); 2376 2377 if (ulp) { 2378 if (dotrans) { 2379 int terr = 0; 2380 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR, 2381 trans_size); 2382 if (error == 0) 2383 error = terr; 2384 } 2385 ufs_lockfs_end(ulp); 2386 } 2387 out: 2388 /* 2389 * If out of inodes or blocks, see if we can free something 2390 * up from the delete queue. 2391 */ 2392 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 2393 ufs_delete_drain_wait(ufsvfsp, 1); 2394 retry = 0; 2395 if (errmsg1 != NULL) 2396 kmem_free(errmsg1, len1); 2397 if (errmsg2 != NULL) 2398 kmem_free(errmsg2, len2); 2399 goto again; 2400 } 2401 if (errmsg1 != NULL) { 2402 uprintf(errmsg1); 2403 kmem_free(errmsg1, len1); 2404 } 2405 if (errmsg2 != NULL) { 2406 uprintf(errmsg2); 2407 kmem_free(errmsg2, len2); 2408 } 2409 return (error); 2410 } 2411 2412 /*ARGSUSED*/ 2413 static int 2414 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr, 2415 caller_context_t *ct) 2416 { 2417 struct inode *ip = VTOI(vp); 2418 int error; 2419 2420 if (ip->i_ufsvfs == NULL) 2421 return (EIO); 2422 2423 rw_enter(&ip->i_contents, RW_READER); 2424 2425 /* 2426 * The ufs_iaccess function wants to be called with 2427 * mode bits expressed as "ufs specific" bits. 2428 * I.e., VWRITE|VREAD|VEXEC do not make sense to 2429 * ufs_iaccess() but IWRITE|IREAD|IEXEC do. 2430 * But since they're the same we just pass the vnode mode 2431 * bit but just verify that assumption at compile time. 2432 */ 2433 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC 2434 #error "ufs_access needs to map Vmodes to Imodes" 2435 #endif 2436 error = ufs_iaccess(ip, mode, cr); 2437 2438 rw_exit(&ip->i_contents); 2439 2440 return (error); 2441 } 2442 2443 /* ARGSUSED */ 2444 static int 2445 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr, 2446 caller_context_t *ct) 2447 { 2448 struct inode *ip = VTOI(vp); 2449 struct ufsvfs *ufsvfsp; 2450 struct ulockfs *ulp; 2451 int error; 2452 int fastsymlink; 2453 2454 if (vp->v_type != VLNK) { 2455 error = EINVAL; 2456 goto nolockout; 2457 } 2458 2459 /* 2460 * If the symbolic link is empty there is nothing to read. 2461 * Fast-track these empty symbolic links 2462 */ 2463 if (ip->i_size == 0) { 2464 error = 0; 2465 goto nolockout; 2466 } 2467 2468 ufsvfsp = ip->i_ufsvfs; 2469 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK); 2470 if (error) 2471 goto nolockout; 2472 /* 2473 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK 2474 */ 2475 again: 2476 fastsymlink = 0; 2477 if (ip->i_flag & IFASTSYMLNK) { 2478 rw_enter(&ip->i_rwlock, RW_READER); 2479 rw_enter(&ip->i_contents, RW_READER); 2480 if (ip->i_flag & IFASTSYMLNK) { 2481 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 2482 (ip->i_fs->fs_ronly == 0) && 2483 (!ufsvfsp->vfs_noatime)) { 2484 mutex_enter(&ip->i_tlock); 2485 ip->i_flag |= IACC; 2486 mutex_exit(&ip->i_tlock); 2487 } 2488 error = uiomove((caddr_t)&ip->i_db[1], 2489 MIN(ip->i_size, uiop->uio_resid), 2490 UIO_READ, uiop); 2491 ITIMES(ip); 2492 ++fastsymlink; 2493 } 2494 rw_exit(&ip->i_contents); 2495 rw_exit(&ip->i_rwlock); 2496 } 2497 if (!fastsymlink) { 2498 ssize_t size; /* number of bytes read */ 2499 caddr_t basep; /* pointer to input data */ 2500 ino_t ino; 2501 long igen; 2502 struct uio tuio; /* temp uio struct */ 2503 struct uio *tuiop; 2504 iovec_t tiov; /* temp iovec struct */ 2505 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */ 2506 int tflag = 0; /* flag to indicate temp vars used */ 2507 2508 ino = ip->i_number; 2509 igen = ip->i_gen; 2510 size = uiop->uio_resid; 2511 basep = uiop->uio_iov->iov_base; 2512 tuiop = uiop; 2513 2514 rw_enter(&ip->i_rwlock, RW_WRITER); 2515 rw_enter(&ip->i_contents, RW_WRITER); 2516 if (ip->i_flag & IFASTSYMLNK) { 2517 rw_exit(&ip->i_contents); 2518 rw_exit(&ip->i_rwlock); 2519 goto again; 2520 } 2521 2522 /* can this be a fast symlink and is it a user buffer? */ 2523 if (ip->i_size <= FSL_SIZE && 2524 (uiop->uio_segflg == UIO_USERSPACE || 2525 uiop->uio_segflg == UIO_USERISPACE)) { 2526 2527 bzero(&tuio, sizeof (struct uio)); 2528 /* 2529 * setup a kernel buffer to read link into. this 2530 * is to fix a race condition where the user buffer 2531 * got corrupted before copying it into the inode. 2532 */ 2533 size = ip->i_size; 2534 tiov.iov_len = size; 2535 tiov.iov_base = kbuf; 2536 tuio.uio_iov = &tiov; 2537 tuio.uio_iovcnt = 1; 2538 tuio.uio_offset = uiop->uio_offset; 2539 tuio.uio_segflg = UIO_SYSSPACE; 2540 tuio.uio_fmode = uiop->uio_fmode; 2541 tuio.uio_extflg = uiop->uio_extflg; 2542 tuio.uio_limit = uiop->uio_limit; 2543 tuio.uio_resid = size; 2544 2545 basep = tuio.uio_iov->iov_base; 2546 tuiop = &tuio; 2547 tflag = 1; 2548 } 2549 2550 error = rdip(ip, tuiop, 0, cr); 2551 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) { 2552 rw_exit(&ip->i_contents); 2553 rw_exit(&ip->i_rwlock); 2554 goto out; 2555 } 2556 2557 if (tflag == 0) 2558 size -= uiop->uio_resid; 2559 2560 if ((tflag == 0 && ip->i_size <= FSL_SIZE && 2561 ip->i_size == size) || (tflag == 1 && 2562 tuio.uio_resid == 0)) { 2563 error = kcopy(basep, &ip->i_db[1], ip->i_size); 2564 if (error == 0) { 2565 ip->i_flag |= IFASTSYMLNK; 2566 /* 2567 * free page 2568 */ 2569 (void) VOP_PUTPAGE(ITOV(ip), 2570 (offset_t)0, PAGESIZE, 2571 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC), 2572 cr, ct); 2573 } else { 2574 int i; 2575 /* error, clear garbage left behind */ 2576 for (i = 1; i < NDADDR; i++) 2577 ip->i_db[i] = 0; 2578 for (i = 0; i < NIADDR; i++) 2579 ip->i_ib[i] = 0; 2580 } 2581 } 2582 if (tflag == 1) { 2583 /* now, copy it into the user buffer */ 2584 error = uiomove((caddr_t)kbuf, 2585 MIN(size, uiop->uio_resid), 2586 UIO_READ, uiop); 2587 } 2588 rw_exit(&ip->i_contents); 2589 rw_exit(&ip->i_rwlock); 2590 } 2591 out: 2592 if (ulp) { 2593 ufs_lockfs_end(ulp); 2594 } 2595 nolockout: 2596 return (error); 2597 } 2598 2599 /* ARGSUSED */ 2600 static int 2601 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr, 2602 caller_context_t *ct) 2603 { 2604 struct inode *ip = VTOI(vp); 2605 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 2606 struct ulockfs *ulp; 2607 int error; 2608 2609 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK); 2610 if (error) 2611 return (error); 2612 2613 if (TRANS_ISTRANS(ufsvfsp)) { 2614 /* 2615 * First push out any data pages 2616 */ 2617 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2618 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) { 2619 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, 2620 0, CRED(), ct); 2621 if (error) 2622 goto out; 2623 } 2624 2625 /* 2626 * Delta any delayed inode times updates 2627 * and push inode to log. 2628 * All other inode deltas will have already been delta'd 2629 * and will be pushed during the commit. 2630 */ 2631 if (!(syncflag & FDSYNC) && 2632 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) { 2633 if (ulp) { 2634 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC, 2635 TOP_SYNCIP_SIZE); 2636 } 2637 rw_enter(&ip->i_contents, RW_READER); 2638 mutex_enter(&ip->i_tlock); 2639 ip->i_flag &= ~IMODTIME; 2640 mutex_exit(&ip->i_tlock); 2641 ufs_iupdat(ip, I_SYNC); 2642 rw_exit(&ip->i_contents); 2643 if (ulp) { 2644 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC, 2645 TOP_SYNCIP_SIZE); 2646 } 2647 } 2648 2649 /* 2650 * Commit the Moby transaction 2651 * 2652 * Deltas have already been made so we just need to 2653 * commit them with a synchronous transaction. 2654 * TRANS_BEGIN_SYNC() will return an error 2655 * if there are no deltas to commit, for an 2656 * empty transaction. 2657 */ 2658 if (ulp) { 2659 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE, 2660 error); 2661 if (error) { 2662 error = 0; /* commit wasn't needed */ 2663 goto out; 2664 } 2665 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC, 2666 TOP_COMMIT_SIZE); 2667 } 2668 } else { /* not logging */ 2669 if (!(IS_SWAPVP(vp))) 2670 if (syncflag & FNODSYNC) { 2671 /* Just update the inode only */ 2672 TRANS_IUPDAT(ip, 1); 2673 error = 0; 2674 } else if (syncflag & FDSYNC) 2675 /* Do data-synchronous writes */ 2676 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC); 2677 else 2678 /* Do synchronous writes */ 2679 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC); 2680 2681 rw_enter(&ip->i_contents, RW_WRITER); 2682 if (!error) 2683 error = ufs_sync_indir(ip); 2684 rw_exit(&ip->i_contents); 2685 } 2686 out: 2687 if (ulp) { 2688 ufs_lockfs_end(ulp); 2689 } 2690 return (error); 2691 } 2692 2693 /*ARGSUSED*/ 2694 static void 2695 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 2696 { 2697 ufs_iinactive(VTOI(vp)); 2698 } 2699 2700 /* 2701 * Unix file system operations having to do with directory manipulation. 2702 */ 2703 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */ 2704 /* ARGSUSED */ 2705 static int 2706 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp, 2707 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr, 2708 caller_context_t *ct, int *direntflags, pathname_t *realpnp) 2709 { 2710 struct inode *ip; 2711 struct inode *sip; 2712 struct inode *xip; 2713 struct ufsvfs *ufsvfsp; 2714 struct ulockfs *ulp; 2715 struct vnode *vp; 2716 int error; 2717 2718 /* 2719 * Check flags for type of lookup (regular file or attribute file) 2720 */ 2721 2722 ip = VTOI(dvp); 2723 2724 if (flags & LOOKUP_XATTR) { 2725 2726 /* 2727 * If not mounted with XATTR support then return EINVAL 2728 */ 2729 2730 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR)) 2731 return (EINVAL); 2732 /* 2733 * We don't allow recursive attributes... 2734 * Maybe someday we will. 2735 */ 2736 if ((ip->i_cflags & IXATTR)) { 2737 return (EINVAL); 2738 } 2739 2740 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) { 2741 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr); 2742 if (error) { 2743 *vpp = NULL; 2744 goto out; 2745 } 2746 2747 vp = ITOV(sip); 2748 dnlc_update(dvp, XATTR_DIR_NAME, vp); 2749 } 2750 2751 /* 2752 * Check accessibility of directory. 2753 */ 2754 if (vp == DNLC_NO_VNODE) { 2755 VN_RELE(vp); 2756 error = ENOENT; 2757 goto out; 2758 } 2759 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr)) != 0) { 2760 VN_RELE(vp); 2761 goto out; 2762 } 2763 2764 *vpp = vp; 2765 return (0); 2766 } 2767 2768 /* 2769 * Check for a null component, which we should treat as 2770 * looking at dvp from within it's parent, so we don't 2771 * need a call to ufs_iaccess(), as it has already been 2772 * done. 2773 */ 2774 if (nm[0] == 0) { 2775 VN_HOLD(dvp); 2776 error = 0; 2777 *vpp = dvp; 2778 goto out; 2779 } 2780 2781 /* 2782 * Check for "." ie itself. this is a quick check and 2783 * avoids adding "." into the dnlc (which have been seen 2784 * to occupy >10% of the cache). 2785 */ 2786 if ((nm[0] == '.') && (nm[1] == 0)) { 2787 /* 2788 * Don't return without checking accessibility 2789 * of the directory. We only need the lock if 2790 * we are going to return it. 2791 */ 2792 if ((error = ufs_iaccess(ip, IEXEC, cr)) == 0) { 2793 VN_HOLD(dvp); 2794 *vpp = dvp; 2795 } 2796 goto out; 2797 } 2798 2799 /* 2800 * Fast path: Check the directory name lookup cache. 2801 */ 2802 if (vp = dnlc_lookup(dvp, nm)) { 2803 /* 2804 * Check accessibility of directory. 2805 */ 2806 if ((error = ufs_iaccess(ip, IEXEC, cr)) != 0) { 2807 VN_RELE(vp); 2808 goto out; 2809 } 2810 if (vp == DNLC_NO_VNODE) { 2811 VN_RELE(vp); 2812 error = ENOENT; 2813 goto out; 2814 } 2815 xip = VTOI(vp); 2816 ulp = NULL; 2817 goto fastpath; 2818 } 2819 2820 /* 2821 * Keep the idle queue from getting too long by 2822 * idling two inodes before attempting to allocate another. 2823 * This operation must be performed before entering 2824 * lockfs or a transaction. 2825 */ 2826 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 2827 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 2828 ins.in_lidles.value.ul += ufs_lookup_idle_count; 2829 ufs_idle_some(ufs_lookup_idle_count); 2830 } 2831 2832 retry_lookup: 2833 ufsvfsp = ip->i_ufsvfs; 2834 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK); 2835 if (error) 2836 goto out; 2837 2838 error = ufs_dirlook(ip, nm, &xip, cr, 1); 2839 2840 fastpath: 2841 if (error == 0) { 2842 ip = xip; 2843 *vpp = ITOV(ip); 2844 2845 /* 2846 * If vnode is a device return special vnode instead. 2847 */ 2848 if (IS_DEVVP(*vpp)) { 2849 struct vnode *newvp; 2850 2851 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, 2852 cr); 2853 VN_RELE(*vpp); 2854 if (newvp == NULL) 2855 error = ENOSYS; 2856 else 2857 *vpp = newvp; 2858 } else if (ip->i_cflags & ICOMPRESS) { 2859 struct vnode *newvp; 2860 2861 /* 2862 * Compressed file, substitute dcfs vnode 2863 */ 2864 newvp = decompvp(*vpp, cr, ct); 2865 VN_RELE(*vpp); 2866 if (newvp == NULL) 2867 error = ENOSYS; 2868 else 2869 *vpp = newvp; 2870 } 2871 } 2872 if (ulp) { 2873 ufs_lockfs_end(ulp); 2874 } 2875 2876 if (error == EAGAIN) 2877 goto retry_lookup; 2878 2879 out: 2880 return (error); 2881 } 2882 2883 /*ARGSUSED*/ 2884 static int 2885 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl, 2886 int mode, struct vnode **vpp, struct cred *cr, int flag, 2887 caller_context_t *ct, vsecattr_t *vsecp) 2888 { 2889 struct inode *ip; 2890 struct inode *xip; 2891 struct inode *dip; 2892 struct vnode *xvp; 2893 struct ufsvfs *ufsvfsp; 2894 struct ulockfs *ulp; 2895 int error; 2896 int issync; 2897 int truncflag; 2898 int trans_size; 2899 int noentry; 2900 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */ 2901 int retry = 1; 2902 int indeadlock; 2903 2904 again: 2905 ip = VTOI(dvp); 2906 ufsvfsp = ip->i_ufsvfs; 2907 truncflag = 0; 2908 2909 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK); 2910 if (error) 2911 goto out; 2912 2913 if (ulp) { 2914 trans_size = (int)TOP_CREATE_SIZE(ip); 2915 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size); 2916 } 2917 2918 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0) 2919 vap->va_mode &= ~VSVTX; 2920 2921 if (*name == '\0') { 2922 /* 2923 * Null component name refers to the directory itself. 2924 */ 2925 VN_HOLD(dvp); 2926 /* 2927 * Even though this is an error case, we need to grab the 2928 * quota lock since the error handling code below is common. 2929 */ 2930 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2931 rw_enter(&ip->i_contents, RW_WRITER); 2932 error = EEXIST; 2933 } else { 2934 xip = NULL; 2935 noentry = 0; 2936 /* 2937 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 2938 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 2939 * possible, retries the operation. 2940 */ 2941 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE, 2942 retry_dir); 2943 if (indeadlock) 2944 goto again; 2945 2946 xvp = dnlc_lookup(dvp, name); 2947 if (xvp == DNLC_NO_VNODE) { 2948 noentry = 1; 2949 VN_RELE(xvp); 2950 xvp = NULL; 2951 } 2952 if (xvp) { 2953 rw_exit(&ip->i_rwlock); 2954 if (error = ufs_iaccess(ip, IEXEC, cr)) { 2955 VN_RELE(xvp); 2956 } else { 2957 error = EEXIST; 2958 xip = VTOI(xvp); 2959 } 2960 } else { 2961 /* 2962 * Suppress file system full message if we will retry 2963 */ 2964 error = ufs_direnter_cm(ip, name, DE_CREATE, 2965 vap, &xip, cr, (noentry | (retry ? IQUIET : 0))); 2966 if (error == EAGAIN) { 2967 if (ulp) { 2968 TRANS_END_CSYNC(ufsvfsp, error, issync, 2969 TOP_CREATE, trans_size); 2970 ufs_lockfs_end(ulp); 2971 } 2972 goto again; 2973 } 2974 rw_exit(&ip->i_rwlock); 2975 } 2976 ip = xip; 2977 if (ip != NULL) { 2978 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 2979 rw_enter(&ip->i_contents, RW_WRITER); 2980 } 2981 } 2982 2983 /* 2984 * If the file already exists and this is a non-exclusive create, 2985 * check permissions and allow access for non-directories. 2986 * Read-only create of an existing directory is also allowed. 2987 * We fail an exclusive create of anything which already exists. 2988 */ 2989 if (error == EEXIST) { 2990 dip = VTOI(dvp); 2991 if (excl == NONEXCL) { 2992 if ((((ip->i_mode & IFMT) == IFDIR) || 2993 ((ip->i_mode & IFMT) == IFATTRDIR)) && 2994 (mode & IWRITE)) 2995 error = EISDIR; 2996 else if (mode) 2997 error = ufs_iaccess(ip, mode, cr); 2998 else 2999 error = 0; 3000 } 3001 if (error) { 3002 rw_exit(&ip->i_contents); 3003 rw_exit(&ufsvfsp->vfs_dqrwlock); 3004 VN_RELE(ITOV(ip)); 3005 goto unlock; 3006 } 3007 /* 3008 * If the error EEXIST was set, then i_seq can not 3009 * have been updated. The sequence number interface 3010 * is defined such that a non-error VOP_CREATE must 3011 * increase the dir va_seq it by at least one. If we 3012 * have cleared the error, increase i_seq. Note that 3013 * we are increasing the dir i_seq and in rare cases 3014 * ip may actually be from the dvp, so we already have 3015 * the locks and it will not be subject to truncation. 3016 * In case we have to update i_seq of the parent 3017 * directory dip, we have to defer it till we have 3018 * released our locks on ip due to lock ordering requirements. 3019 */ 3020 if (ip != dip) 3021 defer_dip_seq_update = 1; 3022 else 3023 ip->i_seq++; 3024 3025 if (((ip->i_mode & IFMT) == IFREG) && 3026 (vap->va_mask & AT_SIZE) && vap->va_size == 0) { 3027 /* 3028 * Truncate regular files, if requested by caller. 3029 * Grab i_rwlock to make sure no one else is 3030 * currently writing to the file (we promised 3031 * bmap we would do this). 3032 * Must get the locks in the correct order. 3033 */ 3034 if (ip->i_size == 0) { 3035 ip->i_flag |= ICHG | IUPD; 3036 ip->i_seq++; 3037 TRANS_INODE(ufsvfsp, ip); 3038 } else { 3039 /* 3040 * Large Files: Why this check here? 3041 * Though we do it in vn_create() we really 3042 * want to guarantee that we do not destroy 3043 * Large file data by atomically checking 3044 * the size while holding the contents 3045 * lock. 3046 */ 3047 if (flag && !(flag & FOFFMAX) && 3048 ((ip->i_mode & IFMT) == IFREG) && 3049 (ip->i_size > (offset_t)MAXOFF32_T)) { 3050 rw_exit(&ip->i_contents); 3051 rw_exit(&ufsvfsp->vfs_dqrwlock); 3052 error = EOVERFLOW; 3053 goto unlock; 3054 } 3055 if (TRANS_ISTRANS(ufsvfsp)) 3056 truncflag++; 3057 else { 3058 rw_exit(&ip->i_contents); 3059 rw_exit(&ufsvfsp->vfs_dqrwlock); 3060 ufs_tryirwlock_trans(&ip->i_rwlock, 3061 RW_WRITER, TOP_CREATE, 3062 retry_file); 3063 if (indeadlock) { 3064 VN_RELE(ITOV(ip)); 3065 goto again; 3066 } 3067 rw_enter(&ufsvfsp->vfs_dqrwlock, 3068 RW_READER); 3069 rw_enter(&ip->i_contents, RW_WRITER); 3070 (void) ufs_itrunc(ip, (u_offset_t)0, 0, 3071 cr); 3072 rw_exit(&ip->i_rwlock); 3073 } 3074 3075 } 3076 if (error == 0) { 3077 vnevent_create(ITOV(ip), ct); 3078 } 3079 } 3080 } 3081 3082 if (error) { 3083 if (ip != NULL) { 3084 rw_exit(&ufsvfsp->vfs_dqrwlock); 3085 rw_exit(&ip->i_contents); 3086 } 3087 goto unlock; 3088 } 3089 3090 *vpp = ITOV(ip); 3091 ITIMES(ip); 3092 rw_exit(&ip->i_contents); 3093 rw_exit(&ufsvfsp->vfs_dqrwlock); 3094 3095 /* 3096 * If vnode is a device return special vnode instead. 3097 */ 3098 if (!error && IS_DEVVP(*vpp)) { 3099 struct vnode *newvp; 3100 3101 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 3102 VN_RELE(*vpp); 3103 if (newvp == NULL) { 3104 error = ENOSYS; 3105 goto unlock; 3106 } 3107 truncflag = 0; 3108 *vpp = newvp; 3109 } 3110 unlock: 3111 3112 /* 3113 * Do the deferred update of the parent directory's sequence 3114 * number now. 3115 */ 3116 if (defer_dip_seq_update == 1) { 3117 rw_enter(&dip->i_contents, RW_READER); 3118 mutex_enter(&dip->i_tlock); 3119 dip->i_seq++; 3120 mutex_exit(&dip->i_tlock); 3121 rw_exit(&dip->i_contents); 3122 } 3123 3124 if (ulp) { 3125 int terr = 0; 3126 3127 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE, 3128 trans_size); 3129 3130 /* 3131 * If we haven't had a more interesting failure 3132 * already, then anything that might've happened 3133 * here should be reported. 3134 */ 3135 if (error == 0) 3136 error = terr; 3137 } 3138 3139 if (!error && truncflag) { 3140 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc); 3141 if (indeadlock) { 3142 if (ulp) 3143 ufs_lockfs_end(ulp); 3144 VN_RELE(ITOV(ip)); 3145 goto again; 3146 } 3147 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr); 3148 rw_exit(&ip->i_rwlock); 3149 } 3150 3151 if (ulp) 3152 ufs_lockfs_end(ulp); 3153 3154 /* 3155 * If no inodes available, try to free one up out of the 3156 * pending delete queue. 3157 */ 3158 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3159 ufs_delete_drain_wait(ufsvfsp, 1); 3160 retry = 0; 3161 goto again; 3162 } 3163 3164 out: 3165 return (error); 3166 } 3167 3168 extern int ufs_idle_max; 3169 /*ARGSUSED*/ 3170 static int 3171 ufs_remove(struct vnode *vp, char *nm, struct cred *cr, 3172 caller_context_t *ct, int flags) 3173 { 3174 struct inode *ip = VTOI(vp); 3175 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3176 struct ulockfs *ulp; 3177 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */ 3178 int indeadlock; 3179 int error; 3180 int issync; 3181 int trans_size; 3182 3183 /* 3184 * don't let the delete queue get too long 3185 */ 3186 if (ufsvfsp == NULL) { 3187 error = EIO; 3188 goto out; 3189 } 3190 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3191 ufs_delete_drain(vp->v_vfsp, 1, 1); 3192 3193 retry_remove: 3194 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK); 3195 if (error) 3196 goto out; 3197 3198 if (ulp) 3199 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE, 3200 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp))); 3201 3202 /* 3203 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3204 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3205 * possible, retries the operation. 3206 */ 3207 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry); 3208 if (indeadlock) 3209 goto retry_remove; 3210 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0, 3211 DR_REMOVE, cr, &rmvp); 3212 rw_exit(&ip->i_rwlock); 3213 3214 if (ulp) { 3215 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size); 3216 ufs_lockfs_end(ulp); 3217 } 3218 3219 /* 3220 * This must be called after the remove transaction is closed. 3221 */ 3222 if (rmvp != NULL) { 3223 /* Only send the event if there were no errors */ 3224 if (error == 0) 3225 vnevent_remove(rmvp, vp, nm, ct); 3226 VN_RELE(rmvp); 3227 } 3228 out: 3229 return (error); 3230 } 3231 3232 /* 3233 * Link a file or a directory. Only privileged processes are allowed to 3234 * make links to directories. 3235 */ 3236 /*ARGSUSED*/ 3237 static int 3238 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr, 3239 caller_context_t *ct, int flags) 3240 { 3241 struct inode *sip; 3242 struct inode *tdp = VTOI(tdvp); 3243 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs; 3244 struct ulockfs *ulp; 3245 struct vnode *realvp; 3246 int error; 3247 int issync; 3248 int trans_size; 3249 int isdev; 3250 int indeadlock; 3251 3252 retry_link: 3253 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK); 3254 if (error) 3255 goto out; 3256 3257 if (ulp) 3258 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK, 3259 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp))); 3260 3261 if (VOP_REALVP(svp, &realvp, ct) == 0) 3262 svp = realvp; 3263 3264 /* 3265 * Make sure link for extended attributes is valid 3266 * We only support hard linking of attr in ATTRDIR to ATTRDIR 3267 * 3268 * Make certain we don't attempt to look at a device node as 3269 * a ufs inode. 3270 */ 3271 3272 isdev = IS_DEVVP(svp); 3273 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) && 3274 ((tdp->i_mode & IFMT) == IFATTRDIR)) || 3275 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) && 3276 ((tdp->i_mode & IFMT) == IFDIR))) { 3277 error = EINVAL; 3278 goto unlock; 3279 } 3280 3281 sip = VTOI(svp); 3282 if ((svp->v_type == VDIR && 3283 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) || 3284 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) { 3285 error = EPERM; 3286 goto unlock; 3287 } 3288 3289 /* 3290 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3291 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3292 * possible, retries the operation. 3293 */ 3294 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry); 3295 if (indeadlock) 3296 goto retry_link; 3297 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0, 3298 sip, cr, NULL); 3299 rw_exit(&tdp->i_rwlock); 3300 3301 unlock: 3302 if (ulp) { 3303 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size); 3304 ufs_lockfs_end(ulp); 3305 } 3306 3307 if (!error) { 3308 vnevent_link(svp, ct); 3309 } 3310 out: 3311 return (error); 3312 } 3313 3314 uint64_t ufs_rename_retry_cnt; 3315 uint64_t ufs_rename_upgrade_retry_cnt; 3316 uint64_t ufs_rename_dircheck_retry_cnt; 3317 clock_t ufs_rename_backoff_delay = 1; 3318 3319 /* 3320 * Rename a file or directory. 3321 * We are given the vnode and entry string of the source and the 3322 * vnode and entry string of the place we want to move the source 3323 * to (the target). The essential operation is: 3324 * unlink(target); 3325 * link(source, target); 3326 * unlink(source); 3327 * but "atomically". Can't do full commit without saving state in 3328 * the inode on disk, which isn't feasible at this time. Best we 3329 * can do is always guarantee that the TARGET exists. 3330 */ 3331 3332 /*ARGSUSED*/ 3333 static int 3334 ufs_rename( 3335 struct vnode *sdvp, /* old (source) parent vnode */ 3336 char *snm, /* old (source) entry name */ 3337 struct vnode *tdvp, /* new (target) parent vnode */ 3338 char *tnm, /* new (target) entry name */ 3339 struct cred *cr, 3340 caller_context_t *ct, 3341 int flags) 3342 { 3343 struct inode *sip = NULL; /* source inode */ 3344 struct inode *ip = NULL; /* check inode */ 3345 struct inode *sdp; /* old (source) parent inode */ 3346 struct inode *tdp; /* new (target) parent inode */ 3347 struct vnode *tvp = NULL; /* target vnode, if it exists */ 3348 struct vnode *realvp; 3349 struct ufsvfs *ufsvfsp; 3350 struct ulockfs *ulp; 3351 struct ufs_slot slot; 3352 timestruc_t now; 3353 int error; 3354 int issync; 3355 int trans_size; 3356 krwlock_t *first_lock; 3357 krwlock_t *second_lock; 3358 krwlock_t *reverse_lock; 3359 3360 sdp = VTOI(sdvp); 3361 slot.fbp = NULL; 3362 ufsvfsp = sdp->i_ufsvfs; 3363 retry_rename: 3364 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK); 3365 if (error) 3366 goto out; 3367 3368 if (ulp) 3369 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME, 3370 trans_size = (int)TOP_RENAME_SIZE(sdp)); 3371 3372 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3373 tdvp = realvp; 3374 3375 tdp = VTOI(tdvp); 3376 3377 3378 /* 3379 * We only allow renaming of attributes from ATTRDIR to ATTRDIR. 3380 */ 3381 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) { 3382 error = EINVAL; 3383 goto unlock; 3384 } 3385 3386 /* 3387 * Look up inode of file we're supposed to rename. 3388 */ 3389 gethrestime(&now); 3390 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0)) { 3391 if (error == EAGAIN) { 3392 if (ulp) { 3393 TRANS_END_CSYNC(ufsvfsp, error, issync, 3394 TOP_RENAME, trans_size); 3395 ufs_lockfs_end(ulp); 3396 } 3397 goto retry_rename; 3398 } 3399 3400 goto unlock; 3401 } 3402 3403 /* 3404 * Lock both the source and target directories (they may be 3405 * the same) to provide the atomicity semantics that was 3406 * previously provided by the per file system vfs_rename_lock 3407 * 3408 * with vfs_rename_lock removed to allow simultaneous renames 3409 * within a file system, ufs_dircheckpath can deadlock while 3410 * traversing back to ensure that source is not a parent directory 3411 * of target parent directory. This is because we get into 3412 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER. 3413 * If the tdp and sdp of the simultaneous renames happen to be 3414 * in the path of each other, it can lead to a deadlock. This 3415 * can be avoided by getting the locks as RW_READER here and then 3416 * upgrading to RW_WRITER after completing the ufs_dircheckpath. 3417 * 3418 * We hold the target directory's i_rwlock after calling 3419 * ufs_lockfs_begin but in many other operations (like ufs_readdir) 3420 * VOP_RWLOCK is explicitly called by the filesystem independent code 3421 * before calling the file system operation. In these cases the order 3422 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin 3423 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP 3424 * counter but with ufs_quiesce setting the SLOCK bit this becomes a 3425 * synchronizing object which might lead to a deadlock. So we use 3426 * rw_tryenter instead of rw_enter. If we fail to get this lock and 3427 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the 3428 * operation. 3429 */ 3430 retry: 3431 first_lock = &tdp->i_rwlock; 3432 second_lock = &sdp->i_rwlock; 3433 retry_firstlock: 3434 if (!rw_tryenter(first_lock, RW_READER)) { 3435 /* 3436 * We didn't get the lock. Check if the SLOCK is set in the 3437 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3438 * and wait for SLOCK to be cleared. 3439 */ 3440 3441 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3442 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3443 trans_size); 3444 ufs_lockfs_end(ulp); 3445 goto retry_rename; 3446 3447 } else { 3448 /* 3449 * SLOCK isn't set so this is a genuine synchronization 3450 * case. Let's try again after giving them a breather. 3451 */ 3452 delay(RETRY_LOCK_DELAY); 3453 goto retry_firstlock; 3454 } 3455 } 3456 /* 3457 * Need to check if the tdp and sdp are same !!! 3458 */ 3459 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) { 3460 /* 3461 * We didn't get the lock. Check if the SLOCK is set in the 3462 * ufsvfs. If yes, we might be in a deadlock. Safer to give up 3463 * and wait for SLOCK to be cleared. 3464 */ 3465 3466 rw_exit(first_lock); 3467 if (ulp && ULOCKFS_IS_SLOCK(ulp)) { 3468 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, 3469 trans_size); 3470 ufs_lockfs_end(ulp); 3471 goto retry_rename; 3472 3473 } else { 3474 /* 3475 * So we couldn't get the second level peer lock *and* 3476 * the SLOCK bit isn't set. Too bad we can be 3477 * contentding with someone wanting these locks otherway 3478 * round. Reverse the locks in case there is a heavy 3479 * contention for the second level lock. 3480 */ 3481 reverse_lock = first_lock; 3482 first_lock = second_lock; 3483 second_lock = reverse_lock; 3484 ufs_rename_retry_cnt++; 3485 goto retry_firstlock; 3486 } 3487 } 3488 3489 if (sip == tdp) { 3490 error = EINVAL; 3491 goto errout; 3492 } 3493 /* 3494 * Make sure we can delete the source entry. This requires 3495 * write permission on the containing directory. 3496 * Check for sticky directories. 3497 */ 3498 rw_enter(&sdp->i_contents, RW_READER); 3499 rw_enter(&sip->i_contents, RW_READER); 3500 if ((error = ufs_iaccess(sdp, IWRITE, cr)) != 0 || 3501 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) { 3502 rw_exit(&sip->i_contents); 3503 rw_exit(&sdp->i_contents); 3504 goto errout; 3505 } 3506 3507 /* 3508 * If this is a rename of a directory and the parent is 3509 * different (".." must be changed), then the source 3510 * directory must not be in the directory hierarchy 3511 * above the target, as this would orphan everything 3512 * below the source directory. Also the user must have 3513 * write permission in the source so as to be able to 3514 * change "..". 3515 */ 3516 if ((((sip->i_mode & IFMT) == IFDIR) || 3517 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) { 3518 ino_t inum; 3519 3520 if ((error = ufs_iaccess(sip, IWRITE, cr))) { 3521 rw_exit(&sip->i_contents); 3522 rw_exit(&sdp->i_contents); 3523 goto errout; 3524 } 3525 inum = sip->i_number; 3526 rw_exit(&sip->i_contents); 3527 rw_exit(&sdp->i_contents); 3528 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) { 3529 /* 3530 * If we got EAGAIN ufs_dircheckpath detected a 3531 * potential deadlock and backed out. We need 3532 * to retry the operation since sdp and tdp have 3533 * to be released to avoid the deadlock. 3534 */ 3535 if (error == EAGAIN) { 3536 rw_exit(&tdp->i_rwlock); 3537 if (tdp != sdp) 3538 rw_exit(&sdp->i_rwlock); 3539 delay(ufs_rename_backoff_delay); 3540 ufs_rename_dircheck_retry_cnt++; 3541 goto retry; 3542 } 3543 goto errout; 3544 } 3545 } else { 3546 rw_exit(&sip->i_contents); 3547 rw_exit(&sdp->i_contents); 3548 } 3549 3550 3551 /* 3552 * Check for renaming '.' or '..' or alias of '.' 3553 */ 3554 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) { 3555 error = EINVAL; 3556 goto errout; 3557 } 3558 3559 /* 3560 * Simultaneous renames can deadlock in ufs_dircheckpath since it 3561 * tries to traverse back the file tree with both tdp and sdp held 3562 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks 3563 * as RW_READERS till ufs_dircheckpath is done. 3564 * Now that ufs_dircheckpath is done with, we can upgrade the locks 3565 * to RW_WRITER. 3566 */ 3567 if (!rw_tryupgrade(&tdp->i_rwlock)) { 3568 /* 3569 * The upgrade failed. We got to give away the lock 3570 * as to avoid deadlocking with someone else who is 3571 * waiting for writer lock. With the lock gone, we 3572 * cannot be sure the checks done above will hold 3573 * good when we eventually get them back as writer. 3574 * So if we can't upgrade we drop the locks and retry 3575 * everything again. 3576 */ 3577 rw_exit(&tdp->i_rwlock); 3578 if (tdp != sdp) 3579 rw_exit(&sdp->i_rwlock); 3580 delay(ufs_rename_backoff_delay); 3581 ufs_rename_upgrade_retry_cnt++; 3582 goto retry; 3583 } 3584 if (tdp != sdp) { 3585 if (!rw_tryupgrade(&sdp->i_rwlock)) { 3586 /* 3587 * The upgrade failed. We got to give away the lock 3588 * as to avoid deadlocking with someone else who is 3589 * waiting for writer lock. With the lock gone, we 3590 * cannot be sure the checks done above will hold 3591 * good when we eventually get them back as writer. 3592 * So if we can't upgrade we drop the locks and retry 3593 * everything again. 3594 */ 3595 rw_exit(&tdp->i_rwlock); 3596 rw_exit(&sdp->i_rwlock); 3597 delay(ufs_rename_backoff_delay); 3598 ufs_rename_upgrade_retry_cnt++; 3599 goto retry; 3600 } 3601 } 3602 3603 /* 3604 * Now that all the locks are held check to make sure another thread 3605 * didn't slip in and take out the sip. 3606 */ 3607 slot.status = NONE; 3608 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec || 3609 sip->i_ctime.tv_sec > now.tv_sec) { 3610 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER); 3611 rw_enter(&sdp->i_contents, RW_WRITER); 3612 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot, 3613 &ip, cr, 0); 3614 rw_exit(&sdp->i_contents); 3615 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock); 3616 if (error) { 3617 goto errout; 3618 } 3619 if (ip == NULL) { 3620 error = ENOENT; 3621 goto errout; 3622 } else { 3623 /* 3624 * If the inode was found need to drop the v_count 3625 * so as not to keep the filesystem from being 3626 * unmounted at a later time. 3627 */ 3628 VN_RELE(ITOV(ip)); 3629 } 3630 3631 /* 3632 * Release the slot.fbp that has the page mapped and 3633 * locked SE_SHARED, and could be used in in 3634 * ufs_direnter_lr() which needs to get the SE_EXCL lock 3635 * on said page. 3636 */ 3637 if (slot.fbp) { 3638 fbrelse(slot.fbp, S_OTHER); 3639 slot.fbp = NULL; 3640 } 3641 } 3642 3643 /* 3644 * Link source to the target. If a target exists, return its 3645 * vnode pointer in tvp. We'll release it after sending the 3646 * vnevent. 3647 */ 3648 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr, &tvp)) { 3649 /* 3650 * ESAME isn't really an error; it indicates that the 3651 * operation should not be done because the source and target 3652 * are the same file, but that no error should be reported. 3653 */ 3654 if (error == ESAME) 3655 error = 0; 3656 goto errout; 3657 } 3658 3659 /* 3660 * Unlink the source. 3661 * Remove the source entry. ufs_dirremove() checks that the entry 3662 * still reflects sip, and returns an error if it doesn't. 3663 * If the entry has changed just forget about it. Release 3664 * the source inode. 3665 */ 3666 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0, 3667 DR_RENAME, cr, NULL)) == ENOENT) 3668 error = 0; 3669 3670 errout: 3671 if (slot.fbp) 3672 fbrelse(slot.fbp, S_OTHER); 3673 3674 rw_exit(&tdp->i_rwlock); 3675 if (sdp != tdp) { 3676 rw_exit(&sdp->i_rwlock); 3677 } 3678 3679 unlock: 3680 if (ulp) { 3681 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size); 3682 ufs_lockfs_end(ulp); 3683 } 3684 3685 /* 3686 * If no errors, send the appropriate events on the source 3687 * and destination (a.k.a, target) vnodes, if they exist. 3688 * This has to be done after the rename transaction has closed. 3689 */ 3690 if (error == 0) { 3691 if (tvp != NULL) 3692 vnevent_rename_dest(tvp, tdvp, tnm, ct); 3693 3694 /* 3695 * Notify the target directory of the rename event 3696 * if source and target directories are not same. 3697 */ 3698 if (sdvp != tdvp) 3699 vnevent_rename_dest_dir(tdvp, ct); 3700 3701 /* 3702 * Note that if ufs_direnter_lr() returned ESAME then 3703 * this event will still be sent. This isn't expected 3704 * to be a problem for anticipated usage by consumers. 3705 */ 3706 if (sip != NULL) 3707 vnevent_rename_src(ITOV(sip), sdvp, snm, ct); 3708 } 3709 3710 if (tvp != NULL) 3711 VN_RELE(tvp); 3712 3713 if (sip != NULL) 3714 VN_RELE(ITOV(sip)); 3715 3716 out: 3717 return (error); 3718 } 3719 3720 /*ARGSUSED*/ 3721 static int 3722 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap, 3723 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags, 3724 vsecattr_t *vsecp) 3725 { 3726 struct inode *ip; 3727 struct inode *xip; 3728 struct ufsvfs *ufsvfsp; 3729 struct ulockfs *ulp; 3730 int error; 3731 int issync; 3732 int trans_size; 3733 int indeadlock; 3734 int retry = 1; 3735 3736 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 3737 3738 /* 3739 * Can't make directory in attr hidden dir 3740 */ 3741 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 3742 return (EINVAL); 3743 3744 again: 3745 ip = VTOI(dvp); 3746 ufsvfsp = ip->i_ufsvfs; 3747 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK); 3748 if (error) 3749 goto out; 3750 if (ulp) 3751 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR, 3752 trans_size = (int)TOP_MKDIR_SIZE(ip)); 3753 3754 /* 3755 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3756 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3757 * possible, retries the operation. 3758 */ 3759 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry); 3760 if (indeadlock) 3761 goto again; 3762 3763 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr, 3764 (retry ? IQUIET : 0)); 3765 if (error == EAGAIN) { 3766 if (ulp) { 3767 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR, 3768 trans_size); 3769 ufs_lockfs_end(ulp); 3770 } 3771 goto again; 3772 } 3773 3774 rw_exit(&ip->i_rwlock); 3775 if (error == 0) { 3776 ip = xip; 3777 *vpp = ITOV(ip); 3778 } else if (error == EEXIST) 3779 VN_RELE(ITOV(xip)); 3780 3781 if (ulp) { 3782 int terr = 0; 3783 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size); 3784 ufs_lockfs_end(ulp); 3785 if (error == 0) 3786 error = terr; 3787 } 3788 out: 3789 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 3790 ufs_delete_drain_wait(ufsvfsp, 1); 3791 retry = 0; 3792 goto again; 3793 } 3794 3795 return (error); 3796 } 3797 3798 /*ARGSUSED*/ 3799 static int 3800 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr, 3801 caller_context_t *ct, int flags) 3802 { 3803 struct inode *ip = VTOI(vp); 3804 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 3805 struct ulockfs *ulp; 3806 vnode_t *rmvp = NULL; /* Vnode of removed directory */ 3807 int error; 3808 int issync; 3809 int trans_size; 3810 int indeadlock; 3811 3812 /* 3813 * don't let the delete queue get too long 3814 */ 3815 if (ufsvfsp == NULL) { 3816 error = EIO; 3817 goto out; 3818 } 3819 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max) 3820 ufs_delete_drain(vp->v_vfsp, 1, 1); 3821 3822 retry_rmdir: 3823 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK); 3824 if (error) 3825 goto out; 3826 3827 if (ulp) 3828 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR, 3829 trans_size = TOP_RMDIR_SIZE); 3830 3831 /* 3832 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK 3833 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock 3834 * possible, retries the operation. 3835 */ 3836 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry); 3837 if (indeadlock) 3838 goto retry_rmdir; 3839 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr, 3840 &rmvp); 3841 rw_exit(&ip->i_rwlock); 3842 3843 if (ulp) { 3844 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR, 3845 trans_size); 3846 ufs_lockfs_end(ulp); 3847 } 3848 3849 /* 3850 * This must be done AFTER the rmdir transaction has closed. 3851 */ 3852 if (rmvp != NULL) { 3853 /* Only send the event if there were no errors */ 3854 if (error == 0) 3855 vnevent_rmdir(rmvp, vp, nm, ct); 3856 VN_RELE(rmvp); 3857 } 3858 out: 3859 return (error); 3860 } 3861 3862 /* ARGSUSED */ 3863 static int 3864 ufs_readdir( 3865 struct vnode *vp, 3866 struct uio *uiop, 3867 struct cred *cr, 3868 int *eofp, 3869 caller_context_t *ct, 3870 int flags) 3871 { 3872 struct iovec *iovp; 3873 struct inode *ip; 3874 struct direct *idp; 3875 struct dirent64 *odp; 3876 struct fbuf *fbp; 3877 struct ufsvfs *ufsvfsp; 3878 struct ulockfs *ulp; 3879 caddr_t outbuf; 3880 size_t bufsize; 3881 uint_t offset; 3882 uint_t bytes_wanted, total_bytes_wanted; 3883 int incount = 0; 3884 int outcount = 0; 3885 int error; 3886 3887 ip = VTOI(vp); 3888 ASSERT(RW_READ_HELD(&ip->i_rwlock)); 3889 3890 if (uiop->uio_loffset >= MAXOFF32_T) { 3891 if (eofp) 3892 *eofp = 1; 3893 return (0); 3894 } 3895 3896 /* 3897 * Check if we have been called with a valid iov_len 3898 * and bail out if not, otherwise we may potentially loop 3899 * forever further down. 3900 */ 3901 if (uiop->uio_iov->iov_len <= 0) { 3902 error = EINVAL; 3903 goto out; 3904 } 3905 3906 /* 3907 * Large Files: When we come here we are guaranteed that 3908 * uio_offset can be used safely. The high word is zero. 3909 */ 3910 3911 ufsvfsp = ip->i_ufsvfs; 3912 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK); 3913 if (error) 3914 goto out; 3915 3916 iovp = uiop->uio_iov; 3917 total_bytes_wanted = iovp->iov_len; 3918 3919 /* Large Files: directory files should not be "large" */ 3920 3921 ASSERT(ip->i_size <= MAXOFF32_T); 3922 3923 /* Force offset to be valid (to guard against bogus lseek() values) */ 3924 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1); 3925 3926 /* Quit if at end of file or link count of zero (posix) */ 3927 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) { 3928 if (eofp) 3929 *eofp = 1; 3930 error = 0; 3931 goto unlock; 3932 } 3933 3934 /* 3935 * Get space to change directory entries into fs independent format. 3936 * Do fast alloc for the most commonly used-request size (filesystem 3937 * block size). 3938 */ 3939 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) { 3940 bufsize = total_bytes_wanted; 3941 outbuf = kmem_alloc(bufsize, KM_SLEEP); 3942 odp = (struct dirent64 *)outbuf; 3943 } else { 3944 bufsize = total_bytes_wanted; 3945 odp = (struct dirent64 *)iovp->iov_base; 3946 } 3947 3948 nextblk: 3949 bytes_wanted = total_bytes_wanted; 3950 3951 /* Truncate request to file size */ 3952 if (offset + bytes_wanted > (int)ip->i_size) 3953 bytes_wanted = (int)(ip->i_size - offset); 3954 3955 /* Comply with MAXBSIZE boundary restrictions of fbread() */ 3956 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE) 3957 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET); 3958 3959 /* 3960 * Read in the next chunk. 3961 * We are still holding the i_rwlock. 3962 */ 3963 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp); 3964 3965 if (error) 3966 goto update_inode; 3967 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) && 3968 (!ufsvfsp->vfs_noatime)) { 3969 ip->i_flag |= IACC; 3970 } 3971 incount = 0; 3972 idp = (struct direct *)fbp->fb_addr; 3973 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) { 3974 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, " 3975 "fs = %s\n", 3976 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt); 3977 fbrelse(fbp, S_OTHER); 3978 error = ENXIO; 3979 goto update_inode; 3980 } 3981 /* Transform to file-system independent format */ 3982 while (incount < bytes_wanted) { 3983 /* 3984 * If the current directory entry is mangled, then skip 3985 * to the next block. It would be nice to set the FSBAD 3986 * flag in the super-block so that a fsck is forced on 3987 * next reboot, but locking is a problem. 3988 */ 3989 if (idp->d_reclen & 0x3) { 3990 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 3991 break; 3992 } 3993 3994 /* Skip to requested offset and skip empty entries */ 3995 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) { 3996 ushort_t this_reclen = 3997 DIRENT64_RECLEN(idp->d_namlen); 3998 /* Buffer too small for any entries */ 3999 if (!outcount && this_reclen > bufsize) { 4000 fbrelse(fbp, S_OTHER); 4001 error = EINVAL; 4002 goto update_inode; 4003 } 4004 /* If would overrun the buffer, quit */ 4005 if (outcount + this_reclen > bufsize) { 4006 break; 4007 } 4008 /* Take this entry */ 4009 odp->d_ino = (ino64_t)idp->d_ino; 4010 odp->d_reclen = (ushort_t)this_reclen; 4011 odp->d_off = (offset_t)(offset + idp->d_reclen); 4012 4013 /* use strncpy(9f) to zero out uninitialized bytes */ 4014 4015 ASSERT(strlen(idp->d_name) + 1 <= 4016 DIRENT64_NAMELEN(this_reclen)); 4017 (void) strncpy(odp->d_name, idp->d_name, 4018 DIRENT64_NAMELEN(this_reclen)); 4019 outcount += odp->d_reclen; 4020 odp = (struct dirent64 *) 4021 ((intptr_t)odp + odp->d_reclen); 4022 ASSERT(outcount <= bufsize); 4023 } 4024 if (idp->d_reclen) { 4025 incount += idp->d_reclen; 4026 offset += idp->d_reclen; 4027 idp = (struct direct *)((intptr_t)idp + idp->d_reclen); 4028 } else { 4029 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1); 4030 break; 4031 } 4032 } 4033 /* Release the chunk */ 4034 fbrelse(fbp, S_OTHER); 4035 4036 /* Read whole block, but got no entries, read another if not eof */ 4037 4038 /* 4039 * Large Files: casting i_size to int here is not a problem 4040 * because directory sizes are always less than MAXOFF32_T. 4041 * See assertion above. 4042 */ 4043 4044 if (offset < (int)ip->i_size && !outcount) 4045 goto nextblk; 4046 4047 /* Copy out the entry data */ 4048 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) { 4049 iovp->iov_base += outcount; 4050 iovp->iov_len -= outcount; 4051 uiop->uio_resid -= outcount; 4052 uiop->uio_offset = offset; 4053 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ, 4054 uiop)) == 0) 4055 uiop->uio_offset = offset; 4056 update_inode: 4057 ITIMES(ip); 4058 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) 4059 kmem_free(outbuf, bufsize); 4060 4061 if (eofp && error == 0) 4062 *eofp = (uiop->uio_offset >= (int)ip->i_size); 4063 unlock: 4064 if (ulp) { 4065 ufs_lockfs_end(ulp); 4066 } 4067 out: 4068 return (error); 4069 } 4070 4071 /*ARGSUSED*/ 4072 static int 4073 ufs_symlink( 4074 struct vnode *dvp, /* ptr to parent dir vnode */ 4075 char *linkname, /* name of symbolic link */ 4076 struct vattr *vap, /* attributes */ 4077 char *target, /* target path */ 4078 struct cred *cr, /* user credentials */ 4079 caller_context_t *ct, 4080 int flags) 4081 { 4082 struct inode *ip, *dip = VTOI(dvp); 4083 struct ufsvfs *ufsvfsp = dip->i_ufsvfs; 4084 struct ulockfs *ulp; 4085 int error; 4086 int issync; 4087 int trans_size; 4088 int residual; 4089 int ioflag; 4090 int retry = 1; 4091 4092 /* 4093 * No symlinks in attrdirs at this time 4094 */ 4095 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR) 4096 return (EINVAL); 4097 4098 again: 4099 ip = (struct inode *)NULL; 4100 vap->va_type = VLNK; 4101 vap->va_rdev = 0; 4102 4103 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK); 4104 if (error) 4105 goto out; 4106 4107 if (ulp) 4108 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK, 4109 trans_size = (int)TOP_SYMLINK_SIZE(dip)); 4110 4111 /* 4112 * We must create the inode before the directory entry, to avoid 4113 * racing with readlink(). ufs_dirmakeinode requires that we 4114 * hold the quota lock as reader, and directory locks as writer. 4115 */ 4116 4117 rw_enter(&dip->i_rwlock, RW_WRITER); 4118 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4119 rw_enter(&dip->i_contents, RW_WRITER); 4120 4121 /* 4122 * Suppress any out of inodes messages if we will retry on 4123 * ENOSP 4124 */ 4125 if (retry) 4126 dip->i_flag |= IQUIET; 4127 4128 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr); 4129 4130 dip->i_flag &= ~IQUIET; 4131 4132 rw_exit(&dip->i_contents); 4133 rw_exit(&ufsvfsp->vfs_dqrwlock); 4134 rw_exit(&dip->i_rwlock); 4135 4136 if (error) 4137 goto unlock; 4138 4139 /* 4140 * OK. The inode has been created. Write out the data of the 4141 * symbolic link. Since symbolic links are metadata, and should 4142 * remain consistent across a system crash, we need to force the 4143 * data out synchronously. 4144 * 4145 * (This is a change from the semantics in earlier releases, which 4146 * only created symbolic links synchronously if the semi-documented 4147 * 'syncdir' option was set, or if we were being invoked by the NFS 4148 * server, which requires symbolic links to be created synchronously.) 4149 * 4150 * We need to pass in a pointer for the residual length; otherwise 4151 * ufs_rdwri() will always return EIO if it can't write the data, 4152 * even if the error was really ENOSPC or EDQUOT. 4153 */ 4154 4155 ioflag = FWRITE | FDSYNC; 4156 residual = 0; 4157 4158 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4159 rw_enter(&ip->i_contents, RW_WRITER); 4160 4161 /* 4162 * Suppress file system full messages if we will retry 4163 */ 4164 if (retry) 4165 ip->i_flag |= IQUIET; 4166 4167 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target), 4168 (offset_t)0, UIO_SYSSPACE, &residual, cr); 4169 4170 ip->i_flag &= ~IQUIET; 4171 4172 if (error) { 4173 rw_exit(&ip->i_contents); 4174 rw_exit(&ufsvfsp->vfs_dqrwlock); 4175 goto remove; 4176 } 4177 4178 /* 4179 * If the link's data is small enough, we can cache it in the inode. 4180 * This is a "fast symbolic link". We don't use the first direct 4181 * block because that's actually used to point at the symbolic link's 4182 * contents on disk; but we know that none of the other direct or 4183 * indirect blocks can be used because symbolic links are restricted 4184 * to be smaller than a file system block. 4185 */ 4186 4187 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip))); 4188 4189 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) { 4190 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) { 4191 ip->i_flag |= IFASTSYMLNK; 4192 } else { 4193 int i; 4194 /* error, clear garbage left behind */ 4195 for (i = 1; i < NDADDR; i++) 4196 ip->i_db[i] = 0; 4197 for (i = 0; i < NIADDR; i++) 4198 ip->i_ib[i] = 0; 4199 } 4200 } 4201 4202 rw_exit(&ip->i_contents); 4203 rw_exit(&ufsvfsp->vfs_dqrwlock); 4204 4205 /* 4206 * OK. We've successfully created the symbolic link. All that 4207 * remains is to insert it into the appropriate directory. 4208 */ 4209 4210 rw_enter(&dip->i_rwlock, RW_WRITER); 4211 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr, NULL); 4212 rw_exit(&dip->i_rwlock); 4213 4214 /* 4215 * Fall through into remove-on-error code. We're either done, or we 4216 * need to remove the inode (if we couldn't insert it). 4217 */ 4218 4219 remove: 4220 if (error && (ip != NULL)) { 4221 rw_enter(&ip->i_contents, RW_WRITER); 4222 ip->i_nlink--; 4223 ip->i_flag |= ICHG; 4224 ip->i_seq++; 4225 ufs_setreclaim(ip); 4226 rw_exit(&ip->i_contents); 4227 } 4228 4229 unlock: 4230 if (ip != NULL) 4231 VN_RELE(ITOV(ip)); 4232 4233 if (ulp) { 4234 int terr = 0; 4235 4236 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK, 4237 trans_size); 4238 ufs_lockfs_end(ulp); 4239 if (error == 0) 4240 error = terr; 4241 } 4242 4243 /* 4244 * We may have failed due to lack of an inode or of a block to 4245 * store the target in. Try flushing the delete queue to free 4246 * logically-available things up and try again. 4247 */ 4248 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 4249 ufs_delete_drain_wait(ufsvfsp, 1); 4250 retry = 0; 4251 goto again; 4252 } 4253 4254 out: 4255 return (error); 4256 } 4257 4258 /* 4259 * Ufs specific routine used to do ufs io. 4260 */ 4261 int 4262 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base, 4263 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid, 4264 struct cred *cr) 4265 { 4266 struct uio auio; 4267 struct iovec aiov; 4268 int error; 4269 4270 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 4271 4272 bzero((caddr_t)&auio, sizeof (uio_t)); 4273 bzero((caddr_t)&aiov, sizeof (iovec_t)); 4274 4275 aiov.iov_base = base; 4276 aiov.iov_len = len; 4277 auio.uio_iov = &aiov; 4278 auio.uio_iovcnt = 1; 4279 auio.uio_loffset = offset; 4280 auio.uio_segflg = (short)seg; 4281 auio.uio_resid = len; 4282 4283 if (rw == UIO_WRITE) { 4284 auio.uio_fmode = FWRITE; 4285 auio.uio_extflg = UIO_COPY_DEFAULT; 4286 auio.uio_llimit = curproc->p_fsz_ctl; 4287 error = wrip(ip, &auio, ioflag, cr); 4288 } else { 4289 auio.uio_fmode = FREAD; 4290 auio.uio_extflg = UIO_COPY_CACHED; 4291 auio.uio_llimit = MAXOFFSET_T; 4292 error = rdip(ip, &auio, ioflag, cr); 4293 } 4294 4295 if (aresid) { 4296 *aresid = auio.uio_resid; 4297 } else if (auio.uio_resid) { 4298 error = EIO; 4299 } 4300 return (error); 4301 } 4302 4303 /*ARGSUSED*/ 4304 static int 4305 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 4306 { 4307 struct ufid *ufid; 4308 struct inode *ip = VTOI(vp); 4309 4310 if (ip->i_ufsvfs == NULL) 4311 return (EIO); 4312 4313 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) { 4314 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t); 4315 return (ENOSPC); 4316 } 4317 4318 ufid = (struct ufid *)fidp; 4319 bzero((char *)ufid, sizeof (struct ufid)); 4320 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t); 4321 ufid->ufid_ino = ip->i_number; 4322 ufid->ufid_gen = ip->i_gen; 4323 4324 return (0); 4325 } 4326 4327 /* ARGSUSED2 */ 4328 static int 4329 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4330 { 4331 struct inode *ip = VTOI(vp); 4332 struct ufsvfs *ufsvfsp; 4333 int forcedirectio; 4334 4335 /* 4336 * Read case is easy. 4337 */ 4338 if (!write_lock) { 4339 rw_enter(&ip->i_rwlock, RW_READER); 4340 return (V_WRITELOCK_FALSE); 4341 } 4342 4343 /* 4344 * Caller has requested a writer lock, but that inhibits any 4345 * concurrency in the VOPs that follow. Acquire the lock shared 4346 * and defer exclusive access until it is known to be needed in 4347 * other VOP handlers. Some cases can be determined here. 4348 */ 4349 4350 /* 4351 * If directio is not set, there is no chance of concurrency, 4352 * so just acquire the lock exclusive. Beware of a forced 4353 * unmount before looking at the mount option. 4354 */ 4355 ufsvfsp = ip->i_ufsvfs; 4356 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0; 4357 if (!(ip->i_flag & IDIRECTIO || forcedirectio) || 4358 !ufs_allow_shared_writes) { 4359 rw_enter(&ip->i_rwlock, RW_WRITER); 4360 return (V_WRITELOCK_TRUE); 4361 } 4362 4363 /* 4364 * Mandatory locking forces acquiring i_rwlock exclusive. 4365 */ 4366 if (MANDLOCK(vp, ip->i_mode)) { 4367 rw_enter(&ip->i_rwlock, RW_WRITER); 4368 return (V_WRITELOCK_TRUE); 4369 } 4370 4371 /* 4372 * Acquire the lock shared in case a concurrent write follows. 4373 * Mandatory locking could have become enabled before the lock 4374 * was acquired. Re-check and upgrade if needed. 4375 */ 4376 rw_enter(&ip->i_rwlock, RW_READER); 4377 if (MANDLOCK(vp, ip->i_mode)) { 4378 rw_exit(&ip->i_rwlock); 4379 rw_enter(&ip->i_rwlock, RW_WRITER); 4380 return (V_WRITELOCK_TRUE); 4381 } 4382 return (V_WRITELOCK_FALSE); 4383 } 4384 4385 /*ARGSUSED*/ 4386 static void 4387 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp) 4388 { 4389 struct inode *ip = VTOI(vp); 4390 4391 rw_exit(&ip->i_rwlock); 4392 } 4393 4394 /* ARGSUSED */ 4395 static int 4396 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp, 4397 caller_context_t *ct) 4398 { 4399 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4400 } 4401 4402 /* ARGSUSED */ 4403 static int 4404 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4405 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr, 4406 caller_context_t *ct) 4407 { 4408 struct inode *ip = VTOI(vp); 4409 4410 if (ip->i_ufsvfs == NULL) 4411 return (EIO); 4412 4413 /* 4414 * If file is being mapped, disallow frlock. 4415 * XXX I am not holding tlock while checking i_mapcnt because the 4416 * current locking strategy drops all locks before calling fs_frlock. 4417 * So, mapcnt could change before we enter fs_frlock making is 4418 * meaningless to have held tlock in the first place. 4419 */ 4420 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode)) 4421 return (EAGAIN); 4422 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4423 } 4424 4425 /* ARGSUSED */ 4426 static int 4427 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag, 4428 offset_t offset, cred_t *cr, caller_context_t *ct) 4429 { 4430 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 4431 struct ulockfs *ulp; 4432 int error; 4433 4434 if ((error = convoff(vp, bfp, 0, offset)) == 0) { 4435 if (cmd == F_FREESP) { 4436 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4437 ULOCKFS_SPACE_MASK); 4438 if (error) 4439 return (error); 4440 error = ufs_freesp(vp, bfp, flag, cr); 4441 } else if (cmd == F_ALLOCSP) { 4442 error = ufs_lockfs_begin(ufsvfsp, &ulp, 4443 ULOCKFS_FALLOCATE_MASK); 4444 if (error) 4445 return (error); 4446 error = ufs_allocsp(vp, bfp, cr); 4447 } else 4448 return (EINVAL); /* Command not handled here */ 4449 4450 if (ulp) 4451 ufs_lockfs_end(ulp); 4452 4453 } 4454 return (error); 4455 } 4456 4457 /* 4458 * Used to determine if read ahead should be done. Also used to 4459 * to determine when write back occurs. 4460 */ 4461 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz) 4462 4463 /* 4464 * A faster version of ufs_getpage. 4465 * 4466 * We optimize by inlining the pvn_getpages iterator, eliminating 4467 * calls to bmap_read if file doesn't have UFS holes, and avoiding 4468 * the overhead of page_exists(). 4469 * 4470 * When files has UFS_HOLES and ufs_getpage is called with S_READ, 4471 * we set *protp to PROT_READ to avoid calling bmap_read. This approach 4472 * victimizes performance when a file with UFS holes is faulted 4473 * first in the S_READ mode, and then in the S_WRITE mode. We will get 4474 * two MMU faults in this case. 4475 * 4476 * XXX - the inode fields which control the sequential mode are not 4477 * protected by any mutex. The read ahead will act wild if 4478 * multiple processes will access the file concurrently and 4479 * some of them in sequential mode. One particulary bad case 4480 * is if another thread will change the value of i_nextrio between 4481 * the time this thread tests the i_nextrio value and then reads it 4482 * again to use it as the offset for the read ahead. 4483 */ 4484 /*ARGSUSED*/ 4485 static int 4486 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp, 4487 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr, 4488 enum seg_rw rw, struct cred *cr, caller_context_t *ct) 4489 { 4490 u_offset_t uoff = (u_offset_t)off; /* type conversion */ 4491 u_offset_t pgoff; 4492 u_offset_t eoff; 4493 struct inode *ip = VTOI(vp); 4494 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 4495 struct fs *fs; 4496 struct ulockfs *ulp; 4497 page_t **pl; 4498 caddr_t pgaddr; 4499 krw_t rwtype; 4500 int err; 4501 int has_holes; 4502 int beyond_eof; 4503 int seqmode; 4504 int pgsize = PAGESIZE; 4505 int dolock; 4506 int do_qlock; 4507 int trans_size; 4508 4509 ASSERT((uoff & PAGEOFFSET) == 0); 4510 4511 if (protp) 4512 *protp = PROT_ALL; 4513 4514 /* 4515 * Obey the lockfs protocol 4516 */ 4517 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg, 4518 rw == S_READ || rw == S_EXEC, protp); 4519 if (err) 4520 goto out; 4521 4522 fs = ufsvfsp->vfs_fs; 4523 4524 if (ulp && (rw == S_CREATE || rw == S_WRITE) && 4525 !(vp->v_flag & VISSWAP)) { 4526 /* 4527 * Try to start a transaction, will return if blocking is 4528 * expected to occur and the address space is not the 4529 * kernel address space. 4530 */ 4531 trans_size = TOP_GETPAGE_SIZE(ip); 4532 if (seg->s_as != &kas) { 4533 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, 4534 trans_size, err) 4535 if (err == EWOULDBLOCK) { 4536 /* 4537 * Use EDEADLK here because the VM code 4538 * can normally never see this error. 4539 */ 4540 err = EDEADLK; 4541 ufs_lockfs_end(ulp); 4542 goto out; 4543 } 4544 } else { 4545 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4546 } 4547 } 4548 4549 if (vp->v_flag & VNOMAP) { 4550 err = ENOSYS; 4551 goto unlock; 4552 } 4553 4554 seqmode = ip->i_nextr == uoff && rw != S_CREATE; 4555 4556 rwtype = RW_READER; /* start as a reader */ 4557 dolock = (rw_owner(&ip->i_contents) != curthread); 4558 /* 4559 * If this thread owns the lock, i.e., this thread grabbed it 4560 * as writer somewhere above, then we don't need to grab the 4561 * lock as reader in this routine. 4562 */ 4563 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread); 4564 4565 retrylock: 4566 if (dolock) { 4567 /* 4568 * Grab the quota lock if we need to call 4569 * bmap_write() below (with i_contents as writer). 4570 */ 4571 if (do_qlock && rwtype == RW_WRITER) 4572 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 4573 rw_enter(&ip->i_contents, rwtype); 4574 } 4575 4576 /* 4577 * We may be getting called as a side effect of a bmap using 4578 * fbread() when the blocks might be being allocated and the 4579 * size has not yet been up'ed. In this case we want to be 4580 * able to return zero pages if we get back UFS_HOLE from 4581 * calling bmap for a non write case here. We also might have 4582 * to read some frags from the disk into a page if we are 4583 * extending the number of frags for a given lbn in bmap(). 4584 * Large Files: The read of i_size here is atomic because 4585 * i_contents is held here. If dolock is zero, the lock 4586 * is held in bmap routines. 4587 */ 4588 beyond_eof = uoff + len > ip->i_size + PAGEOFFSET; 4589 if (beyond_eof && seg != segkmap) { 4590 if (dolock) { 4591 rw_exit(&ip->i_contents); 4592 if (do_qlock && rwtype == RW_WRITER) 4593 rw_exit(&ufsvfsp->vfs_dqrwlock); 4594 } 4595 err = EFAULT; 4596 goto unlock; 4597 } 4598 4599 /* 4600 * Must hold i_contents lock throughout the call to pvn_getpages 4601 * since locked pages are returned from each call to ufs_getapage. 4602 * Must *not* return locked pages and then try for contents lock 4603 * due to lock ordering requirements (inode > page) 4604 */ 4605 4606 has_holes = bmap_has_holes(ip); 4607 4608 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) { 4609 int blk_size; 4610 u_offset_t offset; 4611 4612 /* 4613 * We must acquire the RW_WRITER lock in order to 4614 * call bmap_write(). 4615 */ 4616 if (dolock && rwtype == RW_READER) { 4617 rwtype = RW_WRITER; 4618 4619 /* 4620 * Grab the quota lock before 4621 * upgrading i_contents, but if we can't grab it 4622 * don't wait here due to lock order: 4623 * vfs_dqrwlock > i_contents. 4624 */ 4625 if (do_qlock && 4626 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER) 4627 == 0) { 4628 rw_exit(&ip->i_contents); 4629 goto retrylock; 4630 } 4631 if (!rw_tryupgrade(&ip->i_contents)) { 4632 rw_exit(&ip->i_contents); 4633 if (do_qlock) 4634 rw_exit(&ufsvfsp->vfs_dqrwlock); 4635 goto retrylock; 4636 } 4637 } 4638 4639 /* 4640 * May be allocating disk blocks for holes here as 4641 * a result of mmap faults. write(2) does the bmap_write 4642 * in rdip/wrip, not here. We are not dealing with frags 4643 * in this case. 4644 */ 4645 /* 4646 * Large Files: We cast fs_bmask field to offset_t 4647 * just as we do for MAXBMASK because uoff is a 64-bit 4648 * data type. fs_bmask will still be a 32-bit type 4649 * as we cannot change any ondisk data structures. 4650 */ 4651 4652 offset = uoff & (offset_t)fs->fs_bmask; 4653 while (offset < uoff + len) { 4654 blk_size = (int)blksize(fs, ip, lblkno(fs, offset)); 4655 err = bmap_write(ip, offset, blk_size, 4656 BI_NORMAL, NULL, cr); 4657 if (ip->i_flag & (ICHG|IUPD)) 4658 ip->i_seq++; 4659 if (err) 4660 goto update_inode; 4661 offset += blk_size; /* XXX - make this contig */ 4662 } 4663 } 4664 4665 /* 4666 * Can be a reader from now on. 4667 */ 4668 if (dolock && rwtype == RW_WRITER) { 4669 rw_downgrade(&ip->i_contents); 4670 /* 4671 * We can release vfs_dqrwlock early so do it, but make 4672 * sure we don't try to release it again at the bottom. 4673 */ 4674 if (do_qlock) { 4675 rw_exit(&ufsvfsp->vfs_dqrwlock); 4676 do_qlock = 0; 4677 } 4678 } 4679 4680 /* 4681 * We remove PROT_WRITE in cases when the file has UFS holes 4682 * because we don't want to call bmap_read() to check each 4683 * page if it is backed with a disk block. 4684 */ 4685 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE) 4686 *protp &= ~PROT_WRITE; 4687 4688 err = 0; 4689 4690 /* 4691 * The loop looks up pages in the range [off, off + len). 4692 * For each page, we first check if we should initiate an asynchronous 4693 * read ahead before we call page_lookup (we may sleep in page_lookup 4694 * for a previously initiated disk read). 4695 */ 4696 eoff = (uoff + len); 4697 for (pgoff = uoff, pgaddr = addr, pl = plarr; 4698 pgoff < eoff; /* empty */) { 4699 page_t *pp; 4700 u_offset_t nextrio; 4701 se_t se; 4702 int retval; 4703 4704 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED); 4705 4706 /* Handle async getpage (faultahead) */ 4707 if (plarr == NULL) { 4708 ip->i_nextrio = pgoff; 4709 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4710 pgoff += pgsize; 4711 pgaddr += pgsize; 4712 continue; 4713 } 4714 /* 4715 * Check if we should initiate read ahead of next cluster. 4716 * We call page_exists only when we need to confirm that 4717 * we have the current page before we initiate the read ahead. 4718 */ 4719 nextrio = ip->i_nextrio; 4720 if (seqmode && 4721 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio && 4722 nextrio < ip->i_size && page_exists(vp, pgoff)) { 4723 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr); 4724 /* 4725 * We always read ahead the next cluster of data 4726 * starting from i_nextrio. If the page (vp,nextrio) 4727 * is actually in core at this point, the routine 4728 * ufs_getpage_ra() will stop pre-fetching data 4729 * until we read that page in a synchronized manner 4730 * through ufs_getpage_miss(). So, we should increase 4731 * i_nextrio if the page (vp, nextrio) exists. 4732 */ 4733 if ((retval == 0) && page_exists(vp, nextrio)) { 4734 ip->i_nextrio = nextrio + pgsize; 4735 } 4736 } 4737 4738 if ((pp = page_lookup(vp, pgoff, se)) != NULL) { 4739 /* 4740 * We found the page in the page cache. 4741 */ 4742 *pl++ = pp; 4743 pgoff += pgsize; 4744 pgaddr += pgsize; 4745 len -= pgsize; 4746 plsz -= pgsize; 4747 } else { 4748 /* 4749 * We have to create the page, or read it from disk. 4750 */ 4751 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr, 4752 pl, plsz, rw, seqmode)) 4753 goto error; 4754 4755 while (*pl != NULL) { 4756 pl++; 4757 pgoff += pgsize; 4758 pgaddr += pgsize; 4759 len -= pgsize; 4760 plsz -= pgsize; 4761 } 4762 } 4763 } 4764 4765 /* 4766 * Return pages up to plsz if they are in the page cache. 4767 * We cannot return pages if there is a chance that they are 4768 * backed with a UFS hole and rw is S_WRITE or S_CREATE. 4769 */ 4770 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) { 4771 4772 ASSERT((protp == NULL) || 4773 !(has_holes && (*protp & PROT_WRITE))); 4774 4775 eoff = pgoff + plsz; 4776 while (pgoff < eoff) { 4777 page_t *pp; 4778 4779 if ((pp = page_lookup_nowait(vp, pgoff, 4780 SE_SHARED)) == NULL) 4781 break; 4782 4783 *pl++ = pp; 4784 pgoff += pgsize; 4785 plsz -= pgsize; 4786 } 4787 } 4788 4789 if (plarr) 4790 *pl = NULL; /* Terminate page list */ 4791 ip->i_nextr = pgoff; 4792 4793 error: 4794 if (err && plarr) { 4795 /* 4796 * Release any pages we have locked. 4797 */ 4798 while (pl > &plarr[0]) 4799 page_unlock(*--pl); 4800 4801 plarr[0] = NULL; 4802 } 4803 4804 update_inode: 4805 /* 4806 * If the inode is not already marked for IACC (in rdip() for read) 4807 * and the inode is not marked for no access time update (in wrip() 4808 * for write) then update the inode access time and mod time now. 4809 */ 4810 if ((ip->i_flag & (IACC | INOACC)) == 0) { 4811 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) { 4812 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && 4813 (fs->fs_ronly == 0) && 4814 (!ufsvfsp->vfs_noatime)) { 4815 mutex_enter(&ip->i_tlock); 4816 ip->i_flag |= IACC; 4817 ITIMES_NOLOCK(ip); 4818 mutex_exit(&ip->i_tlock); 4819 } 4820 } 4821 } 4822 4823 if (dolock) { 4824 rw_exit(&ip->i_contents); 4825 if (do_qlock && rwtype == RW_WRITER) 4826 rw_exit(&ufsvfsp->vfs_dqrwlock); 4827 } 4828 4829 unlock: 4830 if (ulp) { 4831 if ((rw == S_CREATE || rw == S_WRITE) && 4832 !(vp->v_flag & VISSWAP)) { 4833 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size); 4834 } 4835 ufs_lockfs_end(ulp); 4836 } 4837 out: 4838 return (err); 4839 } 4840 4841 /* 4842 * ufs_getpage_miss is called when ufs_getpage missed the page in the page 4843 * cache. The page is either read from the disk, or it's created. 4844 * A page is created (without disk read) if rw == S_CREATE, or if 4845 * the page is not backed with a real disk block (UFS hole). 4846 */ 4847 /* ARGSUSED */ 4848 static int 4849 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg, 4850 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq) 4851 { 4852 struct inode *ip = VTOI(vp); 4853 page_t *pp; 4854 daddr_t bn; 4855 size_t io_len; 4856 int crpage = 0; 4857 int err; 4858 int contig; 4859 int bsize = ip->i_fs->fs_bsize; 4860 4861 /* 4862 * Figure out whether the page can be created, or must be 4863 * must be read from the disk. 4864 */ 4865 if (rw == S_CREATE) 4866 crpage = 1; 4867 else { 4868 contig = 0; 4869 if (err = bmap_read(ip, off, &bn, &contig)) 4870 return (err); 4871 4872 crpage = (bn == UFS_HOLE); 4873 4874 /* 4875 * If its also a fallocated block that hasn't been written to 4876 * yet, we will treat it just like a UFS_HOLE and create 4877 * a zero page for it 4878 */ 4879 if (ISFALLOCBLK(ip, bn)) 4880 crpage = 1; 4881 } 4882 4883 if (crpage) { 4884 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg, 4885 addr)) == NULL) { 4886 return (ufs_fault(vp, 4887 "ufs_getpage_miss: page_create == NULL")); 4888 } 4889 4890 if (rw != S_CREATE) 4891 pagezero(pp, 0, PAGESIZE); 4892 4893 io_len = PAGESIZE; 4894 } else { 4895 u_offset_t io_off; 4896 uint_t xlen; 4897 struct buf *bp; 4898 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 4899 4900 /* 4901 * If access is not in sequential order, we read from disk 4902 * in bsize units. 4903 * 4904 * We limit the size of the transfer to bsize if we are reading 4905 * from the beginning of the file. Note in this situation we 4906 * will hedge our bets and initiate an async read ahead of 4907 * the second block. 4908 */ 4909 if (!seq || off == 0) 4910 contig = MIN(contig, bsize); 4911 4912 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4913 &io_len, off, contig, 0); 4914 4915 /* 4916 * Some other thread has entered the page. 4917 * ufs_getpage will retry page_lookup. 4918 */ 4919 if (pp == NULL) { 4920 pl[0] = NULL; 4921 return (0); 4922 } 4923 4924 /* 4925 * Zero part of the page which we are not 4926 * going to read from the disk. 4927 */ 4928 xlen = io_len & PAGEOFFSET; 4929 if (xlen != 0) 4930 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 4931 4932 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ); 4933 bp->b_edev = ip->i_dev; 4934 bp->b_dev = cmpdev(ip->i_dev); 4935 bp->b_blkno = bn; 4936 bp->b_un.b_addr = (caddr_t)0; 4937 bp->b_file = ip->i_vnode; 4938 bp->b_offset = off; 4939 4940 if (ufsvfsp->vfs_log) { 4941 lufs_read_strategy(ufsvfsp->vfs_log, bp); 4942 } else if (ufsvfsp->vfs_snapshot) { 4943 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 4944 } else { 4945 ufsvfsp->vfs_iotstamp = lbolt; 4946 ub.ub_getpages.value.ul++; 4947 (void) bdev_strategy(bp); 4948 lwp_stat_update(LWP_STAT_INBLK, 1); 4949 } 4950 4951 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK); 4952 4953 /* 4954 * If the file access is sequential, initiate read ahead 4955 * of the next cluster. 4956 */ 4957 if (seq && ip->i_nextrio < ip->i_size) 4958 (void) ufs_getpage_ra(vp, off, seg, addr); 4959 err = biowait(bp); 4960 pageio_done(bp); 4961 4962 if (err) { 4963 pvn_read_done(pp, B_ERROR); 4964 return (err); 4965 } 4966 } 4967 4968 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4969 return (0); 4970 } 4971 4972 /* 4973 * Read ahead a cluster from the disk. Returns the length in bytes. 4974 */ 4975 static int 4976 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr) 4977 { 4978 struct inode *ip = VTOI(vp); 4979 page_t *pp; 4980 u_offset_t io_off = ip->i_nextrio; 4981 ufsvfs_t *ufsvfsp; 4982 caddr_t addr2 = addr + (io_off - off); 4983 struct buf *bp; 4984 daddr_t bn; 4985 size_t io_len; 4986 int err; 4987 int contig; 4988 int xlen; 4989 int bsize = ip->i_fs->fs_bsize; 4990 4991 /* 4992 * If the directio advisory is in effect on this file, 4993 * then do not do buffered read ahead. Read ahead makes 4994 * it more difficult on threads using directio as they 4995 * will be forced to flush the pages from this vnode. 4996 */ 4997 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 4998 return (0); 4999 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) 5000 return (0); 5001 5002 /* 5003 * Is this test needed? 5004 */ 5005 if (addr2 >= seg->s_base + seg->s_size) 5006 return (0); 5007 5008 contig = 0; 5009 err = bmap_read(ip, io_off, &bn, &contig); 5010 /* 5011 * If its a UFS_HOLE or a fallocated block, do not perform 5012 * any read ahead's since there probably is nothing to read ahead 5013 */ 5014 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn)) 5015 return (0); 5016 5017 /* 5018 * Limit the transfer size to bsize if this is the 2nd block. 5019 */ 5020 if (io_off == (u_offset_t)bsize) 5021 contig = MIN(contig, bsize); 5022 5023 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off, 5024 &io_len, io_off, contig, 1)) == NULL) 5025 return (0); 5026 5027 /* 5028 * Zero part of page which we are not going to read from disk 5029 */ 5030 if ((xlen = (io_len & PAGEOFFSET)) > 0) 5031 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 5032 5033 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK; 5034 5035 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC); 5036 bp->b_edev = ip->i_dev; 5037 bp->b_dev = cmpdev(ip->i_dev); 5038 bp->b_blkno = bn; 5039 bp->b_un.b_addr = (caddr_t)0; 5040 bp->b_file = ip->i_vnode; 5041 bp->b_offset = off; 5042 5043 if (ufsvfsp->vfs_log) { 5044 lufs_read_strategy(ufsvfsp->vfs_log, bp); 5045 } else if (ufsvfsp->vfs_snapshot) { 5046 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5047 } else { 5048 ufsvfsp->vfs_iotstamp = lbolt; 5049 ub.ub_getras.value.ul++; 5050 (void) bdev_strategy(bp); 5051 lwp_stat_update(LWP_STAT_INBLK, 1); 5052 } 5053 5054 return (io_len); 5055 } 5056 5057 int ufs_delay = 1; 5058 /* 5059 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC} 5060 * 5061 * LMXXX - the inode really ought to contain a pointer to one of these 5062 * async args. Stuff gunk in there and just hand the whole mess off. 5063 * This would replace i_delaylen, i_delayoff. 5064 */ 5065 /*ARGSUSED*/ 5066 static int 5067 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags, 5068 struct cred *cr, caller_context_t *ct) 5069 { 5070 struct inode *ip = VTOI(vp); 5071 int err = 0; 5072 5073 if (vp->v_count == 0) { 5074 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0")); 5075 } 5076 5077 /* 5078 * XXX - Why should this check be made here? 5079 */ 5080 if (vp->v_flag & VNOMAP) { 5081 err = ENOSYS; 5082 goto errout; 5083 } 5084 5085 if (ip->i_ufsvfs == NULL) { 5086 err = EIO; 5087 goto errout; 5088 } 5089 5090 if (flags & B_ASYNC) { 5091 if (ufs_delay && len && 5092 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) { 5093 mutex_enter(&ip->i_tlock); 5094 /* 5095 * If nobody stalled, start a new cluster. 5096 */ 5097 if (ip->i_delaylen == 0) { 5098 ip->i_delayoff = off; 5099 ip->i_delaylen = len; 5100 mutex_exit(&ip->i_tlock); 5101 goto errout; 5102 } 5103 /* 5104 * If we have a full cluster or they are not contig, 5105 * then push last cluster and start over. 5106 */ 5107 if (ip->i_delaylen >= CLUSTSZ(ip) || 5108 ip->i_delayoff + ip->i_delaylen != off) { 5109 u_offset_t doff; 5110 size_t dlen; 5111 5112 doff = ip->i_delayoff; 5113 dlen = ip->i_delaylen; 5114 ip->i_delayoff = off; 5115 ip->i_delaylen = len; 5116 mutex_exit(&ip->i_tlock); 5117 err = ufs_putpages(vp, doff, dlen, 5118 flags, cr); 5119 /* LMXXX - flags are new val, not old */ 5120 goto errout; 5121 } 5122 /* 5123 * There is something there, it's not full, and 5124 * it is contig. 5125 */ 5126 ip->i_delaylen += len; 5127 mutex_exit(&ip->i_tlock); 5128 goto errout; 5129 } 5130 /* 5131 * Must have weird flags or we are not clustering. 5132 */ 5133 } 5134 5135 err = ufs_putpages(vp, off, len, flags, cr); 5136 5137 errout: 5138 return (err); 5139 } 5140 5141 /* 5142 * If len == 0, do from off to EOF. 5143 * 5144 * The normal cases should be len == 0 & off == 0 (entire vp list), 5145 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 5146 * (from pageout). 5147 */ 5148 /*ARGSUSED*/ 5149 static int 5150 ufs_putpages( 5151 struct vnode *vp, 5152 offset_t off, 5153 size_t len, 5154 int flags, 5155 struct cred *cr) 5156 { 5157 u_offset_t io_off; 5158 u_offset_t eoff; 5159 struct inode *ip = VTOI(vp); 5160 page_t *pp; 5161 size_t io_len; 5162 int err = 0; 5163 int dolock; 5164 5165 if (vp->v_count == 0) 5166 return (ufs_fault(vp, "ufs_putpages: v_count == 0")); 5167 /* 5168 * Acquire the readers/write inode lock before locking 5169 * any pages in this inode. 5170 * The inode lock is held during i/o. 5171 */ 5172 if (len == 0) { 5173 mutex_enter(&ip->i_tlock); 5174 ip->i_delayoff = ip->i_delaylen = 0; 5175 mutex_exit(&ip->i_tlock); 5176 } 5177 dolock = (rw_owner(&ip->i_contents) != curthread); 5178 if (dolock) { 5179 /* 5180 * Must synchronize this thread and any possible thread 5181 * operating in the window of vulnerability in wrip(). 5182 * It is dangerous to allow both a thread doing a putpage 5183 * and a thread writing, so serialize them. The exception 5184 * is when the thread in wrip() does something which causes 5185 * a putpage operation. Then, the thread must be allowed 5186 * to continue. It may encounter a bmap_read problem in 5187 * ufs_putapage, but that is handled in ufs_putapage. 5188 * Allow async writers to proceed, we don't want to block 5189 * the pageout daemon. 5190 */ 5191 if (ip->i_writer == curthread) 5192 rw_enter(&ip->i_contents, RW_READER); 5193 else { 5194 for (;;) { 5195 rw_enter(&ip->i_contents, RW_READER); 5196 mutex_enter(&ip->i_tlock); 5197 /* 5198 * If there is no thread in the critical 5199 * section of wrip(), then proceed. 5200 * Otherwise, wait until there isn't one. 5201 */ 5202 if (ip->i_writer == NULL) { 5203 mutex_exit(&ip->i_tlock); 5204 break; 5205 } 5206 rw_exit(&ip->i_contents); 5207 /* 5208 * Bounce async writers when we have a writer 5209 * working on this file so we don't deadlock 5210 * the pageout daemon. 5211 */ 5212 if (flags & B_ASYNC) { 5213 mutex_exit(&ip->i_tlock); 5214 return (0); 5215 } 5216 cv_wait(&ip->i_wrcv, &ip->i_tlock); 5217 mutex_exit(&ip->i_tlock); 5218 } 5219 } 5220 } 5221 5222 if (!vn_has_cached_data(vp)) { 5223 if (dolock) 5224 rw_exit(&ip->i_contents); 5225 return (0); 5226 } 5227 5228 if (len == 0) { 5229 /* 5230 * Search the entire vp list for pages >= off. 5231 */ 5232 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage, 5233 flags, cr); 5234 } else { 5235 /* 5236 * Loop over all offsets in the range looking for 5237 * pages to deal with. 5238 */ 5239 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0) 5240 eoff = MIN(off + len, eoff); 5241 else 5242 eoff = off + len; 5243 5244 for (io_off = off; io_off < eoff; io_off += io_len) { 5245 /* 5246 * If we are not invalidating, synchronously 5247 * freeing or writing pages, use the routine 5248 * page_lookup_nowait() to prevent reclaiming 5249 * them from the free list. 5250 */ 5251 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 5252 pp = page_lookup(vp, io_off, 5253 (flags & (B_INVAL | B_FREE)) ? 5254 SE_EXCL : SE_SHARED); 5255 } else { 5256 pp = page_lookup_nowait(vp, io_off, 5257 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 5258 } 5259 5260 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 5261 io_len = PAGESIZE; 5262 else { 5263 u_offset_t *io_offp = &io_off; 5264 5265 err = ufs_putapage(vp, pp, io_offp, &io_len, 5266 flags, cr); 5267 if (err != 0) 5268 break; 5269 /* 5270 * "io_off" and "io_len" are returned as 5271 * the range of pages we actually wrote. 5272 * This allows us to skip ahead more quickly 5273 * since several pages may've been dealt 5274 * with by this iteration of the loop. 5275 */ 5276 } 5277 } 5278 } 5279 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) { 5280 /* 5281 * We have just sync'ed back all the pages on 5282 * the inode, turn off the IMODTIME flag. 5283 */ 5284 mutex_enter(&ip->i_tlock); 5285 ip->i_flag &= ~IMODTIME; 5286 mutex_exit(&ip->i_tlock); 5287 } 5288 if (dolock) 5289 rw_exit(&ip->i_contents); 5290 return (err); 5291 } 5292 5293 static void 5294 ufs_iodone(buf_t *bp) 5295 { 5296 struct inode *ip; 5297 5298 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ)); 5299 5300 bp->b_iodone = NULL; 5301 5302 ip = VTOI(bp->b_pages->p_vnode); 5303 5304 mutex_enter(&ip->i_tlock); 5305 if (ip->i_writes >= ufs_LW) { 5306 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW) 5307 if (ufs_WRITES) 5308 cv_broadcast(&ip->i_wrcv); /* wake all up */ 5309 } else { 5310 ip->i_writes -= bp->b_bcount; 5311 } 5312 5313 mutex_exit(&ip->i_tlock); 5314 iodone(bp); 5315 } 5316 5317 /* 5318 * Write out a single page, possibly klustering adjacent 5319 * dirty pages. The inode lock must be held. 5320 * 5321 * LMXXX - bsize < pagesize not done. 5322 */ 5323 /*ARGSUSED*/ 5324 int 5325 ufs_putapage( 5326 struct vnode *vp, 5327 page_t *pp, 5328 u_offset_t *offp, 5329 size_t *lenp, /* return values */ 5330 int flags, 5331 struct cred *cr) 5332 { 5333 u_offset_t io_off; 5334 u_offset_t off; 5335 struct inode *ip = VTOI(vp); 5336 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 5337 struct fs *fs; 5338 struct buf *bp; 5339 size_t io_len; 5340 daddr_t bn; 5341 int err; 5342 int contig; 5343 int dotrans; 5344 5345 ASSERT(RW_LOCK_HELD(&ip->i_contents)); 5346 5347 if (ufsvfsp == NULL) { 5348 err = EIO; 5349 goto out_trace; 5350 } 5351 5352 fs = ip->i_fs; 5353 ASSERT(fs->fs_ronly == 0); 5354 5355 /* 5356 * If the modified time on the inode has not already been 5357 * set elsewhere (e.g. for write/setattr) we set the time now. 5358 * This gives us approximate modified times for mmap'ed files 5359 * which are modified via stores in the user address space. 5360 */ 5361 if ((ip->i_flag & IMODTIME) == 0) { 5362 mutex_enter(&ip->i_tlock); 5363 ip->i_flag |= IUPD; 5364 ip->i_seq++; 5365 ITIMES_NOLOCK(ip); 5366 mutex_exit(&ip->i_tlock); 5367 } 5368 5369 /* 5370 * Align the request to a block boundry (for old file systems), 5371 * and go ask bmap() how contiguous things are for this file. 5372 */ 5373 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */ 5374 contig = 0; 5375 err = bmap_read(ip, off, &bn, &contig); 5376 if (err) 5377 goto out; 5378 if (bn == UFS_HOLE) { /* putpage never allocates */ 5379 /* 5380 * logging device is in error mode; simply return EIO 5381 */ 5382 if (TRANS_ISERROR(ufsvfsp)) { 5383 err = EIO; 5384 goto out; 5385 } 5386 /* 5387 * Oops, the thread in the window in wrip() did some 5388 * sort of operation which caused a putpage in the bad 5389 * range. In this case, just return an error which will 5390 * cause the software modified bit on the page to set 5391 * and the page will get written out again later. 5392 */ 5393 if (ip->i_writer == curthread) { 5394 err = EIO; 5395 goto out; 5396 } 5397 /* 5398 * If the pager is trying to push a page in the bad range 5399 * just tell him to try again later when things are better. 5400 */ 5401 if (flags & B_ASYNC) { 5402 err = EAGAIN; 5403 goto out; 5404 } 5405 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE"); 5406 goto out; 5407 } 5408 5409 /* 5410 * If it is an fallocate'd block, reverse the negativity since 5411 * we are now writing to it 5412 */ 5413 if (ISFALLOCBLK(ip, bn)) { 5414 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn)); 5415 if (err) 5416 goto out; 5417 5418 bn = -bn; 5419 } 5420 5421 /* 5422 * Take the length (of contiguous bytes) passed back from bmap() 5423 * and _try_ and get a set of pages covering that extent. 5424 */ 5425 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags); 5426 5427 /* 5428 * May have run out of memory and not clustered backwards. 5429 * off p_offset 5430 * [ pp - 1 ][ pp ] 5431 * [ block ] 5432 * We told bmap off, so we have to adjust the bn accordingly. 5433 */ 5434 if (io_off > off) { 5435 bn += btod(io_off - off); 5436 contig -= (io_off - off); 5437 } 5438 5439 /* 5440 * bmap was carefull to tell us the right size so use that. 5441 * There might be unallocated frags at the end. 5442 * LMXXX - bzero the end of the page? We must be writing after EOF. 5443 */ 5444 if (io_len > contig) { 5445 ASSERT(io_len - contig < fs->fs_bsize); 5446 io_len -= (io_len - contig); 5447 } 5448 5449 /* 5450 * Handle the case where we are writing the last page after EOF. 5451 * 5452 * XXX - just a patch for i-mt3. 5453 */ 5454 if (io_len == 0) { 5455 ASSERT(pp->p_offset >= 5456 (u_offset_t)(roundup(ip->i_size, PAGESIZE))); 5457 io_len = PAGESIZE; 5458 } 5459 5460 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags); 5461 5462 ULOCKFS_SET_MOD(ITOUL(ip)); 5463 5464 bp->b_edev = ip->i_dev; 5465 bp->b_dev = cmpdev(ip->i_dev); 5466 bp->b_blkno = bn; 5467 bp->b_un.b_addr = (caddr_t)0; 5468 bp->b_file = ip->i_vnode; 5469 5470 /* 5471 * File contents of shadow or quota inodes are metadata, and updates 5472 * to these need to be put into a logging transaction. All direct 5473 * callers in UFS do that, but fsflush can come here _before_ the 5474 * normal codepath. An example would be updating ACL information, for 5475 * which the normal codepath would be: 5476 * ufs_si_store() 5477 * ufs_rdwri() 5478 * wrip() 5479 * segmap_release() 5480 * VOP_PUTPAGE() 5481 * Here, fsflush can pick up the dirty page before segmap_release() 5482 * forces it out. If that happens, there's no transaction. 5483 * We therefore need to test whether a transaction exists, and if not 5484 * create one - for fsflush. 5485 */ 5486 dotrans = 5487 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) && 5488 ((curthread->t_flag & T_DONTBLOCK) == 0) && 5489 (TRANS_ISTRANS(ufsvfsp))); 5490 5491 if (dotrans) { 5492 curthread->t_flag |= T_DONTBLOCK; 5493 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5494 } 5495 if (TRANS_ISTRANS(ufsvfsp)) { 5496 if ((ip->i_mode & IFMT) == IFSHAD) { 5497 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD); 5498 } else if (ufsvfsp->vfs_qinod == ip) { 5499 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR, 5500 0, 0); 5501 } 5502 } 5503 if (dotrans) { 5504 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip)); 5505 curthread->t_flag &= ~T_DONTBLOCK; 5506 } 5507 5508 /* write throttle */ 5509 5510 ASSERT(bp->b_iodone == NULL); 5511 bp->b_iodone = (int (*)())ufs_iodone; 5512 mutex_enter(&ip->i_tlock); 5513 ip->i_writes += bp->b_bcount; 5514 mutex_exit(&ip->i_tlock); 5515 5516 if (bp->b_flags & B_ASYNC) { 5517 if (ufsvfsp->vfs_log) { 5518 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5519 } else if (ufsvfsp->vfs_snapshot) { 5520 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5521 } else { 5522 ufsvfsp->vfs_iotstamp = lbolt; 5523 ub.ub_putasyncs.value.ul++; 5524 (void) bdev_strategy(bp); 5525 lwp_stat_update(LWP_STAT_OUBLK, 1); 5526 } 5527 } else { 5528 if (ufsvfsp->vfs_log) { 5529 lufs_write_strategy(ufsvfsp->vfs_log, bp); 5530 } else if (ufsvfsp->vfs_snapshot) { 5531 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp); 5532 } else { 5533 ufsvfsp->vfs_iotstamp = lbolt; 5534 ub.ub_putsyncs.value.ul++; 5535 (void) bdev_strategy(bp); 5536 lwp_stat_update(LWP_STAT_OUBLK, 1); 5537 } 5538 err = biowait(bp); 5539 pageio_done(bp); 5540 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 5541 } 5542 5543 pp = NULL; 5544 5545 out: 5546 if (err != 0 && pp != NULL) 5547 pvn_write_done(pp, B_ERROR | B_WRITE | flags); 5548 5549 if (offp) 5550 *offp = io_off; 5551 if (lenp) 5552 *lenp = io_len; 5553 out_trace: 5554 return (err); 5555 } 5556 5557 uint64_t ufs_map_alock_retry_cnt; 5558 uint64_t ufs_map_lockfs_retry_cnt; 5559 5560 /* ARGSUSED */ 5561 static int 5562 ufs_map(struct vnode *vp, 5563 offset_t off, 5564 struct as *as, 5565 caddr_t *addrp, 5566 size_t len, 5567 uchar_t prot, 5568 uchar_t maxprot, 5569 uint_t flags, 5570 struct cred *cr, 5571 caller_context_t *ct) 5572 { 5573 struct segvn_crargs vn_a; 5574 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5575 struct ulockfs *ulp; 5576 int error, sig; 5577 k_sigset_t smask; 5578 5579 if (vp->v_flag & VNOMAP) { 5580 error = ENOSYS; 5581 goto out; 5582 } 5583 5584 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) { 5585 error = ENXIO; 5586 goto out; 5587 } 5588 5589 if (vp->v_type != VREG) { 5590 error = ENODEV; 5591 goto out; 5592 } 5593 5594 retry_map: 5595 /* 5596 * If file is being locked, disallow mapping. 5597 */ 5598 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) { 5599 error = EAGAIN; 5600 goto out; 5601 } 5602 5603 as_rangelock(as); 5604 if ((flags & MAP_FIXED) == 0) { 5605 map_addr(addrp, len, off, 1, flags); 5606 if (*addrp == NULL) { 5607 as_rangeunlock(as); 5608 error = ENOMEM; 5609 goto out; 5610 } 5611 } else { 5612 /* 5613 * User specified address - blow away any previous mappings. 5614 * If we are retrying (because ufs_lockfs_trybegin failed in 5615 * the previous attempt), some other thread could have grabbed 5616 * the same VA range. In that case, we would unmap the valid 5617 * VA range, that is ok. 5618 */ 5619 (void) as_unmap(as, *addrp, len); 5620 } 5621 5622 /* 5623 * a_lock has to be acquired before entering the lockfs protocol 5624 * because that is the order in which pagefault works. Also we cannot 5625 * block on a_lock here because this waiting writer will prevent 5626 * further readers like ufs_read from progressing and could cause 5627 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is 5628 * pending. 5629 */ 5630 while (!AS_LOCK_TRYENTER(as, &as->a_lock, RW_WRITER)) { 5631 ufs_map_alock_retry_cnt++; 5632 delay(RETRY_LOCK_DELAY); 5633 } 5634 5635 /* 5636 * We can't hold as->a_lock and wait for lockfs to succeed because 5637 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin() 5638 * instead. 5639 */ 5640 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) { 5641 /* 5642 * ufs_lockfs_trybegin() did not succeed. It is safer to give up 5643 * as->a_lock and wait for ulp->ul_fs_lock status to change. 5644 */ 5645 ufs_map_lockfs_retry_cnt++; 5646 AS_LOCK_EXIT(as, &as->a_lock); 5647 as_rangeunlock(as); 5648 if (error == EIO) 5649 goto out; 5650 5651 mutex_enter(&ulp->ul_lock); 5652 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) { 5653 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) { 5654 cv_wait(&ulp->ul_cv, &ulp->ul_lock); 5655 } else { 5656 sigintr(&smask, 1); 5657 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock); 5658 sigunintr(&smask); 5659 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) && 5660 !sig) || ufsvfsp->vfs_dontblock) { 5661 mutex_exit(&ulp->ul_lock); 5662 return (EINTR); 5663 } 5664 } 5665 } 5666 mutex_exit(&ulp->ul_lock); 5667 goto retry_map; 5668 } 5669 5670 vn_a.vp = vp; 5671 vn_a.offset = (u_offset_t)off; 5672 vn_a.type = flags & MAP_TYPE; 5673 vn_a.prot = prot; 5674 vn_a.maxprot = maxprot; 5675 vn_a.cred = cr; 5676 vn_a.amp = NULL; 5677 vn_a.flags = flags & ~MAP_TYPE; 5678 vn_a.szc = 0; 5679 vn_a.lgrp_mem_policy_flags = 0; 5680 5681 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a); 5682 if (ulp) 5683 ufs_lockfs_end(ulp); 5684 as_rangeunlock(as); 5685 out: 5686 return (error); 5687 } 5688 5689 /* ARGSUSED */ 5690 static int 5691 ufs_addmap(struct vnode *vp, 5692 offset_t off, 5693 struct as *as, 5694 caddr_t addr, 5695 size_t len, 5696 uchar_t prot, 5697 uchar_t maxprot, 5698 uint_t flags, 5699 struct cred *cr, 5700 caller_context_t *ct) 5701 { 5702 struct inode *ip = VTOI(vp); 5703 5704 if (vp->v_flag & VNOMAP) { 5705 return (ENOSYS); 5706 } 5707 5708 mutex_enter(&ip->i_tlock); 5709 ip->i_mapcnt += btopr(len); 5710 mutex_exit(&ip->i_tlock); 5711 return (0); 5712 } 5713 5714 /*ARGSUSED*/ 5715 static int 5716 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr, 5717 size_t len, uint_t prot, uint_t maxprot, uint_t flags, 5718 struct cred *cr, caller_context_t *ct) 5719 { 5720 struct inode *ip = VTOI(vp); 5721 5722 if (vp->v_flag & VNOMAP) { 5723 return (ENOSYS); 5724 } 5725 5726 mutex_enter(&ip->i_tlock); 5727 ip->i_mapcnt -= btopr(len); /* Count released mappings */ 5728 ASSERT(ip->i_mapcnt >= 0); 5729 mutex_exit(&ip->i_tlock); 5730 return (0); 5731 } 5732 /* 5733 * Return the answer requested to poll() for non-device files 5734 */ 5735 struct pollhead ufs_pollhd; 5736 5737 /* ARGSUSED */ 5738 int 5739 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp, 5740 caller_context_t *ct) 5741 { 5742 struct ufsvfs *ufsvfsp; 5743 5744 *revp = 0; 5745 ufsvfsp = VTOI(vp)->i_ufsvfs; 5746 5747 if (!ufsvfsp) { 5748 *revp = POLLHUP; 5749 goto out; 5750 } 5751 5752 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) || 5753 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) { 5754 *revp |= POLLERR; 5755 5756 } else { 5757 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly && 5758 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5759 *revp |= POLLOUT; 5760 5761 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly && 5762 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs)) 5763 *revp |= POLLWRBAND; 5764 5765 if (ev & POLLIN) 5766 *revp |= POLLIN; 5767 5768 if (ev & POLLRDNORM) 5769 *revp |= POLLRDNORM; 5770 5771 if (ev & POLLRDBAND) 5772 *revp |= POLLRDBAND; 5773 } 5774 5775 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP))) 5776 *revp |= POLLPRI; 5777 out: 5778 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL; 5779 5780 return (0); 5781 } 5782 5783 /* ARGSUSED */ 5784 static int 5785 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr, 5786 caller_context_t *ct) 5787 { 5788 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 5789 struct ulockfs *ulp = NULL; 5790 struct inode *sip = NULL; 5791 int error; 5792 struct inode *ip = VTOI(vp); 5793 int issync; 5794 5795 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK); 5796 if (error) 5797 return (error); 5798 5799 switch (cmd) { 5800 /* 5801 * Have to handle _PC_NAME_MAX here, because the normal way 5802 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()] 5803 * results in a lock ordering reversal between 5804 * ufs_lockfs_{begin,end}() and 5805 * ufs_thread_{suspend,continue}(). 5806 * 5807 * Keep in sync with ufs_statvfs(). 5808 */ 5809 case _PC_NAME_MAX: 5810 *valp = MAXNAMLEN; 5811 break; 5812 5813 case _PC_FILESIZEBITS: 5814 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) 5815 *valp = UFS_FILESIZE_BITS; 5816 else 5817 *valp = 32; 5818 break; 5819 5820 case _PC_XATTR_EXISTS: 5821 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 5822 5823 error = 5824 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr); 5825 if (error == 0 && sip != NULL) { 5826 /* Start transaction */ 5827 if (ulp) { 5828 TRANS_BEGIN_CSYNC(ufsvfsp, issync, 5829 TOP_RMDIR, TOP_RMDIR_SIZE); 5830 } 5831 /* 5832 * Is directory empty 5833 */ 5834 rw_enter(&sip->i_rwlock, RW_WRITER); 5835 rw_enter(&sip->i_contents, RW_WRITER); 5836 if (ufs_xattrdirempty(sip, 5837 sip->i_number, CRED())) { 5838 rw_enter(&ip->i_contents, RW_WRITER); 5839 ufs_unhook_shadow(ip, sip); 5840 rw_exit(&ip->i_contents); 5841 5842 *valp = 0; 5843 5844 } else 5845 *valp = 1; 5846 rw_exit(&sip->i_contents); 5847 rw_exit(&sip->i_rwlock); 5848 if (ulp) { 5849 TRANS_END_CSYNC(ufsvfsp, error, issync, 5850 TOP_RMDIR, TOP_RMDIR_SIZE); 5851 } 5852 VN_RELE(ITOV(sip)); 5853 } else if (error == ENOENT) { 5854 *valp = 0; 5855 error = 0; 5856 } 5857 } else { 5858 error = fs_pathconf(vp, cmd, valp, cr, ct); 5859 } 5860 break; 5861 5862 case _PC_ACL_ENABLED: 5863 *valp = _ACL_ACLENT_ENABLED; 5864 break; 5865 5866 case _PC_MIN_HOLE_SIZE: 5867 *valp = (ulong_t)ip->i_fs->fs_bsize; 5868 break; 5869 5870 case _PC_SATTR_ENABLED: 5871 case _PC_SATTR_EXISTS: 5872 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 5873 (vp->v_type == VREG || vp->v_type == VDIR); 5874 break; 5875 5876 default: 5877 error = fs_pathconf(vp, cmd, valp, cr, ct); 5878 } 5879 5880 if (ulp != NULL) { 5881 ufs_lockfs_end(ulp); 5882 } 5883 return (error); 5884 } 5885 5886 int ufs_pageio_writes, ufs_pageio_reads; 5887 5888 /*ARGSUSED*/ 5889 static int 5890 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len, 5891 int flags, struct cred *cr, caller_context_t *ct) 5892 { 5893 struct inode *ip = VTOI(vp); 5894 struct ufsvfs *ufsvfsp; 5895 page_t *npp = NULL, *opp = NULL, *cpp = pp; 5896 struct buf *bp; 5897 daddr_t bn; 5898 size_t done_len = 0, cur_len = 0; 5899 int err = 0; 5900 int contig = 0; 5901 int dolock; 5902 int vmpss = 0; 5903 struct ulockfs *ulp; 5904 5905 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp && 5906 vp->v_mpssdata != NULL) { 5907 vmpss = 1; 5908 } 5909 5910 dolock = (rw_owner(&ip->i_contents) != curthread); 5911 /* 5912 * We need a better check. Ideally, we would use another 5913 * vnodeops so that hlocked and forcibly unmounted file 5914 * systems would return EIO where appropriate and w/o the 5915 * need for these checks. 5916 */ 5917 if ((ufsvfsp = ip->i_ufsvfs) == NULL) 5918 return (EIO); 5919 5920 /* 5921 * For vmpss (pp can be NULL) case respect the quiesce protocol. 5922 * ul_lock must be taken before locking pages so we can't use it here 5923 * if pp is non NULL because segvn already locked pages 5924 * SE_EXCL. Instead we rely on the fact that a forced umount or 5925 * applying a filesystem lock via ufs_fiolfs() will block in the 5926 * implicit call to ufs_flush() until we unlock the pages after the 5927 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend 5928 * above 0 until they are done. We have to be careful not to increment 5929 * ul_vnops_cnt here after forceful unmount hlocks the file system. 5930 * 5931 * If pp is NULL use ul_lock to make sure we don't increment 5932 * ul_vnops_cnt after forceful unmount hlocks the file system. 5933 */ 5934 if (vmpss || pp == NULL) { 5935 ulp = &ufsvfsp->vfs_ulockfs; 5936 if (pp == NULL) 5937 mutex_enter(&ulp->ul_lock); 5938 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) { 5939 if (pp == NULL) { 5940 mutex_exit(&ulp->ul_lock); 5941 } 5942 return (vmpss ? EIO : EINVAL); 5943 } 5944 atomic_add_long(&ulp->ul_vnops_cnt, 1); 5945 if (pp == NULL) 5946 mutex_exit(&ulp->ul_lock); 5947 if (ufs_quiesce_pend) { 5948 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5949 cv_broadcast(&ulp->ul_cv); 5950 return (vmpss ? EIO : EINVAL); 5951 } 5952 } 5953 5954 if (dolock) { 5955 /* 5956 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to 5957 * handle a fault against a segment that maps vnode pages with 5958 * large mappings. Segvn creates pages and holds them locked 5959 * SE_EXCL during VOP_PAGEIO() call. In this case we have to 5960 * use rw_tryenter() to avoid a potential deadlock since in 5961 * lock order i_contents needs to be taken first. 5962 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails. 5963 */ 5964 if (!vmpss) { 5965 rw_enter(&ip->i_contents, RW_READER); 5966 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) { 5967 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5968 cv_broadcast(&ulp->ul_cv); 5969 return (EDEADLK); 5970 } 5971 } 5972 5973 /* 5974 * Return an error to segvn because the pagefault request is beyond 5975 * PAGESIZE rounded EOF. 5976 */ 5977 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) { 5978 if (dolock) 5979 rw_exit(&ip->i_contents); 5980 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5981 cv_broadcast(&ulp->ul_cv); 5982 return (EFAULT); 5983 } 5984 5985 if (pp == NULL) { 5986 if (bmap_has_holes(ip)) { 5987 err = ENOSYS; 5988 } else { 5989 err = EINVAL; 5990 } 5991 if (dolock) 5992 rw_exit(&ip->i_contents); 5993 if (!atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 5994 cv_broadcast(&ulp->ul_cv); 5995 return (err); 5996 } 5997 5998 /* 5999 * Break the io request into chunks, one for each contiguous 6000 * stretch of disk blocks in the target file. 6001 */ 6002 while (done_len < io_len) { 6003 ASSERT(cpp); 6004 contig = 0; 6005 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len), 6006 &bn, &contig)) 6007 break; 6008 6009 if (bn == UFS_HOLE) { /* No holey swapfiles */ 6010 if (vmpss) { 6011 err = EFAULT; 6012 break; 6013 } 6014 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE"); 6015 break; 6016 } 6017 6018 cur_len = MIN(io_len - done_len, contig); 6019 /* 6020 * Zero out a page beyond EOF, when the last block of 6021 * a file is a UFS fragment so that ufs_pageio() can be used 6022 * instead of ufs_getpage() to handle faults against 6023 * segvn segments that use large pages. 6024 */ 6025 page_list_break(&cpp, &npp, btopr(cur_len)); 6026 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) { 6027 size_t xlen = cur_len & PAGEOFFSET; 6028 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen); 6029 } 6030 6031 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags); 6032 ASSERT(bp != NULL); 6033 6034 bp->b_edev = ip->i_dev; 6035 bp->b_dev = cmpdev(ip->i_dev); 6036 bp->b_blkno = bn; 6037 bp->b_un.b_addr = (caddr_t)0; 6038 bp->b_file = ip->i_vnode; 6039 6040 ufsvfsp->vfs_iotstamp = lbolt; 6041 ub.ub_pageios.value.ul++; 6042 if (ufsvfsp->vfs_snapshot) 6043 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp); 6044 else 6045 (void) bdev_strategy(bp); 6046 6047 if (flags & B_READ) 6048 ufs_pageio_reads++; 6049 else 6050 ufs_pageio_writes++; 6051 if (flags & B_READ) 6052 lwp_stat_update(LWP_STAT_INBLK, 1); 6053 else 6054 lwp_stat_update(LWP_STAT_OUBLK, 1); 6055 /* 6056 * If the request is not B_ASYNC, wait for i/o to complete 6057 * and re-assemble the page list to return to the caller. 6058 * If it is B_ASYNC we leave the page list in pieces and 6059 * cleanup() will dispose of them. 6060 */ 6061 if ((flags & B_ASYNC) == 0) { 6062 err = biowait(bp); 6063 pageio_done(bp); 6064 if (err) 6065 break; 6066 page_list_concat(&opp, &cpp); 6067 } 6068 cpp = npp; 6069 npp = NULL; 6070 if (flags & B_READ) 6071 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t); 6072 done_len += cur_len; 6073 } 6074 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len)); 6075 if (err) { 6076 if (flags & B_ASYNC) { 6077 /* Cleanup unprocessed parts of list */ 6078 page_list_concat(&cpp, &npp); 6079 if (flags & B_READ) 6080 pvn_read_done(cpp, B_ERROR); 6081 else 6082 pvn_write_done(cpp, B_ERROR); 6083 } else { 6084 /* Re-assemble list and let caller clean up */ 6085 page_list_concat(&opp, &cpp); 6086 page_list_concat(&opp, &npp); 6087 } 6088 } 6089 6090 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) && 6091 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) { 6092 mutex_enter(&ip->i_tlock); 6093 ip->i_flag |= IACC; 6094 ITIMES_NOLOCK(ip); 6095 mutex_exit(&ip->i_tlock); 6096 } 6097 6098 if (dolock) 6099 rw_exit(&ip->i_contents); 6100 if (vmpss && !atomic_add_long_nv(&ulp->ul_vnops_cnt, -1)) 6101 cv_broadcast(&ulp->ul_cv); 6102 return (err); 6103 } 6104 6105 /* 6106 * Called when the kernel is in a frozen state to dump data 6107 * directly to the device. It uses a private dump data structure, 6108 * set up by dump_ctl, to locate the correct disk block to which to dump. 6109 */ 6110 /*ARGSUSED*/ 6111 static int 6112 ufs_dump(vnode_t *vp, caddr_t addr, int ldbn, int dblks, caller_context_t *ct) 6113 { 6114 u_offset_t file_size; 6115 struct inode *ip = VTOI(vp); 6116 struct fs *fs = ip->i_fs; 6117 daddr_t dbn, lfsbn; 6118 int disk_blks = fs->fs_bsize >> DEV_BSHIFT; 6119 int error = 0; 6120 int ndbs, nfsbs; 6121 6122 /* 6123 * forced unmount case 6124 */ 6125 if (ip->i_ufsvfs == NULL) 6126 return (EIO); 6127 /* 6128 * Validate the inode that it has not been modified since 6129 * the dump structure is allocated. 6130 */ 6131 mutex_enter(&ip->i_tlock); 6132 if ((dump_info == NULL) || 6133 (dump_info->ip != ip) || 6134 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) || 6135 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) { 6136 mutex_exit(&ip->i_tlock); 6137 return (-1); 6138 } 6139 mutex_exit(&ip->i_tlock); 6140 6141 /* 6142 * See that the file has room for this write 6143 */ 6144 UFS_GET_ISIZE(&file_size, ip); 6145 6146 if (ldbtob((offset_t)(ldbn + dblks)) > file_size) 6147 return (ENOSPC); 6148 6149 /* 6150 * Find the physical disk block numbers from the dump 6151 * private data structure directly and write out the data 6152 * in contiguous block lumps 6153 */ 6154 while (dblks > 0 && !error) { 6155 lfsbn = (daddr_t)lblkno(fs, ldbtob((offset_t)ldbn)); 6156 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks; 6157 nfsbs = 1; 6158 ndbs = disk_blks - ldbn % disk_blks; 6159 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn + 6160 nfsbs]) == dbn + ndbs) { 6161 nfsbs++; 6162 ndbs += disk_blks; 6163 } 6164 if (ndbs > dblks) 6165 ndbs = dblks; 6166 error = bdev_dump(ip->i_dev, addr, dbn, ndbs); 6167 addr += ldbtob((offset_t)ndbs); 6168 dblks -= ndbs; 6169 ldbn += ndbs; 6170 } 6171 return (error); 6172 6173 } 6174 6175 /* 6176 * Prepare the file system before and after the dump operation. 6177 * 6178 * action = DUMP_ALLOC: 6179 * Preparation before dump, allocate dump private data structure 6180 * to hold all the direct and indirect block info for dump. 6181 * 6182 * action = DUMP_FREE: 6183 * Clean up after dump, deallocate the dump private data structure. 6184 * 6185 * action = DUMP_SCAN: 6186 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space; 6187 * if found, the starting file-relative DEV_BSIZE lbn is written 6188 * to *bklp; that lbn is intended for use with VOP_DUMP() 6189 */ 6190 /*ARGSUSED*/ 6191 static int 6192 ufs_dumpctl(vnode_t *vp, int action, int *blkp, caller_context_t *ct) 6193 { 6194 struct inode *ip = VTOI(vp); 6195 ufsvfs_t *ufsvfsp = ip->i_ufsvfs; 6196 struct fs *fs; 6197 daddr32_t *dblk, *storeblk; 6198 daddr32_t *nextblk, *endblk; 6199 struct buf *bp; 6200 int i, entry, entries; 6201 int n, ncontig; 6202 6203 /* 6204 * check for forced unmount 6205 */ 6206 if (ufsvfsp == NULL) 6207 return (EIO); 6208 6209 if (action == DUMP_ALLOC) { 6210 /* 6211 * alloc and record dump_info 6212 */ 6213 if (dump_info != NULL) 6214 return (EINVAL); 6215 6216 ASSERT(vp->v_type == VREG); 6217 fs = ufsvfsp->vfs_fs; 6218 6219 rw_enter(&ip->i_contents, RW_READER); 6220 6221 if (bmap_has_holes(ip)) { 6222 rw_exit(&ip->i_contents); 6223 return (EFAULT); 6224 } 6225 6226 /* 6227 * calculate and allocate space needed according to i_size 6228 */ 6229 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size)); 6230 dump_info = kmem_alloc(sizeof (struct dump) + 6231 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP); 6232 if (dump_info == NULL) { 6233 rw_exit(&ip->i_contents); 6234 return (ENOMEM); 6235 } 6236 6237 /* Start saving the info */ 6238 dump_info->fsbs = entries; 6239 dump_info->ip = ip; 6240 storeblk = &dump_info->dblk[0]; 6241 6242 /* Direct Blocks */ 6243 for (entry = 0; entry < NDADDR && entry < entries; entry++) 6244 *storeblk++ = ip->i_db[entry]; 6245 6246 /* Indirect Blocks */ 6247 for (i = 0; i < NIADDR; i++) { 6248 int error = 0; 6249 6250 bp = UFS_BREAD(ufsvfsp, 6251 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize); 6252 if (bp->b_flags & B_ERROR) 6253 error = EIO; 6254 else { 6255 dblk = bp->b_un.b_daddr; 6256 if ((storeblk = save_dblks(ip, ufsvfsp, 6257 storeblk, dblk, i, entries)) == NULL) 6258 error = EIO; 6259 } 6260 6261 brelse(bp); 6262 6263 if (error != 0) { 6264 kmem_free(dump_info, sizeof (struct dump) + 6265 (entries - 1) * sizeof (daddr32_t)); 6266 rw_exit(&ip->i_contents); 6267 dump_info = NULL; 6268 return (error); 6269 } 6270 } 6271 /* and time stamp the information */ 6272 mutex_enter(&ip->i_tlock); 6273 dump_info->time = ip->i_mtime; 6274 mutex_exit(&ip->i_tlock); 6275 6276 rw_exit(&ip->i_contents); 6277 } else if (action == DUMP_FREE) { 6278 /* 6279 * free dump_info 6280 */ 6281 if (dump_info == NULL) 6282 return (EINVAL); 6283 entries = dump_info->fsbs - 1; 6284 kmem_free(dump_info, sizeof (struct dump) + 6285 entries * sizeof (daddr32_t)); 6286 dump_info = NULL; 6287 } else if (action == DUMP_SCAN) { 6288 /* 6289 * scan dump_info 6290 */ 6291 if (dump_info == NULL) 6292 return (EINVAL); 6293 6294 dblk = dump_info->dblk; 6295 nextblk = dblk + 1; 6296 endblk = dblk + dump_info->fsbs - 1; 6297 fs = ufsvfsp->vfs_fs; 6298 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT); 6299 6300 /* 6301 * scan dblk[] entries; contig fs space is found when: 6302 * ((current blkno + frags per block) == next blkno) 6303 */ 6304 n = 0; 6305 while (n < ncontig && dblk < endblk) { 6306 if ((*dblk + fs->fs_frag) == *nextblk) 6307 n++; 6308 else 6309 n = 0; 6310 dblk++; 6311 nextblk++; 6312 } 6313 6314 /* 6315 * index is where size bytes of contig space begins; 6316 * conversion from index to the file's DEV_BSIZE lbn 6317 * is equivalent to: (index * fs_bsize) / DEV_BSIZE 6318 */ 6319 if (n == ncontig) { 6320 i = (dblk - dump_info->dblk) - ncontig; 6321 *blkp = i << (fs->fs_bshift - DEV_BSHIFT); 6322 } else 6323 return (EFAULT); 6324 } 6325 return (0); 6326 } 6327 6328 /* 6329 * Recursive helper function for ufs_dumpctl(). It follows the indirect file 6330 * system blocks until it reaches the the disk block addresses, which are 6331 * then stored into the given buffer, storeblk. 6332 */ 6333 static daddr32_t * 6334 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk, 6335 daddr32_t *dblk, int level, int entries) 6336 { 6337 struct fs *fs = ufsvfsp->vfs_fs; 6338 struct buf *bp; 6339 int i; 6340 6341 if (level == 0) { 6342 for (i = 0; i < NINDIR(fs); i++) { 6343 if (storeblk - dump_info->dblk >= entries) 6344 break; 6345 *storeblk++ = dblk[i]; 6346 } 6347 return (storeblk); 6348 } 6349 for (i = 0; i < NINDIR(fs); i++) { 6350 if (storeblk - dump_info->dblk >= entries) 6351 break; 6352 bp = UFS_BREAD(ufsvfsp, 6353 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize); 6354 if (bp->b_flags & B_ERROR) { 6355 brelse(bp); 6356 return (NULL); 6357 } 6358 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr, 6359 level - 1, entries); 6360 brelse(bp); 6361 6362 if (storeblk == NULL) 6363 return (NULL); 6364 } 6365 return (storeblk); 6366 } 6367 6368 /* ARGSUSED */ 6369 static int 6370 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, 6371 struct cred *cr, caller_context_t *ct) 6372 { 6373 struct inode *ip = VTOI(vp); 6374 struct ulockfs *ulp; 6375 struct ufsvfs *ufsvfsp = ip->i_ufsvfs; 6376 ulong_t vsa_mask = vsap->vsa_mask; 6377 int err = EINVAL; 6378 6379 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6380 6381 /* 6382 * Only grab locks if needed - they're not needed to check vsa_mask 6383 * or if the mask contains no acl flags. 6384 */ 6385 if (vsa_mask != 0) { 6386 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, 6387 ULOCKFS_GETATTR_MASK)) 6388 return (err); 6389 6390 rw_enter(&ip->i_contents, RW_READER); 6391 err = ufs_acl_get(ip, vsap, flag, cr); 6392 rw_exit(&ip->i_contents); 6393 6394 if (ulp) 6395 ufs_lockfs_end(ulp); 6396 } 6397 return (err); 6398 } 6399 6400 /* ARGSUSED */ 6401 static int 6402 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr, 6403 caller_context_t *ct) 6404 { 6405 struct inode *ip = VTOI(vp); 6406 struct ulockfs *ulp = NULL; 6407 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs; 6408 ulong_t vsa_mask = vsap->vsa_mask; 6409 int err; 6410 int haverwlock = 1; 6411 int trans_size; 6412 int donetrans = 0; 6413 int retry = 1; 6414 6415 ASSERT(RW_LOCK_HELD(&ip->i_rwlock)); 6416 6417 /* Abort now if the request is either empty or invalid. */ 6418 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT); 6419 if ((vsa_mask == 0) || 6420 ((vsap->vsa_aclentp == NULL) && 6421 (vsap->vsa_dfaclentp == NULL))) { 6422 err = EINVAL; 6423 goto out; 6424 } 6425 6426 /* 6427 * Following convention, if this is a directory then we acquire the 6428 * inode's i_rwlock after starting a UFS logging transaction; 6429 * otherwise, we acquire it beforehand. Since we were called (and 6430 * must therefore return) with the lock held, we will have to drop it, 6431 * and later reacquire it, if operating on a directory. 6432 */ 6433 if (vp->v_type == VDIR) { 6434 rw_exit(&ip->i_rwlock); 6435 haverwlock = 0; 6436 } else { 6437 /* Upgrade the lock if required. */ 6438 if (!rw_write_held(&ip->i_rwlock)) { 6439 rw_exit(&ip->i_rwlock); 6440 rw_enter(&ip->i_rwlock, RW_WRITER); 6441 } 6442 } 6443 6444 again: 6445 ASSERT(!(vp->v_type == VDIR && haverwlock)); 6446 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) { 6447 ulp = NULL; 6448 retry = 0; 6449 goto out; 6450 } 6451 6452 /* 6453 * Check that the file system supports this operation. Note that 6454 * ufs_lockfs_begin() will have checked that the file system had 6455 * not been forcibly unmounted. 6456 */ 6457 if (ufsvfsp->vfs_fs->fs_ronly) { 6458 err = EROFS; 6459 goto out; 6460 } 6461 if (ufsvfsp->vfs_nosetsec) { 6462 err = ENOSYS; 6463 goto out; 6464 } 6465 6466 if (ulp) { 6467 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR, 6468 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp))); 6469 donetrans = 1; 6470 } 6471 6472 if (vp->v_type == VDIR) { 6473 rw_enter(&ip->i_rwlock, RW_WRITER); 6474 haverwlock = 1; 6475 } 6476 6477 ASSERT(haverwlock); 6478 6479 /* Do the actual work. */ 6480 rw_enter(&ip->i_contents, RW_WRITER); 6481 /* 6482 * Suppress out of inodes messages if we will retry. 6483 */ 6484 if (retry) 6485 ip->i_flag |= IQUIET; 6486 err = ufs_acl_set(ip, vsap, flag, cr); 6487 ip->i_flag &= ~IQUIET; 6488 rw_exit(&ip->i_contents); 6489 6490 out: 6491 if (ulp) { 6492 if (donetrans) { 6493 /* 6494 * top_end_async() can eventually call 6495 * top_end_sync(), which can block. We must 6496 * therefore observe the lock-ordering protocol 6497 * here as well. 6498 */ 6499 if (vp->v_type == VDIR) { 6500 rw_exit(&ip->i_rwlock); 6501 haverwlock = 0; 6502 } 6503 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size); 6504 } 6505 ufs_lockfs_end(ulp); 6506 } 6507 /* 6508 * If no inodes available, try scaring a logically- 6509 * free one out of the delete queue to someplace 6510 * that we can find it. 6511 */ 6512 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) { 6513 ufs_delete_drain_wait(ufsvfsp, 1); 6514 retry = 0; 6515 if (vp->v_type == VDIR && haverwlock) { 6516 rw_exit(&ip->i_rwlock); 6517 haverwlock = 0; 6518 } 6519 goto again; 6520 } 6521 /* 6522 * If we need to reacquire the lock then it is safe to do so 6523 * as a reader. This is because ufs_rwunlock(), which will be 6524 * called by our caller after we return, does not differentiate 6525 * between shared and exclusive locks. 6526 */ 6527 if (!haverwlock) { 6528 ASSERT(vp->v_type == VDIR); 6529 rw_enter(&ip->i_rwlock, RW_READER); 6530 } 6531 6532 return (err); 6533 } 6534