1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 /* 31 * University Copyright- Copyright (c) 1982, 1986, 1988 32 * The Regents of the University of California 33 * All Rights Reserved 34 * 35 * University Acknowledgment- Portions of this document are derived from 36 * software developed by the University of California, Berkeley, and its 37 * contributors. 38 */ 39 40 41 #pragma ident "%Z%%M% %I% %E% SMI" 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/sysmacros.h> 49 #include <sys/kmem.h> 50 #include <sys/signal.h> 51 #include <sys/user.h> 52 #include <sys/proc.h> 53 #include <sys/disp.h> 54 #include <sys/buf.h> 55 #include <sys/pathname.h> 56 #include <sys/vfs.h> 57 #include <sys/vnode.h> 58 #include <sys/file.h> 59 #include <sys/uio.h> 60 #include <sys/dkio.h> 61 #include <sys/cred.h> 62 #include <sys/conf.h> 63 #include <sys/dnlc.h> 64 #include <sys/kstat.h> 65 #include <sys/acl.h> 66 #include <sys/fs/ufs_fsdir.h> 67 #include <sys/fs/ufs_fs.h> 68 #include <sys/fs/ufs_inode.h> 69 #include <sys/fs/ufs_mount.h> 70 #include <sys/fs/ufs_acl.h> 71 #include <sys/fs/ufs_panic.h> 72 #include <sys/fs/ufs_bio.h> 73 #include <sys/fs/ufs_quota.h> 74 #include <sys/fs/ufs_log.h> 75 #undef NFS 76 #include <sys/statvfs.h> 77 #include <sys/mount.h> 78 #include <sys/mntent.h> 79 #include <sys/swap.h> 80 #include <sys/errno.h> 81 #include <sys/debug.h> 82 #include "fs/fs_subr.h" 83 #include <sys/cmn_err.h> 84 #include <sys/dnlc.h> 85 #include <sys/fssnap_if.h> 86 #include <sys/sunddi.h> 87 #include <sys/bootconf.h> 88 #include <sys/policy.h> 89 #include <sys/zone.h> 90 91 /* 92 * This is the loadable module wrapper. 93 */ 94 #include <sys/modctl.h> 95 96 int ufsfstype; 97 vfsops_t *ufs_vfsops; 98 static int ufsinit(int, char *); 99 static int mountfs(); 100 extern int highbit(); 101 extern struct instats ins; 102 extern struct vnode *common_specvp(struct vnode *vp); 103 extern vfs_t EIO_vfs; 104 105 struct dquot *dquot, *dquotNDQUOT; 106 107 /* 108 * Cylinder group summary information handling tunable. 109 * This defines when these deltas get logged. 110 * If the number of cylinders in the file system is over the 111 * tunable then we log csum updates. Otherwise the updates are only 112 * done for performance on unmount. After a panic they can be 113 * quickly constructed during mounting. See ufs_construct_si() 114 * called from ufs_getsummaryinfo(). 115 * 116 * This performance feature can of course be disabled by setting 117 * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff. 118 */ 119 #define UFS_LOG_NCG_DEFAULT 10000 120 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT; 121 122 /* 123 * ufs_clean_root indicates whether the root fs went down cleanly 124 */ 125 static int ufs_clean_root = 0; 126 127 /* 128 * UFS Mount options table 129 */ 130 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL }; 131 static char *nointr_cancel[] = { MNTOPT_INTR, NULL }; 132 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL }; 133 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL }; 134 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL }; 135 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL }; 136 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL }; 137 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL }; 138 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 139 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 140 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL }; 141 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL }; 142 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL }; 143 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL }; 144 145 static mntopt_t mntopts[] = { 146 /* 147 * option name cancel option default arg flags 148 * ufs arg flag 149 */ 150 { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT, 151 (void *)0 }, 152 { MNTOPT_NOINTR, nointr_cancel, NULL, 0, 153 (void *)UFSMNT_NOINTR }, 154 { MNTOPT_SYNCDIR, NULL, NULL, 0, 155 (void *)UFSMNT_SYNCDIR }, 156 { MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL, 0, 157 (void *)UFSMNT_FORCEDIRECTIO }, 158 { MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0, 159 (void *)UFSMNT_NOFORCEDIRECTIO }, 160 { MNTOPT_NOSETSEC, NULL, NULL, 0, 161 (void *)UFSMNT_NOSETSEC }, 162 { MNTOPT_LARGEFILES, largefiles_cancel, NULL, MO_DEFAULT, 163 (void *)UFSMNT_LARGEFILES }, 164 { MNTOPT_NOLARGEFILES, nolargefiles_cancel, NULL, 0, 165 (void *)0 }, 166 { MNTOPT_LOGGING, logging_cancel, NULL, MO_TAG, 167 (void *)UFSMNT_LOGGING }, 168 { MNTOPT_NOLOGGING, nologging_cancel, NULL, 169 MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 }, 170 { MNTOPT_QUOTA, quota_cancel, NULL, MO_IGNORE, 171 (void *)0 }, 172 { MNTOPT_NOQUOTA, noquota_cancel, NULL, 173 MO_NODISPLAY|MO_DEFAULT, (void *)0 }, 174 { MNTOPT_GLOBAL, NULL, NULL, 0, 175 (void *)0 }, 176 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, 177 (void *)0 }, 178 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, 179 (void *)0 }, 180 { MNTOPT_NOATIME, NULL, NULL, 0, 181 (void *)UFSMNT_NOATIME }, 182 { MNTOPT_DFRATIME, dfratime_cancel, NULL, 0, 183 (void *)0 }, 184 { MNTOPT_NODFRATIME, nodfratime_cancel, NULL, 185 MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME }, 186 { MNTOPT_ONERROR, NULL, UFSMNT_ONERROR_PANIC_STR, 187 MO_DEFAULT|MO_HASVALUE, (void *)0 }, 188 }; 189 190 static mntopts_t ufs_mntopts = { 191 sizeof (mntopts) / sizeof (mntopt_t), 192 mntopts 193 }; 194 195 static vfsdef_t vfw = { 196 VFSDEF_VERSION, 197 "ufs", 198 ufsinit, 199 VSW_HASPROTO|VSW_CANREMOUNT, 200 &ufs_mntopts 201 }; 202 203 /* 204 * Module linkage information for the kernel. 205 */ 206 extern struct mod_ops mod_fsops; 207 208 static struct modlfs modlfs = { 209 &mod_fsops, "filesystem for ufs", &vfw 210 }; 211 212 static struct modlinkage modlinkage = { 213 MODREV_1, (void *)&modlfs, NULL 214 }; 215 216 /* 217 * An attempt has been made to make this module unloadable. In order to 218 * test it, we need a system in which the root fs is NOT ufs. THIS HAS NOT 219 * BEEN DONE 220 */ 221 222 extern kstat_t *ufs_inode_kstat; 223 extern uint_t ufs_lockfs_key; 224 extern void ufs_lockfs_tsd_destructor(void *); 225 extern uint_t bypass_snapshot_throttle_key; 226 227 int 228 _init(void) 229 { 230 /* 231 * Create an index into the per thread array so that any thread doing 232 * VOP will have a lockfs mark on it. 233 */ 234 tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor); 235 tsd_create(&bypass_snapshot_throttle_key, NULL); 236 return (mod_install(&modlinkage)); 237 } 238 239 int 240 _fini(void) 241 { 242 return (EBUSY); 243 } 244 245 int 246 _info(struct modinfo *modinfop) 247 { 248 return (mod_info(&modlinkage, modinfop)); 249 } 250 251 extern struct vnode *makespecvp(dev_t dev, vtype_t type); 252 253 extern kmutex_t ufs_scan_lock; 254 255 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *, 256 struct cred *, int, void *, int); 257 258 259 static int 260 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap, 261 struct cred *cr) 262 263 { 264 char *data = uap->dataptr; 265 int datalen = uap->datalen; 266 dev_t dev; 267 struct vnode *bvp; 268 struct pathname dpn; 269 int error; 270 enum whymountroot why = ROOT_INIT; 271 struct ufs_args args; 272 int oflag, aflag; 273 int fromspace = (uap->flags & MS_SYSSPACE) ? 274 UIO_SYSSPACE : UIO_USERSPACE; 275 276 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 277 return (error); 278 279 if (mvp->v_type != VDIR) 280 return (ENOTDIR); 281 282 mutex_enter(&mvp->v_lock); 283 if ((uap->flags & MS_REMOUNT) == 0 && 284 (uap->flags & MS_OVERLAY) == 0 && 285 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 286 mutex_exit(&mvp->v_lock); 287 return (EBUSY); 288 } 289 mutex_exit(&mvp->v_lock); 290 291 /* 292 * Get arguments 293 */ 294 bzero(&args, sizeof (args)); 295 if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) { 296 int copy_result = 0; 297 298 if (datalen > sizeof (args)) 299 return (EINVAL); 300 if (uap->flags & MS_SYSSPACE) 301 bcopy(data, &args, datalen); 302 else 303 copy_result = copyin(data, &args, datalen); 304 if (copy_result) 305 return (EFAULT); 306 datalen = sizeof (struct ufs_args); 307 } else { 308 datalen = 0; 309 } 310 /* 311 * Read in the mount point pathname 312 * (so we can record the directory the file system was last mounted on). 313 */ 314 if (error = pn_get(uap->dir, fromspace, &dpn)) 315 return (error); 316 317 /* 318 * Resolve path name of special file being mounted. 319 */ 320 if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp)) { 321 pn_free(&dpn); 322 return (error); 323 } 324 if (bvp->v_type != VBLK) { 325 VN_RELE(bvp); 326 pn_free(&dpn); 327 return (ENOTBLK); 328 } 329 dev = bvp->v_rdev; 330 if (getmajor(dev) >= devcnt) { 331 pn_free(&dpn); 332 VN_RELE(bvp); 333 return (ENXIO); 334 } 335 if (uap->flags & MS_REMOUNT) 336 why = ROOT_REMOUNT; 337 338 /* 339 * In SunCluster, requests to a global device are satisfied by 340 * a local device. We substitute the global pxfs node with a 341 * local spec node here. 342 */ 343 if (IS_PXFSVP(bvp)) { 344 VN_RELE(bvp); 345 bvp = makespecvp(dev, VBLK); 346 } 347 348 /* 349 * Open block device mounted on. We need this to 350 * check whether the caller has sufficient rights to 351 * access the device in question. 352 * When bio is fixed for vnodes this can all be vnode 353 * operations. 354 */ 355 if ((vfsp->vfs_flag & VFS_RDONLY) != 0 || 356 (uap->flags & MS_RDONLY) != 0) { 357 oflag = FREAD; 358 aflag = VREAD; 359 } else { 360 oflag = FREAD | FWRITE; 361 aflag = VREAD | VWRITE; 362 } 363 if ((error = VOP_ACCESS(bvp, aflag, 0, cr)) != 0 || 364 (error = secpolicy_spec_open(cr, bvp, oflag)) != 0) { 365 pn_free(&dpn); 366 VN_RELE(bvp); 367 return (error); 368 } 369 370 /* 371 * Ensure that this device isn't already mounted or in progress on a 372 * mount unless this is a REMOUNT request or we are told to suppress 373 * mount checks. Global mounts require special handling. 374 */ 375 if ((uap->flags & MS_NOCHECK) == 0) { 376 if ((uap->flags & MS_GLOBAL) == 0 && 377 vfs_devmounting(dev, vfsp)) { 378 pn_free(&dpn); 379 VN_RELE(bvp); 380 return (EBUSY); 381 } 382 if (vfs_devismounted(dev)) { 383 if ((uap->flags & MS_REMOUNT) == 0) { 384 pn_free(&dpn); 385 VN_RELE(bvp); 386 return (EBUSY); 387 } 388 } 389 } 390 391 /* 392 * If the device is a tape, mount it read only 393 */ 394 if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) { 395 vfsp->vfs_flag |= VFS_RDONLY; 396 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 397 } 398 if (uap->flags & MS_RDONLY) 399 vfsp->vfs_flag |= VFS_RDONLY; 400 401 /* 402 * Mount the filesystem, free the device vnode on error. 403 */ 404 error = mountfs(vfsp, why, bvp, dpn.pn_path, cr, 0, &args, datalen); 405 pn_free(&dpn); 406 if (error) { 407 VN_RELE(bvp); 408 } 409 return (error); 410 } 411 /* 412 * Mount root file system. 413 * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to 414 * remount the root file system, and ROOT_UNMOUNT if called to 415 * unmount the root (e.g., as part of a system shutdown). 416 * 417 * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP 418 * operation, goes along with auto-configuration. A mechanism should be 419 * provided by which machine-INdependent code in the kernel can say "get me the 420 * right root file system" and "get me the right initial swap area", and have 421 * that done in what may well be a machine-dependent fashion. 422 * Unfortunately, it is also file-system-type dependent (NFS gets it via 423 * bootparams calls, UFS gets it from various and sundry machine-dependent 424 * mechanisms, as SPECFS does for swap). 425 */ 426 static int 427 ufs_mountroot(struct vfs *vfsp, enum whymountroot why) 428 { 429 struct fs *fsp; 430 int error; 431 static int ufsrootdone = 0; 432 dev_t rootdev; 433 struct vnode *vp; 434 struct vnode *devvp = 0; 435 int ovflags; 436 int doclkset; 437 ufsvfs_t *ufsvfsp; 438 439 if (why == ROOT_INIT) { 440 if (ufsrootdone++) 441 return (EBUSY); 442 rootdev = getrootdev(); 443 if (rootdev == (dev_t)NODEV) 444 return (ENODEV); 445 vfsp->vfs_dev = rootdev; 446 vfsp->vfs_flag |= VFS_RDONLY; 447 } else if (why == ROOT_REMOUNT) { 448 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 449 (void) dnlc_purge_vfsp(vfsp, 0); 450 vp = common_specvp(vp); 451 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL, CRED()); 452 (void) bfinval(vfsp->vfs_dev, 0); 453 fsp = getfs(vfsp); 454 455 ovflags = vfsp->vfs_flag; 456 vfsp->vfs_flag &= ~VFS_RDONLY; 457 vfsp->vfs_flag |= VFS_REMOUNT; 458 rootdev = vfsp->vfs_dev; 459 } else if (why == ROOT_UNMOUNT) { 460 if (vfs_lock(vfsp) == 0) { 461 (void) ufs_flush(vfsp); 462 /* 463 * Mark the log as fully rolled 464 */ 465 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 466 fsp = ufsvfsp->vfs_fs; 467 if (TRANS_ISTRANS(ufsvfsp) && 468 !TRANS_ISERROR(ufsvfsp) && 469 (fsp->fs_rolled == FS_NEED_ROLL)) { 470 ml_unit_t *ul = ufsvfsp->vfs_log; 471 472 error = ufs_putsummaryinfo(ul->un_dev, 473 ufsvfsp, fsp); 474 if (error == 0) { 475 fsp->fs_rolled = FS_ALL_ROLLED; 476 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 477 } 478 } 479 vfs_unlock(vfsp); 480 } else { 481 ufs_update(0); 482 } 483 484 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp; 485 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1, 486 (offset_t)0, CRED()); 487 return (0); 488 } 489 error = vfs_lock(vfsp); 490 if (error) 491 return (error); 492 493 devvp = makespecvp(rootdev, VBLK); 494 495 /* If RO media, don't call clkset() (see below) */ 496 doclkset = 1; 497 if (why == ROOT_INIT) { 498 error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED()); 499 if (error == 0) { 500 (void) VOP_CLOSE(devvp, FREAD|FWRITE, 1, 501 (offset_t)0, CRED()); 502 } else { 503 doclkset = 0; 504 } 505 } 506 507 error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0); 508 /* 509 * XXX - assumes root device is not indirect, because we don't set 510 * rootvp. Is rootvp used for anything? If so, make another arg 511 * to mountfs. 512 */ 513 if (error) { 514 vfs_unlock(vfsp); 515 if (why == ROOT_REMOUNT) 516 vfsp->vfs_flag = ovflags; 517 if (rootvp) { 518 VN_RELE(rootvp); 519 rootvp = (struct vnode *)0; 520 } 521 VN_RELE(devvp); 522 return (error); 523 } 524 if (why == ROOT_INIT) 525 vfs_add((struct vnode *)0, vfsp, 526 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 527 vfs_unlock(vfsp); 528 fsp = getfs(vfsp); 529 clkset(doclkset ? fsp->fs_time : -1); 530 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data; 531 if (ufsvfsp->vfs_log) { 532 vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0); 533 } 534 return (0); 535 } 536 537 static int 538 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len) 539 { 540 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 541 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 542 struct buf *bp = ufsvfsp->vfs_bufp; 543 struct fs *fsp = (struct fs *)bp->b_un.b_addr; 544 struct fs *fspt; 545 struct buf *tpt = 0; 546 int error = 0; 547 int flags = 0; 548 549 if (args_len == sizeof (struct ufs_args) && raw_argsp) 550 flags = ((struct ufs_args *)raw_argsp)->flags; 551 552 /* cannot remount to RDONLY */ 553 if (vfsp->vfs_flag & VFS_RDONLY) 554 return (EINVAL); 555 556 /* whoops, wrong dev */ 557 if (vfsp->vfs_dev != dev) 558 return (EINVAL); 559 560 /* 561 * synchronize w/ufs ioctls 562 */ 563 mutex_enter(&ulp->ul_lock); 564 565 /* 566 * reset options 567 */ 568 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 569 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 570 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 571 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 572 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 573 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 574 else /* dfratime, default behavior */ 575 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 576 if (flags & UFSMNT_FORCEDIRECTIO) 577 ufsvfsp->vfs_forcedirectio = 1; 578 else /* default is no direct I/O */ 579 ufsvfsp->vfs_forcedirectio = 0; 580 ufsvfsp->vfs_iotstamp = lbolt; 581 582 /* 583 * set largefiles flag in ufsvfs equal to the 584 * value passed in by the mount command. If 585 * it is "nolargefiles", and the flag is set 586 * in the superblock, the mount fails. 587 */ 588 if (!(flags & UFSMNT_LARGEFILES)) { /* "nolargefiles" */ 589 if (fsp->fs_flags & FSLARGEFILES) { 590 error = EFBIG; 591 goto remounterr; 592 } 593 ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES; 594 } else /* "largefiles" */ 595 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 596 /* 597 * read/write to read/write; all done 598 */ 599 if (fsp->fs_ronly == 0) 600 goto remounterr; 601 602 /* 603 * fix-on-panic assumes RO->RW remount implies system-critical fs 604 * if it is shortly after boot; so, don't attempt to lock and fix 605 * (unless the user explicitly asked for another action on error) 606 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC 607 */ 608 #define BOOT_TIME_LIMIT (180*hz) 609 if (!(flags & UFSMNT_ONERROR_FLGMASK) && lbolt < BOOT_TIME_LIMIT) { 610 cmn_err(CE_WARN, "%s is required to be mounted onerror=%s", 611 ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR); 612 flags |= UFSMNT_ONERROR_PANIC; 613 } 614 615 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 616 goto remounterr; 617 618 /* 619 * Lock the file system and flush stuff from memory 620 */ 621 error = ufs_quiesce(ulp); 622 if (error) 623 goto remounterr; 624 625 /* 626 * We don't need to call the expensive ufs_flush when going from 627 * read only to read/write, except if the root fs didn't come 628 * down cleanly. 629 */ 630 if ((ufsvfsp->vfs_devvp == rootvp) && !ufs_clean_root) { 631 error = ufs_flush(vfsp); 632 if (error) { 633 goto remounterr; 634 } 635 } 636 637 tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE); 638 if (tpt->b_flags & B_ERROR) { 639 error = EIO; 640 goto remounterr; 641 } 642 fspt = (struct fs *)tpt->b_un.b_addr; 643 if (((fspt->fs_magic != FS_MAGIC) && 644 (fspt->fs_magic != MTB_UFS_MAGIC)) || 645 (fspt->fs_magic == MTB_UFS_MAGIC && 646 (fspt->fs_version > MTB_UFS_VERSION_1 || 647 fspt->fs_version < MTB_UFS_VERSION_MIN)) || 648 fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG || 649 fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) { 650 tpt->b_flags |= B_STALE | B_AGE; 651 error = EINVAL; 652 goto remounterr; 653 } 654 655 if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) { 656 ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL; 657 logmap_start_roll(ufsvfsp->vfs_log); 658 } 659 660 if (TRANS_ISERROR(ufsvfsp)) 661 goto remounterr; 662 TRANS_DOMATAMAP(ufsvfsp); 663 664 if ((fspt->fs_state + fspt->fs_time == FSOKAY) && 665 fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) { 666 ufsvfsp->vfs_log = NULL; 667 ufsvfsp->vfs_domatamap = 0; 668 error = ENOSPC; 669 goto remounterr; 670 } 671 672 if (fspt->fs_state + fspt->fs_time == FSOKAY && 673 (fspt->fs_clean == FSCLEAN || 674 fspt->fs_clean == FSSTABLE || 675 fspt->fs_clean == FSLOG)) { 676 677 /* 678 * Ensure that ufs_getsummaryinfo doesn't reconstruct 679 * the summary info. 680 */ 681 error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt); 682 if (error) 683 goto remounterr; 684 685 /* preserve mount name */ 686 (void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN); 687 /* free the old cg space */ 688 kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize); 689 /* switch in the new superblock */ 690 fspt->fs_rolled = FS_NEED_ROLL; 691 bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize); 692 693 fsp->fs_clean = FSSTABLE; 694 } /* superblock updated in memory */ 695 tpt->b_flags |= B_STALE | B_AGE; 696 brelse(tpt); 697 tpt = 0; 698 699 if (fsp->fs_clean != FSSTABLE) { 700 error = ENOSPC; 701 goto remounterr; 702 } 703 704 705 if (TRANS_ISTRANS(ufsvfsp)) { 706 fsp->fs_clean = FSLOG; 707 ufsvfsp->vfs_dio = 0; 708 } else 709 if (ufsvfsp->vfs_dio) 710 fsp->fs_clean = FSSUSPEND; 711 712 TRANS_MATA_MOUNT(ufsvfsp); 713 714 fsp->fs_fmod = 0; 715 fsp->fs_ronly = 0; 716 717 cv_broadcast(&ulp->ul_cv); 718 mutex_exit(&ulp->ul_lock); 719 720 if (TRANS_ISTRANS(ufsvfsp)) { 721 722 /* 723 * start the delete thread 724 */ 725 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 726 727 /* 728 * start the reclaim thread 729 */ 730 if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) { 731 fsp->fs_reclaim &= ~FS_RECLAIM; 732 fsp->fs_reclaim |= FS_RECLAIMING; 733 ufs_thread_start(&ufsvfsp->vfs_reclaim, 734 ufs_thread_reclaim, vfsp); 735 } 736 } 737 738 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 739 740 return (0); 741 742 remounterr: 743 if (tpt) 744 brelse(tpt); 745 cv_broadcast(&ulp->ul_cv); 746 mutex_exit(&ulp->ul_lock); 747 return (error); 748 } 749 750 /* 751 * If the device maxtransfer size is not available, we use ufs_maxmaxphys 752 * along with the system value for maxphys to determine the value for 753 * maxtransfer. 754 */ 755 int ufs_maxmaxphys = (1024 * 1024); 756 757 #include <sys/ddi.h> /* for delay(9f) */ 758 759 int ufs_mount_error_delay = 20; /* default to 20ms */ 760 int ufs_mount_timeout = 60; /* default to 1 minute */ 761 762 static int 763 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp, 764 char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len) 765 { 766 dev_t dev = devvp->v_rdev; 767 struct fs *fsp; 768 struct ufsvfs *ufsvfsp = 0; 769 struct buf *bp = 0; 770 struct buf *tp = 0; 771 struct dk_cinfo ci; 772 int error = 0; 773 size_t len; 774 int needclose = 0; 775 int needtrans = 0; 776 struct inode *rip; 777 struct vnode *rvp = NULL; 778 int flags = 0; 779 kmutex_t *ihm; 780 int elapsed; 781 int status; 782 extern int maxphys; 783 784 if (args_len == sizeof (struct ufs_args) && raw_argsp) 785 flags = ((struct ufs_args *)raw_argsp)->flags; 786 787 ASSERT(vfs_lock_held(vfsp)); 788 789 if (why == ROOT_INIT) { 790 /* 791 * Open block device mounted on. 792 * When bio is fixed for vnodes this can all be vnode 793 * operations. 794 */ 795 error = VOP_OPEN(&devvp, 796 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, cr); 797 if (error) 798 goto out; 799 needclose = 1; 800 801 /* 802 * Refuse to go any further if this 803 * device is being used for swapping. 804 */ 805 if (IS_SWAPVP(devvp)) { 806 error = EBUSY; 807 goto out; 808 } 809 } 810 811 /* 812 * check for dev already mounted on 813 */ 814 if (vfsp->vfs_flag & VFS_REMOUNT) { 815 error = remountfs(vfsp, dev, raw_argsp, args_len); 816 if (error == 0) 817 VN_RELE(devvp); 818 return (error); 819 } 820 821 ASSERT(devvp != 0); 822 823 /* 824 * Flush back any dirty pages on the block device to 825 * try and keep the buffer cache in sync with the page 826 * cache if someone is trying to use block devices when 827 * they really should be using the raw device. 828 */ 829 (void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0, 830 (size_t)0, B_INVAL, cr); 831 832 /* 833 * read in superblock 834 */ 835 ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP); 836 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 837 if (tp->b_flags & B_ERROR) 838 goto out; 839 fsp = (struct fs *)tp->b_un.b_addr; 840 #ifdef _LP64 841 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) { 842 if (why == ROOT_INIT) { 843 cmn_err(CE_NOTE, 844 "mount: not a UFS magic number (0x%x)", 845 fsp->fs_magic); 846 } 847 error = EINVAL; 848 goto out; 849 } 850 851 if ((fsp->fs_magic == MTB_UFS_MAGIC) && 852 (fsp->fs_version > MTB_UFS_VERSION_1 || 853 fsp->fs_version < MTB_UFS_VERSION_MIN)) { 854 cmn_err(CE_NOTE, 855 "mount: unrecognized version of UFS on-disk format: %d", 856 fsp->fs_version); 857 error = EINVAL; 858 goto out; 859 } 860 861 #else 862 if (fsp->fs_magic == MTB_UFS_MAGIC) { 863 if (fsp->fs_version > MTB_UFS_VERSION_1 || 864 fsp->fs_version < MTB_UFS_VERSION_MIN) { 865 cmn_err(CE_NOTE, 866 "mount: unrecognized version of UFS" 867 " on-disk format: %d", fsp->fs_version); 868 error = EINVAL; 869 goto out; 870 } 871 872 /* 873 * Find the size of the device in sectors. If the 874 * the size in sectors is greater than INT_MAX, it's 875 * a multi-terabyte file system, which can't be 876 * mounted by a 32-bit kernel. We can't use the 877 * fsbtodb() macro in the next line because the macro 878 * casts the intermediate values to daddr_t, which is 879 * a 32-bit quantity in a 32-bit kernel. Here we 880 * really do need the intermediate values to be held 881 * in 64-bit quantities because we're checking for 882 * overflow of a 32-bit field. 883 */ 884 if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb) 885 > INT_MAX) { 886 cmn_err(CE_NOTE, 887 "mount: multi-terabyte UFS cannot be" 888 " mounted by a 32-bit kernel"); 889 error = EINVAL; 890 goto out; 891 } 892 893 } else if (fsp->fs_magic != FS_MAGIC) { 894 cmn_err(CE_NOTE, 895 "mount: not a UFS magic number (0x%x)", fsp->fs_magic); 896 error = EINVAL; 897 goto out; 898 } 899 #endif /* _LP64 */ 900 901 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG || 902 fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) { 903 error = EINVAL; /* also needs translation */ 904 goto out; 905 } 906 907 /* 908 * Allocate VFS private data. 909 */ 910 vfsp->vfs_bcount = 0; 911 vfsp->vfs_data = (caddr_t)ufsvfsp; 912 vfsp->vfs_fstype = ufsfstype; 913 vfsp->vfs_dev = dev; 914 vfsp->vfs_flag |= VFS_NOTRUNC; 915 vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype); 916 ufsvfsp->vfs_devvp = devvp; 917 918 /* 919 * Cross-link with vfs and add to instance list. 920 */ 921 ufsvfsp->vfs_vfs = vfsp; 922 ufs_vfs_add(ufsvfsp); 923 924 ufsvfsp->vfs_dev = dev; 925 ufsvfsp->vfs_bufp = tp; 926 927 ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize; 928 ufsvfsp->vfs_minfrags = (int)((int64_t)fsp->fs_dsize * 929 fsp->fs_minfree / 100); 930 /* 931 * if mount allows largefiles, indicate so in ufsvfs 932 */ 933 if (flags & UFSMNT_LARGEFILES) 934 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES; 935 /* 936 * Initialize threads 937 */ 938 ufs_thread_init(&ufsvfsp->vfs_delete, 1); 939 ufs_thread_init(&ufsvfsp->vfs_reclaim, 0); 940 941 /* 942 * Chicken and egg problem. The superblock may have deltas 943 * in the log. So after the log is scanned we reread the 944 * superblock. We guarantee that the fields needed to 945 * scan the log will not be in the log. 946 */ 947 if (fsp->fs_logbno && fsp->fs_clean == FSLOG && 948 (fsp->fs_state + fsp->fs_time == FSOKAY)) { 949 error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY)); 950 if (error) { 951 /* 952 * Allow a ro mount to continue even if the 953 * log cannot be processed - yet. 954 */ 955 if (!(vfsp->vfs_flag & VFS_RDONLY)) { 956 cmn_err(CE_WARN, "Error accessing ufs " 957 "log for %s; Please run fsck(1M)", 958 path); 959 goto out; 960 } 961 } 962 tp->b_flags |= (B_AGE | B_STALE); 963 brelse(tp); 964 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE); 965 fsp = (struct fs *)tp->b_un.b_addr; 966 ufsvfsp->vfs_bufp = tp; 967 if (tp->b_flags & B_ERROR) 968 goto out; 969 } 970 971 /* 972 * Set logging mounted flag used by lockfs 973 */ 974 ufsvfsp->vfs_validfs = UT_MOUNTED; 975 976 /* 977 * Copy the super block into a buffer in its native size. 978 * Use ngeteblk to allocate the buffer 979 */ 980 bp = ngeteblk(fsp->fs_bsize); 981 ufsvfsp->vfs_bufp = bp; 982 bp->b_edev = dev; 983 bp->b_dev = cmpdev(dev); 984 bp->b_blkno = SBLOCK; 985 bp->b_bcount = fsp->fs_sbsize; 986 bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize); 987 tp->b_flags |= B_STALE | B_AGE; 988 brelse(tp); 989 tp = 0; 990 991 fsp = (struct fs *)bp->b_un.b_addr; 992 /* 993 * Mount fails if superblock flag indicates presence of large 994 * files and filesystem is attempted to be mounted 'nolargefiles'. 995 * The exception is for a read only mount of root, which we 996 * always want to succeed, so fsck can fix potential problems. 997 * The assumption is that we will remount root at some point, 998 * and the remount will enforce the mount option. 999 */ 1000 if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) && 1001 (fsp->fs_flags & FSLARGEFILES) && 1002 !(flags & UFSMNT_LARGEFILES)) { 1003 error = EFBIG; 1004 goto out; 1005 } 1006 1007 if (vfsp->vfs_flag & VFS_RDONLY) { 1008 fsp->fs_ronly = 1; 1009 fsp->fs_fmod = 0; 1010 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1011 ((fsp->fs_clean == FSCLEAN) || 1012 (fsp->fs_clean == FSSTABLE) || 1013 (fsp->fs_clean == FSLOG))) { 1014 if (isroot) { 1015 if (fsp->fs_clean == FSLOG) { 1016 if (fsp->fs_rolled == FS_ALL_ROLLED) { 1017 ufs_clean_root = 1; 1018 } 1019 } else { 1020 ufs_clean_root = 1; 1021 } 1022 } 1023 fsp->fs_clean = FSSTABLE; 1024 } else { 1025 fsp->fs_clean = FSBAD; 1026 } 1027 } else { 1028 1029 fsp->fs_fmod = 0; 1030 fsp->fs_ronly = 0; 1031 1032 TRANS_DOMATAMAP(ufsvfsp); 1033 1034 if ((TRANS_ISERROR(ufsvfsp)) || 1035 (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1036 fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) { 1037 ufsvfsp->vfs_log = NULL; 1038 ufsvfsp->vfs_domatamap = 0; 1039 error = ENOSPC; 1040 goto out; 1041 } 1042 1043 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) && 1044 (fsp->fs_clean == FSCLEAN || 1045 fsp->fs_clean == FSSTABLE || 1046 fsp->fs_clean == FSLOG)) 1047 fsp->fs_clean = FSSTABLE; 1048 else { 1049 if (isroot) { 1050 /* 1051 * allow root partition to be mounted even 1052 * when fs_state is not ok 1053 * will be fixed later by a remount root 1054 */ 1055 fsp->fs_clean = FSBAD; 1056 ufsvfsp->vfs_log = NULL; 1057 ufsvfsp->vfs_domatamap = 0; 1058 } else { 1059 error = ENOSPC; 1060 goto out; 1061 } 1062 } 1063 1064 if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp)) 1065 fsp->fs_clean = FSLOG; 1066 } 1067 TRANS_MATA_MOUNT(ufsvfsp); 1068 needtrans = 1; 1069 1070 vfsp->vfs_bsize = fsp->fs_bsize; 1071 1072 /* 1073 * Read in summary info 1074 */ 1075 if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp)) 1076 goto out; 1077 1078 /* 1079 * lastwhinetime is set to zero rather than lbolt, so that after 1080 * mounting if the filesystem is found to be full, then immediately the 1081 * "file system message" will be logged. 1082 */ 1083 ufsvfsp->vfs_lastwhinetime = 0L; 1084 1085 1086 mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL); 1087 (void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len); 1088 bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len); 1089 1090 /* 1091 * Sanity checks for old file systems 1092 */ 1093 if (fsp->fs_postblformat == FS_42POSTBLFMT) 1094 ufsvfsp->vfs_nrpos = 8; 1095 else 1096 ufsvfsp->vfs_nrpos = fsp->fs_nrpos; 1097 1098 /* 1099 * Initialize lockfs structure to support file system locking 1100 */ 1101 bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs, 1102 sizeof (struct lockfs)); 1103 ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK; 1104 mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL, 1105 MUTEX_DEFAULT, NULL); 1106 cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL); 1107 1108 /* 1109 * We don't need to grab vfs_dqrwlock for this ufs_iget() call. 1110 * We are in the process of mounting the file system so there 1111 * is no need to grab the quota lock. If a quota applies to the 1112 * root inode, then it will be updated when quotas are enabled. 1113 * 1114 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock)) 1115 * in getinoquota() that we want to keep so grab it anyway. 1116 */ 1117 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1118 1119 error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr); 1120 1121 rw_exit(&ufsvfsp->vfs_dqrwlock); 1122 1123 if (error) 1124 goto out; 1125 1126 /* 1127 * make sure root inode is a directory. Returning ENOTDIR might 1128 * be confused with the mount point not being a directory, so 1129 * we use EIO instead. 1130 */ 1131 if ((rip->i_mode & IFMT) != IFDIR) { 1132 /* 1133 * Mark this inode as subject for cleanup 1134 * to avoid stray inodes in the cache. 1135 */ 1136 rvp = ITOV(rip); 1137 error = EIO; 1138 goto out; 1139 } 1140 1141 rvp = ITOV(rip); 1142 mutex_enter(&rvp->v_lock); 1143 rvp->v_flag |= VROOT; 1144 mutex_exit(&rvp->v_lock); 1145 ufsvfsp->vfs_root = rvp; 1146 /* The buffer for the root inode does not contain a valid b_vp */ 1147 (void) bfinval(dev, 0); 1148 1149 /* options */ 1150 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC; 1151 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR; 1152 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR; 1153 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME; 1154 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime) 1155 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME; 1156 else /* dfratime, default behavior */ 1157 ufsvfsp->vfs_dfritime |= UFS_DFRATIME; 1158 if (flags & UFSMNT_FORCEDIRECTIO) 1159 ufsvfsp->vfs_forcedirectio = 1; 1160 else if (flags & UFSMNT_NOFORCEDIRECTIO) 1161 ufsvfsp->vfs_forcedirectio = 0; 1162 ufsvfsp->vfs_iotstamp = lbolt; 1163 1164 ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1; 1165 ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset); 1166 ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig; 1167 1168 if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci, 1169 FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) { 1170 ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE; 1171 } else { 1172 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1173 } 1174 1175 if (ufsvfsp->vfs_iotransz <= 0) { 1176 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys); 1177 } 1178 1179 /* 1180 * When logging, used to reserve log space for writes and truncs 1181 */ 1182 ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg; 1183 1184 /* 1185 * Determine whether to log cylinder group summary info. 1186 */ 1187 ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log); 1188 1189 if (TRANS_ISTRANS(ufsvfsp)) { 1190 /* 1191 * start the delete thread 1192 */ 1193 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp); 1194 1195 /* 1196 * start reclaim thread if the filesystem was not mounted 1197 * read only. 1198 */ 1199 if (!fsp->fs_ronly && (fsp->fs_reclaim & 1200 (FS_RECLAIM|FS_RECLAIMING))) { 1201 fsp->fs_reclaim &= ~FS_RECLAIM; 1202 fsp->fs_reclaim |= FS_RECLAIMING; 1203 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1204 ufs_thread_reclaim, vfsp); 1205 } 1206 1207 /* Mark the fs as unrolled */ 1208 fsp->fs_rolled = FS_NEED_ROLL; 1209 } else if (!fsp->fs_ronly && (fsp->fs_reclaim & 1210 (FS_RECLAIM|FS_RECLAIMING))) { 1211 /* 1212 * If a file system that is mounted nologging, after 1213 * having previously been mounted logging, becomes 1214 * unmounted whilst the reclaim thread is in the throes 1215 * of reclaiming open/deleted inodes, a subsequent mount 1216 * of such a file system with logging disabled could lead 1217 * to inodes becoming lost. So, start reclaim now, even 1218 * though logging was disabled for the previous mount, to 1219 * tidy things up. 1220 */ 1221 fsp->fs_reclaim &= ~FS_RECLAIM; 1222 fsp->fs_reclaim |= FS_RECLAIMING; 1223 ufs_thread_start(&ufsvfsp->vfs_reclaim, 1224 ufs_thread_reclaim, vfsp); 1225 } 1226 1227 if (!fsp->fs_ronly) { 1228 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT); 1229 if (error = geterror(ufsvfsp->vfs_bufp)) 1230 goto out; 1231 } 1232 1233 /* fix-on-panic initialization */ 1234 if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK)) 1235 flags |= UFSMNT_ONERROR_PANIC; /* XXX ..._RDONLY */ 1236 1237 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0) 1238 goto out; 1239 1240 if (why == ROOT_INIT && isroot) 1241 rootvp = devvp; 1242 1243 return (0); 1244 out: 1245 if (error == 0) 1246 error = EIO; 1247 if (rvp) { 1248 /* the following sequence is similar to ufs_unmount() */ 1249 1250 /* 1251 * There's a problem that ufs_iget() puts inodes into 1252 * the inode cache before it returns them. If someone 1253 * traverses that cache and gets a reference to our 1254 * inode, there's a chance they'll still be using it 1255 * after we've destroyed it. This is a hard race to 1256 * hit, but it's happened (putting in a medium delay 1257 * here, and a large delay in ufs_scan_inodes() for 1258 * inodes on the device we're bailing out on, makes 1259 * the race easy to demonstrate). The symptom is some 1260 * other part of UFS faulting on bad inode contents, 1261 * or when grabbing one of the locks inside the inode, 1262 * etc. The usual victim is ufs_scan_inodes() or 1263 * someone called by it. 1264 */ 1265 1266 /* 1267 * First, isolate it so that no new references can be 1268 * gotten via the inode cache. 1269 */ 1270 ihm = &ih_lock[INOHASH(UFSROOTINO)]; 1271 mutex_enter(ihm); 1272 remque(rip); 1273 mutex_exit(ihm); 1274 1275 /* 1276 * Now wait for all outstanding references except our 1277 * own to drain. This could, in theory, take forever, 1278 * so don't wait *too* long. If we time out, mark 1279 * it stale and leak it, so we don't hit the problem 1280 * described above. 1281 * 1282 * Note that v_count is an int, which means we can read 1283 * it in one operation. Thus, there's no need to lock 1284 * around our tests. 1285 */ 1286 elapsed = 0; 1287 while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) { 1288 delay(ufs_mount_error_delay * drv_usectohz(1000)); 1289 elapsed += ufs_mount_error_delay; 1290 } 1291 1292 if (rvp->v_count > 1) { 1293 mutex_enter(&rip->i_tlock); 1294 rip->i_flag |= ISTALE; 1295 mutex_exit(&rip->i_tlock); 1296 cmn_err(CE_WARN, 1297 "Timed out while cleaning up after failed mount of %s", 1298 path); 1299 } else { 1300 1301 /* 1302 * Now we're the only one with a handle left, so tear 1303 * it down the rest of the way. 1304 */ 1305 if (ufs_rmidle(rip)) 1306 VN_RELE(rvp); 1307 ufs_si_del(rip); 1308 rip->i_ufsvfs = NULL; 1309 rvp->v_vfsp = NULL; 1310 rvp->v_type = VBAD; 1311 VN_RELE(rvp); 1312 } 1313 } 1314 if (needtrans) { 1315 TRANS_MATA_UMOUNT(ufsvfsp); 1316 } 1317 if (ufsvfsp) { 1318 ufs_vfs_remove(ufsvfsp); 1319 ufs_thread_exit(&ufsvfsp->vfs_delete); 1320 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1321 mutex_destroy(&ufsvfsp->vfs_lock); 1322 if (ufsvfsp->vfs_log) { 1323 lufs_unsnarf(ufsvfsp); 1324 } 1325 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1326 } 1327 if (bp) { 1328 bp->b_flags |= (B_STALE|B_AGE); 1329 brelse(bp); 1330 } 1331 if (tp) { 1332 tp->b_flags |= (B_STALE|B_AGE); 1333 brelse(tp); 1334 } 1335 if (needclose) { 1336 (void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ? 1337 FREAD : FREAD|FWRITE, 1, (offset_t)0, cr); 1338 bflush(dev); 1339 (void) bfinval(dev, 1); 1340 } 1341 return (error); 1342 } 1343 1344 /* 1345 * vfs operations 1346 */ 1347 static int 1348 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr) 1349 { 1350 dev_t dev = vfsp->vfs_dev; 1351 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1352 struct fs *fs = ufsvfsp->vfs_fs; 1353 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs; 1354 struct vnode *bvp, *vp; 1355 struct buf *bp; 1356 struct inode *ip, *inext, *rip; 1357 union ihead *ih; 1358 int error, flag, i; 1359 struct lockfs lockfs; 1360 int poll_events = POLLPRI; 1361 extern struct pollhead ufs_pollhd; 1362 refstr_t *mountpoint; 1363 1364 ASSERT(vfs_lock_held(vfsp)); 1365 1366 if (secpolicy_fs_unmount(cr, vfsp) != 0) 1367 return (EPERM); 1368 /* 1369 * Forced unmount is now supported through the 1370 * lockfs protocol. 1371 */ 1372 if (fflag & MS_FORCE) { 1373 /* 1374 * Mark the filesystem as being unmounted now in 1375 * case of a forcible umount before we take any 1376 * locks inside UFS to prevent racing with a VFS_VGET() 1377 * request. Throw these VFS_VGET() requests away for 1378 * the duration of the forcible umount so they won't 1379 * use stale or even freed data later on when we're done. 1380 * It may happen that the VFS has had a additional hold 1381 * placed on it by someone other than UFS and thus will 1382 * not get freed immediately once we're done with the 1383 * umount by dounmount() - use VFS_UNMOUNTED to inform 1384 * users of this still-alive VFS that its corresponding 1385 * filesystem being gone so they can detect that and error 1386 * out. 1387 */ 1388 vfsp->vfs_flag |= VFS_UNMOUNTED; 1389 1390 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1391 mutex_enter(&ulp->ul_lock); 1392 /* 1393 * If file system is already hard locked, 1394 * unmount the file system, otherwise 1395 * hard lock it before unmounting. 1396 */ 1397 if (!ULOCKFS_IS_HLOCK(ulp)) { 1398 lockfs.lf_lock = LOCKFS_HLOCK; 1399 lockfs.lf_flags = 0; 1400 lockfs.lf_key = ulp->ul_lockfs.lf_key + 1; 1401 lockfs.lf_comlen = 0; 1402 lockfs.lf_comment = NULL; 1403 ufs_freeze(ulp, &lockfs); 1404 ULOCKFS_SET_BUSY(ulp); 1405 LOCKFS_SET_BUSY(&ulp->ul_lockfs); 1406 (void) ufs_quiesce(ulp); 1407 (void) ufs_flush(vfsp); 1408 (void) ufs_thaw(vfsp, ufsvfsp, ulp); 1409 ULOCKFS_CLR_BUSY(ulp); 1410 LOCKFS_CLR_BUSY(&ulp->ul_lockfs); 1411 poll_events |= POLLERR; 1412 pollwakeup(&ufs_pollhd, poll_events); 1413 } 1414 ufs_thread_continue(&ufsvfsp->vfs_delete); 1415 mutex_exit(&ulp->ul_lock); 1416 } 1417 1418 /* let all types of writes go through */ 1419 ufsvfsp->vfs_iotstamp = lbolt; 1420 1421 /* coordinate with global hlock thread */ 1422 if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) { 1423 /* 1424 * last possibility for a forced umount to fail hence clear 1425 * VFS_UNMOUNTED if appropriate. 1426 */ 1427 if (fflag & MS_FORCE) 1428 vfsp->vfs_flag &= ~VFS_UNMOUNTED; 1429 return (EAGAIN); 1430 } 1431 1432 ufsvfsp->vfs_validfs = UT_UNMOUNTED; 1433 1434 /* kill the reclaim thread */ 1435 ufs_thread_exit(&ufsvfsp->vfs_reclaim); 1436 1437 /* suspend the delete thread */ 1438 ufs_thread_suspend(&ufsvfsp->vfs_delete); 1439 1440 /* 1441 * drain the delete and idle queues 1442 */ 1443 ufs_delete_drain(vfsp, -1, 1); 1444 ufs_idle_drain(vfsp); 1445 1446 /* 1447 * use the lockfs protocol to prevent new ops from starting 1448 * a forcible umount can not fail beyond this point as 1449 * we hard-locked the filesystem and drained all current consumers 1450 * before. 1451 */ 1452 mutex_enter(&ulp->ul_lock); 1453 1454 /* 1455 * if the file system is busy; return EBUSY 1456 */ 1457 if (ulp->ul_vnops_cnt || ULOCKFS_IS_SLOCK(ulp)) { 1458 error = EBUSY; 1459 goto out; 1460 } 1461 1462 /* 1463 * if this is not a forced unmount (!hard/error locked), then 1464 * get rid of every inode except the root and quota inodes 1465 * also, commit any outstanding transactions 1466 */ 1467 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) 1468 if (error = ufs_flush(vfsp)) 1469 goto out; 1470 1471 /* 1472 * ignore inodes in the cache if fs is hard locked or error locked 1473 */ 1474 rip = VTOI(ufsvfsp->vfs_root); 1475 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) { 1476 /* 1477 * Otherwise, only the quota and root inodes are in the cache. 1478 * 1479 * Avoid racing with ufs_update() and ufs_sync(). 1480 */ 1481 mutex_enter(&ufs_scan_lock); 1482 1483 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1484 mutex_enter(&ih_lock[i]); 1485 for (ip = ih->ih_chain[0]; 1486 ip != (struct inode *)ih; 1487 ip = ip->i_forw) { 1488 if (ip->i_ufsvfs != ufsvfsp) 1489 continue; 1490 if (ip == ufsvfsp->vfs_qinod) 1491 continue; 1492 if (ip == rip && ITOV(ip)->v_count == 1) 1493 continue; 1494 mutex_exit(&ih_lock[i]); 1495 mutex_exit(&ufs_scan_lock); 1496 error = EBUSY; 1497 goto out; 1498 } 1499 mutex_exit(&ih_lock[i]); 1500 } 1501 mutex_exit(&ufs_scan_lock); 1502 } 1503 1504 /* 1505 * if a snapshot exists and this is a forced unmount, then delete 1506 * the snapshot. Otherwise return EBUSY. This will insure the 1507 * snapshot always belongs to a valid file system. 1508 */ 1509 if (ufsvfsp->vfs_snapshot) { 1510 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1511 (void) fssnap_delete(&ufsvfsp->vfs_snapshot); 1512 } else { 1513 error = EBUSY; 1514 goto out; 1515 } 1516 } 1517 1518 /* 1519 * Close the quota file and invalidate anything left in the quota 1520 * cache for this file system. Pass kcred to allow all quota 1521 * manipulations. 1522 */ 1523 (void) closedq(ufsvfsp, kcred); 1524 invalidatedq(ufsvfsp); 1525 /* 1526 * drain the delete and idle queues 1527 */ 1528 ufs_delete_drain(vfsp, -1, 0); 1529 ufs_idle_drain(vfsp); 1530 1531 /* 1532 * discard the inodes for this fs (including root, shadow, and quota) 1533 */ 1534 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 1535 mutex_enter(&ih_lock[i]); 1536 for (inext = 0, ip = ih->ih_chain[0]; 1537 ip != (struct inode *)ih; 1538 ip = inext) { 1539 inext = ip->i_forw; 1540 if (ip->i_ufsvfs != ufsvfsp) 1541 continue; 1542 vp = ITOV(ip); 1543 VN_HOLD(vp) 1544 remque(ip); 1545 if (ufs_rmidle(ip)) 1546 VN_RELE(vp); 1547 ufs_si_del(ip); 1548 /* 1549 * rip->i_ufsvfsp is needed by bflush() 1550 */ 1551 if (ip != rip) 1552 ip->i_ufsvfs = NULL; 1553 /* 1554 * Set vnode's vfsops to dummy ops, which return 1555 * EIO. This is needed to forced unmounts to work 1556 * with lofs/nfs properly. 1557 */ 1558 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) 1559 vp->v_vfsp = &EIO_vfs; 1560 else 1561 vp->v_vfsp = NULL; 1562 vp->v_type = VBAD; 1563 VN_RELE(vp); 1564 } 1565 mutex_exit(&ih_lock[i]); 1566 } 1567 ufs_si_cache_flush(dev); 1568 1569 /* 1570 * kill the delete thread and drain the idle queue 1571 */ 1572 ufs_thread_exit(&ufsvfsp->vfs_delete); 1573 ufs_idle_drain(vfsp); 1574 1575 bp = ufsvfsp->vfs_bufp; 1576 bvp = ufsvfsp->vfs_devvp; 1577 flag = !fs->fs_ronly; 1578 if (flag) { 1579 bflush(dev); 1580 if (fs->fs_clean != FSBAD) { 1581 if (fs->fs_clean == FSSTABLE) 1582 fs->fs_clean = FSCLEAN; 1583 fs->fs_reclaim &= ~FS_RECLAIM; 1584 } 1585 if (TRANS_ISTRANS(ufsvfsp) && 1586 !TRANS_ISERROR(ufsvfsp) && 1587 !ULOCKFS_IS_HLOCK(ulp) && 1588 (fs->fs_rolled == FS_NEED_ROLL)) { 1589 /* 1590 * ufs_flush() above has flushed the last Moby. 1591 * This is needed to ensure the following superblock 1592 * update really is the last metadata update 1593 */ 1594 error = ufs_putsummaryinfo(dev, ufsvfsp, fs); 1595 if (error == 0) { 1596 fs->fs_rolled = FS_ALL_ROLLED; 1597 } 1598 } 1599 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT); 1600 /* 1601 * push this last transaction 1602 */ 1603 curthread->t_flag |= T_DONTBLOCK; 1604 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE, 1605 error); 1606 if (!error) 1607 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT, 1608 TOP_COMMIT_SIZE); 1609 curthread->t_flag &= ~T_DONTBLOCK; 1610 } 1611 1612 TRANS_MATA_UMOUNT(ufsvfsp); 1613 lufs_unsnarf(ufsvfsp); /* Release the in-memory structs */ 1614 ufsfx_unmount(ufsvfsp); /* fix-on-panic bookkeeping */ 1615 kmem_free(fs->fs_u.fs_csp, fs->fs_cssize); 1616 1617 bp->b_flags |= B_STALE|B_AGE; 1618 ufsvfsp->vfs_bufp = NULL; /* don't point at freed buf */ 1619 brelse(bp); /* free the superblock buf */ 1620 1621 (void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0, 1622 B_INVAL, cr); 1623 (void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr); 1624 bflush(dev); 1625 (void) bfinval(dev, 1); 1626 VN_RELE(bvp); 1627 1628 /* 1629 * It is now safe to NULL out the ufsvfs pointer and discard 1630 * the root inode. 1631 */ 1632 rip->i_ufsvfs = NULL; 1633 VN_RELE(ITOV(rip)); 1634 1635 /* free up lockfs comment structure, if any */ 1636 if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment) 1637 kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen); 1638 1639 /* 1640 * Remove from instance list. 1641 */ 1642 ufs_vfs_remove(ufsvfsp); 1643 1644 /* 1645 * For a forcible unmount, threads may be asleep in 1646 * ufs_lockfs_begin/ufs_check_lockfs. These threads will need 1647 * the ufsvfs structure so we don't free it, yet. ufs_update 1648 * will free it up after awhile. 1649 */ 1650 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) { 1651 extern kmutex_t ufsvfs_mutex; 1652 extern struct ufsvfs *ufsvfslist; 1653 1654 mutex_enter(&ufsvfs_mutex); 1655 ufsvfsp->vfs_dontblock = 1; 1656 ufsvfsp->vfs_next = ufsvfslist; 1657 ufsvfslist = ufsvfsp; 1658 mutex_exit(&ufsvfs_mutex); 1659 /* wakeup any suspended threads */ 1660 cv_broadcast(&ulp->ul_cv); 1661 mutex_exit(&ulp->ul_lock); 1662 } else { 1663 mutex_destroy(&ufsvfsp->vfs_lock); 1664 kmem_free(ufsvfsp, sizeof (struct ufsvfs)); 1665 } 1666 1667 /* 1668 * Now mark the filesystem as unmounted since we're done with it. 1669 */ 1670 vfsp->vfs_flag |= VFS_UNMOUNTED; 1671 1672 return (0); 1673 out: 1674 /* open the fs to new ops */ 1675 cv_broadcast(&ulp->ul_cv); 1676 mutex_exit(&ulp->ul_lock); 1677 1678 if (TRANS_ISTRANS(ufsvfsp)) { 1679 /* allow the delete thread to continue */ 1680 ufs_thread_continue(&ufsvfsp->vfs_delete); 1681 /* restart the reclaim thread */ 1682 ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim, 1683 vfsp); 1684 /* coordinate with global hlock thread */ 1685 ufsvfsp->vfs_validfs = UT_MOUNTED; 1686 /* check for trans errors during umount */ 1687 ufs_trans_onerror(); 1688 1689 /* 1690 * if we have a seperate /usr it will never unmount 1691 * when halting. In order to not re-read all the 1692 * cylinder group summary info on mounting after 1693 * reboot the logging of summary info is re-enabled 1694 * and the super block written out. 1695 */ 1696 mountpoint = vfs_getmntpoint(vfsp); 1697 if ((fs->fs_si == FS_SI_OK) && 1698 (strcmp("/usr", refstr_value(mountpoint)) == 0)) { 1699 ufsvfsp->vfs_nolog_si = 0; 1700 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp); 1701 } 1702 refstr_rele(mountpoint); 1703 } 1704 1705 return (error); 1706 } 1707 1708 static int 1709 ufs_root(struct vfs *vfsp, struct vnode **vpp) 1710 { 1711 struct ufsvfs *ufsvfsp; 1712 struct vnode *vp; 1713 1714 if (!vfsp) 1715 return (EIO); 1716 1717 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1718 if (!ufsvfsp || !ufsvfsp->vfs_root) 1719 return (EIO); /* forced unmount */ 1720 1721 vp = ufsvfsp->vfs_root; 1722 VN_HOLD(vp); 1723 *vpp = vp; 1724 return (0); 1725 } 1726 1727 /* 1728 * Get file system statistics. 1729 */ 1730 static int 1731 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp) 1732 { 1733 struct fs *fsp; 1734 struct ufsvfs *ufsvfsp; 1735 int blk, i; 1736 long max_avail, used; 1737 dev32_t d32; 1738 struct ufs_q *delq; 1739 1740 if (vfsp->vfs_flag & VFS_UNMOUNTED) 1741 return (EIO); 1742 1743 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1744 fsp = ufsvfsp->vfs_fs; 1745 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) 1746 return (EINVAL); 1747 if (fsp->fs_magic == MTB_UFS_MAGIC && 1748 (fsp->fs_version > MTB_UFS_VERSION_1 || 1749 fsp->fs_version < MTB_UFS_VERSION_MIN)) 1750 return (EINVAL); 1751 1752 /* 1753 * Can't get a self-consistent result with the delete thread running 1754 * or if others come in and jumble the queue up for us. This is 1755 * a no-op if there is no delete thread. 1756 */ 1757 delq = &ufsvfsp->vfs_delete; 1758 ufs_thread_suspend(delq); 1759 1760 /* 1761 * get the basic numbers 1762 */ 1763 (void) bzero(sp, sizeof (*sp)); 1764 1765 sp->f_bsize = fsp->fs_bsize; 1766 sp->f_frsize = fsp->fs_fsize; 1767 sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize; 1768 sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag + 1769 fsp->fs_cstotal.cs_nffree; 1770 1771 sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg; 1772 sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree; 1773 1774 /* 1775 * Adjust the numbers based on things waiting to be deleted. 1776 * modifies f_bfree and f_ffree. Afterwards, everything we 1777 * come up with will be self-consistent. By definition, this 1778 * is a point-in-time snapshot, so the fact that the delete 1779 * thread's probably already invalidated the results is not a 1780 * problem. 1781 */ 1782 ufs_delete_adjust_stats(ufsvfsp, sp); 1783 ufs_thread_continue(delq); 1784 1785 /* 1786 * avail = MAX(max_avail - used, 0) 1787 */ 1788 max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags; 1789 1790 used = (fsp->fs_dsize - sp->f_bfree); 1791 1792 if (max_avail > used) 1793 sp->f_bavail = (fsblkcnt64_t)max_avail - used; 1794 else 1795 sp->f_bavail = (fsblkcnt64_t)0; 1796 1797 sp->f_favail = sp->f_ffree; 1798 (void) cmpldev(&d32, vfsp->vfs_dev); 1799 sp->f_fsid = d32; 1800 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1801 sp->f_flag = vf_to_stf(vfsp->vfs_flag); 1802 1803 /* keep coordinated with ufs_l_pathconf() */ 1804 sp->f_namemax = MAXNAMLEN; 1805 1806 if (fsp->fs_cpc == 0) { 1807 bzero(sp->f_fstr, 14); 1808 return (0); 1809 } 1810 blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp); 1811 for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */ 1812 /* void */; 1813 i -= fsp->fs_frag; 1814 blk = i / fsp->fs_frag; 1815 bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14); 1816 return (0); 1817 } 1818 1819 /* 1820 * Flush any pending I/O to file system vfsp. 1821 * The ufs_update() routine will only flush *all* ufs files. 1822 * If vfsp is non-NULL, only sync this ufs (in preparation 1823 * for a umount). 1824 */ 1825 /*ARGSUSED*/ 1826 static int 1827 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr) 1828 { 1829 struct ufsvfs *ufsvfsp; 1830 struct fs *fs; 1831 int cheap = flag & SYNC_ATTR; 1832 int error; 1833 1834 /* 1835 * SYNC_CLOSE means we're rebooting. Toss everything 1836 * on the idle queue so we don't have to slog through 1837 * a bunch of uninteresting inodes over and over again. 1838 */ 1839 if (flag & SYNC_CLOSE) 1840 ufs_idle_drain(NULL); 1841 1842 if (vfsp == NULL) { 1843 ufs_update(flag); 1844 return (0); 1845 } 1846 1847 /* Flush a single ufs */ 1848 if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0) 1849 return (0); 1850 1851 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1852 if (!ufsvfsp) 1853 return (EIO); 1854 fs = ufsvfsp->vfs_fs; 1855 mutex_enter(&ufsvfsp->vfs_lock); 1856 1857 if (ufsvfsp->vfs_dio && 1858 fs->fs_ronly == 0 && 1859 fs->fs_clean != FSBAD && 1860 fs->fs_clean != FSLOG) { 1861 /* turn off fast-io on unmount, so no fsck needed (4029401) */ 1862 ufsvfsp->vfs_dio = 0; 1863 fs->fs_clean = FSACTIVE; 1864 fs->fs_fmod = 1; 1865 } 1866 1867 /* Write back modified superblock */ 1868 if (fs->fs_fmod == 0) { 1869 mutex_exit(&ufsvfsp->vfs_lock); 1870 } else { 1871 if (fs->fs_ronly != 0) { 1872 mutex_exit(&ufsvfsp->vfs_lock); 1873 vfs_unlock(vfsp); 1874 return (ufs_fault(ufsvfsp->vfs_root, 1875 "fs = %s update: ro fs mod\n", 1876 fs->fs_fsmnt)); 1877 } 1878 fs->fs_fmod = 0; 1879 mutex_exit(&ufsvfsp->vfs_lock); 1880 1881 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE); 1882 } 1883 vfs_unlock(vfsp); 1884 1885 /* 1886 * Avoid racing with ufs_update() and ufs_unmount(). 1887 * 1888 */ 1889 mutex_enter(&ufs_scan_lock); 1890 1891 (void) ufs_scan_inodes(1, ufs_sync_inode, 1892 (void *)(uintptr_t)cheap, ufsvfsp); 1893 1894 mutex_exit(&ufs_scan_lock); 1895 1896 bflush((dev_t)vfsp->vfs_dev); 1897 1898 /* 1899 * commit any outstanding async transactions 1900 */ 1901 curthread->t_flag |= T_DONTBLOCK; 1902 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error); 1903 if (!error) { 1904 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE, 1905 TOP_COMMIT_SIZE); 1906 } 1907 curthread->t_flag &= ~T_DONTBLOCK; 1908 1909 return (0); 1910 } 1911 1912 1913 void 1914 sbupdate(struct vfs *vfsp) 1915 { 1916 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1917 struct fs *fs = ufsvfsp->vfs_fs; 1918 struct buf *bp; 1919 int blks; 1920 caddr_t space; 1921 int i; 1922 size_t size; 1923 1924 /* 1925 * for ulockfs processing, limit the superblock writes 1926 */ 1927 if ((ufsvfsp->vfs_ulockfs.ul_sbowner) && 1928 (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) { 1929 /* process later */ 1930 fs->fs_fmod = 1; 1931 return; 1932 } 1933 ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs)); 1934 1935 if (TRANS_ISTRANS(ufsvfsp)) { 1936 mutex_enter(&ufsvfsp->vfs_lock); 1937 ufs_sbwrite(ufsvfsp); 1938 mutex_exit(&ufsvfsp->vfs_lock); 1939 return; 1940 } 1941 1942 blks = howmany(fs->fs_cssize, fs->fs_fsize); 1943 space = (caddr_t)fs->fs_u.fs_csp; 1944 for (i = 0; i < blks; i += fs->fs_frag) { 1945 size = fs->fs_bsize; 1946 if (i + fs->fs_frag > blks) 1947 size = (blks - i) * fs->fs_fsize; 1948 bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev, 1949 (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)), 1950 fs->fs_bsize); 1951 bcopy(space, bp->b_un.b_addr, size); 1952 space += size; 1953 bp->b_bcount = size; 1954 UFS_BRWRITE(ufsvfsp, bp); 1955 } 1956 mutex_enter(&ufsvfsp->vfs_lock); 1957 ufs_sbwrite(ufsvfsp); 1958 mutex_exit(&ufsvfsp->vfs_lock); 1959 } 1960 1961 int ufs_vget_idle_count = 2; /* Number of inodes to idle each time */ 1962 static int 1963 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 1964 { 1965 int error = 0; 1966 struct ufid *ufid; 1967 struct inode *ip; 1968 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 1969 struct ulockfs *ulp; 1970 1971 /* 1972 * Check for unmounted filesystem. 1973 */ 1974 if (vfsp->vfs_flag & VFS_UNMOUNTED) { 1975 error = EIO; 1976 goto errout; 1977 } 1978 1979 /* 1980 * Keep the idle queue from getting too long by 1981 * idling an inode before attempting to allocate another. 1982 * This operation must be performed before entering 1983 * lockfs or a transaction. 1984 */ 1985 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat) 1986 if ((curthread->t_flag & T_DONTBLOCK) == 0) { 1987 ins.in_vidles.value.ul += ufs_vget_idle_count; 1988 ufs_idle_some(ufs_vget_idle_count); 1989 } 1990 1991 ufid = (struct ufid *)fidp; 1992 1993 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK)) 1994 goto errout; 1995 1996 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER); 1997 1998 error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED()); 1999 2000 rw_exit(&ufsvfsp->vfs_dqrwlock); 2001 2002 ufs_lockfs_end(ulp); 2003 2004 if (error) 2005 goto errout; 2006 2007 /* 2008 * Check if the inode has been deleted or freed or is in transient state 2009 * since the last VFS_VGET() request for it, release it and don't return 2010 * it to the caller, presumably NFS, as it's no longer valid. 2011 */ 2012 if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 || 2013 (ip->i_flag & IDEL)) { 2014 VN_RELE(ITOV(ip)); 2015 error = EINVAL; 2016 goto errout; 2017 } 2018 2019 *vpp = ITOV(ip); 2020 return (0); 2021 2022 errout: 2023 *vpp = NULL; 2024 return (error); 2025 } 2026 2027 static int 2028 ufsinit(int fstype, char *name) 2029 { 2030 static const fs_operation_def_t ufs_vfsops_template[] = { 2031 VFSNAME_MOUNT, ufs_mount, 2032 VFSNAME_UNMOUNT, ufs_unmount, 2033 VFSNAME_ROOT, ufs_root, 2034 VFSNAME_STATVFS, ufs_statvfs, 2035 VFSNAME_SYNC, (fs_generic_func_p) ufs_sync, 2036 VFSNAME_VGET, ufs_vget, 2037 VFSNAME_MOUNTROOT, ufs_mountroot, 2038 NULL, NULL 2039 }; 2040 int error; 2041 2042 ufsfstype = fstype; 2043 2044 error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops); 2045 if (error != 0) { 2046 cmn_err(CE_WARN, "ufsinit: bad vfs ops template"); 2047 return (error); 2048 } 2049 2050 error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops); 2051 if (error != 0) { 2052 (void) vfs_freevfsops_by_type(fstype); 2053 cmn_err(CE_WARN, "ufsinit: bad vnode ops template"); 2054 return (error); 2055 } 2056 2057 ufs_iinit(); 2058 return (0); 2059 } 2060 2061 #ifdef __sparc 2062 2063 /* 2064 * Mounting a mirrored SVM volume is only supported on ufs, 2065 * this is special-case boot code to support that configuration. 2066 * At this point, we have booted and mounted root on a 2067 * single component of the mirror. Complete the boot 2068 * by configuring SVM and converting the root to the 2069 * dev_t of the mirrored root device. This dev_t conversion 2070 * only works because the underlying device doesn't change. 2071 */ 2072 int 2073 ufs_remountroot(struct vfs *vfsp) 2074 { 2075 struct ufsvfs *ufsvfsp; 2076 struct ulockfs *ulp; 2077 dev_t new_rootdev; 2078 dev_t old_rootdev; 2079 struct vnode *old_rootvp; 2080 struct vnode *new_rootvp; 2081 int error, sberror = 0; 2082 struct inode *ip; 2083 union ihead *ih; 2084 struct buf *bp; 2085 int i; 2086 2087 old_rootdev = rootdev; 2088 old_rootvp = rootvp; 2089 2090 new_rootdev = getrootdev(); 2091 if (new_rootdev == (dev_t)NODEV) { 2092 return (ENODEV); 2093 } 2094 2095 new_rootvp = makespecvp(new_rootdev, VBLK); 2096 2097 error = VOP_OPEN(&new_rootvp, 2098 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, CRED()); 2099 if (error) { 2100 cmn_err(CE_CONT, 2101 "Cannot open mirrored root device, error %d\n", error); 2102 return (error); 2103 } 2104 2105 if (vfs_lock(vfsp) != 0) { 2106 return (EBUSY); 2107 } 2108 2109 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data; 2110 ulp = &ufsvfsp->vfs_ulockfs; 2111 2112 mutex_enter(&ulp->ul_lock); 2113 2114 (void) ufs_quiesce(ulp); 2115 (void) ufs_flush(vfsp); 2116 2117 /* 2118 * Convert root vfs to new dev_t, including vfs hash 2119 * table and fs id. 2120 */ 2121 vfs_root_redev(vfsp, new_rootdev, ufsfstype); 2122 2123 ufsvfsp->vfs_devvp = new_rootvp; 2124 ufsvfsp->vfs_dev = new_rootdev; 2125 2126 bp = ufsvfsp->vfs_bufp; 2127 bp->b_edev = new_rootdev; 2128 bp->b_dev = cmpdev(new_rootdev); 2129 2130 /* 2131 * The buffer for the root inode does not contain a valid b_vp 2132 */ 2133 (void) bfinval(new_rootdev, 0); 2134 2135 /* 2136 * Here we hand-craft inodes with old root device 2137 * references to refer to the new device instead. 2138 */ 2139 mutex_enter(&ufs_scan_lock); 2140 2141 for (i = 0, ih = ihead; i < inohsz; i++, ih++) { 2142 mutex_enter(&ih_lock[i]); 2143 for (ip = ih->ih_chain[0]; 2144 ip != (struct inode *)ih; 2145 ip = ip->i_forw) { 2146 if (ip->i_ufsvfs != ufsvfsp) 2147 continue; 2148 if (ip == ufsvfsp->vfs_qinod) 2149 continue; 2150 if (ip->i_dev == old_rootdev) { 2151 ip->i_dev = new_rootdev; 2152 } 2153 2154 if (ip->i_devvp == old_rootvp) { 2155 ip->i_devvp = new_rootvp; 2156 } 2157 } 2158 mutex_exit(&ih_lock[i]); 2159 } 2160 2161 mutex_exit(&ufs_scan_lock); 2162 2163 /* 2164 * Make Sure logging structures are using the new device 2165 * if logging is enabled. Also start any logging thread that 2166 * needs to write to the device and couldn't earlier. 2167 */ 2168 if (ufsvfsp->vfs_log) { 2169 buf_t *bp, *tbp; 2170 ml_unit_t *ul = ufsvfsp->vfs_log; 2171 struct fs *fsp = ufsvfsp->vfs_fs; 2172 2173 /* 2174 * Update the main logging structure. 2175 */ 2176 ul->un_dev = new_rootdev; 2177 2178 /* 2179 * Get a new bp for the on disk structures. 2180 */ 2181 bp = ul->un_bp; 2182 tbp = ngeteblk(dbtob(LS_SECTORS)); 2183 tbp->b_edev = new_rootdev; 2184 tbp->b_dev = cmpdev(new_rootdev); 2185 tbp->b_blkno = bp->b_blkno; 2186 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr, DEV_BSIZE); 2187 bcopy(bp->b_un.b_addr, tbp->b_un.b_addr + DEV_BSIZE, DEV_BSIZE); 2188 bp->b_flags |= (B_STALE | B_AGE); 2189 brelse(bp); 2190 ul->un_bp = tbp; 2191 2192 /* 2193 * Allocate new circular buffers. 2194 */ 2195 alloc_rdbuf(&ul->un_rdbuf, MAPBLOCKSIZE, MAPBLOCKSIZE); 2196 alloc_wrbuf(&ul->un_wrbuf, ldl_bufsize(ul)); 2197 2198 /* 2199 * Clear the noroll bit which indicates that logging 2200 * can't roll the log yet. 2201 */ 2202 ASSERT(ul->un_flags & LDL_NOROLL); 2203 ul->un_flags &= ~LDL_NOROLL; 2204 2205 /* 2206 * Start the logmap roll thread. 2207 */ 2208 logmap_start_roll(ul); 2209 2210 /* 2211 * Start the reclaim thread if needed. 2212 */ 2213 if (!fsp->fs_ronly && (fsp->fs_reclaim & 2214 (FS_RECLAIM|FS_RECLAIMING))) { 2215 fsp->fs_reclaim &= ~FS_RECLAIM; 2216 fsp->fs_reclaim |= FS_RECLAIMING; 2217 ufs_thread_start(&ufsvfsp->vfs_reclaim, 2218 ufs_thread_reclaim, vfsp); 2219 TRANS_SBWRITE(ufsvfsp, TOP_SBUPDATE_UPDATE); 2220 if (sberror = geterror(ufsvfsp->vfs_bufp)) { 2221 refstr_t *mntpt; 2222 mntpt = vfs_getmntpoint(vfsp); 2223 cmn_err(CE_WARN, 2224 "Remountroot failed to update Reclaim" 2225 "state for filesystem %s " 2226 "Error writing SuperBlock %d", 2227 refstr_value(mntpt), error); 2228 refstr_rele(mntpt); 2229 } 2230 } 2231 } 2232 2233 rootdev = new_rootdev; 2234 rootvp = new_rootvp; 2235 2236 cv_broadcast(&ulp->ul_cv); 2237 mutex_exit(&ulp->ul_lock); 2238 2239 vfs_unlock(vfsp); 2240 2241 error = VOP_CLOSE(old_rootvp, FREAD, 1, (offset_t)0, CRED()); 2242 if (error) { 2243 cmn_err(CE_CONT, 2244 "close of root device component failed, error %d\n", 2245 error); 2246 } 2247 VN_RELE(old_rootvp); 2248 2249 return (sberror ? sberror : error); 2250 } 2251 2252 #endif /* __sparc */ 2253