xref: /titanic_41/usr/src/uts/common/fs/ufs/ufs_inode.c (revision b01c3b58f7eb7fb570f606f96f130fb9b2018b49)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*	Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T	*/
27 /*	  All Rights Reserved  	*/
28 
29 /*
30  * University Copyright- Copyright (c) 1982, 1986, 1988
31  * The Regents of the University of California
32  * All Rights Reserved
33  *
34  * University Acknowledgment- Portions of this document are derived from
35  * software developed by the University of California, Berkeley, and its
36  * contributors.
37  */
38 
39 
40 #pragma ident	"%Z%%M%	%I%	%E% SMI"
41 
42 #include <sys/types.h>
43 #include <sys/t_lock.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/uio.h>
47 #include <sys/bitmap.h>
48 #include <sys/signal.h>
49 #include <sys/cred.h>
50 #include <sys/user.h>
51 #include <sys/vfs.h>
52 #include <sys/stat.h>
53 #include <sys/vnode.h>
54 #include <sys/buf.h>
55 #include <sys/proc.h>
56 #include <sys/disp.h>
57 #include <sys/dnlc.h>
58 #include <sys/mode.h>
59 #include <sys/cmn_err.h>
60 #include <sys/kstat.h>
61 #include <sys/acl.h>
62 #include <sys/var.h>
63 #include <sys/fs/ufs_inode.h>
64 #include <sys/fs/ufs_fs.h>
65 #include <sys/fs/ufs_trans.h>
66 #include <sys/fs/ufs_acl.h>
67 #include <sys/fs/ufs_bio.h>
68 #include <sys/fs/ufs_quota.h>
69 #include <sys/fs/ufs_log.h>
70 #include <vm/hat.h>
71 #include <vm/as.h>
72 #include <vm/pvn.h>
73 #include <vm/seg.h>
74 #include <sys/swap.h>
75 #include <sys/cpuvar.h>
76 #include <sys/sysmacros.h>
77 #include <sys/errno.h>
78 #include <sys/kmem.h>
79 #include <sys/debug.h>
80 #include <fs/fs_subr.h>
81 #include <sys/policy.h>
82 
83 struct kmem_cache *inode_cache;		/* cache of free inodes */
84 
85 /* UFS Inode Cache Stats -- Not protected */
86 struct	instats ins = {
87 	{ "size",		KSTAT_DATA_ULONG },
88 	{ "maxsize",		KSTAT_DATA_ULONG },
89 	{ "hits",		KSTAT_DATA_ULONG },
90 	{ "misses",		KSTAT_DATA_ULONG },
91 	{ "kmem allocs",	KSTAT_DATA_ULONG },
92 	{ "kmem frees",		KSTAT_DATA_ULONG },
93 	{ "maxsize reached",	KSTAT_DATA_ULONG },
94 	{ "puts at frontlist",	KSTAT_DATA_ULONG },
95 	{ "puts at backlist",	KSTAT_DATA_ULONG },
96 	{ "queues to free",	KSTAT_DATA_ULONG },
97 	{ "scans",		KSTAT_DATA_ULONG },
98 	{ "thread idles",	KSTAT_DATA_ULONG },
99 	{ "lookup idles",	KSTAT_DATA_ULONG },
100 	{ "vget idles",		KSTAT_DATA_ULONG },
101 	{ "cache allocs",	KSTAT_DATA_ULONG },
102 	{ "cache frees",	KSTAT_DATA_ULONG },
103 	{ "pushes at close",	KSTAT_DATA_ULONG }
104 };
105 
106 /* kstat data */
107 static kstat_t		*ufs_inode_kstat = NULL;
108 
109 union ihead *ihead;	/* inode LRU cache, Chris Maltby */
110 kmutex_t *ih_lock;	/* protect inode cache hash table */
111 static int ino_hashlen = 4;	/* desired average hash chain length */
112 int inohsz;		/* number of buckets in the hash table */
113 
114 kmutex_t	ufs_scan_lock;	/* stop racing multiple ufs_scan_inodes() */
115 kmutex_t	ufs_iuniqtime_lock; /* protect iuniqtime */
116 kmutex_t	ufsvfs_mutex;
117 struct ufsvfs	*oldufsvfslist, *ufsvfslist;
118 
119 /*
120  * time to wait after ufsvfsp->vfs_iotstamp before declaring that no
121  * I/Os are going on.
122  */
123 clock_t	ufs_iowait;
124 
125 /*
126  * the threads that process idle inodes and free (deleted) inodes
127  * have high water marks that are set in ufsinit().
128  * These values but can be no less then the minimum shown below
129  */
130 int	ufs_idle_max;	/* # of allowable idle inodes */
131 ulong_t	ufs_inode_max;	/* hard limit of allowable idle inodes */
132 #define	UFS_IDLE_MAX	(16)	/* min # of allowable idle inodes */
133 
134 /*
135  * Tunables for ufs write throttling.
136  * These are validated in ufs_iinit() since improper settings
137  * can lead to filesystem hangs.
138  */
139 #define	UFS_HW_DEFAULT	(16 * 1024 * 1024)
140 #define	UFS_LW_DEFAULT	(8 * 1024 * 1024)
141 int	ufs_HW = UFS_HW_DEFAULT;
142 int	ufs_LW = UFS_LW_DEFAULT;
143 
144 static void ihinit(void);
145 extern int hash2ints(int, int);
146 
147 static int ufs_iget_internal(struct vfs *, ino_t, struct inode **,
148     struct cred *, int);
149 
150 /* ARGSUSED */
151 static int
152 ufs_inode_kstat_update(kstat_t *ksp, int rw)
153 {
154 	if (rw == KSTAT_WRITE)
155 		return (EACCES);
156 
157 	ins.in_malloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
158 	    "slab_alloc");
159 	ins.in_mfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
160 	    "slab_free");
161 	ins.in_kcalloc.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
162 	    "alloc");
163 	ins.in_kcfree.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
164 	    "free");
165 	ins.in_size.value.ul	= (ulong_t)kmem_cache_stat(inode_cache,
166 	    "buf_inuse");
167 	ins.in_maxreached.value.ul = (ulong_t)kmem_cache_stat(inode_cache,
168 	    "buf_max");
169 	ins.in_misses.value.ul = ins.in_kcalloc.value.ul;
170 
171 	return (0);
172 }
173 
174 void
175 ufs_iinit(void)
176 {
177 	/*
178 	 * Validate that ufs_HW > ufs_LW.
179 	 * The default values for these two tunables have been increased.
180 	 * There is now a range of values for ufs_HW that used to be
181 	 * legal on previous Solaris versions but no longer is now.
182 	 * Upgrading a machine which has an /etc/system setting for ufs_HW
183 	 * from that range can lead to filesystem hangs unless the values
184 	 * are checked here.
185 	 */
186 	if (ufs_HW <= ufs_LW) {
187 		cmn_err(CE_WARN,
188 		    "ufs_HW (%d) <= ufs_LW (%d). Check /etc/system.",
189 		    ufs_HW, ufs_LW);
190 		ufs_LW = UFS_LW_DEFAULT;
191 		ufs_HW = UFS_HW_DEFAULT;
192 		cmn_err(CE_CONT, "using defaults, ufs_HW = %d, ufs_LW = %d\n",
193 		    ufs_HW, ufs_LW);
194 	}
195 
196 	/*
197 	 * Adjust the tunable `ufs_ninode' to a reasonable value
198 	 */
199 	if (ufs_ninode <= 0)
200 		ufs_ninode = ncsize;
201 	if (ufs_inode_max == 0)
202 		ufs_inode_max =
203 		    (ulong_t)((kmem_maxavail() >> 2) / sizeof (struct inode));
204 	if (ufs_ninode > ufs_inode_max || (ufs_ninode == 0 && ncsize == 0)) {
205 		cmn_err(CE_NOTE, "setting ufs_ninode to max value of %ld",
206 		    ufs_inode_max);
207 		ufs_ninode = ufs_inode_max;
208 	}
209 	/*
210 	 * Wait till third call of ufs_update to declare that no I/Os are
211 	 * going on. This allows deferred access times to be flushed to disk.
212 	 */
213 	ufs_iowait = v.v_autoup * hz * 2;
214 
215 	/*
216 	 * idle thread runs when 25% of ufs_ninode entries are on the queue
217 	 */
218 	if (ufs_idle_max == 0)
219 		ufs_idle_max = ufs_ninode >> 2;
220 	if (ufs_idle_max < UFS_IDLE_MAX)
221 		ufs_idle_max = UFS_IDLE_MAX;
222 	if (ufs_idle_max > ufs_ninode)
223 		ufs_idle_max = ufs_ninode;
224 	/*
225 	 * This is really a misnomer, it is ufs_queue_init
226 	 */
227 	ufs_thread_init(&ufs_idle_q, ufs_idle_max);
228 	ufs_thread_start(&ufs_idle_q, ufs_thread_idle, NULL);
229 
230 	/*
231 	 * global hlock thread
232 	 */
233 	ufs_thread_init(&ufs_hlock, 1);
234 	ufs_thread_start(&ufs_hlock, ufs_thread_hlock, NULL);
235 
236 	ihinit();
237 	qtinit();
238 	ins.in_maxsize.value.ul = ufs_ninode;
239 	if ((ufs_inode_kstat = kstat_create("ufs", 0, "inode_cache", "ufs",
240 	    KSTAT_TYPE_NAMED, sizeof (ins) / sizeof (kstat_named_t),
241 	    KSTAT_FLAG_VIRTUAL)) != NULL) {
242 		ufs_inode_kstat->ks_data = (void *)&ins;
243 		ufs_inode_kstat->ks_update = ufs_inode_kstat_update;
244 		kstat_install(ufs_inode_kstat);
245 	}
246 	ufsfx_init();		/* fix-on-panic initialization */
247 	si_cache_init();
248 	ufs_directio_init();
249 	lufs_init();
250 	mutex_init(&ufs_iuniqtime_lock, NULL, MUTEX_DEFAULT, NULL);
251 }
252 
253 /* ARGSUSED */
254 static int
255 ufs_inode_cache_constructor(void *buf, void *cdrarg, int kmflags)
256 {
257 	struct inode *ip = buf;
258 	struct vnode *vp;
259 
260 	rw_init(&ip->i_rwlock, NULL, RW_DEFAULT, NULL);
261 	rw_init(&ip->i_contents, NULL, RW_DEFAULT, NULL);
262 	mutex_init(&ip->i_tlock, NULL, MUTEX_DEFAULT, NULL);
263 	dnlc_dir_init(&ip->i_danchor);
264 
265 	cv_init(&ip->i_wrcv, NULL, CV_DRIVER, NULL);
266 
267 	vp = vn_alloc(KM_SLEEP);
268 	ip->i_vnode = vp;
269 
270 	vn_setops(vp, ufs_vnodeops);
271 	vp->v_data = (caddr_t)ip;
272 
273 	return (0);
274 }
275 
276 /* ARGSUSED */
277 static void
278 ufs_inode_cache_destructor(void *buf, void *cdrarg)
279 {
280 	struct inode *ip = buf;
281 	struct vnode *vp;
282 
283 	vp = ITOV(ip);
284 
285 	rw_destroy(&ip->i_rwlock);
286 	rw_destroy(&ip->i_contents);
287 
288 	mutex_destroy(&ip->i_tlock);
289 	if (vp->v_type == VDIR) {
290 		dnlc_dir_fini(&ip->i_danchor);
291 	}
292 
293 	cv_destroy(&ip->i_wrcv);
294 
295 	vn_free(vp);
296 }
297 
298 /*
299  * Initialize hash links for inodes
300  * and build inode free list.
301  */
302 void
303 ihinit(void)
304 {
305 	int i;
306 	union	ihead *ih = ihead;
307 
308 	mutex_init(&ufs_scan_lock, NULL, MUTEX_DEFAULT, NULL);
309 
310 	inohsz = 1 << highbit(ufs_ninode / ino_hashlen);
311 	ihead = kmem_zalloc(inohsz * sizeof (union ihead), KM_SLEEP);
312 	ih_lock = kmem_zalloc(inohsz * sizeof (kmutex_t), KM_SLEEP);
313 
314 	for (i = 0, ih = ihead; i < inohsz; i++,  ih++) {
315 		ih->ih_head[0] = ih;
316 		ih->ih_head[1] = ih;
317 		mutex_init(&ih_lock[i], NULL, MUTEX_DEFAULT, NULL);
318 	}
319 	inode_cache = kmem_cache_create("ufs_inode_cache",
320 	    sizeof (struct inode), 0, ufs_inode_cache_constructor,
321 	    ufs_inode_cache_destructor, ufs_inode_cache_reclaim,
322 	    NULL, NULL, 0);
323 }
324 
325 /*
326  * Free an inode structure
327  */
328 void
329 ufs_free_inode(struct inode *ip)
330 {
331 	vn_invalid(ITOV(ip));
332 	kmem_cache_free(inode_cache, ip);
333 }
334 
335 /*
336  * Allocate an inode structure
337  */
338 struct inode *
339 ufs_alloc_inode(ufsvfs_t *ufsvfsp, ino_t ino)
340 {
341 	struct inode *ip;
342 	vnode_t *vp;
343 
344 	ip = kmem_cache_alloc(inode_cache, KM_SLEEP);
345 	/*
346 	 * at this point we have a newly allocated inode
347 	 */
348 	ip->i_freef = ip;
349 	ip->i_freeb = ip;
350 	ip->i_flag = IREF;
351 	ip->i_seq = 0xFF;	/* Unique initial value */
352 	ip->i_dev = ufsvfsp->vfs_dev;
353 	ip->i_ufsvfs = ufsvfsp;
354 	ip->i_devvp = ufsvfsp->vfs_devvp;
355 	ip->i_number = ino;
356 	ip->i_diroff = 0;
357 	ip->i_nextr = 0;
358 	ip->i_map = NULL;
359 	ip->i_rdev = 0;
360 	ip->i_writes = 0;
361 	ip->i_mode = 0;
362 	ip->i_delaylen = 0;
363 	ip->i_delayoff = 0;
364 	ip->i_nextrio = 0;
365 	ip->i_ufs_acl = NULL;
366 	ip->i_cflags = 0;
367 	ip->i_mapcnt = 0;
368 	ip->i_dquot = NULL;
369 	ip->i_cachedir = CD_ENABLED;
370 	ip->i_writer = NULL;
371 
372 	/*
373 	 * the vnode for this inode was allocated by the constructor
374 	 */
375 	vp = ITOV(ip);
376 	vn_reinit(vp);
377 	if (ino == (ino_t)UFSROOTINO)
378 		vp->v_flag = VROOT;
379 	vp->v_vfsp = ufsvfsp->vfs_vfs;
380 	vn_exists(vp);
381 	return (ip);
382 }
383 
384 /*
385  * Look up an inode by device, inumber.  If it is in core (in the
386  * inode structure), honor the locking protocol.  If it is not in
387  * core, read it in from the specified device after freeing any pages.
388  * In all cases, a pointer to a VN_HELD inode structure is returned.
389  */
390 int
391 ufs_iget(struct vfs *vfsp, ino_t ino, struct inode **ipp, struct cred *cr)
392 {
393 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 0));
394 }
395 
396 /*
397  * A version of ufs_iget which returns only allocated, linked inodes.
398  * This is appropriate for any callers who do not expect a free inode.
399  */
400 int
401 ufs_iget_alloced(struct vfs *vfsp, ino_t ino, struct inode **ipp,
402     struct cred *cr)
403 {
404 	return (ufs_iget_internal(vfsp, ino, ipp, cr, 1));
405 }
406 
407 /*
408  * Set vnode attributes based on v_type, this should be called whenever
409  * an inode's i_mode is changed.
410  */
411 void
412 ufs_reset_vnode(vnode_t *vp)
413 {
414 	/*
415 	 * an old DBE hack
416 	 */
417 	if ((VTOI(vp)->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
418 		vp->v_flag |= VSWAPLIKE;
419 	else
420 		vp->v_flag &= ~VSWAPLIKE;
421 
422 	/*
423 	 * if not swap like and it's just a regular file, we want
424 	 * to maintain the vnode's pages sorted by clean/modified
425 	 * for faster sync'ing to disk
426 	 */
427 	if (vp->v_type == VREG)
428 		vp->v_flag |= VMODSORT;
429 	else
430 		vp->v_flag &= ~VMODSORT;
431 
432 	/*
433 	 * Is this an attribute hidden dir?
434 	 */
435 	if ((VTOI(vp)->i_mode & IFMT) == IFATTRDIR)
436 		vp->v_flag |= V_XATTRDIR;
437 	else
438 		vp->v_flag &= ~V_XATTRDIR;
439 }
440 
441 /*
442  * Shared implementation of ufs_iget and ufs_iget_alloced.  The 'validate'
443  * flag is used to distinguish the two; when true, we validate that the inode
444  * being retrieved looks like a linked and allocated inode.
445  */
446 /* ARGSUSED */
447 static int
448 ufs_iget_internal(struct vfs *vfsp, ino_t ino, struct inode **ipp,
449     struct cred *cr, int validate)
450 {
451 	struct inode *ip, *sp;
452 	union ihead *ih;
453 	kmutex_t *ihm;
454 	struct buf *bp;
455 	struct dinode *dp;
456 	struct vnode *vp;
457 	extern vfs_t EIO_vfs;
458 	int error;
459 	int ftype;	/* XXX - Remove later on */
460 	dev_t vfs_dev;
461 	struct ufsvfs *ufsvfsp;
462 	struct fs *fs;
463 	int hno;
464 	daddr_t bno;
465 	ulong_t ioff;
466 
467 	CPU_STATS_ADD_K(sys, ufsiget, 1);
468 
469 	/*
470 	 * Lookup inode in cache.
471 	 */
472 	vfs_dev = vfsp->vfs_dev;
473 	hno = INOHASH(ino);
474 	ih = &ihead[hno];
475 	ihm = &ih_lock[hno];
476 
477 again:
478 	mutex_enter(ihm);
479 	for (ip = ih->ih_chain[0]; ip != (struct inode *)ih; ip = ip->i_forw) {
480 		if (ino != ip->i_number || vfs_dev != ip->i_dev ||
481 		    (ip->i_flag & ISTALE))
482 			continue;
483 
484 		/*
485 		 * Found the interesting inode; hold it and drop the cache lock
486 		 */
487 		vp = ITOV(ip);	/* for locknest */
488 		VN_HOLD(vp);
489 		mutex_exit(ihm);
490 		rw_enter(&ip->i_contents, RW_READER);
491 
492 		/*
493 		 * if necessary, remove from idle list
494 		 */
495 		if ((ip->i_flag & IREF) == 0) {
496 			if (ufs_rmidle(ip))
497 				VN_RELE(vp);
498 		}
499 
500 		/*
501 		 * Could the inode be read from disk?
502 		 */
503 		if (ip->i_flag & ISTALE) {
504 			rw_exit(&ip->i_contents);
505 			VN_RELE(vp);
506 			goto again;
507 		}
508 
509 		ins.in_hits.value.ul++;
510 		*ipp = ip;
511 
512 		/*
513 		 * Reset the vnode's attribute flags
514 		 */
515 		mutex_enter(&vp->v_lock);
516 		ufs_reset_vnode(vp);
517 		mutex_exit(&vp->v_lock);
518 
519 		rw_exit(&ip->i_contents);
520 
521 		return (0);
522 	}
523 	mutex_exit(ihm);
524 
525 	/*
526 	 * Inode was not in cache.
527 	 *
528 	 * Allocate a new entry
529 	 */
530 	ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
531 	fs = ufsvfsp->vfs_fs;
532 
533 	ip = ufs_alloc_inode(ufsvfsp, ino);
534 	vp = ITOV(ip);
535 
536 	bno = fsbtodb(fs, itod(fs, ino));
537 	ioff = (sizeof (struct dinode)) * (itoo(fs, ino));
538 	ip->i_doff = (offset_t)ioff + ldbtob(bno);
539 
540 	/*
541 	 * put a place holder in the cache (if not already there)
542 	 */
543 	mutex_enter(ihm);
544 	for (sp = ih->ih_chain[0]; sp != (struct inode *)ih; sp = sp->i_forw)
545 		if (ino == sp->i_number && vfs_dev == sp->i_dev &&
546 		    ((sp->i_flag & ISTALE) == 0)) {
547 			mutex_exit(ihm);
548 			ufs_free_inode(ip);
549 			goto again;
550 		}
551 	/*
552 	 * It would be nice to ASSERT(RW_READ_HELD(&ufsvfsp->vfs_dqrwlock))
553 	 * here, but if we do, then shadow inode allocations panic the
554 	 * system.  We don't have to hold vfs_dqrwlock for shadow inodes
555 	 * and the ufs_iget() parameters don't tell us what we are getting
556 	 * so we have no way of knowing this is a ufs_iget() call from
557 	 * a ufs_ialloc() call for a shadow inode.
558 	 */
559 	rw_enter(&ip->i_contents, RW_WRITER);
560 	insque(ip, ih);
561 	mutex_exit(ihm);
562 	/*
563 	 * read the dinode
564 	 */
565 	bp = UFS_BREAD(ufsvfsp, ip->i_dev, bno, (int)fs->fs_bsize);
566 
567 	/*
568 	 * Check I/O errors
569 	 */
570 	error = ((bp->b_flags & B_ERROR) ? geterror(bp) : 0);
571 	if (error) {
572 		brelse(bp);
573 		ip->i_flag |= ISTALE;	/* in case someone is looking it up */
574 		rw_exit(&ip->i_contents);
575 		vp->v_vfsp = &EIO_vfs;
576 		VN_RELE(vp);
577 		return (error);
578 	}
579 	/*
580 	 * initialize the inode's dinode
581 	 */
582 	dp = (struct dinode *)(ioff + bp->b_un.b_addr);
583 	ip->i_ic = dp->di_ic;			/* structure assignment */
584 	brelse(bp);
585 
586 	/*
587 	 * Maintain compatibility with Solaris 1.x UFS
588 	 */
589 	if (ip->i_suid != UID_LONG)
590 		ip->i_uid = ip->i_suid;
591 	if (ip->i_sgid != GID_LONG)
592 		ip->i_gid = ip->i_sgid;
593 
594 	ftype = ip->i_mode & IFMT;
595 	if (ftype == IFBLK || ftype == IFCHR) {
596 		dev_t dv;
597 		uint_t top16 = ip->i_ordev & 0xffff0000u;
598 
599 		if (top16 == 0 || top16 == 0xffff0000u)
600 			dv = expdev(ip->i_ordev);
601 		else
602 			dv = expldev(ip->i_ordev);
603 		vp->v_rdev = ip->i_rdev = dv;
604 	}
605 
606 	/*
607 	 * if our caller only expects allocated inodes, verify that
608 	 * this inode looks good; throw it out if it's bad.
609 	 */
610 	if (validate) {
611 		if ((ftype == 0) || (ip->i_nlink <= 0)) {
612 			ip->i_flag |= ISTALE;
613 			rw_exit(&ip->i_contents);
614 			vp->v_vfsp = &EIO_vfs;
615 			VN_RELE(vp);
616 			cmn_err(CE_NOTE,
617 			    "%s: unexpected free inode %d, run fsck(1M)%s",
618 			    fs->fs_fsmnt, (int)ino,
619 			    (TRANS_ISTRANS(ufsvfsp) ? " -o f" : ""));
620 			return (EIO);
621 		}
622 	}
623 
624 	/*
625 	 * Finish initializing the vnode, special handling for shadow inodes
626 	 * because IFTOVT() will produce a v_type of VNON which is not what we
627 	 * want, set v_type to VREG explicitly in that case.
628 	 */
629 	if (ftype == IFSHAD) {
630 		vp->v_type = VREG;
631 	} else {
632 		vp->v_type = IFTOVT((mode_t)ip->i_mode);
633 	}
634 
635 	ufs_reset_vnode(vp);
636 
637 	/*
638 	 * read the shadow
639 	 */
640 	if (ftype != 0 && ip->i_shadow != 0) {
641 		if ((error = ufs_si_load(ip, cr)) != 0) {
642 			ip->i_flag |= ISTALE;
643 			ip->i_ufs_acl = NULL;
644 			rw_exit(&ip->i_contents);
645 			vp->v_vfsp = &EIO_vfs;
646 			VN_RELE(vp);
647 			return (error);
648 		}
649 	}
650 
651 	/*
652 	 * Only attach quota information if the inode has a type and if
653 	 * that type is not a shadow inode.
654 	 */
655 	if (ip->i_mode && ((ip->i_mode & IFMT) != IFSHAD) &&
656 	    ((ip->i_mode & IFMT) != IFATTRDIR)) {
657 		ip->i_dquot = getinoquota(ip);
658 	}
659 	TRANS_MATA_IGET(ufsvfsp, ip);
660 	*ipp = ip;
661 	rw_exit(&ip->i_contents);
662 
663 	return (0);
664 }
665 
666 /*
667  * Vnode is no longer referenced, write the inode out
668  * and if necessary, truncate and deallocate the file.
669  */
670 void
671 ufs_iinactive(struct inode *ip)
672 {
673 	int		front;
674 	struct inode	*iq;
675 	struct inode	*hip;
676 	struct ufs_q	*uq;
677 	struct vnode	*vp = ITOV(ip);
678 	struct ufsvfs   *ufsvfsp = ip->i_ufsvfs;
679 	struct ufs_delq_info *delq_info = &ufsvfsp->vfs_delete_info;
680 
681 	/*
682 	 * Because the vnode type might have been changed,
683 	 * the dnlc_dir_purge must be called unconditionally.
684 	 */
685 	dnlc_dir_purge(&ip->i_danchor);
686 
687 	/*
688 	 * Get exclusive access to inode data.
689 	 */
690 	rw_enter(&ip->i_contents, RW_WRITER);
691 	ASSERT(ip->i_flag & IREF);
692 
693 	/*
694 	 * Make sure no one reclaimed the inode before we put it on
695 	 * the freelist or destroy it. We keep our 'hold' on the vnode
696 	 * from vn_rele until we are ready to do something with the inode.
697 	 *
698 	 * Pageout may put a VN_HOLD/VN_RELE at anytime during this
699 	 * operation via an async putpage, so we must make sure
700 	 * we don't free/destroy the inode more than once. ufs_iget
701 	 * may also put a VN_HOLD on the inode before it grabs
702 	 * the i_contents lock. This is done so we don't free
703 	 * an inode that a thread is waiting on.
704 	 */
705 	mutex_enter(&vp->v_lock);
706 
707 	if (vp->v_count > 1) {
708 		vp->v_count--;  /* release our hold from vn_rele */
709 		mutex_exit(&vp->v_lock);
710 		rw_exit(&ip->i_contents);
711 		return;
712 	}
713 	mutex_exit(&vp->v_lock);
714 
715 	/*
716 	 * For umount case: if ufsvfs ptr is NULL, the inode is unhashed
717 	 * and clean.  It can be safely destroyed (cyf).
718 	 */
719 	if (ip->i_ufsvfs == NULL) {
720 		rw_exit(&ip->i_contents);
721 		ufs_si_del(ip);
722 		ASSERT((vp->v_type == VCHR) || !vn_has_cached_data(vp));
723 		ufs_free_inode(ip);
724 		return;
725 	}
726 
727 	/*
728 	 * queue idle inode to appropriate thread. Will check v_count == 1
729 	 * prior to putting this on the appropriate queue.
730 	 * Stale inodes will be unhashed and freed by the ufs idle thread
731 	 * in ufs_idle_free()
732 	 */
733 	front = 1;
734 	if ((ip->i_flag & ISTALE) == 0 && ip->i_fs->fs_ronly == 0 &&
735 	    ip->i_mode && ip->i_nlink <= 0) {
736 		/*
737 		 * Mark the i_flag to indicate that inode is being deleted.
738 		 * This flag will be cleared when the deletion is complete.
739 		 * This prevents nfs from sneaking in via ufs_vget() while
740 		 * the delete is in progress (bugid 1242481).
741 		 */
742 		ip->i_flag |= IDEL;
743 
744 		/*
745 		 * NOIDEL means that deletes are not allowed at this time;
746 		 * whoever resets NOIDEL will also send this inode back
747 		 * through ufs_iinactive.  IREF remains set.
748 		 */
749 		if (ULOCKFS_IS_NOIDEL(ITOUL(ip))) {
750 			mutex_enter(&vp->v_lock);
751 			vp->v_count--;
752 			mutex_exit(&vp->v_lock);
753 			rw_exit(&ip->i_contents);
754 			return;
755 		}
756 		if (!TRANS_ISTRANS(ip->i_ufsvfs)) {
757 			rw_exit(&ip->i_contents);
758 			ufs_delete(ip->i_ufsvfs, ip, 0);
759 			return;
760 		}
761 
762 		/* queue to delete thread; IREF remains set */
763 		ins.in_qfree.value.ul++;
764 		uq = &ip->i_ufsvfs->vfs_delete;
765 
766 		mutex_enter(&uq->uq_mutex);
767 
768 		/* add to q */
769 		if ((iq = uq->uq_ihead) != 0) {
770 			ip->i_freef = iq;
771 			ip->i_freeb = iq->i_freeb;
772 			iq->i_freeb->i_freef = ip;
773 			iq->i_freeb = ip;
774 			if (front)
775 				uq->uq_ihead = ip;
776 		} else {
777 			uq->uq_ihead = ip;
778 			ip->i_freef = ip;
779 			ip->i_freeb = ip;
780 		}
781 
782 		delq_info->delq_unreclaimed_files += 1;
783 		delq_info->delq_unreclaimed_blocks += ip->i_blocks;
784 	} else {
785 		/*
786 		 * queue to idle thread
787 		 *  Check the v_count == 1 again.
788 		 *
789 		 */
790 		mutex_enter(&vp->v_lock);
791 		if (vp->v_count > 1) {
792 			vp->v_count--;  /* release our hold from vn_rele */
793 			mutex_exit(&vp->v_lock);
794 			rw_exit(&ip->i_contents);
795 			return;
796 		}
797 		mutex_exit(&vp->v_lock);
798 		uq = &ufs_idle_q;
799 
800 		/*
801 		 * useful iff it has pages or is a fastsymlink; otherwise junk
802 		 */
803 		mutex_enter(&uq->uq_mutex);
804 
805 		/* clear IREF means `on idle list' */
806 		ip->i_flag &= ~(IREF | IDIRECTIO);
807 
808 		if (vn_has_cached_data(vp) || ip->i_flag & IFASTSYMLNK) {
809 			ins.in_frback.value.ul++;
810 			hip = (inode_t *)&ufs_useful_iq[IQHASH(ip)];
811 			ufs_nuseful_iq++;
812 		} else {
813 			ins.in_frfront.value.ul++;
814 			hip = (inode_t *)&ufs_junk_iq[IQHASH(ip)];
815 			ip->i_flag |= IJUNKIQ;
816 			ufs_njunk_iq++;
817 		}
818 		ip->i_freef = hip;
819 		ip->i_freeb = hip->i_freeb;
820 		hip->i_freeb->i_freef = ip;
821 		hip->i_freeb = ip;
822 	}
823 
824 	/* wakeup thread(s) if q is overfull */
825 	if (++uq->uq_ne == uq->uq_lowat)
826 		cv_broadcast(&uq->uq_cv);
827 
828 	/* all done, release the q and inode */
829 	mutex_exit(&uq->uq_mutex);
830 	rw_exit(&ip->i_contents);
831 }
832 
833 /*
834  * Check accessed and update flags on an inode structure.
835  * If any are on, update the inode with the (unique) current time.
836  * If waitfor is given, insure I/O order so wait for write to complete.
837  */
838 void
839 ufs_iupdat(struct inode *ip, int waitfor)
840 {
841 	struct buf	*bp;
842 	struct fs	*fp;
843 	struct dinode	*dp;
844 	struct ufsvfs	*ufsvfsp 	= ip->i_ufsvfs;
845 	int 		i;
846 	int		do_trans_times;
847 	ushort_t	flag;
848 	o_uid_t		suid;
849 	o_gid_t		sgid;
850 
851 	/*
852 	 * This function is now safe to be called with either the reader
853 	 * or writer i_contents lock.
854 	 */
855 	ASSERT(RW_LOCK_HELD(&ip->i_contents));
856 
857 	/*
858 	 * Return if file system has been forcibly umounted.
859 	 */
860 	if (ufsvfsp == NULL)
861 		return;
862 
863 	flag = ip->i_flag;	/* Atomic read */
864 	/*
865 	 * We better not update the disk inode from a stale inode.
866 	 */
867 	if (flag & ISTALE)
868 		return;
869 
870 	fp = ip->i_fs;
871 
872 	if ((flag & (IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG)) != 0) {
873 		if (fp->fs_ronly) {
874 			mutex_enter(&ip->i_tlock);
875 			ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
876 			mutex_exit(&ip->i_tlock);
877 			return;
878 		}
879 		/*
880 		 * fs is active while metadata is being written
881 		 */
882 		mutex_enter(&ufsvfsp->vfs_lock);
883 		ufs_notclean(ufsvfsp);
884 		/*
885 		 * get the dinode
886 		 */
887 		bp = UFS_BREAD(ufsvfsp, ip->i_dev,
888 		    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)),
889 		    (int)fp->fs_bsize);
890 		if (bp->b_flags & B_ERROR) {
891 			mutex_enter(&ip->i_tlock);
892 			ip->i_flag &=
893 			    ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
894 			mutex_exit(&ip->i_tlock);
895 			brelse(bp);
896 			return;
897 		}
898 		/*
899 		 * munge inode fields
900 		 */
901 		mutex_enter(&ip->i_tlock);
902 		ITIMES_NOLOCK(ip);
903 		do_trans_times = ((ip->i_flag & (IMOD|IMODACC)) == IMODACC);
904 		ip->i_flag &= ~(IUPD|IACC|ICHG|IMOD|IMODACC|IATTCHG);
905 		mutex_exit(&ip->i_tlock);
906 
907 		/*
908 		 * For reads and concurrent re-writes, no deltas were
909 		 * entered for the access time changes - do it now.
910 		 */
911 		if (do_trans_times) {
912 			TRANS_INODE_TIMES(ufsvfsp, ip);
913 		}
914 
915 		/*
916 		 * For SunOS 5.0->5.4, these lines below read:
917 		 *
918 		 * suid = (ip->i_uid > MAXUID) ? UID_LONG : ip->i_uid;
919 		 * sgid = (ip->i_gid > MAXUID) ? GID_LONG : ip->i_gid;
920 		 *
921 		 * where MAXUID was set to 60002.  This was incorrect -
922 		 * the uids should have been constrained to what fitted into
923 		 * a 16-bit word.
924 		 *
925 		 * This means that files from 4.x filesystems that have an
926 		 * i_suid field larger than 60002 will have that field
927 		 * changed to 65535.
928 		 *
929 		 * Security note: 4.x UFS could never create a i_suid of
930 		 * UID_LONG since that would've corresponded to -1.
931 		 */
932 		suid = (ulong_t)ip->i_uid > (ulong_t)USHRT_MAX ?
933 		    UID_LONG : ip->i_uid;
934 		sgid = (ulong_t)ip->i_gid > (ulong_t)USHRT_MAX ?
935 		    GID_LONG : ip->i_gid;
936 
937 		if ((ip->i_suid != suid) || (ip->i_sgid != sgid)) {
938 			ip->i_suid = suid;
939 			ip->i_sgid = sgid;
940 			TRANS_INODE(ufsvfsp, ip);
941 		}
942 
943 		if ((ip->i_mode & IFMT) == IFBLK ||
944 		    (ip->i_mode & IFMT) == IFCHR) {
945 			dev_t d = ip->i_rdev;
946 			dev32_t dev32;
947 
948 			/*
949 			 * load first direct block only if special device
950 			 */
951 			if (!cmpldev(&dev32, d)) {
952 				/*
953 				 * We panic here because there's "no way"
954 				 * we should have been able to create a large
955 				 * inode with a large dev_t.  Earlier layers
956 				 * should've caught this.
957 				 */
958 				panic("ip %p: i_rdev too big", (void *)ip);
959 			}
960 
961 			if (dev32 & ~((O_MAXMAJ << L_BITSMINOR32) | O_MAXMIN)) {
962 				ip->i_ordev = dev32;	/* can't use old fmt. */
963 			} else {
964 				ip->i_ordev = cmpdev(d);
965 			}
966 		}
967 
968 		/*
969 		 * copy inode to dinode (zero fastsymlnk in dinode)
970 		 */
971 		dp = (struct dinode *)bp->b_un.b_addr + itoo(fp, ip->i_number);
972 		dp->di_ic = ip->i_ic;	/* structure assignment */
973 		if (flag & IFASTSYMLNK) {
974 			for (i = 1; i < NDADDR; i++)
975 				dp->di_db[i] = 0;
976 			for (i = 0; i < NIADDR; i++)
977 				dp->di_ib[i] = 0;
978 		}
979 		if (TRANS_ISTRANS(ufsvfsp)) {
980 			/*
981 			 * Pass only a sector size buffer containing
982 			 * the inode, otherwise when the buffer is copied
983 			 * into a cached roll buffer then too much memory
984 			 * gets consumed if 8KB inode buffers are passed.
985 			 */
986 			TRANS_LOG(ufsvfsp, (caddr_t)dp, ip->i_doff,
987 			    sizeof (struct dinode),
988 			    (caddr_t)P2ALIGN((uintptr_t)dp, DEV_BSIZE),
989 			    DEV_BSIZE);
990 
991 			brelse(bp);
992 		} else if (waitfor && (ip->i_ufsvfs->vfs_dio == 0)) {
993 			UFS_BRWRITE(ufsvfsp, bp);
994 
995 			/*
996 			 * Synchronous write has guaranteed that inode
997 			 * has been written on disk so clear the flag
998 			 */
999 			mutex_enter(&ip->i_tlock);
1000 			ip->i_flag &= ~IBDWRITE;
1001 			mutex_exit(&ip->i_tlock);
1002 		} else {
1003 			bdrwrite(bp);
1004 
1005 			/*
1006 			 * This write hasn't guaranteed that inode has been
1007 			 * written on the disk.
1008 			 * Since, all updat flags on inode are cleared, we must
1009 			 * remember the condition in case inode is to be updated
1010 			 * synchronously later (e.g.- fsync()/fdatasync())
1011 			 * and inode has not been modified yet.
1012 			 */
1013 			mutex_enter(&ip->i_tlock);
1014 			ip->i_flag |= IBDWRITE;
1015 			mutex_exit(&ip->i_tlock);
1016 		}
1017 	} else {
1018 		/*
1019 		 * In case previous inode update was done asynchronously
1020 		 * (IBDWRITE) and this inode update request wants guaranteed
1021 		 * (synchronous) disk update, flush the inode.
1022 		 */
1023 		if (waitfor && (flag & IBDWRITE)) {
1024 			blkflush(ip->i_dev,
1025 			    (daddr_t)fsbtodb(fp, itod(fp, ip->i_number)));
1026 			mutex_enter(&ip->i_tlock);
1027 			ip->i_flag &= ~IBDWRITE;
1028 			mutex_exit(&ip->i_tlock);
1029 		}
1030 	}
1031 }
1032 
1033 #define	SINGLE	0	/* index of single indirect block */
1034 #define	DOUBLE	1	/* index of double indirect block */
1035 #define	TRIPLE	2	/* index of triple indirect block */
1036 
1037 /*
1038  * Release blocks associated with the inode ip and
1039  * stored in the indirect block bn.  Blocks are free'd
1040  * in LIFO order up to (but not including) lastbn.  If
1041  * level is greater than SINGLE, the block is an indirect
1042  * block and recursive calls to indirtrunc must be used to
1043  * cleanse other indirect blocks.
1044  *
1045  * N.B.: triple indirect blocks are untested.
1046  */
1047 static long
1048 indirtrunc(struct inode *ip, daddr_t bn, daddr_t lastbn, int level, int flags)
1049 {
1050 	int i;
1051 	struct buf *bp, *copy;
1052 	daddr32_t *bap;
1053 	struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
1054 	struct fs *fs = ufsvfsp->vfs_fs;
1055 	daddr_t nb, last;
1056 	long factor;
1057 	int blocksreleased = 0, nblocks;
1058 
1059 	ASSERT(RW_WRITE_HELD(&ip->i_contents));
1060 	/*
1061 	 * Calculate index in current block of last
1062 	 * block to be kept.  -1 indicates the entire
1063 	 * block so we need not calculate the index.
1064 	 */
1065 	factor = 1;
1066 	for (i = SINGLE; i < level; i++)
1067 		factor *= NINDIR(fs);
1068 	last = lastbn;
1069 	if (lastbn > 0)
1070 		last /= factor;
1071 	nblocks = btodb(fs->fs_bsize);
1072 	/*
1073 	 * Get buffer of block pointers, zero those
1074 	 * entries corresponding to blocks to be free'd,
1075 	 * and update on disk copy first.
1076 	 * *Unless* the root pointer has been synchronously
1077 	 * written to disk.  If nothing points to this
1078 	 * indirect block then don't bother zero'ing and
1079 	 * writing it.
1080 	 */
1081 	bp = UFS_BREAD(ufsvfsp,
1082 	    ip->i_dev, (daddr_t)fsbtodb(fs, bn), (int)fs->fs_bsize);
1083 	if (bp->b_flags & B_ERROR) {
1084 		brelse(bp);
1085 		return (0);
1086 	}
1087 	bap = bp->b_un.b_daddr;
1088 	if ((flags & I_CHEAP) == 0) {
1089 		uint_t	zb;
1090 
1091 		zb = (uint_t)((NINDIR(fs) - (last + 1)) * sizeof (daddr32_t));
1092 
1093 		if (zb) {
1094 			/*
1095 			 * push any data into the log before we zero it
1096 			 */
1097 			if (bp->b_flags & B_DELWRI)
1098 				TRANS_LOG(ufsvfsp, (caddr_t)bap,
1099 				    ldbtob(bp->b_blkno), bp->b_bcount,
1100 				    bp->b_un.b_addr, bp->b_bcount);
1101 			copy = ngeteblk(fs->fs_bsize);
1102 			bcopy((caddr_t)bap, (caddr_t)copy->b_un.b_daddr,
1103 			    (uint_t)fs->fs_bsize);
1104 			bzero((caddr_t)&bap[last + 1], zb);
1105 
1106 			TRANS_BUF(ufsvfsp,
1107 			    (caddr_t)&bap[last + 1] - (caddr_t)bap,
1108 			    zb, bp, DT_ABZERO);
1109 
1110 			UFS_BRWRITE(ufsvfsp, bp);
1111 			bp = copy, bap = bp->b_un.b_daddr;
1112 		}
1113 	} else {
1114 		/* make sure write retries are also cleared */
1115 		bp->b_flags &= ~(B_DELWRI | B_RETRYWRI);
1116 		bp->b_flags |= B_STALE | B_AGE;
1117 	}
1118 
1119 	/*
1120 	 * Recursively free totally unused blocks.
1121 	 */
1122 	flags |= I_CHEAP;
1123 	for (i = NINDIR(fs) - 1; i > last; i--) {
1124 		nb = bap[i];
1125 		if (nb == 0)
1126 			continue;
1127 		if (level > SINGLE) {
1128 			blocksreleased +=
1129 			    indirtrunc(ip, nb, (daddr_t)-1, level - 1, flags);
1130 			free(ip, nb, (off_t)fs->fs_bsize, flags | I_IBLK);
1131 		} else
1132 			free(ip, nb, (off_t)fs->fs_bsize, flags);
1133 		blocksreleased += nblocks;
1134 	}
1135 	flags &= ~I_CHEAP;
1136 
1137 	/*
1138 	 * Recursively free last partial block.
1139 	 */
1140 	if (level > SINGLE && lastbn >= 0) {
1141 		last = lastbn % factor;
1142 		nb = bap[i];
1143 		if (nb != 0)
1144 			blocksreleased +=
1145 			    indirtrunc(ip, nb, last, level - 1, flags);
1146 	}
1147 	brelse(bp);
1148 	return (blocksreleased);
1149 }
1150 
1151 /*
1152  * Truncate the inode ip to at most length size.
1153  * Free affected disk blocks -- the blocks of the
1154  * file are removed in reverse order.
1155  *
1156  * N.B.: triple indirect blocks are untested.
1157  */
1158 static int i_genrand = 1234;
1159 int
1160 ufs_itrunc(struct inode *oip, u_offset_t length, int flags, cred_t *cr)
1161 {
1162 	struct fs *fs = oip->i_fs;
1163 	struct ufsvfs *ufsvfsp = oip->i_ufsvfs;
1164 	struct inode *ip;
1165 	daddr_t lastblock;
1166 	off_t bsize;
1167 	int boff;
1168 	daddr_t bn, lastiblock[NIADDR];
1169 	int level;
1170 	long nblocks, blocksreleased = 0;
1171 	int i;
1172 	ushort_t mode;
1173 	struct inode tip;
1174 	int err;
1175 	u_offset_t maxoffset = (ufsvfsp->vfs_lfflags & UFS_LARGEFILES) ?
1176 	    (UFS_MAXOFFSET_T) : (MAXOFF32_T);
1177 
1178 	/*
1179 	 * Shadow inodes do not need to hold the vfs_dqrwlock lock. Most
1180 	 * other uses need the reader lock. opendq() holds the writer lock.
1181 	 */
1182 	ASSERT((oip->i_mode & IFMT) == IFSHAD ||
1183 	    RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
1184 	ASSERT(RW_WRITE_HELD(&oip->i_contents));
1185 	/*
1186 	 * We only allow truncation of regular files and directories
1187 	 * to arbitrary lengths here.  In addition, we allow symbolic
1188 	 * links to be truncated only to zero length.  Other inode
1189 	 * types cannot have their length set here.  Disk blocks are
1190 	 * being dealt with - especially device inodes where
1191 	 * ip->i_ordev is actually being stored in ip->i_db[0]!
1192 	 */
1193 	TRANS_INODE(ufsvfsp, oip);
1194 	mode = oip->i_mode & IFMT;
1195 	if (flags & I_FREE) {
1196 		i_genrand *= 16843009;  /* turns into shift and adds */
1197 		i_genrand++;
1198 		oip->i_gen += ((i_genrand + lbolt) & 0xffff) + 1;
1199 		oip->i_flag |= ICHG |IUPD;
1200 		oip->i_seq++;
1201 		if (length == oip->i_size)
1202 			return (0);
1203 		flags |= I_CHEAP;
1204 	}
1205 	if (mode == IFIFO)
1206 		return (0);
1207 	if (mode != IFREG && mode != IFDIR && mode != IFATTRDIR &&
1208 	    !(mode == IFLNK && length == (offset_t)0) && mode != IFSHAD)
1209 		return (EINVAL);
1210 	if (length > maxoffset)
1211 		return (EFBIG);
1212 	if ((mode == IFDIR) || (mode == IFATTRDIR))
1213 		flags |= I_DIR;
1214 	if (mode == IFSHAD)
1215 		flags |= I_SHAD;
1216 	if (oip == ufsvfsp->vfs_qinod)
1217 		flags |= I_QUOTA;
1218 	if (length == oip->i_size) {
1219 		/* update ctime and mtime to please POSIX tests */
1220 		oip->i_flag |= ICHG |IUPD;
1221 		oip->i_seq++;
1222 		if (length == 0) {
1223 			/* nothing to cache so clear the flag */
1224 			oip->i_flag &= ~IFASTSYMLNK;
1225 		}
1226 		return (0);
1227 	}
1228 	/* wipe out fast symlink till next access */
1229 	if (oip->i_flag & IFASTSYMLNK) {
1230 		int j;
1231 
1232 		ASSERT(ITOV(oip)->v_type == VLNK);
1233 
1234 		oip->i_flag &= ~IFASTSYMLNK;
1235 
1236 		for (j = 1; j < NDADDR; j++)
1237 			oip->i_db[j] = 0;
1238 		for (j = 0; j < NIADDR; j++)
1239 			oip->i_ib[j] = 0;
1240 	}
1241 
1242 	boff = (int)blkoff(fs, length);
1243 
1244 	if (length > oip->i_size) {
1245 		/*
1246 		 * Trunc up case.  BMAPALLOC will insure that the right blocks
1247 		 * are allocated.  This includes extending the old frag to a
1248 		 * full block (if needed) in addition to doing any work
1249 		 * needed for allocating the last block.
1250 		 */
1251 		if (boff == 0)
1252 			err = BMAPALLOC(oip, length - 1, (int)fs->fs_bsize, cr);
1253 		else
1254 			err = BMAPALLOC(oip, length - 1, boff, cr);
1255 
1256 		if (err == 0) {
1257 			/*
1258 			 * Save old size and set inode's size now
1259 			 * so that we don't cause too much of the
1260 			 * file to be zero'd and pushed.
1261 			 */
1262 			u_offset_t osize = oip->i_size;
1263 			oip->i_size  = length;
1264 			/*
1265 			 * Make sure we zero out the remaining bytes of
1266 			 * the page in case a mmap scribbled on it. We
1267 			 * can't prevent a mmap from writing beyond EOF
1268 			 * on the last page of a file.
1269 			 *
1270 			 */
1271 			if ((boff = (int)blkoff(fs, osize)) != 0) {
1272 				bsize = (int)lblkno(fs, osize - 1) >= NDADDR ?
1273 				    fs->fs_bsize : fragroundup(fs, boff);
1274 				pvn_vpzero(ITOV(oip), osize,
1275 				    (size_t)(bsize - boff));
1276 			}
1277 			oip->i_flag |= ICHG|IATTCHG;
1278 			oip->i_seq++;
1279 			ITIMES_NOLOCK(oip);
1280 			/*
1281 			 * MAXOFF32_T is old 2GB size limit. If
1282 			 * this operation caused a large file to be
1283 			 * created, turn on the superblock flag
1284 			 * and update the superblock, if the flag
1285 			 * is not already on.
1286 			 */
1287 			if ((length > (u_offset_t)MAXOFF32_T) &&
1288 			    !(fs->fs_flags & FSLARGEFILES)) {
1289 				ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1290 				mutex_enter(&ufsvfsp->vfs_lock);
1291 				fs->fs_flags |= FSLARGEFILES;
1292 				ufs_sbwrite(ufsvfsp);
1293 				mutex_exit(&ufsvfsp->vfs_lock);
1294 			}
1295 		}
1296 
1297 		return (err);
1298 	}
1299 
1300 	/*
1301 	 * Update the pages of the file.  If the file is not being
1302 	 * truncated to a block boundary, the contents of the
1303 	 * pages following the end of the file must be zero'ed
1304 	 * in case it ever become accessible again because
1305 	 * of subsequent file growth.
1306 	 */
1307 	if (boff == 0) {
1308 		(void) pvn_vplist_dirty(ITOV(oip), length, ufs_putapage,
1309 		    B_INVAL | B_TRUNC, CRED());
1310 	} else {
1311 		/*
1312 		 * Make sure that the last block is properly allocated.
1313 		 * We only really have to do this if the last block is
1314 		 * actually allocated since ufs_bmap will now handle the case
1315 		 * of an fragment which has no block allocated.  Just to
1316 		 * be sure, we do it now independent of current allocation.
1317 		 */
1318 		err = BMAPALLOC(oip, length - 1, boff, cr);
1319 		if (err)
1320 			return (err);
1321 
1322 		/*
1323 		 * BMAPALLOC will call bmap_write which defers i_seq
1324 		 * processing.  If the timestamps were changed, update
1325 		 * i_seq before rdip drops i_contents or syncs the inode.
1326 		 */
1327 		if (oip->i_flag & (ICHG|IUPD))
1328 			oip->i_seq++;
1329 
1330 		/*
1331 		 * BugId 4069932
1332 		 * Make sure that the relevant partial page appears in
1333 		 * the v_pages list, so that pvn_vpzero() will do its
1334 		 * job.  Since doing this correctly requires everything
1335 		 * in rdip() except for the uiomove(), it's easier and
1336 		 * safer to do the uiomove() rather than duplicate the
1337 		 * rest of rdip() here.
1338 		 *
1339 		 * To get here, we know that length indicates a byte
1340 		 * that is not the first byte of a block.  (length - 1)
1341 		 * is the last actual byte known to exist.  Deduction
1342 		 * shows it is in the same block as byte (length).
1343 		 * Thus, this rdip() invocation should always succeed
1344 		 * except in the face of i/o errors, and give us the
1345 		 * block we care about.
1346 		 *
1347 		 * rdip() makes the same locking assertions and
1348 		 * assumptions as we do.  We do not acquire any locks
1349 		 * before calling it, so we have not changed the locking
1350 		 * situation.  Finally, there do not appear to be any
1351 		 * paths whereby rdip() ends up invoking us again.
1352 		 * Thus, infinite recursion is avoided.
1353 		 */
1354 		{
1355 			uio_t uio;
1356 			iovec_t iov[1];
1357 			char buffer;
1358 
1359 			uio.uio_iov = iov;
1360 			uio.uio_iovcnt = 1;
1361 			uio.uio_loffset = length - 1;
1362 			uio.uio_resid = 1;
1363 			uio.uio_segflg = UIO_SYSSPACE;
1364 			uio.uio_extflg = UIO_COPY_CACHED;
1365 
1366 			iov[0].iov_base = &buffer;
1367 			iov[0].iov_len = 1;
1368 
1369 			err = rdip(oip, &uio, UIO_READ, NULL);
1370 			if (err)
1371 				return (err);
1372 		}
1373 
1374 		bsize = (int)lblkno(fs, length - 1) >= NDADDR ?
1375 		    fs->fs_bsize : fragroundup(fs, boff);
1376 		pvn_vpzero(ITOV(oip), length, (size_t)(bsize - boff));
1377 		/*
1378 		 * Ensure full fs block is marked as dirty.
1379 		 */
1380 		(void) pvn_vplist_dirty(ITOV(oip), length + (bsize - boff),
1381 		    ufs_putapage, B_INVAL | B_TRUNC, CRED());
1382 	}
1383 
1384 	/*
1385 	 * Calculate index into inode's block list of
1386 	 * last direct and indirect blocks (if any)
1387 	 * which we want to keep.  Lastblock is -1 when
1388 	 * the file is truncated to 0.
1389 	 */
1390 	lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
1391 	lastiblock[SINGLE] = lastblock - NDADDR;
1392 	lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
1393 	lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
1394 	nblocks = btodb(fs->fs_bsize);
1395 
1396 	/*
1397 	 * Update file and block pointers
1398 	 * on disk before we start freeing blocks.
1399 	 * If we crash before free'ing blocks below,
1400 	 * the blocks will be returned to the free list.
1401 	 * lastiblock values are also normalized to -1
1402 	 * for calls to indirtrunc below.
1403 	 */
1404 	tip = *oip;			/* structure copy */
1405 	ip = &tip;
1406 
1407 	for (level = TRIPLE; level >= SINGLE; level--)
1408 		if (lastiblock[level] < 0) {
1409 			oip->i_ib[level] = 0;
1410 			lastiblock[level] = -1;
1411 		}
1412 	for (i = NDADDR - 1; i > lastblock; i--) {
1413 		oip->i_db[i] = 0;
1414 		flags |= I_CHEAP;
1415 	}
1416 	oip->i_size = length;
1417 	oip->i_flag |= ICHG|IUPD|IATTCHG;
1418 	oip->i_seq++;
1419 	if (!TRANS_ISTRANS(ufsvfsp))
1420 		ufs_iupdat(oip, I_SYNC);	/* do sync inode update */
1421 
1422 	/*
1423 	 * Indirect blocks first.
1424 	 */
1425 	for (level = TRIPLE; level >= SINGLE; level--) {
1426 		bn = ip->i_ib[level];
1427 		if (bn != 0) {
1428 			blocksreleased +=
1429 			    indirtrunc(ip, bn, lastiblock[level], level, flags);
1430 			if (lastiblock[level] < 0) {
1431 				ip->i_ib[level] = 0;
1432 				free(ip, bn, (off_t)fs->fs_bsize,
1433 				    flags | I_IBLK);
1434 				blocksreleased += nblocks;
1435 			}
1436 		}
1437 		if (lastiblock[level] >= 0)
1438 			goto done;
1439 	}
1440 
1441 	/*
1442 	 * All whole direct blocks or frags.
1443 	 */
1444 	for (i = NDADDR - 1; i > lastblock; i--) {
1445 		bn = ip->i_db[i];
1446 		if (bn == 0)
1447 			continue;
1448 		ip->i_db[i] = 0;
1449 		bsize = (off_t)blksize(fs, ip, i);
1450 		free(ip, bn, bsize, flags);
1451 		blocksreleased += btodb(bsize);
1452 	}
1453 	if (lastblock < 0)
1454 		goto done;
1455 
1456 	/*
1457 	 * Finally, look for a change in size of the
1458 	 * last direct block; release any frags.
1459 	 */
1460 	bn = ip->i_db[lastblock];
1461 	if (bn != 0) {
1462 		off_t oldspace, newspace;
1463 
1464 		/*
1465 		 * Calculate amount of space we're giving
1466 		 * back as old block size minus new block size.
1467 		 */
1468 		oldspace = blksize(fs, ip, lastblock);
1469 		UFS_SET_ISIZE(length, ip);
1470 		newspace = blksize(fs, ip, lastblock);
1471 		if (newspace == 0) {
1472 			err = ufs_fault(ITOV(ip), "ufs_itrunc: newspace == 0");
1473 			return (err);
1474 		}
1475 		if (oldspace - newspace > 0) {
1476 			/*
1477 			 * Block number of space to be free'd is
1478 			 * the old block # plus the number of frags
1479 			 * required for the storage we're keeping.
1480 			 */
1481 			bn += numfrags(fs, newspace);
1482 			free(ip, bn, oldspace - newspace, flags);
1483 			blocksreleased += btodb(oldspace - newspace);
1484 		}
1485 	}
1486 done:
1487 /* BEGIN PARANOIA */
1488 	for (level = SINGLE; level <= TRIPLE; level++)
1489 		if (ip->i_ib[level] != oip->i_ib[level]) {
1490 			err = ufs_fault(ITOV(ip), "ufs_itrunc: indirect block");
1491 			return (err);
1492 		}
1493 
1494 	for (i = 0; i < NDADDR; i++)
1495 		if (ip->i_db[i] != oip->i_db[i]) {
1496 			err = ufs_fault(ITOV(ip), "ufs_itrunc: direct block");
1497 			return (err);
1498 		}
1499 /* END PARANOIA */
1500 	oip->i_blocks -= blocksreleased;
1501 
1502 	if (oip->i_blocks < 0) {		/* sanity */
1503 		cmn_err(CE_NOTE,
1504 		    "ufs_itrunc: %s/%d new size = %lld, blocks = %d\n",
1505 		    fs->fs_fsmnt, (int)oip->i_number, oip->i_size,
1506 		    (int)oip->i_blocks);
1507 		oip->i_blocks = 0;
1508 	}
1509 	oip->i_flag |= ICHG|IATTCHG;
1510 	oip->i_seq++;
1511 	/* blocksreleased is >= zero, so this can not fail */
1512 	(void) chkdq(oip, -blocksreleased, 0, cr, (char **)NULL,
1513 	    (size_t *)NULL);
1514 	return (0);
1515 }
1516 
1517 /*
1518  * Check mode permission on inode.  Mode is READ, WRITE or EXEC.
1519  * In the case of WRITE, the read-only status of the file system
1520  * is checked.  Depending on the calling user, the appropriate
1521  * mode bits are selected; privileges to override missing permission
1522  * bits are checked through secpolicy_vnode_access().
1523  */
1524 int
1525 ufs_iaccess(void *vip, int mode, struct cred *cr)
1526 {
1527 	struct inode *ip = vip;
1528 	int shift = 0;
1529 
1530 	if (mode & IWRITE) {
1531 		/*
1532 		 * Disallow write attempts on read-only
1533 		 * file systems, unless the file is a block
1534 		 * or character device or a FIFO.
1535 		 */
1536 		if (ip->i_fs->fs_ronly != 0) {
1537 			if ((ip->i_mode & IFMT) != IFCHR &&
1538 			    (ip->i_mode & IFMT) != IFBLK &&
1539 			    (ip->i_mode & IFMT) != IFIFO) {
1540 				return (EROFS);
1541 			}
1542 		}
1543 	}
1544 	/*
1545 	 * If there is a shadow inode check for the presence of an acl,
1546 	 * if the acl is there use the ufs_acl_access routine to check
1547 	 * the acl
1548 	 */
1549 	if (ip->i_ufs_acl && ip->i_ufs_acl->aowner)
1550 		return (ufs_acl_access(ip, mode, cr));
1551 
1552 	/*
1553 	 * Access check is based on only
1554 	 * one of owner, group, public.
1555 	 * If not owner, then check group.
1556 	 * If not a member of the group, then
1557 	 * check public access.
1558 	 */
1559 	if (crgetuid(cr) != ip->i_uid) {
1560 		shift += 3;
1561 		if (!groupmember((uid_t)ip->i_gid, cr))
1562 			shift += 3;
1563 	}
1564 
1565 	mode &= ~(ip->i_mode << shift);
1566 
1567 	if (mode == 0)
1568 		return (0);
1569 
1570 	/* test missing privilege bits */
1571 	return (secpolicy_vnode_access(cr, ITOV(ip), ip->i_uid, mode));
1572 }
1573 
1574 /*
1575  * if necessary, remove an inode from the free list
1576  *	i_contents is held except at unmount
1577  *
1578  * Return 1 if the inode is taken off of the ufs_idle_q,
1579  * and the caller is expected to call VN_RELE.
1580  *
1581  * Return 0 otherwise.
1582  */
1583 int
1584 ufs_rmidle(struct inode *ip)
1585 {
1586 	int rval = 0;
1587 
1588 	mutex_enter(&ip->i_tlock);
1589 	if ((ip->i_flag & IREF) == 0) {
1590 		mutex_enter(&ufs_idle_q.uq_mutex);
1591 		ip->i_freef->i_freeb = ip->i_freeb;
1592 		ip->i_freeb->i_freef = ip->i_freef;
1593 		ip->i_freef = ip;
1594 		ip->i_freeb = ip;
1595 		ip->i_flag |= IREF;
1596 		ufs_idle_q.uq_ne--;
1597 		if (ip->i_flag & IJUNKIQ) {
1598 			ufs_njunk_iq--;
1599 			ip->i_flag &= ~IJUNKIQ;
1600 		} else {
1601 			ufs_nuseful_iq--;
1602 		}
1603 		mutex_exit(&ufs_idle_q.uq_mutex);
1604 		rval = 1;
1605 	}
1606 	mutex_exit(&ip->i_tlock);
1607 	return (rval);
1608 }
1609 
1610 /*
1611  * scan the hash of inodes and call func with the inode locked
1612  */
1613 int
1614 ufs_scan_inodes(int rwtry, int (*func)(struct inode *, void *), void *arg,
1615 		struct ufsvfs *ufsvfsp)
1616 {
1617 	struct inode		*ip;		/* current inode */
1618 	struct inode		*lip = NULL;	/* last/previous inode */
1619 	union ihead		*ih;		/* current hash chain */
1620 	int			error, i;
1621 	int			saverror = 0;
1622 	int			lip_held;	/* lip needs a VN_RELE() */
1623 
1624 	/*
1625 	 * If ufsvfsp is NULL, then our caller should be holding
1626 	 * ufs_scan_lock to avoid conflicts between ufs_unmount() and
1627 	 * ufs_update().  Otherwise, to avoid false-positives in
1628 	 * ufs_unmount()'s v_count-based EBUSY check, we only hold
1629 	 * those inodes that are in the file system our caller cares
1630 	 * about.
1631 	 *
1632 	 * We know that ip is a valid inode in the hash chain (and thus
1633 	 * we can trust i_ufsvfs) because the inode we chained from
1634 	 * (lip) is still in the hash chain.  This is true because either:
1635 	 *
1636 	 * 1. We did not drop the hash chain lock since the last
1637 	 *    iteration (because we were not interested in the last inode),
1638 	 * or
1639 	 * 2. We maintained a hold on the last inode while we
1640 	 *    we were processing it, so it could not be removed
1641 	 *    from the hash chain.
1642 	 *
1643 	 * The whole reason we're dropping and re-grabbing the chain
1644 	 * lock on every inode is so that we don't present a major
1645 	 * choke point on throughput, particularly when we've been
1646 	 * called on behalf of fsflush.
1647 	 */
1648 
1649 	for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1650 		mutex_enter(&ih_lock[i]);
1651 		for (ip = ih->ih_chain[0], lip_held = 0;
1652 		    ip != (struct inode *)ih;
1653 		    ip = lip->i_forw) {
1654 
1655 			ins.in_scan.value.ul++;
1656 
1657 			/*
1658 			 * Undo the previous iteration's VN_HOLD(), but
1659 			 * only if one was done.
1660 			 */
1661 			if (lip_held)
1662 				VN_RELE(ITOV(lip));
1663 
1664 			lip = ip;
1665 			if (ufsvfsp != NULL && ip->i_ufsvfs != ufsvfsp) {
1666 				/*
1667 				 * We're not processing all inodes, and
1668 				 * this inode is not in the filesystem of
1669 				 * interest, so skip it.  No need to do a
1670 				 * VN_HOLD() since we're not dropping the
1671 				 * hash chain lock until after we've
1672 				 * done the i_forw traversal above.
1673 				 */
1674 				lip_held = 0;
1675 				continue;
1676 			}
1677 			VN_HOLD(ITOV(ip));
1678 			lip_held = 1;
1679 			mutex_exit(&ih_lock[i]);
1680 
1681 			/*
1682 			 * Acquire the contents lock as writer to make
1683 			 * sure that the inode has been initialized in
1684 			 * the cache or removed from the idle list by
1685 			 * ufs_iget().  This works because ufs_iget()
1686 			 * acquires the contents lock before putting
1687 			 * the inode into the cache.  If we can lock
1688 			 * it, then he's done with it.
1689 			 */
1690 
1691 			if (rwtry) {
1692 				if (!rw_tryenter(&ip->i_contents, RW_WRITER)) {
1693 					mutex_enter(&ih_lock[i]);
1694 					continue;
1695 				}
1696 			} else {
1697 				rw_enter(&ip->i_contents, RW_WRITER);
1698 			}
1699 
1700 			rw_exit(&ip->i_contents);
1701 
1702 			/*
1703 			 * ISTALE means the inode couldn't be read
1704 			 *
1705 			 * We don't have to hold the i_contents lock
1706 			 * for this check for a couple of
1707 			 * reasons. First, if ISTALE is set then the
1708 			 * flag cannot be cleared until the inode is
1709 			 * removed from the cache and that cannot
1710 			 * happen until after we VN_RELE() it.
1711 			 * Second, if ISTALE is not set, then the
1712 			 * inode is in the cache and does not need to
1713 			 * be read from disk so ISTALE cannot be set
1714 			 * while we are not looking.
1715 			 */
1716 			if ((ip->i_flag & ISTALE) == 0) {
1717 				if ((error = (*func)(ip, arg)) != 0)
1718 					saverror = error;
1719 			}
1720 
1721 			mutex_enter(&ih_lock[i]);
1722 		}
1723 		if (lip_held)
1724 			VN_RELE(ITOV(lip));
1725 		mutex_exit(&ih_lock[i]);
1726 	}
1727 	return (saverror);
1728 }
1729 
1730 /*
1731  * Mark inode with the current time, plus a unique increment.
1732  *
1733  * Since we only keep 32-bit time on disk, if UFS is still alive
1734  * beyond 2038, filesystem times will simply stick at the last
1735  * possible second of 32-bit time. Not ideal, but probably better
1736  * than going into the remote past, or confusing applications with
1737  * negative time.
1738  */
1739 void
1740 ufs_imark(struct inode *ip)
1741 {
1742 	timestruc_t now;
1743 	int32_t usec, nsec;
1744 
1745 	/*
1746 	 * The update of i_seq may have been deferred, increase i_seq here
1747 	 * to make sure it is in sync with the timestamps.
1748 	 */
1749 	if (ip->i_flag & ISEQ) {
1750 		ASSERT(ip->i_flag & (IUPD|ICHG));
1751 		ip->i_seq++;
1752 		ip->i_flag &= ~ISEQ;
1753 	}
1754 
1755 	gethrestime(&now);
1756 
1757 	/*
1758 	 * Fast algorithm to convert nsec to usec -- see hrt2ts()
1759 	 * in common/os/timers.c for a full description.
1760 	 */
1761 	nsec = now.tv_nsec;
1762 	usec = nsec + (nsec >> 2);
1763 	usec = nsec + (usec >> 1);
1764 	usec = nsec + (usec >> 2);
1765 	usec = nsec + (usec >> 4);
1766 	usec = nsec - (usec >> 3);
1767 	usec = nsec + (usec >> 2);
1768 	usec = nsec + (usec >> 3);
1769 	usec = nsec + (usec >> 4);
1770 	usec = nsec + (usec >> 1);
1771 	usec = nsec + (usec >> 6);
1772 	usec = usec >> 10;
1773 
1774 	mutex_enter(&ufs_iuniqtime_lock);
1775 	if (now.tv_sec > (time_t)iuniqtime.tv_sec ||
1776 	    usec > iuniqtime.tv_usec) {
1777 		if (now.tv_sec < TIME32_MAX) {
1778 			iuniqtime.tv_sec = (time32_t)now.tv_sec;
1779 			iuniqtime.tv_usec = usec;
1780 		}
1781 	} else {
1782 		if (iuniqtime.tv_sec < TIME32_MAX) {
1783 			iuniqtime.tv_usec++;
1784 			/* Check for usec overflow */
1785 			if (iuniqtime.tv_usec >= MICROSEC) {
1786 				iuniqtime.tv_sec++;
1787 				iuniqtime.tv_usec = 0;
1788 			}
1789 		}
1790 	}
1791 
1792 	if ((ip->i_flag & IACC) && !(ip->i_ufsvfs->vfs_noatime)) {
1793 		ip->i_atime = iuniqtime;
1794 	}
1795 	if (ip->i_flag & IUPD) {
1796 		ip->i_mtime = iuniqtime;
1797 		ip->i_flag |= IMODTIME;
1798 	}
1799 	if (ip->i_flag & ICHG) {
1800 		ip->i_diroff = 0;
1801 		ip->i_ctime = iuniqtime;
1802 	}
1803 	mutex_exit(&ufs_iuniqtime_lock);
1804 }
1805 
1806 /*
1807  * Update timestamps in inode.
1808  */
1809 void
1810 ufs_itimes_nolock(struct inode *ip)
1811 {
1812 
1813 	/*
1814 	 * if noatime is set and the inode access time is the only field that
1815 	 * must be changed, exit immediately.
1816 	 */
1817 	if (((ip->i_flag & (IUPD|IACC|ICHG)) == IACC) &&
1818 	    (ip->i_ufsvfs->vfs_noatime)) {
1819 		return;
1820 	}
1821 
1822 	if (ip->i_flag & (IUPD|IACC|ICHG)) {
1823 		if (ip->i_flag & ICHG)
1824 			ip->i_flag |= IMOD;
1825 		else
1826 			ip->i_flag |= IMODACC;
1827 		ufs_imark(ip);
1828 		ip->i_flag &= ~(IACC|IUPD|ICHG);
1829 	}
1830 }
1831