xref: /titanic_41/usr/src/uts/common/fs/tmpfs/tmp_vfsops.c (revision 200c5a5a428f15c16e2a526ed69d462af62e8e1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/time.h>
33 #include <sys/pathname.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/stat.h>
38 #include <sys/uio.h>
39 #include <sys/stat.h>
40 #include <sys/errno.h>
41 #include <sys/cmn_err.h>
42 #include <sys/cred.h>
43 #include <sys/statvfs.h>
44 #include <sys/mount.h>
45 #include <sys/debug.h>
46 #include <sys/systm.h>
47 #include <sys/mntent.h>
48 #include <fs/fs_subr.h>
49 #include <vm/page.h>
50 #include <vm/anon.h>
51 #include <sys/model.h>
52 #include <sys/policy.h>
53 
54 #include <sys/fs/swapnode.h>
55 #include <sys/fs/tmp.h>
56 #include <sys/fs/tmpnode.h>
57 
58 static int tmpfsfstype;
59 
60 /*
61  * tmpfs vfs operations.
62  */
63 static int tmpfsinit(int, char *);
64 static int tmp_mount(struct vfs *, struct vnode *,
65 	struct mounta *, struct cred *);
66 static int tmp_unmount(struct vfs *, int, struct cred *);
67 static int tmp_root(struct vfs *, struct vnode **);
68 static int tmp_statvfs(struct vfs *, struct statvfs64 *);
69 static int tmp_vget(struct vfs *, struct vnode **, struct fid *);
70 
71 /*
72  * Loadable module wrapper
73  */
74 #include <sys/modctl.h>
75 
76 static mntopts_t tmpfs_proto_opttbl;
77 
78 static vfsdef_t vfw = {
79 	VFSDEF_VERSION,
80 	"tmpfs",
81 	tmpfsinit,
82 	VSW_HASPROTO|VSW_STATS,
83 	&tmpfs_proto_opttbl
84 };
85 
86 /*
87  * in-kernel mnttab options
88  */
89 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
90 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
91 
92 static mntopt_t tmpfs_options[] = {
93 	/* Option name		Cancel Opt	Arg	Flags		Data */
94 	{ MNTOPT_XATTR,		xattr_cancel,	NULL,	MO_DEFAULT,	NULL},
95 	{ MNTOPT_NOXATTR,	noxattr_cancel,	NULL,	NULL,		NULL},
96 	{ "size",		NULL,		"0",	MO_HASVALUE,	NULL}
97 };
98 
99 
100 static mntopts_t tmpfs_proto_opttbl = {
101 	sizeof (tmpfs_options) / sizeof (mntopt_t),
102 	tmpfs_options
103 };
104 
105 /*
106  * Module linkage information
107  */
108 static struct modlfs modlfs = {
109 	&mod_fsops, "filesystem for tmpfs", &vfw
110 };
111 
112 static struct modlinkage modlinkage = {
113 	MODREV_1, &modlfs, NULL
114 };
115 
116 int
117 _init()
118 {
119 	return (mod_install(&modlinkage));
120 }
121 
122 int
123 _fini()
124 {
125 	int error;
126 
127 	error = mod_remove(&modlinkage);
128 	if (error)
129 		return (error);
130 	/*
131 	 * Tear down the operations vectors
132 	 */
133 	(void) vfs_freevfsops_by_type(tmpfsfstype);
134 	vn_freevnodeops(tmp_vnodeops);
135 	return (0);
136 }
137 
138 int
139 _info(struct modinfo *modinfop)
140 {
141 	return (mod_info(&modlinkage, modinfop));
142 }
143 
144 /*
145  * The following are patchable variables limiting the amount of system
146  * resources tmpfs can use.
147  *
148  * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory
149  * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries)
150  * It is not determined by setting a hard limit but rather as a percentage of
151  * physical memory which is determined when tmpfs is first used in the system.
152  *
153  * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for
154  * the rest of the system.  In other words, if the amount of free swap space
155  * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs
156  * anon allocations will fail.
157  *
158  * There is also a per mount limit on the amount of swap space
159  * (tmount.tm_anonmax) settable via a mount option.
160  */
161 size_t tmpfs_maxkmem = 0;
162 size_t tmpfs_minfree = 0;
163 size_t tmp_kmemspace;		/* bytes of kernel heap used by all tmpfs */
164 
165 static major_t tmpfs_major;
166 static minor_t tmpfs_minor;
167 static kmutex_t	tmpfs_minor_lock;
168 
169 /*
170  * initialize global tmpfs locks and such
171  * called when loading tmpfs module
172  */
173 static int
174 tmpfsinit(int fstype, char *name)
175 {
176 	static const fs_operation_def_t tmp_vfsops_template[] = {
177 		VFSNAME_MOUNT,		{ .vfs_mount = tmp_mount },
178 		VFSNAME_UNMOUNT,	{ .vfs_unmount = tmp_unmount },
179 		VFSNAME_ROOT,		{ .vfs_root = tmp_root },
180 		VFSNAME_STATVFS,	{ .vfs_statvfs = tmp_statvfs },
181 		VFSNAME_VGET,		{ .vfs_vget = tmp_vget },
182 		NULL,			NULL
183 	};
184 	int error;
185 	extern  void    tmpfs_hash_init();
186 
187 	tmpfs_hash_init();
188 	tmpfsfstype = fstype;
189 	ASSERT(tmpfsfstype != 0);
190 
191 	error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
192 	if (error != 0) {
193 		cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template");
194 		return (error);
195 	}
196 
197 	error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
198 	if (error != 0) {
199 		(void) vfs_freevfsops_by_type(fstype);
200 		cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
201 		return (error);
202 	}
203 
204 	/*
205 	 * tmpfs_minfree doesn't need to be some function of configured
206 	 * swap space since it really is an absolute limit of swap space
207 	 * which still allows other processes to execute.
208 	 */
209 	if (tmpfs_minfree == 0) {
210 		/*
211 		 * Set if not patched
212 		 */
213 		tmpfs_minfree = btopr(TMPMINFREE);
214 	}
215 
216 	/*
217 	 * The maximum amount of space tmpfs can allocate is
218 	 * TMPMAXPROCKMEM percent of kernel memory
219 	 */
220 	if (tmpfs_maxkmem == 0)
221 		tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM);
222 
223 	if ((tmpfs_major = getudev()) == (major_t)-1) {
224 		cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number.");
225 		tmpfs_major = 0;
226 	}
227 	mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
228 	return (0);
229 }
230 
231 static int
232 tmp_mount(
233 	struct vfs *vfsp,
234 	struct vnode *mvp,
235 	struct mounta *uap,
236 	struct cred *cr)
237 {
238 	struct tmount *tm = NULL;
239 	struct tmpnode *tp;
240 	struct pathname dpn;
241 	int error;
242 	pgcnt_t anonmax;
243 	struct vattr rattr;
244 	int got_attrs;
245 
246 	char *sizestr;
247 
248 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
249 		return (error);
250 
251 	if (mvp->v_type != VDIR)
252 		return (ENOTDIR);
253 
254 	mutex_enter(&mvp->v_lock);
255 	if ((uap->flags & MS_OVERLAY) == 0 &&
256 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
257 		mutex_exit(&mvp->v_lock);
258 		return (EBUSY);
259 	}
260 	mutex_exit(&mvp->v_lock);
261 
262 	/*
263 	 * Having the resource be anything but "swap" doesn't make sense.
264 	 */
265 	vfs_setresource(vfsp, "swap");
266 
267 	/*
268 	 * now look for options we understand...
269 	 */
270 
271 	/* tmpfs doesn't support read-only mounts */
272 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
273 		error = EINVAL;
274 		goto out;
275 	}
276 
277 	/*
278 	 * tm_anonmax is set according to the mount arguments
279 	 * if any.  Otherwise, it is set to a maximum value.
280 	 */
281 	if (vfs_optionisset(vfsp, "size", &sizestr)) {
282 		if ((error = tmp_convnum(sizestr, &anonmax)) != 0)
283 			goto out;
284 	} else {
285 		anonmax = ULONG_MAX;
286 	}
287 
288 	if (error = pn_get(uap->dir,
289 	    (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
290 		goto out;
291 
292 	if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
293 		pn_free(&dpn);
294 		error = ENOMEM;
295 		goto out;
296 	}
297 
298 	/*
299 	 * find an available minor device number for this mount
300 	 */
301 	mutex_enter(&tmpfs_minor_lock);
302 	do {
303 		tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32;
304 		tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
305 	} while (vfs_devismounted(tm->tm_dev));
306 	mutex_exit(&tmpfs_minor_lock);
307 
308 	/*
309 	 * Set but don't bother entering the mutex
310 	 * (tmount not on mount list yet)
311 	 */
312 	mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL);
313 	mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL);
314 
315 	tm->tm_vfsp = vfsp;
316 	tm->tm_anonmax = anonmax;
317 
318 	vfsp->vfs_data = (caddr_t)tm;
319 	vfsp->vfs_fstype = tmpfsfstype;
320 	vfsp->vfs_dev = tm->tm_dev;
321 	vfsp->vfs_bsize = PAGESIZE;
322 	vfsp->vfs_flag |= VFS_NOTRUNC;
323 	vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
324 	tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE);
325 	(void) strcpy(tm->tm_mntpath, dpn.pn_path);
326 
327 	/*
328 	 * allocate and initialize root tmpnode structure
329 	 */
330 	bzero(&rattr, sizeof (struct vattr));
331 	rattr.va_mode = (mode_t)(S_IFDIR | 0777);	/* XXX modes */
332 	rattr.va_type = VDIR;
333 	rattr.va_rdev = 0;
334 	tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE);
335 	tmpnode_init(tm, tp, &rattr, cr);
336 
337 	/*
338 	 * Get the mode, uid, and gid from the underlying mount point.
339 	 */
340 	rattr.va_mask = AT_MODE|AT_UID|AT_GID;	/* Hint to getattr */
341 	got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr);
342 
343 	rw_enter(&tp->tn_rwlock, RW_WRITER);
344 	TNTOV(tp)->v_flag |= VROOT;
345 
346 	/*
347 	 * If the getattr succeeded, use its results.  Otherwise allow
348 	 * the previously set hardwired defaults to prevail.
349 	 */
350 	if (got_attrs == 0) {
351 		tp->tn_mode = rattr.va_mode;
352 		tp->tn_uid = rattr.va_uid;
353 		tp->tn_gid = rattr.va_gid;
354 	}
355 
356 	/*
357 	 * initialize linked list of tmpnodes so that the back pointer of
358 	 * the root tmpnode always points to the last one on the list
359 	 * and the forward pointer of the last node is null
360 	 */
361 	tp->tn_back = tp;
362 	tp->tn_forw = NULL;
363 	tp->tn_nlink = 0;
364 	tm->tm_rootnode = tp;
365 
366 	tdirinit(tp, tp);
367 
368 	rw_exit(&tp->tn_rwlock);
369 
370 	pn_free(&dpn);
371 	error = 0;
372 
373 out:
374 	return (error);
375 }
376 
377 static int
378 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr)
379 {
380 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
381 	struct tmpnode *tnp, *cancel;
382 	struct vnode	*vp;
383 	int error;
384 
385 	if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0)
386 		return (error);
387 
388 	/*
389 	 * forced unmount is not supported by this file system
390 	 * and thus, ENOTSUP, is being returned.
391 	 */
392 	if (flag & MS_FORCE)
393 		return (ENOTSUP);
394 
395 	mutex_enter(&tm->tm_contents);
396 
397 	/*
398 	 * If there are no open files, only the root node should have
399 	 * a reference count.
400 	 * With tm_contents held, nothing can be added or removed.
401 	 * There may be some dirty pages.  To prevent fsflush from
402 	 * disrupting the unmount, put a hold on each node while scanning.
403 	 * If we find a previously referenced node, undo the holds we have
404 	 * placed and fail EBUSY.
405 	 */
406 	tnp = tm->tm_rootnode;
407 	if (TNTOV(tnp)->v_count > 1) {
408 		mutex_exit(&tm->tm_contents);
409 		return (EBUSY);
410 	}
411 
412 	for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) {
413 		if ((vp = TNTOV(tnp))->v_count > 0) {
414 			cancel = tm->tm_rootnode->tn_forw;
415 			while (cancel != tnp) {
416 				vp = TNTOV(cancel);
417 				ASSERT(vp->v_count > 0);
418 				VN_RELE(vp);
419 				cancel = cancel->tn_forw;
420 			}
421 			mutex_exit(&tm->tm_contents);
422 			return (EBUSY);
423 		}
424 		VN_HOLD(vp);
425 	}
426 
427 	/*
428 	 * We can drop the mutex now because no one can find this mount
429 	 */
430 	mutex_exit(&tm->tm_contents);
431 
432 	/*
433 	 * Free all kmemalloc'd and anonalloc'd memory associated with
434 	 * this filesystem.  To do this, we go through the file list twice,
435 	 * once to remove all the directory entries, and then to remove
436 	 * all the files.  We do this because there is useful code in
437 	 * tmpnode_free which assumes that the directory entry has been
438 	 * removed before the file.
439 	 */
440 	/*
441 	 * Remove all directory entries
442 	 */
443 	for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) {
444 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
445 		if (tnp->tn_type == VDIR)
446 			tdirtrunc(tnp);
447 		if (tnp->tn_vnode->v_flag & V_XATTRDIR) {
448 			/*
449 			 * Account for implicit attrdir reference.
450 			 */
451 			ASSERT(tnp->tn_nlink > 0);
452 			DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock);
453 		}
454 		rw_exit(&tnp->tn_rwlock);
455 	}
456 
457 	ASSERT(tm->tm_rootnode);
458 
459 	/*
460 	 * All links are gone, v_count is keeping nodes in place.
461 	 * VN_RELE should make the node disappear, unless somebody
462 	 * is holding pages against it.  Nap and retry until it disappears.
463 	 *
464 	 * We re-acquire the lock to prevent others who have a HOLD on
465 	 * a tmpnode via its pages or anon slots from blowing it away
466 	 * (in tmp_inactive) while we're trying to get to it here. Once
467 	 * we have a HOLD on it we know it'll stick around.
468 	 *
469 	 */
470 	mutex_enter(&tm->tm_contents);
471 	/*
472 	 * Remove all the files (except the rootnode) backwards.
473 	 */
474 	while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) {
475 		mutex_exit(&tm->tm_contents);
476 		/*
477 		 * Inhibit tmp_inactive from touching attribute directory
478 		 * as all nodes will be released here.
479 		 * Note we handled the link count in pass 2 above.
480 		 */
481 		rw_enter(&tnp->tn_rwlock, RW_WRITER);
482 		tnp->tn_xattrdp = NULL;
483 		rw_exit(&tnp->tn_rwlock);
484 		vp = TNTOV(tnp);
485 		VN_RELE(vp);
486 		mutex_enter(&tm->tm_contents);
487 		/*
488 		 * It's still there after the RELE. Someone else like pageout
489 		 * has a hold on it so wait a bit and then try again - we know
490 		 * they'll give it up soon.
491 		 */
492 		if (tnp == tm->tm_rootnode->tn_back) {
493 			VN_HOLD(vp);
494 			mutex_exit(&tm->tm_contents);
495 			delay(hz / 4);
496 			mutex_enter(&tm->tm_contents);
497 		}
498 	}
499 	mutex_exit(&tm->tm_contents);
500 
501 	tm->tm_rootnode->tn_xattrdp = NULL;
502 	VN_RELE(TNTOV(tm->tm_rootnode));
503 
504 	ASSERT(tm->tm_mntpath);
505 
506 	tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1);
507 
508 	ASSERT(tm->tm_anonmem == 0);
509 
510 	mutex_destroy(&tm->tm_contents);
511 	mutex_destroy(&tm->tm_renamelck);
512 	tmp_memfree(tm, sizeof (struct tmount));
513 
514 	return (0);
515 }
516 
517 /*
518  * return root tmpnode for given vnode
519  */
520 static int
521 tmp_root(struct vfs *vfsp, struct vnode **vpp)
522 {
523 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
524 	struct tmpnode *tp = tm->tm_rootnode;
525 	struct vnode *vp;
526 
527 	ASSERT(tp);
528 
529 	vp = TNTOV(tp);
530 	VN_HOLD(vp);
531 	*vpp = vp;
532 	return (0);
533 }
534 
535 static int
536 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp)
537 {
538 	struct tmount	*tm = (struct tmount *)VFSTOTM(vfsp);
539 	ulong_t	blocks;
540 	dev32_t d32;
541 
542 	sbp->f_bsize = PAGESIZE;
543 	sbp->f_frsize = PAGESIZE;
544 
545 	/*
546 	 * Find the amount of available physical and memory swap
547 	 */
548 	mutex_enter(&anoninfo_lock);
549 	ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
550 	blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP;
551 	mutex_exit(&anoninfo_lock);
552 
553 	/*
554 	 * If tm_anonmax for this mount is less than the available swap space
555 	 * (minus the amount tmpfs can't use), use that instead
556 	 */
557 	if (blocks > tmpfs_minfree)
558 		sbp->f_bfree = MIN(blocks - tmpfs_minfree,
559 		    tm->tm_anonmax - tm->tm_anonmem);
560 	else
561 		sbp->f_bfree = 0;
562 
563 	sbp->f_bavail = sbp->f_bfree;
564 
565 	/*
566 	 * Total number of blocks is what's available plus what's been used
567 	 */
568 	sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem);
569 
570 	/*
571 	 * The maximum number of files available is approximately the number
572 	 * of tmpnodes we can allocate from the remaining kernel memory
573 	 * available to tmpfs.  This is fairly inaccurate since it doesn't
574 	 * take into account the names stored in the directory entries.
575 	 */
576 	if (tmpfs_maxkmem > tmp_kmemspace)
577 		sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) /
578 		    (sizeof (struct tmpnode) + sizeof (struct tdirent));
579 	else
580 		sbp->f_ffree = 0;
581 
582 	sbp->f_files = tmpfs_maxkmem /
583 	    (sizeof (struct tmpnode) + sizeof (struct tdirent));
584 	sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree);
585 	(void) cmpldev(&d32, vfsp->vfs_dev);
586 	sbp->f_fsid = d32;
587 	(void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name);
588 	(void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr));
589 	/*
590 	 * ensure null termination
591 	 */
592 	sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0';
593 	sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
594 	sbp->f_namemax = MAXNAMELEN - 1;
595 	return (0);
596 }
597 
598 static int
599 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
600 {
601 	struct tfid *tfid;
602 	struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
603 	struct tmpnode *tp = NULL;
604 
605 	tfid = (struct tfid *)fidp;
606 	*vpp = NULL;
607 
608 	mutex_enter(&tm->tm_contents);
609 	for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) {
610 		mutex_enter(&tp->tn_tlock);
611 		if (tp->tn_nodeid == tfid->tfid_ino) {
612 			/*
613 			 * If the gen numbers don't match we know the
614 			 * file won't be found since only one tmpnode
615 			 * can have this number at a time.
616 			 */
617 			if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) {
618 				mutex_exit(&tp->tn_tlock);
619 				mutex_exit(&tm->tm_contents);
620 				return (0);
621 			}
622 			*vpp = (struct vnode *)TNTOV(tp);
623 
624 			VN_HOLD(*vpp);
625 
626 			if ((tp->tn_mode & S_ISVTX) &&
627 			    !(tp->tn_mode & (S_IXUSR | S_IFDIR))) {
628 				mutex_enter(&(*vpp)->v_lock);
629 				(*vpp)->v_flag |= VISSWAP;
630 				mutex_exit(&(*vpp)->v_lock);
631 			}
632 			mutex_exit(&tp->tn_tlock);
633 			mutex_exit(&tm->tm_contents);
634 			return (0);
635 		}
636 		mutex_exit(&tp->tn_tlock);
637 	}
638 	mutex_exit(&tm->tm_contents);
639 	return (0);
640 }
641