1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/thread.h> 41 #include <sys/t_lock.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitmap.h> 45 #include <sys/buf.h> 46 #include <sys/cmn_err.h> 47 #include <sys/conf.h> 48 #include <sys/ddi.h> 49 #include <sys/debug.h> 50 #include <sys/dkio.h> 51 #include <sys/errno.h> 52 #include <sys/time.h> 53 #include <sys/fcntl.h> 54 #include <sys/flock.h> 55 #include <sys/file.h> 56 #include <sys/kmem.h> 57 #include <sys/mman.h> 58 #include <sys/open.h> 59 #include <sys/swap.h> 60 #include <sys/sysmacros.h> 61 #include <sys/uio.h> 62 #include <sys/vfs.h> 63 #include <sys/vfs_opreg.h> 64 #include <sys/vnode.h> 65 #include <sys/stat.h> 66 #include <sys/poll.h> 67 #include <sys/stream.h> 68 #include <sys/strsubr.h> 69 #include <sys/policy.h> 70 #include <sys/devpolicy.h> 71 72 #include <sys/proc.h> 73 #include <sys/user.h> 74 #include <sys/session.h> 75 #include <sys/vmsystm.h> 76 #include <sys/vtrace.h> 77 #include <sys/pathname.h> 78 79 #include <sys/fs/snode.h> 80 81 #include <vm/seg.h> 82 #include <vm/seg_map.h> 83 #include <vm/page.h> 84 #include <vm/pvn.h> 85 #include <vm/seg_dev.h> 86 #include <vm/seg_vn.h> 87 88 #include <fs/fs_subr.h> 89 90 #include <sys/esunddi.h> 91 #include <sys/autoconf.h> 92 #include <sys/sunndi.h> 93 #include <sys/contract/device_impl.h> 94 95 96 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 97 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 98 caller_context_t *); 99 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 100 caller_context_t *); 101 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 102 caller_context_t *); 103 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 104 caller_context_t *); 105 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 106 caller_context_t *); 107 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 108 caller_context_t *); 109 static int spec_access(struct vnode *, int, int, struct cred *, 110 caller_context_t *); 111 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 112 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 113 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 114 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 115 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 116 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 117 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 118 struct flk_callback *, struct cred *, caller_context_t *); 119 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 120 121 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 122 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 123 caller_context_t *); 124 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 125 struct cred *); 126 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 127 int); 128 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 129 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 130 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 131 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 132 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 133 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 134 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 135 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 136 137 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 138 caller_context_t *); 139 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 140 caller_context_t *); 141 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 142 cred_t *, caller_context_t *); 143 144 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 145 caller_context_t *); 146 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 147 caller_context_t *); 148 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 149 caller_context_t *); 150 151 #define SN_HOLD(csp) { \ 152 mutex_enter(&csp->s_lock); \ 153 csp->s_count++; \ 154 mutex_exit(&csp->s_lock); \ 155 } 156 157 #define SN_RELE(csp) { \ 158 mutex_enter(&csp->s_lock); \ 159 csp->s_count--; \ 160 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 161 mutex_exit(&csp->s_lock); \ 162 } 163 164 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 165 166 struct vnodeops *spec_vnodeops; 167 168 /* 169 * *PLEASE NOTE*: If you add new entry points to specfs, do 170 * not forget to add support for fencing. A fenced snode 171 * is indicated by the SFENCED flag in the common snode. 172 * If a snode is fenced, determine if your entry point is 173 * a configuration operation (Example: open), a detection 174 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 175 * or an unconfiguration operation (Example: close). If it is 176 * a configuration or detection operation, fail the operation 177 * for a fenced snode with an ENXIO or EIO as appropriate. If 178 * it is any other operation, let it through. 179 */ 180 181 const fs_operation_def_t spec_vnodeops_template[] = { 182 VOPNAME_OPEN, { .vop_open = spec_open }, 183 VOPNAME_CLOSE, { .vop_close = spec_close }, 184 VOPNAME_READ, { .vop_read = spec_read }, 185 VOPNAME_WRITE, { .vop_write = spec_write }, 186 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 187 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 188 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 189 VOPNAME_ACCESS, { .vop_access = spec_access }, 190 VOPNAME_CREATE, { .vop_create = spec_create }, 191 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 192 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 193 VOPNAME_FID, { .vop_fid = spec_fid }, 194 VOPNAME_SEEK, { .vop_seek = spec_seek }, 195 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 196 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 197 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 198 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 199 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 200 VOPNAME_MAP, { .vop_map = spec_map }, 201 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 202 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 203 VOPNAME_POLL, { .vop_poll = spec_poll }, 204 VOPNAME_DUMP, { .vop_dump = spec_dump }, 205 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 206 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 207 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 208 NULL, NULL 209 }; 210 211 /* 212 * Return address of spec_vnodeops 213 */ 214 struct vnodeops * 215 spec_getvnodeops(void) 216 { 217 return (spec_vnodeops); 218 } 219 220 extern vnode_t *rconsvp; 221 222 /* 223 * Acquire the serial lock on the common snode. 224 */ 225 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 226 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 227 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 228 229 typedef enum { 230 LOOP, 231 INTR, 232 SUCCESS 233 } slock_ret_t; 234 235 /* 236 * Synchronize with active SLOCKED snode, optionally checking for a signal and 237 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 238 * argument determines if the thread is interruptible by a signal while 239 * waiting, the function returns INTR if interrupted while there is another 240 * thread closing this snonde and LOOP if interrupted otherwise. 241 * When SUCCESS is returned the 'hold' argument determines if the open 242 * count (SN_HOLD) has been incremented and the 'setlock' argument 243 * determines if the function returns with SLOCKED set. 244 */ 245 static slock_ret_t 246 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 247 { 248 slock_ret_t ret = SUCCESS; 249 mutex_enter(&csp->s_lock); 250 while (csp->s_flag & SLOCKED) { 251 csp->s_flag |= SWANT; 252 if (intr) { 253 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 254 if (csp->s_flag & SCLOSING) 255 ret = INTR; 256 else 257 ret = LOOP; 258 mutex_exit(&csp->s_lock); 259 return (ret); /* interrupted */ 260 } 261 } else { 262 cv_wait(&csp->s_cv, &csp->s_lock); 263 } 264 } 265 if (setlock) 266 csp->s_flag |= SLOCKED; 267 if (hold) 268 csp->s_count++; /* one more open reference : SN_HOLD */ 269 mutex_exit(&csp->s_lock); 270 return (ret); /* serialized/locked */ 271 } 272 273 /* 274 * Unlock the serial lock on the common snode 275 */ 276 #define UNLOCK_CSP_LOCK_HELD(csp) \ 277 ASSERT(mutex_owned(&csp->s_lock)); \ 278 if (csp->s_flag & SWANT) \ 279 cv_broadcast(&csp->s_cv); \ 280 csp->s_flag &= ~(SWANT|SLOCKED); 281 282 #define UNLOCK_CSP(csp) \ 283 mutex_enter(&csp->s_lock); \ 284 UNLOCK_CSP_LOCK_HELD(csp); \ 285 mutex_exit(&csp->s_lock); 286 287 /* 288 * compute/return the size of the device 289 */ 290 #define SPEC_SIZE(csp) \ 291 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 292 293 /* 294 * Compute and return the size. If the size in the common snode is valid then 295 * return it. If not valid then get the size from the driver and set size in 296 * the common snode. If the device has not been attached then we don't ask for 297 * an update from the driver- for non-streams SSIZEVALID stays unset until the 298 * device is attached. A stat of a mknod outside /devices (non-devfs) may 299 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 300 * established in mknod until open time). An stat in /devices will report the 301 * size correctly. Specfs should always call SPEC_SIZE instead of referring 302 * directly to s_size to initialize/retrieve the size of a device. 303 * 304 * XXX There is an inconsistency between block and raw - "unknown" is 305 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 306 */ 307 static u_offset_t 308 spec_size(struct snode *csp) 309 { 310 struct vnode *cvp = STOV(csp); 311 u_offset_t size; 312 int plen; 313 uint32_t size32; 314 dev_t dev; 315 dev_info_t *devi; 316 major_t maj; 317 uint_t blksize; 318 int blkshift; 319 320 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 321 322 /* return cached value */ 323 mutex_enter(&csp->s_lock); 324 if (csp->s_flag & SSIZEVALID) { 325 mutex_exit(&csp->s_lock); 326 return (csp->s_size); 327 } 328 329 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 330 dev = cvp->v_rdev; 331 maj = getmajor(dev); 332 if (maj >= devcnt) { 333 /* return non-cached UNKNOWN_SIZE */ 334 mutex_exit(&csp->s_lock); 335 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 336 } 337 338 /* establish cached zero size for streams */ 339 if (STREAMSTAB(maj)) { 340 csp->s_size = 0; 341 csp->s_flag |= SSIZEVALID; 342 mutex_exit(&csp->s_lock); 343 return (0); 344 } 345 346 /* 347 * Return non-cached UNKNOWN_SIZE if not open. 348 * 349 * NB: This check is bogus, calling prop_op(9E) should be gated by 350 * attach, not open. Not having this check however opens up a new 351 * context under which a driver's prop_op(9E) could be called. Calling 352 * prop_op(9E) in this new context has been shown to expose latent 353 * driver bugs (insufficient NULL pointer checks that lead to panic). 354 * We are keeping this open check for now to avoid these panics. 355 */ 356 if (csp->s_count == 0) { 357 mutex_exit(&csp->s_lock); 358 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 359 } 360 361 /* Return non-cached UNKNOWN_SIZE if not attached. */ 362 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 363 !i_ddi_devi_attached(csp->s_dip)) { 364 mutex_exit(&csp->s_lock); 365 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 366 } 367 368 devi = csp->s_dip; 369 370 /* 371 * Established cached size obtained from the attached driver. Since we 372 * know the devinfo node, for efficiency we use cdev_prop_op directly 373 * instead of [cb]dev_[Ss]size. 374 */ 375 if (cvp->v_type == VCHR) { 376 size = 0; 377 plen = sizeof (size); 378 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 379 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 380 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 381 &plen) != DDI_PROP_SUCCESS) { 382 plen = sizeof (size32); 383 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 384 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 385 "size", (caddr_t)&size32, &plen) == 386 DDI_PROP_SUCCESS) 387 size = size32; 388 } 389 } else { 390 size = UNKNOWN_SIZE; 391 plen = sizeof (size); 392 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 393 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 394 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 395 &plen) != DDI_PROP_SUCCESS) { 396 plen = sizeof (size32); 397 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 398 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 399 "nblocks", (caddr_t)&size32, &plen) == 400 DDI_PROP_SUCCESS) 401 size = size32; 402 } 403 404 if (size != UNKNOWN_SIZE) { 405 blksize = DEV_BSIZE; /* default */ 406 plen = sizeof (blksize); 407 408 /* try to get dev_t specific "blksize" */ 409 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 410 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 411 "blksize", (caddr_t)&blksize, &plen) != 412 DDI_PROP_SUCCESS) { 413 /* 414 * Try for dev_info node "device-blksize". 415 * If this fails then blksize will still be 416 * DEV_BSIZE default value. 417 */ 418 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 419 PROP_LEN_AND_VAL_BUF, 420 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 421 "device-blksize", (caddr_t)&blksize, &plen); 422 } 423 424 /* blksize must be a power of two */ 425 ASSERT(BIT_ONLYONESET(blksize)); 426 blkshift = highbit(blksize) - 1; 427 428 /* convert from block size to byte size */ 429 if (size < (MAXOFFSET_T >> blkshift)) 430 size = size << blkshift; 431 else 432 size = UNKNOWN_SIZE; 433 } 434 } 435 436 csp->s_size = size; 437 csp->s_flag |= SSIZEVALID; 438 439 mutex_exit(&csp->s_lock); 440 return (size); 441 } 442 443 /* 444 * This function deal with vnode substitution in the case of 445 * device cloning. 446 */ 447 static int 448 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 449 { 450 dev_t dev = (*vpp)->v_rdev; 451 major_t maj = getmajor(dev); 452 major_t newmaj = getmajor(newdev); 453 int sysclone = (maj == clone_major); 454 int qassociate_used = 0; 455 struct snode *oldsp, *oldcsp; 456 struct snode *newsp, *newcsp; 457 struct vnode *newvp, *newcvp; 458 dev_info_t *dip; 459 queue_t *dq; 460 461 ASSERT(dev != newdev); 462 463 /* 464 * Check for cloning across different drivers. 465 * We only support this under the system provided clone driver 466 */ 467 if ((maj != newmaj) && !sysclone) { 468 cmn_err(CE_NOTE, 469 "unsupported clone open maj = %u, newmaj = %u", 470 maj, newmaj); 471 return (ENXIO); 472 } 473 474 /* old */ 475 oldsp = VTOS(*vpp); 476 oldcsp = VTOS(oldsp->s_commonvp); 477 478 /* new */ 479 newvp = makespecvp(newdev, vtype); 480 ASSERT(newvp != NULL); 481 newsp = VTOS(newvp); 482 newcvp = newsp->s_commonvp; 483 newcsp = VTOS(newcvp); 484 485 /* 486 * Clones inherit fsid, realvp, and dip. 487 * XXX realvp inherit is not occurring, does fstat of clone work? 488 */ 489 newsp->s_fsid = oldsp->s_fsid; 490 if (sysclone) { 491 newsp->s_flag |= SCLONE; 492 dip = NULL; 493 } else { 494 newsp->s_flag |= SSELFCLONE; 495 dip = oldcsp->s_dip; 496 } 497 498 /* 499 * If we cloned to an opened newdev that already has called 500 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 501 * already established. 502 */ 503 if (!(newcsp->s_flag & SDIPSET)) { 504 /* 505 * Establish s_dip association for newdev. 506 * 507 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 508 * implementation of all cloning drivers (SCLONE and SELFCLONE) 509 * we would always use e_ddi_hold_devi_by_dev(). We know that 510 * many drivers have had (still have?) problems with 511 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 512 * detecting drivers that use QASSOCIATE (by looking down the 513 * stream) and setting their s_dip association to NULL. 514 */ 515 qassociate_used = 0; 516 if (stp) { 517 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 518 if (_RD(dq)->q_flag & _QASSOCIATED) { 519 qassociate_used = 1; 520 dip = NULL; 521 break; 522 } 523 } 524 } 525 526 if (dip || qassociate_used) { 527 spec_assoc_vp_with_devi(newvp, dip); 528 } else { 529 /* derive association from newdev */ 530 dip = e_ddi_hold_devi_by_dev(newdev, 0); 531 spec_assoc_vp_with_devi(newvp, dip); 532 if (dip) 533 ddi_release_devi(dip); 534 } 535 } 536 537 SN_HOLD(newcsp); 538 539 /* deal with stream stuff */ 540 if (stp != NULL) { 541 LOCK_CSP(newcsp); /* synchronize stream open/close */ 542 mutex_enter(&newcsp->s_lock); 543 newcvp->v_stream = newvp->v_stream = stp; 544 stp->sd_vnode = newcvp; 545 stp->sd_strtab = STREAMSTAB(newmaj); 546 mutex_exit(&newcsp->s_lock); 547 UNLOCK_CSP(newcsp); 548 } 549 550 /* substitute the vnode */ 551 SN_RELE(oldcsp); 552 VN_RELE(*vpp); 553 *vpp = newvp; 554 555 return (0); 556 } 557 558 static int 559 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 560 { 561 major_t maj; 562 dev_t dev, newdev; 563 struct vnode *vp, *cvp; 564 struct snode *sp, *csp; 565 struct stdata *stp; 566 dev_info_t *dip; 567 int error, type; 568 contract_t *ct = NULL; 569 int open_returns_eintr; 570 slock_ret_t spec_locksp_ret; 571 572 573 flag &= ~FCREAT; /* paranoia */ 574 575 vp = *vpp; 576 sp = VTOS(vp); 577 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 578 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 579 return (ENXIO); 580 581 /* 582 * If the VFS_NODEVICES bit was set for the mount, 583 * do not allow opens of special devices. 584 */ 585 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 586 return (ENXIO); 587 588 newdev = dev = vp->v_rdev; 589 590 /* 591 * If we are opening a node that has not had spec_assoc_vp_with_devi 592 * called against it (mknod outside /devices or a non-dacf makespecvp 593 * node) then SDIPSET will not be set. In this case we call an 594 * interface which will reconstruct the path and lookup (drive attach) 595 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 596 * devfs_lookupname). For support of broken drivers that don't call 597 * ddi_create_minor_node for all minor nodes in their instance space, 598 * we call interfaces that operates at the directory/devinfo 599 * (major/instance) level instead of to the leaf/minor node level. 600 * After finding and attaching the dip we associate it with the 601 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 602 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 603 * 604 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 605 * implementation operates at the major/instance level since it only 606 * need to return a dip. 607 */ 608 cvp = sp->s_commonvp; 609 csp = VTOS(cvp); 610 if (!(csp->s_flag & SDIPSET)) { 611 /* try to attach, return error if we fail */ 612 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 613 return (ENXIO); 614 615 /* associate dip with the common snode s_dip */ 616 spec_assoc_vp_with_devi(vp, dip); 617 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 618 } 619 620 /* check if device fenced off */ 621 if (S_ISFENCED(sp)) 622 return (ENXIO); 623 624 #ifdef DEBUG 625 /* verify attach/open exclusion guarantee */ 626 dip = csp->s_dip; 627 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 628 #endif /* DEBUG */ 629 630 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 631 return (error); 632 633 /* Verify existance of open(9E) implementation. */ 634 maj = getmajor(dev); 635 if ((maj >= devcnt) || 636 (devopsp[maj]->devo_cb_ops == NULL) || 637 (devopsp[maj]->devo_cb_ops->cb_open == NULL)) 638 return (ENXIO); 639 640 /* 641 * split STREAMS vs. non-STREAMS 642 * 643 * If the device is a dual-personality device, then we might want 644 * to allow for a regular OTYP_BLK open. If however it's strictly 645 * a pure STREAMS device, the cb_open entry point will be 646 * nodev() which returns ENXIO. This does make this failure path 647 * somewhat longer, but such attempts to use OTYP_BLK with STREAMS 648 * devices should be exceedingly rare. (Most of the time they will 649 * be due to programmer error.) 650 */ 651 if ((vp->v_type == VCHR) && (STREAMSTAB(maj))) 652 goto streams_open; 653 654 not_streams: 655 /* 656 * Wait for in progress last close to complete. This guarantees 657 * to the driver writer that we will never be in the drivers 658 * open and close on the same (dev_t, otype) at the same time. 659 * Open count already incremented (SN_HOLD) on non-zero return. 660 * The wait is interruptible by a signal if the driver sets the 661 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 662 * ddi-open-returns-eintr(9P) property in its driver.conf. 663 */ 664 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 665 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 666 open_returns_eintr = 1; 667 else 668 open_returns_eintr = 0; 669 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 670 SUCCESS) { 671 if (spec_locksp_ret == INTR) 672 return (EINTR); 673 } 674 675 /* non streams open */ 676 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 677 error = dev_open(&newdev, flag, type, cr); 678 679 /* deal with clone case */ 680 if (error == 0 && dev != newdev) { 681 error = spec_clone(vpp, newdev, vp->v_type, NULL); 682 /* 683 * bail on clone failure, further processing 684 * results in undefined behaviors. 685 */ 686 if (error != 0) 687 return (error); 688 sp = VTOS(*vpp); 689 csp = VTOS(sp->s_commonvp); 690 } 691 692 /* 693 * create contracts only for userland opens 694 * Successful open and cloning is done at this point. 695 */ 696 if (error == 0 && !(flag & FKLYR)) { 697 int spec_type; 698 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 699 if (contract_device_open(newdev, spec_type, NULL) != 0) { 700 error = EIO; 701 } 702 } 703 704 if (error == 0) { 705 sp->s_size = SPEC_SIZE(csp); 706 707 if ((csp->s_flag & SNEEDCLOSE) == 0) { 708 int nmaj = getmajor(newdev); 709 mutex_enter(&csp->s_lock); 710 /* successful open needs a close later */ 711 csp->s_flag |= SNEEDCLOSE; 712 713 /* 714 * Invalidate possible cached "unknown" size 715 * established by a VOP_GETATTR while open was in 716 * progress, and the driver might fail prop_op(9E). 717 */ 718 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 719 ((cvp->v_type == VBLK) && 720 (csp->s_size == UNKNOWN_SIZE))) 721 csp->s_flag &= ~SSIZEVALID; 722 723 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 724 csp->s_flag |= SLOFFSET; 725 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 726 csp->s_flag |= SLOFFSET | SANYOFFSET; 727 mutex_exit(&csp->s_lock); 728 } 729 return (0); 730 } 731 732 /* 733 * Open failed. If we missed a close operation because 734 * we were trying to get the device open and it is the 735 * last in progress open that is failing then call close. 736 * 737 * NOTE: Only non-streams open has this race condition. 738 */ 739 mutex_enter(&csp->s_lock); 740 csp->s_count--; /* decrement open count : SN_RELE */ 741 if ((csp->s_count == 0) && /* no outstanding open */ 742 (csp->s_mapcnt == 0) && /* no mapping */ 743 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 744 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 745 746 /* See comment in spec_close() */ 747 if (csp->s_flag & (SCLONE | SSELFCLONE)) 748 csp->s_flag &= ~SDIPSET; 749 750 csp->s_flag |= SCLOSING; 751 mutex_exit(&csp->s_lock); 752 753 ASSERT(*vpp != NULL); 754 (void) device_close(*vpp, flag, cr); 755 756 mutex_enter(&csp->s_lock); 757 csp->s_flag &= ~SCLOSING; 758 mutex_exit(&csp->s_lock); 759 } else { 760 mutex_exit(&csp->s_lock); 761 } 762 return (error); 763 764 streams_open: 765 /* 766 * Lock common snode to prevent any new clone opens on this 767 * stream while one is in progress. This is necessary since 768 * the stream currently associated with the clone device will 769 * not be part of it after the clone open completes. Unfortunately 770 * we don't know in advance if this is a clone 771 * device so we have to lock all opens. 772 * 773 * If we fail, it's because of an interrupt - EINTR return is an 774 * expected aspect of opening a stream so we don't need to check 775 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 776 * on non-zero return. 777 */ 778 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 779 return (EINTR); 780 781 error = stropen(cvp, &newdev, flag, cr); 782 stp = cvp->v_stream; 783 784 /* deal with the clone case */ 785 if ((error == 0) && (dev != newdev)) { 786 vp->v_stream = cvp->v_stream = NULL; 787 UNLOCK_CSP(csp); 788 error = spec_clone(vpp, newdev, vp->v_type, stp); 789 /* 790 * bail on clone failure, further processing 791 * results in undefined behaviors. 792 */ 793 if (error != 0) 794 return (error); 795 sp = VTOS(*vpp); 796 csp = VTOS(sp->s_commonvp); 797 } else if (error == 0) { 798 vp->v_stream = stp; 799 UNLOCK_CSP(csp); 800 } 801 802 /* 803 * create contracts only for userland opens 804 * Successful open and cloning is done at this point. 805 */ 806 if (error == 0 && !(flag & FKLYR)) { 807 /* STREAM is of type S_IFCHR */ 808 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 809 UNLOCK_CSP(csp); 810 (void) spec_close(vp, flag, 1, 0, cr, cc); 811 return (EIO); 812 } 813 } 814 815 if (error == 0) { 816 /* STREAMS devices don't have a size */ 817 sp->s_size = csp->s_size = 0; 818 819 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 820 return (0); 821 822 /* try to allocate it as a controlling terminal */ 823 if (strctty(stp) != EINTR) 824 return (0); 825 826 /* strctty() was interrupted by a signal */ 827 if (ct) { 828 /* we only create contracts for userland opens */ 829 ASSERT(ttoproc(curthread)); 830 (void) contract_abandon(ct, ttoproc(curthread), 0); 831 } 832 (void) spec_close(vp, flag, 1, 0, cr, cc); 833 return (EINTR); 834 } 835 836 /* 837 * Deal with stropen failure. 838 * 839 * sd_flag in the stream head cannot change since the 840 * common snode is locked before the call to stropen(). 841 */ 842 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 843 /* 844 * Open failed part way through. 845 */ 846 mutex_enter(&stp->sd_lock); 847 stp->sd_flag &= ~STREOPENFAIL; 848 mutex_exit(&stp->sd_lock); 849 850 UNLOCK_CSP(csp); 851 (void) spec_close(vp, flag, 1, 0, cr, cc); 852 } else { 853 UNLOCK_CSP(csp); 854 SN_RELE(csp); 855 } 856 857 /* 858 * Resolution for STREAMS vs. regular character device: If the 859 * STREAMS open(9e) returns ENOSTR, then try an ordinary device 860 * open instead. 861 */ 862 if (error == ENOSTR) { 863 goto not_streams; 864 } 865 return (error); 866 } 867 868 /*ARGSUSED2*/ 869 static int 870 spec_close( 871 struct vnode *vp, 872 int flag, 873 int count, 874 offset_t offset, 875 struct cred *cr, 876 caller_context_t *ct) 877 { 878 struct vnode *cvp; 879 struct snode *sp, *csp; 880 enum vtype type; 881 dev_t dev; 882 int error = 0; 883 int sysclone; 884 885 if (!(flag & FKLYR)) { 886 /* this only applies to closes of devices from userland */ 887 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 888 cleanshares(vp, ttoproc(curthread)->p_pid); 889 if (vp->v_stream) 890 strclean(vp); 891 } 892 if (count > 1) 893 return (0); 894 895 /* we allow close to succeed even if device is fenced off */ 896 sp = VTOS(vp); 897 cvp = sp->s_commonvp; 898 899 dev = sp->s_dev; 900 type = vp->v_type; 901 902 ASSERT(type == VCHR || type == VBLK); 903 904 /* 905 * Prevent close/close and close/open races by serializing closes 906 * on this common snode. Clone opens are held up until after 907 * we have closed this device so the streams linkage is maintained 908 */ 909 csp = VTOS(cvp); 910 911 LOCK_CSP(csp); 912 mutex_enter(&csp->s_lock); 913 914 csp->s_count--; /* one fewer open reference : SN_RELE */ 915 sysclone = sp->s_flag & SCLONE; 916 917 /* 918 * Invalidate size on each close. 919 * 920 * XXX We do this on each close because we don't have interfaces that 921 * allow a driver to invalidate the size. Since clearing this on each 922 * close this causes property overhead we skip /dev/null and 923 * /dev/zero to avoid degrading kenbus performance. 924 */ 925 if (getmajor(dev) != mm_major) 926 csp->s_flag &= ~SSIZEVALID; 927 928 /* 929 * Only call the close routine when the last open reference through 930 * any [s, v]node goes away. This can be checked by looking at 931 * s_count on the common vnode. 932 */ 933 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 934 /* we don't need a close */ 935 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 936 937 /* 938 * A cloning driver may open-clone to the same dev_t that we 939 * are closing before spec_inactive destroys the common snode. 940 * If this occurs the s_dip association needs to be reevaluated. 941 * We clear SDIPSET to force reevaluation in this case. When 942 * reevaluation occurs (by spec_clone after open), if the 943 * devinfo association has changed then the old association 944 * will be released as the new association is established by 945 * spec_assoc_vp_with_devi(). 946 */ 947 if (csp->s_flag & (SCLONE | SSELFCLONE)) 948 csp->s_flag &= ~SDIPSET; 949 950 csp->s_flag |= SCLOSING; 951 mutex_exit(&csp->s_lock); 952 error = device_close(vp, flag, cr); 953 954 /* 955 * Decrement the devops held in clnopen() 956 */ 957 if (sysclone) { 958 ddi_rele_driver(getmajor(dev)); 959 } 960 mutex_enter(&csp->s_lock); 961 csp->s_flag &= ~SCLOSING; 962 } 963 964 UNLOCK_CSP_LOCK_HELD(csp); 965 mutex_exit(&csp->s_lock); 966 967 return (error); 968 } 969 970 /*ARGSUSED2*/ 971 static int 972 spec_read( 973 struct vnode *vp, 974 struct uio *uiop, 975 int ioflag, 976 struct cred *cr, 977 caller_context_t *ct) 978 { 979 int error; 980 struct snode *sp = VTOS(vp); 981 dev_t dev = sp->s_dev; 982 size_t n; 983 ulong_t on; 984 u_offset_t bdevsize; 985 offset_t maxoff; 986 offset_t off; 987 struct vnode *blkvp; 988 989 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 990 991 if (vp->v_stream) { 992 ASSERT(vp->v_type == VCHR); 993 smark(sp, SACC); 994 return (strread(vp, uiop, cr)); 995 } 996 997 if (uiop->uio_resid == 0) 998 return (0); 999 1000 /* 1001 * Plain old character devices that set D_U64BIT can have 1002 * unrestricted offsets. 1003 */ 1004 maxoff = spec_maxoffset(vp); 1005 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1006 1007 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1008 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1009 return (EINVAL); 1010 1011 if (vp->v_type == VCHR) { 1012 smark(sp, SACC); 1013 ASSERT(vp->v_stream == NULL); 1014 return (cdev_read(dev, uiop, cr)); 1015 } 1016 1017 /* 1018 * Block device. 1019 */ 1020 error = 0; 1021 blkvp = sp->s_commonvp; 1022 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1023 1024 do { 1025 caddr_t base; 1026 offset_t diff; 1027 1028 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1029 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1030 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1031 diff = bdevsize - uiop->uio_loffset; 1032 1033 if (diff <= 0) 1034 break; 1035 if (diff < n) 1036 n = (size_t)diff; 1037 1038 if (vpm_enable) { 1039 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1040 n, uiop, 1, NULL, 0, S_READ); 1041 } else { 1042 base = segmap_getmapflt(segkmap, blkvp, 1043 (u_offset_t)(off + on), n, 1, S_READ); 1044 1045 error = uiomove(base + on, n, UIO_READ, uiop); 1046 } 1047 if (!error) { 1048 int flags = 0; 1049 /* 1050 * If we read a whole block, we won't need this 1051 * buffer again soon. 1052 */ 1053 if (n + on == MAXBSIZE) 1054 flags = SM_DONTNEED | SM_FREE; 1055 if (vpm_enable) { 1056 error = vpm_sync_pages(blkvp, off, n, flags); 1057 } else { 1058 error = segmap_release(segkmap, base, flags); 1059 } 1060 } else { 1061 if (vpm_enable) { 1062 (void) vpm_sync_pages(blkvp, off, n, 0); 1063 } else { 1064 (void) segmap_release(segkmap, base, 0); 1065 } 1066 if (bdevsize == UNKNOWN_SIZE) { 1067 error = 0; 1068 break; 1069 } 1070 } 1071 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1072 1073 return (error); 1074 } 1075 1076 /*ARGSUSED*/ 1077 static int 1078 spec_write( 1079 struct vnode *vp, 1080 struct uio *uiop, 1081 int ioflag, 1082 struct cred *cr, 1083 caller_context_t *ct) 1084 { 1085 int error; 1086 struct snode *sp = VTOS(vp); 1087 dev_t dev = sp->s_dev; 1088 size_t n; 1089 ulong_t on; 1090 u_offset_t bdevsize; 1091 offset_t maxoff; 1092 offset_t off; 1093 struct vnode *blkvp; 1094 1095 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1096 1097 if (vp->v_stream) { 1098 ASSERT(vp->v_type == VCHR); 1099 smark(sp, SUPD); 1100 return (strwrite(vp, uiop, cr)); 1101 } 1102 1103 /* 1104 * Plain old character devices that set D_U64BIT can have 1105 * unrestricted offsets. 1106 */ 1107 maxoff = spec_maxoffset(vp); 1108 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1109 1110 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1111 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1112 return (EINVAL); 1113 1114 if (vp->v_type == VCHR) { 1115 smark(sp, SUPD); 1116 ASSERT(vp->v_stream == NULL); 1117 return (cdev_write(dev, uiop, cr)); 1118 } 1119 1120 if (uiop->uio_resid == 0) 1121 return (0); 1122 1123 error = 0; 1124 blkvp = sp->s_commonvp; 1125 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1126 1127 do { 1128 int pagecreate; 1129 int newpage; 1130 caddr_t base; 1131 offset_t diff; 1132 1133 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1134 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1135 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1136 pagecreate = 0; 1137 1138 diff = bdevsize - uiop->uio_loffset; 1139 if (diff <= 0) { 1140 error = ENXIO; 1141 break; 1142 } 1143 if (diff < n) 1144 n = (size_t)diff; 1145 1146 /* 1147 * Check to see if we can skip reading in the page 1148 * and just allocate the memory. We can do this 1149 * if we are going to rewrite the entire mapping 1150 * or if we are going to write to end of the device 1151 * from the beginning of the mapping. 1152 */ 1153 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1154 pagecreate = 1; 1155 1156 newpage = 0; 1157 1158 /* 1159 * Touch the page and fault it in if it is not in core 1160 * before segmap_getmapflt or vpm_data_copy can lock it. 1161 * This is to avoid the deadlock if the buffer is mapped 1162 * to the same file through mmap which we want to write. 1163 */ 1164 uio_prefaultpages((long)n, uiop); 1165 1166 if (vpm_enable) { 1167 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1168 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1169 } else { 1170 base = segmap_getmapflt(segkmap, blkvp, 1171 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1172 1173 /* 1174 * segmap_pagecreate() returns 1 if it calls 1175 * page_create_va() to allocate any pages. 1176 */ 1177 1178 if (pagecreate) 1179 newpage = segmap_pagecreate(segkmap, base + on, 1180 n, 0); 1181 1182 error = uiomove(base + on, n, UIO_WRITE, uiop); 1183 } 1184 1185 if (!vpm_enable && pagecreate && 1186 uiop->uio_loffset < 1187 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1188 /* 1189 * We created pages w/o initializing them completely, 1190 * thus we need to zero the part that wasn't set up. 1191 * This can happen if we write to the end of the device 1192 * or if we had some sort of error during the uiomove. 1193 */ 1194 long nzero; 1195 offset_t nmoved; 1196 1197 nmoved = (uiop->uio_loffset - (off + on)); 1198 if (nmoved < 0 || nmoved > n) { 1199 panic("spec_write: nmoved bogus"); 1200 /*NOTREACHED*/ 1201 } 1202 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1203 (on + nmoved); 1204 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1205 panic("spec_write: nzero bogus"); 1206 /*NOTREACHED*/ 1207 } 1208 (void) kzero(base + on + nmoved, (size_t)nzero); 1209 } 1210 1211 /* 1212 * Unlock the pages which have been allocated by 1213 * page_create_va() in segmap_pagecreate(). 1214 */ 1215 if (!vpm_enable && newpage) 1216 segmap_pageunlock(segkmap, base + on, 1217 (size_t)n, S_WRITE); 1218 1219 if (error == 0) { 1220 int flags = 0; 1221 1222 /* 1223 * Force write back for synchronous write cases. 1224 */ 1225 if (ioflag & (FSYNC|FDSYNC)) 1226 flags = SM_WRITE; 1227 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1228 /* 1229 * Have written a whole block. 1230 * Start an asynchronous write and 1231 * mark the buffer to indicate that 1232 * it won't be needed again soon. 1233 * Push swap files here, since it 1234 * won't happen anywhere else. 1235 */ 1236 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1237 } 1238 smark(sp, SUPD|SCHG); 1239 if (vpm_enable) { 1240 error = vpm_sync_pages(blkvp, off, n, flags); 1241 } else { 1242 error = segmap_release(segkmap, base, flags); 1243 } 1244 } else { 1245 if (vpm_enable) { 1246 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1247 } else { 1248 (void) segmap_release(segkmap, base, SM_INVAL); 1249 } 1250 } 1251 1252 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1253 1254 return (error); 1255 } 1256 1257 /*ARGSUSED6*/ 1258 static int 1259 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1260 int *rvalp, caller_context_t *ct) 1261 { 1262 struct snode *sp; 1263 dev_t dev; 1264 int error; 1265 1266 if (vp->v_type != VCHR) 1267 return (ENOTTY); 1268 1269 /* 1270 * allow ioctls() to go through even for fenced snodes, as they 1271 * may include unconfiguration operation - for example popping of 1272 * streams modules. 1273 */ 1274 1275 sp = VTOS(vp); 1276 dev = sp->s_dev; 1277 if (vp->v_stream) { 1278 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1279 } else { 1280 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1281 } 1282 return (error); 1283 } 1284 1285 static int 1286 spec_getattr( 1287 struct vnode *vp, 1288 struct vattr *vap, 1289 int flags, 1290 struct cred *cr, 1291 caller_context_t *ct) 1292 { 1293 int error; 1294 struct snode *sp; 1295 struct vnode *realvp; 1296 1297 /* With ATTR_COMM we will not get attributes from realvp */ 1298 if (flags & ATTR_COMM) { 1299 sp = VTOS(vp); 1300 vp = sp->s_commonvp; 1301 } 1302 sp = VTOS(vp); 1303 1304 /* we want stat() to fail with ENXIO if the device is fenced off */ 1305 if (S_ISFENCED(sp)) 1306 return (ENXIO); 1307 1308 realvp = sp->s_realvp; 1309 1310 if (realvp == NULL) { 1311 static int snode_shift = 0; 1312 1313 /* 1314 * Calculate the amount of bitshift to a snode pointer which 1315 * will still keep it unique. See below. 1316 */ 1317 if (snode_shift == 0) 1318 snode_shift = highbit(sizeof (struct snode)); 1319 ASSERT(snode_shift > 0); 1320 1321 /* 1322 * No real vnode behind this one. Fill in the fields 1323 * from the snode. 1324 * 1325 * This code should be refined to return only the 1326 * attributes asked for instead of all of them. 1327 */ 1328 vap->va_type = vp->v_type; 1329 vap->va_mode = 0; 1330 vap->va_uid = vap->va_gid = 0; 1331 vap->va_fsid = sp->s_fsid; 1332 1333 /* 1334 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1335 * fail. So we shift down the snode pointer to try and get 1336 * the most uniqueness into 16-bits. 1337 */ 1338 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1339 0xFFFF; 1340 vap->va_nlink = 0; 1341 vap->va_rdev = sp->s_dev; 1342 1343 /* 1344 * va_nblocks is the number of 512 byte blocks used to store 1345 * the mknod for the device, not the number of blocks on the 1346 * device itself. This is typically zero since the mknod is 1347 * represented directly in the inode itself. 1348 */ 1349 vap->va_nblocks = 0; 1350 } else { 1351 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1352 if (error != 0) 1353 return (error); 1354 } 1355 1356 /* set the size from the snode */ 1357 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1358 vap->va_blksize = MAXBSIZE; 1359 1360 mutex_enter(&sp->s_lock); 1361 vap->va_atime.tv_sec = sp->s_atime; 1362 vap->va_mtime.tv_sec = sp->s_mtime; 1363 vap->va_ctime.tv_sec = sp->s_ctime; 1364 mutex_exit(&sp->s_lock); 1365 1366 vap->va_atime.tv_nsec = 0; 1367 vap->va_mtime.tv_nsec = 0; 1368 vap->va_ctime.tv_nsec = 0; 1369 vap->va_seq = 0; 1370 1371 return (0); 1372 } 1373 1374 static int 1375 spec_setattr( 1376 struct vnode *vp, 1377 struct vattr *vap, 1378 int flags, 1379 struct cred *cr, 1380 caller_context_t *ct) 1381 { 1382 struct snode *sp = VTOS(vp); 1383 struct vnode *realvp; 1384 int error; 1385 1386 /* fail with ENXIO if the device is fenced off */ 1387 if (S_ISFENCED(sp)) 1388 return (ENXIO); 1389 1390 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1391 /* 1392 * 1135080: O_TRUNC should have no effect on 1393 * named pipes and terminal devices. 1394 */ 1395 ASSERT(vap->va_mask == AT_SIZE); 1396 return (0); 1397 } 1398 1399 if ((realvp = sp->s_realvp) == NULL) 1400 error = 0; /* no real vnode to update */ 1401 else 1402 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1403 if (error == 0) { 1404 /* 1405 * If times were changed, update snode. 1406 */ 1407 mutex_enter(&sp->s_lock); 1408 if (vap->va_mask & AT_ATIME) 1409 sp->s_atime = vap->va_atime.tv_sec; 1410 if (vap->va_mask & AT_MTIME) { 1411 sp->s_mtime = vap->va_mtime.tv_sec; 1412 sp->s_ctime = gethrestime_sec(); 1413 } 1414 mutex_exit(&sp->s_lock); 1415 } 1416 return (error); 1417 } 1418 1419 static int 1420 spec_access( 1421 struct vnode *vp, 1422 int mode, 1423 int flags, 1424 struct cred *cr, 1425 caller_context_t *ct) 1426 { 1427 struct vnode *realvp; 1428 struct snode *sp = VTOS(vp); 1429 1430 /* fail with ENXIO if the device is fenced off */ 1431 if (S_ISFENCED(sp)) 1432 return (ENXIO); 1433 1434 if ((realvp = sp->s_realvp) != NULL) 1435 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1436 else 1437 return (0); /* Allow all access. */ 1438 } 1439 1440 /* 1441 * This can be called if creat or an open with O_CREAT is done on the root 1442 * of a lofs mount where the mounted entity is a special file. 1443 */ 1444 /*ARGSUSED*/ 1445 static int 1446 spec_create( 1447 struct vnode *dvp, 1448 char *name, 1449 vattr_t *vap, 1450 enum vcexcl excl, 1451 int mode, 1452 struct vnode **vpp, 1453 struct cred *cr, 1454 int flag, 1455 caller_context_t *ct, 1456 vsecattr_t *vsecp) 1457 { 1458 int error; 1459 struct snode *sp = VTOS(dvp); 1460 1461 /* fail with ENXIO if the device is fenced off */ 1462 if (S_ISFENCED(sp)) 1463 return (ENXIO); 1464 1465 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1466 if (excl == NONEXCL) { 1467 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1468 return (error); 1469 VN_HOLD(dvp); 1470 return (0); 1471 } 1472 return (EEXIST); 1473 } 1474 1475 /* 1476 * In order to sync out the snode times without multi-client problems, 1477 * make sure the times written out are never earlier than the times 1478 * already set in the vnode. 1479 */ 1480 static int 1481 spec_fsync( 1482 struct vnode *vp, 1483 int syncflag, 1484 struct cred *cr, 1485 caller_context_t *ct) 1486 { 1487 struct snode *sp = VTOS(vp); 1488 struct vnode *realvp; 1489 struct vnode *cvp; 1490 struct vattr va, vatmp; 1491 1492 /* allow syncing even if device is fenced off */ 1493 1494 /* If times didn't change, don't flush anything. */ 1495 mutex_enter(&sp->s_lock); 1496 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1497 mutex_exit(&sp->s_lock); 1498 return (0); 1499 } 1500 sp->s_flag &= ~(SACC|SUPD|SCHG); 1501 mutex_exit(&sp->s_lock); 1502 cvp = sp->s_commonvp; 1503 realvp = sp->s_realvp; 1504 1505 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1506 (cvp->v_flag & VISSWAP) == 0) 1507 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1508 1509 /* 1510 * For devices that support it, force write cache to stable storage. 1511 * We don't need the lock to check s_flags since we can treat 1512 * SNOFLUSH as a hint. 1513 */ 1514 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1515 !(sp->s_flag & SNOFLUSH)) { 1516 int rval, rc; 1517 struct dk_callback spec_callback; 1518 1519 spec_callback.dkc_flag = FLUSH_VOLATILE; 1520 spec_callback.dkc_callback = NULL; 1521 1522 /* synchronous flush on volatile cache */ 1523 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1524 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1525 1526 if (rc == ENOTSUP || rc == ENOTTY) { 1527 mutex_enter(&sp->s_lock); 1528 sp->s_flag |= SNOFLUSH; 1529 mutex_exit(&sp->s_lock); 1530 } 1531 } 1532 1533 /* 1534 * If no real vnode to update, don't flush anything. 1535 */ 1536 if (realvp == NULL) 1537 return (0); 1538 1539 vatmp.va_mask = AT_ATIME|AT_MTIME; 1540 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1541 1542 mutex_enter(&sp->s_lock); 1543 if (vatmp.va_atime.tv_sec > sp->s_atime) 1544 va.va_atime = vatmp.va_atime; 1545 else { 1546 va.va_atime.tv_sec = sp->s_atime; 1547 va.va_atime.tv_nsec = 0; 1548 } 1549 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1550 va.va_mtime = vatmp.va_mtime; 1551 else { 1552 va.va_mtime.tv_sec = sp->s_mtime; 1553 va.va_mtime.tv_nsec = 0; 1554 } 1555 mutex_exit(&sp->s_lock); 1556 1557 va.va_mask = AT_ATIME|AT_MTIME; 1558 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1559 } 1560 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1561 return (0); 1562 } 1563 1564 /*ARGSUSED*/ 1565 static void 1566 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1567 { 1568 struct snode *sp = VTOS(vp); 1569 struct vnode *cvp; 1570 struct vnode *rvp; 1571 1572 /* 1573 * If no one has reclaimed the vnode, remove from the 1574 * cache now. 1575 */ 1576 if (vp->v_count < 1) { 1577 panic("spec_inactive: Bad v_count"); 1578 /*NOTREACHED*/ 1579 } 1580 mutex_enter(&stable_lock); 1581 1582 mutex_enter(&vp->v_lock); 1583 /* 1584 * Drop the temporary hold by vn_rele now 1585 */ 1586 if (--vp->v_count != 0) { 1587 mutex_exit(&vp->v_lock); 1588 mutex_exit(&stable_lock); 1589 return; 1590 } 1591 mutex_exit(&vp->v_lock); 1592 1593 sdelete(sp); 1594 mutex_exit(&stable_lock); 1595 1596 /* We are the sole owner of sp now */ 1597 cvp = sp->s_commonvp; 1598 rvp = sp->s_realvp; 1599 1600 if (rvp) { 1601 /* 1602 * If the snode times changed, then update the times 1603 * associated with the "realvp". 1604 */ 1605 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1606 1607 struct vattr va, vatmp; 1608 1609 mutex_enter(&sp->s_lock); 1610 sp->s_flag &= ~(SACC|SUPD|SCHG); 1611 mutex_exit(&sp->s_lock); 1612 vatmp.va_mask = AT_ATIME|AT_MTIME; 1613 /* 1614 * The user may not own the device, but we 1615 * want to update the attributes anyway. 1616 */ 1617 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1618 if (vatmp.va_atime.tv_sec > sp->s_atime) 1619 va.va_atime = vatmp.va_atime; 1620 else { 1621 va.va_atime.tv_sec = sp->s_atime; 1622 va.va_atime.tv_nsec = 0; 1623 } 1624 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1625 va.va_mtime = vatmp.va_mtime; 1626 else { 1627 va.va_mtime.tv_sec = sp->s_mtime; 1628 va.va_mtime.tv_nsec = 0; 1629 } 1630 1631 va.va_mask = AT_ATIME|AT_MTIME; 1632 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1633 } 1634 } 1635 } 1636 ASSERT(!vn_has_cached_data(vp)); 1637 vn_invalid(vp); 1638 1639 /* if we are sharing another file systems vfs, release it */ 1640 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1641 VFS_RELE(vp->v_vfsp); 1642 1643 /* if we have a realvp, release the realvp */ 1644 if (rvp) 1645 VN_RELE(rvp); 1646 1647 /* if we have a common, release the common */ 1648 if (cvp && (cvp != vp)) { 1649 VN_RELE(cvp); 1650 #ifdef DEBUG 1651 } else if (cvp) { 1652 /* 1653 * if this is the last reference to a common vnode, any 1654 * associated stream had better have been closed 1655 */ 1656 ASSERT(cvp == vp); 1657 ASSERT(cvp->v_stream == NULL); 1658 #endif /* DEBUG */ 1659 } 1660 1661 /* 1662 * if we have a hold on a devinfo node (established by 1663 * spec_assoc_vp_with_devi), release the hold 1664 */ 1665 if (sp->s_dip) 1666 ddi_release_devi(sp->s_dip); 1667 1668 /* 1669 * If we have an associated device policy, release it. 1670 */ 1671 if (sp->s_plcy != NULL) 1672 dpfree(sp->s_plcy); 1673 1674 /* 1675 * If all holds on the devinfo node are through specfs/devfs 1676 * and we just destroyed the last specfs node associated with the 1677 * device, then the devinfo node reference count should now be 1678 * zero. We can't check this because there may be other holds 1679 * on the node from non file system sources: ddi_hold_devi_by_instance 1680 * for example. 1681 */ 1682 kmem_cache_free(snode_cache, sp); 1683 } 1684 1685 static int 1686 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1687 { 1688 struct vnode *realvp; 1689 struct snode *sp = VTOS(vp); 1690 1691 if ((realvp = sp->s_realvp) != NULL) 1692 return (VOP_FID(realvp, fidp, ct)); 1693 else 1694 return (EINVAL); 1695 } 1696 1697 /*ARGSUSED1*/ 1698 static int 1699 spec_seek( 1700 struct vnode *vp, 1701 offset_t ooff, 1702 offset_t *noffp, 1703 caller_context_t *ct) 1704 { 1705 offset_t maxoff = spec_maxoffset(vp); 1706 1707 if (maxoff == -1 || *noffp <= maxoff) 1708 return (0); 1709 else 1710 return (EINVAL); 1711 } 1712 1713 static int 1714 spec_frlock( 1715 struct vnode *vp, 1716 int cmd, 1717 struct flock64 *bfp, 1718 int flag, 1719 offset_t offset, 1720 struct flk_callback *flk_cbp, 1721 struct cred *cr, 1722 caller_context_t *ct) 1723 { 1724 struct snode *sp = VTOS(vp); 1725 struct snode *csp; 1726 1727 csp = VTOS(sp->s_commonvp); 1728 /* 1729 * If file is being mapped, disallow frlock. 1730 */ 1731 if (csp->s_mapcnt > 0) 1732 return (EAGAIN); 1733 1734 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1735 } 1736 1737 static int 1738 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1739 { 1740 struct vnode *rvp; 1741 1742 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1743 vp = rvp; 1744 if (VOP_REALVP(vp, &rvp, ct) == 0) 1745 vp = rvp; 1746 } 1747 1748 *vpp = vp; 1749 return (0); 1750 } 1751 1752 /* 1753 * Return all the pages from [off..off + len] in block 1754 * or character device. 1755 */ 1756 /*ARGSUSED*/ 1757 static int 1758 spec_getpage( 1759 struct vnode *vp, 1760 offset_t off, 1761 size_t len, 1762 uint_t *protp, 1763 page_t *pl[], 1764 size_t plsz, 1765 struct seg *seg, 1766 caddr_t addr, 1767 enum seg_rw rw, 1768 struct cred *cr, 1769 caller_context_t *ct) 1770 { 1771 struct snode *sp = VTOS(vp); 1772 int err; 1773 1774 ASSERT(sp->s_commonvp == vp); 1775 1776 /* 1777 * XXX Given the above assertion, this might not do 1778 * what is wanted here. 1779 */ 1780 if (vp->v_flag & VNOMAP) 1781 return (ENOSYS); 1782 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1783 "specfs getpage:vp %p off %llx len %ld snode %p", 1784 vp, off, len, sp); 1785 1786 switch (vp->v_type) { 1787 case VBLK: 1788 if (protp != NULL) 1789 *protp = PROT_ALL; 1790 1791 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1792 return (EFAULT); /* beyond EOF */ 1793 1794 if (len <= PAGESIZE) 1795 err = spec_getapage(vp, (u_offset_t)off, len, protp, pl, 1796 plsz, seg, addr, rw, cr); 1797 else 1798 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, 1799 len, protp, pl, plsz, seg, addr, rw, cr); 1800 break; 1801 1802 case VCHR: 1803 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1804 "Check any non-ON consolidation drivers"); 1805 err = 0; 1806 pl[0] = (page_t *)0; 1807 break; 1808 1809 default: 1810 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1811 /*NOTREACHED*/ 1812 } 1813 1814 return (err); 1815 } 1816 1817 extern int klustsize; /* set in machdep.c */ 1818 1819 int spec_ra = 1; 1820 int spec_lostpage; /* number of times we lost original page */ 1821 1822 /*ARGSUSED2*/ 1823 static int 1824 spec_getapage( 1825 struct vnode *vp, 1826 u_offset_t off, 1827 size_t len, 1828 uint_t *protp, 1829 page_t *pl[], 1830 size_t plsz, 1831 struct seg *seg, 1832 caddr_t addr, 1833 enum seg_rw rw, 1834 struct cred *cr) 1835 { 1836 struct snode *sp; 1837 struct buf *bp; 1838 page_t *pp, *pp2; 1839 u_offset_t io_off1, io_off2; 1840 size_t io_len1; 1841 size_t io_len2; 1842 size_t blksz; 1843 u_offset_t blkoff; 1844 int dora, err; 1845 page_t *pagefound; 1846 uint_t xlen; 1847 size_t adj_klustsize; 1848 u_offset_t size; 1849 u_offset_t tmpoff; 1850 1851 sp = VTOS(vp); 1852 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1853 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1854 reread: 1855 1856 err = 0; 1857 bp = NULL; 1858 pp = NULL; 1859 pp2 = NULL; 1860 1861 if (pl != NULL) 1862 pl[0] = NULL; 1863 1864 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1865 1866 if (spec_ra && sp->s_nextr == off) 1867 dora = 1; 1868 else 1869 dora = 0; 1870 1871 if (size == UNKNOWN_SIZE) { 1872 dora = 0; 1873 adj_klustsize = PAGESIZE; 1874 } else { 1875 adj_klustsize = dora ? klustsize : PAGESIZE; 1876 } 1877 1878 again: 1879 if ((pagefound = page_exists(vp, off)) == NULL) { 1880 if (rw == S_CREATE) { 1881 /* 1882 * We're allocating a swap slot and it's 1883 * associated page was not found, so allocate 1884 * and return it. 1885 */ 1886 if ((pp = page_create_va(vp, off, 1887 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1888 panic("spec_getapage: page_create"); 1889 /*NOTREACHED*/ 1890 } 1891 io_len1 = PAGESIZE; 1892 sp->s_nextr = off + PAGESIZE; 1893 } else { 1894 /* 1895 * Need to really do disk I/O to get the page(s). 1896 */ 1897 blkoff = (off / adj_klustsize) * adj_klustsize; 1898 if (size == UNKNOWN_SIZE) { 1899 blksz = PAGESIZE; 1900 } else { 1901 if (blkoff + adj_klustsize <= size) 1902 blksz = adj_klustsize; 1903 else 1904 blksz = 1905 MIN(size - blkoff, adj_klustsize); 1906 } 1907 1908 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1909 &io_len1, blkoff, blksz, 0); 1910 io_off1 = tmpoff; 1911 /* 1912 * Make sure the page didn't sneek into the 1913 * cache while we blocked in pvn_read_kluster. 1914 */ 1915 if (pp == NULL) 1916 goto again; 1917 1918 /* 1919 * Zero part of page which we are not 1920 * going to be reading from disk now. 1921 */ 1922 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1923 if (xlen != 0) 1924 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1925 1926 bp = spec_startio(vp, pp, io_off1, io_len1, 1927 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1928 sp->s_nextr = io_off1 + io_len1; 1929 } 1930 } 1931 1932 if (dora && rw != S_CREATE) { 1933 u_offset_t off2; 1934 caddr_t addr2; 1935 1936 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1937 addr2 = addr + (off2 - off); 1938 1939 pp2 = NULL; 1940 /* 1941 * If we are past EOF then don't bother trying 1942 * with read-ahead. 1943 */ 1944 if (off2 >= size) 1945 pp2 = NULL; 1946 else { 1947 if (off2 + adj_klustsize <= size) 1948 blksz = adj_klustsize; 1949 else 1950 blksz = MIN(size - off2, adj_klustsize); 1951 1952 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1953 &io_len2, off2, blksz, 1); 1954 io_off2 = tmpoff; 1955 } 1956 1957 if (pp2 != NULL) { 1958 /* 1959 * Zero part of page which we are not 1960 * going to be reading from disk now. 1961 */ 1962 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1963 if (xlen != 0) 1964 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1965 1966 (void) spec_startio(vp, pp2, io_off2, io_len2, 1967 B_READ | B_ASYNC); 1968 } 1969 } 1970 1971 if (pl == NULL) 1972 return (err); 1973 1974 if (bp != NULL) { 1975 err = biowait(bp); 1976 pageio_done(bp); 1977 1978 if (err) { 1979 if (pp != NULL) 1980 pvn_read_done(pp, B_ERROR); 1981 return (err); 1982 } 1983 } 1984 1985 if (pagefound) { 1986 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1987 /* 1988 * Page exists in the cache, acquire the appropriate 1989 * lock. If this fails, start all over again. 1990 */ 1991 1992 if ((pp = page_lookup(vp, off, se)) == NULL) { 1993 spec_lostpage++; 1994 goto reread; 1995 } 1996 pl[0] = pp; 1997 pl[1] = NULL; 1998 1999 sp->s_nextr = off + PAGESIZE; 2000 return (0); 2001 } 2002 2003 if (pp != NULL) 2004 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 2005 return (0); 2006 } 2007 2008 /* 2009 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 2010 * If len == 0, do from off to EOF. 2011 * 2012 * The normal cases should be len == 0 & off == 0 (entire vp list), 2013 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 2014 * (from pageout). 2015 */ 2016 /*ARGSUSED5*/ 2017 int 2018 spec_putpage( 2019 struct vnode *vp, 2020 offset_t off, 2021 size_t len, 2022 int flags, 2023 struct cred *cr, 2024 caller_context_t *ct) 2025 { 2026 struct snode *sp = VTOS(vp); 2027 struct vnode *cvp; 2028 page_t *pp; 2029 u_offset_t io_off; 2030 size_t io_len = 0; /* for lint */ 2031 int err = 0; 2032 u_offset_t size; 2033 u_offset_t tmpoff; 2034 2035 ASSERT(vp->v_count != 0); 2036 2037 if (vp->v_flag & VNOMAP) 2038 return (ENOSYS); 2039 2040 cvp = sp->s_commonvp; 2041 size = SPEC_SIZE(VTOS(cvp)); 2042 2043 if (!vn_has_cached_data(vp) || off >= size) 2044 return (0); 2045 2046 ASSERT(vp->v_type == VBLK && cvp == vp); 2047 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2048 "specfs putpage:vp %p off %llx len %ld snode %p", 2049 vp, off, len, sp); 2050 2051 if (len == 0) { 2052 /* 2053 * Search the entire vp list for pages >= off. 2054 */ 2055 err = pvn_vplist_dirty(vp, off, spec_putapage, 2056 flags, cr); 2057 } else { 2058 u_offset_t eoff; 2059 2060 /* 2061 * Loop over all offsets in the range [off...off + len] 2062 * looking for pages to deal with. We set limits so 2063 * that we kluster to klustsize boundaries. 2064 */ 2065 eoff = off + len; 2066 for (io_off = off; io_off < eoff && io_off < size; 2067 io_off += io_len) { 2068 /* 2069 * If we are not invalidating, synchronously 2070 * freeing or writing pages use the routine 2071 * page_lookup_nowait() to prevent reclaiming 2072 * them from the free list. 2073 */ 2074 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2075 pp = page_lookup(vp, io_off, 2076 (flags & (B_INVAL | B_FREE)) ? 2077 SE_EXCL : SE_SHARED); 2078 } else { 2079 pp = page_lookup_nowait(vp, io_off, 2080 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2081 } 2082 2083 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2084 io_len = PAGESIZE; 2085 else { 2086 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2087 flags, cr); 2088 io_off = tmpoff; 2089 if (err != 0) 2090 break; 2091 /* 2092 * "io_off" and "io_len" are returned as 2093 * the range of pages we actually wrote. 2094 * This allows us to skip ahead more quickly 2095 * since several pages may've been dealt 2096 * with by this iteration of the loop. 2097 */ 2098 } 2099 } 2100 } 2101 return (err); 2102 } 2103 2104 2105 /* 2106 * Write out a single page, possibly klustering adjacent 2107 * dirty pages. 2108 */ 2109 /*ARGSUSED5*/ 2110 static int 2111 spec_putapage( 2112 struct vnode *vp, 2113 page_t *pp, 2114 u_offset_t *offp, /* return value */ 2115 size_t *lenp, /* return value */ 2116 int flags, 2117 struct cred *cr) 2118 { 2119 struct snode *sp = VTOS(vp); 2120 u_offset_t io_off; 2121 size_t io_len; 2122 size_t blksz; 2123 u_offset_t blkoff; 2124 int err = 0; 2125 struct buf *bp; 2126 u_offset_t size; 2127 size_t adj_klustsize; 2128 u_offset_t tmpoff; 2129 2130 /* 2131 * Destroy read ahead value since we are really going to write. 2132 */ 2133 sp->s_nextr = 0; 2134 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2135 2136 adj_klustsize = klustsize; 2137 2138 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2139 2140 if (blkoff + adj_klustsize <= size) 2141 blksz = adj_klustsize; 2142 else 2143 blksz = size - blkoff; 2144 2145 /* 2146 * Find a kluster that fits in one contiguous chunk. 2147 */ 2148 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2149 blksz, flags); 2150 io_off = tmpoff; 2151 2152 /* 2153 * Check for page length rounding problems 2154 * XXX - Is this necessary? 2155 */ 2156 if (io_off + io_len > size) { 2157 ASSERT((io_off + io_len) - size < PAGESIZE); 2158 io_len = size - io_off; 2159 } 2160 2161 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2162 2163 /* 2164 * Wait for i/o to complete if the request is not B_ASYNC. 2165 */ 2166 if ((flags & B_ASYNC) == 0) { 2167 err = biowait(bp); 2168 pageio_done(bp); 2169 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2170 } 2171 2172 if (offp) 2173 *offp = io_off; 2174 if (lenp) 2175 *lenp = io_len; 2176 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2177 "specfs putapage:vp %p offp %p snode %p err %d", 2178 vp, offp, sp, err); 2179 return (err); 2180 } 2181 2182 /* 2183 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2184 */ 2185 static struct buf * 2186 spec_startio( 2187 struct vnode *vp, 2188 page_t *pp, 2189 u_offset_t io_off, 2190 size_t io_len, 2191 int flags) 2192 { 2193 struct buf *bp; 2194 2195 bp = pageio_setup(pp, io_len, vp, flags); 2196 2197 bp->b_edev = vp->v_rdev; 2198 bp->b_dev = cmpdev(vp->v_rdev); 2199 bp->b_blkno = btodt(io_off); 2200 bp->b_un.b_addr = (caddr_t)0; 2201 2202 (void) bdev_strategy(bp); 2203 2204 if (flags & B_READ) 2205 lwp_stat_update(LWP_STAT_INBLK, 1); 2206 else 2207 lwp_stat_update(LWP_STAT_OUBLK, 1); 2208 2209 return (bp); 2210 } 2211 2212 static int 2213 spec_poll( 2214 struct vnode *vp, 2215 short events, 2216 int anyyet, 2217 short *reventsp, 2218 struct pollhead **phpp, 2219 caller_context_t *ct) 2220 { 2221 dev_t dev; 2222 int error; 2223 2224 if (vp->v_type == VBLK) 2225 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2226 else { 2227 ASSERT(vp->v_type == VCHR); 2228 dev = vp->v_rdev; 2229 if (vp->v_stream) { 2230 ASSERT(vp->v_stream != NULL); 2231 error = strpoll(vp->v_stream, events, anyyet, 2232 reventsp, phpp); 2233 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2234 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2235 } else { 2236 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2237 } 2238 } 2239 return (error); 2240 } 2241 2242 /* 2243 * This routine is called through the cdevsw[] table to handle 2244 * traditional mmap'able devices that support a d_mmap function. 2245 */ 2246 /*ARGSUSED8*/ 2247 int 2248 spec_segmap( 2249 dev_t dev, 2250 off_t off, 2251 struct as *as, 2252 caddr_t *addrp, 2253 off_t len, 2254 uint_t prot, 2255 uint_t maxprot, 2256 uint_t flags, 2257 struct cred *cred) 2258 { 2259 struct segdev_crargs dev_a; 2260 int (*mapfunc)(dev_t dev, off_t off, int prot); 2261 size_t i; 2262 int error; 2263 2264 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2265 return (ENODEV); 2266 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2267 "specfs segmap:dev %x as %p len %lx prot %x", 2268 dev, as, len, prot); 2269 2270 /* 2271 * Character devices that support the d_mmap 2272 * interface can only be mmap'ed shared. 2273 */ 2274 if ((flags & MAP_TYPE) != MAP_SHARED) 2275 return (EINVAL); 2276 2277 /* 2278 * Check to ensure that the entire range is 2279 * legal and we are not trying to map in 2280 * more than the device will let us. 2281 */ 2282 for (i = 0; i < len; i += PAGESIZE) { 2283 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2284 return (ENXIO); 2285 } 2286 2287 as_rangelock(as); 2288 /* Pick an address w/o worrying about any vac alignment constraints. */ 2289 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2290 if (error != 0) { 2291 as_rangeunlock(as); 2292 return (error); 2293 } 2294 2295 dev_a.mapfunc = mapfunc; 2296 dev_a.dev = dev; 2297 dev_a.offset = off; 2298 dev_a.prot = (uchar_t)prot; 2299 dev_a.maxprot = (uchar_t)maxprot; 2300 dev_a.hat_flags = 0; 2301 dev_a.hat_attr = 0; 2302 dev_a.devmap_data = NULL; 2303 2304 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2305 as_rangeunlock(as); 2306 return (error); 2307 } 2308 2309 int 2310 spec_char_map( 2311 dev_t dev, 2312 offset_t off, 2313 struct as *as, 2314 caddr_t *addrp, 2315 size_t len, 2316 uchar_t prot, 2317 uchar_t maxprot, 2318 uint_t flags, 2319 struct cred *cred) 2320 { 2321 int error = 0; 2322 major_t maj = getmajor(dev); 2323 int map_flag; 2324 int (*segmap)(dev_t, off_t, struct as *, 2325 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2326 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2327 size_t, size_t *, uint_t); 2328 int (*mmap)(dev_t dev, off_t off, int prot); 2329 2330 /* 2331 * Character device: let the device driver 2332 * pick the appropriate segment driver. 2333 * 2334 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2335 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2336 */ 2337 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2338 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2339 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2340 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2341 2342 /* 2343 * Use old mmap framework if the driver has both mmap 2344 * and devmap entry points. This is to prevent the 2345 * system from calling invalid devmap entry point 2346 * for some drivers that might have put garbage in the 2347 * devmap entry point. 2348 */ 2349 if ((map_flag & D_DEVMAP) || mmap == NULL || 2350 mmap == nulldev || mmap == nodev) { 2351 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2352 2353 /* 2354 * If driver provides devmap entry point in 2355 * cb_ops but not xx_segmap(9E), call 2356 * devmap_setup with default settings 2357 * (NULL) for callback_ops and driver 2358 * callback private data 2359 */ 2360 if (devmap == nodev || devmap == NULL || 2361 devmap == nulldev) 2362 return (ENODEV); 2363 2364 error = devmap_setup(dev, off, as, addrp, 2365 len, prot, maxprot, flags, cred); 2366 2367 return (error); 2368 } else 2369 segmap = spec_segmap; 2370 } else 2371 segmap = cdev_segmap; 2372 2373 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2374 maxprot, flags, cred)); 2375 } 2376 2377 /*ARGSUSED9*/ 2378 static int 2379 spec_map( 2380 struct vnode *vp, 2381 offset_t off, 2382 struct as *as, 2383 caddr_t *addrp, 2384 size_t len, 2385 uchar_t prot, 2386 uchar_t maxprot, 2387 uint_t flags, 2388 struct cred *cred, 2389 caller_context_t *ct) 2390 { 2391 int error = 0; 2392 struct snode *sp = VTOS(vp); 2393 2394 if (vp->v_flag & VNOMAP) 2395 return (ENOSYS); 2396 2397 /* fail map with ENXIO if the device is fenced off */ 2398 if (S_ISFENCED(sp)) 2399 return (ENXIO); 2400 2401 /* 2402 * If file is locked, fail mapping attempt. 2403 */ 2404 if (vn_has_flocks(vp)) 2405 return (EAGAIN); 2406 2407 if (vp->v_type == VCHR) { 2408 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2409 maxprot, flags, cred)); 2410 } else if (vp->v_type == VBLK) { 2411 struct segvn_crargs vn_a; 2412 struct vnode *cvp; 2413 struct snode *sp; 2414 2415 /* 2416 * Block device, use segvn mapping to the underlying commonvp 2417 * for pages. 2418 */ 2419 if (off > spec_maxoffset(vp)) 2420 return (ENXIO); 2421 2422 sp = VTOS(vp); 2423 cvp = sp->s_commonvp; 2424 ASSERT(cvp != NULL); 2425 2426 if (off < 0 || ((offset_t)(off + len) < 0)) 2427 return (ENXIO); 2428 2429 as_rangelock(as); 2430 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2431 if (error != 0) { 2432 as_rangeunlock(as); 2433 return (error); 2434 } 2435 2436 vn_a.vp = cvp; 2437 vn_a.offset = off; 2438 vn_a.type = flags & MAP_TYPE; 2439 vn_a.prot = (uchar_t)prot; 2440 vn_a.maxprot = (uchar_t)maxprot; 2441 vn_a.flags = flags & ~MAP_TYPE; 2442 vn_a.cred = cred; 2443 vn_a.amp = NULL; 2444 vn_a.szc = 0; 2445 vn_a.lgrp_mem_policy_flags = 0; 2446 2447 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2448 as_rangeunlock(as); 2449 } else 2450 return (ENODEV); 2451 2452 return (error); 2453 } 2454 2455 /*ARGSUSED1*/ 2456 static int 2457 spec_addmap( 2458 struct vnode *vp, /* the common vnode */ 2459 offset_t off, 2460 struct as *as, 2461 caddr_t addr, 2462 size_t len, /* how many bytes to add */ 2463 uchar_t prot, 2464 uchar_t maxprot, 2465 uint_t flags, 2466 struct cred *cred, 2467 caller_context_t *ct) 2468 { 2469 int error = 0; 2470 struct snode *csp = VTOS(vp); 2471 ulong_t npages; 2472 2473 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2474 2475 /* 2476 * XXX Given the above assertion, this might not 2477 * be a particularly sensible thing to test. 2478 */ 2479 if (vp->v_flag & VNOMAP) 2480 return (ENOSYS); 2481 2482 /* fail with EIO if the device is fenced off */ 2483 if (S_ISFENCED(csp)) 2484 return (EIO); 2485 2486 npages = btopr(len); 2487 LOCK_CSP(csp); 2488 csp->s_mapcnt += npages; 2489 2490 UNLOCK_CSP(csp); 2491 return (error); 2492 } 2493 2494 /*ARGSUSED1*/ 2495 static int 2496 spec_delmap( 2497 struct vnode *vp, /* the common vnode */ 2498 offset_t off, 2499 struct as *as, 2500 caddr_t addr, 2501 size_t len, /* how many bytes to take away */ 2502 uint_t prot, 2503 uint_t maxprot, 2504 uint_t flags, 2505 struct cred *cred, 2506 caller_context_t *ct) 2507 { 2508 struct snode *csp = VTOS(vp); 2509 ulong_t npages; 2510 long mcnt; 2511 2512 /* segdev passes us the common vp */ 2513 2514 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2515 2516 /* allow delmap to succeed even if device fenced off */ 2517 2518 /* 2519 * XXX Given the above assertion, this might not 2520 * be a particularly sensible thing to test.. 2521 */ 2522 if (vp->v_flag & VNOMAP) 2523 return (ENOSYS); 2524 2525 npages = btopr(len); 2526 2527 LOCK_CSP(csp); 2528 mutex_enter(&csp->s_lock); 2529 mcnt = (csp->s_mapcnt -= npages); 2530 2531 if (mcnt == 0) { 2532 /* 2533 * Call the close routine when the last reference of any 2534 * kind through any [s, v]node goes away. The s_dip hold 2535 * on the devinfo node is released when the vnode is 2536 * destroyed. 2537 */ 2538 if (csp->s_count == 0) { 2539 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2540 2541 /* See comment in spec_close() */ 2542 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2543 csp->s_flag &= ~SDIPSET; 2544 2545 mutex_exit(&csp->s_lock); 2546 2547 (void) device_close(vp, 0, cred); 2548 } else 2549 mutex_exit(&csp->s_lock); 2550 2551 mutex_enter(&csp->s_lock); 2552 } 2553 ASSERT(mcnt >= 0); 2554 2555 UNLOCK_CSP_LOCK_HELD(csp); 2556 mutex_exit(&csp->s_lock); 2557 2558 return (0); 2559 } 2560 2561 /*ARGSUSED4*/ 2562 static int 2563 spec_dump( 2564 struct vnode *vp, 2565 caddr_t addr, 2566 offset_t bn, 2567 offset_t count, 2568 caller_context_t *ct) 2569 { 2570 /* allow dump to succeed even if device fenced off */ 2571 2572 ASSERT(vp->v_type == VBLK); 2573 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2574 } 2575 2576 2577 /* 2578 * Do i/o on the given page list from/to vp, io_off for io_len. 2579 * Flags are composed of: 2580 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2581 * If B_ASYNC is not set i/o is waited for. 2582 */ 2583 /*ARGSUSED5*/ 2584 static int 2585 spec_pageio( 2586 struct vnode *vp, 2587 page_t *pp, 2588 u_offset_t io_off, 2589 size_t io_len, 2590 int flags, 2591 cred_t *cr, 2592 caller_context_t *ct) 2593 { 2594 struct buf *bp = NULL; 2595 int err = 0; 2596 2597 if (pp == NULL) 2598 return (EINVAL); 2599 2600 bp = spec_startio(vp, pp, io_off, io_len, flags); 2601 2602 /* 2603 * Wait for i/o to complete if the request is not B_ASYNC. 2604 */ 2605 if ((flags & B_ASYNC) == 0) { 2606 err = biowait(bp); 2607 pageio_done(bp); 2608 } 2609 return (err); 2610 } 2611 2612 /* 2613 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2614 */ 2615 int 2616 spec_setsecattr( 2617 struct vnode *vp, 2618 vsecattr_t *vsap, 2619 int flag, 2620 struct cred *cr, 2621 caller_context_t *ct) 2622 { 2623 struct vnode *realvp; 2624 struct snode *sp = VTOS(vp); 2625 int error; 2626 2627 /* fail with ENXIO if the device is fenced off */ 2628 if (S_ISFENCED(sp)) 2629 return (ENXIO); 2630 2631 /* 2632 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2633 * ACL, but since specfs does not serialize reads and writes, this 2634 * VOP does not do anything. However, some backing file systems may 2635 * expect the lock to be held before setting an ACL, so it is taken 2636 * here privately to avoid serializing specfs reads and writes. 2637 */ 2638 if ((realvp = sp->s_realvp) != NULL) { 2639 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2640 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2641 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2642 return (error); 2643 } else 2644 return (fs_nosys()); 2645 } 2646 2647 /* 2648 * Get ACL from underlying vnode if one exists, or fabricate it from 2649 * the permissions returned by spec_getattr() otherwise. 2650 */ 2651 int 2652 spec_getsecattr( 2653 struct vnode *vp, 2654 vsecattr_t *vsap, 2655 int flag, 2656 struct cred *cr, 2657 caller_context_t *ct) 2658 { 2659 struct vnode *realvp; 2660 struct snode *sp = VTOS(vp); 2661 2662 /* fail with ENXIO if the device is fenced off */ 2663 if (S_ISFENCED(sp)) 2664 return (ENXIO); 2665 2666 if ((realvp = sp->s_realvp) != NULL) 2667 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2668 else 2669 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2670 } 2671 2672 int 2673 spec_pathconf( 2674 vnode_t *vp, 2675 int cmd, 2676 ulong_t *valp, 2677 cred_t *cr, 2678 caller_context_t *ct) 2679 { 2680 vnode_t *realvp; 2681 struct snode *sp = VTOS(vp); 2682 2683 /* fail with ENXIO if the device is fenced off */ 2684 if (S_ISFENCED(sp)) 2685 return (ENXIO); 2686 2687 if ((realvp = sp->s_realvp) != NULL) 2688 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2689 else 2690 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2691 } 2692