1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/thread.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/buf.h> 49 #include <sys/cmn_err.h> 50 #include <sys/conf.h> 51 #include <sys/ddi.h> 52 #include <sys/debug.h> 53 #include <sys/dkio.h> 54 #include <sys/errno.h> 55 #include <sys/time.h> 56 #include <sys/fcntl.h> 57 #include <sys/flock.h> 58 #include <sys/file.h> 59 #include <sys/kmem.h> 60 #include <sys/mman.h> 61 #include <sys/open.h> 62 #include <sys/swap.h> 63 #include <sys/sysmacros.h> 64 #include <sys/uio.h> 65 #include <sys/vfs.h> 66 #include <sys/vfs_opreg.h> 67 #include <sys/vnode.h> 68 #include <sys/stat.h> 69 #include <sys/poll.h> 70 #include <sys/stream.h> 71 #include <sys/strsubr.h> 72 #include <sys/policy.h> 73 #include <sys/devpolicy.h> 74 75 #include <sys/proc.h> 76 #include <sys/user.h> 77 #include <sys/session.h> 78 #include <sys/vmsystm.h> 79 #include <sys/vtrace.h> 80 #include <sys/pathname.h> 81 82 #include <sys/fs/snode.h> 83 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/page.h> 87 #include <vm/pvn.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_vn.h> 90 91 #include <fs/fs_subr.h> 92 93 #include <sys/esunddi.h> 94 #include <sys/autoconf.h> 95 #include <sys/sunndi.h> 96 #include <sys/contract/device_impl.h> 97 98 99 static int spec_open(struct vnode **, int, struct cred *, caller_context_t *); 100 static int spec_close(struct vnode *, int, int, offset_t, struct cred *, 101 caller_context_t *); 102 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 103 caller_context_t *); 104 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 105 caller_context_t *); 106 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *, 107 caller_context_t *); 108 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *, 109 caller_context_t *); 110 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 111 caller_context_t *); 112 static int spec_access(struct vnode *, int, int, struct cred *, 113 caller_context_t *); 114 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, int, 115 struct vnode **, struct cred *, int, caller_context_t *, vsecattr_t *); 116 static int spec_fsync(struct vnode *, int, struct cred *, caller_context_t *); 117 static void spec_inactive(struct vnode *, struct cred *, caller_context_t *); 118 static int spec_fid(struct vnode *, struct fid *, caller_context_t *); 119 static int spec_seek(struct vnode *, offset_t, offset_t *, caller_context_t *); 120 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 121 struct flk_callback *, struct cred *, caller_context_t *); 122 static int spec_realvp(struct vnode *, struct vnode **, caller_context_t *); 123 124 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 125 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *, 126 caller_context_t *); 127 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 128 struct cred *); 129 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 130 int); 131 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 132 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 133 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 134 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 135 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 136 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *); 137 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 138 uint_t, uint_t, uint_t, struct cred *, caller_context_t *); 139 140 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **, 141 caller_context_t *); 142 static int spec_dump(struct vnode *, caddr_t, offset_t, offset_t, 143 caller_context_t *); 144 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 145 cred_t *, caller_context_t *); 146 147 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 148 caller_context_t *); 149 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *, 150 caller_context_t *); 151 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *, 152 caller_context_t *); 153 154 #define SN_HOLD(csp) { \ 155 mutex_enter(&csp->s_lock); \ 156 csp->s_count++; \ 157 mutex_exit(&csp->s_lock); \ 158 } 159 160 #define SN_RELE(csp) { \ 161 mutex_enter(&csp->s_lock); \ 162 csp->s_count--; \ 163 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 164 mutex_exit(&csp->s_lock); \ 165 } 166 167 #define S_ISFENCED(sp) ((VTOS((sp)->s_commonvp))->s_flag & SFENCED) 168 169 struct vnodeops *spec_vnodeops; 170 171 /* 172 * *PLEASE NOTE*: If you add new entry points to specfs, do 173 * not forget to add support for fencing. A fenced snode 174 * is indicated by the SFENCED flag in the common snode. 175 * If a snode is fenced, determine if your entry point is 176 * a configuration operation (Example: open), a detection 177 * operation (Example: gettattr), an I/O operation (Example: ioctl()) 178 * or an unconfiguration operation (Example: close). If it is 179 * a configuration or detection operation, fail the operation 180 * for a fenced snode with an ENXIO or EIO as appropriate. If 181 * it is any other operation, let it through. 182 */ 183 184 const fs_operation_def_t spec_vnodeops_template[] = { 185 VOPNAME_OPEN, { .vop_open = spec_open }, 186 VOPNAME_CLOSE, { .vop_close = spec_close }, 187 VOPNAME_READ, { .vop_read = spec_read }, 188 VOPNAME_WRITE, { .vop_write = spec_write }, 189 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 190 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 191 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 192 VOPNAME_ACCESS, { .vop_access = spec_access }, 193 VOPNAME_CREATE, { .vop_create = spec_create }, 194 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 195 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 196 VOPNAME_FID, { .vop_fid = spec_fid }, 197 VOPNAME_SEEK, { .vop_seek = spec_seek }, 198 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 199 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 200 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 201 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 202 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 203 VOPNAME_MAP, { .vop_map = spec_map }, 204 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 205 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 206 VOPNAME_POLL, { .vop_poll = spec_poll }, 207 VOPNAME_DUMP, { .vop_dump = spec_dump }, 208 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 209 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 210 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 211 NULL, NULL 212 }; 213 214 /* 215 * Return address of spec_vnodeops 216 */ 217 struct vnodeops * 218 spec_getvnodeops(void) 219 { 220 return (spec_vnodeops); 221 } 222 223 extern vnode_t *rconsvp; 224 225 /* 226 * Acquire the serial lock on the common snode. 227 */ 228 #define LOCK_CSP(csp) (void) spec_lockcsp(csp, 0, 1, 0) 229 #define LOCKHOLD_CSP_SIG(csp) spec_lockcsp(csp, 1, 1, 1) 230 #define SYNCHOLD_CSP_SIG(csp, intr) spec_lockcsp(csp, intr, 0, 1) 231 232 typedef enum { 233 LOOP, 234 INTR, 235 SUCCESS 236 } slock_ret_t; 237 238 /* 239 * Synchronize with active SLOCKED snode, optionally checking for a signal and 240 * optionally returning with SLOCKED set and SN_HOLD done. The 'intr' 241 * argument determines if the thread is interruptible by a signal while 242 * waiting, the function returns INTR if interrupted while there is another 243 * thread closing this snonde and LOOP if interrupted otherwise. 244 * When SUCCESS is returned the 'hold' argument determines if the open 245 * count (SN_HOLD) has been incremented and the 'setlock' argument 246 * determines if the function returns with SLOCKED set. 247 */ 248 static slock_ret_t 249 spec_lockcsp(struct snode *csp, int intr, int setlock, int hold) 250 { 251 slock_ret_t ret = SUCCESS; 252 mutex_enter(&csp->s_lock); 253 while (csp->s_flag & SLOCKED) { 254 csp->s_flag |= SWANT; 255 if (intr) { 256 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 257 if (csp->s_flag & SCLOSING) 258 ret = INTR; 259 else 260 ret = LOOP; 261 mutex_exit(&csp->s_lock); 262 return (ret); /* interrupted */ 263 } 264 } else { 265 cv_wait(&csp->s_cv, &csp->s_lock); 266 } 267 } 268 if (setlock) 269 csp->s_flag |= SLOCKED; 270 if (hold) 271 csp->s_count++; /* one more open reference : SN_HOLD */ 272 mutex_exit(&csp->s_lock); 273 return (ret); /* serialized/locked */ 274 } 275 276 /* 277 * Unlock the serial lock on the common snode 278 */ 279 #define UNLOCK_CSP_LOCK_HELD(csp) \ 280 ASSERT(mutex_owned(&csp->s_lock)); \ 281 if (csp->s_flag & SWANT) \ 282 cv_broadcast(&csp->s_cv); \ 283 csp->s_flag &= ~(SWANT|SLOCKED); 284 285 #define UNLOCK_CSP(csp) \ 286 mutex_enter(&csp->s_lock); \ 287 UNLOCK_CSP_LOCK_HELD(csp); \ 288 mutex_exit(&csp->s_lock); 289 290 /* 291 * compute/return the size of the device 292 */ 293 #define SPEC_SIZE(csp) \ 294 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 295 296 /* 297 * Compute and return the size. If the size in the common snode is valid then 298 * return it. If not valid then get the size from the driver and set size in 299 * the common snode. If the device has not been attached then we don't ask for 300 * an update from the driver- for non-streams SSIZEVALID stays unset until the 301 * device is attached. A stat of a mknod outside /devices (non-devfs) may 302 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 303 * established in mknod until open time). An stat in /devices will report the 304 * size correctly. Specfs should always call SPEC_SIZE instead of referring 305 * directly to s_size to initialize/retrieve the size of a device. 306 * 307 * XXX There is an inconsistency between block and raw - "unknown" is 308 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 309 */ 310 static u_offset_t 311 spec_size(struct snode *csp) 312 { 313 struct vnode *cvp = STOV(csp); 314 u_offset_t size; 315 int plen; 316 uint32_t size32; 317 dev_t dev; 318 dev_info_t *devi; 319 major_t maj; 320 uint_t blksize; 321 int blkshift; 322 323 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 324 325 /* return cached value */ 326 mutex_enter(&csp->s_lock); 327 if (csp->s_flag & SSIZEVALID) { 328 mutex_exit(&csp->s_lock); 329 return (csp->s_size); 330 } 331 332 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 333 dev = cvp->v_rdev; 334 maj = getmajor(dev); 335 if (maj >= devcnt) { 336 /* return non-cached UNKNOWN_SIZE */ 337 mutex_exit(&csp->s_lock); 338 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 339 } 340 341 /* establish cached zero size for streams */ 342 if (STREAMSTAB(maj)) { 343 csp->s_size = 0; 344 csp->s_flag |= SSIZEVALID; 345 mutex_exit(&csp->s_lock); 346 return (0); 347 } 348 349 /* 350 * Return non-cached UNKNOWN_SIZE if not open. 351 * 352 * NB: This check is bogus, calling prop_op(9E) should be gated by 353 * attach, not open. Not having this check however opens up a new 354 * context under which a driver's prop_op(9E) could be called. Calling 355 * prop_op(9E) in this new context has been shown to expose latent 356 * driver bugs (insufficient NULL pointer checks that lead to panic). 357 * We are keeping this open check for now to avoid these panics. 358 */ 359 if (csp->s_count == 0) { 360 mutex_exit(&csp->s_lock); 361 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 362 } 363 364 /* Return non-cached UNKNOWN_SIZE if not attached. */ 365 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 366 !i_ddi_devi_attached(csp->s_dip)) { 367 mutex_exit(&csp->s_lock); 368 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 369 } 370 371 devi = csp->s_dip; 372 373 /* 374 * Established cached size obtained from the attached driver. Since we 375 * know the devinfo node, for efficiency we use cdev_prop_op directly 376 * instead of [cb]dev_[Ss]size. 377 */ 378 if (cvp->v_type == VCHR) { 379 size = 0; 380 plen = sizeof (size); 381 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 382 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 383 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 384 &plen) != DDI_PROP_SUCCESS) { 385 plen = sizeof (size32); 386 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 387 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 388 "size", (caddr_t)&size32, &plen) == 389 DDI_PROP_SUCCESS) 390 size = size32; 391 } 392 } else { 393 size = UNKNOWN_SIZE; 394 plen = sizeof (size); 395 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 396 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 397 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 398 &plen) != DDI_PROP_SUCCESS) { 399 plen = sizeof (size32); 400 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 401 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 402 "nblocks", (caddr_t)&size32, &plen) == 403 DDI_PROP_SUCCESS) 404 size = size32; 405 } 406 407 if (size != UNKNOWN_SIZE) { 408 blksize = DEV_BSIZE; /* default */ 409 plen = sizeof (blksize); 410 411 /* try to get dev_t specific "blksize" */ 412 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 413 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 414 "blksize", (caddr_t)&blksize, &plen) != 415 DDI_PROP_SUCCESS) { 416 /* 417 * Try for dev_info node "device-blksize". 418 * If this fails then blksize will still be 419 * DEV_BSIZE default value. 420 */ 421 (void) cdev_prop_op(DDI_DEV_T_ANY, devi, 422 PROP_LEN_AND_VAL_BUF, 423 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 424 "device-blksize", (caddr_t)&blksize, &plen); 425 } 426 427 /* blksize must be a power of two */ 428 ASSERT(BIT_ONLYONESET(blksize)); 429 blkshift = highbit(blksize) - 1; 430 431 /* convert from block size to byte size */ 432 if (size < (MAXOFFSET_T >> blkshift)) 433 size = size << blkshift; 434 else 435 size = UNKNOWN_SIZE; 436 } 437 } 438 439 csp->s_size = size; 440 csp->s_flag |= SSIZEVALID; 441 442 mutex_exit(&csp->s_lock); 443 return (size); 444 } 445 446 /* 447 * This function deal with vnode substitution in the case of 448 * device cloning. 449 */ 450 static int 451 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 452 { 453 dev_t dev = (*vpp)->v_rdev; 454 major_t maj = getmajor(dev); 455 major_t newmaj = getmajor(newdev); 456 int sysclone = (maj == clone_major); 457 int qassociate_used = 0; 458 struct snode *oldsp, *oldcsp; 459 struct snode *newsp, *newcsp; 460 struct vnode *newvp, *newcvp; 461 dev_info_t *dip; 462 queue_t *dq; 463 464 ASSERT(dev != newdev); 465 466 /* 467 * Check for cloning across different drivers. 468 * We only support this under the system provided clone driver 469 */ 470 if ((maj != newmaj) && !sysclone) { 471 cmn_err(CE_NOTE, 472 "unsupported clone open maj = %u, newmaj = %u", 473 maj, newmaj); 474 return (ENXIO); 475 } 476 477 /* old */ 478 oldsp = VTOS(*vpp); 479 oldcsp = VTOS(oldsp->s_commonvp); 480 481 /* new */ 482 newvp = makespecvp(newdev, vtype); 483 ASSERT(newvp != NULL); 484 newsp = VTOS(newvp); 485 newcvp = newsp->s_commonvp; 486 newcsp = VTOS(newcvp); 487 488 /* 489 * Clones inherit fsid, realvp, and dip. 490 * XXX realvp inherit is not occurring, does fstat of clone work? 491 */ 492 newsp->s_fsid = oldsp->s_fsid; 493 if (sysclone) { 494 newsp->s_flag |= SCLONE; 495 dip = NULL; 496 } else { 497 newsp->s_flag |= SSELFCLONE; 498 dip = oldcsp->s_dip; 499 } 500 501 /* 502 * If we cloned to an opened newdev that already has called 503 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 504 * already established. 505 */ 506 if (!(newcsp->s_flag & SDIPSET)) { 507 /* 508 * Establish s_dip association for newdev. 509 * 510 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 511 * implementation of all cloning drivers (SCLONE and SELFCLONE) 512 * we would always use e_ddi_hold_devi_by_dev(). We know that 513 * many drivers have had (still have?) problems with 514 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 515 * detecting drivers that use QASSOCIATE (by looking down the 516 * stream) and setting their s_dip association to NULL. 517 */ 518 qassociate_used = 0; 519 if (stp) { 520 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 521 if (_RD(dq)->q_flag & _QASSOCIATED) { 522 qassociate_used = 1; 523 dip = NULL; 524 break; 525 } 526 } 527 } 528 529 if (dip || qassociate_used) { 530 spec_assoc_vp_with_devi(newvp, dip); 531 } else { 532 /* derive association from newdev */ 533 dip = e_ddi_hold_devi_by_dev(newdev, 0); 534 spec_assoc_vp_with_devi(newvp, dip); 535 if (dip) 536 ddi_release_devi(dip); 537 } 538 } 539 540 SN_HOLD(newcsp); 541 542 /* deal with stream stuff */ 543 if (stp != NULL) { 544 LOCK_CSP(newcsp); /* synchronize stream open/close */ 545 mutex_enter(&newcsp->s_lock); 546 newcvp->v_stream = newvp->v_stream = stp; 547 stp->sd_vnode = newcvp; 548 stp->sd_strtab = STREAMSTAB(newmaj); 549 mutex_exit(&newcsp->s_lock); 550 UNLOCK_CSP(newcsp); 551 } 552 553 /* substitute the vnode */ 554 SN_RELE(oldcsp); 555 VN_RELE(*vpp); 556 *vpp = newvp; 557 558 return (0); 559 } 560 561 static int 562 spec_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *cc) 563 { 564 major_t maj; 565 dev_t dev, newdev; 566 struct vnode *vp, *cvp; 567 struct snode *sp, *csp; 568 struct stdata *stp; 569 dev_info_t *dip; 570 int error, type; 571 contract_t *ct = NULL; 572 int open_returns_eintr; 573 slock_ret_t spec_locksp_ret; 574 575 576 flag &= ~FCREAT; /* paranoia */ 577 578 vp = *vpp; 579 sp = VTOS(vp); 580 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 581 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 582 return (ENXIO); 583 584 /* 585 * If the VFS_NODEVICES bit was set for the mount, 586 * do not allow opens of special devices. 587 */ 588 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 589 return (ENXIO); 590 591 newdev = dev = vp->v_rdev; 592 593 /* 594 * If we are opening a node that has not had spec_assoc_vp_with_devi 595 * called against it (mknod outside /devices or a non-dacf makespecvp 596 * node) then SDIPSET will not be set. In this case we call an 597 * interface which will reconstruct the path and lookup (drive attach) 598 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 599 * devfs_lookupname). For support of broken drivers that don't call 600 * ddi_create_minor_node for all minor nodes in their instance space, 601 * we call interfaces that operates at the directory/devinfo 602 * (major/instance) level instead of to the leaf/minor node level. 603 * After finding and attaching the dip we associate it with the 604 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 605 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 606 * 607 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 608 * implementation operates at the major/instance level since it only 609 * need to return a dip. 610 */ 611 cvp = sp->s_commonvp; 612 csp = VTOS(cvp); 613 if (!(csp->s_flag & SDIPSET)) { 614 /* try to attach, return error if we fail */ 615 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 616 return (ENXIO); 617 618 /* associate dip with the common snode s_dip */ 619 spec_assoc_vp_with_devi(vp, dip); 620 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 621 } 622 623 /* check if device fenced off */ 624 if (S_ISFENCED(sp)) 625 return (ENXIO); 626 627 #ifdef DEBUG 628 /* verify attach/open exclusion guarantee */ 629 dip = csp->s_dip; 630 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 631 #endif /* DEBUG */ 632 633 if ((error = secpolicy_spec_open(cr, vp, flag)) != 0) 634 return (error); 635 636 /* Verify existance of open(9E) implementation. */ 637 maj = getmajor(dev); 638 if ((maj >= devcnt) || 639 (devopsp[maj]->devo_cb_ops == NULL) || 640 (devopsp[maj]->devo_cb_ops->cb_open == NULL)) 641 return (ENXIO); 642 643 /* split streams .vs. non-streams */ 644 if (STREAMSTAB(maj)) 645 goto streams_open; 646 647 /* 648 * Wait for in progress last close to complete. This guarantees 649 * to the driver writer that we will never be in the drivers 650 * open and close on the same (dev_t, otype) at the same time. 651 * Open count already incremented (SN_HOLD) on non-zero return. 652 * The wait is interruptible by a signal if the driver sets the 653 * D_OPEN_RETURNS_EINTR cb_ops(9S) cb_flag or sets the 654 * ddi-open-returns-eintr(9P) property in its driver.conf. 655 */ 656 if ((devopsp[maj]->devo_cb_ops->cb_flag & D_OPEN_RETURNS_EINTR) || 657 (devnamesp[maj].dn_flags & DN_OPEN_RETURNS_EINTR)) 658 open_returns_eintr = 1; 659 else 660 open_returns_eintr = 0; 661 while ((spec_locksp_ret = SYNCHOLD_CSP_SIG(csp, open_returns_eintr)) != 662 SUCCESS) { 663 if (spec_locksp_ret == INTR) 664 return (EINTR); 665 } 666 667 /* non streams open */ 668 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 669 error = dev_open(&newdev, flag, type, cr); 670 671 /* deal with clone case */ 672 if (error == 0 && dev != newdev) { 673 error = spec_clone(vpp, newdev, vp->v_type, NULL); 674 /* 675 * bail on clone failure, further processing 676 * results in undefined behaviors. 677 */ 678 if (error != 0) 679 return (error); 680 sp = VTOS(*vpp); 681 csp = VTOS(sp->s_commonvp); 682 } 683 684 /* 685 * create contracts only for userland opens 686 * Successful open and cloning is done at this point. 687 */ 688 if (error == 0 && !(flag & FKLYR)) { 689 int spec_type; 690 spec_type = (STOV(csp)->v_type == VCHR) ? S_IFCHR : S_IFBLK; 691 if (contract_device_open(newdev, spec_type, NULL) != 0) { 692 error = EIO; 693 } 694 } 695 696 if (error == 0) { 697 sp->s_size = SPEC_SIZE(csp); 698 699 if ((csp->s_flag & SNEEDCLOSE) == 0) { 700 int nmaj = getmajor(newdev); 701 mutex_enter(&csp->s_lock); 702 /* successful open needs a close later */ 703 csp->s_flag |= SNEEDCLOSE; 704 705 /* 706 * Invalidate possible cached "unknown" size 707 * established by a VOP_GETATTR while open was in 708 * progress, and the driver might fail prop_op(9E). 709 */ 710 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 711 ((cvp->v_type == VBLK) && 712 (csp->s_size == UNKNOWN_SIZE))) 713 csp->s_flag &= ~SSIZEVALID; 714 715 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 716 csp->s_flag |= SLOFFSET; 717 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 718 csp->s_flag |= SLOFFSET | SANYOFFSET; 719 mutex_exit(&csp->s_lock); 720 } 721 return (0); 722 } 723 724 /* 725 * Open failed. If we missed a close operation because 726 * we were trying to get the device open and it is the 727 * last in progress open that is failing then call close. 728 * 729 * NOTE: Only non-streams open has this race condition. 730 */ 731 mutex_enter(&csp->s_lock); 732 csp->s_count--; /* decrement open count : SN_RELE */ 733 if ((csp->s_count == 0) && /* no outstanding open */ 734 (csp->s_mapcnt == 0) && /* no mapping */ 735 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 736 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 737 738 /* See comment in spec_close() */ 739 if (csp->s_flag & (SCLONE | SSELFCLONE)) 740 csp->s_flag &= ~SDIPSET; 741 742 csp->s_flag |= SCLOSING; 743 mutex_exit(&csp->s_lock); 744 745 ASSERT(*vpp != NULL); 746 (void) device_close(*vpp, flag, cr); 747 748 mutex_enter(&csp->s_lock); 749 csp->s_flag &= ~SCLOSING; 750 mutex_exit(&csp->s_lock); 751 } else { 752 mutex_exit(&csp->s_lock); 753 } 754 return (error); 755 756 streams_open: 757 if (vp->v_type != VCHR) 758 return (ENXIO); 759 760 /* 761 * Lock common snode to prevent any new clone opens on this 762 * stream while one is in progress. This is necessary since 763 * the stream currently associated with the clone device will 764 * not be part of it after the clone open completes. Unfortunately 765 * we don't know in advance if this is a clone 766 * device so we have to lock all opens. 767 * 768 * If we fail, it's because of an interrupt - EINTR return is an 769 * expected aspect of opening a stream so we don't need to check 770 * D_OPEN_RETURNS_EINTR. Open count already incremented (SN_HOLD) 771 * on non-zero return. 772 */ 773 if (LOCKHOLD_CSP_SIG(csp) != SUCCESS) 774 return (EINTR); 775 776 error = stropen(cvp, &newdev, flag, cr); 777 stp = cvp->v_stream; 778 779 /* deal with the clone case */ 780 if ((error == 0) && (dev != newdev)) { 781 vp->v_stream = cvp->v_stream = NULL; 782 UNLOCK_CSP(csp); 783 error = spec_clone(vpp, newdev, vp->v_type, stp); 784 /* 785 * bail on clone failure, further processing 786 * results in undefined behaviors. 787 */ 788 if (error != 0) 789 return (error); 790 sp = VTOS(*vpp); 791 csp = VTOS(sp->s_commonvp); 792 } else if (error == 0) { 793 vp->v_stream = stp; 794 UNLOCK_CSP(csp); 795 } 796 797 /* 798 * create contracts only for userland opens 799 * Successful open and cloning is done at this point. 800 */ 801 if (error == 0 && !(flag & FKLYR)) { 802 /* STREAM is of type S_IFCHR */ 803 if (contract_device_open(newdev, S_IFCHR, &ct) != 0) { 804 UNLOCK_CSP(csp); 805 (void) spec_close(vp, flag, 1, 0, cr, cc); 806 return (EIO); 807 } 808 } 809 810 if (error == 0) { 811 /* STREAMS devices don't have a size */ 812 sp->s_size = csp->s_size = 0; 813 814 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 815 return (0); 816 817 /* try to allocate it as a controlling terminal */ 818 if (strctty(stp) != EINTR) 819 return (0); 820 821 /* strctty() was interrupted by a signal */ 822 if (ct) { 823 /* we only create contracts for userland opens */ 824 ASSERT(ttoproc(curthread)); 825 (void) contract_abandon(ct, ttoproc(curthread), 0); 826 } 827 (void) spec_close(vp, flag, 1, 0, cr, cc); 828 return (EINTR); 829 } 830 831 /* 832 * Deal with stropen failure. 833 * 834 * sd_flag in the stream head cannot change since the 835 * common snode is locked before the call to stropen(). 836 */ 837 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 838 /* 839 * Open failed part way through. 840 */ 841 mutex_enter(&stp->sd_lock); 842 stp->sd_flag &= ~STREOPENFAIL; 843 mutex_exit(&stp->sd_lock); 844 845 UNLOCK_CSP(csp); 846 (void) spec_close(vp, flag, 1, 0, cr, cc); 847 } else { 848 UNLOCK_CSP(csp); 849 SN_RELE(csp); 850 } 851 852 return (error); 853 } 854 855 /*ARGSUSED2*/ 856 static int 857 spec_close( 858 struct vnode *vp, 859 int flag, 860 int count, 861 offset_t offset, 862 struct cred *cr, 863 caller_context_t *ct) 864 { 865 struct vnode *cvp; 866 struct snode *sp, *csp; 867 enum vtype type; 868 dev_t dev; 869 int error = 0; 870 int sysclone; 871 872 if (!(flag & FKLYR)) { 873 /* this only applies to closes of devices from userland */ 874 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 875 cleanshares(vp, ttoproc(curthread)->p_pid); 876 if (vp->v_stream) 877 strclean(vp); 878 } 879 if (count > 1) 880 return (0); 881 882 /* we allow close to succeed even if device is fenced off */ 883 sp = VTOS(vp); 884 cvp = sp->s_commonvp; 885 886 dev = sp->s_dev; 887 type = vp->v_type; 888 889 ASSERT(type == VCHR || type == VBLK); 890 891 /* 892 * Prevent close/close and close/open races by serializing closes 893 * on this common snode. Clone opens are held up until after 894 * we have closed this device so the streams linkage is maintained 895 */ 896 csp = VTOS(cvp); 897 898 LOCK_CSP(csp); 899 mutex_enter(&csp->s_lock); 900 901 csp->s_count--; /* one fewer open reference : SN_RELE */ 902 sysclone = sp->s_flag & SCLONE; 903 904 /* 905 * Invalidate size on each close. 906 * 907 * XXX We do this on each close because we don't have interfaces that 908 * allow a driver to invalidate the size. Since clearing this on each 909 * close this causes property overhead we skip /dev/null and 910 * /dev/zero to avoid degrading kenbus performance. 911 */ 912 if (getmajor(dev) != mm_major) 913 csp->s_flag &= ~SSIZEVALID; 914 915 /* 916 * Only call the close routine when the last open reference through 917 * any [s, v]node goes away. This can be checked by looking at 918 * s_count on the common vnode. 919 */ 920 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 921 /* we don't need a close */ 922 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 923 924 /* 925 * A cloning driver may open-clone to the same dev_t that we 926 * are closing before spec_inactive destroys the common snode. 927 * If this occurs the s_dip association needs to be reevaluated. 928 * We clear SDIPSET to force reevaluation in this case. When 929 * reevaluation occurs (by spec_clone after open), if the 930 * devinfo association has changed then the old association 931 * will be released as the new association is established by 932 * spec_assoc_vp_with_devi(). 933 */ 934 if (csp->s_flag & (SCLONE | SSELFCLONE)) 935 csp->s_flag &= ~SDIPSET; 936 937 csp->s_flag |= SCLOSING; 938 mutex_exit(&csp->s_lock); 939 error = device_close(vp, flag, cr); 940 941 /* 942 * Decrement the devops held in clnopen() 943 */ 944 if (sysclone) { 945 ddi_rele_driver(getmajor(dev)); 946 } 947 mutex_enter(&csp->s_lock); 948 csp->s_flag &= ~SCLOSING; 949 } 950 951 UNLOCK_CSP_LOCK_HELD(csp); 952 mutex_exit(&csp->s_lock); 953 954 return (error); 955 } 956 957 /*ARGSUSED2*/ 958 static int 959 spec_read( 960 struct vnode *vp, 961 struct uio *uiop, 962 int ioflag, 963 struct cred *cr, 964 caller_context_t *ct) 965 { 966 int error; 967 struct snode *sp = VTOS(vp); 968 dev_t dev = sp->s_dev; 969 size_t n; 970 ulong_t on; 971 u_offset_t bdevsize; 972 offset_t maxoff; 973 offset_t off; 974 struct vnode *blkvp; 975 976 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 977 978 if (STREAMSTAB(getmajor(dev))) { /* stream */ 979 ASSERT(vp->v_type == VCHR); 980 smark(sp, SACC); 981 return (strread(vp, uiop, cr)); 982 } 983 984 if (uiop->uio_resid == 0) 985 return (0); 986 987 /* 988 * Plain old character devices that set D_U64BIT can have 989 * unrestricted offsets. 990 */ 991 maxoff = spec_maxoffset(vp); 992 ASSERT(maxoff != -1 || vp->v_type == VCHR); 993 994 if (maxoff != -1 && (uiop->uio_loffset < 0 || 995 uiop->uio_loffset + uiop->uio_resid > maxoff)) 996 return (EINVAL); 997 998 if (vp->v_type == VCHR) { 999 smark(sp, SACC); 1000 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 1001 return (cdev_read(dev, uiop, cr)); 1002 } 1003 1004 /* 1005 * Block device. 1006 */ 1007 error = 0; 1008 blkvp = sp->s_commonvp; 1009 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1010 1011 do { 1012 caddr_t base; 1013 offset_t diff; 1014 1015 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1016 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 1017 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1018 diff = bdevsize - uiop->uio_loffset; 1019 1020 if (diff <= 0) 1021 break; 1022 if (diff < n) 1023 n = (size_t)diff; 1024 1025 if (vpm_enable) { 1026 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1027 n, uiop, 1, NULL, 0, S_READ); 1028 } else { 1029 base = segmap_getmapflt(segkmap, blkvp, 1030 (u_offset_t)(off + on), n, 1, S_READ); 1031 1032 error = uiomove(base + on, n, UIO_READ, uiop); 1033 } 1034 if (!error) { 1035 int flags = 0; 1036 /* 1037 * If we read a whole block, we won't need this 1038 * buffer again soon. 1039 */ 1040 if (n + on == MAXBSIZE) 1041 flags = SM_DONTNEED | SM_FREE; 1042 if (vpm_enable) { 1043 error = vpm_sync_pages(blkvp, off, n, flags); 1044 } else { 1045 error = segmap_release(segkmap, base, flags); 1046 } 1047 } else { 1048 if (vpm_enable) { 1049 (void) vpm_sync_pages(blkvp, off, n, 0); 1050 } else { 1051 (void) segmap_release(segkmap, base, 0); 1052 } 1053 if (bdevsize == UNKNOWN_SIZE) { 1054 error = 0; 1055 break; 1056 } 1057 } 1058 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1059 1060 return (error); 1061 } 1062 1063 /*ARGSUSED*/ 1064 static int 1065 spec_write( 1066 struct vnode *vp, 1067 struct uio *uiop, 1068 int ioflag, 1069 struct cred *cr, 1070 caller_context_t *ct) 1071 { 1072 int error; 1073 struct snode *sp = VTOS(vp); 1074 dev_t dev = sp->s_dev; 1075 size_t n; 1076 ulong_t on; 1077 u_offset_t bdevsize; 1078 offset_t maxoff; 1079 offset_t off; 1080 struct vnode *blkvp; 1081 1082 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 1083 1084 if (STREAMSTAB(getmajor(dev))) { 1085 ASSERT(vp->v_type == VCHR); 1086 smark(sp, SUPD); 1087 return (strwrite(vp, uiop, cr)); 1088 } 1089 1090 /* 1091 * Plain old character devices that set D_U64BIT can have 1092 * unrestricted offsets. 1093 */ 1094 maxoff = spec_maxoffset(vp); 1095 ASSERT(maxoff != -1 || vp->v_type == VCHR); 1096 1097 if (maxoff != -1 && (uiop->uio_loffset < 0 || 1098 uiop->uio_loffset + uiop->uio_resid > maxoff)) 1099 return (EINVAL); 1100 1101 if (vp->v_type == VCHR) { 1102 smark(sp, SUPD); 1103 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 1104 return (cdev_write(dev, uiop, cr)); 1105 } 1106 1107 if (uiop->uio_resid == 0) 1108 return (0); 1109 1110 error = 0; 1111 blkvp = sp->s_commonvp; 1112 bdevsize = SPEC_SIZE(VTOS(blkvp)); 1113 1114 do { 1115 int pagecreate; 1116 int newpage; 1117 caddr_t base; 1118 offset_t diff; 1119 1120 off = uiop->uio_loffset & (offset_t)MAXBMASK; 1121 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 1122 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 1123 pagecreate = 0; 1124 1125 diff = bdevsize - uiop->uio_loffset; 1126 if (diff <= 0) { 1127 error = ENXIO; 1128 break; 1129 } 1130 if (diff < n) 1131 n = (size_t)diff; 1132 1133 /* 1134 * Check to see if we can skip reading in the page 1135 * and just allocate the memory. We can do this 1136 * if we are going to rewrite the entire mapping 1137 * or if we are going to write to end of the device 1138 * from the beginning of the mapping. 1139 */ 1140 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1141 pagecreate = 1; 1142 1143 newpage = 0; 1144 if (vpm_enable) { 1145 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1146 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1147 } else { 1148 base = segmap_getmapflt(segkmap, blkvp, 1149 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1150 1151 /* 1152 * segmap_pagecreate() returns 1 if it calls 1153 * page_create_va() to allocate any pages. 1154 */ 1155 1156 if (pagecreate) 1157 newpage = segmap_pagecreate(segkmap, base + on, 1158 n, 0); 1159 1160 error = uiomove(base + on, n, UIO_WRITE, uiop); 1161 } 1162 1163 if (!vpm_enable && pagecreate && 1164 uiop->uio_loffset < 1165 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1166 /* 1167 * We created pages w/o initializing them completely, 1168 * thus we need to zero the part that wasn't set up. 1169 * This can happen if we write to the end of the device 1170 * or if we had some sort of error during the uiomove. 1171 */ 1172 long nzero; 1173 offset_t nmoved; 1174 1175 nmoved = (uiop->uio_loffset - (off + on)); 1176 if (nmoved < 0 || nmoved > n) { 1177 panic("spec_write: nmoved bogus"); 1178 /*NOTREACHED*/ 1179 } 1180 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1181 (on + nmoved); 1182 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1183 panic("spec_write: nzero bogus"); 1184 /*NOTREACHED*/ 1185 } 1186 (void) kzero(base + on + nmoved, (size_t)nzero); 1187 } 1188 1189 /* 1190 * Unlock the pages which have been allocated by 1191 * page_create_va() in segmap_pagecreate(). 1192 */ 1193 if (!vpm_enable && newpage) 1194 segmap_pageunlock(segkmap, base + on, 1195 (size_t)n, S_WRITE); 1196 1197 if (error == 0) { 1198 int flags = 0; 1199 1200 /* 1201 * Force write back for synchronous write cases. 1202 */ 1203 if (ioflag & (FSYNC|FDSYNC)) 1204 flags = SM_WRITE; 1205 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1206 /* 1207 * Have written a whole block. 1208 * Start an asynchronous write and 1209 * mark the buffer to indicate that 1210 * it won't be needed again soon. 1211 * Push swap files here, since it 1212 * won't happen anywhere else. 1213 */ 1214 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1215 } 1216 smark(sp, SUPD|SCHG); 1217 if (vpm_enable) { 1218 error = vpm_sync_pages(blkvp, off, n, flags); 1219 } else { 1220 error = segmap_release(segkmap, base, flags); 1221 } 1222 } else { 1223 if (vpm_enable) { 1224 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1225 } else { 1226 (void) segmap_release(segkmap, base, SM_INVAL); 1227 } 1228 } 1229 1230 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1231 1232 return (error); 1233 } 1234 1235 /*ARGSUSED6*/ 1236 static int 1237 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1238 int *rvalp, caller_context_t *ct) 1239 { 1240 struct snode *sp; 1241 dev_t dev; 1242 int error; 1243 1244 if (vp->v_type != VCHR) 1245 return (ENOTTY); 1246 1247 /* 1248 * allow ioctls() to go through even for fenced snodes, as they 1249 * may include unconfiguration operation - for example popping of 1250 * streams modules. 1251 */ 1252 1253 sp = VTOS(vp); 1254 dev = sp->s_dev; 1255 if (STREAMSTAB(getmajor(dev))) { 1256 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1257 } else { 1258 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1259 } 1260 return (error); 1261 } 1262 1263 static int 1264 spec_getattr( 1265 struct vnode *vp, 1266 struct vattr *vap, 1267 int flags, 1268 struct cred *cr, 1269 caller_context_t *ct) 1270 { 1271 int error; 1272 struct snode *sp; 1273 struct vnode *realvp; 1274 1275 /* With ATTR_COMM we will not get attributes from realvp */ 1276 if (flags & ATTR_COMM) { 1277 sp = VTOS(vp); 1278 vp = sp->s_commonvp; 1279 } 1280 sp = VTOS(vp); 1281 1282 /* we want stat() to fail with ENXIO if the device is fenced off */ 1283 if (S_ISFENCED(sp)) 1284 return (ENXIO); 1285 1286 realvp = sp->s_realvp; 1287 1288 if (realvp == NULL) { 1289 static int snode_shift = 0; 1290 1291 /* 1292 * Calculate the amount of bitshift to a snode pointer which 1293 * will still keep it unique. See below. 1294 */ 1295 if (snode_shift == 0) 1296 snode_shift = highbit(sizeof (struct snode)); 1297 ASSERT(snode_shift > 0); 1298 1299 /* 1300 * No real vnode behind this one. Fill in the fields 1301 * from the snode. 1302 * 1303 * This code should be refined to return only the 1304 * attributes asked for instead of all of them. 1305 */ 1306 vap->va_type = vp->v_type; 1307 vap->va_mode = 0; 1308 vap->va_uid = vap->va_gid = 0; 1309 vap->va_fsid = sp->s_fsid; 1310 1311 /* 1312 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1313 * fail. So we shift down the snode pointer to try and get 1314 * the most uniqueness into 16-bits. 1315 */ 1316 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1317 0xFFFF; 1318 vap->va_nlink = 0; 1319 vap->va_rdev = sp->s_dev; 1320 1321 /* 1322 * va_nblocks is the number of 512 byte blocks used to store 1323 * the mknod for the device, not the number of blocks on the 1324 * device itself. This is typically zero since the mknod is 1325 * represented directly in the inode itself. 1326 */ 1327 vap->va_nblocks = 0; 1328 } else { 1329 error = VOP_GETATTR(realvp, vap, flags, cr, ct); 1330 if (error != 0) 1331 return (error); 1332 } 1333 1334 /* set the size from the snode */ 1335 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1336 vap->va_blksize = MAXBSIZE; 1337 1338 mutex_enter(&sp->s_lock); 1339 vap->va_atime.tv_sec = sp->s_atime; 1340 vap->va_mtime.tv_sec = sp->s_mtime; 1341 vap->va_ctime.tv_sec = sp->s_ctime; 1342 mutex_exit(&sp->s_lock); 1343 1344 vap->va_atime.tv_nsec = 0; 1345 vap->va_mtime.tv_nsec = 0; 1346 vap->va_ctime.tv_nsec = 0; 1347 vap->va_seq = 0; 1348 1349 return (0); 1350 } 1351 1352 static int 1353 spec_setattr( 1354 struct vnode *vp, 1355 struct vattr *vap, 1356 int flags, 1357 struct cred *cr, 1358 caller_context_t *ct) 1359 { 1360 struct snode *sp = VTOS(vp); 1361 struct vnode *realvp; 1362 int error; 1363 1364 /* fail with ENXIO if the device is fenced off */ 1365 if (S_ISFENCED(sp)) 1366 return (ENXIO); 1367 1368 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1369 /* 1370 * 1135080: O_TRUNC should have no effect on 1371 * named pipes and terminal devices. 1372 */ 1373 ASSERT(vap->va_mask == AT_SIZE); 1374 return (0); 1375 } 1376 1377 if ((realvp = sp->s_realvp) == NULL) 1378 error = 0; /* no real vnode to update */ 1379 else 1380 error = VOP_SETATTR(realvp, vap, flags, cr, ct); 1381 if (error == 0) { 1382 /* 1383 * If times were changed, update snode. 1384 */ 1385 mutex_enter(&sp->s_lock); 1386 if (vap->va_mask & AT_ATIME) 1387 sp->s_atime = vap->va_atime.tv_sec; 1388 if (vap->va_mask & AT_MTIME) { 1389 sp->s_mtime = vap->va_mtime.tv_sec; 1390 sp->s_ctime = gethrestime_sec(); 1391 } 1392 mutex_exit(&sp->s_lock); 1393 } 1394 return (error); 1395 } 1396 1397 static int 1398 spec_access( 1399 struct vnode *vp, 1400 int mode, 1401 int flags, 1402 struct cred *cr, 1403 caller_context_t *ct) 1404 { 1405 struct vnode *realvp; 1406 struct snode *sp = VTOS(vp); 1407 1408 /* fail with ENXIO if the device is fenced off */ 1409 if (S_ISFENCED(sp)) 1410 return (ENXIO); 1411 1412 if ((realvp = sp->s_realvp) != NULL) 1413 return (VOP_ACCESS(realvp, mode, flags, cr, ct)); 1414 else 1415 return (0); /* Allow all access. */ 1416 } 1417 1418 /* 1419 * This can be called if creat or an open with O_CREAT is done on the root 1420 * of a lofs mount where the mounted entity is a special file. 1421 */ 1422 /*ARGSUSED*/ 1423 static int 1424 spec_create( 1425 struct vnode *dvp, 1426 char *name, 1427 vattr_t *vap, 1428 enum vcexcl excl, 1429 int mode, 1430 struct vnode **vpp, 1431 struct cred *cr, 1432 int flag, 1433 caller_context_t *ct, 1434 vsecattr_t *vsecp) 1435 { 1436 int error; 1437 struct snode *sp = VTOS(dvp); 1438 1439 /* fail with ENXIO if the device is fenced off */ 1440 if (S_ISFENCED(sp)) 1441 return (ENXIO); 1442 1443 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1444 if (excl == NONEXCL) { 1445 if (mode && (error = spec_access(dvp, mode, 0, cr, ct))) 1446 return (error); 1447 VN_HOLD(dvp); 1448 return (0); 1449 } 1450 return (EEXIST); 1451 } 1452 1453 /* 1454 * In order to sync out the snode times without multi-client problems, 1455 * make sure the times written out are never earlier than the times 1456 * already set in the vnode. 1457 */ 1458 static int 1459 spec_fsync( 1460 struct vnode *vp, 1461 int syncflag, 1462 struct cred *cr, 1463 caller_context_t *ct) 1464 { 1465 struct snode *sp = VTOS(vp); 1466 struct vnode *realvp; 1467 struct vnode *cvp; 1468 struct vattr va, vatmp; 1469 1470 /* allow syncing even if device is fenced off */ 1471 1472 /* If times didn't change, don't flush anything. */ 1473 mutex_enter(&sp->s_lock); 1474 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1475 mutex_exit(&sp->s_lock); 1476 return (0); 1477 } 1478 sp->s_flag &= ~(SACC|SUPD|SCHG); 1479 mutex_exit(&sp->s_lock); 1480 cvp = sp->s_commonvp; 1481 realvp = sp->s_realvp; 1482 1483 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1484 (cvp->v_flag & VISSWAP) == 0) 1485 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr, ct); 1486 1487 /* 1488 * For devices that support it, force write cache to stable storage. 1489 * We don't need the lock to check s_flags since we can treat 1490 * SNOFLUSH as a hint. 1491 */ 1492 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1493 !(sp->s_flag & SNOFLUSH)) { 1494 int rval, rc; 1495 struct dk_callback spec_callback; 1496 1497 spec_callback.dkc_flag = FLUSH_VOLATILE; 1498 spec_callback.dkc_callback = NULL; 1499 1500 /* synchronous flush on volatile cache */ 1501 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1502 (intptr_t)&spec_callback, FNATIVE|FKIOCTL, cr, &rval); 1503 1504 if (rc == ENOTSUP || rc == ENOTTY) { 1505 mutex_enter(&sp->s_lock); 1506 sp->s_flag |= SNOFLUSH; 1507 mutex_exit(&sp->s_lock); 1508 } 1509 } 1510 1511 /* 1512 * If no real vnode to update, don't flush anything. 1513 */ 1514 if (realvp == NULL) 1515 return (0); 1516 1517 vatmp.va_mask = AT_ATIME|AT_MTIME; 1518 if (VOP_GETATTR(realvp, &vatmp, 0, cr, ct) == 0) { 1519 1520 mutex_enter(&sp->s_lock); 1521 if (vatmp.va_atime.tv_sec > sp->s_atime) 1522 va.va_atime = vatmp.va_atime; 1523 else { 1524 va.va_atime.tv_sec = sp->s_atime; 1525 va.va_atime.tv_nsec = 0; 1526 } 1527 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1528 va.va_mtime = vatmp.va_mtime; 1529 else { 1530 va.va_mtime.tv_sec = sp->s_mtime; 1531 va.va_mtime.tv_nsec = 0; 1532 } 1533 mutex_exit(&sp->s_lock); 1534 1535 va.va_mask = AT_ATIME|AT_MTIME; 1536 (void) VOP_SETATTR(realvp, &va, 0, cr, ct); 1537 } 1538 (void) VOP_FSYNC(realvp, syncflag, cr, ct); 1539 return (0); 1540 } 1541 1542 /*ARGSUSED*/ 1543 static void 1544 spec_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct) 1545 { 1546 struct snode *sp = VTOS(vp); 1547 struct vnode *cvp; 1548 struct vnode *rvp; 1549 1550 /* 1551 * If no one has reclaimed the vnode, remove from the 1552 * cache now. 1553 */ 1554 if (vp->v_count < 1) { 1555 panic("spec_inactive: Bad v_count"); 1556 /*NOTREACHED*/ 1557 } 1558 mutex_enter(&stable_lock); 1559 1560 mutex_enter(&vp->v_lock); 1561 /* 1562 * Drop the temporary hold by vn_rele now 1563 */ 1564 if (--vp->v_count != 0) { 1565 mutex_exit(&vp->v_lock); 1566 mutex_exit(&stable_lock); 1567 return; 1568 } 1569 mutex_exit(&vp->v_lock); 1570 1571 sdelete(sp); 1572 mutex_exit(&stable_lock); 1573 1574 /* We are the sole owner of sp now */ 1575 cvp = sp->s_commonvp; 1576 rvp = sp->s_realvp; 1577 1578 if (rvp) { 1579 /* 1580 * If the snode times changed, then update the times 1581 * associated with the "realvp". 1582 */ 1583 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1584 1585 struct vattr va, vatmp; 1586 1587 mutex_enter(&sp->s_lock); 1588 sp->s_flag &= ~(SACC|SUPD|SCHG); 1589 mutex_exit(&sp->s_lock); 1590 vatmp.va_mask = AT_ATIME|AT_MTIME; 1591 /* 1592 * The user may not own the device, but we 1593 * want to update the attributes anyway. 1594 */ 1595 if (VOP_GETATTR(rvp, &vatmp, 0, kcred, ct) == 0) { 1596 if (vatmp.va_atime.tv_sec > sp->s_atime) 1597 va.va_atime = vatmp.va_atime; 1598 else { 1599 va.va_atime.tv_sec = sp->s_atime; 1600 va.va_atime.tv_nsec = 0; 1601 } 1602 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1603 va.va_mtime = vatmp.va_mtime; 1604 else { 1605 va.va_mtime.tv_sec = sp->s_mtime; 1606 va.va_mtime.tv_nsec = 0; 1607 } 1608 1609 va.va_mask = AT_ATIME|AT_MTIME; 1610 (void) VOP_SETATTR(rvp, &va, 0, kcred, ct); 1611 } 1612 } 1613 } 1614 ASSERT(!vn_has_cached_data(vp)); 1615 vn_invalid(vp); 1616 1617 /* if we are sharing another file systems vfs, release it */ 1618 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1619 VFS_RELE(vp->v_vfsp); 1620 1621 /* if we have a realvp, release the realvp */ 1622 if (rvp) 1623 VN_RELE(rvp); 1624 1625 /* if we have a common, release the common */ 1626 if (cvp && (cvp != vp)) { 1627 VN_RELE(cvp); 1628 #ifdef DEBUG 1629 } else if (cvp) { 1630 /* 1631 * if this is the last reference to a common vnode, any 1632 * associated stream had better have been closed 1633 */ 1634 ASSERT(cvp == vp); 1635 ASSERT(cvp->v_stream == NULL); 1636 #endif /* DEBUG */ 1637 } 1638 1639 /* 1640 * if we have a hold on a devinfo node (established by 1641 * spec_assoc_vp_with_devi), release the hold 1642 */ 1643 if (sp->s_dip) 1644 ddi_release_devi(sp->s_dip); 1645 1646 /* 1647 * If we have an associated device policy, release it. 1648 */ 1649 if (sp->s_plcy != NULL) 1650 dpfree(sp->s_plcy); 1651 1652 /* 1653 * If all holds on the devinfo node are through specfs/devfs 1654 * and we just destroyed the last specfs node associated with the 1655 * device, then the devinfo node reference count should now be 1656 * zero. We can't check this because there may be other holds 1657 * on the node from non file system sources: ddi_hold_devi_by_instance 1658 * for example. 1659 */ 1660 kmem_cache_free(snode_cache, sp); 1661 } 1662 1663 static int 1664 spec_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct) 1665 { 1666 struct vnode *realvp; 1667 struct snode *sp = VTOS(vp); 1668 1669 if ((realvp = sp->s_realvp) != NULL) 1670 return (VOP_FID(realvp, fidp, ct)); 1671 else 1672 return (EINVAL); 1673 } 1674 1675 /*ARGSUSED1*/ 1676 static int 1677 spec_seek( 1678 struct vnode *vp, 1679 offset_t ooff, 1680 offset_t *noffp, 1681 caller_context_t *ct) 1682 { 1683 offset_t maxoff = spec_maxoffset(vp); 1684 1685 if (maxoff == -1 || *noffp <= maxoff) 1686 return (0); 1687 else 1688 return (EINVAL); 1689 } 1690 1691 static int 1692 spec_frlock( 1693 struct vnode *vp, 1694 int cmd, 1695 struct flock64 *bfp, 1696 int flag, 1697 offset_t offset, 1698 struct flk_callback *flk_cbp, 1699 struct cred *cr, 1700 caller_context_t *ct) 1701 { 1702 struct snode *sp = VTOS(vp); 1703 struct snode *csp; 1704 1705 csp = VTOS(sp->s_commonvp); 1706 /* 1707 * If file is being mapped, disallow frlock. 1708 */ 1709 if (csp->s_mapcnt > 0) 1710 return (EAGAIN); 1711 1712 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 1713 } 1714 1715 static int 1716 spec_realvp(struct vnode *vp, struct vnode **vpp, caller_context_t *ct) 1717 { 1718 struct vnode *rvp; 1719 1720 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1721 vp = rvp; 1722 if (VOP_REALVP(vp, &rvp, ct) == 0) 1723 vp = rvp; 1724 } 1725 1726 *vpp = vp; 1727 return (0); 1728 } 1729 1730 /* 1731 * Return all the pages from [off..off + len] in block 1732 * or character device. 1733 */ 1734 /*ARGSUSED*/ 1735 static int 1736 spec_getpage( 1737 struct vnode *vp, 1738 offset_t off, 1739 size_t len, 1740 uint_t *protp, 1741 page_t *pl[], 1742 size_t plsz, 1743 struct seg *seg, 1744 caddr_t addr, 1745 enum seg_rw rw, 1746 struct cred *cr, 1747 caller_context_t *ct) 1748 { 1749 struct snode *sp = VTOS(vp); 1750 int err; 1751 1752 ASSERT(sp->s_commonvp == vp); 1753 1754 /* 1755 * XXX Given the above assertion, this might not do 1756 * what is wanted here. 1757 */ 1758 if (vp->v_flag & VNOMAP) 1759 return (ENOSYS); 1760 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1761 "specfs getpage:vp %p off %llx len %ld snode %p", 1762 vp, off, len, sp); 1763 1764 switch (vp->v_type) { 1765 case VBLK: 1766 if (protp != NULL) 1767 *protp = PROT_ALL; 1768 1769 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1770 return (EFAULT); /* beyond EOF */ 1771 1772 if (len <= PAGESIZE) 1773 err = spec_getapage(vp, (u_offset_t)off, len, protp, pl, 1774 plsz, seg, addr, rw, cr); 1775 else 1776 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, 1777 len, protp, pl, plsz, seg, addr, rw, cr); 1778 break; 1779 1780 case VCHR: 1781 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1782 "Check any non-ON consolidation drivers"); 1783 err = 0; 1784 pl[0] = (page_t *)0; 1785 break; 1786 1787 default: 1788 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1789 /*NOTREACHED*/ 1790 } 1791 1792 return (err); 1793 } 1794 1795 extern int klustsize; /* set in machdep.c */ 1796 1797 int spec_ra = 1; 1798 int spec_lostpage; /* number of times we lost original page */ 1799 1800 /*ARGSUSED2*/ 1801 static int 1802 spec_getapage( 1803 struct vnode *vp, 1804 u_offset_t off, 1805 size_t len, 1806 uint_t *protp, 1807 page_t *pl[], 1808 size_t plsz, 1809 struct seg *seg, 1810 caddr_t addr, 1811 enum seg_rw rw, 1812 struct cred *cr) 1813 { 1814 struct snode *sp; 1815 struct buf *bp; 1816 page_t *pp, *pp2; 1817 u_offset_t io_off1, io_off2; 1818 size_t io_len1; 1819 size_t io_len2; 1820 size_t blksz; 1821 u_offset_t blkoff; 1822 int dora, err; 1823 page_t *pagefound; 1824 uint_t xlen; 1825 size_t adj_klustsize; 1826 u_offset_t size; 1827 u_offset_t tmpoff; 1828 1829 sp = VTOS(vp); 1830 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1831 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1832 reread: 1833 1834 err = 0; 1835 bp = NULL; 1836 pp = NULL; 1837 pp2 = NULL; 1838 1839 if (pl != NULL) 1840 pl[0] = NULL; 1841 1842 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1843 1844 if (spec_ra && sp->s_nextr == off) 1845 dora = 1; 1846 else 1847 dora = 0; 1848 1849 if (size == UNKNOWN_SIZE) { 1850 dora = 0; 1851 adj_klustsize = PAGESIZE; 1852 } else { 1853 adj_klustsize = dora ? klustsize : PAGESIZE; 1854 } 1855 1856 again: 1857 if ((pagefound = page_exists(vp, off)) == NULL) { 1858 if (rw == S_CREATE) { 1859 /* 1860 * We're allocating a swap slot and it's 1861 * associated page was not found, so allocate 1862 * and return it. 1863 */ 1864 if ((pp = page_create_va(vp, off, 1865 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1866 panic("spec_getapage: page_create"); 1867 /*NOTREACHED*/ 1868 } 1869 io_len1 = PAGESIZE; 1870 sp->s_nextr = off + PAGESIZE; 1871 } else { 1872 /* 1873 * Need to really do disk I/O to get the page(s). 1874 */ 1875 blkoff = (off / adj_klustsize) * adj_klustsize; 1876 if (size == UNKNOWN_SIZE) { 1877 blksz = PAGESIZE; 1878 } else { 1879 if (blkoff + adj_klustsize <= size) 1880 blksz = adj_klustsize; 1881 else 1882 blksz = 1883 MIN(size - blkoff, adj_klustsize); 1884 } 1885 1886 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1887 &io_len1, blkoff, blksz, 0); 1888 io_off1 = tmpoff; 1889 /* 1890 * Make sure the page didn't sneek into the 1891 * cache while we blocked in pvn_read_kluster. 1892 */ 1893 if (pp == NULL) 1894 goto again; 1895 1896 /* 1897 * Zero part of page which we are not 1898 * going to be reading from disk now. 1899 */ 1900 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1901 if (xlen != 0) 1902 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1903 1904 bp = spec_startio(vp, pp, io_off1, io_len1, 1905 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1906 sp->s_nextr = io_off1 + io_len1; 1907 } 1908 } 1909 1910 if (dora && rw != S_CREATE) { 1911 u_offset_t off2; 1912 caddr_t addr2; 1913 1914 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1915 addr2 = addr + (off2 - off); 1916 1917 pp2 = NULL; 1918 /* 1919 * If we are past EOF then don't bother trying 1920 * with read-ahead. 1921 */ 1922 if (off2 >= size) 1923 pp2 = NULL; 1924 else { 1925 if (off2 + adj_klustsize <= size) 1926 blksz = adj_klustsize; 1927 else 1928 blksz = MIN(size - off2, adj_klustsize); 1929 1930 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1931 &io_len2, off2, blksz, 1); 1932 io_off2 = tmpoff; 1933 } 1934 1935 if (pp2 != NULL) { 1936 /* 1937 * Zero part of page which we are not 1938 * going to be reading from disk now. 1939 */ 1940 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1941 if (xlen != 0) 1942 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1943 1944 (void) spec_startio(vp, pp2, io_off2, io_len2, 1945 B_READ | B_ASYNC); 1946 } 1947 } 1948 1949 if (pl == NULL) 1950 return (err); 1951 1952 if (bp != NULL) { 1953 err = biowait(bp); 1954 pageio_done(bp); 1955 1956 if (err) { 1957 if (pp != NULL) 1958 pvn_read_done(pp, B_ERROR); 1959 return (err); 1960 } 1961 } 1962 1963 if (pagefound) { 1964 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1965 /* 1966 * Page exists in the cache, acquire the appropriate 1967 * lock. If this fails, start all over again. 1968 */ 1969 1970 if ((pp = page_lookup(vp, off, se)) == NULL) { 1971 spec_lostpage++; 1972 goto reread; 1973 } 1974 pl[0] = pp; 1975 pl[1] = NULL; 1976 1977 sp->s_nextr = off + PAGESIZE; 1978 return (0); 1979 } 1980 1981 if (pp != NULL) 1982 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 1983 return (0); 1984 } 1985 1986 /* 1987 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 1988 * If len == 0, do from off to EOF. 1989 * 1990 * The normal cases should be len == 0 & off == 0 (entire vp list), 1991 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 1992 * (from pageout). 1993 */ 1994 /*ARGSUSED5*/ 1995 int 1996 spec_putpage( 1997 struct vnode *vp, 1998 offset_t off, 1999 size_t len, 2000 int flags, 2001 struct cred *cr, 2002 caller_context_t *ct) 2003 { 2004 struct snode *sp = VTOS(vp); 2005 struct vnode *cvp; 2006 page_t *pp; 2007 u_offset_t io_off; 2008 size_t io_len = 0; /* for lint */ 2009 int err = 0; 2010 u_offset_t size; 2011 u_offset_t tmpoff; 2012 2013 ASSERT(vp->v_count != 0); 2014 2015 if (vp->v_flag & VNOMAP) 2016 return (ENOSYS); 2017 2018 cvp = sp->s_commonvp; 2019 size = SPEC_SIZE(VTOS(cvp)); 2020 2021 if (!vn_has_cached_data(vp) || off >= size) 2022 return (0); 2023 2024 ASSERT(vp->v_type == VBLK && cvp == vp); 2025 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 2026 "specfs putpage:vp %p off %llx len %ld snode %p", 2027 vp, off, len, sp); 2028 2029 if (len == 0) { 2030 /* 2031 * Search the entire vp list for pages >= off. 2032 */ 2033 err = pvn_vplist_dirty(vp, off, spec_putapage, 2034 flags, cr); 2035 } else { 2036 u_offset_t eoff; 2037 2038 /* 2039 * Loop over all offsets in the range [off...off + len] 2040 * looking for pages to deal with. We set limits so 2041 * that we kluster to klustsize boundaries. 2042 */ 2043 eoff = off + len; 2044 for (io_off = off; io_off < eoff && io_off < size; 2045 io_off += io_len) { 2046 /* 2047 * If we are not invalidating, synchronously 2048 * freeing or writing pages use the routine 2049 * page_lookup_nowait() to prevent reclaiming 2050 * them from the free list. 2051 */ 2052 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2053 pp = page_lookup(vp, io_off, 2054 (flags & (B_INVAL | B_FREE)) ? 2055 SE_EXCL : SE_SHARED); 2056 } else { 2057 pp = page_lookup_nowait(vp, io_off, 2058 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2059 } 2060 2061 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 2062 io_len = PAGESIZE; 2063 else { 2064 err = spec_putapage(vp, pp, &tmpoff, &io_len, 2065 flags, cr); 2066 io_off = tmpoff; 2067 if (err != 0) 2068 break; 2069 /* 2070 * "io_off" and "io_len" are returned as 2071 * the range of pages we actually wrote. 2072 * This allows us to skip ahead more quickly 2073 * since several pages may've been dealt 2074 * with by this iteration of the loop. 2075 */ 2076 } 2077 } 2078 } 2079 return (err); 2080 } 2081 2082 2083 /* 2084 * Write out a single page, possibly klustering adjacent 2085 * dirty pages. 2086 */ 2087 /*ARGSUSED5*/ 2088 static int 2089 spec_putapage( 2090 struct vnode *vp, 2091 page_t *pp, 2092 u_offset_t *offp, /* return value */ 2093 size_t *lenp, /* return value */ 2094 int flags, 2095 struct cred *cr) 2096 { 2097 struct snode *sp = VTOS(vp); 2098 u_offset_t io_off; 2099 size_t io_len; 2100 size_t blksz; 2101 u_offset_t blkoff; 2102 int err = 0; 2103 struct buf *bp; 2104 u_offset_t size; 2105 size_t adj_klustsize; 2106 u_offset_t tmpoff; 2107 2108 /* 2109 * Destroy read ahead value since we are really going to write. 2110 */ 2111 sp->s_nextr = 0; 2112 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 2113 2114 adj_klustsize = klustsize; 2115 2116 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 2117 2118 if (blkoff + adj_klustsize <= size) 2119 blksz = adj_klustsize; 2120 else 2121 blksz = size - blkoff; 2122 2123 /* 2124 * Find a kluster that fits in one contiguous chunk. 2125 */ 2126 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 2127 blksz, flags); 2128 io_off = tmpoff; 2129 2130 /* 2131 * Check for page length rounding problems 2132 * XXX - Is this necessary? 2133 */ 2134 if (io_off + io_len > size) { 2135 ASSERT((io_off + io_len) - size < PAGESIZE); 2136 io_len = size - io_off; 2137 } 2138 2139 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 2140 2141 /* 2142 * Wait for i/o to complete if the request is not B_ASYNC. 2143 */ 2144 if ((flags & B_ASYNC) == 0) { 2145 err = biowait(bp); 2146 pageio_done(bp); 2147 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 2148 } 2149 2150 if (offp) 2151 *offp = io_off; 2152 if (lenp) 2153 *lenp = io_len; 2154 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 2155 "specfs putapage:vp %p offp %p snode %p err %d", 2156 vp, offp, sp, err); 2157 return (err); 2158 } 2159 2160 /* 2161 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 2162 */ 2163 static struct buf * 2164 spec_startio( 2165 struct vnode *vp, 2166 page_t *pp, 2167 u_offset_t io_off, 2168 size_t io_len, 2169 int flags) 2170 { 2171 struct buf *bp; 2172 2173 bp = pageio_setup(pp, io_len, vp, flags); 2174 2175 bp->b_edev = vp->v_rdev; 2176 bp->b_dev = cmpdev(vp->v_rdev); 2177 bp->b_blkno = btodt(io_off); 2178 bp->b_un.b_addr = (caddr_t)0; 2179 2180 (void) bdev_strategy(bp); 2181 2182 if (flags & B_READ) 2183 lwp_stat_update(LWP_STAT_INBLK, 1); 2184 else 2185 lwp_stat_update(LWP_STAT_OUBLK, 1); 2186 2187 return (bp); 2188 } 2189 2190 static int 2191 spec_poll( 2192 struct vnode *vp, 2193 short events, 2194 int anyyet, 2195 short *reventsp, 2196 struct pollhead **phpp, 2197 caller_context_t *ct) 2198 { 2199 dev_t dev; 2200 int error; 2201 2202 if (vp->v_type == VBLK) 2203 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2204 else { 2205 ASSERT(vp->v_type == VCHR); 2206 dev = vp->v_rdev; 2207 if (STREAMSTAB(getmajor(dev))) { 2208 ASSERT(vp->v_stream != NULL); 2209 error = strpoll(vp->v_stream, events, anyyet, 2210 reventsp, phpp); 2211 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2212 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2213 } else { 2214 error = fs_poll(vp, events, anyyet, reventsp, phpp, ct); 2215 } 2216 } 2217 return (error); 2218 } 2219 2220 /* 2221 * This routine is called through the cdevsw[] table to handle 2222 * traditional mmap'able devices that support a d_mmap function. 2223 */ 2224 /*ARGSUSED8*/ 2225 int 2226 spec_segmap( 2227 dev_t dev, 2228 off_t off, 2229 struct as *as, 2230 caddr_t *addrp, 2231 off_t len, 2232 uint_t prot, 2233 uint_t maxprot, 2234 uint_t flags, 2235 struct cred *cred) 2236 { 2237 struct segdev_crargs dev_a; 2238 int (*mapfunc)(dev_t dev, off_t off, int prot); 2239 size_t i; 2240 int error; 2241 2242 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2243 return (ENODEV); 2244 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2245 "specfs segmap:dev %x as %p len %lx prot %x", 2246 dev, as, len, prot); 2247 2248 /* 2249 * Character devices that support the d_mmap 2250 * interface can only be mmap'ed shared. 2251 */ 2252 if ((flags & MAP_TYPE) != MAP_SHARED) 2253 return (EINVAL); 2254 2255 /* 2256 * Check to ensure that the entire range is 2257 * legal and we are not trying to map in 2258 * more than the device will let us. 2259 */ 2260 for (i = 0; i < len; i += PAGESIZE) { 2261 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2262 return (ENXIO); 2263 } 2264 2265 as_rangelock(as); 2266 /* Pick an address w/o worrying about any vac alignment constraints. */ 2267 error = choose_addr(as, addrp, len, off, ADDR_NOVACALIGN, flags); 2268 if (error != 0) { 2269 as_rangeunlock(as); 2270 return (error); 2271 } 2272 2273 dev_a.mapfunc = mapfunc; 2274 dev_a.dev = dev; 2275 dev_a.offset = off; 2276 dev_a.prot = (uchar_t)prot; 2277 dev_a.maxprot = (uchar_t)maxprot; 2278 dev_a.hat_flags = 0; 2279 dev_a.hat_attr = 0; 2280 dev_a.devmap_data = NULL; 2281 2282 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2283 as_rangeunlock(as); 2284 return (error); 2285 } 2286 2287 int 2288 spec_char_map( 2289 dev_t dev, 2290 offset_t off, 2291 struct as *as, 2292 caddr_t *addrp, 2293 size_t len, 2294 uchar_t prot, 2295 uchar_t maxprot, 2296 uint_t flags, 2297 struct cred *cred) 2298 { 2299 int error = 0; 2300 major_t maj = getmajor(dev); 2301 int map_flag; 2302 int (*segmap)(dev_t, off_t, struct as *, 2303 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2304 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2305 size_t, size_t *, uint_t); 2306 int (*mmap)(dev_t dev, off_t off, int prot); 2307 2308 /* 2309 * Character device: let the device driver 2310 * pick the appropriate segment driver. 2311 * 2312 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2313 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2314 */ 2315 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2316 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2317 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2318 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2319 2320 /* 2321 * Use old mmap framework if the driver has both mmap 2322 * and devmap entry points. This is to prevent the 2323 * system from calling invalid devmap entry point 2324 * for some drivers that might have put garbage in the 2325 * devmap entry point. 2326 */ 2327 if ((map_flag & D_DEVMAP) || mmap == NULL || 2328 mmap == nulldev || mmap == nodev) { 2329 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2330 2331 /* 2332 * If driver provides devmap entry point in 2333 * cb_ops but not xx_segmap(9E), call 2334 * devmap_setup with default settings 2335 * (NULL) for callback_ops and driver 2336 * callback private data 2337 */ 2338 if (devmap == nodev || devmap == NULL || 2339 devmap == nulldev) 2340 return (ENODEV); 2341 2342 error = devmap_setup(dev, off, as, addrp, 2343 len, prot, maxprot, flags, cred); 2344 2345 return (error); 2346 } else 2347 segmap = spec_segmap; 2348 } else 2349 segmap = cdev_segmap; 2350 2351 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2352 maxprot, flags, cred)); 2353 } 2354 2355 /*ARGSUSED9*/ 2356 static int 2357 spec_map( 2358 struct vnode *vp, 2359 offset_t off, 2360 struct as *as, 2361 caddr_t *addrp, 2362 size_t len, 2363 uchar_t prot, 2364 uchar_t maxprot, 2365 uint_t flags, 2366 struct cred *cred, 2367 caller_context_t *ct) 2368 { 2369 int error = 0; 2370 struct snode *sp = VTOS(vp); 2371 2372 if (vp->v_flag & VNOMAP) 2373 return (ENOSYS); 2374 2375 /* fail map with ENXIO if the device is fenced off */ 2376 if (S_ISFENCED(sp)) 2377 return (ENXIO); 2378 2379 /* 2380 * If file is locked, fail mapping attempt. 2381 */ 2382 if (vn_has_flocks(vp)) 2383 return (EAGAIN); 2384 2385 if (vp->v_type == VCHR) { 2386 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2387 maxprot, flags, cred)); 2388 } else if (vp->v_type == VBLK) { 2389 struct segvn_crargs vn_a; 2390 struct vnode *cvp; 2391 struct snode *sp; 2392 2393 /* 2394 * Block device, use segvn mapping to the underlying commonvp 2395 * for pages. 2396 */ 2397 if (off > spec_maxoffset(vp)) 2398 return (ENXIO); 2399 2400 sp = VTOS(vp); 2401 cvp = sp->s_commonvp; 2402 ASSERT(cvp != NULL); 2403 2404 if (off < 0 || ((offset_t)(off + len) < 0)) 2405 return (ENXIO); 2406 2407 as_rangelock(as); 2408 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 2409 if (error != 0) { 2410 as_rangeunlock(as); 2411 return (error); 2412 } 2413 2414 vn_a.vp = cvp; 2415 vn_a.offset = off; 2416 vn_a.type = flags & MAP_TYPE; 2417 vn_a.prot = (uchar_t)prot; 2418 vn_a.maxprot = (uchar_t)maxprot; 2419 vn_a.flags = flags & ~MAP_TYPE; 2420 vn_a.cred = cred; 2421 vn_a.amp = NULL; 2422 vn_a.szc = 0; 2423 vn_a.lgrp_mem_policy_flags = 0; 2424 2425 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2426 as_rangeunlock(as); 2427 } else 2428 return (ENODEV); 2429 2430 return (error); 2431 } 2432 2433 /*ARGSUSED1*/ 2434 static int 2435 spec_addmap( 2436 struct vnode *vp, /* the common vnode */ 2437 offset_t off, 2438 struct as *as, 2439 caddr_t addr, 2440 size_t len, /* how many bytes to add */ 2441 uchar_t prot, 2442 uchar_t maxprot, 2443 uint_t flags, 2444 struct cred *cred, 2445 caller_context_t *ct) 2446 { 2447 int error = 0; 2448 struct snode *csp = VTOS(vp); 2449 ulong_t npages; 2450 2451 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2452 2453 /* 2454 * XXX Given the above assertion, this might not 2455 * be a particularly sensible thing to test. 2456 */ 2457 if (vp->v_flag & VNOMAP) 2458 return (ENOSYS); 2459 2460 /* fail with EIO if the device is fenced off */ 2461 if (S_ISFENCED(csp)) 2462 return (EIO); 2463 2464 npages = btopr(len); 2465 LOCK_CSP(csp); 2466 csp->s_mapcnt += npages; 2467 2468 UNLOCK_CSP(csp); 2469 return (error); 2470 } 2471 2472 /*ARGSUSED1*/ 2473 static int 2474 spec_delmap( 2475 struct vnode *vp, /* the common vnode */ 2476 offset_t off, 2477 struct as *as, 2478 caddr_t addr, 2479 size_t len, /* how many bytes to take away */ 2480 uint_t prot, 2481 uint_t maxprot, 2482 uint_t flags, 2483 struct cred *cred, 2484 caller_context_t *ct) 2485 { 2486 struct snode *csp = VTOS(vp); 2487 ulong_t npages; 2488 long mcnt; 2489 2490 /* segdev passes us the common vp */ 2491 2492 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2493 2494 /* allow delmap to succeed even if device fenced off */ 2495 2496 /* 2497 * XXX Given the above assertion, this might not 2498 * be a particularly sensible thing to test.. 2499 */ 2500 if (vp->v_flag & VNOMAP) 2501 return (ENOSYS); 2502 2503 npages = btopr(len); 2504 2505 LOCK_CSP(csp); 2506 mutex_enter(&csp->s_lock); 2507 mcnt = (csp->s_mapcnt -= npages); 2508 2509 if (mcnt == 0) { 2510 /* 2511 * Call the close routine when the last reference of any 2512 * kind through any [s, v]node goes away. The s_dip hold 2513 * on the devinfo node is released when the vnode is 2514 * destroyed. 2515 */ 2516 if (csp->s_count == 0) { 2517 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2518 2519 /* See comment in spec_close() */ 2520 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2521 csp->s_flag &= ~SDIPSET; 2522 2523 mutex_exit(&csp->s_lock); 2524 2525 (void) device_close(vp, 0, cred); 2526 } else 2527 mutex_exit(&csp->s_lock); 2528 2529 mutex_enter(&csp->s_lock); 2530 } 2531 ASSERT(mcnt >= 0); 2532 2533 UNLOCK_CSP_LOCK_HELD(csp); 2534 mutex_exit(&csp->s_lock); 2535 2536 return (0); 2537 } 2538 2539 /*ARGSUSED4*/ 2540 static int 2541 spec_dump( 2542 struct vnode *vp, 2543 caddr_t addr, 2544 offset_t bn, 2545 offset_t count, 2546 caller_context_t *ct) 2547 { 2548 /* allow dump to succeed even if device fenced off */ 2549 2550 ASSERT(vp->v_type == VBLK); 2551 return (bdev_dump(vp->v_rdev, addr, (daddr_t)bn, (int)count)); 2552 } 2553 2554 2555 /* 2556 * Do i/o on the given page list from/to vp, io_off for io_len. 2557 * Flags are composed of: 2558 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2559 * If B_ASYNC is not set i/o is waited for. 2560 */ 2561 /*ARGSUSED5*/ 2562 static int 2563 spec_pageio( 2564 struct vnode *vp, 2565 page_t *pp, 2566 u_offset_t io_off, 2567 size_t io_len, 2568 int flags, 2569 cred_t *cr, 2570 caller_context_t *ct) 2571 { 2572 struct buf *bp = NULL; 2573 int err = 0; 2574 2575 if (pp == NULL) 2576 return (EINVAL); 2577 2578 bp = spec_startio(vp, pp, io_off, io_len, flags); 2579 2580 /* 2581 * Wait for i/o to complete if the request is not B_ASYNC. 2582 */ 2583 if ((flags & B_ASYNC) == 0) { 2584 err = biowait(bp); 2585 pageio_done(bp); 2586 } 2587 return (err); 2588 } 2589 2590 /* 2591 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2592 */ 2593 int 2594 spec_setsecattr( 2595 struct vnode *vp, 2596 vsecattr_t *vsap, 2597 int flag, 2598 struct cred *cr, 2599 caller_context_t *ct) 2600 { 2601 struct vnode *realvp; 2602 struct snode *sp = VTOS(vp); 2603 int error; 2604 2605 /* fail with ENXIO if the device is fenced off */ 2606 if (S_ISFENCED(sp)) 2607 return (ENXIO); 2608 2609 /* 2610 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2611 * ACL, but since specfs does not serialize reads and writes, this 2612 * VOP does not do anything. However, some backing file systems may 2613 * expect the lock to be held before setting an ACL, so it is taken 2614 * here privately to avoid serializing specfs reads and writes. 2615 */ 2616 if ((realvp = sp->s_realvp) != NULL) { 2617 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, ct); 2618 error = VOP_SETSECATTR(realvp, vsap, flag, cr, ct); 2619 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, ct); 2620 return (error); 2621 } else 2622 return (fs_nosys()); 2623 } 2624 2625 /* 2626 * Get ACL from underlying vnode if one exists, or fabricate it from 2627 * the permissions returned by spec_getattr() otherwise. 2628 */ 2629 int 2630 spec_getsecattr( 2631 struct vnode *vp, 2632 vsecattr_t *vsap, 2633 int flag, 2634 struct cred *cr, 2635 caller_context_t *ct) 2636 { 2637 struct vnode *realvp; 2638 struct snode *sp = VTOS(vp); 2639 2640 /* fail with ENXIO if the device is fenced off */ 2641 if (S_ISFENCED(sp)) 2642 return (ENXIO); 2643 2644 if ((realvp = sp->s_realvp) != NULL) 2645 return (VOP_GETSECATTR(realvp, vsap, flag, cr, ct)); 2646 else 2647 return (fs_fab_acl(vp, vsap, flag, cr, ct)); 2648 } 2649 2650 int 2651 spec_pathconf( 2652 vnode_t *vp, 2653 int cmd, 2654 ulong_t *valp, 2655 cred_t *cr, 2656 caller_context_t *ct) 2657 { 2658 vnode_t *realvp; 2659 struct snode *sp = VTOS(vp); 2660 2661 /* fail with ENXIO if the device is fenced off */ 2662 if (S_ISFENCED(sp)) 2663 return (ENXIO); 2664 2665 if ((realvp = sp->s_realvp) != NULL) 2666 return (VOP_PATHCONF(realvp, cmd, valp, cr, ct)); 2667 else 2668 return (fs_pathconf(vp, cmd, valp, cr, ct)); 2669 } 2670