1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 40 #pragma ident "%Z%%M% %I% %E% SMI" 41 42 #include <sys/types.h> 43 #include <sys/thread.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitmap.h> 48 #include <sys/buf.h> 49 #include <sys/cmn_err.h> 50 #include <sys/conf.h> 51 #include <sys/ddi.h> 52 #include <sys/debug.h> 53 #include <sys/dkio.h> 54 #include <sys/errno.h> 55 #include <sys/time.h> 56 #include <sys/fcntl.h> 57 #include <sys/flock.h> 58 #include <sys/file.h> 59 #include <sys/kmem.h> 60 #include <sys/mman.h> 61 #include <sys/open.h> 62 #include <sys/swap.h> 63 #include <sys/sysmacros.h> 64 #include <sys/uio.h> 65 #include <sys/vfs.h> 66 #include <sys/vfs_opreg.h> 67 #include <sys/vnode.h> 68 #include <sys/stat.h> 69 #include <sys/poll.h> 70 #include <sys/stream.h> 71 #include <sys/strsubr.h> 72 #include <sys/policy.h> 73 #include <sys/devpolicy.h> 74 75 #include <sys/proc.h> 76 #include <sys/user.h> 77 #include <sys/session.h> 78 #include <sys/vmsystm.h> 79 #include <sys/vtrace.h> 80 #include <sys/pathname.h> 81 82 #include <sys/fs/snode.h> 83 84 #include <vm/seg.h> 85 #include <vm/seg_map.h> 86 #include <vm/page.h> 87 #include <vm/pvn.h> 88 #include <vm/seg_dev.h> 89 #include <vm/seg_vn.h> 90 91 #include <fs/fs_subr.h> 92 93 #include <sys/esunddi.h> 94 #include <sys/autoconf.h> 95 #include <sys/sunndi.h> 96 97 98 static int spec_open(struct vnode **, int, struct cred *); 99 static int spec_close(struct vnode *, int, int, offset_t, struct cred *); 100 static int spec_read(struct vnode *, struct uio *, int, struct cred *, 101 struct caller_context *); 102 static int spec_write(struct vnode *, struct uio *, int, struct cred *, 103 struct caller_context *); 104 static int spec_ioctl(struct vnode *, int, intptr_t, int, struct cred *, int *); 105 static int spec_getattr(struct vnode *, struct vattr *, int, struct cred *); 106 static int spec_setattr(struct vnode *, struct vattr *, int, struct cred *, 107 caller_context_t *); 108 static int spec_access(struct vnode *, int, int, struct cred *); 109 static int spec_create(struct vnode *, char *, vattr_t *, enum vcexcl, 110 int, struct vnode **, struct cred *, int); 111 static int spec_fsync(struct vnode *, int, struct cred *); 112 static void spec_inactive(struct vnode *, struct cred *); 113 static int spec_fid(struct vnode *, struct fid *); 114 static int spec_seek(struct vnode *, offset_t, offset_t *); 115 static int spec_frlock(struct vnode *, int, struct flock64 *, int, offset_t, 116 struct flk_callback *, struct cred *); 117 static int spec_realvp(struct vnode *, struct vnode **); 118 119 static int spec_getpage(struct vnode *, offset_t, size_t, uint_t *, page_t **, 120 size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 121 static int spec_putapage(struct vnode *, page_t *, u_offset_t *, size_t *, int, 122 struct cred *); 123 static struct buf *spec_startio(struct vnode *, page_t *, u_offset_t, size_t, 124 int); 125 static int spec_getapage(struct vnode *, u_offset_t, size_t, uint_t *, 126 page_t **, size_t, struct seg *, caddr_t, enum seg_rw, struct cred *); 127 static int spec_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t, 128 uchar_t, uchar_t, uint_t, struct cred *); 129 static int spec_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 130 uchar_t, uchar_t, uint_t, struct cred *); 131 static int spec_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t, 132 uint_t, uint_t, uint_t, struct cred *); 133 134 static int spec_poll(struct vnode *, short, int, short *, struct pollhead **); 135 static int spec_dump(struct vnode *, caddr_t, int, int); 136 static int spec_pageio(struct vnode *, page_t *, u_offset_t, size_t, int, 137 cred_t *); 138 139 static int spec_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 140 static int spec_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *); 141 static int spec_pathconf(struct vnode *, int, ulong_t *, struct cred *); 142 143 #define SN_HOLD(csp) { \ 144 mutex_enter(&csp->s_lock); \ 145 csp->s_count++; \ 146 mutex_exit(&csp->s_lock); \ 147 } 148 149 #define SN_RELE(csp) { \ 150 mutex_enter(&csp->s_lock); \ 151 csp->s_count--; \ 152 ASSERT((csp->s_count > 0) || (csp->s_vnode->v_stream == NULL)); \ 153 mutex_exit(&csp->s_lock); \ 154 } 155 156 struct vnodeops *spec_vnodeops; 157 158 const fs_operation_def_t spec_vnodeops_template[] = { 159 VOPNAME_OPEN, { .vop_open = spec_open }, 160 VOPNAME_CLOSE, { .vop_close = spec_close }, 161 VOPNAME_READ, { .vop_read = spec_read }, 162 VOPNAME_WRITE, { .vop_write = spec_write }, 163 VOPNAME_IOCTL, { .vop_ioctl = spec_ioctl }, 164 VOPNAME_GETATTR, { .vop_getattr = spec_getattr }, 165 VOPNAME_SETATTR, { .vop_setattr = spec_setattr }, 166 VOPNAME_ACCESS, { .vop_access = spec_access }, 167 VOPNAME_CREATE, { .vop_create = spec_create }, 168 VOPNAME_FSYNC, { .vop_fsync = spec_fsync }, 169 VOPNAME_INACTIVE, { .vop_inactive = spec_inactive }, 170 VOPNAME_FID, { .vop_fid = spec_fid }, 171 VOPNAME_SEEK, { .vop_seek = spec_seek }, 172 VOPNAME_PATHCONF, { .vop_pathconf = spec_pathconf }, 173 VOPNAME_FRLOCK, { .vop_frlock = spec_frlock }, 174 VOPNAME_REALVP, { .vop_realvp = spec_realvp }, 175 VOPNAME_GETPAGE, { .vop_getpage = spec_getpage }, 176 VOPNAME_PUTPAGE, { .vop_putpage = spec_putpage }, 177 VOPNAME_MAP, { .vop_map = spec_map }, 178 VOPNAME_ADDMAP, { .vop_addmap = spec_addmap }, 179 VOPNAME_DELMAP, { .vop_delmap = spec_delmap }, 180 VOPNAME_POLL, { .vop_poll = spec_poll }, 181 VOPNAME_DUMP, { .vop_dump = spec_dump }, 182 VOPNAME_PAGEIO, { .vop_pageio = spec_pageio }, 183 VOPNAME_SETSECATTR, { .vop_setsecattr = spec_setsecattr }, 184 VOPNAME_GETSECATTR, { .vop_getsecattr = spec_getsecattr }, 185 NULL, NULL 186 }; 187 188 /* 189 * Return address of spec_vnodeops 190 */ 191 struct vnodeops * 192 spec_getvnodeops(void) 193 { 194 return (spec_vnodeops); 195 } 196 197 extern vnode_t *rconsvp; 198 199 /* 200 * Acquire the serial lock on the common snode. 201 */ 202 #define LOCK_CSP(csp) \ 203 mutex_enter(&csp->s_lock); \ 204 while (csp->s_flag & SLOCKED) { \ 205 csp->s_flag |= SWANT; \ 206 cv_wait(&csp->s_cv, &csp->s_lock); \ 207 } \ 208 csp->s_flag |= SLOCKED; \ 209 mutex_exit(&csp->s_lock); 210 211 #define LOCK_CSP_SIG(csp) lock_csp_sig(csp) 212 213 /* 214 * Acquire the serial lock on the common snode checking for a signal. 215 * cv_wait_sig is used to allow signals to pull us out. 216 * Return 1 if locked, 0 if interrupted 217 */ 218 static int 219 lock_csp_sig(struct snode *csp) 220 { 221 mutex_enter(&csp->s_lock); 222 while (csp->s_flag & SLOCKED) { 223 csp->s_flag |= SWANT; 224 if (!cv_wait_sig(&csp->s_cv, &csp->s_lock)) { 225 mutex_exit(&csp->s_lock); 226 /* interrupted */ 227 return (0); 228 } 229 } 230 csp->s_flag |= SLOCKED; 231 mutex_exit(&csp->s_lock); 232 233 return (1); 234 } 235 236 /* 237 * Unlock the serial lock on the common snode 238 */ 239 #define UNLOCK_CSP_LOCK_HELD(csp) \ 240 ASSERT(mutex_owned(&csp->s_lock)); \ 241 if (csp->s_flag & SWANT) \ 242 cv_broadcast(&csp->s_cv); \ 243 csp->s_flag &= ~(SWANT|SLOCKED); 244 245 #define UNLOCK_CSP(csp) \ 246 mutex_enter(&csp->s_lock); \ 247 UNLOCK_CSP_LOCK_HELD(csp); \ 248 mutex_exit(&csp->s_lock); 249 250 /* 251 * compute/return the size of the device 252 */ 253 #define SPEC_SIZE(csp) \ 254 (((csp)->s_flag & SSIZEVALID) ? (csp)->s_size : spec_size(csp)) 255 256 /* 257 * Compute and return the size. If the size in the common snode is valid then 258 * return it. If not valid then get the size from the driver and set size in 259 * the common snode. If the device has not been attached then we don't ask for 260 * an update from the driver- for non-streams SSIZEVALID stays unset until the 261 * device is attached. A stat of a mknod outside /devices (non-devfs) may 262 * report UNKNOWN_SIZE because the device may not be attached yet (SDIPSET not 263 * established in mknod until open time). An stat in /devices will report the 264 * size correctly. Specfs should always call SPEC_SIZE instead of referring 265 * directly to s_size to initialize/retrieve the size of a device. 266 * 267 * XXX There is an inconsistency between block and raw - "unknown" is 268 * UNKNOWN_SIZE for VBLK and 0 for VCHR(raw). 269 */ 270 static u_offset_t 271 spec_size(struct snode *csp) 272 { 273 struct vnode *cvp = STOV(csp); 274 u_offset_t size; 275 int plen; 276 uint32_t size32; 277 dev_t dev; 278 dev_info_t *devi; 279 major_t maj; 280 281 ASSERT((csp)->s_commonvp == cvp); /* must be common node */ 282 283 /* return cached value */ 284 mutex_enter(&csp->s_lock); 285 if (csp->s_flag & SSIZEVALID) { 286 mutex_exit(&csp->s_lock); 287 return (csp->s_size); 288 } 289 290 /* VOP_GETATTR of mknod has not had devcnt restriction applied */ 291 dev = cvp->v_rdev; 292 maj = getmajor(dev); 293 if (maj >= devcnt) { 294 /* return non-cached UNKNOWN_SIZE */ 295 mutex_exit(&csp->s_lock); 296 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 297 } 298 299 /* establish cached zero size for streams */ 300 if (STREAMSTAB(maj)) { 301 csp->s_size = 0; 302 csp->s_flag |= SSIZEVALID; 303 mutex_exit(&csp->s_lock); 304 return (0); 305 } 306 307 /* 308 * Return non-cached UNKNOWN_SIZE if not open. 309 * 310 * NB: This check is bogus, calling prop_op(9E) should be gated by 311 * attach, not open. Not having this check however opens up a new 312 * context under which a driver's prop_op(9E) could be called. Calling 313 * prop_op(9E) in this new context has been shown to expose latent 314 * driver bugs (insufficient NULL pointer checks that lead to panic). 315 * We are keeping this open check for now to avoid these panics. 316 */ 317 if (csp->s_count == 0) { 318 mutex_exit(&csp->s_lock); 319 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 320 } 321 322 /* Return non-cached UNKNOWN_SIZE if not attached. */ 323 if (((csp->s_flag & SDIPSET) == 0) || (csp->s_dip == NULL) || 324 !i_ddi_devi_attached(csp->s_dip)) { 325 mutex_exit(&csp->s_lock); 326 return ((cvp->v_type == VCHR) ? 0 : UNKNOWN_SIZE); 327 } 328 329 devi = csp->s_dip; 330 331 /* 332 * Established cached size obtained from the attached driver. Since we 333 * know the devinfo node, for efficiency we use cdev_prop_op directly 334 * instead of [cb]dev_[Ss]size. 335 */ 336 if (cvp->v_type == VCHR) { 337 size = 0; 338 plen = sizeof (size); 339 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 340 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 341 DDI_PROP_CONSUMER_TYPED, "Size", (caddr_t)&size, 342 &plen) != DDI_PROP_SUCCESS) { 343 plen = sizeof (size32); 344 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 345 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 346 "size", (caddr_t)&size32, &plen) == 347 DDI_PROP_SUCCESS) 348 size = size32; 349 } 350 } else { 351 size = UNKNOWN_SIZE; 352 plen = sizeof (size); 353 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 354 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS | 355 DDI_PROP_CONSUMER_TYPED, "Nblocks", (caddr_t)&size, 356 &plen) != DDI_PROP_SUCCESS) { 357 plen = sizeof (size32); 358 if (cdev_prop_op(dev, devi, PROP_LEN_AND_VAL_BUF, 359 DDI_PROP_NOTPROM | DDI_PROP_DONTPASS, 360 "nblocks", (caddr_t)&size32, &plen) == 361 DDI_PROP_SUCCESS) 362 size = size32; 363 } 364 365 if (size != UNKNOWN_SIZE) { 366 /* convert from block size to byte size */ 367 if (size < (MAXOFFSET_T >> DEV_BSHIFT)) 368 size = size << DEV_BSHIFT; 369 else 370 size = UNKNOWN_SIZE; 371 } 372 } 373 374 csp->s_size = size; 375 csp->s_flag |= SSIZEVALID; 376 377 mutex_exit(&csp->s_lock); 378 return (size); 379 } 380 381 /* 382 * This function deal with vnode substitution in the case of 383 * device cloning. 384 */ 385 static int 386 spec_clone(struct vnode **vpp, dev_t newdev, int vtype, struct stdata *stp) 387 { 388 dev_t dev = (*vpp)->v_rdev; 389 major_t maj = getmajor(dev); 390 major_t newmaj = getmajor(newdev); 391 int sysclone = (maj == clone_major); 392 int qassociate_used = 0; 393 struct snode *oldsp, *oldcsp; 394 struct snode *newsp, *newcsp; 395 struct vnode *newvp, *newcvp; 396 dev_info_t *dip; 397 queue_t *dq; 398 399 ASSERT(dev != newdev); 400 401 /* 402 * Check for cloning across different drivers. 403 * We only support this under the system provided clone driver 404 */ 405 if ((maj != newmaj) && !sysclone) { 406 cmn_err(CE_NOTE, 407 "unsupported clone open maj = %u, newmaj = %u", 408 maj, newmaj); 409 return (ENXIO); 410 } 411 412 /* old */ 413 oldsp = VTOS(*vpp); 414 oldcsp = VTOS(oldsp->s_commonvp); 415 416 /* new */ 417 newvp = makespecvp(newdev, vtype); 418 ASSERT(newvp != NULL); 419 newsp = VTOS(newvp); 420 newcvp = newsp->s_commonvp; 421 newcsp = VTOS(newcvp); 422 423 /* 424 * Clones inherit fsid, realvp, and dip. 425 * XXX realvp inherit is not occurring, does fstat of clone work? 426 */ 427 newsp->s_fsid = oldsp->s_fsid; 428 if (sysclone) { 429 newsp->s_flag |= SCLONE; 430 dip = NULL; 431 } else { 432 newsp->s_flag |= SSELFCLONE; 433 dip = oldcsp->s_dip; 434 } 435 436 /* 437 * If we cloned to an opened newdev that already has called 438 * spec_assoc_vp_with_devi (SDIPSET set) then the association is 439 * already established. 440 */ 441 if (!(newcsp->s_flag & SDIPSET)) { 442 /* 443 * Establish s_dip association for newdev. 444 * 445 * If we trusted the getinfo(9E) DDI_INFO_DEVT2INSTANCE 446 * implementation of all cloning drivers (SCLONE and SELFCLONE) 447 * we would always use e_ddi_hold_devi_by_dev(). We know that 448 * many drivers have had (still have?) problems with 449 * DDI_INFO_DEVT2INSTANCE, so we try to minimize reliance by 450 * detecting drivers that use QASSOCIATE (by looking down the 451 * stream) and setting their s_dip association to NULL. 452 */ 453 qassociate_used = 0; 454 if (stp) { 455 for (dq = stp->sd_wrq; dq; dq = dq->q_next) { 456 if (_RD(dq)->q_flag & _QASSOCIATED) { 457 qassociate_used = 1; 458 dip = NULL; 459 break; 460 } 461 } 462 } 463 464 if (dip || qassociate_used) { 465 spec_assoc_vp_with_devi(newvp, dip); 466 } else { 467 /* derive association from newdev */ 468 dip = e_ddi_hold_devi_by_dev(newdev, 0); 469 spec_assoc_vp_with_devi(newvp, dip); 470 if (dip) 471 ddi_release_devi(dip); 472 } 473 } 474 475 SN_HOLD(newcsp); 476 477 /* deal with stream stuff */ 478 if (stp != NULL) { 479 LOCK_CSP(newcsp); /* synchronize stream open/close */ 480 mutex_enter(&newcsp->s_lock); 481 newcvp->v_stream = newvp->v_stream = stp; 482 stp->sd_vnode = newcvp; 483 stp->sd_strtab = STREAMSTAB(newmaj); 484 mutex_exit(&newcsp->s_lock); 485 UNLOCK_CSP(newcsp); 486 } 487 488 /* substitute the vnode */ 489 SN_RELE(oldcsp); 490 VN_RELE(*vpp); 491 *vpp = newvp; 492 493 return (0); 494 } 495 496 static int 497 spec_open(struct vnode **vpp, int flag, struct cred *cr) 498 { 499 major_t maj; 500 dev_t dev, newdev; 501 struct vnode *vp, *cvp; 502 struct snode *sp, *csp; 503 struct stdata *stp; 504 dev_info_t *dip; 505 int error, type; 506 507 flag &= ~FCREAT; /* paranoia */ 508 509 vp = *vpp; 510 sp = VTOS(vp); 511 ASSERT((vp->v_type == VCHR) || (vp->v_type == VBLK)); 512 if ((vp->v_type != VCHR) && (vp->v_type != VBLK)) 513 return (ENXIO); 514 515 /* 516 * If the VFS_NODEVICES bit was set for the mount, 517 * do not allow opens of special devices. 518 */ 519 if (sp->s_realvp && (sp->s_realvp->v_vfsp->vfs_flag & VFS_NODEVICES)) 520 return (ENXIO); 521 522 newdev = dev = vp->v_rdev; 523 524 /* 525 * If we are opening a node that has not had spec_assoc_vp_with_devi 526 * called against it (mknod outside /devices or a non-dacf makespecvp 527 * node) then SDIPSET will not be set. In this case we call an 528 * interface which will reconstruct the path and lookup (drive attach) 529 * through devfs (e_ddi_hold_devi_by_dev -> e_ddi_hold_devi_by_path -> 530 * devfs_lookupname). For support of broken drivers that don't call 531 * ddi_create_minor_node for all minor nodes in their instance space, 532 * we call interfaces that operates at the directory/devinfo 533 * (major/instance) level instead of to the leaf/minor node level. 534 * After finding and attaching the dip we associate it with the 535 * common specfs vnode (s_dip), which sets SDIPSET. A DL_DETACH_REQ 536 * to style-2 stream driver may set s_dip to NULL with SDIPSET set. 537 * 538 * NOTE: Although e_ddi_hold_devi_by_dev takes a dev_t argument, its 539 * implementation operates at the major/instance level since it only 540 * need to return a dip. 541 */ 542 cvp = sp->s_commonvp; 543 csp = VTOS(cvp); 544 if (!(csp->s_flag & SDIPSET)) { 545 /* try to attach, return error if we fail */ 546 if ((dip = e_ddi_hold_devi_by_dev(dev, 0)) == NULL) 547 return (ENXIO); 548 549 /* associate dip with the common snode s_dip */ 550 spec_assoc_vp_with_devi(vp, dip); 551 ddi_release_devi(dip); /* from e_ddi_hold_devi_by_dev */ 552 } 553 554 #ifdef DEBUG 555 /* verify attach/open exclusion guarantee */ 556 dip = csp->s_dip; 557 ASSERT((dip == NULL) || i_ddi_devi_attached(dip)); 558 #endif /* DEBUG */ 559 560 if ((error = secpolicy_spec_open(cr, cvp, flag)) != 0) 561 return (error); 562 563 maj = getmajor(dev); 564 if (STREAMSTAB(maj)) 565 goto streams_open; 566 567 SN_HOLD(csp); /* increment open count */ 568 569 /* non streams open */ 570 type = (vp->v_type == VBLK ? OTYP_BLK : OTYP_CHR); 571 error = dev_open(&newdev, flag, type, cr); 572 573 /* deal with clone case */ 574 if (error == 0 && dev != newdev) { 575 error = spec_clone(vpp, newdev, vp->v_type, NULL); 576 /* 577 * bail on clone failure, further processing 578 * results in undefined behaviors. 579 */ 580 if (error != 0) 581 return (error); 582 sp = VTOS(*vpp); 583 csp = VTOS(sp->s_commonvp); 584 } 585 586 if (error == 0) { 587 sp->s_size = SPEC_SIZE(csp); 588 589 if ((csp->s_flag & SNEEDCLOSE) == 0) { 590 int nmaj = getmajor(newdev); 591 mutex_enter(&csp->s_lock); 592 /* successful open needs a close later */ 593 csp->s_flag |= SNEEDCLOSE; 594 595 /* 596 * Invalidate possible cached "unknown" size 597 * established by a VOP_GETATTR while open was in 598 * progress, and the driver might fail prop_op(9E). 599 */ 600 if (((cvp->v_type == VCHR) && (csp->s_size == 0)) || 601 ((cvp->v_type == VBLK) && 602 (csp->s_size == UNKNOWN_SIZE))) 603 csp->s_flag &= ~SSIZEVALID; 604 605 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_64BIT) 606 csp->s_flag |= SLOFFSET; 607 if (devopsp[nmaj]->devo_cb_ops->cb_flag & D_U64BIT) 608 csp->s_flag |= SLOFFSET | SANYOFFSET; 609 mutex_exit(&csp->s_lock); 610 } 611 return (0); 612 } 613 614 /* 615 * Open failed. If we missed a close operation because 616 * we were trying to get the device open and it is the 617 * last in progress open that is failing then call close. 618 * 619 * NOTE: Only non-streams open has this race condition. 620 */ 621 mutex_enter(&csp->s_lock); 622 csp->s_count--; /* decrement open count : SN_RELE */ 623 if ((csp->s_count == 0) && /* no outstanding open */ 624 (csp->s_mapcnt == 0) && /* no mapping */ 625 (csp->s_flag & SNEEDCLOSE)) { /* need a close */ 626 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 627 628 /* See comment in spec_close() */ 629 if (csp->s_flag & (SCLONE | SSELFCLONE)) 630 csp->s_flag &= ~SDIPSET; 631 632 mutex_exit(&csp->s_lock); 633 ASSERT(*vpp != NULL); 634 (void) device_close(*vpp, flag, cr); 635 } else { 636 mutex_exit(&csp->s_lock); 637 } 638 return (error); 639 640 streams_open: 641 if (vp->v_type != VCHR) 642 return (ENXIO); 643 644 /* 645 * Lock common snode to prevent any new clone opens 646 * on this stream while one is in progress. 647 * This is necessary since the stream currently 648 * associated with the clone device will not be part 649 * of it after the clone open completes. 650 * Unfortunately we don't know in advance if this is 651 * a clone device so we have to lock all opens. 652 * 653 * If we fail, it's because of an interrupt. 654 */ 655 if (LOCK_CSP_SIG(csp) == 0) 656 return (EINTR); 657 658 SN_HOLD(csp); /* increment open count */ 659 660 error = stropen(cvp, &newdev, flag, cr); 661 stp = cvp->v_stream; 662 663 /* deal with the clone case */ 664 if ((error == 0) && (dev != newdev)) { 665 vp->v_stream = cvp->v_stream = NULL; 666 UNLOCK_CSP(csp); 667 error = spec_clone(vpp, newdev, vp->v_type, stp); 668 /* 669 * bail on clone failure, further processing 670 * results in undefined behaviors. 671 */ 672 if (error != 0) 673 return (error); 674 sp = VTOS(*vpp); 675 csp = VTOS(sp->s_commonvp); 676 } else if (error == 0) { 677 vp->v_stream = stp; 678 UNLOCK_CSP(csp); 679 } 680 681 if (error == 0) { 682 /* STREAMS devices don't have a size */ 683 sp->s_size = csp->s_size = 0; 684 685 if (!(stp->sd_flag & STRISTTY) || (flag & FNOCTTY)) 686 return (0); 687 688 /* try to allocate it as a controlling terminal */ 689 if (strctty(stp) != EINTR) 690 return (0); 691 692 /* strctty() was interrupted by a signal */ 693 (void) spec_close(vp, flag, 1, 0, cr); 694 return (EINTR); 695 } 696 697 /* 698 * Deal with stropen failure. 699 * 700 * sd_flag in the stream head cannot change since the 701 * common snode is locked before the call to stropen(). 702 */ 703 if ((stp != NULL) && (stp->sd_flag & STREOPENFAIL)) { 704 /* 705 * Open failed part way through. 706 */ 707 mutex_enter(&stp->sd_lock); 708 stp->sd_flag &= ~STREOPENFAIL; 709 mutex_exit(&stp->sd_lock); 710 711 UNLOCK_CSP(csp); 712 (void) spec_close(vp, flag, 1, 0, cr); 713 } else { 714 UNLOCK_CSP(csp); 715 SN_RELE(csp); 716 } 717 718 return (error); 719 } 720 721 /*ARGSUSED2*/ 722 static int 723 spec_close( 724 struct vnode *vp, 725 int flag, 726 int count, 727 offset_t offset, 728 struct cred *cr) 729 { 730 struct vnode *cvp; 731 struct snode *sp, *csp; 732 enum vtype type; 733 dev_t dev; 734 int error = 0; 735 int sysclone; 736 737 if (!(flag & FKLYR)) { 738 /* this only applies to closes of devices from userland */ 739 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 740 cleanshares(vp, ttoproc(curthread)->p_pid); 741 if (vp->v_stream) 742 strclean(vp); 743 } 744 if (count > 1) 745 return (0); 746 747 sp = VTOS(vp); 748 cvp = sp->s_commonvp; 749 750 dev = sp->s_dev; 751 type = vp->v_type; 752 753 ASSERT(type == VCHR || type == VBLK); 754 755 /* 756 * Prevent close/close and close/open races by serializing closes 757 * on this common snode. Clone opens are held up until after 758 * we have closed this device so the streams linkage is maintained 759 */ 760 csp = VTOS(cvp); 761 762 LOCK_CSP(csp); 763 mutex_enter(&csp->s_lock); 764 765 csp->s_count--; /* one fewer open reference : SN_RELE */ 766 sysclone = sp->s_flag & SCLONE; 767 768 /* 769 * Invalidate size on each close. 770 * 771 * XXX We do this on each close because we don't have interfaces that 772 * allow a driver to invalidate the size. Since clearing this on each 773 * close this causes property overhead we skip /dev/null and 774 * /dev/zero to avoid degrading kenbus performance. 775 */ 776 if (getmajor(dev) != mm_major) 777 csp->s_flag &= ~SSIZEVALID; 778 779 /* 780 * Only call the close routine when the last open reference through 781 * any [s, v]node goes away. This can be checked by looking at 782 * s_count on the common vnode. 783 */ 784 if ((csp->s_count == 0) && (csp->s_mapcnt == 0)) { 785 /* we don't need a close */ 786 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 787 788 /* 789 * A cloning driver may open-clone to the same dev_t that we 790 * are closing before spec_inactive destroys the common snode. 791 * If this occurs the s_dip association needs to be reevaluated. 792 * We clear SDIPSET to force reevaluation in this case. When 793 * reevaluation occurs (by spec_clone after open), if the 794 * devinfo association has changed then the old association 795 * will be released as the new association is established by 796 * spec_assoc_vp_with_devi(). 797 */ 798 if (csp->s_flag & (SCLONE | SSELFCLONE)) 799 csp->s_flag &= ~SDIPSET; 800 801 mutex_exit(&csp->s_lock); 802 error = device_close(vp, flag, cr); 803 804 /* 805 * Decrement the devops held in clnopen() 806 */ 807 if (sysclone) { 808 ddi_rele_driver(getmajor(dev)); 809 } 810 mutex_enter(&csp->s_lock); 811 } 812 813 UNLOCK_CSP_LOCK_HELD(csp); 814 mutex_exit(&csp->s_lock); 815 816 return (error); 817 } 818 819 /*ARGSUSED2*/ 820 static int 821 spec_read( 822 struct vnode *vp, 823 struct uio *uiop, 824 int ioflag, 825 struct cred *cr, 826 struct caller_context *ct) 827 { 828 int error; 829 struct snode *sp = VTOS(vp); 830 dev_t dev = sp->s_dev; 831 size_t n; 832 ulong_t on; 833 u_offset_t bdevsize; 834 offset_t maxoff; 835 offset_t off; 836 struct vnode *blkvp; 837 838 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 839 840 if (STREAMSTAB(getmajor(dev))) { /* stream */ 841 ASSERT(vp->v_type == VCHR); 842 smark(sp, SACC); 843 return (strread(vp, uiop, cr)); 844 } 845 846 if (uiop->uio_resid == 0) 847 return (0); 848 849 /* 850 * Plain old character devices that set D_U64BIT can have 851 * unrestricted offsets. 852 */ 853 maxoff = spec_maxoffset(vp); 854 ASSERT(maxoff != -1 || vp->v_type == VCHR); 855 856 if (maxoff != -1 && (uiop->uio_loffset < 0 || 857 uiop->uio_loffset + uiop->uio_resid > maxoff)) 858 return (EINVAL); 859 860 if (vp->v_type == VCHR) { 861 smark(sp, SACC); 862 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 863 return (cdev_read(dev, uiop, cr)); 864 } 865 866 /* 867 * Block device. 868 */ 869 error = 0; 870 blkvp = sp->s_commonvp; 871 bdevsize = SPEC_SIZE(VTOS(blkvp)); 872 873 do { 874 caddr_t base; 875 offset_t diff; 876 877 off = uiop->uio_loffset & (offset_t)MAXBMASK; 878 on = (size_t)(uiop->uio_loffset & MAXBOFFSET); 879 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 880 diff = bdevsize - uiop->uio_loffset; 881 882 if (diff <= 0) 883 break; 884 if (diff < n) 885 n = (size_t)diff; 886 887 if (vpm_enable) { 888 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 889 n, uiop, 1, NULL, 0, S_READ); 890 } else { 891 base = segmap_getmapflt(segkmap, blkvp, 892 (u_offset_t)(off + on), n, 1, S_READ); 893 894 error = uiomove(base + on, n, UIO_READ, uiop); 895 } 896 if (!error) { 897 int flags = 0; 898 /* 899 * If we read a whole block, we won't need this 900 * buffer again soon. 901 */ 902 if (n + on == MAXBSIZE) 903 flags = SM_DONTNEED | SM_FREE; 904 if (vpm_enable) { 905 error = vpm_sync_pages(blkvp, off, n, flags); 906 } else { 907 error = segmap_release(segkmap, base, flags); 908 } 909 } else { 910 if (vpm_enable) { 911 (void) vpm_sync_pages(blkvp, off, n, 0); 912 } else { 913 (void) segmap_release(segkmap, base, 0); 914 } 915 if (bdevsize == UNKNOWN_SIZE) { 916 error = 0; 917 break; 918 } 919 } 920 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 921 922 return (error); 923 } 924 925 /*ARGSUSED*/ 926 static int 927 spec_write( 928 struct vnode *vp, 929 struct uio *uiop, 930 int ioflag, 931 struct cred *cr, 932 struct caller_context *ct) 933 { 934 int error; 935 struct snode *sp = VTOS(vp); 936 dev_t dev = sp->s_dev; 937 size_t n; 938 ulong_t on; 939 u_offset_t bdevsize; 940 offset_t maxoff; 941 offset_t off; 942 struct vnode *blkvp; 943 944 ASSERT(vp->v_type == VCHR || vp->v_type == VBLK); 945 946 if (STREAMSTAB(getmajor(dev))) { 947 ASSERT(vp->v_type == VCHR); 948 smark(sp, SUPD); 949 return (strwrite(vp, uiop, cr)); 950 } 951 952 /* 953 * Plain old character devices that set D_U64BIT can have 954 * unrestricted offsets. 955 */ 956 maxoff = spec_maxoffset(vp); 957 ASSERT(maxoff != -1 || vp->v_type == VCHR); 958 959 if (maxoff != -1 && (uiop->uio_loffset < 0 || 960 uiop->uio_loffset + uiop->uio_resid > maxoff)) 961 return (EINVAL); 962 963 if (vp->v_type == VCHR) { 964 smark(sp, SUPD); 965 ASSERT(STREAMSTAB(getmajor(dev)) == 0); 966 return (cdev_write(dev, uiop, cr)); 967 } 968 969 if (uiop->uio_resid == 0) 970 return (0); 971 972 error = 0; 973 blkvp = sp->s_commonvp; 974 bdevsize = SPEC_SIZE(VTOS(blkvp)); 975 976 do { 977 int pagecreate; 978 int newpage; 979 caddr_t base; 980 offset_t diff; 981 982 off = uiop->uio_loffset & (offset_t)MAXBMASK; 983 on = (ulong_t)(uiop->uio_loffset & MAXBOFFSET); 984 n = (size_t)MIN(MAXBSIZE - on, uiop->uio_resid); 985 pagecreate = 0; 986 987 diff = bdevsize - uiop->uio_loffset; 988 if (diff <= 0) { 989 error = ENXIO; 990 break; 991 } 992 if (diff < n) 993 n = (size_t)diff; 994 995 /* 996 * Check to see if we can skip reading in the page 997 * and just allocate the memory. We can do this 998 * if we are going to rewrite the entire mapping 999 * or if we are going to write to end of the device 1000 * from the beginning of the mapping. 1001 */ 1002 if (n == MAXBSIZE || (on == 0 && (off + n) == bdevsize)) 1003 pagecreate = 1; 1004 1005 newpage = 0; 1006 if (vpm_enable) { 1007 error = vpm_data_copy(blkvp, (u_offset_t)(off + on), 1008 n, uiop, !pagecreate, NULL, 0, S_WRITE); 1009 } else { 1010 base = segmap_getmapflt(segkmap, blkvp, 1011 (u_offset_t)(off + on), n, !pagecreate, S_WRITE); 1012 1013 /* 1014 * segmap_pagecreate() returns 1 if it calls 1015 * page_create_va() to allocate any pages. 1016 */ 1017 1018 if (pagecreate) 1019 newpage = segmap_pagecreate(segkmap, base + on, 1020 n, 0); 1021 1022 error = uiomove(base + on, n, UIO_WRITE, uiop); 1023 } 1024 1025 if (!vpm_enable && pagecreate && 1026 uiop->uio_loffset < 1027 P2ROUNDUP_TYPED(off + on + n, PAGESIZE, offset_t)) { 1028 /* 1029 * We created pages w/o initializing them completely, 1030 * thus we need to zero the part that wasn't set up. 1031 * This can happen if we write to the end of the device 1032 * or if we had some sort of error during the uiomove. 1033 */ 1034 long nzero; 1035 offset_t nmoved; 1036 1037 nmoved = (uiop->uio_loffset - (off + on)); 1038 if (nmoved < 0 || nmoved > n) { 1039 panic("spec_write: nmoved bogus"); 1040 /*NOTREACHED*/ 1041 } 1042 nzero = (long)P2ROUNDUP(on + n, PAGESIZE) - 1043 (on + nmoved); 1044 if (nzero < 0 || (on + nmoved + nzero > MAXBSIZE)) { 1045 panic("spec_write: nzero bogus"); 1046 /*NOTREACHED*/ 1047 } 1048 (void) kzero(base + on + nmoved, (size_t)nzero); 1049 } 1050 1051 /* 1052 * Unlock the pages which have been allocated by 1053 * page_create_va() in segmap_pagecreate(). 1054 */ 1055 if (!vpm_enable && newpage) 1056 segmap_pageunlock(segkmap, base + on, 1057 (size_t)n, S_WRITE); 1058 1059 if (error == 0) { 1060 int flags = 0; 1061 1062 /* 1063 * Force write back for synchronous write cases. 1064 */ 1065 if (ioflag & (FSYNC|FDSYNC)) 1066 flags = SM_WRITE; 1067 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 1068 /* 1069 * Have written a whole block. 1070 * Start an asynchronous write and 1071 * mark the buffer to indicate that 1072 * it won't be needed again soon. 1073 * Push swap files here, since it 1074 * won't happen anywhere else. 1075 */ 1076 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 1077 } 1078 smark(sp, SUPD|SCHG); 1079 if (vpm_enable) { 1080 error = vpm_sync_pages(blkvp, off, n, flags); 1081 } else { 1082 error = segmap_release(segkmap, base, flags); 1083 } 1084 } else { 1085 if (vpm_enable) { 1086 (void) vpm_sync_pages(blkvp, off, n, SM_INVAL); 1087 } else { 1088 (void) segmap_release(segkmap, base, SM_INVAL); 1089 } 1090 } 1091 1092 } while (error == 0 && uiop->uio_resid > 0 && n != 0); 1093 1094 return (error); 1095 } 1096 1097 static int 1098 spec_ioctl(struct vnode *vp, int cmd, intptr_t arg, int mode, struct cred *cr, 1099 int *rvalp) 1100 { 1101 struct snode *sp; 1102 dev_t dev; 1103 int error; 1104 1105 if (vp->v_type != VCHR) 1106 return (ENOTTY); 1107 sp = VTOS(vp); 1108 dev = sp->s_dev; 1109 if (STREAMSTAB(getmajor(dev))) { 1110 error = strioctl(vp, cmd, arg, mode, U_TO_K, cr, rvalp); 1111 } else { 1112 error = cdev_ioctl(dev, cmd, arg, mode, cr, rvalp); 1113 } 1114 return (error); 1115 } 1116 1117 static int 1118 spec_getattr(struct vnode *vp, struct vattr *vap, int flags, struct cred *cr) 1119 { 1120 int error; 1121 struct snode *sp; 1122 struct vnode *realvp; 1123 1124 /* With ATTR_COMM we will not get attributes from realvp */ 1125 if (flags & ATTR_COMM) { 1126 sp = VTOS(vp); 1127 vp = sp->s_commonvp; 1128 } 1129 sp = VTOS(vp); 1130 realvp = sp->s_realvp; 1131 1132 if (realvp == NULL) { 1133 static int snode_shift = 0; 1134 1135 /* 1136 * Calculate the amount of bitshift to a snode pointer which 1137 * will still keep it unique. See below. 1138 */ 1139 if (snode_shift == 0) 1140 snode_shift = highbit(sizeof (struct snode)); 1141 ASSERT(snode_shift > 0); 1142 1143 /* 1144 * No real vnode behind this one. Fill in the fields 1145 * from the snode. 1146 * 1147 * This code should be refined to return only the 1148 * attributes asked for instead of all of them. 1149 */ 1150 vap->va_type = vp->v_type; 1151 vap->va_mode = 0; 1152 vap->va_uid = vap->va_gid = 0; 1153 vap->va_fsid = sp->s_fsid; 1154 1155 /* 1156 * If the va_nodeid is > MAX_USHORT, then i386 stats might 1157 * fail. So we shift down the snode pointer to try and get 1158 * the most uniqueness into 16-bits. 1159 */ 1160 vap->va_nodeid = ((ino64_t)(uintptr_t)sp >> snode_shift) & 1161 0xFFFF; 1162 vap->va_nlink = 0; 1163 vap->va_rdev = sp->s_dev; 1164 1165 /* 1166 * va_nblocks is the number of 512 byte blocks used to store 1167 * the mknod for the device, not the number of blocks on the 1168 * device itself. This is typically zero since the mknod is 1169 * represented directly in the inode itself. 1170 */ 1171 vap->va_nblocks = 0; 1172 } else { 1173 error = VOP_GETATTR(realvp, vap, flags, cr); 1174 if (error != 0) 1175 return (error); 1176 } 1177 1178 /* set the size from the snode */ 1179 vap->va_size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1180 vap->va_blksize = MAXBSIZE; 1181 1182 mutex_enter(&sp->s_lock); 1183 vap->va_atime.tv_sec = sp->s_atime; 1184 vap->va_mtime.tv_sec = sp->s_mtime; 1185 vap->va_ctime.tv_sec = sp->s_ctime; 1186 mutex_exit(&sp->s_lock); 1187 1188 vap->va_atime.tv_nsec = 0; 1189 vap->va_mtime.tv_nsec = 0; 1190 vap->va_ctime.tv_nsec = 0; 1191 vap->va_seq = 0; 1192 1193 return (0); 1194 } 1195 1196 static int 1197 spec_setattr( 1198 struct vnode *vp, 1199 struct vattr *vap, 1200 int flags, 1201 struct cred *cr, 1202 caller_context_t *ctp) 1203 { 1204 struct snode *sp = VTOS(vp); 1205 struct vnode *realvp; 1206 int error; 1207 1208 if (vp->v_type == VCHR && vp->v_stream && (vap->va_mask & AT_SIZE)) { 1209 /* 1210 * 1135080: O_TRUNC should have no effect on 1211 * named pipes and terminal devices. 1212 */ 1213 ASSERT(vap->va_mask == AT_SIZE); 1214 return (0); 1215 } 1216 1217 if ((realvp = sp->s_realvp) == NULL) 1218 error = 0; /* no real vnode to update */ 1219 else 1220 error = VOP_SETATTR(realvp, vap, flags, cr, ctp); 1221 if (error == 0) { 1222 /* 1223 * If times were changed, update snode. 1224 */ 1225 mutex_enter(&sp->s_lock); 1226 if (vap->va_mask & AT_ATIME) 1227 sp->s_atime = vap->va_atime.tv_sec; 1228 if (vap->va_mask & AT_MTIME) { 1229 sp->s_mtime = vap->va_mtime.tv_sec; 1230 sp->s_ctime = gethrestime_sec(); 1231 } 1232 mutex_exit(&sp->s_lock); 1233 } 1234 return (error); 1235 } 1236 1237 static int 1238 spec_access(struct vnode *vp, int mode, int flags, struct cred *cr) 1239 { 1240 struct vnode *realvp; 1241 struct snode *sp = VTOS(vp); 1242 1243 if ((realvp = sp->s_realvp) != NULL) 1244 return (VOP_ACCESS(realvp, mode, flags, cr)); 1245 else 1246 return (0); /* Allow all access. */ 1247 } 1248 1249 /* 1250 * This can be called if creat or an open with O_CREAT is done on the root 1251 * of a lofs mount where the mounted entity is a special file. 1252 */ 1253 /*ARGSUSED*/ 1254 static int 1255 spec_create(struct vnode *dvp, char *name, vattr_t *vap, enum vcexcl excl, 1256 int mode, struct vnode **vpp, struct cred *cr, int flag) 1257 { 1258 int error; 1259 1260 ASSERT(dvp && (dvp->v_flag & VROOT) && *name == '\0'); 1261 if (excl == NONEXCL) { 1262 if (mode && (error = spec_access(dvp, mode, 0, cr))) 1263 return (error); 1264 VN_HOLD(dvp); 1265 return (0); 1266 } 1267 return (EEXIST); 1268 } 1269 1270 /* 1271 * In order to sync out the snode times without multi-client problems, 1272 * make sure the times written out are never earlier than the times 1273 * already set in the vnode. 1274 */ 1275 static int 1276 spec_fsync(struct vnode *vp, int syncflag, struct cred *cr) 1277 { 1278 struct snode *sp = VTOS(vp); 1279 struct vnode *realvp; 1280 struct vnode *cvp; 1281 struct vattr va, vatmp; 1282 1283 /* If times didn't change, don't flush anything. */ 1284 mutex_enter(&sp->s_lock); 1285 if ((sp->s_flag & (SACC|SUPD|SCHG)) == 0 && vp->v_type != VBLK) { 1286 mutex_exit(&sp->s_lock); 1287 return (0); 1288 } 1289 sp->s_flag &= ~(SACC|SUPD|SCHG); 1290 mutex_exit(&sp->s_lock); 1291 cvp = sp->s_commonvp; 1292 realvp = sp->s_realvp; 1293 1294 if (vp->v_type == VBLK && cvp != vp && vn_has_cached_data(cvp) && 1295 (cvp->v_flag & VISSWAP) == 0) 1296 (void) VOP_PUTPAGE(cvp, (offset_t)0, 0, 0, cr); 1297 1298 /* 1299 * For devices that support it, force write cache to stable storage. 1300 * We don't need the lock to check s_flags since we can treat 1301 * SNOFLUSH as a hint. 1302 */ 1303 if ((vp->v_type == VBLK || vp->v_type == VCHR) && 1304 !(sp->s_flag & SNOFLUSH)) { 1305 int rval, rc; 1306 rc = cdev_ioctl(vp->v_rdev, DKIOCFLUSHWRITECACHE, 1307 NULL, FNATIVE|FKIOCTL, cr, &rval); 1308 if (rc == ENOTSUP || rc == ENOTTY) { 1309 mutex_enter(&sp->s_lock); 1310 sp->s_flag |= SNOFLUSH; 1311 mutex_exit(&sp->s_lock); 1312 } 1313 } 1314 1315 /* 1316 * If no real vnode to update, don't flush anything. 1317 */ 1318 if (realvp == NULL) 1319 return (0); 1320 1321 vatmp.va_mask = AT_ATIME|AT_MTIME; 1322 if (VOP_GETATTR(realvp, &vatmp, 0, cr) == 0) { 1323 1324 mutex_enter(&sp->s_lock); 1325 if (vatmp.va_atime.tv_sec > sp->s_atime) 1326 va.va_atime = vatmp.va_atime; 1327 else { 1328 va.va_atime.tv_sec = sp->s_atime; 1329 va.va_atime.tv_nsec = 0; 1330 } 1331 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1332 va.va_mtime = vatmp.va_mtime; 1333 else { 1334 va.va_mtime.tv_sec = sp->s_mtime; 1335 va.va_mtime.tv_nsec = 0; 1336 } 1337 mutex_exit(&sp->s_lock); 1338 1339 va.va_mask = AT_ATIME|AT_MTIME; 1340 (void) VOP_SETATTR(realvp, &va, 0, cr, NULL); 1341 } 1342 (void) VOP_FSYNC(realvp, syncflag, cr); 1343 return (0); 1344 } 1345 1346 /*ARGSUSED*/ 1347 static void 1348 spec_inactive(struct vnode *vp, struct cred *cr) 1349 { 1350 struct snode *sp = VTOS(vp); 1351 struct vnode *cvp; 1352 struct vnode *rvp; 1353 1354 /* 1355 * If no one has reclaimed the vnode, remove from the 1356 * cache now. 1357 */ 1358 if (vp->v_count < 1) { 1359 panic("spec_inactive: Bad v_count"); 1360 /*NOTREACHED*/ 1361 } 1362 mutex_enter(&stable_lock); 1363 1364 mutex_enter(&vp->v_lock); 1365 /* 1366 * Drop the temporary hold by vn_rele now 1367 */ 1368 if (--vp->v_count != 0) { 1369 mutex_exit(&vp->v_lock); 1370 mutex_exit(&stable_lock); 1371 return; 1372 } 1373 mutex_exit(&vp->v_lock); 1374 1375 sdelete(sp); 1376 mutex_exit(&stable_lock); 1377 1378 /* We are the sole owner of sp now */ 1379 cvp = sp->s_commonvp; 1380 rvp = sp->s_realvp; 1381 1382 if (rvp) { 1383 /* 1384 * If the snode times changed, then update the times 1385 * associated with the "realvp". 1386 */ 1387 if ((sp->s_flag & (SACC|SUPD|SCHG)) != 0) { 1388 1389 struct vattr va, vatmp; 1390 1391 mutex_enter(&sp->s_lock); 1392 sp->s_flag &= ~(SACC|SUPD|SCHG); 1393 mutex_exit(&sp->s_lock); 1394 vatmp.va_mask = AT_ATIME|AT_MTIME; 1395 /* 1396 * The user may not own the device, but we 1397 * want to update the attributes anyway. 1398 */ 1399 if (VOP_GETATTR(rvp, &vatmp, 0, kcred) == 0) { 1400 if (vatmp.va_atime.tv_sec > sp->s_atime) 1401 va.va_atime = vatmp.va_atime; 1402 else { 1403 va.va_atime.tv_sec = sp->s_atime; 1404 va.va_atime.tv_nsec = 0; 1405 } 1406 if (vatmp.va_mtime.tv_sec > sp->s_mtime) 1407 va.va_mtime = vatmp.va_mtime; 1408 else { 1409 va.va_mtime.tv_sec = sp->s_mtime; 1410 va.va_mtime.tv_nsec = 0; 1411 } 1412 1413 va.va_mask = AT_ATIME|AT_MTIME; 1414 (void) VOP_SETATTR(rvp, &va, 0, kcred, NULL); 1415 } 1416 } 1417 } 1418 ASSERT(!vn_has_cached_data(vp)); 1419 vn_invalid(vp); 1420 1421 /* if we are sharing another file systems vfs, release it */ 1422 if (vp->v_vfsp && (vp->v_vfsp != &spec_vfs)) 1423 VFS_RELE(vp->v_vfsp); 1424 1425 /* if we have a realvp, release the realvp */ 1426 if (rvp) 1427 VN_RELE(rvp); 1428 1429 /* if we have a common, release the common */ 1430 if (cvp && (cvp != vp)) { 1431 VN_RELE(cvp); 1432 #ifdef DEBUG 1433 } else if (cvp) { 1434 /* 1435 * if this is the last reference to a common vnode, any 1436 * associated stream had better have been closed 1437 */ 1438 ASSERT(cvp == vp); 1439 ASSERT(cvp->v_stream == NULL); 1440 #endif /* DEBUG */ 1441 } 1442 1443 /* 1444 * if we have a hold on a devinfo node (established by 1445 * spec_assoc_vp_with_devi), release the hold 1446 */ 1447 if (sp->s_dip) 1448 ddi_release_devi(sp->s_dip); 1449 1450 /* 1451 * If we have an associated device policy, release it. 1452 */ 1453 if (sp->s_plcy != NULL) 1454 dpfree(sp->s_plcy); 1455 1456 /* 1457 * If all holds on the devinfo node are through specfs/devfs 1458 * and we just destroyed the last specfs node associated with the 1459 * device, then the devinfo node reference count should now be 1460 * zero. We can't check this because there may be other holds 1461 * on the node from non file system sources: ddi_hold_devi_by_instance 1462 * for example. 1463 */ 1464 kmem_cache_free(snode_cache, sp); 1465 } 1466 1467 static int 1468 spec_fid(struct vnode *vp, struct fid *fidp) 1469 { 1470 struct vnode *realvp; 1471 struct snode *sp = VTOS(vp); 1472 1473 if ((realvp = sp->s_realvp) != NULL) 1474 return (VOP_FID(realvp, fidp)); 1475 else 1476 return (EINVAL); 1477 } 1478 1479 /*ARGSUSED1*/ 1480 static int 1481 spec_seek(struct vnode *vp, offset_t ooff, offset_t *noffp) 1482 { 1483 offset_t maxoff = spec_maxoffset(vp); 1484 1485 if (maxoff == -1 || *noffp <= maxoff) 1486 return (0); 1487 else 1488 return (EINVAL); 1489 } 1490 1491 static int 1492 spec_frlock( 1493 struct vnode *vp, 1494 int cmd, 1495 struct flock64 *bfp, 1496 int flag, 1497 offset_t offset, 1498 struct flk_callback *flk_cbp, 1499 struct cred *cr) 1500 { 1501 struct snode *sp = VTOS(vp); 1502 struct snode *csp; 1503 1504 csp = VTOS(sp->s_commonvp); 1505 /* 1506 * If file is being mapped, disallow frlock. 1507 */ 1508 if (csp->s_mapcnt > 0) 1509 return (EAGAIN); 1510 1511 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 1512 } 1513 1514 static int 1515 spec_realvp(struct vnode *vp, struct vnode **vpp) 1516 { 1517 struct vnode *rvp; 1518 1519 if ((rvp = VTOS(vp)->s_realvp) != NULL) { 1520 vp = rvp; 1521 if (VOP_REALVP(vp, &rvp) == 0) 1522 vp = rvp; 1523 } 1524 1525 *vpp = vp; 1526 return (0); 1527 } 1528 1529 /* 1530 * Return all the pages from [off..off + len] in block 1531 * or character device. 1532 */ 1533 static int 1534 spec_getpage( 1535 struct vnode *vp, 1536 offset_t off, 1537 size_t len, 1538 uint_t *protp, 1539 page_t *pl[], 1540 size_t plsz, 1541 struct seg *seg, 1542 caddr_t addr, 1543 enum seg_rw rw, 1544 struct cred *cr) 1545 { 1546 struct snode *sp = VTOS(vp); 1547 int err; 1548 1549 ASSERT(sp->s_commonvp == vp); 1550 1551 /* 1552 * XXX Given the above assertion, this might not do 1553 * what is wanted here. 1554 */ 1555 if (vp->v_flag & VNOMAP) 1556 return (ENOSYS); 1557 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_GETPAGE, 1558 "specfs getpage:vp %p off %llx len %ld snode %p", 1559 vp, off, len, sp); 1560 1561 switch (vp->v_type) { 1562 case VBLK: 1563 if (protp != NULL) 1564 *protp = PROT_ALL; 1565 1566 if (((u_offset_t)off + len) > (SPEC_SIZE(sp) + PAGEOFFSET)) 1567 return (EFAULT); /* beyond EOF */ 1568 1569 if (len <= PAGESIZE) 1570 err = spec_getapage(vp, (u_offset_t)off, len, protp, pl, 1571 plsz, seg, addr, rw, cr); 1572 else 1573 err = pvn_getpages(spec_getapage, vp, (u_offset_t)off, 1574 len, protp, pl, plsz, seg, addr, rw, cr); 1575 break; 1576 1577 case VCHR: 1578 cmn_err(CE_NOTE, "spec_getpage called for character device. " 1579 "Check any non-ON consolidation drivers"); 1580 err = 0; 1581 pl[0] = (page_t *)0; 1582 break; 1583 1584 default: 1585 panic("spec_getpage: bad v_type 0x%x", vp->v_type); 1586 /*NOTREACHED*/ 1587 } 1588 1589 return (err); 1590 } 1591 1592 extern int klustsize; /* set in machdep.c */ 1593 1594 int spec_ra = 1; 1595 int spec_lostpage; /* number of times we lost original page */ 1596 1597 /*ARGSUSED2*/ 1598 static int 1599 spec_getapage( 1600 struct vnode *vp, 1601 u_offset_t off, 1602 size_t len, 1603 uint_t *protp, 1604 page_t *pl[], 1605 size_t plsz, 1606 struct seg *seg, 1607 caddr_t addr, 1608 enum seg_rw rw, 1609 struct cred *cr) 1610 { 1611 struct snode *sp; 1612 struct buf *bp; 1613 page_t *pp, *pp2; 1614 u_offset_t io_off1, io_off2; 1615 size_t io_len1; 1616 size_t io_len2; 1617 size_t blksz; 1618 u_offset_t blkoff; 1619 int dora, err; 1620 page_t *pagefound; 1621 uint_t xlen; 1622 size_t adj_klustsize; 1623 u_offset_t size; 1624 u_offset_t tmpoff; 1625 1626 sp = VTOS(vp); 1627 TRACE_3(TR_FAC_SPECFS, TR_SPECFS_GETAPAGE, 1628 "specfs getapage:vp %p off %llx snode %p", vp, off, sp); 1629 reread: 1630 1631 err = 0; 1632 bp = NULL; 1633 pp = NULL; 1634 pp2 = NULL; 1635 1636 if (pl != NULL) 1637 pl[0] = NULL; 1638 1639 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1640 1641 if (spec_ra && sp->s_nextr == off) 1642 dora = 1; 1643 else 1644 dora = 0; 1645 1646 if (size == UNKNOWN_SIZE) { 1647 dora = 0; 1648 adj_klustsize = PAGESIZE; 1649 } else { 1650 adj_klustsize = dora ? klustsize : PAGESIZE; 1651 } 1652 1653 again: 1654 if ((pagefound = page_exists(vp, off)) == NULL) { 1655 if (rw == S_CREATE) { 1656 /* 1657 * We're allocating a swap slot and it's 1658 * associated page was not found, so allocate 1659 * and return it. 1660 */ 1661 if ((pp = page_create_va(vp, off, 1662 PAGESIZE, PG_WAIT, seg, addr)) == NULL) { 1663 panic("spec_getapage: page_create"); 1664 /*NOTREACHED*/ 1665 } 1666 io_len1 = PAGESIZE; 1667 sp->s_nextr = off + PAGESIZE; 1668 } else { 1669 /* 1670 * Need to really do disk I/O to get the page(s). 1671 */ 1672 blkoff = (off / adj_klustsize) * adj_klustsize; 1673 if (size == UNKNOWN_SIZE) { 1674 blksz = PAGESIZE; 1675 } else { 1676 if (blkoff + adj_klustsize <= size) 1677 blksz = adj_klustsize; 1678 else 1679 blksz = 1680 MIN(size - blkoff, adj_klustsize); 1681 } 1682 1683 pp = pvn_read_kluster(vp, off, seg, addr, &tmpoff, 1684 &io_len1, blkoff, blksz, 0); 1685 io_off1 = tmpoff; 1686 /* 1687 * Make sure the page didn't sneek into the 1688 * cache while we blocked in pvn_read_kluster. 1689 */ 1690 if (pp == NULL) 1691 goto again; 1692 1693 /* 1694 * Zero part of page which we are not 1695 * going to be reading from disk now. 1696 */ 1697 xlen = (uint_t)(io_len1 & PAGEOFFSET); 1698 if (xlen != 0) 1699 pagezero(pp->p_prev, xlen, PAGESIZE - xlen); 1700 1701 bp = spec_startio(vp, pp, io_off1, io_len1, 1702 pl == NULL ? (B_ASYNC | B_READ) : B_READ); 1703 sp->s_nextr = io_off1 + io_len1; 1704 } 1705 } 1706 1707 if (dora && rw != S_CREATE) { 1708 u_offset_t off2; 1709 caddr_t addr2; 1710 1711 off2 = ((off / adj_klustsize) + 1) * adj_klustsize; 1712 addr2 = addr + (off2 - off); 1713 1714 pp2 = NULL; 1715 /* 1716 * If we are past EOF then don't bother trying 1717 * with read-ahead. 1718 */ 1719 if (off2 >= size) 1720 pp2 = NULL; 1721 else { 1722 if (off2 + adj_klustsize <= size) 1723 blksz = adj_klustsize; 1724 else 1725 blksz = MIN(size - off2, adj_klustsize); 1726 1727 pp2 = pvn_read_kluster(vp, off2, seg, addr2, &tmpoff, 1728 &io_len2, off2, blksz, 1); 1729 io_off2 = tmpoff; 1730 } 1731 1732 if (pp2 != NULL) { 1733 /* 1734 * Zero part of page which we are not 1735 * going to be reading from disk now. 1736 */ 1737 xlen = (uint_t)(io_len2 & PAGEOFFSET); 1738 if (xlen != 0) 1739 pagezero(pp2->p_prev, xlen, PAGESIZE - xlen); 1740 1741 (void) spec_startio(vp, pp2, io_off2, io_len2, 1742 B_READ | B_ASYNC); 1743 } 1744 } 1745 1746 if (pl == NULL) 1747 return (err); 1748 1749 if (bp != NULL) { 1750 err = biowait(bp); 1751 pageio_done(bp); 1752 1753 if (err) { 1754 if (pp != NULL) 1755 pvn_read_done(pp, B_ERROR); 1756 return (err); 1757 } 1758 } 1759 1760 if (pagefound) { 1761 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 1762 /* 1763 * Page exists in the cache, acquire the appropriate 1764 * lock. If this fails, start all over again. 1765 */ 1766 1767 if ((pp = page_lookup(vp, off, se)) == NULL) { 1768 spec_lostpage++; 1769 goto reread; 1770 } 1771 pl[0] = pp; 1772 pl[1] = NULL; 1773 1774 sp->s_nextr = off + PAGESIZE; 1775 return (0); 1776 } 1777 1778 if (pp != NULL) 1779 pvn_plist_init(pp, pl, plsz, off, io_len1, rw); 1780 return (0); 1781 } 1782 1783 /* 1784 * Flags are composed of {B_INVAL, B_DIRTY B_FREE, B_DONTNEED, B_FORCE}. 1785 * If len == 0, do from off to EOF. 1786 * 1787 * The normal cases should be len == 0 & off == 0 (entire vp list), 1788 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 1789 * (from pageout). 1790 */ 1791 int 1792 spec_putpage( 1793 struct vnode *vp, 1794 offset_t off, 1795 size_t len, 1796 int flags, 1797 struct cred *cr) 1798 { 1799 struct snode *sp = VTOS(vp); 1800 struct vnode *cvp; 1801 page_t *pp; 1802 u_offset_t io_off; 1803 size_t io_len = 0; /* for lint */ 1804 int err = 0; 1805 u_offset_t size; 1806 u_offset_t tmpoff; 1807 1808 ASSERT(vp->v_count != 0); 1809 1810 if (vp->v_flag & VNOMAP) 1811 return (ENOSYS); 1812 1813 cvp = sp->s_commonvp; 1814 size = SPEC_SIZE(VTOS(cvp)); 1815 1816 if (!vn_has_cached_data(vp) || off >= size) 1817 return (0); 1818 1819 ASSERT(vp->v_type == VBLK && cvp == vp); 1820 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTPAGE, 1821 "specfs putpage:vp %p off %llx len %ld snode %p", 1822 vp, off, len, sp); 1823 1824 if (len == 0) { 1825 /* 1826 * Search the entire vp list for pages >= off. 1827 */ 1828 err = pvn_vplist_dirty(vp, off, spec_putapage, 1829 flags, cr); 1830 } else { 1831 u_offset_t eoff; 1832 1833 /* 1834 * Loop over all offsets in the range [off...off + len] 1835 * looking for pages to deal with. We set limits so 1836 * that we kluster to klustsize boundaries. 1837 */ 1838 eoff = off + len; 1839 for (io_off = off; io_off < eoff && io_off < size; 1840 io_off += io_len) { 1841 /* 1842 * If we are not invalidating, synchronously 1843 * freeing or writing pages use the routine 1844 * page_lookup_nowait() to prevent reclaiming 1845 * them from the free list. 1846 */ 1847 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 1848 pp = page_lookup(vp, io_off, 1849 (flags & (B_INVAL | B_FREE)) ? 1850 SE_EXCL : SE_SHARED); 1851 } else { 1852 pp = page_lookup_nowait(vp, io_off, 1853 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 1854 } 1855 1856 if (pp == NULL || pvn_getdirty(pp, flags) == 0) 1857 io_len = PAGESIZE; 1858 else { 1859 err = spec_putapage(vp, pp, &tmpoff, &io_len, 1860 flags, cr); 1861 io_off = tmpoff; 1862 if (err != 0) 1863 break; 1864 /* 1865 * "io_off" and "io_len" are returned as 1866 * the range of pages we actually wrote. 1867 * This allows us to skip ahead more quickly 1868 * since several pages may've been dealt 1869 * with by this iteration of the loop. 1870 */ 1871 } 1872 } 1873 } 1874 return (err); 1875 } 1876 1877 1878 /* 1879 * Write out a single page, possibly klustering adjacent 1880 * dirty pages. 1881 */ 1882 /*ARGSUSED5*/ 1883 static int 1884 spec_putapage( 1885 struct vnode *vp, 1886 page_t *pp, 1887 u_offset_t *offp, /* return value */ 1888 size_t *lenp, /* return value */ 1889 int flags, 1890 struct cred *cr) 1891 { 1892 struct snode *sp = VTOS(vp); 1893 u_offset_t io_off; 1894 size_t io_len; 1895 size_t blksz; 1896 u_offset_t blkoff; 1897 int err = 0; 1898 struct buf *bp; 1899 u_offset_t size; 1900 size_t adj_klustsize; 1901 u_offset_t tmpoff; 1902 1903 /* 1904 * Destroy read ahead value since we are really going to write. 1905 */ 1906 sp->s_nextr = 0; 1907 size = SPEC_SIZE(VTOS(sp->s_commonvp)); 1908 1909 adj_klustsize = klustsize; 1910 1911 blkoff = (pp->p_offset / adj_klustsize) * adj_klustsize; 1912 1913 if (blkoff + adj_klustsize <= size) 1914 blksz = adj_klustsize; 1915 else 1916 blksz = size - blkoff; 1917 1918 /* 1919 * Find a kluster that fits in one contiguous chunk. 1920 */ 1921 pp = pvn_write_kluster(vp, pp, &tmpoff, &io_len, blkoff, 1922 blksz, flags); 1923 io_off = tmpoff; 1924 1925 /* 1926 * Check for page length rounding problems 1927 * XXX - Is this necessary? 1928 */ 1929 if (io_off + io_len > size) { 1930 ASSERT((io_off + io_len) - size < PAGESIZE); 1931 io_len = size - io_off; 1932 } 1933 1934 bp = spec_startio(vp, pp, io_off, io_len, B_WRITE | flags); 1935 1936 /* 1937 * Wait for i/o to complete if the request is not B_ASYNC. 1938 */ 1939 if ((flags & B_ASYNC) == 0) { 1940 err = biowait(bp); 1941 pageio_done(bp); 1942 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags); 1943 } 1944 1945 if (offp) 1946 *offp = io_off; 1947 if (lenp) 1948 *lenp = io_len; 1949 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_PUTAPAGE, 1950 "specfs putapage:vp %p offp %p snode %p err %d", 1951 vp, offp, sp, err); 1952 return (err); 1953 } 1954 1955 /* 1956 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 1957 */ 1958 static struct buf * 1959 spec_startio( 1960 struct vnode *vp, 1961 page_t *pp, 1962 u_offset_t io_off, 1963 size_t io_len, 1964 int flags) 1965 { 1966 struct buf *bp; 1967 1968 bp = pageio_setup(pp, io_len, vp, flags); 1969 1970 bp->b_edev = vp->v_rdev; 1971 bp->b_dev = cmpdev(vp->v_rdev); 1972 bp->b_blkno = btodt(io_off); 1973 bp->b_un.b_addr = (caddr_t)0; 1974 1975 (void) bdev_strategy(bp); 1976 1977 if (flags & B_READ) 1978 lwp_stat_update(LWP_STAT_INBLK, 1); 1979 else 1980 lwp_stat_update(LWP_STAT_OUBLK, 1); 1981 1982 return (bp); 1983 } 1984 1985 static int 1986 spec_poll( 1987 struct vnode *vp, 1988 short events, 1989 int anyyet, 1990 short *reventsp, 1991 struct pollhead **phpp) 1992 { 1993 dev_t dev; 1994 int error; 1995 1996 if (vp->v_type == VBLK) 1997 error = fs_poll(vp, events, anyyet, reventsp, phpp); 1998 else { 1999 ASSERT(vp->v_type == VCHR); 2000 dev = vp->v_rdev; 2001 if (STREAMSTAB(getmajor(dev))) { 2002 ASSERT(vp->v_stream != NULL); 2003 error = strpoll(vp->v_stream, events, anyyet, 2004 reventsp, phpp); 2005 } else if (devopsp[getmajor(dev)]->devo_cb_ops->cb_chpoll) { 2006 error = cdev_poll(dev, events, anyyet, reventsp, phpp); 2007 } else { 2008 error = fs_poll(vp, events, anyyet, reventsp, phpp); 2009 } 2010 } 2011 return (error); 2012 } 2013 2014 /* 2015 * This routine is called through the cdevsw[] table to handle 2016 * traditional mmap'able devices that support a d_mmap function. 2017 */ 2018 /*ARGSUSED8*/ 2019 int 2020 spec_segmap( 2021 dev_t dev, 2022 off_t off, 2023 struct as *as, 2024 caddr_t *addrp, 2025 off_t len, 2026 uint_t prot, 2027 uint_t maxprot, 2028 uint_t flags, 2029 struct cred *cred) 2030 { 2031 struct segdev_crargs dev_a; 2032 int (*mapfunc)(dev_t dev, off_t off, int prot); 2033 size_t i; 2034 int error; 2035 2036 if ((mapfunc = devopsp[getmajor(dev)]->devo_cb_ops->cb_mmap) == nodev) 2037 return (ENODEV); 2038 TRACE_4(TR_FAC_SPECFS, TR_SPECFS_SEGMAP, 2039 "specfs segmap:dev %x as %p len %lx prot %x", 2040 dev, as, len, prot); 2041 2042 /* 2043 * Character devices that support the d_mmap 2044 * interface can only be mmap'ed shared. 2045 */ 2046 if ((flags & MAP_TYPE) != MAP_SHARED) 2047 return (EINVAL); 2048 2049 /* 2050 * Check to ensure that the entire range is 2051 * legal and we are not trying to map in 2052 * more than the device will let us. 2053 */ 2054 for (i = 0; i < len; i += PAGESIZE) { 2055 if (cdev_mmap(mapfunc, dev, off + i, maxprot) == -1) 2056 return (ENXIO); 2057 } 2058 2059 as_rangelock(as); 2060 if ((flags & MAP_FIXED) == 0) { 2061 /* 2062 * Pick an address w/o worrying about 2063 * any vac alignment constraints. 2064 */ 2065 map_addr(addrp, len, (offset_t)off, 0, flags); 2066 if (*addrp == NULL) { 2067 as_rangeunlock(as); 2068 return (ENOMEM); 2069 } 2070 } else { 2071 /* 2072 * User-specified address; blow away any previous mappings. 2073 */ 2074 (void) as_unmap(as, *addrp, len); 2075 } 2076 2077 dev_a.mapfunc = mapfunc; 2078 dev_a.dev = dev; 2079 dev_a.offset = off; 2080 dev_a.prot = (uchar_t)prot; 2081 dev_a.maxprot = (uchar_t)maxprot; 2082 dev_a.hat_flags = 0; 2083 dev_a.hat_attr = 0; 2084 dev_a.devmap_data = NULL; 2085 2086 error = as_map(as, *addrp, len, segdev_create, &dev_a); 2087 as_rangeunlock(as); 2088 return (error); 2089 } 2090 2091 int 2092 spec_char_map( 2093 dev_t dev, 2094 offset_t off, 2095 struct as *as, 2096 caddr_t *addrp, 2097 size_t len, 2098 uchar_t prot, 2099 uchar_t maxprot, 2100 uint_t flags, 2101 struct cred *cred) 2102 { 2103 int error = 0; 2104 major_t maj = getmajor(dev); 2105 int map_flag; 2106 int (*segmap)(dev_t, off_t, struct as *, 2107 caddr_t *, off_t, uint_t, uint_t, uint_t, cred_t *); 2108 int (*devmap)(dev_t, devmap_cookie_t, offset_t, 2109 size_t, size_t *, uint_t); 2110 int (*mmap)(dev_t dev, off_t off, int prot); 2111 2112 /* 2113 * Character device: let the device driver 2114 * pick the appropriate segment driver. 2115 * 2116 * 4.x compat.: allow 'NULL' cb_segmap => spec_segmap 2117 * Kindness: allow 'nulldev' cb_segmap => spec_segmap 2118 */ 2119 segmap = devopsp[maj]->devo_cb_ops->cb_segmap; 2120 if (segmap == NULL || segmap == nulldev || segmap == nodev) { 2121 mmap = devopsp[maj]->devo_cb_ops->cb_mmap; 2122 map_flag = devopsp[maj]->devo_cb_ops->cb_flag; 2123 2124 /* 2125 * Use old mmap framework if the driver has both mmap 2126 * and devmap entry points. This is to prevent the 2127 * system from calling invalid devmap entry point 2128 * for some drivers that might have put garbage in the 2129 * devmap entry point. 2130 */ 2131 if ((map_flag & D_DEVMAP) || mmap == NULL || 2132 mmap == nulldev || mmap == nodev) { 2133 devmap = devopsp[maj]->devo_cb_ops->cb_devmap; 2134 2135 /* 2136 * If driver provides devmap entry point in 2137 * cb_ops but not xx_segmap(9E), call 2138 * devmap_setup with default settings 2139 * (NULL) for callback_ops and driver 2140 * callback private data 2141 */ 2142 if (devmap == nodev || devmap == NULL || 2143 devmap == nulldev) 2144 return (ENODEV); 2145 2146 error = devmap_setup(dev, off, as, addrp, 2147 len, prot, maxprot, flags, cred); 2148 2149 return (error); 2150 } else 2151 segmap = spec_segmap; 2152 } else 2153 segmap = cdev_segmap; 2154 2155 return ((*segmap)(dev, (off_t)off, as, addrp, len, prot, 2156 maxprot, flags, cred)); 2157 } 2158 2159 static int 2160 spec_map( 2161 struct vnode *vp, 2162 offset_t off, 2163 struct as *as, 2164 caddr_t *addrp, 2165 size_t len, 2166 uchar_t prot, 2167 uchar_t maxprot, 2168 uint_t flags, 2169 struct cred *cred) 2170 { 2171 int error = 0; 2172 2173 if (vp->v_flag & VNOMAP) 2174 return (ENOSYS); 2175 2176 /* 2177 * If file is locked, fail mapping attempt. 2178 */ 2179 if (vn_has_flocks(vp)) 2180 return (EAGAIN); 2181 2182 if (vp->v_type == VCHR) { 2183 return (spec_char_map(vp->v_rdev, off, as, addrp, len, prot, 2184 maxprot, flags, cred)); 2185 } else if (vp->v_type == VBLK) { 2186 struct segvn_crargs vn_a; 2187 struct vnode *cvp; 2188 struct snode *sp; 2189 2190 /* 2191 * Block device, use segvn mapping to the underlying commonvp 2192 * for pages. 2193 */ 2194 if (off > spec_maxoffset(vp)) 2195 return (ENXIO); 2196 2197 sp = VTOS(vp); 2198 cvp = sp->s_commonvp; 2199 ASSERT(cvp != NULL); 2200 2201 if (off < 0 || ((offset_t)(off + len) < 0)) 2202 return (ENXIO); 2203 2204 as_rangelock(as); 2205 if ((flags & MAP_FIXED) == 0) { 2206 map_addr(addrp, len, off, 1, flags); 2207 if (*addrp == NULL) { 2208 as_rangeunlock(as); 2209 return (ENOMEM); 2210 } 2211 } else { 2212 /* 2213 * User-specified address; blow away any 2214 * previous mappings. 2215 */ 2216 (void) as_unmap(as, *addrp, len); 2217 } 2218 2219 vn_a.vp = cvp; 2220 vn_a.offset = off; 2221 vn_a.type = flags & MAP_TYPE; 2222 vn_a.prot = (uchar_t)prot; 2223 vn_a.maxprot = (uchar_t)maxprot; 2224 vn_a.flags = flags & ~MAP_TYPE; 2225 vn_a.cred = cred; 2226 vn_a.amp = NULL; 2227 vn_a.szc = 0; 2228 vn_a.lgrp_mem_policy_flags = 0; 2229 2230 error = as_map(as, *addrp, len, segvn_create, &vn_a); 2231 as_rangeunlock(as); 2232 } else 2233 return (ENODEV); 2234 2235 return (error); 2236 } 2237 2238 /*ARGSUSED1*/ 2239 static int 2240 spec_addmap( 2241 struct vnode *vp, /* the common vnode */ 2242 offset_t off, 2243 struct as *as, 2244 caddr_t addr, 2245 size_t len, /* how many bytes to add */ 2246 uchar_t prot, 2247 uchar_t maxprot, 2248 uint_t flags, 2249 struct cred *cred) 2250 { 2251 int error = 0; 2252 struct snode *csp = VTOS(vp); 2253 ulong_t npages; 2254 2255 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2256 2257 /* 2258 * XXX Given the above assertion, this might not 2259 * be a particularly sensible thing to test. 2260 */ 2261 if (vp->v_flag & VNOMAP) 2262 return (ENOSYS); 2263 2264 npages = btopr(len); 2265 LOCK_CSP(csp); 2266 csp->s_mapcnt += npages; 2267 2268 UNLOCK_CSP(csp); 2269 return (error); 2270 } 2271 2272 /*ARGSUSED1*/ 2273 static int 2274 spec_delmap( 2275 struct vnode *vp, /* the common vnode */ 2276 offset_t off, 2277 struct as *as, 2278 caddr_t addr, 2279 size_t len, /* how many bytes to take away */ 2280 uint_t prot, 2281 uint_t maxprot, 2282 uint_t flags, 2283 struct cred *cred) 2284 { 2285 struct snode *csp = VTOS(vp); 2286 ulong_t npages; 2287 long mcnt; 2288 2289 /* segdev passes us the common vp */ 2290 2291 ASSERT(vp != NULL && VTOS(vp)->s_commonvp == vp); 2292 2293 /* 2294 * XXX Given the above assertion, this might not 2295 * be a particularly sensible thing to test.. 2296 */ 2297 if (vp->v_flag & VNOMAP) 2298 return (ENOSYS); 2299 2300 npages = btopr(len); 2301 2302 LOCK_CSP(csp); 2303 mutex_enter(&csp->s_lock); 2304 mcnt = (csp->s_mapcnt -= npages); 2305 2306 if (mcnt == 0) { 2307 /* 2308 * Call the close routine when the last reference of any 2309 * kind through any [s, v]node goes away. The s_dip hold 2310 * on the devinfo node is released when the vnode is 2311 * destroyed. 2312 */ 2313 if (csp->s_count == 0) { 2314 csp->s_flag &= ~(SNEEDCLOSE | SSIZEVALID); 2315 2316 /* See comment in spec_close() */ 2317 if (csp->s_flag & (SCLONE | SSELFCLONE)) 2318 csp->s_flag &= ~SDIPSET; 2319 2320 mutex_exit(&csp->s_lock); 2321 2322 (void) device_close(vp, 0, cred); 2323 } else 2324 mutex_exit(&csp->s_lock); 2325 2326 mutex_enter(&csp->s_lock); 2327 } 2328 ASSERT(mcnt >= 0); 2329 2330 UNLOCK_CSP_LOCK_HELD(csp); 2331 mutex_exit(&csp->s_lock); 2332 2333 return (0); 2334 } 2335 2336 static int 2337 spec_dump(struct vnode *vp, caddr_t addr, int bn, int count) 2338 { 2339 ASSERT(vp->v_type == VBLK); 2340 return (bdev_dump(vp->v_rdev, addr, bn, count)); 2341 } 2342 2343 2344 /* 2345 * Do i/o on the given page list from/to vp, io_off for io_len. 2346 * Flags are composed of: 2347 * {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED, B_READ, B_WRITE} 2348 * If B_ASYNC is not set i/o is waited for. 2349 */ 2350 /*ARGSUSED5*/ 2351 static int 2352 spec_pageio( 2353 struct vnode *vp, 2354 page_t *pp, 2355 u_offset_t io_off, 2356 size_t io_len, 2357 int flags, 2358 cred_t *cr) 2359 { 2360 struct buf *bp = NULL; 2361 int err = 0; 2362 2363 if (pp == NULL) 2364 return (EINVAL); 2365 2366 bp = spec_startio(vp, pp, io_off, io_len, flags); 2367 2368 /* 2369 * Wait for i/o to complete if the request is not B_ASYNC. 2370 */ 2371 if ((flags & B_ASYNC) == 0) { 2372 err = biowait(bp); 2373 pageio_done(bp); 2374 } 2375 return (err); 2376 } 2377 2378 /* 2379 * Set ACL on underlying vnode if one exists, or return ENOSYS otherwise. 2380 */ 2381 int 2382 spec_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 2383 { 2384 struct vnode *realvp; 2385 struct snode *sp = VTOS(vp); 2386 int error; 2387 2388 /* 2389 * The acl(2) system calls VOP_RWLOCK on the file before setting an 2390 * ACL, but since specfs does not serialize reads and writes, this 2391 * VOP does not do anything. However, some backing file systems may 2392 * expect the lock to be held before setting an ACL, so it is taken 2393 * here privately to avoid serializing specfs reads and writes. 2394 */ 2395 if ((realvp = sp->s_realvp) != NULL) { 2396 (void) VOP_RWLOCK(realvp, V_WRITELOCK_TRUE, NULL); 2397 error = VOP_SETSECATTR(realvp, vsap, flag, cr); 2398 (void) VOP_RWUNLOCK(realvp, V_WRITELOCK_TRUE, NULL); 2399 return (error); 2400 } else 2401 return (fs_nosys()); 2402 } 2403 2404 /* 2405 * Get ACL from underlying vnode if one exists, or fabricate it from 2406 * the permissions returned by spec_getattr() otherwise. 2407 */ 2408 int 2409 spec_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr) 2410 { 2411 struct vnode *realvp; 2412 struct snode *sp = VTOS(vp); 2413 2414 if ((realvp = sp->s_realvp) != NULL) 2415 return (VOP_GETSECATTR(realvp, vsap, flag, cr)); 2416 else 2417 return (fs_fab_acl(vp, vsap, flag, cr)); 2418 } 2419 2420 int 2421 spec_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 2422 { 2423 vnode_t *realvp; 2424 struct snode *sp = VTOS(vp); 2425 2426 if ((realvp = sp->s_realvp) != NULL) 2427 return (VOP_PATHCONF(realvp, cmd, valp, cr)); 2428 else 2429 return (fs_pathconf(vp, cmd, valp, cr)); 2430 } 2431