1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/debug.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/file.h> 44 #include <sys/open.h> 45 #include <sys/user.h> 46 #include <sys/termios.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/ddi.h> 51 #include <sys/esunddi.h> 52 #include <sys/flock.h> 53 #include <sys/modctl.h> 54 #include <sys/vtrace.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathname.h> 57 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <sys/un.h> 63 #include <sys/strsun.h> 64 65 #include <sys/tiuser.h> 66 #define _SUN_TPI_VERSION 2 67 #include <sys/tihdr.h> 68 #include <sys/timod.h> /* TI_GETMYNAME, TI_GETPEERNAME */ 69 70 #include <c2/audit.h> 71 72 #include <inet/common.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/tcp.h> 76 #include <inet/udp_impl.h> 77 78 #include <sys/zone.h> 79 80 #include <fs/sockfs/nl7c.h> 81 #include <fs/sockfs/nl7curi.h> 82 83 #include <inet/kssl/ksslapi.h> 84 85 /* 86 * Possible failures when memory can't be allocated. The documented behavior: 87 * 88 * 5.5: 4.X: XNET: 89 * accept: ENOMEM/ENOSR/EINTR - (EINTR) ENOMEM/ENOBUFS/ENOSR/ 90 * EINTR 91 * (4.X does not document EINTR but returns it) 92 * bind: ENOSR - ENOBUFS/ENOSR 93 * connect: EINTR EINTR ENOBUFS/ENOSR/EINTR 94 * getpeername: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR 95 * getsockname: ENOMEM/ENOSR ENOBUFS (-) ENOBUFS/ENOSR 96 * (4.X getpeername and getsockname do not fail in practice) 97 * getsockopt: ENOMEM/ENOSR - ENOBUFS/ENOSR 98 * listen: - - ENOBUFS 99 * recv: ENOMEM/ENOSR/EINTR EINTR ENOBUFS/ENOMEM/ENOSR/ 100 * EINTR 101 * send: ENOMEM/ENOSR/EINTR ENOBUFS/EINTR ENOBUFS/ENOMEM/ENOSR/ 102 * EINTR 103 * setsockopt: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR 104 * shutdown: ENOMEM/ENOSR - ENOBUFS/ENOSR 105 * socket: ENOMEM/ENOSR ENOBUFS ENOBUFS/ENOMEM/ENOSR 106 * socketpair: ENOMEM/ENOSR - ENOBUFS/ENOMEM/ENOSR 107 * 108 * Resolution. When allocation fails: 109 * recv: return EINTR 110 * send: return EINTR 111 * connect, accept: EINTR 112 * bind, listen, shutdown (unbind, unix_close, disconnect): sleep 113 * socket, socketpair: ENOBUFS 114 * getpeername, getsockname: sleep 115 * getsockopt, setsockopt: sleep 116 */ 117 118 #ifdef SOCK_TEST 119 /* 120 * Variables that make sockfs do something other than the standard TPI 121 * for the AF_INET transports. 122 * 123 * solisten_tpi_tcp: 124 * TCP can handle a O_T_BIND_REQ with an increased backlog even though 125 * the transport is already bound. This is needed to avoid loosing the 126 * port number should listen() do a T_UNBIND_REQ followed by a 127 * O_T_BIND_REQ. 128 * 129 * soconnect_tpi_udp: 130 * UDP and ICMP can handle a T_CONN_REQ. 131 * This is needed to make the sequence of connect(), getsockname() 132 * return the local IP address used to send packets to the connected to 133 * destination. 134 * 135 * soconnect_tpi_tcp: 136 * TCP can handle a T_CONN_REQ without seeing a O_T_BIND_REQ. 137 * Set this to non-zero to send TPI conformant messages to TCP in this 138 * respect. This is a performance optimization. 139 * 140 * soaccept_tpi_tcp: 141 * TCP can handle a T_CONN_REQ without the acceptor being bound. 142 * This is a performance optimization that has been picked up in XTI. 143 * 144 * soaccept_tpi_multioptions: 145 * When inheriting SOL_SOCKET options from the listener to the accepting 146 * socket send them as a single message for AF_INET{,6}. 147 */ 148 int solisten_tpi_tcp = 0; 149 int soconnect_tpi_udp = 0; 150 int soconnect_tpi_tcp = 0; 151 int soaccept_tpi_tcp = 0; 152 int soaccept_tpi_multioptions = 1; 153 #else /* SOCK_TEST */ 154 #define soconnect_tpi_tcp 0 155 #define soconnect_tpi_udp 0 156 #define solisten_tpi_tcp 0 157 #define soaccept_tpi_tcp 0 158 #define soaccept_tpi_multioptions 1 159 #endif /* SOCK_TEST */ 160 161 #ifdef SOCK_TEST 162 extern int do_useracc; 163 extern clock_t sock_test_timelimit; 164 #endif /* SOCK_TEST */ 165 166 /* 167 * Some X/Open added checks might have to be backed out to keep SunOS 4.X 168 * applications working. Turn on this flag to disable these checks. 169 */ 170 int xnet_skip_checks = 0; 171 int xnet_check_print = 0; 172 int xnet_truncate_print = 0; 173 174 extern void sigintr(k_sigset_t *, int); 175 extern void sigunintr(k_sigset_t *); 176 177 extern void *nl7c_lookup_addr(void *, t_uscalar_t); 178 extern void *nl7c_add_addr(void *, t_uscalar_t); 179 extern void nl7c_listener_addr(void *, struct sonode *); 180 181 /* Sockets acting as an in-kernel SSL proxy */ 182 extern mblk_t *strsock_kssl_input(vnode_t *, mblk_t *, strwakeup_t *, 183 strsigset_t *, strsigset_t *, strpollset_t *); 184 extern mblk_t *strsock_kssl_output(vnode_t *, mblk_t *, strwakeup_t *, 185 strsigset_t *, strsigset_t *, strpollset_t *); 186 187 static int sotpi_unbind(struct sonode *, int); 188 189 /* TPI sockfs sonode operations */ 190 static int sotpi_accept(struct sonode *, int, struct sonode **); 191 static int sotpi_bind(struct sonode *, struct sockaddr *, socklen_t, 192 int); 193 static int sotpi_connect(struct sonode *, const struct sockaddr *, 194 socklen_t, int, int); 195 static int sotpi_listen(struct sonode *, int); 196 static int sotpi_sendmsg(struct sonode *, struct nmsghdr *, 197 struct uio *); 198 static int sotpi_shutdown(struct sonode *, int); 199 static int sotpi_getsockname(struct sonode *); 200 static int sosend_dgramcmsg(struct sonode *, struct sockaddr *, socklen_t, 201 struct uio *, void *, t_uscalar_t, int); 202 static int sodgram_direct(struct sonode *, struct sockaddr *, 203 socklen_t, struct uio *, int); 204 205 sonodeops_t sotpi_sonodeops = { 206 sotpi_accept, /* sop_accept */ 207 sotpi_bind, /* sop_bind */ 208 sotpi_listen, /* sop_listen */ 209 sotpi_connect, /* sop_connect */ 210 sotpi_recvmsg, /* sop_recvmsg */ 211 sotpi_sendmsg, /* sop_sendmsg */ 212 sotpi_getpeername, /* sop_getpeername */ 213 sotpi_getsockname, /* sop_getsockname */ 214 sotpi_shutdown, /* sop_shutdown */ 215 sotpi_getsockopt, /* sop_getsockopt */ 216 sotpi_setsockopt /* sop_setsockopt */ 217 }; 218 219 /* 220 * Common create code for socket and accept. If tso is set the values 221 * from that node is used instead of issuing a T_INFO_REQ. 222 * 223 * Assumes that the caller has a VN_HOLD on accessvp. 224 * The VN_RELE will occur either when sotpi_create() fails or when 225 * the returned sonode is freed. 226 */ 227 struct sonode * 228 sotpi_create(vnode_t *accessvp, int domain, int type, int protocol, int version, 229 struct sonode *tso, int *errorp) 230 { 231 struct sonode *so; 232 vnode_t *vp; 233 int flags, error; 234 235 ASSERT(accessvp != NULL); 236 vp = makesockvp(accessvp, domain, type, protocol); 237 ASSERT(vp != NULL); 238 so = VTOSO(vp); 239 240 flags = FREAD|FWRITE; 241 242 if ((type == SOCK_STREAM || type == SOCK_DGRAM) && 243 (domain == AF_INET || domain == AF_INET6) && 244 (protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || 245 protocol == IPPROTO_IP)) { 246 /* Tell tcp or udp that it's talking to sockets */ 247 flags |= SO_SOCKSTR; 248 249 /* 250 * Here we indicate to socktpi_open() our attempt to 251 * make direct calls between sockfs and transport. 252 * The final decision is left to socktpi_open(). 253 */ 254 so->so_state |= SS_DIRECT; 255 256 ASSERT(so->so_type != SOCK_DGRAM || tso == NULL); 257 if (so->so_type == SOCK_STREAM && tso != NULL) { 258 if (tso->so_state & SS_DIRECT) { 259 /* 260 * Inherit SS_DIRECT from listener and pass 261 * SO_ACCEPTOR open flag to tcp, indicating 262 * that this is an accept fast-path instance. 263 */ 264 flags |= SO_ACCEPTOR; 265 } else { 266 /* 267 * SS_DIRECT is not set on listener, meaning 268 * that the listener has been converted from 269 * a socket to a stream. Ensure that the 270 * acceptor inherits these settings. 271 */ 272 so->so_state &= ~SS_DIRECT; 273 flags &= ~SO_SOCKSTR; 274 } 275 } 276 } 277 278 /* 279 * Tell local transport that it is talking to sockets. 280 */ 281 if (so->so_family == AF_UNIX) { 282 flags |= SO_SOCKSTR; 283 } 284 285 /* Initialize the kernel SSL proxy fields */ 286 so->so_kssl_type = KSSL_NO_PROXY; 287 so->so_kssl_ent = NULL; 288 so->so_kssl_ctx = NULL; 289 290 if (error = socktpi_open(&vp, flags, CRED(), NULL)) { 291 VN_RELE(vp); 292 *errorp = error; 293 return (NULL); 294 } 295 296 if (error = so_strinit(so, tso)) { 297 (void) VOP_CLOSE(vp, 0, 1, 0, CRED(), NULL); 298 VN_RELE(vp); 299 *errorp = error; 300 return (NULL); 301 } 302 303 if (version == SOV_DEFAULT) 304 version = so_default_version; 305 306 so->so_version = (short)version; 307 308 return (so); 309 } 310 311 /* 312 * Bind the socket to an unspecified address in sockfs only. 313 * Used for TCP/UDP transports where we know that the O_T_BIND_REQ isn't 314 * required in all cases. 315 */ 316 static void 317 so_automatic_bind(struct sonode *so) 318 { 319 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); 320 321 ASSERT(MUTEX_HELD(&so->so_lock)); 322 ASSERT(!(so->so_state & SS_ISBOUND)); 323 ASSERT(so->so_unbind_mp); 324 325 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 326 bzero(so->so_laddr_sa, so->so_laddr_len); 327 so->so_laddr_sa->sa_family = so->so_family; 328 so->so_state |= SS_ISBOUND; 329 } 330 331 332 /* 333 * bind the socket. 334 * 335 * If the socket is already bound and none of _SOBIND_SOCKBSD or _SOBIND_XPG4_2 336 * are passed in we allow rebinding. Note that for backwards compatibility 337 * even "svr4" sockets pass in _SOBIND_SOCKBSD/SOV_SOCKBSD to sobind/bind. 338 * Thus the rebinding code is currently not executed. 339 * 340 * The constraints for rebinding are: 341 * - it is a SOCK_DGRAM, or 342 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected 343 * and no listen() has been done. 344 * This rebinding code was added based on some language in the XNET book 345 * about not returning EINVAL it the protocol allows rebinding. However, 346 * this language is not present in the Posix socket draft. Thus maybe the 347 * rebinding logic should be deleted from the source. 348 * 349 * A null "name" can be used to unbind the socket if: 350 * - it is a SOCK_DGRAM, or 351 * - it is a SOCK_STREAM/SOCK_SEQPACKET that has not been connected 352 * and no listen() has been done. 353 */ 354 static int 355 sotpi_bindlisten(struct sonode *so, struct sockaddr *name, 356 socklen_t namelen, int backlog, int flags) 357 { 358 struct T_bind_req bind_req; 359 struct T_bind_ack *bind_ack; 360 int error = 0; 361 mblk_t *mp; 362 void *addr; 363 t_uscalar_t addrlen; 364 int unbind_on_err = 1; 365 boolean_t clear_acceptconn_on_err = B_FALSE; 366 boolean_t restore_backlog_on_err = B_FALSE; 367 int save_so_backlog; 368 t_scalar_t PRIM_type = O_T_BIND_REQ; 369 boolean_t tcp_udp_xport; 370 void *nl7c = NULL; 371 372 dprintso(so, 1, ("sotpi_bindlisten(%p, %p, %d, %d, 0x%x) %s\n", 373 so, name, namelen, backlog, flags, 374 pr_state(so->so_state, so->so_mode))); 375 376 tcp_udp_xport = so->so_type == SOCK_STREAM || so->so_type == SOCK_DGRAM; 377 378 if (!(flags & _SOBIND_LOCK_HELD)) { 379 mutex_enter(&so->so_lock); 380 so_lock_single(so); /* Set SOLOCKED */ 381 } else { 382 ASSERT(MUTEX_HELD(&so->so_lock)); 383 ASSERT(so->so_flag & SOLOCKED); 384 } 385 386 /* 387 * Make sure that there is a preallocated unbind_req message 388 * before binding. This message allocated when the socket is 389 * created but it might be have been consumed. 390 */ 391 if (so->so_unbind_mp == NULL) { 392 dprintso(so, 1, ("sobind: allocating unbind_req\n")); 393 /* NOTE: holding so_lock while sleeping */ 394 so->so_unbind_mp = 395 soallocproto(sizeof (struct T_unbind_req), _ALLOC_SLEEP); 396 } 397 398 if (flags & _SOBIND_REBIND) { 399 /* 400 * Called from solisten after doing an sotpi_unbind() or 401 * potentially without the unbind (latter for AF_INET{,6}). 402 */ 403 ASSERT(name == NULL && namelen == 0); 404 405 if (so->so_family == AF_UNIX) { 406 ASSERT(so->so_ux_bound_vp); 407 addr = &so->so_ux_laddr; 408 addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr); 409 dprintso(so, 1, ("sobind rebind UNIX: addrlen %d, " 410 "addr 0x%p, vp %p\n", 411 addrlen, 412 ((struct so_ux_addr *)addr)->soua_vp, 413 so->so_ux_bound_vp)); 414 } else { 415 addr = so->so_laddr_sa; 416 addrlen = (t_uscalar_t)so->so_laddr_len; 417 } 418 } else if (flags & _SOBIND_UNSPEC) { 419 ASSERT(name == NULL && namelen == 0); 420 421 /* 422 * The caller checked SS_ISBOUND but not necessarily 423 * under so_lock 424 */ 425 if (so->so_state & SS_ISBOUND) { 426 /* No error */ 427 goto done; 428 } 429 430 /* Set an initial local address */ 431 switch (so->so_family) { 432 case AF_UNIX: 433 /* 434 * Use an address with same size as struct sockaddr 435 * just like BSD. 436 */ 437 so->so_laddr_len = 438 (socklen_t)sizeof (struct sockaddr); 439 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 440 bzero(so->so_laddr_sa, so->so_laddr_len); 441 so->so_laddr_sa->sa_family = so->so_family; 442 443 /* 444 * Pass down an address with the implicit bind 445 * magic number and the rest all zeros. 446 * The transport will return a unique address. 447 */ 448 so->so_ux_laddr.soua_vp = NULL; 449 so->so_ux_laddr.soua_magic = SOU_MAGIC_IMPLICIT; 450 addr = &so->so_ux_laddr; 451 addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr); 452 break; 453 454 case AF_INET: 455 case AF_INET6: 456 /* 457 * An unspecified bind in TPI has a NULL address. 458 * Set the address in sockfs to have the sa_family. 459 */ 460 so->so_laddr_len = (so->so_family == AF_INET) ? 461 (socklen_t)sizeof (sin_t) : 462 (socklen_t)sizeof (sin6_t); 463 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 464 bzero(so->so_laddr_sa, so->so_laddr_len); 465 so->so_laddr_sa->sa_family = so->so_family; 466 addr = NULL; 467 addrlen = 0; 468 break; 469 470 default: 471 /* 472 * An unspecified bind in TPI has a NULL address. 473 * Set the address in sockfs to be zero length. 474 * 475 * Can not assume there is a sa_family for all 476 * protocol families. For example, AF_X25 does not 477 * have a family field. 478 */ 479 bzero(so->so_laddr_sa, so->so_laddr_len); 480 so->so_laddr_len = 0; /* XXX correct? */ 481 addr = NULL; 482 addrlen = 0; 483 break; 484 } 485 486 } else { 487 if (so->so_state & SS_ISBOUND) { 488 /* 489 * If it is ok to rebind the socket, first unbind 490 * with the transport. A rebind to the NULL address 491 * is interpreted as an unbind. 492 * Note that a bind to NULL in BSD does unbind the 493 * socket but it fails with EINVAL. 494 * Note that regular sockets set SOV_SOCKBSD i.e. 495 * _SOBIND_SOCKBSD gets set here hence no type of 496 * socket does currently allow rebinding. 497 * 498 * If the name is NULL just do an unbind. 499 */ 500 if (flags & (_SOBIND_SOCKBSD|_SOBIND_XPG4_2) && 501 name != NULL) { 502 error = EINVAL; 503 unbind_on_err = 0; 504 eprintsoline(so, error); 505 goto done; 506 } 507 if ((so->so_mode & SM_CONNREQUIRED) && 508 (so->so_state & SS_CANTREBIND)) { 509 error = EINVAL; 510 unbind_on_err = 0; 511 eprintsoline(so, error); 512 goto done; 513 } 514 error = sotpi_unbind(so, 0); 515 if (error) { 516 eprintsoline(so, error); 517 goto done; 518 } 519 ASSERT(!(so->so_state & SS_ISBOUND)); 520 if (name == NULL) { 521 so->so_state &= 522 ~(SS_ISCONNECTED|SS_ISCONNECTING); 523 goto done; 524 } 525 } 526 /* X/Open requires this check */ 527 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 528 if (xnet_check_print) { 529 printf("sockfs: X/Open bind state check " 530 "caused EINVAL\n"); 531 } 532 error = EINVAL; 533 goto done; 534 } 535 536 switch (so->so_family) { 537 case AF_UNIX: 538 /* 539 * All AF_UNIX addresses are nul terminated 540 * when copied (copyin_name) in so the minimum 541 * length is 3 bytes. 542 */ 543 if (name == NULL || 544 (ssize_t)namelen <= sizeof (short) + 1) { 545 error = EISDIR; 546 eprintsoline(so, error); 547 goto done; 548 } 549 /* 550 * Verify so_family matches the bound family. 551 * BSD does not check this for AF_UNIX resulting 552 * in funny mknods. 553 */ 554 if (name->sa_family != so->so_family) { 555 error = EAFNOSUPPORT; 556 goto done; 557 } 558 break; 559 case AF_INET: 560 if (name == NULL) { 561 error = EINVAL; 562 eprintsoline(so, error); 563 goto done; 564 } 565 if ((size_t)namelen != sizeof (sin_t)) { 566 error = name->sa_family != so->so_family ? 567 EAFNOSUPPORT : EINVAL; 568 eprintsoline(so, error); 569 goto done; 570 } 571 if ((flags & _SOBIND_XPG4_2) && 572 (name->sa_family != so->so_family)) { 573 /* 574 * This check has to be made for X/Open 575 * sockets however application failures have 576 * been observed when it is applied to 577 * all sockets. 578 */ 579 error = EAFNOSUPPORT; 580 eprintsoline(so, error); 581 goto done; 582 } 583 /* 584 * Force a zero sa_family to match so_family. 585 * 586 * Some programs like inetd(1M) don't set the 587 * family field. Other programs leave 588 * sin_family set to garbage - SunOS 4.X does 589 * not check the family field on a bind. 590 * We use the family field that 591 * was passed in to the socket() call. 592 */ 593 name->sa_family = so->so_family; 594 break; 595 596 case AF_INET6: { 597 #ifdef DEBUG 598 sin6_t *sin6 = (sin6_t *)name; 599 #endif /* DEBUG */ 600 601 if (name == NULL) { 602 error = EINVAL; 603 eprintsoline(so, error); 604 goto done; 605 } 606 if ((size_t)namelen != sizeof (sin6_t)) { 607 error = name->sa_family != so->so_family ? 608 EAFNOSUPPORT : EINVAL; 609 eprintsoline(so, error); 610 goto done; 611 } 612 if (name->sa_family != so->so_family) { 613 /* 614 * With IPv6 we require the family to match 615 * unlike in IPv4. 616 */ 617 error = EAFNOSUPPORT; 618 eprintsoline(so, error); 619 goto done; 620 } 621 #ifdef DEBUG 622 /* 623 * Verify that apps don't forget to clear 624 * sin6_scope_id etc 625 */ 626 if (sin6->sin6_scope_id != 0 && 627 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { 628 zcmn_err(getzoneid(), CE_WARN, 629 "bind with uninitialized sin6_scope_id " 630 "(%d) on socket. Pid = %d\n", 631 (int)sin6->sin6_scope_id, 632 (int)curproc->p_pid); 633 } 634 if (sin6->__sin6_src_id != 0) { 635 zcmn_err(getzoneid(), CE_WARN, 636 "bind with uninitialized __sin6_src_id " 637 "(%d) on socket. Pid = %d\n", 638 (int)sin6->__sin6_src_id, 639 (int)curproc->p_pid); 640 } 641 #endif /* DEBUG */ 642 break; 643 } 644 default: 645 /* 646 * Don't do any length or sa_family check to allow 647 * non-sockaddr style addresses. 648 */ 649 if (name == NULL) { 650 error = EINVAL; 651 eprintsoline(so, error); 652 goto done; 653 } 654 break; 655 } 656 657 if (namelen > (t_uscalar_t)so->so_laddr_maxlen) { 658 error = ENAMETOOLONG; 659 eprintsoline(so, error); 660 goto done; 661 } 662 /* 663 * Save local address. 664 */ 665 so->so_laddr_len = (socklen_t)namelen; 666 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 667 bcopy(name, so->so_laddr_sa, namelen); 668 669 addr = so->so_laddr_sa; 670 addrlen = (t_uscalar_t)so->so_laddr_len; 671 switch (so->so_family) { 672 case AF_INET6: 673 case AF_INET: 674 break; 675 case AF_UNIX: { 676 struct sockaddr_un *soun = 677 (struct sockaddr_un *)so->so_laddr_sa; 678 struct vnode *vp; 679 struct vattr vattr; 680 681 ASSERT(so->so_ux_bound_vp == NULL); 682 /* 683 * Create vnode for the specified path name. 684 * Keep vnode held with a reference in so_ux_bound_vp. 685 * Use the vnode pointer as the address used in the 686 * bind with the transport. 687 * 688 * Use the same mode as in BSD. In particular this does 689 * not observe the umask. 690 */ 691 /* MAXPATHLEN + soun_family + nul termination */ 692 if (so->so_laddr_len > 693 (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { 694 error = ENAMETOOLONG; 695 eprintsoline(so, error); 696 goto done; 697 } 698 vattr.va_type = VSOCK; 699 vattr.va_mode = 0777 & ~PTOU(curproc)->u_cmask; 700 vattr.va_mask = AT_TYPE|AT_MODE; 701 /* NOTE: holding so_lock */ 702 error = vn_create(soun->sun_path, UIO_SYSSPACE, &vattr, 703 EXCL, 0, &vp, CRMKNOD, 0, 0); 704 if (error) { 705 if (error == EEXIST) 706 error = EADDRINUSE; 707 eprintsoline(so, error); 708 goto done; 709 } 710 /* 711 * Establish pointer from the underlying filesystem 712 * vnode to the socket node. 713 * so_ux_bound_vp and v_stream->sd_vnode form the 714 * cross-linkage between the underlying filesystem 715 * node and the socket node. 716 */ 717 ASSERT(SOTOV(so)->v_stream); 718 mutex_enter(&vp->v_lock); 719 vp->v_stream = SOTOV(so)->v_stream; 720 so->so_ux_bound_vp = vp; 721 mutex_exit(&vp->v_lock); 722 723 /* 724 * Use the vnode pointer value as a unique address 725 * (together with the magic number to avoid conflicts 726 * with implicit binds) in the transport provider. 727 */ 728 so->so_ux_laddr.soua_vp = (void *)so->so_ux_bound_vp; 729 so->so_ux_laddr.soua_magic = SOU_MAGIC_EXPLICIT; 730 addr = &so->so_ux_laddr; 731 addrlen = (t_uscalar_t)sizeof (so->so_ux_laddr); 732 dprintso(so, 1, ("sobind UNIX: addrlen %d, addr %p\n", 733 addrlen, 734 ((struct so_ux_addr *)addr)->soua_vp)); 735 break; 736 } 737 } /* end switch (so->so_family) */ 738 } 739 740 /* 741 * set SS_ACCEPTCONN before sending down O_T_BIND_REQ since 742 * the transport can start passing up T_CONN_IND messages 743 * as soon as it receives the bind req and strsock_proto() 744 * insists that SS_ACCEPTCONN is set when processing T_CONN_INDs. 745 */ 746 if (flags & _SOBIND_LISTEN) { 747 if ((so->so_state & SS_ACCEPTCONN) == 0) 748 clear_acceptconn_on_err = B_TRUE; 749 save_so_backlog = so->so_backlog; 750 restore_backlog_on_err = B_TRUE; 751 so->so_state |= SS_ACCEPTCONN; 752 so->so_backlog = backlog; 753 } 754 755 /* 756 * If NL7C addr(s) have been configured check for addr/port match, 757 * or if an implicit NL7C socket via AF_NCA mark socket as NL7C. 758 * 759 * NL7C supports the TCP transport only so check AF_INET and AF_INET6 760 * family sockets only. If match mark as such. 761 */ 762 if (nl7c_enabled && ((addr != NULL && 763 (so->so_family == AF_INET || so->so_family == AF_INET6) && 764 (nl7c = nl7c_lookup_addr(addr, addrlen))) || 765 so->so_nl7c_flags == NL7C_AF_NCA)) { 766 /* 767 * NL7C is not supported in non-global zones, 768 * we enforce this restriction here. 769 */ 770 if (so->so_zoneid == GLOBAL_ZONEID) { 771 /* An NL7C socket, mark it */ 772 so->so_nl7c_flags |= NL7C_ENABLED; 773 if (nl7c == NULL) { 774 /* 775 * Was an AF_NCA bind() so add it to the 776 * addr list for reporting purposes. 777 */ 778 nl7c = nl7c_add_addr(addr, addrlen); 779 } 780 } else 781 nl7c = NULL; 782 } 783 /* 784 * We send a T_BIND_REQ for TCP/UDP since we know it supports it, 785 * for other transports we will send in a O_T_BIND_REQ. 786 */ 787 if (tcp_udp_xport && 788 (so->so_family == AF_INET || so->so_family == AF_INET6)) 789 PRIM_type = T_BIND_REQ; 790 791 bind_req.PRIM_type = PRIM_type; 792 bind_req.ADDR_length = addrlen; 793 bind_req.ADDR_offset = (t_scalar_t)sizeof (bind_req); 794 bind_req.CONIND_number = backlog; 795 /* NOTE: holding so_lock while sleeping */ 796 mp = soallocproto2(&bind_req, sizeof (bind_req), 797 addr, addrlen, 0, _ALLOC_SLEEP); 798 so->so_state &= ~SS_LADDR_VALID; 799 800 /* Done using so_laddr_sa - can drop the lock */ 801 mutex_exit(&so->so_lock); 802 803 /* 804 * Intercept the bind_req message here to check if this <address/port> 805 * was configured as an SSL proxy server, or if another endpoint was 806 * already configured to act as a proxy for us. 807 * 808 * Note, only if NL7C not enabled for this socket. 809 */ 810 if (nl7c == NULL && 811 (so->so_family == AF_INET || so->so_family == AF_INET6) && 812 so->so_type == SOCK_STREAM) { 813 814 if (so->so_kssl_ent != NULL) { 815 kssl_release_ent(so->so_kssl_ent, so, so->so_kssl_type); 816 so->so_kssl_ent = NULL; 817 } 818 819 so->so_kssl_type = kssl_check_proxy(mp, so, &so->so_kssl_ent); 820 switch (so->so_kssl_type) { 821 case KSSL_NO_PROXY: 822 break; 823 824 case KSSL_HAS_PROXY: 825 mutex_enter(&so->so_lock); 826 goto skip_transport; 827 828 case KSSL_IS_PROXY: 829 break; 830 } 831 } 832 833 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 834 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 835 if (error) { 836 eprintsoline(so, error); 837 mutex_enter(&so->so_lock); 838 goto done; 839 } 840 841 mutex_enter(&so->so_lock); 842 error = sowaitprim(so, PRIM_type, T_BIND_ACK, 843 (t_uscalar_t)sizeof (*bind_ack), &mp, 0); 844 if (error) { 845 eprintsoline(so, error); 846 goto done; 847 } 848 skip_transport: 849 ASSERT(mp); 850 /* 851 * Even if some TPI message (e.g. T_DISCON_IND) was received in 852 * strsock_proto while the lock was dropped above, the bind 853 * is allowed to complete. 854 */ 855 856 /* Mark as bound. This will be undone if we detect errors below. */ 857 if (flags & _SOBIND_NOXLATE) { 858 ASSERT(so->so_family == AF_UNIX); 859 so->so_state |= SS_FADDR_NOXLATE; 860 } 861 ASSERT(!(so->so_state & SS_ISBOUND) || (flags & _SOBIND_REBIND)); 862 so->so_state |= SS_ISBOUND; 863 ASSERT(so->so_unbind_mp); 864 865 /* note that we've already set SS_ACCEPTCONN above */ 866 867 /* 868 * Recompute addrlen - an unspecied bind sent down an 869 * address of length zero but we expect the appropriate length 870 * in return. 871 */ 872 addrlen = (t_uscalar_t)(so->so_family == AF_UNIX ? 873 sizeof (so->so_ux_laddr) : so->so_laddr_len); 874 875 bind_ack = (struct T_bind_ack *)mp->b_rptr; 876 /* 877 * The alignment restriction is really too strict but 878 * we want enough alignment to inspect the fields of 879 * a sockaddr_in. 880 */ 881 addr = sogetoff(mp, bind_ack->ADDR_offset, 882 bind_ack->ADDR_length, 883 __TPI_ALIGN_SIZE); 884 if (addr == NULL) { 885 freemsg(mp); 886 error = EPROTO; 887 eprintsoline(so, error); 888 goto done; 889 } 890 if (!(flags & _SOBIND_UNSPEC)) { 891 /* 892 * Verify that the transport didn't return something we 893 * did not want e.g. an address other than what we asked for. 894 * 895 * NOTE: These checks would go away if/when we switch to 896 * using the new TPI (in which the transport would fail 897 * the request instead of assigning a different address). 898 * 899 * NOTE2: For protocols that we don't know (i.e. any 900 * other than AF_INET6, AF_INET and AF_UNIX), we 901 * cannot know if the transport should be expected to 902 * return the same address as that requested. 903 * 904 * NOTE3: For AF_INET and AF_INET6, TCP/UDP, we send 905 * down a T_BIND_REQ. We use O_T_BIND_REQ for others. 906 * 907 * For example, in the case of netatalk it may be 908 * inappropriate for the transport to return the 909 * requested address (as it may have allocated a local 910 * port number in behaviour similar to that of an 911 * AF_INET bind request with a port number of zero). 912 * 913 * Given the definition of O_T_BIND_REQ, where the 914 * transport may bind to an address other than the 915 * requested address, it's not possible to determine 916 * whether a returned address that differs from the 917 * requested address is a reason to fail (because the 918 * requested address was not available) or succeed 919 * (because the transport allocated an appropriate 920 * address and/or port). 921 * 922 * sockfs currently requires that the transport return 923 * the requested address in the T_BIND_ACK, unless 924 * there is code here to allow for any discrepancy. 925 * Such code exists for AF_INET and AF_INET6. 926 * 927 * Netatalk chooses to return the requested address 928 * rather than the (correct) allocated address. This 929 * means that netatalk violates the TPI specification 930 * (and would not function correctly if used from a 931 * TLI application), but it does mean that it works 932 * with sockfs. 933 * 934 * As noted above, using the newer XTI bind primitive 935 * (T_BIND_REQ) in preference to O_T_BIND_REQ would 936 * allow sockfs to be more sure about whether or not 937 * the bind request had succeeded (as transports are 938 * not permitted to bind to a different address than 939 * that requested - they must return failure). 940 * Unfortunately, support for T_BIND_REQ may not be 941 * present in all transport implementations (netatalk, 942 * for example, doesn't have it), making the 943 * transition difficult. 944 */ 945 if (bind_ack->ADDR_length != addrlen) { 946 /* Assumes that the requested address was in use */ 947 freemsg(mp); 948 error = EADDRINUSE; 949 eprintsoline(so, error); 950 goto done; 951 } 952 953 switch (so->so_family) { 954 case AF_INET6: 955 case AF_INET: { 956 sin_t *rname, *aname; 957 958 rname = (sin_t *)addr; 959 aname = (sin_t *)so->so_laddr_sa; 960 961 /* 962 * Take advantage of the alignment 963 * of sin_port and sin6_port which fall 964 * in the same place in their data structures. 965 * Just use sin_port for either address family. 966 * 967 * This may become a problem if (heaven forbid) 968 * there's a separate ipv6port_reserved... :-P 969 * 970 * Binding to port 0 has the semantics of letting 971 * the transport bind to any port. 972 * 973 * If the transport is TCP or UDP since we had sent 974 * a T_BIND_REQ we would not get a port other than 975 * what we asked for. 976 */ 977 if (tcp_udp_xport) { 978 /* 979 * Pick up the new port number if we bound to 980 * port 0. 981 */ 982 if (aname->sin_port == 0) 983 aname->sin_port = rname->sin_port; 984 so->so_state |= SS_LADDR_VALID; 985 break; 986 } 987 if (aname->sin_port != 0 && 988 aname->sin_port != rname->sin_port) { 989 freemsg(mp); 990 error = EADDRINUSE; 991 eprintsoline(so, error); 992 goto done; 993 } 994 /* 995 * Pick up the new port number if we bound to port 0. 996 */ 997 aname->sin_port = rname->sin_port; 998 999 /* 1000 * Unfortunately, addresses aren't _quite_ the same. 1001 */ 1002 if (so->so_family == AF_INET) { 1003 if (aname->sin_addr.s_addr != 1004 rname->sin_addr.s_addr) { 1005 freemsg(mp); 1006 error = EADDRNOTAVAIL; 1007 eprintsoline(so, error); 1008 goto done; 1009 } 1010 } else { 1011 sin6_t *rname6 = (sin6_t *)rname; 1012 sin6_t *aname6 = (sin6_t *)aname; 1013 1014 if (!IN6_ARE_ADDR_EQUAL(&aname6->sin6_addr, 1015 &rname6->sin6_addr)) { 1016 freemsg(mp); 1017 error = EADDRNOTAVAIL; 1018 eprintsoline(so, error); 1019 goto done; 1020 } 1021 } 1022 break; 1023 } 1024 case AF_UNIX: 1025 if (bcmp(addr, &so->so_ux_laddr, addrlen) != 0) { 1026 freemsg(mp); 1027 error = EADDRINUSE; 1028 eprintsoline(so, error); 1029 eprintso(so, 1030 ("addrlen %d, addr 0x%x, vp %p\n", 1031 addrlen, *((int *)addr), 1032 so->so_ux_bound_vp)); 1033 goto done; 1034 } 1035 so->so_state |= SS_LADDR_VALID; 1036 break; 1037 default: 1038 /* 1039 * NOTE: This assumes that addresses can be 1040 * byte-compared for equivalence. 1041 */ 1042 if (bcmp(addr, so->so_laddr_sa, addrlen) != 0) { 1043 freemsg(mp); 1044 error = EADDRINUSE; 1045 eprintsoline(so, error); 1046 goto done; 1047 } 1048 /* 1049 * Don't mark SS_LADDR_VALID, as we cannot be 1050 * sure that the returned address is the real 1051 * bound address when talking to an unknown 1052 * transport. 1053 */ 1054 break; 1055 } 1056 } else { 1057 /* 1058 * Save for returned address for getsockname. 1059 * Needed for unspecific bind unless transport supports 1060 * the TI_GETMYNAME ioctl. 1061 * Do this for AF_INET{,6} even though they do, as 1062 * caching info here is much better performance than 1063 * a TPI/STREAMS trip to the transport for getsockname. 1064 * Any which can't for some reason _must_ _not_ set 1065 * LADDR_VALID here for the caching version of getsockname 1066 * to not break; 1067 */ 1068 switch (so->so_family) { 1069 case AF_UNIX: 1070 /* 1071 * Record the address bound with the transport 1072 * for use by socketpair. 1073 */ 1074 bcopy(addr, &so->so_ux_laddr, addrlen); 1075 so->so_state |= SS_LADDR_VALID; 1076 break; 1077 case AF_INET: 1078 case AF_INET6: 1079 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 1080 bcopy(addr, so->so_laddr_sa, so->so_laddr_len); 1081 so->so_state |= SS_LADDR_VALID; 1082 break; 1083 default: 1084 /* 1085 * Don't mark SS_LADDR_VALID, as we cannot be 1086 * sure that the returned address is the real 1087 * bound address when talking to an unknown 1088 * transport. 1089 */ 1090 break; 1091 } 1092 } 1093 1094 if (nl7c != NULL) { 1095 /* Register listen()er sonode pointer with NL7C */ 1096 nl7c_listener_addr(nl7c, so); 1097 } 1098 1099 freemsg(mp); 1100 1101 done: 1102 if (error) { 1103 /* reset state & backlog to values held on entry */ 1104 if (clear_acceptconn_on_err == B_TRUE) 1105 so->so_state &= ~SS_ACCEPTCONN; 1106 if (restore_backlog_on_err == B_TRUE) 1107 so->so_backlog = save_so_backlog; 1108 1109 if (unbind_on_err && so->so_state & SS_ISBOUND) { 1110 int err; 1111 1112 err = sotpi_unbind(so, 0); 1113 /* LINTED - statement has no consequent: if */ 1114 if (err) { 1115 eprintsoline(so, error); 1116 } else { 1117 ASSERT(!(so->so_state & SS_ISBOUND)); 1118 } 1119 } 1120 } 1121 if (!(flags & _SOBIND_LOCK_HELD)) { 1122 so_unlock_single(so, SOLOCKED); 1123 mutex_exit(&so->so_lock); 1124 } else { 1125 /* If the caller held the lock don't release it here */ 1126 ASSERT(MUTEX_HELD(&so->so_lock)); 1127 ASSERT(so->so_flag & SOLOCKED); 1128 } 1129 return (error); 1130 } 1131 1132 /* bind the socket */ 1133 static int 1134 sotpi_bind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 1135 int flags) 1136 { 1137 if ((flags & _SOBIND_SOCKETPAIR) == 0) 1138 return (sotpi_bindlisten(so, name, namelen, 0, flags)); 1139 1140 flags &= ~_SOBIND_SOCKETPAIR; 1141 return (sotpi_bindlisten(so, name, namelen, 1, flags)); 1142 } 1143 1144 /* 1145 * Unbind a socket - used when bind() fails, when bind() specifies a NULL 1146 * address, or when listen needs to unbind and bind. 1147 * If the _SOUNBIND_REBIND flag is specified the addresses are retained 1148 * so that a sobind can pick them up. 1149 */ 1150 static int 1151 sotpi_unbind(struct sonode *so, int flags) 1152 { 1153 struct T_unbind_req unbind_req; 1154 int error = 0; 1155 mblk_t *mp; 1156 1157 dprintso(so, 1, ("sotpi_unbind(%p, 0x%x) %s\n", 1158 so, flags, pr_state(so->so_state, so->so_mode))); 1159 1160 ASSERT(MUTEX_HELD(&so->so_lock)); 1161 ASSERT(so->so_flag & SOLOCKED); 1162 1163 if (!(so->so_state & SS_ISBOUND)) { 1164 error = EINVAL; 1165 eprintsoline(so, error); 1166 goto done; 1167 } 1168 1169 mutex_exit(&so->so_lock); 1170 1171 /* 1172 * Flush the read and write side (except stream head read queue) 1173 * and send down T_UNBIND_REQ. 1174 */ 1175 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHRW); 1176 1177 unbind_req.PRIM_type = T_UNBIND_REQ; 1178 mp = soallocproto1(&unbind_req, sizeof (unbind_req), 1179 0, _ALLOC_SLEEP); 1180 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 1181 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1182 mutex_enter(&so->so_lock); 1183 if (error) { 1184 eprintsoline(so, error); 1185 goto done; 1186 } 1187 1188 error = sowaitokack(so, T_UNBIND_REQ); 1189 if (error) { 1190 eprintsoline(so, error); 1191 goto done; 1192 } 1193 1194 /* 1195 * Even if some TPI message (e.g. T_DISCON_IND) was received in 1196 * strsock_proto while the lock was dropped above, the unbind 1197 * is allowed to complete. 1198 */ 1199 if (!(flags & _SOUNBIND_REBIND)) { 1200 /* 1201 * Clear out bound address. 1202 */ 1203 vnode_t *vp; 1204 1205 if ((vp = so->so_ux_bound_vp) != NULL) { 1206 1207 /* Undo any SSL proxy setup */ 1208 if ((so->so_family == AF_INET || 1209 so->so_family == AF_INET6) && 1210 (so->so_type == SOCK_STREAM) && 1211 (so->so_kssl_ent != NULL)) { 1212 kssl_release_ent(so->so_kssl_ent, so, 1213 so->so_kssl_type); 1214 so->so_kssl_ent = NULL; 1215 so->so_kssl_type = KSSL_NO_PROXY; 1216 } 1217 1218 so->so_ux_bound_vp = NULL; 1219 vn_rele_stream(vp); 1220 } 1221 /* Clear out address */ 1222 so->so_laddr_len = 0; 1223 } 1224 so->so_state &= ~(SS_ISBOUND|SS_ACCEPTCONN|SS_LADDR_VALID); 1225 1226 done: 1227 1228 /* If the caller held the lock don't release it here */ 1229 ASSERT(MUTEX_HELD(&so->so_lock)); 1230 ASSERT(so->so_flag & SOLOCKED); 1231 1232 return (error); 1233 } 1234 1235 /* 1236 * listen on the socket. 1237 * For TPI conforming transports this has to first unbind with the transport 1238 * and then bind again using the new backlog. 1239 */ 1240 int 1241 sotpi_listen(struct sonode *so, int backlog) 1242 { 1243 int error = 0; 1244 1245 dprintso(so, 1, ("sotpi_listen(%p, %d) %s\n", 1246 so, backlog, pr_state(so->so_state, so->so_mode))); 1247 1248 if (so->so_serv_type == T_CLTS) 1249 return (EOPNOTSUPP); 1250 1251 /* 1252 * If the socket is ready to accept connections already, then 1253 * return without doing anything. This avoids a problem where 1254 * a second listen() call fails if a connection is pending and 1255 * leaves the socket unbound. Only when we are not unbinding 1256 * with the transport can we safely increase the backlog. 1257 */ 1258 if (so->so_state & SS_ACCEPTCONN && 1259 !((so->so_family == AF_INET || so->so_family == AF_INET6) && 1260 /*CONSTCOND*/ 1261 !solisten_tpi_tcp)) 1262 return (0); 1263 1264 if (so->so_state & SS_ISCONNECTED) 1265 return (EINVAL); 1266 1267 mutex_enter(&so->so_lock); 1268 so_lock_single(so); /* Set SOLOCKED */ 1269 1270 if (backlog < 0) 1271 backlog = 0; 1272 /* 1273 * Use the same qlimit as in BSD. BSD checks the qlimit 1274 * before queuing the next connection implying that a 1275 * listen(sock, 0) allows one connection to be queued. 1276 * BSD also uses 1.5 times the requested backlog. 1277 * 1278 * XNS Issue 4 required a strict interpretation of the backlog. 1279 * This has been waived subsequently for Issue 4 and the change 1280 * incorporated in XNS Issue 5. So we aren't required to do 1281 * anything special for XPG apps. 1282 */ 1283 if (backlog >= (INT_MAX - 1) / 3) 1284 backlog = INT_MAX; 1285 else 1286 backlog = backlog * 3 / 2 + 1; 1287 1288 /* 1289 * If the listen doesn't change the backlog we do nothing. 1290 * This avoids an EPROTO error from the transport. 1291 */ 1292 if ((so->so_state & SS_ACCEPTCONN) && 1293 so->so_backlog == backlog) 1294 goto done; 1295 1296 if (!(so->so_state & SS_ISBOUND)) { 1297 /* 1298 * Must have been explicitly bound in the UNIX domain. 1299 */ 1300 if (so->so_family == AF_UNIX) { 1301 error = EINVAL; 1302 goto done; 1303 } 1304 error = sotpi_bindlisten(so, NULL, 0, backlog, 1305 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD|_SOBIND_LISTEN); 1306 } else if (backlog > 0) { 1307 /* 1308 * AF_INET{,6} hack to avoid losing the port. 1309 * Assumes that all AF_INET{,6} transports can handle a 1310 * O_T_BIND_REQ with a non-zero CONIND_number when the TPI 1311 * has already bound thus it is possible to avoid the unbind. 1312 */ 1313 if (!((so->so_family == AF_INET || so->so_family == AF_INET6) && 1314 /*CONSTCOND*/ 1315 !solisten_tpi_tcp)) { 1316 error = sotpi_unbind(so, _SOUNBIND_REBIND); 1317 if (error) 1318 goto done; 1319 } 1320 error = sotpi_bindlisten(so, NULL, 0, backlog, 1321 _SOBIND_REBIND|_SOBIND_LOCK_HELD|_SOBIND_LISTEN); 1322 } else { 1323 so->so_state |= SS_ACCEPTCONN; 1324 so->so_backlog = backlog; 1325 } 1326 if (error) 1327 goto done; 1328 ASSERT(so->so_state & SS_ACCEPTCONN); 1329 done: 1330 so_unlock_single(so, SOLOCKED); 1331 mutex_exit(&so->so_lock); 1332 return (error); 1333 } 1334 1335 /* 1336 * Disconnect either a specified seqno or all (-1). 1337 * The former is used on listening sockets only. 1338 * 1339 * When seqno == -1 sodisconnect could call sotpi_unbind. However, 1340 * the current use of sodisconnect(seqno == -1) is only for shutdown 1341 * so there is no point (and potentially incorrect) to unbind. 1342 */ 1343 int 1344 sodisconnect(struct sonode *so, t_scalar_t seqno, int flags) 1345 { 1346 struct T_discon_req discon_req; 1347 int error = 0; 1348 mblk_t *mp; 1349 1350 dprintso(so, 1, ("sodisconnect(%p, %d, 0x%x) %s\n", 1351 so, seqno, flags, pr_state(so->so_state, so->so_mode))); 1352 1353 if (!(flags & _SODISCONNECT_LOCK_HELD)) { 1354 mutex_enter(&so->so_lock); 1355 so_lock_single(so); /* Set SOLOCKED */ 1356 } else { 1357 ASSERT(MUTEX_HELD(&so->so_lock)); 1358 ASSERT(so->so_flag & SOLOCKED); 1359 } 1360 1361 if (!(so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING|SS_ACCEPTCONN))) { 1362 error = EINVAL; 1363 eprintsoline(so, error); 1364 goto done; 1365 } 1366 1367 mutex_exit(&so->so_lock); 1368 /* 1369 * Flush the write side (unless this is a listener) 1370 * and then send down a T_DISCON_REQ. 1371 * (Don't flush on listener since it could flush {O_}T_CONN_RES 1372 * and other messages.) 1373 */ 1374 if (!(so->so_state & SS_ACCEPTCONN)) 1375 (void) putnextctl1(strvp2wq(SOTOV(so)), M_FLUSH, FLUSHW); 1376 1377 discon_req.PRIM_type = T_DISCON_REQ; 1378 discon_req.SEQ_number = seqno; 1379 mp = soallocproto1(&discon_req, sizeof (discon_req), 1380 0, _ALLOC_SLEEP); 1381 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 1382 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1383 mutex_enter(&so->so_lock); 1384 if (error) { 1385 eprintsoline(so, error); 1386 goto done; 1387 } 1388 1389 error = sowaitokack(so, T_DISCON_REQ); 1390 if (error) { 1391 eprintsoline(so, error); 1392 goto done; 1393 } 1394 /* 1395 * Even if some TPI message (e.g. T_DISCON_IND) was received in 1396 * strsock_proto while the lock was dropped above, the disconnect 1397 * is allowed to complete. However, it is not possible to 1398 * assert that SS_ISCONNECTED|SS_ISCONNECTING are set. 1399 */ 1400 so->so_state &= 1401 ~(SS_ISCONNECTED|SS_ISCONNECTING|SS_LADDR_VALID|SS_FADDR_VALID); 1402 done: 1403 if (!(flags & _SODISCONNECT_LOCK_HELD)) { 1404 so_unlock_single(so, SOLOCKED); 1405 mutex_exit(&so->so_lock); 1406 } else { 1407 /* If the caller held the lock don't release it here */ 1408 ASSERT(MUTEX_HELD(&so->so_lock)); 1409 ASSERT(so->so_flag & SOLOCKED); 1410 } 1411 return (error); 1412 } 1413 1414 int 1415 sotpi_accept(struct sonode *so, int fflag, struct sonode **nsop) 1416 { 1417 struct T_conn_ind *conn_ind; 1418 struct T_conn_res *conn_res; 1419 int error = 0; 1420 mblk_t *mp, *ctxmp, *ack_mp; 1421 struct sonode *nso; 1422 vnode_t *nvp; 1423 void *src; 1424 t_uscalar_t srclen; 1425 void *opt; 1426 t_uscalar_t optlen; 1427 t_scalar_t PRIM_type; 1428 t_scalar_t SEQ_number; 1429 size_t sinlen; 1430 1431 dprintso(so, 1, ("sotpi_accept(%p, 0x%x, %p) %s\n", 1432 so, fflag, nsop, pr_state(so->so_state, so->so_mode))); 1433 1434 /* 1435 * Defer single-threading the accepting socket until 1436 * the T_CONN_IND has been received and parsed and the 1437 * new sonode has been opened. 1438 */ 1439 1440 /* Check that we are not already connected */ 1441 if ((so->so_state & SS_ACCEPTCONN) == 0) 1442 goto conn_bad; 1443 again: 1444 if ((error = sowaitconnind(so, fflag, &mp)) != 0) 1445 goto e_bad; 1446 1447 ASSERT(mp); 1448 conn_ind = (struct T_conn_ind *)mp->b_rptr; 1449 ctxmp = mp->b_cont; 1450 1451 /* 1452 * Save SEQ_number for error paths. 1453 */ 1454 SEQ_number = conn_ind->SEQ_number; 1455 1456 srclen = conn_ind->SRC_length; 1457 src = sogetoff(mp, conn_ind->SRC_offset, srclen, 1); 1458 if (src == NULL) { 1459 error = EPROTO; 1460 freemsg(mp); 1461 eprintsoline(so, error); 1462 goto disconnect_unlocked; 1463 } 1464 optlen = conn_ind->OPT_length; 1465 switch (so->so_family) { 1466 case AF_INET: 1467 case AF_INET6: 1468 if ((optlen == sizeof (intptr_t)) && 1469 ((so->so_state & SS_DIRECT) != 0)) { 1470 bcopy(mp->b_rptr + conn_ind->OPT_offset, 1471 &opt, conn_ind->OPT_length); 1472 } else { 1473 /* 1474 * The transport (in this case TCP) hasn't sent up 1475 * a pointer to an instance for the accept fast-path. 1476 * Disable fast-path completely because the call to 1477 * sotpi_create() below would otherwise create an 1478 * incomplete TCP instance, which would lead to 1479 * problems when sockfs sends a normal T_CONN_RES 1480 * message down the new stream. 1481 */ 1482 if (so->so_state & SS_DIRECT) { 1483 int rval; 1484 /* 1485 * For consistency we inform tcp to disable 1486 * direct interface on the listener, though 1487 * we can certainly live without doing this 1488 * because no data will ever travel upstream 1489 * on the listening socket. 1490 */ 1491 so->so_state &= ~SS_DIRECT; 1492 (void) strioctl(SOTOV(so), _SIOCSOCKFALLBACK, 1493 0, 0, K_TO_K, CRED(), &rval); 1494 } 1495 opt = NULL; 1496 optlen = 0; 1497 } 1498 break; 1499 case AF_UNIX: 1500 default: 1501 if (optlen != 0) { 1502 opt = sogetoff(mp, conn_ind->OPT_offset, optlen, 1503 __TPI_ALIGN_SIZE); 1504 if (opt == NULL) { 1505 error = EPROTO; 1506 freemsg(mp); 1507 eprintsoline(so, error); 1508 goto disconnect_unlocked; 1509 } 1510 } 1511 if (so->so_family == AF_UNIX) { 1512 if (!(so->so_state & SS_FADDR_NOXLATE)) { 1513 src = NULL; 1514 srclen = 0; 1515 } 1516 /* Extract src address from options */ 1517 if (optlen != 0) 1518 so_getopt_srcaddr(opt, optlen, &src, &srclen); 1519 } 1520 break; 1521 } 1522 1523 /* 1524 * Create the new socket. 1525 */ 1526 VN_HOLD(so->so_accessvp); 1527 nso = sotpi_create(so->so_accessvp, so->so_family, so->so_type, 1528 so->so_protocol, so->so_version, so, &error); 1529 if (nso == NULL) { 1530 ASSERT(error != 0); 1531 /* 1532 * Accept can not fail with ENOBUFS. sotpi_create 1533 * sleeps waiting for memory until a signal is caught 1534 * so return EINTR. 1535 */ 1536 freemsg(mp); 1537 if (error == ENOBUFS) 1538 error = EINTR; 1539 goto e_disc_unl; 1540 } 1541 nvp = SOTOV(nso); 1542 1543 /* 1544 * If the transport sent up an SSL connection context, then attach 1545 * it the new socket, and set the (sd_wputdatafunc)() and 1546 * (sd_rputdatafunc)() stream head hooks to intercept and process 1547 * SSL records. 1548 */ 1549 if (ctxmp != NULL) { 1550 /* 1551 * This kssl_ctx_t is already held for us by the transport. 1552 * So, we don't need to do a kssl_hold_ctx() here. 1553 */ 1554 nso->so_kssl_ctx = *((kssl_ctx_t *)ctxmp->b_rptr); 1555 freemsg(ctxmp); 1556 mp->b_cont = NULL; 1557 strsetrwputdatahooks(nvp, strsock_kssl_input, 1558 strsock_kssl_output); 1559 } 1560 #ifdef DEBUG 1561 /* 1562 * SO_DEBUG is used to trigger the dprint* and eprint* macros thus 1563 * it's inherited early to allow debugging of the accept code itself. 1564 */ 1565 nso->so_options |= so->so_options & SO_DEBUG; 1566 #endif /* DEBUG */ 1567 1568 /* 1569 * Save the SRC address from the T_CONN_IND 1570 * for getpeername to work on AF_UNIX and on transports that do not 1571 * support TI_GETPEERNAME. 1572 * 1573 * NOTE: AF_UNIX NUL termination is ensured by the sender's 1574 * copyin_name(). 1575 */ 1576 if (srclen > (t_uscalar_t)nso->so_faddr_maxlen) { 1577 error = EINVAL; 1578 freemsg(mp); 1579 eprintsoline(so, error); 1580 goto disconnect_vp_unlocked; 1581 } 1582 nso->so_faddr_len = (socklen_t)srclen; 1583 ASSERT(so->so_faddr_len <= so->so_faddr_maxlen); 1584 bcopy(src, nso->so_faddr_sa, srclen); 1585 nso->so_state |= SS_FADDR_VALID; 1586 1587 if ((DB_REF(mp) > 1) || MBLKSIZE(mp) < 1588 (sizeof (struct T_conn_res) + sizeof (intptr_t))) { 1589 cred_t *cr; 1590 1591 if ((cr = DB_CRED(mp)) != NULL) { 1592 crhold(cr); 1593 nso->so_peercred = cr; 1594 nso->so_cpid = DB_CPID(mp); 1595 } 1596 freemsg(mp); 1597 1598 mp = soallocproto1(NULL, sizeof (struct T_conn_res) + 1599 sizeof (intptr_t), 0, _ALLOC_INTR); 1600 if (mp == NULL) { 1601 /* 1602 * Accept can not fail with ENOBUFS. 1603 * A signal was caught so return EINTR. 1604 */ 1605 error = EINTR; 1606 eprintsoline(so, error); 1607 goto disconnect_vp_unlocked; 1608 } 1609 conn_res = (struct T_conn_res *)mp->b_rptr; 1610 } else { 1611 nso->so_peercred = DB_CRED(mp); 1612 nso->so_cpid = DB_CPID(mp); 1613 DB_CRED(mp) = NULL; 1614 1615 mp->b_rptr = DB_BASE(mp); 1616 conn_res = (struct T_conn_res *)mp->b_rptr; 1617 mp->b_wptr = mp->b_rptr + sizeof (struct T_conn_res); 1618 } 1619 1620 /* 1621 * New socket must be bound at least in sockfs and, except for AF_INET, 1622 * (or AF_INET6) it also has to be bound in the transport provider. 1623 * We set the local address in the sonode from the T_OK_ACK of the 1624 * T_CONN_RES. For this reason the address we bind to here isn't 1625 * important. 1626 */ 1627 if ((nso->so_family == AF_INET || nso->so_family == AF_INET6) && 1628 /*CONSTCOND*/ 1629 nso->so_type == SOCK_STREAM && !soaccept_tpi_tcp) { 1630 /* 1631 * Optimization for AF_INET{,6} transports 1632 * that can handle a T_CONN_RES without being bound. 1633 */ 1634 mutex_enter(&nso->so_lock); 1635 so_automatic_bind(nso); 1636 mutex_exit(&nso->so_lock); 1637 } else { 1638 /* Perform NULL bind with the transport provider. */ 1639 if ((error = sotpi_bind(nso, NULL, 0, _SOBIND_UNSPEC)) != 0) { 1640 ASSERT(error != ENOBUFS); 1641 freemsg(mp); 1642 eprintsoline(nso, error); 1643 goto disconnect_vp_unlocked; 1644 } 1645 } 1646 1647 /* 1648 * Inherit SIOCSPGRP, SS_ASYNC before we send the {O_}T_CONN_RES 1649 * so that any data arriving on the new socket will cause the 1650 * appropriate signals to be delivered for the new socket. 1651 * 1652 * No other thread (except strsock_proto and strsock_misc) 1653 * can access the new socket thus we relax the locking. 1654 */ 1655 nso->so_pgrp = so->so_pgrp; 1656 nso->so_state |= so->so_state & (SS_ASYNC|SS_FADDR_NOXLATE); 1657 1658 if (nso->so_pgrp != 0) { 1659 if ((error = so_set_events(nso, nvp, CRED())) != 0) { 1660 eprintsoline(nso, error); 1661 error = 0; 1662 nso->so_pgrp = 0; 1663 } 1664 } 1665 1666 /* 1667 * Make note of the socket level options. TCP and IP level options 1668 * are already inherited. We could do all this after accept is 1669 * successful but doing it here simplifies code and no harm done 1670 * for error case. 1671 */ 1672 nso->so_options = so->so_options & (SO_DEBUG|SO_REUSEADDR|SO_KEEPALIVE| 1673 SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1674 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1675 nso->so_sndbuf = so->so_sndbuf; 1676 nso->so_rcvbuf = so->so_rcvbuf; 1677 if (nso->so_options & SO_LINGER) 1678 nso->so_linger = so->so_linger; 1679 1680 if ((so->so_state & SS_DIRECT) != 0) { 1681 1682 ASSERT(opt != NULL); 1683 1684 conn_res->OPT_length = optlen; 1685 conn_res->OPT_offset = MBLKL(mp); 1686 bcopy(&opt, mp->b_wptr, optlen); 1687 mp->b_wptr += optlen; 1688 conn_res->PRIM_type = T_CONN_RES; 1689 conn_res->ACCEPTOR_id = 0; 1690 PRIM_type = T_CONN_RES; 1691 1692 /* Send down the T_CONN_RES on acceptor STREAM */ 1693 error = kstrputmsg(SOTOV(nso), mp, NULL, 1694 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1695 if (error) { 1696 mutex_enter(&so->so_lock); 1697 so_lock_single(so); 1698 eprintsoline(so, error); 1699 goto disconnect_vp; 1700 } 1701 mutex_enter(&nso->so_lock); 1702 error = sowaitprim(nso, T_CONN_RES, T_OK_ACK, 1703 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); 1704 if (error) { 1705 mutex_exit(&nso->so_lock); 1706 mutex_enter(&so->so_lock); 1707 so_lock_single(so); 1708 eprintsoline(so, error); 1709 goto disconnect_vp; 1710 } 1711 if (nso->so_family == AF_INET) { 1712 sin_t *sin; 1713 1714 sin = (sin_t *)(ack_mp->b_rptr + 1715 sizeof (struct T_ok_ack)); 1716 bcopy(sin, nso->so_laddr_sa, sizeof (sin_t)); 1717 nso->so_laddr_len = sizeof (sin_t); 1718 } else { 1719 sin6_t *sin6; 1720 1721 sin6 = (sin6_t *)(ack_mp->b_rptr + 1722 sizeof (struct T_ok_ack)); 1723 bcopy(sin6, nso->so_laddr_sa, sizeof (sin6_t)); 1724 nso->so_laddr_len = sizeof (sin6_t); 1725 } 1726 freemsg(ack_mp); 1727 1728 nso->so_state |= SS_ISCONNECTED | SS_LADDR_VALID; 1729 nso->so_priv = opt; 1730 1731 if (so->so_nl7c_flags & NL7C_ENABLED) { 1732 /* 1733 * A NL7C marked listen()er so the new socket 1734 * inherits the listen()er's NL7C state, except 1735 * for NL7C_POLLIN. 1736 * 1737 * Only call NL7C to process the new socket if 1738 * the listen socket allows blocking i/o. 1739 */ 1740 nso->so_nl7c_flags = so->so_nl7c_flags & (~NL7C_POLLIN); 1741 if (so->so_state & (SS_NONBLOCK|SS_NDELAY)) { 1742 /* 1743 * Nonblocking accept() just make it 1744 * persist to defer processing to the 1745 * read-side syscall (e.g. read). 1746 */ 1747 nso->so_nl7c_flags |= NL7C_SOPERSIST; 1748 } else if (nl7c_process(nso, B_FALSE)) { 1749 /* 1750 * NL7C has completed processing on the 1751 * socket, close the socket and back to 1752 * the top to await the next T_CONN_IND. 1753 */ 1754 mutex_exit(&nso->so_lock); 1755 (void) VOP_CLOSE(nvp, 0, 1, (offset_t)0, 1756 CRED(), NULL); 1757 VN_RELE(nvp); 1758 goto again; 1759 } 1760 /* Pass the new socket out */ 1761 } 1762 1763 mutex_exit(&nso->so_lock); 1764 1765 /* 1766 * It's possible, through the use of autopush for example, 1767 * that the acceptor stream may not support SS_DIRECT 1768 * semantics. If the new socket does not support SS_DIRECT 1769 * we issue a _SIOCSOCKFALLBACK to inform the transport 1770 * as we would in the I_PUSH case. 1771 */ 1772 if (!(nso->so_state & SS_DIRECT)) { 1773 int rval; 1774 1775 if ((error = strioctl(SOTOV(nso), _SIOCSOCKFALLBACK, 1776 0, 0, K_TO_K, CRED(), &rval)) != 0) { 1777 mutex_enter(&so->so_lock); 1778 so_lock_single(so); 1779 eprintsoline(so, error); 1780 goto disconnect_vp; 1781 } 1782 } 1783 1784 /* 1785 * Pass out new socket. 1786 */ 1787 if (nsop != NULL) 1788 *nsop = nso; 1789 1790 return (0); 1791 } 1792 1793 /* 1794 * This is the non-performance case for sockets (e.g. AF_UNIX sockets) 1795 * which don't support the FireEngine accept fast-path. It is also 1796 * used when the virtual "sockmod" has been I_POP'd and I_PUSH'd 1797 * again. Neither sockfs nor TCP attempt to find out if some other 1798 * random module has been inserted in between (in which case we 1799 * should follow TLI accept behaviour). We blindly assume the worst 1800 * case and revert back to old behaviour i.e. TCP will not send us 1801 * any option (eager) and the accept should happen on the listener 1802 * queue. Any queued T_conn_ind have already got their options removed 1803 * by so_sock2_stream() when "sockmod" was I_POP'd. 1804 */ 1805 /* 1806 * Fill in the {O_}T_CONN_RES before getting SOLOCKED. 1807 */ 1808 if ((nso->so_mode & SM_ACCEPTOR_ID) == 0) { 1809 #ifdef _ILP32 1810 queue_t *q; 1811 1812 /* 1813 * Find read queue in driver 1814 * Can safely do this since we "own" nso/nvp. 1815 */ 1816 q = strvp2wq(nvp)->q_next; 1817 while (SAMESTR(q)) 1818 q = q->q_next; 1819 q = RD(q); 1820 conn_res->ACCEPTOR_id = (t_uscalar_t)q; 1821 #else 1822 conn_res->ACCEPTOR_id = (t_uscalar_t)getminor(nvp->v_rdev); 1823 #endif /* _ILP32 */ 1824 conn_res->PRIM_type = O_T_CONN_RES; 1825 PRIM_type = O_T_CONN_RES; 1826 } else { 1827 conn_res->ACCEPTOR_id = nso->so_acceptor_id; 1828 conn_res->PRIM_type = T_CONN_RES; 1829 PRIM_type = T_CONN_RES; 1830 } 1831 conn_res->SEQ_number = SEQ_number; 1832 conn_res->OPT_length = 0; 1833 conn_res->OPT_offset = 0; 1834 1835 mutex_enter(&so->so_lock); 1836 so_lock_single(so); /* Set SOLOCKED */ 1837 mutex_exit(&so->so_lock); 1838 1839 error = kstrputmsg(SOTOV(so), mp, NULL, 1840 0, 0, MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 1841 mutex_enter(&so->so_lock); 1842 if (error) { 1843 eprintsoline(so, error); 1844 goto disconnect_vp; 1845 } 1846 error = sowaitprim(so, PRIM_type, T_OK_ACK, 1847 (t_uscalar_t)sizeof (struct T_ok_ack), &ack_mp, 0); 1848 if (error) { 1849 eprintsoline(so, error); 1850 goto disconnect_vp; 1851 } 1852 /* 1853 * If there is a sin/sin6 appended onto the T_OK_ACK use 1854 * that to set the local address. If this is not present 1855 * then we zero out the address and don't set the 1856 * SS_LADDR_VALID bit. For AF_UNIX endpoints we copy over 1857 * the pathname from the listening socket. 1858 */ 1859 sinlen = (nso->so_family == AF_INET) ? sizeof (sin_t) : sizeof (sin6_t); 1860 if ((nso->so_family == AF_INET) || (nso->so_family == AF_INET6) && 1861 MBLKL(ack_mp) == (sizeof (struct T_ok_ack) + sinlen)) { 1862 ack_mp->b_rptr += sizeof (struct T_ok_ack); 1863 bcopy(ack_mp->b_rptr, nso->so_laddr_sa, sinlen); 1864 nso->so_laddr_len = sinlen; 1865 nso->so_state |= SS_LADDR_VALID; 1866 } else if (nso->so_family == AF_UNIX) { 1867 ASSERT(so->so_family == AF_UNIX); 1868 nso->so_laddr_len = so->so_laddr_len; 1869 ASSERT(nso->so_laddr_len <= nso->so_laddr_maxlen); 1870 bcopy(so->so_laddr_sa, nso->so_laddr_sa, nso->so_laddr_len); 1871 nso->so_state |= SS_LADDR_VALID; 1872 } else { 1873 nso->so_laddr_len = so->so_laddr_len; 1874 ASSERT(nso->so_laddr_len <= nso->so_laddr_maxlen); 1875 bzero(nso->so_laddr_sa, nso->so_addr_size); 1876 nso->so_laddr_sa->sa_family = nso->so_family; 1877 } 1878 freemsg(ack_mp); 1879 1880 so_unlock_single(so, SOLOCKED); 1881 mutex_exit(&so->so_lock); 1882 1883 nso->so_state |= SS_ISCONNECTED; 1884 1885 /* 1886 * Pass out new socket. 1887 */ 1888 if (nsop != NULL) 1889 *nsop = nso; 1890 1891 return (0); 1892 1893 1894 eproto_disc_unl: 1895 error = EPROTO; 1896 e_disc_unl: 1897 eprintsoline(so, error); 1898 goto disconnect_unlocked; 1899 1900 pr_disc_vp_unl: 1901 eprintsoline(so, error); 1902 disconnect_vp_unlocked: 1903 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL); 1904 VN_RELE(nvp); 1905 disconnect_unlocked: 1906 (void) sodisconnect(so, SEQ_number, 0); 1907 return (error); 1908 1909 pr_disc_vp: 1910 eprintsoline(so, error); 1911 disconnect_vp: 1912 (void) sodisconnect(so, SEQ_number, _SODISCONNECT_LOCK_HELD); 1913 so_unlock_single(so, SOLOCKED); 1914 mutex_exit(&so->so_lock); 1915 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED(), NULL); 1916 VN_RELE(nvp); 1917 return (error); 1918 1919 conn_bad: /* Note: SunOS 4/BSD unconditionally returns EINVAL here */ 1920 error = (so->so_type == SOCK_DGRAM || so->so_type == SOCK_RAW) 1921 ? EOPNOTSUPP : EINVAL; 1922 e_bad: 1923 eprintsoline(so, error); 1924 return (error); 1925 } 1926 1927 /* 1928 * connect a socket. 1929 * 1930 * Allow SOCK_DGRAM sockets to reconnect (by specifying a new address) and to 1931 * unconnect (by specifying a null address). 1932 */ 1933 int 1934 sotpi_connect(struct sonode *so, 1935 const struct sockaddr *name, 1936 socklen_t namelen, 1937 int fflag, 1938 int flags) 1939 { 1940 struct T_conn_req conn_req; 1941 int error = 0; 1942 mblk_t *mp; 1943 void *src; 1944 socklen_t srclen; 1945 void *addr; 1946 socklen_t addrlen; 1947 boolean_t need_unlock; 1948 1949 dprintso(so, 1, ("sotpi_connect(%p, %p, %d, 0x%x, 0x%x) %s\n", 1950 so, name, namelen, fflag, flags, 1951 pr_state(so->so_state, so->so_mode))); 1952 1953 /* 1954 * Preallocate the T_CONN_REQ mblk before grabbing SOLOCKED to 1955 * avoid sleeping for memory with SOLOCKED held. 1956 * We know that the T_CONN_REQ can't be larger than 2 * so_faddr_maxlen 1957 * + sizeof (struct T_opthdr). 1958 * (the AF_UNIX so_ux_addr_xlate() does not make the address 1959 * exceed so_faddr_maxlen). 1960 */ 1961 mp = soallocproto(sizeof (struct T_conn_req) + 1962 2 * so->so_faddr_maxlen + sizeof (struct T_opthdr), _ALLOC_INTR); 1963 if (mp == NULL) { 1964 /* 1965 * Connect can not fail with ENOBUFS. A signal was 1966 * caught so return EINTR. 1967 */ 1968 error = EINTR; 1969 eprintsoline(so, error); 1970 return (error); 1971 } 1972 1973 mutex_enter(&so->so_lock); 1974 /* 1975 * Make sure that there is a preallocated unbind_req 1976 * message before any binding. This message allocated when 1977 * the socket is created but it might be have been 1978 * consumed. 1979 */ 1980 if (so->so_unbind_mp == NULL) { 1981 dprintso(so, 1, ("sotpi_connect: allocating unbind_req\n")); 1982 /* NOTE: holding so_lock while sleeping */ 1983 so->so_unbind_mp = 1984 soallocproto(sizeof (struct T_unbind_req), _ALLOC_INTR); 1985 if (so->so_unbind_mp == NULL) { 1986 error = EINTR; 1987 need_unlock = B_FALSE; 1988 goto done; 1989 } 1990 } 1991 1992 so_lock_single(so); /* Set SOLOCKED */ 1993 need_unlock = B_TRUE; 1994 1995 /* 1996 * Can't have done a listen before connecting. 1997 */ 1998 if (so->so_state & SS_ACCEPTCONN) { 1999 error = EOPNOTSUPP; 2000 goto done; 2001 } 2002 2003 /* 2004 * Must be bound with the transport 2005 */ 2006 if (!(so->so_state & SS_ISBOUND)) { 2007 if ((so->so_family == AF_INET || so->so_family == AF_INET6) && 2008 /*CONSTCOND*/ 2009 so->so_type == SOCK_STREAM && !soconnect_tpi_tcp) { 2010 /* 2011 * Optimization for AF_INET{,6} transports 2012 * that can handle a T_CONN_REQ without being bound. 2013 */ 2014 so_automatic_bind(so); 2015 } else { 2016 error = sotpi_bind(so, NULL, 0, 2017 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD); 2018 if (error) 2019 goto done; 2020 } 2021 ASSERT(so->so_state & SS_ISBOUND); 2022 flags |= _SOCONNECT_DID_BIND; 2023 } 2024 2025 /* 2026 * Handle a connect to a name parameter of type AF_UNSPEC like a 2027 * connect to a null address. This is the portable method to 2028 * unconnect a socket. 2029 */ 2030 if ((namelen >= sizeof (sa_family_t)) && 2031 (name->sa_family == AF_UNSPEC)) { 2032 name = NULL; 2033 namelen = 0; 2034 } 2035 2036 /* 2037 * Check that we are not already connected. 2038 * A connection-oriented socket cannot be reconnected. 2039 * A connected connection-less socket can be 2040 * - connected to a different address by a subsequent connect 2041 * - "unconnected" by a connect to the NULL address 2042 */ 2043 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) { 2044 ASSERT(!(flags & _SOCONNECT_DID_BIND)); 2045 if (so->so_mode & SM_CONNREQUIRED) { 2046 /* Connection-oriented socket */ 2047 error = so->so_state & SS_ISCONNECTED ? 2048 EISCONN : EALREADY; 2049 goto done; 2050 } 2051 /* Connection-less socket */ 2052 if (name == NULL) { 2053 /* 2054 * Remove the connected state and clear SO_DGRAM_ERRIND 2055 * since it was set when the socket was connected. 2056 * If this is UDP also send down a T_DISCON_REQ. 2057 */ 2058 int val; 2059 2060 if ((so->so_family == AF_INET || 2061 so->so_family == AF_INET6) && 2062 (so->so_type == SOCK_DGRAM || 2063 so->so_type == SOCK_RAW) && 2064 /*CONSTCOND*/ 2065 !soconnect_tpi_udp) { 2066 /* XXX What about implicitly unbinding here? */ 2067 error = sodisconnect(so, -1, 2068 _SODISCONNECT_LOCK_HELD); 2069 } else { 2070 so->so_state &= 2071 ~(SS_ISCONNECTED | SS_ISCONNECTING | 2072 SS_FADDR_VALID); 2073 so->so_faddr_len = 0; 2074 } 2075 2076 so_unlock_single(so, SOLOCKED); 2077 mutex_exit(&so->so_lock); 2078 2079 val = 0; 2080 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND, 2081 &val, (t_uscalar_t)sizeof (val)); 2082 2083 mutex_enter(&so->so_lock); 2084 so_lock_single(so); /* Set SOLOCKED */ 2085 goto done; 2086 } 2087 } 2088 ASSERT(so->so_state & SS_ISBOUND); 2089 2090 if (name == NULL || namelen == 0) { 2091 error = EINVAL; 2092 goto done; 2093 } 2094 /* 2095 * Mark the socket if so_faddr_sa represents the transport level 2096 * address. 2097 */ 2098 if (flags & _SOCONNECT_NOXLATE) { 2099 struct sockaddr_ux *soaddr_ux; 2100 2101 ASSERT(so->so_family == AF_UNIX); 2102 if (namelen != sizeof (struct sockaddr_ux)) { 2103 error = EINVAL; 2104 goto done; 2105 } 2106 soaddr_ux = (struct sockaddr_ux *)name; 2107 name = (struct sockaddr *)&soaddr_ux->sou_addr; 2108 namelen = sizeof (soaddr_ux->sou_addr); 2109 so->so_state |= SS_FADDR_NOXLATE; 2110 } 2111 2112 /* 2113 * Length and family checks. 2114 */ 2115 error = so_addr_verify(so, name, namelen); 2116 if (error) 2117 goto bad; 2118 2119 /* 2120 * Save foreign address. Needed for AF_UNIX as well as 2121 * transport providers that do not support TI_GETPEERNAME. 2122 * Also used for cached foreign address for TCP and UDP. 2123 */ 2124 if (namelen > (t_uscalar_t)so->so_faddr_maxlen) { 2125 error = EINVAL; 2126 goto done; 2127 } 2128 so->so_faddr_len = (socklen_t)namelen; 2129 ASSERT(so->so_faddr_len <= so->so_faddr_maxlen); 2130 bcopy(name, so->so_faddr_sa, namelen); 2131 so->so_state |= SS_FADDR_VALID; 2132 2133 if (so->so_family == AF_UNIX) { 2134 if (so->so_state & SS_FADDR_NOXLATE) { 2135 /* 2136 * Already have a transport internal address. Do not 2137 * pass any (transport internal) source address. 2138 */ 2139 addr = so->so_faddr_sa; 2140 addrlen = (t_uscalar_t)so->so_faddr_len; 2141 src = NULL; 2142 srclen = 0; 2143 } else { 2144 /* 2145 * Pass the sockaddr_un source address as an option 2146 * and translate the remote address. 2147 * Holding so_lock thus so_laddr_sa can not change. 2148 */ 2149 src = so->so_laddr_sa; 2150 srclen = (t_uscalar_t)so->so_laddr_len; 2151 dprintso(so, 1, 2152 ("sotpi_connect UNIX: srclen %d, src %p\n", 2153 srclen, src)); 2154 error = so_ux_addr_xlate(so, 2155 so->so_faddr_sa, (socklen_t)so->so_faddr_len, 2156 (flags & _SOCONNECT_XPG4_2), 2157 &addr, &addrlen); 2158 if (error) 2159 goto bad; 2160 } 2161 } else { 2162 addr = so->so_faddr_sa; 2163 addrlen = (t_uscalar_t)so->so_faddr_len; 2164 src = NULL; 2165 srclen = 0; 2166 } 2167 /* 2168 * When connecting a datagram socket we issue the SO_DGRAM_ERRIND 2169 * option which asks the transport provider to send T_UDERR_IND 2170 * messages. These T_UDERR_IND messages are used to return connected 2171 * style errors (e.g. ECONNRESET) for connected datagram sockets. 2172 * 2173 * In addition, for UDP (and SOCK_RAW AF_INET{,6} sockets) 2174 * we send down a T_CONN_REQ. This is needed to let the 2175 * transport assign a local address that is consistent with 2176 * the remote address. Applications depend on a getsockname() 2177 * after a connect() to retrieve the "source" IP address for 2178 * the connected socket. Invalidate the cached local address 2179 * to force getsockname() to enquire of the transport. 2180 */ 2181 if (!(so->so_mode & SM_CONNREQUIRED)) { 2182 /* 2183 * Datagram socket. 2184 */ 2185 int32_t val; 2186 2187 so_unlock_single(so, SOLOCKED); 2188 mutex_exit(&so->so_lock); 2189 2190 val = 1; 2191 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DGRAM_ERRIND, 2192 &val, (t_uscalar_t)sizeof (val)); 2193 2194 mutex_enter(&so->so_lock); 2195 so_lock_single(so); /* Set SOLOCKED */ 2196 if ((so->so_family != AF_INET && so->so_family != AF_INET6) || 2197 (so->so_type != SOCK_DGRAM && so->so_type != SOCK_RAW) || 2198 soconnect_tpi_udp) { 2199 soisconnected(so); 2200 goto done; 2201 } 2202 /* 2203 * Send down T_CONN_REQ etc. 2204 * Clear fflag to avoid returning EWOULDBLOCK. 2205 */ 2206 fflag = 0; 2207 ASSERT(so->so_family != AF_UNIX); 2208 so->so_state &= ~SS_LADDR_VALID; 2209 } else if (so->so_laddr_len != 0) { 2210 /* 2211 * If the local address or port was "any" then it may be 2212 * changed by the transport as a result of the 2213 * connect. Invalidate the cached version if we have one. 2214 */ 2215 switch (so->so_family) { 2216 case AF_INET: 2217 ASSERT(so->so_laddr_len == (socklen_t)sizeof (sin_t)); 2218 if (((sin_t *)so->so_laddr_sa)->sin_addr.s_addr == 2219 INADDR_ANY || 2220 ((sin_t *)so->so_laddr_sa)->sin_port == 0) 2221 so->so_state &= ~SS_LADDR_VALID; 2222 break; 2223 2224 case AF_INET6: 2225 ASSERT(so->so_laddr_len == (socklen_t)sizeof (sin6_t)); 2226 if (IN6_IS_ADDR_UNSPECIFIED( 2227 &((sin6_t *)so->so_laddr_sa) ->sin6_addr) || 2228 IN6_IS_ADDR_V4MAPPED_ANY( 2229 &((sin6_t *)so->so_laddr_sa)->sin6_addr) || 2230 ((sin6_t *)so->so_laddr_sa)->sin6_port == 0) 2231 so->so_state &= ~SS_LADDR_VALID; 2232 break; 2233 2234 default: 2235 break; 2236 } 2237 } 2238 2239 /* 2240 * Check for failure of an earlier call 2241 */ 2242 if (so->so_error != 0) 2243 goto so_bad; 2244 2245 /* 2246 * Send down T_CONN_REQ. Message was allocated above. 2247 */ 2248 conn_req.PRIM_type = T_CONN_REQ; 2249 conn_req.DEST_length = addrlen; 2250 conn_req.DEST_offset = (t_scalar_t)sizeof (conn_req); 2251 if (srclen == 0) { 2252 conn_req.OPT_length = 0; 2253 conn_req.OPT_offset = 0; 2254 soappendmsg(mp, &conn_req, sizeof (conn_req)); 2255 soappendmsg(mp, addr, addrlen); 2256 } else { 2257 /* 2258 * There is a AF_UNIX sockaddr_un to include as a source 2259 * address option. 2260 */ 2261 struct T_opthdr toh; 2262 2263 toh.level = SOL_SOCKET; 2264 toh.name = SO_SRCADDR; 2265 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 2266 toh.status = 0; 2267 conn_req.OPT_length = 2268 (t_scalar_t)(sizeof (toh) + _TPI_ALIGN_TOPT(srclen)); 2269 conn_req.OPT_offset = (t_scalar_t)(sizeof (conn_req) + 2270 _TPI_ALIGN_TOPT(addrlen)); 2271 2272 soappendmsg(mp, &conn_req, sizeof (conn_req)); 2273 soappendmsg(mp, addr, addrlen); 2274 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 2275 soappendmsg(mp, &toh, sizeof (toh)); 2276 soappendmsg(mp, src, srclen); 2277 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 2278 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 2279 } 2280 /* 2281 * Set SS_ISCONNECTING before sending down the T_CONN_REQ 2282 * in order to have the right state when the T_CONN_CON shows up. 2283 */ 2284 soisconnecting(so); 2285 mutex_exit(&so->so_lock); 2286 2287 #ifdef C2_AUDIT 2288 if (audit_active) 2289 audit_sock(T_CONN_REQ, strvp2wq(SOTOV(so)), mp, 0); 2290 #endif /* C2_AUDIT */ 2291 2292 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2293 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR, 0); 2294 mp = NULL; 2295 mutex_enter(&so->so_lock); 2296 if (error != 0) 2297 goto bad; 2298 2299 if ((error = sowaitokack(so, T_CONN_REQ)) != 0) 2300 goto bad; 2301 2302 /* Allow other threads to access the socket */ 2303 so_unlock_single(so, SOLOCKED); 2304 need_unlock = B_FALSE; 2305 2306 /* 2307 * Wait until we get a T_CONN_CON or an error 2308 */ 2309 if ((error = sowaitconnected(so, fflag, 0)) != 0) { 2310 so_lock_single(so); /* Set SOLOCKED */ 2311 need_unlock = B_TRUE; 2312 } 2313 2314 done: 2315 freemsg(mp); 2316 switch (error) { 2317 case EINPROGRESS: 2318 case EALREADY: 2319 case EISCONN: 2320 case EINTR: 2321 /* Non-fatal errors */ 2322 so->so_state &= ~SS_LADDR_VALID; 2323 /* FALLTHRU */ 2324 case 0: 2325 break; 2326 2327 case EHOSTUNREACH: 2328 if (flags & _SOCONNECT_XPG4_2) { 2329 /* 2330 * X/Open specification contains a requirement that 2331 * ENETUNREACH be returned but does not require 2332 * EHOSTUNREACH. In order to keep the test suite 2333 * happy we mess with the errno here. 2334 */ 2335 error = ENETUNREACH; 2336 } 2337 /* FALLTHRU */ 2338 2339 default: 2340 ASSERT(need_unlock); 2341 /* 2342 * Fatal errors: clear SS_ISCONNECTING in case it was set, 2343 * and invalidate local-address cache 2344 */ 2345 so->so_state &= ~(SS_ISCONNECTING | SS_LADDR_VALID); 2346 /* A discon_ind might have already unbound us */ 2347 if ((flags & _SOCONNECT_DID_BIND) && 2348 (so->so_state & SS_ISBOUND)) { 2349 int err; 2350 2351 err = sotpi_unbind(so, 0); 2352 /* LINTED - statement has no conseq */ 2353 if (err) { 2354 eprintsoline(so, err); 2355 } 2356 } 2357 break; 2358 } 2359 if (need_unlock) 2360 so_unlock_single(so, SOLOCKED); 2361 mutex_exit(&so->so_lock); 2362 return (error); 2363 2364 so_bad: error = sogeterr(so); 2365 bad: eprintsoline(so, error); 2366 goto done; 2367 } 2368 2369 int 2370 sotpi_shutdown(struct sonode *so, int how) 2371 { 2372 struct T_ordrel_req ordrel_req; 2373 mblk_t *mp; 2374 uint_t old_state, state_change; 2375 int error = 0; 2376 2377 dprintso(so, 1, ("sotpi_shutdown(%p, %d) %s\n", 2378 so, how, pr_state(so->so_state, so->so_mode))); 2379 2380 mutex_enter(&so->so_lock); 2381 so_lock_single(so); /* Set SOLOCKED */ 2382 2383 /* 2384 * SunOS 4.X has no check for datagram sockets. 2385 * 5.X checks that it is connected (ENOTCONN) 2386 * X/Open requires that we check the connected state. 2387 */ 2388 if (!(so->so_state & SS_ISCONNECTED)) { 2389 if (!xnet_skip_checks) { 2390 error = ENOTCONN; 2391 if (xnet_check_print) { 2392 printf("sockfs: X/Open shutdown check " 2393 "caused ENOTCONN\n"); 2394 } 2395 } 2396 goto done; 2397 } 2398 /* 2399 * Record the current state and then perform any state changes. 2400 * Then use the difference between the old and new states to 2401 * determine which messages need to be sent. 2402 * This prevents e.g. duplicate T_ORDREL_REQ when there are 2403 * duplicate calls to shutdown(). 2404 */ 2405 old_state = so->so_state; 2406 2407 switch (how) { 2408 case 0: 2409 socantrcvmore(so); 2410 break; 2411 case 1: 2412 socantsendmore(so); 2413 break; 2414 case 2: 2415 socantsendmore(so); 2416 socantrcvmore(so); 2417 break; 2418 default: 2419 error = EINVAL; 2420 goto done; 2421 } 2422 2423 /* 2424 * Assumes that the SS_CANT* flags are never cleared in the above code. 2425 */ 2426 state_change = (so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) - 2427 (old_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)); 2428 ASSERT((state_change & ~(SS_CANTRCVMORE|SS_CANTSENDMORE)) == 0); 2429 2430 switch (state_change) { 2431 case 0: 2432 dprintso(so, 1, 2433 ("sotpi_shutdown: nothing to send in state 0x%x\n", 2434 so->so_state)); 2435 goto done; 2436 2437 case SS_CANTRCVMORE: 2438 mutex_exit(&so->so_lock); 2439 strseteof(SOTOV(so), 1); 2440 /* 2441 * strseteof takes care of read side wakeups, 2442 * pollwakeups, and signals. 2443 */ 2444 /* 2445 * Get the read lock before flushing data to avoid problems 2446 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. 2447 */ 2448 mutex_enter(&so->so_lock); 2449 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ 2450 mutex_exit(&so->so_lock); 2451 2452 /* Flush read side queue */ 2453 strflushrq(SOTOV(so), FLUSHALL); 2454 2455 mutex_enter(&so->so_lock); 2456 so_unlock_read(so); /* Clear SOREADLOCKED */ 2457 break; 2458 2459 case SS_CANTSENDMORE: 2460 mutex_exit(&so->so_lock); 2461 strsetwerror(SOTOV(so), 0, 0, sogetwrerr); 2462 mutex_enter(&so->so_lock); 2463 break; 2464 2465 case SS_CANTSENDMORE|SS_CANTRCVMORE: 2466 mutex_exit(&so->so_lock); 2467 strsetwerror(SOTOV(so), 0, 0, sogetwrerr); 2468 strseteof(SOTOV(so), 1); 2469 /* 2470 * strseteof takes care of read side wakeups, 2471 * pollwakeups, and signals. 2472 */ 2473 /* 2474 * Get the read lock before flushing data to avoid problems 2475 * with the T_EXDATA_IND MSG_PEEK code in sotpi_recvmsg. 2476 */ 2477 mutex_enter(&so->so_lock); 2478 (void) so_lock_read(so, 0); /* Set SOREADLOCKED */ 2479 mutex_exit(&so->so_lock); 2480 2481 /* Flush read side queue */ 2482 strflushrq(SOTOV(so), FLUSHALL); 2483 2484 mutex_enter(&so->so_lock); 2485 so_unlock_read(so); /* Clear SOREADLOCKED */ 2486 break; 2487 } 2488 2489 ASSERT(MUTEX_HELD(&so->so_lock)); 2490 2491 /* 2492 * If either SS_CANTSENDMORE or SS_CANTRCVMORE or both of them 2493 * was set due to this call and the new state has both of them set: 2494 * Send the AF_UNIX close indication 2495 * For T_COTS send a discon_ind 2496 * 2497 * If cantsend was set due to this call: 2498 * For T_COTSORD send an ordrel_ind 2499 * 2500 * Note that for T_CLTS there is no message sent here. 2501 */ 2502 if ((so->so_state & (SS_CANTRCVMORE|SS_CANTSENDMORE)) == 2503 (SS_CANTRCVMORE|SS_CANTSENDMORE)) { 2504 /* 2505 * For SunOS 4.X compatibility we tell the other end 2506 * that we are unable to receive at this point. 2507 */ 2508 if (so->so_family == AF_UNIX && so->so_serv_type != T_CLTS) 2509 so_unix_close(so); 2510 2511 if (so->so_serv_type == T_COTS) 2512 error = sodisconnect(so, -1, _SODISCONNECT_LOCK_HELD); 2513 } 2514 if ((state_change & SS_CANTSENDMORE) && 2515 (so->so_serv_type == T_COTS_ORD)) { 2516 /* Send an orderly release */ 2517 ordrel_req.PRIM_type = T_ORDREL_REQ; 2518 2519 mutex_exit(&so->so_lock); 2520 mp = soallocproto1(&ordrel_req, sizeof (ordrel_req), 2521 0, _ALLOC_SLEEP); 2522 /* 2523 * Send down the T_ORDREL_REQ even if there is flow control. 2524 * This prevents shutdown from blocking. 2525 * Note that there is no T_OK_ACK for ordrel_req. 2526 */ 2527 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2528 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 2529 mutex_enter(&so->so_lock); 2530 if (error) { 2531 eprintsoline(so, error); 2532 goto done; 2533 } 2534 } 2535 2536 done: 2537 so_unlock_single(so, SOLOCKED); 2538 mutex_exit(&so->so_lock); 2539 return (error); 2540 } 2541 2542 /* 2543 * For any connected SOCK_STREAM/SOCK_SEQPACKET AF_UNIX socket we send 2544 * a zero-length T_OPTDATA_REQ with the SO_UNIX_CLOSE option to inform the peer 2545 * that we have closed. 2546 * Also, for connected AF_UNIX SOCK_DGRAM sockets we send a zero-length 2547 * T_UNITDATA_REQ containing the same option. 2548 * 2549 * For SOCK_DGRAM half-connections (somebody connected to this end 2550 * but this end is not connect) we don't know where to send any 2551 * SO_UNIX_CLOSE. 2552 * 2553 * We have to ignore stream head errors just in case there has been 2554 * a shutdown(output). 2555 * Ignore any flow control to try to get the message more quickly to the peer. 2556 * While locally ignoring flow control solves the problem when there 2557 * is only the loopback transport on the stream it would not provide 2558 * the correct AF_UNIX socket semantics when one or more modules have 2559 * been pushed. 2560 */ 2561 void 2562 so_unix_close(struct sonode *so) 2563 { 2564 int error; 2565 struct T_opthdr toh; 2566 mblk_t *mp; 2567 2568 ASSERT(MUTEX_HELD(&so->so_lock)); 2569 2570 ASSERT(so->so_family == AF_UNIX); 2571 2572 if ((so->so_state & (SS_ISCONNECTED|SS_ISBOUND)) != 2573 (SS_ISCONNECTED|SS_ISBOUND)) 2574 return; 2575 2576 dprintso(so, 1, ("so_unix_close(%p) %s\n", 2577 so, pr_state(so->so_state, so->so_mode))); 2578 2579 toh.level = SOL_SOCKET; 2580 toh.name = SO_UNIX_CLOSE; 2581 2582 /* zero length + header */ 2583 toh.len = (t_uscalar_t)sizeof (struct T_opthdr); 2584 toh.status = 0; 2585 2586 if (so->so_type == SOCK_STREAM || so->so_type == SOCK_SEQPACKET) { 2587 struct T_optdata_req tdr; 2588 2589 tdr.PRIM_type = T_OPTDATA_REQ; 2590 tdr.DATA_flag = 0; 2591 2592 tdr.OPT_length = (t_scalar_t)sizeof (toh); 2593 tdr.OPT_offset = (t_scalar_t)sizeof (tdr); 2594 2595 /* NOTE: holding so_lock while sleeping */ 2596 mp = soallocproto2(&tdr, sizeof (tdr), 2597 &toh, sizeof (toh), 0, _ALLOC_SLEEP); 2598 } else { 2599 struct T_unitdata_req tudr; 2600 void *addr; 2601 socklen_t addrlen; 2602 void *src; 2603 socklen_t srclen; 2604 struct T_opthdr toh2; 2605 t_scalar_t size; 2606 2607 /* Connecteded DGRAM socket */ 2608 2609 /* 2610 * For AF_UNIX the destination address is translated to 2611 * an internal name and the source address is passed as 2612 * an option. 2613 */ 2614 /* 2615 * Length and family checks. 2616 */ 2617 error = so_addr_verify(so, so->so_faddr_sa, 2618 (t_uscalar_t)so->so_faddr_len); 2619 if (error) { 2620 eprintsoline(so, error); 2621 return; 2622 } 2623 if (so->so_state & SS_FADDR_NOXLATE) { 2624 /* 2625 * Already have a transport internal address. Do not 2626 * pass any (transport internal) source address. 2627 */ 2628 addr = so->so_faddr_sa; 2629 addrlen = (t_uscalar_t)so->so_faddr_len; 2630 src = NULL; 2631 srclen = 0; 2632 } else { 2633 /* 2634 * Pass the sockaddr_un source address as an option 2635 * and translate the remote address. 2636 * Holding so_lock thus so_laddr_sa can not change. 2637 */ 2638 src = so->so_laddr_sa; 2639 srclen = (socklen_t)so->so_laddr_len; 2640 dprintso(so, 1, 2641 ("so_ux_close: srclen %d, src %p\n", 2642 srclen, src)); 2643 error = so_ux_addr_xlate(so, 2644 so->so_faddr_sa, 2645 (socklen_t)so->so_faddr_len, 0, 2646 &addr, &addrlen); 2647 if (error) { 2648 eprintsoline(so, error); 2649 return; 2650 } 2651 } 2652 tudr.PRIM_type = T_UNITDATA_REQ; 2653 tudr.DEST_length = addrlen; 2654 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 2655 if (srclen == 0) { 2656 tudr.OPT_length = (t_scalar_t)sizeof (toh); 2657 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 2658 _TPI_ALIGN_TOPT(addrlen)); 2659 2660 size = tudr.OPT_offset + tudr.OPT_length; 2661 /* NOTE: holding so_lock while sleeping */ 2662 mp = soallocproto2(&tudr, sizeof (tudr), 2663 addr, addrlen, size, _ALLOC_SLEEP); 2664 mp->b_wptr += (_TPI_ALIGN_TOPT(addrlen) - addrlen); 2665 soappendmsg(mp, &toh, sizeof (toh)); 2666 } else { 2667 /* 2668 * There is a AF_UNIX sockaddr_un to include as a 2669 * source address option. 2670 */ 2671 tudr.OPT_length = (t_scalar_t)(2 * sizeof (toh) + 2672 _TPI_ALIGN_TOPT(srclen)); 2673 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 2674 _TPI_ALIGN_TOPT(addrlen)); 2675 2676 toh2.level = SOL_SOCKET; 2677 toh2.name = SO_SRCADDR; 2678 toh2.len = (t_uscalar_t)(srclen + 2679 sizeof (struct T_opthdr)); 2680 toh2.status = 0; 2681 2682 size = tudr.OPT_offset + tudr.OPT_length; 2683 2684 /* NOTE: holding so_lock while sleeping */ 2685 mp = soallocproto2(&tudr, sizeof (tudr), 2686 addr, addrlen, size, _ALLOC_SLEEP); 2687 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 2688 soappendmsg(mp, &toh, sizeof (toh)); 2689 soappendmsg(mp, &toh2, sizeof (toh2)); 2690 soappendmsg(mp, src, srclen); 2691 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 2692 } 2693 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 2694 } 2695 mutex_exit(&so->so_lock); 2696 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 2697 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 2698 mutex_enter(&so->so_lock); 2699 } 2700 2701 /* 2702 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK. 2703 */ 2704 int 2705 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags) 2706 { 2707 mblk_t *mp, *nmp; 2708 int error; 2709 2710 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", so, msg, flags)); 2711 2712 /* 2713 * There is never any oob data with addresses or control since 2714 * the T_EXDATA_IND does not carry any options. 2715 */ 2716 msg->msg_controllen = 0; 2717 msg->msg_namelen = 0; 2718 2719 mutex_enter(&so->so_lock); 2720 ASSERT(so_verify_oobstate(so)); 2721 if ((so->so_options & SO_OOBINLINE) || 2722 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) { 2723 dprintso(so, 1, ("sorecvoob: inline or data consumed\n")); 2724 mutex_exit(&so->so_lock); 2725 return (EINVAL); 2726 } 2727 if (!(so->so_state & SS_HAVEOOBDATA)) { 2728 dprintso(so, 1, ("sorecvoob: no data yet\n")); 2729 mutex_exit(&so->so_lock); 2730 return (EWOULDBLOCK); 2731 } 2732 ASSERT(so->so_oobmsg != NULL); 2733 mp = so->so_oobmsg; 2734 if (flags & MSG_PEEK) { 2735 /* 2736 * Since recv* can not return ENOBUFS we can not use dupmsg. 2737 * Instead we revert to the consolidation private 2738 * allocb_wait plus bcopy. 2739 */ 2740 mblk_t *mp1; 2741 2742 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL); 2743 ASSERT(mp1); 2744 2745 while (mp != NULL) { 2746 ssize_t size; 2747 2748 size = MBLKL(mp); 2749 bcopy(mp->b_rptr, mp1->b_wptr, size); 2750 mp1->b_wptr += size; 2751 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim); 2752 mp = mp->b_cont; 2753 } 2754 mp = mp1; 2755 } else { 2756 /* 2757 * Update the state indicating that the data has been consumed. 2758 * Keep SS_OOBPEND set until data is consumed past the mark. 2759 */ 2760 so->so_oobmsg = NULL; 2761 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA; 2762 } 2763 dprintso(so, 1, 2764 ("after recvoob(%p): counts %d/%d state %s\n", 2765 so, so->so_oobsigcnt, 2766 so->so_oobcnt, pr_state(so->so_state, so->so_mode))); 2767 ASSERT(so_verify_oobstate(so)); 2768 mutex_exit(&so->so_lock); 2769 2770 error = 0; 2771 nmp = mp; 2772 while (nmp != NULL && uiop->uio_resid > 0) { 2773 ssize_t n = MBLKL(nmp); 2774 2775 n = MIN(n, uiop->uio_resid); 2776 if (n > 0) 2777 error = uiomove(nmp->b_rptr, n, 2778 UIO_READ, uiop); 2779 if (error) 2780 break; 2781 nmp = nmp->b_cont; 2782 } 2783 freemsg(mp); 2784 return (error); 2785 } 2786 2787 /* 2788 * Called by sotpi_recvmsg when reading a non-zero amount of data. 2789 * In addition, the caller typically verifies that there is some 2790 * potential state to clear by checking 2791 * if (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) 2792 * before calling this routine. 2793 * Note that such a check can be made without holding so_lock since 2794 * sotpi_recvmsg is single-threaded (using SOREADLOCKED) and only sotpi_recvmsg 2795 * decrements so_oobsigcnt. 2796 * 2797 * When data is read *after* the point that all pending 2798 * oob data has been consumed the oob indication is cleared. 2799 * 2800 * This logic keeps select/poll returning POLLRDBAND and 2801 * SIOCATMARK returning true until we have read past 2802 * the mark. 2803 */ 2804 static void 2805 sorecv_update_oobstate(struct sonode *so) 2806 { 2807 mutex_enter(&so->so_lock); 2808 ASSERT(so_verify_oobstate(so)); 2809 dprintso(so, 1, 2810 ("sorecv_update_oobstate: counts %d/%d state %s\n", 2811 so->so_oobsigcnt, 2812 so->so_oobcnt, pr_state(so->so_state, so->so_mode))); 2813 if (so->so_oobsigcnt == 0) { 2814 /* No more pending oob indications */ 2815 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 2816 freemsg(so->so_oobmsg); 2817 so->so_oobmsg = NULL; 2818 } 2819 ASSERT(so_verify_oobstate(so)); 2820 mutex_exit(&so->so_lock); 2821 } 2822 2823 /* 2824 * Handle recv* calls for an so which has NL7C saved recv mblk_t(s). 2825 */ 2826 static int 2827 nl7c_sorecv(struct sonode *so, mblk_t **rmp, uio_t *uiop, rval_t *rp) 2828 { 2829 int error = 0; 2830 mblk_t *tmp = NULL; 2831 mblk_t *pmp = NULL; 2832 mblk_t *nmp = so->so_nl7c_rcv_mp; 2833 2834 ASSERT(nmp != NULL); 2835 2836 while (nmp != NULL && uiop->uio_resid > 0) { 2837 ssize_t n; 2838 2839 if (DB_TYPE(nmp) == M_DATA) { 2840 /* 2841 * We have some data, uiomove up to resid bytes. 2842 */ 2843 n = MIN(MBLKL(nmp), uiop->uio_resid); 2844 if (n > 0) 2845 error = uiomove(nmp->b_rptr, n, UIO_READ, uiop); 2846 nmp->b_rptr += n; 2847 if (nmp->b_rptr == nmp->b_wptr) { 2848 pmp = nmp; 2849 nmp = nmp->b_cont; 2850 } 2851 if (error) 2852 break; 2853 } else { 2854 /* 2855 * We only handle data, save for caller to handle. 2856 */ 2857 if (pmp != NULL) { 2858 pmp->b_cont = nmp->b_cont; 2859 } 2860 nmp->b_cont = NULL; 2861 if (*rmp == NULL) { 2862 *rmp = nmp; 2863 } else { 2864 tmp->b_cont = nmp; 2865 } 2866 nmp = nmp->b_cont; 2867 tmp = nmp; 2868 } 2869 } 2870 if (pmp != NULL) { 2871 /* Free any mblk_t(s) which we have consumed */ 2872 pmp->b_cont = NULL; 2873 freemsg(so->so_nl7c_rcv_mp); 2874 } 2875 if ((so->so_nl7c_rcv_mp = nmp) == NULL) { 2876 /* Last mblk_t so return the saved kstrgetmsg() rval/error */ 2877 if (error == 0) { 2878 rval_t *p = (rval_t *)&so->so_nl7c_rcv_rval; 2879 2880 error = p->r_v.r_v2; 2881 p->r_v.r_v2 = 0; 2882 } 2883 rp->r_vals = so->so_nl7c_rcv_rval; 2884 so->so_nl7c_rcv_rval = 0; 2885 } else { 2886 /* More mblk_t(s) to process so no rval to return */ 2887 rp->r_vals = 0; 2888 } 2889 return (error); 2890 } 2891 2892 /* 2893 * Receive the next message on the queue. 2894 * If msg_controllen is non-zero when called the caller is interested in 2895 * any received control info (options). 2896 * If msg_namelen is non-zero when called the caller is interested in 2897 * any received source address. 2898 * The routine returns with msg_control and msg_name pointing to 2899 * kmem_alloc'ed memory which the caller has to free. 2900 */ 2901 int 2902 sotpi_recvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2903 { 2904 union T_primitives *tpr; 2905 mblk_t *mp; 2906 uchar_t pri; 2907 int pflag, opflag; 2908 void *control; 2909 t_uscalar_t controllen; 2910 t_uscalar_t namelen; 2911 int so_state = so->so_state; /* Snapshot */ 2912 ssize_t saved_resid; 2913 int error; 2914 rval_t rval; 2915 int flags; 2916 clock_t timout; 2917 int first; 2918 2919 flags = msg->msg_flags; 2920 msg->msg_flags = 0; 2921 2922 dprintso(so, 1, ("sotpi_recvmsg(%p, %p, 0x%x) state %s err %d\n", 2923 so, msg, flags, 2924 pr_state(so->so_state, so->so_mode), so->so_error)); 2925 2926 /* 2927 * If we are not connected because we have never been connected 2928 * we return ENOTCONN. If we have been connected (but are no longer 2929 * connected) then SS_CANTRCVMORE is set and we let kstrgetmsg return 2930 * the EOF. 2931 * 2932 * An alternative would be to post an ENOTCONN error in stream head 2933 * (read+write) and clear it when we're connected. However, that error 2934 * would cause incorrect poll/select behavior! 2935 */ 2936 if ((so_state & (SS_ISCONNECTED|SS_CANTRCVMORE)) == 0 && 2937 (so->so_mode & SM_CONNREQUIRED)) { 2938 return (ENOTCONN); 2939 } 2940 2941 /* 2942 * Note: SunOS 4.X checks uio_resid == 0 before going to sleep (but 2943 * after checking that the read queue is empty) and returns zero. 2944 * This implementation will sleep (in kstrgetmsg) even if uio_resid 2945 * is zero. 2946 */ 2947 2948 if (flags & MSG_OOB) { 2949 /* Check that the transport supports OOB */ 2950 if (!(so->so_mode & SM_EXDATA)) 2951 return (EOPNOTSUPP); 2952 return (sorecvoob(so, msg, uiop, flags)); 2953 } 2954 2955 /* 2956 * Set msg_controllen and msg_namelen to zero here to make it 2957 * simpler in the cases that no control or name is returned. 2958 */ 2959 controllen = msg->msg_controllen; 2960 namelen = msg->msg_namelen; 2961 msg->msg_controllen = 0; 2962 msg->msg_namelen = 0; 2963 2964 dprintso(so, 1, ("sotpi_recvmsg: namelen %d controllen %d\n", 2965 namelen, controllen)); 2966 2967 mutex_enter(&so->so_lock); 2968 /* 2969 * If an NL7C enabled socket and not waiting for write data. 2970 */ 2971 if ((so->so_nl7c_flags & (NL7C_ENABLED | NL7C_WAITWRITE)) == 2972 NL7C_ENABLED) { 2973 if (so->so_nl7c_uri) { 2974 /* Close uri processing for a previous request */ 2975 nl7c_close(so); 2976 } 2977 if ((so_state & SS_CANTRCVMORE) && so->so_nl7c_rcv_mp == NULL) { 2978 /* Nothing to process, EOF */ 2979 mutex_exit(&so->so_lock); 2980 return (0); 2981 } else if (so->so_nl7c_flags & NL7C_SOPERSIST) { 2982 /* Persistent NL7C socket, try to process request */ 2983 boolean_t ret; 2984 2985 ret = nl7c_process(so, 2986 (so->so_state & (SS_NONBLOCK|SS_NDELAY))); 2987 rval.r_vals = so->so_nl7c_rcv_rval; 2988 error = rval.r_v.r_v2; 2989 if (error) { 2990 /* Error of some sort, return it */ 2991 mutex_exit(&so->so_lock); 2992 return (error); 2993 } 2994 if (so->so_nl7c_flags && 2995 ! (so->so_nl7c_flags & NL7C_WAITWRITE)) { 2996 /* 2997 * Still an NL7C socket and no data 2998 * to pass up to the caller. 2999 */ 3000 mutex_exit(&so->so_lock); 3001 if (ret) { 3002 /* EOF */ 3003 return (0); 3004 } else { 3005 /* Need more data */ 3006 return (EAGAIN); 3007 } 3008 } 3009 } else { 3010 /* 3011 * Not persistent so no further NL7C processing. 3012 */ 3013 so->so_nl7c_flags = 0; 3014 } 3015 } 3016 /* 3017 * Only one reader is allowed at any given time. This is needed 3018 * for T_EXDATA handling and, in the future, MSG_WAITALL. 3019 * 3020 * This is slightly different that BSD behavior in that it fails with 3021 * EWOULDBLOCK when using nonblocking io. In BSD the read queue access 3022 * is single-threaded using sblock(), which is dropped while waiting 3023 * for data to appear. The difference shows up e.g. if one 3024 * file descriptor does not have O_NONBLOCK but a dup'ed file descriptor 3025 * does use nonblocking io and different threads are reading each 3026 * file descriptor. In BSD there would never be an EWOULDBLOCK error 3027 * in this case as long as the read queue doesn't get empty. 3028 * In this implementation the thread using nonblocking io can 3029 * get an EWOULDBLOCK error due to the blocking thread executing 3030 * e.g. in the uiomove in kstrgetmsg. 3031 * This difference is not believed to be significant. 3032 */ 3033 /* Set SOREADLOCKED */ 3034 error = so_lock_read_intr(so, 3035 uiop->uio_fmode | ((flags & MSG_DONTWAIT) ? FNONBLOCK : 0)); 3036 mutex_exit(&so->so_lock); 3037 if (error) 3038 return (error); 3039 3040 /* 3041 * Tell kstrgetmsg to not inspect the stream head errors until all 3042 * queued data has been consumed. 3043 * Use a timeout=-1 to wait forever unless MSG_DONTWAIT is set. 3044 * Also, If uio_fmode indicates nonblocking kstrgetmsg will not block. 3045 * 3046 * MSG_WAITALL only applies to M_DATA and T_DATA_IND messages and 3047 * to T_OPTDATA_IND that do not contain any user-visible control msg. 3048 * Note that MSG_WAITALL set with MSG_PEEK is a noop. 3049 */ 3050 pflag = MSG_ANY | MSG_DELAYERROR; 3051 if (flags & MSG_PEEK) { 3052 pflag |= MSG_IPEEK; 3053 flags &= ~MSG_WAITALL; 3054 } 3055 if (so->so_mode & SM_ATOMIC) 3056 pflag |= MSG_DISCARDTAIL; 3057 3058 if (flags & MSG_DONTWAIT) 3059 timout = 0; 3060 else 3061 timout = -1; 3062 opflag = pflag; 3063 first = 1; 3064 3065 retry: 3066 saved_resid = uiop->uio_resid; 3067 pri = 0; 3068 mp = NULL; 3069 if (so->so_nl7c_rcv_mp != NULL) { 3070 /* Already kstrgetmsg()ed saved mblk(s) from NL7C */ 3071 error = nl7c_sorecv(so, &mp, uiop, &rval); 3072 } else { 3073 error = kstrgetmsg(SOTOV(so), &mp, uiop, &pri, &pflag, 3074 timout, &rval); 3075 } 3076 if (error) { 3077 switch (error) { 3078 case EINTR: 3079 case EWOULDBLOCK: 3080 if (!first) 3081 error = 0; 3082 break; 3083 case ETIME: 3084 /* Returned from kstrgetmsg when timeout expires */ 3085 if (!first) 3086 error = 0; 3087 else 3088 error = EWOULDBLOCK; 3089 break; 3090 default: 3091 eprintsoline(so, error); 3092 break; 3093 } 3094 mutex_enter(&so->so_lock); 3095 so_unlock_read(so); /* Clear SOREADLOCKED */ 3096 mutex_exit(&so->so_lock); 3097 return (error); 3098 } 3099 /* 3100 * For datagrams the MOREDATA flag is used to set MSG_TRUNC. 3101 * For non-datagrams MOREDATA is used to set MSG_EOR. 3102 */ 3103 ASSERT(!(rval.r_val1 & MORECTL)); 3104 if ((rval.r_val1 & MOREDATA) && (so->so_mode & SM_ATOMIC)) 3105 msg->msg_flags |= MSG_TRUNC; 3106 3107 if (mp == NULL) { 3108 dprintso(so, 1, ("sotpi_recvmsg: got M_DATA\n")); 3109 /* 3110 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 3111 * The draft Posix socket spec states that the mark should 3112 * not be cleared when peeking. We follow the latter. 3113 */ 3114 if ((so->so_state & 3115 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3116 (uiop->uio_resid != saved_resid) && 3117 !(flags & MSG_PEEK)) { 3118 sorecv_update_oobstate(so); 3119 } 3120 3121 mutex_enter(&so->so_lock); 3122 /* Set MSG_EOR based on MOREDATA */ 3123 if (!(rval.r_val1 & MOREDATA)) { 3124 if (so->so_state & SS_SAVEDEOR) { 3125 msg->msg_flags |= MSG_EOR; 3126 so->so_state &= ~SS_SAVEDEOR; 3127 } 3128 } 3129 /* 3130 * If some data was received (i.e. not EOF) and the 3131 * read/recv* has not been satisfied wait for some more. 3132 */ 3133 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3134 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3135 mutex_exit(&so->so_lock); 3136 first = 0; 3137 pflag = opflag | MSG_NOMARK; 3138 goto retry; 3139 } 3140 so_unlock_read(so); /* Clear SOREADLOCKED */ 3141 mutex_exit(&so->so_lock); 3142 return (0); 3143 } 3144 3145 /* strsock_proto has already verified length and alignment */ 3146 tpr = (union T_primitives *)mp->b_rptr; 3147 dprintso(so, 1, ("sotpi_recvmsg: type %d\n", tpr->type)); 3148 3149 switch (tpr->type) { 3150 case T_DATA_IND: { 3151 if ((so->so_state & 3152 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3153 (uiop->uio_resid != saved_resid) && 3154 !(flags & MSG_PEEK)) { 3155 sorecv_update_oobstate(so); 3156 } 3157 3158 /* 3159 * Set msg_flags to MSG_EOR based on 3160 * MORE_flag and MOREDATA. 3161 */ 3162 mutex_enter(&so->so_lock); 3163 so->so_state &= ~SS_SAVEDEOR; 3164 if (!(tpr->data_ind.MORE_flag & 1)) { 3165 if (!(rval.r_val1 & MOREDATA)) 3166 msg->msg_flags |= MSG_EOR; 3167 else 3168 so->so_state |= SS_SAVEDEOR; 3169 } 3170 freemsg(mp); 3171 /* 3172 * If some data was received (i.e. not EOF) and the 3173 * read/recv* has not been satisfied wait for some more. 3174 */ 3175 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3176 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3177 mutex_exit(&so->so_lock); 3178 first = 0; 3179 pflag = opflag | MSG_NOMARK; 3180 goto retry; 3181 } 3182 so_unlock_read(so); /* Clear SOREADLOCKED */ 3183 mutex_exit(&so->so_lock); 3184 return (0); 3185 } 3186 case T_UNITDATA_IND: { 3187 void *addr; 3188 t_uscalar_t addrlen; 3189 void *abuf; 3190 t_uscalar_t optlen; 3191 void *opt; 3192 3193 if ((so->so_state & 3194 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3195 (uiop->uio_resid != saved_resid) && 3196 !(flags & MSG_PEEK)) { 3197 sorecv_update_oobstate(so); 3198 } 3199 3200 if (namelen != 0) { 3201 /* Caller wants source address */ 3202 addrlen = tpr->unitdata_ind.SRC_length; 3203 addr = sogetoff(mp, 3204 tpr->unitdata_ind.SRC_offset, 3205 addrlen, 1); 3206 if (addr == NULL) { 3207 freemsg(mp); 3208 error = EPROTO; 3209 eprintsoline(so, error); 3210 goto err; 3211 } 3212 if (so->so_family == AF_UNIX) { 3213 /* 3214 * Can not use the transport level address. 3215 * If there is a SO_SRCADDR option carrying 3216 * the socket level address it will be 3217 * extracted below. 3218 */ 3219 addr = NULL; 3220 addrlen = 0; 3221 } 3222 } 3223 optlen = tpr->unitdata_ind.OPT_length; 3224 if (optlen != 0) { 3225 t_uscalar_t ncontrollen; 3226 3227 /* 3228 * Extract any source address option. 3229 * Determine how large cmsg buffer is needed. 3230 */ 3231 opt = sogetoff(mp, 3232 tpr->unitdata_ind.OPT_offset, 3233 optlen, __TPI_ALIGN_SIZE); 3234 3235 if (opt == NULL) { 3236 freemsg(mp); 3237 error = EPROTO; 3238 eprintsoline(so, error); 3239 goto err; 3240 } 3241 if (so->so_family == AF_UNIX) 3242 so_getopt_srcaddr(opt, optlen, &addr, &addrlen); 3243 ncontrollen = so_cmsglen(mp, opt, optlen, 3244 !(flags & MSG_XPG4_2)); 3245 if (controllen != 0) 3246 controllen = ncontrollen; 3247 else if (ncontrollen != 0) 3248 msg->msg_flags |= MSG_CTRUNC; 3249 } else { 3250 controllen = 0; 3251 } 3252 3253 if (namelen != 0) { 3254 /* 3255 * Return address to caller. 3256 * Caller handles truncation if length 3257 * exceeds msg_namelen. 3258 * NOTE: AF_UNIX NUL termination is ensured by 3259 * the sender's copyin_name(). 3260 */ 3261 abuf = kmem_alloc(addrlen, KM_SLEEP); 3262 3263 bcopy(addr, abuf, addrlen); 3264 msg->msg_name = abuf; 3265 msg->msg_namelen = addrlen; 3266 } 3267 3268 if (controllen != 0) { 3269 /* 3270 * Return control msg to caller. 3271 * Caller handles truncation if length 3272 * exceeds msg_controllen. 3273 */ 3274 control = kmem_zalloc(controllen, KM_SLEEP); 3275 3276 error = so_opt2cmsg(mp, opt, optlen, 3277 !(flags & MSG_XPG4_2), 3278 control, controllen); 3279 if (error) { 3280 freemsg(mp); 3281 if (msg->msg_namelen != 0) 3282 kmem_free(msg->msg_name, 3283 msg->msg_namelen); 3284 kmem_free(control, controllen); 3285 eprintsoline(so, error); 3286 goto err; 3287 } 3288 msg->msg_control = control; 3289 msg->msg_controllen = controllen; 3290 } 3291 3292 freemsg(mp); 3293 mutex_enter(&so->so_lock); 3294 so_unlock_read(so); /* Clear SOREADLOCKED */ 3295 mutex_exit(&so->so_lock); 3296 return (0); 3297 } 3298 case T_OPTDATA_IND: { 3299 struct T_optdata_req *tdr; 3300 void *opt; 3301 t_uscalar_t optlen; 3302 3303 if ((so->so_state & 3304 (SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK)) && 3305 (uiop->uio_resid != saved_resid) && 3306 !(flags & MSG_PEEK)) { 3307 sorecv_update_oobstate(so); 3308 } 3309 3310 tdr = (struct T_optdata_req *)mp->b_rptr; 3311 optlen = tdr->OPT_length; 3312 if (optlen != 0) { 3313 t_uscalar_t ncontrollen; 3314 /* 3315 * Determine how large cmsg buffer is needed. 3316 */ 3317 opt = sogetoff(mp, 3318 tpr->optdata_ind.OPT_offset, 3319 optlen, __TPI_ALIGN_SIZE); 3320 3321 if (opt == NULL) { 3322 freemsg(mp); 3323 error = EPROTO; 3324 eprintsoline(so, error); 3325 goto err; 3326 } 3327 3328 ncontrollen = so_cmsglen(mp, opt, optlen, 3329 !(flags & MSG_XPG4_2)); 3330 if (controllen != 0) 3331 controllen = ncontrollen; 3332 else if (ncontrollen != 0) 3333 msg->msg_flags |= MSG_CTRUNC; 3334 } else { 3335 controllen = 0; 3336 } 3337 3338 if (controllen != 0) { 3339 /* 3340 * Return control msg to caller. 3341 * Caller handles truncation if length 3342 * exceeds msg_controllen. 3343 */ 3344 control = kmem_zalloc(controllen, KM_SLEEP); 3345 3346 error = so_opt2cmsg(mp, opt, optlen, 3347 !(flags & MSG_XPG4_2), 3348 control, controllen); 3349 if (error) { 3350 freemsg(mp); 3351 kmem_free(control, controllen); 3352 eprintsoline(so, error); 3353 goto err; 3354 } 3355 msg->msg_control = control; 3356 msg->msg_controllen = controllen; 3357 } 3358 3359 /* 3360 * Set msg_flags to MSG_EOR based on 3361 * DATA_flag and MOREDATA. 3362 */ 3363 mutex_enter(&so->so_lock); 3364 so->so_state &= ~SS_SAVEDEOR; 3365 if (!(tpr->data_ind.MORE_flag & 1)) { 3366 if (!(rval.r_val1 & MOREDATA)) 3367 msg->msg_flags |= MSG_EOR; 3368 else 3369 so->so_state |= SS_SAVEDEOR; 3370 } 3371 freemsg(mp); 3372 /* 3373 * If some data was received (i.e. not EOF) and the 3374 * read/recv* has not been satisfied wait for some more. 3375 * Not possible to wait if control info was received. 3376 */ 3377 if ((flags & MSG_WAITALL) && !(msg->msg_flags & MSG_EOR) && 3378 controllen == 0 && 3379 uiop->uio_resid != saved_resid && uiop->uio_resid > 0) { 3380 mutex_exit(&so->so_lock); 3381 first = 0; 3382 pflag = opflag | MSG_NOMARK; 3383 goto retry; 3384 } 3385 so_unlock_read(so); /* Clear SOREADLOCKED */ 3386 mutex_exit(&so->so_lock); 3387 return (0); 3388 } 3389 case T_EXDATA_IND: { 3390 dprintso(so, 1, 3391 ("sotpi_recvmsg: EXDATA_IND counts %d/%d consumed %ld " 3392 "state %s\n", 3393 so->so_oobsigcnt, so->so_oobcnt, 3394 saved_resid - uiop->uio_resid, 3395 pr_state(so->so_state, so->so_mode))); 3396 /* 3397 * kstrgetmsg handles MSGMARK so there is nothing to 3398 * inspect in the T_EXDATA_IND. 3399 * strsock_proto makes the stream head queue the T_EXDATA_IND 3400 * as a separate message with no M_DATA component. Furthermore, 3401 * the stream head does not consolidate M_DATA messages onto 3402 * an MSGMARK'ed message ensuring that the T_EXDATA_IND 3403 * remains a message by itself. This is needed since MSGMARK 3404 * marks both the whole message as well as the last byte 3405 * of the message. 3406 */ 3407 freemsg(mp); 3408 ASSERT(uiop->uio_resid == saved_resid); /* No data */ 3409 if (flags & MSG_PEEK) { 3410 /* 3411 * Even though we are peeking we consume the 3412 * T_EXDATA_IND thereby moving the mark information 3413 * to SS_RCVATMARK. Then the oob code below will 3414 * retry the peeking kstrgetmsg. 3415 * Note that the stream head read queue is 3416 * never flushed without holding SOREADLOCKED 3417 * thus the T_EXDATA_IND can not disappear 3418 * underneath us. 3419 */ 3420 dprintso(so, 1, 3421 ("sotpi_recvmsg: consume EXDATA_IND " 3422 "counts %d/%d state %s\n", 3423 so->so_oobsigcnt, 3424 so->so_oobcnt, 3425 pr_state(so->so_state, so->so_mode))); 3426 3427 pflag = MSG_ANY | MSG_DELAYERROR; 3428 if (so->so_mode & SM_ATOMIC) 3429 pflag |= MSG_DISCARDTAIL; 3430 3431 pri = 0; 3432 mp = NULL; 3433 3434 error = kstrgetmsg(SOTOV(so), &mp, uiop, 3435 &pri, &pflag, (clock_t)-1, &rval); 3436 ASSERT(uiop->uio_resid == saved_resid); 3437 3438 if (error) { 3439 #ifdef SOCK_DEBUG 3440 if (error != EWOULDBLOCK && error != EINTR) { 3441 eprintsoline(so, error); 3442 } 3443 #endif /* SOCK_DEBUG */ 3444 mutex_enter(&so->so_lock); 3445 so_unlock_read(so); /* Clear SOREADLOCKED */ 3446 mutex_exit(&so->so_lock); 3447 return (error); 3448 } 3449 ASSERT(mp); 3450 tpr = (union T_primitives *)mp->b_rptr; 3451 ASSERT(tpr->type == T_EXDATA_IND); 3452 freemsg(mp); 3453 } /* end "if (flags & MSG_PEEK)" */ 3454 3455 /* 3456 * Decrement the number of queued and pending oob. 3457 * 3458 * SS_RCVATMARK is cleared when we read past a mark. 3459 * SS_HAVEOOBDATA is cleared when we've read past the 3460 * last mark. 3461 * SS_OOBPEND is cleared if we've read past the last 3462 * mark and no (new) SIGURG has been posted. 3463 */ 3464 mutex_enter(&so->so_lock); 3465 ASSERT(so_verify_oobstate(so)); 3466 ASSERT(so->so_oobsigcnt >= so->so_oobcnt); 3467 ASSERT(so->so_oobsigcnt > 0); 3468 so->so_oobsigcnt--; 3469 ASSERT(so->so_oobcnt > 0); 3470 so->so_oobcnt--; 3471 /* 3472 * Since the T_EXDATA_IND has been removed from the stream 3473 * head, but we have not read data past the mark, 3474 * sockfs needs to track that the socket is still at the mark. 3475 * 3476 * Since no data was received call kstrgetmsg again to wait 3477 * for data. 3478 */ 3479 so->so_state |= SS_RCVATMARK; 3480 mutex_exit(&so->so_lock); 3481 dprintso(so, 1, 3482 ("sotpi_recvmsg: retry EXDATA_IND counts %d/%d state %s\n", 3483 so->so_oobsigcnt, so->so_oobcnt, 3484 pr_state(so->so_state, so->so_mode))); 3485 pflag = opflag; 3486 goto retry; 3487 } 3488 default: 3489 ASSERT(0); 3490 freemsg(mp); 3491 error = EPROTO; 3492 eprintsoline(so, error); 3493 goto err; 3494 } 3495 /* NOTREACHED */ 3496 err: 3497 mutex_enter(&so->so_lock); 3498 so_unlock_read(so); /* Clear SOREADLOCKED */ 3499 mutex_exit(&so->so_lock); 3500 return (error); 3501 } 3502 3503 /* 3504 * Sending data with options on a datagram socket. 3505 * Assumes caller has verified that SS_ISBOUND etc. are set. 3506 */ 3507 static int 3508 sosend_dgramcmsg(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3509 struct uio *uiop, void *control, t_uscalar_t controllen, int flags) 3510 { 3511 struct T_unitdata_req tudr; 3512 mblk_t *mp; 3513 int error; 3514 void *addr; 3515 socklen_t addrlen; 3516 void *src; 3517 socklen_t srclen; 3518 ssize_t len; 3519 int size; 3520 struct T_opthdr toh; 3521 struct fdbuf *fdbuf; 3522 t_uscalar_t optlen; 3523 void *fds; 3524 int fdlen; 3525 3526 ASSERT(name && namelen); 3527 ASSERT(control && controllen); 3528 3529 len = uiop->uio_resid; 3530 if (len > (ssize_t)so->so_tidu_size) { 3531 return (EMSGSIZE); 3532 } 3533 3534 /* 3535 * For AF_UNIX the destination address is translated to an internal 3536 * name and the source address is passed as an option. 3537 * Also, file descriptors are passed as file pointers in an 3538 * option. 3539 */ 3540 3541 /* 3542 * Length and family checks. 3543 */ 3544 error = so_addr_verify(so, name, namelen); 3545 if (error) { 3546 eprintsoline(so, error); 3547 return (error); 3548 } 3549 if (so->so_family == AF_UNIX) { 3550 if (so->so_state & SS_FADDR_NOXLATE) { 3551 /* 3552 * Already have a transport internal address. Do not 3553 * pass any (transport internal) source address. 3554 */ 3555 addr = name; 3556 addrlen = namelen; 3557 src = NULL; 3558 srclen = 0; 3559 } else { 3560 /* 3561 * Pass the sockaddr_un source address as an option 3562 * and translate the remote address. 3563 * 3564 * Note that this code does not prevent so_laddr_sa 3565 * from changing while it is being used. Thus 3566 * if an unbind+bind occurs concurrently with this 3567 * send the peer might see a partially new and a 3568 * partially old "from" address. 3569 */ 3570 src = so->so_laddr_sa; 3571 srclen = (t_uscalar_t)so->so_laddr_len; 3572 dprintso(so, 1, 3573 ("sosend_dgramcmsg UNIX: srclen %d, src %p\n", 3574 srclen, src)); 3575 error = so_ux_addr_xlate(so, name, namelen, 3576 (flags & MSG_XPG4_2), 3577 &addr, &addrlen); 3578 if (error) { 3579 eprintsoline(so, error); 3580 return (error); 3581 } 3582 } 3583 } else { 3584 addr = name; 3585 addrlen = namelen; 3586 src = NULL; 3587 srclen = 0; 3588 } 3589 optlen = so_optlen(control, controllen, 3590 !(flags & MSG_XPG4_2)); 3591 tudr.PRIM_type = T_UNITDATA_REQ; 3592 tudr.DEST_length = addrlen; 3593 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 3594 if (srclen != 0) 3595 tudr.OPT_length = (t_scalar_t)(optlen + sizeof (toh) + 3596 _TPI_ALIGN_TOPT(srclen)); 3597 else 3598 tudr.OPT_length = optlen; 3599 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 3600 _TPI_ALIGN_TOPT(addrlen)); 3601 3602 size = tudr.OPT_offset + tudr.OPT_length; 3603 3604 /* 3605 * File descriptors only when SM_FDPASSING set. 3606 */ 3607 error = so_getfdopt(control, controllen, 3608 !(flags & MSG_XPG4_2), &fds, &fdlen); 3609 if (error) 3610 return (error); 3611 if (fdlen != -1) { 3612 if (!(so->so_mode & SM_FDPASSING)) 3613 return (EOPNOTSUPP); 3614 3615 error = fdbuf_create(fds, fdlen, &fdbuf); 3616 if (error) 3617 return (error); 3618 mp = fdbuf_allocmsg(size, fdbuf); 3619 } else { 3620 mp = soallocproto(size, _ALLOC_INTR); 3621 if (mp == NULL) { 3622 /* 3623 * Caught a signal waiting for memory. 3624 * Let send* return EINTR. 3625 */ 3626 return (EINTR); 3627 } 3628 } 3629 soappendmsg(mp, &tudr, sizeof (tudr)); 3630 soappendmsg(mp, addr, addrlen); 3631 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 3632 3633 if (fdlen != -1) { 3634 ASSERT(fdbuf != NULL); 3635 toh.level = SOL_SOCKET; 3636 toh.name = SO_FILEP; 3637 toh.len = fdbuf->fd_size + 3638 (t_uscalar_t)sizeof (struct T_opthdr); 3639 toh.status = 0; 3640 soappendmsg(mp, &toh, sizeof (toh)); 3641 soappendmsg(mp, fdbuf, fdbuf->fd_size); 3642 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3643 } 3644 if (srclen != 0) { 3645 /* 3646 * There is a AF_UNIX sockaddr_un to include as a source 3647 * address option. 3648 */ 3649 toh.level = SOL_SOCKET; 3650 toh.name = SO_SRCADDR; 3651 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 3652 toh.status = 0; 3653 soappendmsg(mp, &toh, sizeof (toh)); 3654 soappendmsg(mp, src, srclen); 3655 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 3656 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3657 } 3658 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3659 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); 3660 /* At most 3 bytes left in the message */ 3661 ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE)); 3662 ASSERT(MBLKL(mp) <= (ssize_t)size); 3663 3664 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3665 #ifdef C2_AUDIT 3666 if (audit_active) 3667 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 3668 #endif /* C2_AUDIT */ 3669 3670 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 3671 #ifdef SOCK_DEBUG 3672 if (error) { 3673 eprintsoline(so, error); 3674 } 3675 #endif /* SOCK_DEBUG */ 3676 return (error); 3677 } 3678 3679 /* 3680 * Sending data with options on a connected stream socket. 3681 * Assumes caller has verified that SS_ISCONNECTED is set. 3682 */ 3683 static int 3684 sosend_svccmsg(struct sonode *so, 3685 struct uio *uiop, 3686 int more, 3687 void *control, 3688 t_uscalar_t controllen, 3689 int flags) 3690 { 3691 struct T_optdata_req tdr; 3692 mblk_t *mp; 3693 int error; 3694 ssize_t iosize; 3695 int first = 1; 3696 int size; 3697 struct fdbuf *fdbuf; 3698 t_uscalar_t optlen; 3699 void *fds; 3700 int fdlen; 3701 struct T_opthdr toh; 3702 3703 dprintso(so, 1, 3704 ("sosend_svccmsg: resid %ld bytes\n", uiop->uio_resid)); 3705 3706 /* 3707 * Has to be bound and connected. However, since no locks are 3708 * held the state could have changed after sotpi_sendmsg checked it 3709 * thus it is not possible to ASSERT on the state. 3710 */ 3711 3712 /* Options on connection-oriented only when SM_OPTDATA set. */ 3713 if (!(so->so_mode & SM_OPTDATA)) 3714 return (EOPNOTSUPP); 3715 3716 do { 3717 /* 3718 * Set the MORE flag if uio_resid does not fit in this 3719 * message or if the caller passed in "more". 3720 * Error for transports with zero tidu_size. 3721 */ 3722 tdr.PRIM_type = T_OPTDATA_REQ; 3723 iosize = so->so_tidu_size; 3724 if (iosize <= 0) 3725 return (EMSGSIZE); 3726 if (uiop->uio_resid > iosize) { 3727 tdr.DATA_flag = 1; 3728 } else { 3729 if (more) 3730 tdr.DATA_flag = 1; 3731 else 3732 tdr.DATA_flag = 0; 3733 iosize = uiop->uio_resid; 3734 } 3735 dprintso(so, 1, ("sosend_svccmsg: sending %d, %ld bytes\n", 3736 tdr.DATA_flag, iosize)); 3737 3738 optlen = so_optlen(control, controllen, !(flags & MSG_XPG4_2)); 3739 tdr.OPT_length = optlen; 3740 tdr.OPT_offset = (t_scalar_t)sizeof (tdr); 3741 3742 size = (int)sizeof (tdr) + optlen; 3743 /* 3744 * File descriptors only when SM_FDPASSING set. 3745 */ 3746 error = so_getfdopt(control, controllen, 3747 !(flags & MSG_XPG4_2), &fds, &fdlen); 3748 if (error) 3749 return (error); 3750 if (fdlen != -1) { 3751 if (!(so->so_mode & SM_FDPASSING)) 3752 return (EOPNOTSUPP); 3753 3754 error = fdbuf_create(fds, fdlen, &fdbuf); 3755 if (error) 3756 return (error); 3757 mp = fdbuf_allocmsg(size, fdbuf); 3758 } else { 3759 mp = soallocproto(size, _ALLOC_INTR); 3760 if (mp == NULL) { 3761 /* 3762 * Caught a signal waiting for memory. 3763 * Let send* return EINTR. 3764 */ 3765 return (first ? EINTR : 0); 3766 } 3767 } 3768 soappendmsg(mp, &tdr, sizeof (tdr)); 3769 3770 if (fdlen != -1) { 3771 ASSERT(fdbuf != NULL); 3772 toh.level = SOL_SOCKET; 3773 toh.name = SO_FILEP; 3774 toh.len = fdbuf->fd_size + 3775 (t_uscalar_t)sizeof (struct T_opthdr); 3776 toh.status = 0; 3777 soappendmsg(mp, &toh, sizeof (toh)); 3778 soappendmsg(mp, fdbuf, fdbuf->fd_size); 3779 ASSERT(__TPI_TOPT_ISALIGNED(mp->b_wptr)); 3780 } 3781 so_cmsg2opt(control, controllen, !(flags & MSG_XPG4_2), mp); 3782 /* At most 3 bytes left in the message */ 3783 ASSERT(MBLKL(mp) > (ssize_t)(size - __TPI_ALIGN_SIZE)); 3784 ASSERT(MBLKL(mp) <= (ssize_t)size); 3785 3786 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3787 3788 error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 3789 0, MSG_BAND, 0); 3790 if (error) { 3791 if (!first && error == EWOULDBLOCK) 3792 return (0); 3793 eprintsoline(so, error); 3794 return (error); 3795 } 3796 control = NULL; 3797 first = 0; 3798 if (uiop->uio_resid > 0) { 3799 /* 3800 * Recheck for fatal errors. Fail write even though 3801 * some data have been written. This is consistent 3802 * with strwrite semantics and BSD sockets semantics. 3803 */ 3804 if (so->so_state & SS_CANTSENDMORE) { 3805 tsignal(curthread, SIGPIPE); 3806 eprintsoline(so, error); 3807 return (EPIPE); 3808 } 3809 if (so->so_error != 0) { 3810 mutex_enter(&so->so_lock); 3811 error = sogeterr(so); 3812 mutex_exit(&so->so_lock); 3813 if (error != 0) { 3814 eprintsoline(so, error); 3815 return (error); 3816 } 3817 } 3818 } 3819 } while (uiop->uio_resid > 0); 3820 return (0); 3821 } 3822 3823 /* 3824 * Sending data on a datagram socket. 3825 * Assumes caller has verified that SS_ISBOUND etc. are set. 3826 * 3827 * For AF_UNIX the destination address is translated to an internal 3828 * name and the source address is passed as an option. 3829 */ 3830 int 3831 sosend_dgram(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3832 struct uio *uiop, int flags) 3833 { 3834 struct T_unitdata_req tudr; 3835 mblk_t *mp; 3836 int error; 3837 void *addr; 3838 socklen_t addrlen; 3839 void *src; 3840 socklen_t srclen; 3841 ssize_t len; 3842 3843 ASSERT(name != NULL && namelen != 0); 3844 3845 len = uiop->uio_resid; 3846 if (len > so->so_tidu_size) { 3847 error = EMSGSIZE; 3848 goto done; 3849 } 3850 3851 /* Length and family checks */ 3852 error = so_addr_verify(so, name, namelen); 3853 if (error != 0) 3854 goto done; 3855 3856 if (so->so_state & SS_DIRECT) 3857 return (sodgram_direct(so, name, namelen, uiop, flags)); 3858 3859 if (so->so_family == AF_UNIX) { 3860 if (so->so_state & SS_FADDR_NOXLATE) { 3861 /* 3862 * Already have a transport internal address. Do not 3863 * pass any (transport internal) source address. 3864 */ 3865 addr = name; 3866 addrlen = namelen; 3867 src = NULL; 3868 srclen = 0; 3869 } else { 3870 /* 3871 * Pass the sockaddr_un source address as an option 3872 * and translate the remote address. 3873 * 3874 * Note that this code does not prevent so_laddr_sa 3875 * from changing while it is being used. Thus 3876 * if an unbind+bind occurs concurrently with this 3877 * send the peer might see a partially new and a 3878 * partially old "from" address. 3879 */ 3880 src = so->so_laddr_sa; 3881 srclen = (socklen_t)so->so_laddr_len; 3882 dprintso(so, 1, 3883 ("sosend_dgram UNIX: srclen %d, src %p\n", 3884 srclen, src)); 3885 error = so_ux_addr_xlate(so, name, namelen, 3886 (flags & MSG_XPG4_2), 3887 &addr, &addrlen); 3888 if (error) { 3889 eprintsoline(so, error); 3890 goto done; 3891 } 3892 } 3893 } else { 3894 addr = name; 3895 addrlen = namelen; 3896 src = NULL; 3897 srclen = 0; 3898 } 3899 tudr.PRIM_type = T_UNITDATA_REQ; 3900 tudr.DEST_length = addrlen; 3901 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 3902 if (srclen == 0) { 3903 tudr.OPT_length = 0; 3904 tudr.OPT_offset = 0; 3905 3906 mp = soallocproto2(&tudr, sizeof (tudr), 3907 addr, addrlen, 0, _ALLOC_INTR); 3908 if (mp == NULL) { 3909 /* 3910 * Caught a signal waiting for memory. 3911 * Let send* return EINTR. 3912 */ 3913 error = EINTR; 3914 goto done; 3915 } 3916 } else { 3917 /* 3918 * There is a AF_UNIX sockaddr_un to include as a source 3919 * address option. 3920 */ 3921 struct T_opthdr toh; 3922 ssize_t size; 3923 3924 tudr.OPT_length = (t_scalar_t)(sizeof (toh) + 3925 _TPI_ALIGN_TOPT(srclen)); 3926 tudr.OPT_offset = (t_scalar_t)(sizeof (tudr) + 3927 _TPI_ALIGN_TOPT(addrlen)); 3928 3929 toh.level = SOL_SOCKET; 3930 toh.name = SO_SRCADDR; 3931 toh.len = (t_uscalar_t)(srclen + sizeof (struct T_opthdr)); 3932 toh.status = 0; 3933 3934 size = tudr.OPT_offset + tudr.OPT_length; 3935 mp = soallocproto2(&tudr, sizeof (tudr), 3936 addr, addrlen, size, _ALLOC_INTR); 3937 if (mp == NULL) { 3938 /* 3939 * Caught a signal waiting for memory. 3940 * Let send* return EINTR. 3941 */ 3942 error = EINTR; 3943 goto done; 3944 } 3945 mp->b_wptr += _TPI_ALIGN_TOPT(addrlen) - addrlen; 3946 soappendmsg(mp, &toh, sizeof (toh)); 3947 soappendmsg(mp, src, srclen); 3948 mp->b_wptr += _TPI_ALIGN_TOPT(srclen) - srclen; 3949 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 3950 } 3951 3952 #ifdef C2_AUDIT 3953 if (audit_active) 3954 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 3955 #endif /* C2_AUDIT */ 3956 3957 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 3958 done: 3959 #ifdef SOCK_DEBUG 3960 if (error) { 3961 eprintsoline(so, error); 3962 } 3963 #endif /* SOCK_DEBUG */ 3964 return (error); 3965 } 3966 3967 /* 3968 * Sending data on a connected stream socket. 3969 * Assumes caller has verified that SS_ISCONNECTED is set. 3970 */ 3971 int 3972 sosend_svc(struct sonode *so, 3973 struct uio *uiop, 3974 t_scalar_t prim, 3975 int more, 3976 int sflag) 3977 { 3978 struct T_data_req tdr; 3979 mblk_t *mp; 3980 int error; 3981 ssize_t iosize; 3982 int first = 1; 3983 3984 dprintso(so, 1, 3985 ("sosend_svc: %p, resid %ld bytes, prim %d, sflag 0x%x\n", 3986 so, uiop->uio_resid, prim, sflag)); 3987 3988 /* 3989 * Has to be bound and connected. However, since no locks are 3990 * held the state could have changed after sotpi_sendmsg checked it 3991 * thus it is not possible to ASSERT on the state. 3992 */ 3993 3994 do { 3995 /* 3996 * Set the MORE flag if uio_resid does not fit in this 3997 * message or if the caller passed in "more". 3998 * Error for transports with zero tidu_size. 3999 */ 4000 tdr.PRIM_type = prim; 4001 iosize = so->so_tidu_size; 4002 if (iosize <= 0) 4003 return (EMSGSIZE); 4004 if (uiop->uio_resid > iosize) { 4005 tdr.MORE_flag = 1; 4006 } else { 4007 if (more) 4008 tdr.MORE_flag = 1; 4009 else 4010 tdr.MORE_flag = 0; 4011 iosize = uiop->uio_resid; 4012 } 4013 dprintso(so, 1, ("sosend_svc: sending 0x%x %d, %ld bytes\n", 4014 prim, tdr.MORE_flag, iosize)); 4015 mp = soallocproto1(&tdr, sizeof (tdr), 0, _ALLOC_INTR); 4016 if (mp == NULL) { 4017 /* 4018 * Caught a signal waiting for memory. 4019 * Let send* return EINTR. 4020 */ 4021 if (first) 4022 return (EINTR); 4023 else 4024 return (0); 4025 } 4026 4027 error = kstrputmsg(SOTOV(so), mp, uiop, iosize, 4028 0, sflag | MSG_BAND, 0); 4029 if (error) { 4030 if (!first && error == EWOULDBLOCK) 4031 return (0); 4032 eprintsoline(so, error); 4033 return (error); 4034 } 4035 first = 0; 4036 if (uiop->uio_resid > 0) { 4037 /* 4038 * Recheck for fatal errors. Fail write even though 4039 * some data have been written. This is consistent 4040 * with strwrite semantics and BSD sockets semantics. 4041 */ 4042 if (so->so_state & SS_CANTSENDMORE) { 4043 tsignal(curthread, SIGPIPE); 4044 eprintsoline(so, error); 4045 return (EPIPE); 4046 } 4047 if (so->so_error != 0) { 4048 mutex_enter(&so->so_lock); 4049 error = sogeterr(so); 4050 mutex_exit(&so->so_lock); 4051 if (error != 0) { 4052 eprintsoline(so, error); 4053 return (error); 4054 } 4055 } 4056 } 4057 } while (uiop->uio_resid > 0); 4058 return (0); 4059 } 4060 4061 /* 4062 * Check the state for errors and call the appropriate send function. 4063 * 4064 * If MSG_DONTROUTE is set (and SO_DONTROUTE isn't already set) 4065 * this function issues a setsockopt to toggle SO_DONTROUTE before and 4066 * after sending the message. 4067 */ 4068 static int 4069 sotpi_sendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 4070 { 4071 int so_state; 4072 int so_mode; 4073 int error; 4074 struct sockaddr *name; 4075 t_uscalar_t namelen; 4076 int dontroute; 4077 int flags; 4078 4079 dprintso(so, 1, ("sotpi_sendmsg(%p, %p, 0x%x) state %s, error %d\n", 4080 so, msg, msg->msg_flags, 4081 pr_state(so->so_state, so->so_mode), so->so_error)); 4082 4083 mutex_enter(&so->so_lock); 4084 so_state = so->so_state; 4085 4086 if (so_state & SS_CANTSENDMORE) { 4087 mutex_exit(&so->so_lock); 4088 tsignal(curthread, SIGPIPE); 4089 return (EPIPE); 4090 } 4091 4092 if (so->so_error != 0) { 4093 error = sogeterr(so); 4094 if (error != 0) { 4095 mutex_exit(&so->so_lock); 4096 return (error); 4097 } 4098 } 4099 4100 name = (struct sockaddr *)msg->msg_name; 4101 namelen = msg->msg_namelen; 4102 4103 so_mode = so->so_mode; 4104 4105 if (name == NULL) { 4106 if (!(so_state & SS_ISCONNECTED)) { 4107 mutex_exit(&so->so_lock); 4108 if (so_mode & SM_CONNREQUIRED) 4109 return (ENOTCONN); 4110 else 4111 return (EDESTADDRREQ); 4112 } 4113 if (so_mode & SM_CONNREQUIRED) { 4114 name = NULL; 4115 namelen = 0; 4116 } else { 4117 /* 4118 * Note that this code does not prevent so_faddr_sa 4119 * from changing while it is being used. Thus 4120 * if an "unconnect"+connect occurs concurrently with 4121 * this send the datagram might be delivered to a 4122 * garbaled address. 4123 */ 4124 ASSERT(so->so_faddr_sa); 4125 name = so->so_faddr_sa; 4126 namelen = (t_uscalar_t)so->so_faddr_len; 4127 } 4128 } else { 4129 if (!(so_state & SS_ISCONNECTED) && 4130 (so_mode & SM_CONNREQUIRED)) { 4131 /* Required but not connected */ 4132 mutex_exit(&so->so_lock); 4133 return (ENOTCONN); 4134 } 4135 /* 4136 * Ignore the address on connection-oriented sockets. 4137 * Just like BSD this code does not generate an error for 4138 * TCP (a CONNREQUIRED socket) when sending to an address 4139 * passed in with sendto/sendmsg. Instead the data is 4140 * delivered on the connection as if no address had been 4141 * supplied. 4142 */ 4143 if ((so_state & SS_ISCONNECTED) && 4144 !(so_mode & SM_CONNREQUIRED)) { 4145 mutex_exit(&so->so_lock); 4146 return (EISCONN); 4147 } 4148 if (!(so_state & SS_ISBOUND)) { 4149 so_lock_single(so); /* Set SOLOCKED */ 4150 error = sotpi_bind(so, NULL, 0, 4151 _SOBIND_UNSPEC|_SOBIND_LOCK_HELD); 4152 so_unlock_single(so, SOLOCKED); 4153 if (error) { 4154 mutex_exit(&so->so_lock); 4155 eprintsoline(so, error); 4156 return (error); 4157 } 4158 } 4159 /* 4160 * Handle delayed datagram errors. These are only queued 4161 * when the application sets SO_DGRAM_ERRIND. 4162 * Return the error if we are sending to the address 4163 * that was returned in the last T_UDERROR_IND. 4164 * If sending to some other address discard the delayed 4165 * error indication. 4166 */ 4167 if (so->so_delayed_error) { 4168 struct T_uderror_ind *tudi; 4169 void *addr; 4170 t_uscalar_t addrlen; 4171 boolean_t match = B_FALSE; 4172 4173 ASSERT(so->so_eaddr_mp); 4174 error = so->so_delayed_error; 4175 so->so_delayed_error = 0; 4176 tudi = (struct T_uderror_ind *)so->so_eaddr_mp->b_rptr; 4177 addrlen = tudi->DEST_length; 4178 addr = sogetoff(so->so_eaddr_mp, 4179 tudi->DEST_offset, 4180 addrlen, 1); 4181 ASSERT(addr); /* Checked by strsock_proto */ 4182 switch (so->so_family) { 4183 case AF_INET: { 4184 /* Compare just IP address and port */ 4185 sin_t *sin1 = (sin_t *)name; 4186 sin_t *sin2 = (sin_t *)addr; 4187 4188 if (addrlen == sizeof (sin_t) && 4189 namelen == addrlen && 4190 sin1->sin_port == sin2->sin_port && 4191 sin1->sin_addr.s_addr == 4192 sin2->sin_addr.s_addr) 4193 match = B_TRUE; 4194 break; 4195 } 4196 case AF_INET6: { 4197 /* Compare just IP address and port. Not flow */ 4198 sin6_t *sin1 = (sin6_t *)name; 4199 sin6_t *sin2 = (sin6_t *)addr; 4200 4201 if (addrlen == sizeof (sin6_t) && 4202 namelen == addrlen && 4203 sin1->sin6_port == sin2->sin6_port && 4204 IN6_ARE_ADDR_EQUAL(&sin1->sin6_addr, 4205 &sin2->sin6_addr)) 4206 match = B_TRUE; 4207 break; 4208 } 4209 case AF_UNIX: 4210 default: 4211 if (namelen == addrlen && 4212 bcmp(name, addr, namelen) == 0) 4213 match = B_TRUE; 4214 } 4215 if (match) { 4216 freemsg(so->so_eaddr_mp); 4217 so->so_eaddr_mp = NULL; 4218 mutex_exit(&so->so_lock); 4219 #ifdef DEBUG 4220 dprintso(so, 0, 4221 ("sockfs delayed error %d for %s\n", 4222 error, 4223 pr_addr(so->so_family, name, namelen))); 4224 #endif /* DEBUG */ 4225 return (error); 4226 } 4227 freemsg(so->so_eaddr_mp); 4228 so->so_eaddr_mp = NULL; 4229 } 4230 } 4231 mutex_exit(&so->so_lock); 4232 4233 flags = msg->msg_flags; 4234 dontroute = 0; 4235 if ((flags & MSG_DONTROUTE) && !(so->so_options & SO_DONTROUTE)) { 4236 uint32_t val; 4237 4238 val = 1; 4239 error = sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, 4240 &val, (t_uscalar_t)sizeof (val)); 4241 if (error) 4242 return (error); 4243 dontroute = 1; 4244 } 4245 4246 if ((flags & MSG_OOB) && !(so_mode & SM_EXDATA)) { 4247 error = EOPNOTSUPP; 4248 goto done; 4249 } 4250 if (msg->msg_controllen != 0) { 4251 if (!(so_mode & SM_CONNREQUIRED)) { 4252 error = sosend_dgramcmsg(so, name, namelen, uiop, 4253 msg->msg_control, msg->msg_controllen, flags); 4254 } else { 4255 if (flags & MSG_OOB) { 4256 /* Can't generate T_EXDATA_REQ with options */ 4257 error = EOPNOTSUPP; 4258 goto done; 4259 } 4260 error = sosend_svccmsg(so, uiop, 4261 !(flags & MSG_EOR), 4262 msg->msg_control, msg->msg_controllen, 4263 flags); 4264 } 4265 goto done; 4266 } 4267 4268 if (!(so_mode & SM_CONNREQUIRED)) { 4269 /* 4270 * If there is no SO_DONTROUTE to turn off return immediately 4271 * from send_dgram. This can allow tail-call optimizations. 4272 */ 4273 if (!dontroute) { 4274 return (sosend_dgram(so, name, namelen, uiop, flags)); 4275 } 4276 error = sosend_dgram(so, name, namelen, uiop, flags); 4277 } else { 4278 t_scalar_t prim; 4279 int sflag; 4280 4281 /* Ignore msg_name in the connected state */ 4282 if (flags & MSG_OOB) { 4283 prim = T_EXDATA_REQ; 4284 /* 4285 * Send down T_EXDATA_REQ even if there is flow 4286 * control for data. 4287 */ 4288 sflag = MSG_IGNFLOW; 4289 } else { 4290 if (so_mode & SM_BYTESTREAM) { 4291 /* Byte stream transport - use write */ 4292 4293 dprintso(so, 1, ("sotpi_sendmsg: write\n")); 4294 /* 4295 * If there is no SO_DONTROUTE to turn off, 4296 * SS_DIRECT is on, and there is no flow 4297 * control, we can take the fast path. 4298 */ 4299 if (!dontroute && 4300 (so_state & SS_DIRECT) && 4301 canputnext(SOTOV(so)->v_stream->sd_wrq)) { 4302 return (sostream_direct(so, uiop, 4303 NULL, CRED())); 4304 } 4305 error = strwrite(SOTOV(so), uiop, CRED()); 4306 goto done; 4307 } 4308 prim = T_DATA_REQ; 4309 sflag = 0; 4310 } 4311 /* 4312 * If there is no SO_DONTROUTE to turn off return immediately 4313 * from sosend_svc. This can allow tail-call optimizations. 4314 */ 4315 if (!dontroute) 4316 return (sosend_svc(so, uiop, prim, 4317 !(flags & MSG_EOR), sflag)); 4318 error = sosend_svc(so, uiop, prim, 4319 !(flags & MSG_EOR), sflag); 4320 } 4321 ASSERT(dontroute); 4322 done: 4323 if (dontroute) { 4324 uint32_t val; 4325 4326 val = 0; 4327 (void) sotpi_setsockopt(so, SOL_SOCKET, SO_DONTROUTE, 4328 &val, (t_uscalar_t)sizeof (val)); 4329 } 4330 return (error); 4331 } 4332 4333 /* 4334 * Sending data on a datagram socket. 4335 * Assumes caller has verified that SS_ISBOUND etc. are set. 4336 */ 4337 /* ARGSUSED */ 4338 static int 4339 sodgram_direct(struct sonode *so, struct sockaddr *name, 4340 socklen_t namelen, struct uio *uiop, int flags) 4341 { 4342 struct T_unitdata_req tudr; 4343 mblk_t *mp = NULL; 4344 int error = 0; 4345 void *addr; 4346 socklen_t addrlen; 4347 ssize_t len; 4348 struct stdata *stp = SOTOV(so)->v_stream; 4349 int so_state; 4350 queue_t *udp_wq; 4351 boolean_t connected; 4352 mblk_t *mpdata = NULL; 4353 4354 ASSERT(name != NULL && namelen != 0); 4355 ASSERT(!(so->so_mode & SM_CONNREQUIRED)); 4356 ASSERT(!(so->so_mode & SM_EXDATA)); 4357 ASSERT(so->so_family == AF_INET || so->so_family == AF_INET6); 4358 ASSERT(SOTOV(so)->v_type == VSOCK); 4359 4360 /* Caller checked for proper length */ 4361 len = uiop->uio_resid; 4362 ASSERT(len <= so->so_tidu_size); 4363 4364 /* Length and family checks have been done by caller */ 4365 ASSERT(name->sa_family == so->so_family); 4366 ASSERT(so->so_family == AF_INET || 4367 (namelen == (socklen_t)sizeof (struct sockaddr_in6))); 4368 ASSERT(so->so_family == AF_INET6 || 4369 (namelen == (socklen_t)sizeof (struct sockaddr_in))); 4370 4371 addr = name; 4372 addrlen = namelen; 4373 4374 if (stp->sd_sidp != NULL && 4375 (error = straccess(stp, JCWRITE)) != 0) 4376 goto done; 4377 4378 so_state = so->so_state; 4379 4380 connected = so_state & SS_ISCONNECTED; 4381 if (!connected) { 4382 tudr.PRIM_type = T_UNITDATA_REQ; 4383 tudr.DEST_length = addrlen; 4384 tudr.DEST_offset = (t_scalar_t)sizeof (tudr); 4385 tudr.OPT_length = 0; 4386 tudr.OPT_offset = 0; 4387 4388 mp = soallocproto2(&tudr, sizeof (tudr), addr, addrlen, 0, 4389 _ALLOC_INTR); 4390 if (mp == NULL) { 4391 /* 4392 * Caught a signal waiting for memory. 4393 * Let send* return EINTR. 4394 */ 4395 error = EINTR; 4396 goto done; 4397 } 4398 } 4399 4400 /* 4401 * For UDP we don't break up the copyin into smaller pieces 4402 * as in the TCP case. That means if ENOMEM is returned by 4403 * mcopyinuio() then the uio vector has not been modified at 4404 * all and we fallback to either strwrite() or kstrputmsg() 4405 * below. Note also that we never generate priority messages 4406 * from here. 4407 */ 4408 udp_wq = stp->sd_wrq->q_next; 4409 if (canput(udp_wq) && 4410 (mpdata = mcopyinuio(stp, uiop, -1, -1, &error)) != NULL) { 4411 ASSERT(DB_TYPE(mpdata) == M_DATA); 4412 ASSERT(uiop->uio_resid == 0); 4413 if (!connected) 4414 linkb(mp, mpdata); 4415 else 4416 mp = mpdata; 4417 #ifdef C2_AUDIT 4418 if (audit_active) 4419 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 4420 #endif /* C2_AUDIT */ 4421 4422 udp_wput(udp_wq, mp); 4423 return (0); 4424 } 4425 4426 ASSERT(mpdata == NULL); 4427 if (error != 0 && error != ENOMEM) { 4428 freemsg(mp); 4429 return (error); 4430 } 4431 4432 /* 4433 * For connected, let strwrite() handle the blocking case. 4434 * Otherwise we fall thru and use kstrputmsg(). 4435 */ 4436 if (connected) 4437 return (strwrite(SOTOV(so), uiop, CRED())); 4438 4439 #ifdef C2_AUDIT 4440 if (audit_active) 4441 audit_sock(T_UNITDATA_REQ, strvp2wq(SOTOV(so)), mp, 0); 4442 #endif /* C2_AUDIT */ 4443 4444 error = kstrputmsg(SOTOV(so), mp, uiop, len, 0, MSG_BAND, 0); 4445 done: 4446 #ifdef SOCK_DEBUG 4447 if (error != 0) { 4448 eprintsoline(so, error); 4449 } 4450 #endif /* SOCK_DEBUG */ 4451 return (error); 4452 } 4453 4454 int 4455 sostream_direct(struct sonode *so, struct uio *uiop, mblk_t *mp, cred_t *cr) 4456 { 4457 struct stdata *stp = SOTOV(so)->v_stream; 4458 ssize_t iosize, rmax, maxblk; 4459 queue_t *tcp_wq = stp->sd_wrq->q_next; 4460 mblk_t *newmp; 4461 int error = 0, wflag = 0; 4462 4463 ASSERT(so->so_mode & SM_BYTESTREAM); 4464 ASSERT(SOTOV(so)->v_type == VSOCK); 4465 4466 if (stp->sd_sidp != NULL && 4467 (error = straccess(stp, JCWRITE)) != 0) 4468 return (error); 4469 4470 if (uiop == NULL) { 4471 /* 4472 * kstrwritemp() should have checked sd_flag and 4473 * flow-control before coming here. If we end up 4474 * here it means that we can simply pass down the 4475 * data to tcp. 4476 */ 4477 ASSERT(mp != NULL); 4478 if (stp->sd_wputdatafunc != NULL) { 4479 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, 4480 NULL, NULL, NULL); 4481 if (newmp == NULL) { 4482 /* The caller will free mp */ 4483 return (ECOMM); 4484 } 4485 mp = newmp; 4486 } 4487 tcp_wput(tcp_wq, mp); 4488 return (0); 4489 } 4490 4491 /* Fallback to strwrite() to do proper error handling */ 4492 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY)) 4493 return (strwrite(SOTOV(so), uiop, cr)); 4494 4495 rmax = stp->sd_qn_maxpsz; 4496 ASSERT(rmax >= 0 || rmax == INFPSZ); 4497 if (rmax == 0 || uiop->uio_resid <= 0) 4498 return (0); 4499 4500 if (rmax == INFPSZ) 4501 rmax = uiop->uio_resid; 4502 4503 maxblk = stp->sd_maxblk; 4504 4505 for (;;) { 4506 iosize = MIN(uiop->uio_resid, rmax); 4507 4508 mp = mcopyinuio(stp, uiop, iosize, maxblk, &error); 4509 if (mp == NULL) { 4510 /* 4511 * Fallback to strwrite() for ENOMEM; if this 4512 * is our first time in this routine and the uio 4513 * vector has not been modified, we will end up 4514 * calling strwrite() without any flag set. 4515 */ 4516 if (error == ENOMEM) 4517 goto slow_send; 4518 else 4519 return (error); 4520 } 4521 ASSERT(uiop->uio_resid >= 0); 4522 /* 4523 * If mp is non-NULL and ENOMEM is set, it means that 4524 * mcopyinuio() was able to break down some of the user 4525 * data into one or more mblks. Send the partial data 4526 * to tcp and let the rest be handled in strwrite(). 4527 */ 4528 ASSERT(error == 0 || error == ENOMEM); 4529 if (stp->sd_wputdatafunc != NULL) { 4530 newmp = (stp->sd_wputdatafunc)(SOTOV(so), mp, NULL, 4531 NULL, NULL, NULL); 4532 if (newmp == NULL) { 4533 /* The caller will free mp */ 4534 return (ECOMM); 4535 } 4536 mp = newmp; 4537 } 4538 tcp_wput(tcp_wq, mp); 4539 4540 wflag |= NOINTR; 4541 4542 if (uiop->uio_resid == 0) { /* No more data; we're done */ 4543 ASSERT(error == 0); 4544 break; 4545 } else if (error == ENOMEM || !canput(tcp_wq) || (stp->sd_flag & 4546 (STWRERR|STRHUP|STPLEX|STRDELIM|OLDNDELAY))) { 4547 slow_send: 4548 /* 4549 * We were able to send down partial data using 4550 * the direct call interface, but are now relying 4551 * on strwrite() to handle the non-fastpath cases. 4552 * If the socket is blocking we will sleep in 4553 * strwaitq() until write is permitted, otherwise, 4554 * we will need to return the amount of bytes 4555 * written so far back to the app. This is the 4556 * reason why we pass NOINTR flag to strwrite() 4557 * for non-blocking socket, because we don't want 4558 * to return EAGAIN when portion of the user data 4559 * has actually been sent down. 4560 */ 4561 return (strwrite_common(SOTOV(so), uiop, cr, wflag)); 4562 } 4563 } 4564 return (0); 4565 } 4566 4567 /* 4568 * Update so_faddr by asking the transport (unless AF_UNIX). 4569 */ 4570 int 4571 sotpi_getpeername(struct sonode *so) 4572 { 4573 struct strbuf strbuf; 4574 int error = 0, res; 4575 void *addr; 4576 t_uscalar_t addrlen; 4577 k_sigset_t smask; 4578 4579 dprintso(so, 1, ("sotpi_getpeername(%p) %s\n", 4580 so, pr_state(so->so_state, so->so_mode))); 4581 4582 mutex_enter(&so->so_lock); 4583 so_lock_single(so); /* Set SOLOCKED */ 4584 if (!(so->so_state & SS_ISCONNECTED)) { 4585 error = ENOTCONN; 4586 goto done; 4587 } 4588 /* Added this check for X/Open */ 4589 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 4590 error = EINVAL; 4591 if (xnet_check_print) { 4592 printf("sockfs: X/Open getpeername check => EINVAL\n"); 4593 } 4594 goto done; 4595 } 4596 #ifdef DEBUG 4597 dprintso(so, 1, ("sotpi_getpeername (local): %s\n", 4598 pr_addr(so->so_family, so->so_faddr_sa, 4599 (t_uscalar_t)so->so_faddr_len))); 4600 #endif /* DEBUG */ 4601 4602 if (so->so_family == AF_UNIX) { 4603 /* Transport has different name space - return local info */ 4604 error = 0; 4605 goto done; 4606 } 4607 4608 ASSERT(so->so_faddr_sa); 4609 /* Allocate local buffer to use with ioctl */ 4610 addrlen = (t_uscalar_t)so->so_faddr_maxlen; 4611 mutex_exit(&so->so_lock); 4612 addr = kmem_alloc(addrlen, KM_SLEEP); 4613 4614 /* 4615 * Issue TI_GETPEERNAME with signals masked. 4616 * Put the result in so_faddr_sa so that getpeername works after 4617 * a shutdown(output). 4618 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted 4619 * back to the socket. 4620 */ 4621 strbuf.buf = addr; 4622 strbuf.maxlen = addrlen; 4623 strbuf.len = 0; 4624 4625 sigintr(&smask, 0); 4626 res = 0; 4627 ASSERT(CRED()); 4628 error = strioctl(SOTOV(so), TI_GETPEERNAME, (intptr_t)&strbuf, 4629 0, K_TO_K, CRED(), &res); 4630 sigunintr(&smask); 4631 4632 mutex_enter(&so->so_lock); 4633 /* 4634 * If there is an error record the error in so_error put don't fail 4635 * the getpeername. Instead fallback on the recorded 4636 * so->so_faddr_sa. 4637 */ 4638 if (error) { 4639 /* 4640 * Various stream head errors can be returned to the ioctl. 4641 * However, it is impossible to determine which ones of 4642 * these are really socket level errors that were incorrectly 4643 * consumed by the ioctl. Thus this code silently ignores the 4644 * error - to code explicitly does not reinstate the error 4645 * using soseterror(). 4646 * Experiments have shows that at least this set of 4647 * errors are reported and should not be reinstated on the 4648 * socket: 4649 * EINVAL E.g. if an I_LINK was in effect when 4650 * getpeername was called. 4651 * EPIPE The ioctl error semantics prefer the write 4652 * side error over the read side error. 4653 * ENOTCONN The transport just got disconnected but 4654 * sockfs had not yet seen the T_DISCON_IND 4655 * when issuing the ioctl. 4656 */ 4657 error = 0; 4658 } else if (res == 0 && strbuf.len > 0 && 4659 (so->so_state & SS_ISCONNECTED)) { 4660 ASSERT(strbuf.len <= (int)so->so_faddr_maxlen); 4661 so->so_faddr_len = (socklen_t)strbuf.len; 4662 bcopy(addr, so->so_faddr_sa, so->so_faddr_len); 4663 so->so_state |= SS_FADDR_VALID; 4664 } 4665 kmem_free(addr, addrlen); 4666 #ifdef DEBUG 4667 dprintso(so, 1, ("sotpi_getpeername (tp): %s\n", 4668 pr_addr(so->so_family, so->so_faddr_sa, 4669 (t_uscalar_t)so->so_faddr_len))); 4670 #endif /* DEBUG */ 4671 done: 4672 so_unlock_single(so, SOLOCKED); 4673 mutex_exit(&so->so_lock); 4674 return (error); 4675 } 4676 4677 /* 4678 * Update so_laddr by asking the transport (unless AF_UNIX). 4679 */ 4680 int 4681 sotpi_getsockname(struct sonode *so) 4682 { 4683 struct strbuf strbuf; 4684 int error = 0, res; 4685 void *addr; 4686 t_uscalar_t addrlen; 4687 k_sigset_t smask; 4688 4689 dprintso(so, 1, ("sotpi_getsockname(%p) %s\n", 4690 so, pr_state(so->so_state, so->so_mode))); 4691 4692 mutex_enter(&so->so_lock); 4693 so_lock_single(so); /* Set SOLOCKED */ 4694 if (!(so->so_state & SS_ISBOUND) && so->so_family != AF_UNIX) { 4695 /* Return an all zero address except for the family */ 4696 if (so->so_family == AF_INET) 4697 so->so_laddr_len = (socklen_t)sizeof (sin_t); 4698 else if (so->so_family == AF_INET6) 4699 so->so_laddr_len = (socklen_t)sizeof (sin6_t); 4700 ASSERT(so->so_laddr_len <= so->so_laddr_maxlen); 4701 bzero(so->so_laddr_sa, so->so_laddr_len); 4702 /* 4703 * Can not assume there is a sa_family for all 4704 * protocol families. 4705 */ 4706 if (so->so_family == AF_INET || so->so_family == AF_INET6) 4707 so->so_laddr_sa->sa_family = so->so_family; 4708 } 4709 #ifdef DEBUG 4710 dprintso(so, 1, ("sotpi_getsockname (local): %s\n", 4711 pr_addr(so->so_family, so->so_laddr_sa, 4712 (t_uscalar_t)so->so_laddr_len))); 4713 #endif /* DEBUG */ 4714 if (so->so_family == AF_UNIX) { 4715 /* Transport has different name space - return local info */ 4716 error = 0; 4717 goto done; 4718 } 4719 if (!(so->so_state & SS_ISBOUND)) { 4720 /* If not bound, then nothing to return. */ 4721 error = 0; 4722 goto done; 4723 } 4724 /* Allocate local buffer to use with ioctl */ 4725 addrlen = (t_uscalar_t)so->so_laddr_maxlen; 4726 mutex_exit(&so->so_lock); 4727 addr = kmem_alloc(addrlen, KM_SLEEP); 4728 4729 /* 4730 * Issue TI_GETMYNAME with signals masked. 4731 * Put the result in so_laddr_sa so that getsockname works after 4732 * a shutdown(output). 4733 * If the ioctl fails (e.g. due to a ECONNRESET) the error is reposted 4734 * back to the socket. 4735 */ 4736 strbuf.buf = addr; 4737 strbuf.maxlen = addrlen; 4738 strbuf.len = 0; 4739 4740 sigintr(&smask, 0); 4741 res = 0; 4742 ASSERT(CRED()); 4743 error = strioctl(SOTOV(so), TI_GETMYNAME, (intptr_t)&strbuf, 4744 0, K_TO_K, CRED(), &res); 4745 sigunintr(&smask); 4746 4747 mutex_enter(&so->so_lock); 4748 /* 4749 * If there is an error record the error in so_error put don't fail 4750 * the getsockname. Instead fallback on the recorded 4751 * so->so_laddr_sa. 4752 */ 4753 if (error) { 4754 /* 4755 * Various stream head errors can be returned to the ioctl. 4756 * However, it is impossible to determine which ones of 4757 * these are really socket level errors that were incorrectly 4758 * consumed by the ioctl. Thus this code silently ignores the 4759 * error - to code explicitly does not reinstate the error 4760 * using soseterror(). 4761 * Experiments have shows that at least this set of 4762 * errors are reported and should not be reinstated on the 4763 * socket: 4764 * EINVAL E.g. if an I_LINK was in effect when 4765 * getsockname was called. 4766 * EPIPE The ioctl error semantics prefer the write 4767 * side error over the read side error. 4768 */ 4769 error = 0; 4770 } else if (res == 0 && strbuf.len > 0 && 4771 (so->so_state & SS_ISBOUND)) { 4772 ASSERT(strbuf.len <= (int)so->so_laddr_maxlen); 4773 so->so_laddr_len = (socklen_t)strbuf.len; 4774 bcopy(addr, so->so_laddr_sa, so->so_laddr_len); 4775 so->so_state |= SS_LADDR_VALID; 4776 } 4777 kmem_free(addr, addrlen); 4778 #ifdef DEBUG 4779 dprintso(so, 1, ("sotpi_getsockname (tp): %s\n", 4780 pr_addr(so->so_family, so->so_laddr_sa, 4781 (t_uscalar_t)so->so_laddr_len))); 4782 #endif /* DEBUG */ 4783 done: 4784 so_unlock_single(so, SOLOCKED); 4785 mutex_exit(&so->so_lock); 4786 return (error); 4787 } 4788 4789 /* 4790 * Get socket options. For SOL_SOCKET options some options are handled 4791 * by the sockfs while others use the value recorded in the sonode as a 4792 * fallback should the T_SVR4_OPTMGMT_REQ fail. 4793 * 4794 * On the return most *optlenp bytes are copied to optval. 4795 */ 4796 int 4797 sotpi_getsockopt(struct sonode *so, int level, int option_name, 4798 void *optval, socklen_t *optlenp, int flags) 4799 { 4800 struct T_optmgmt_req optmgmt_req; 4801 struct T_optmgmt_ack *optmgmt_ack; 4802 struct opthdr oh; 4803 struct opthdr *opt_res; 4804 mblk_t *mp = NULL; 4805 int error = 0; 4806 void *option = NULL; /* Set if fallback value */ 4807 t_uscalar_t maxlen = *optlenp; 4808 t_uscalar_t len; 4809 uint32_t value; 4810 4811 dprintso(so, 1, ("sotpi_getsockopt(%p, 0x%x, 0x%x, %p, %p) %s\n", 4812 so, level, option_name, optval, optlenp, 4813 pr_state(so->so_state, so->so_mode))); 4814 4815 mutex_enter(&so->so_lock); 4816 so_lock_single(so); /* Set SOLOCKED */ 4817 4818 /* 4819 * Check for SOL_SOCKET options. 4820 * Certain SOL_SOCKET options are returned directly whereas 4821 * others only provide a default (fallback) value should 4822 * the T_SVR4_OPTMGMT_REQ fail. 4823 */ 4824 if (level == SOL_SOCKET) { 4825 /* Check parameters */ 4826 switch (option_name) { 4827 case SO_TYPE: 4828 case SO_ERROR: 4829 case SO_DEBUG: 4830 case SO_ACCEPTCONN: 4831 case SO_REUSEADDR: 4832 case SO_KEEPALIVE: 4833 case SO_DONTROUTE: 4834 case SO_BROADCAST: 4835 case SO_USELOOPBACK: 4836 case SO_OOBINLINE: 4837 case SO_SNDBUF: 4838 case SO_RCVBUF: 4839 #ifdef notyet 4840 case SO_SNDLOWAT: 4841 case SO_RCVLOWAT: 4842 case SO_SNDTIMEO: 4843 case SO_RCVTIMEO: 4844 #endif /* notyet */ 4845 case SO_DOMAIN: 4846 case SO_DGRAM_ERRIND: 4847 if (maxlen < (t_uscalar_t)sizeof (int32_t)) { 4848 error = EINVAL; 4849 eprintsoline(so, error); 4850 goto done2; 4851 } 4852 break; 4853 case SO_LINGER: 4854 if (maxlen < (t_uscalar_t)sizeof (struct linger)) { 4855 error = EINVAL; 4856 eprintsoline(so, error); 4857 goto done2; 4858 } 4859 break; 4860 } 4861 4862 len = (t_uscalar_t)sizeof (uint32_t); /* Default */ 4863 4864 switch (option_name) { 4865 case SO_TYPE: 4866 value = so->so_type; 4867 option = &value; 4868 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 4869 4870 case SO_ERROR: 4871 value = sogeterr(so); 4872 option = &value; 4873 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 4874 4875 case SO_ACCEPTCONN: 4876 if (so->so_state & SS_ACCEPTCONN) 4877 value = SO_ACCEPTCONN; 4878 else 4879 value = 0; 4880 #ifdef DEBUG 4881 if (value) { 4882 dprintso(so, 1, 4883 ("sotpi_getsockopt: 0x%x is set\n", 4884 option_name)); 4885 } else { 4886 dprintso(so, 1, 4887 ("sotpi_getsockopt: 0x%x not set\n", 4888 option_name)); 4889 } 4890 #endif /* DEBUG */ 4891 option = &value; 4892 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 4893 4894 case SO_DEBUG: 4895 case SO_REUSEADDR: 4896 case SO_KEEPALIVE: 4897 case SO_DONTROUTE: 4898 case SO_BROADCAST: 4899 case SO_USELOOPBACK: 4900 case SO_OOBINLINE: 4901 case SO_DGRAM_ERRIND: 4902 value = (so->so_options & option_name); 4903 #ifdef DEBUG 4904 if (value) { 4905 dprintso(so, 1, 4906 ("sotpi_getsockopt: 0x%x is set\n", 4907 option_name)); 4908 } else { 4909 dprintso(so, 1, 4910 ("sotpi_getsockopt: 0x%x not set\n", 4911 option_name)); 4912 } 4913 #endif /* DEBUG */ 4914 option = &value; 4915 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 4916 4917 /* 4918 * The following options are only returned by sockfs when the 4919 * T_SVR4_OPTMGMT_REQ fails. 4920 */ 4921 case SO_LINGER: 4922 option = &so->so_linger; 4923 len = (t_uscalar_t)sizeof (struct linger); 4924 break; 4925 case SO_SNDBUF: { 4926 ssize_t lvalue; 4927 4928 /* 4929 * If the option has not been set then get a default 4930 * value from the read queue. This value is 4931 * returned if the transport fails 4932 * the T_SVR4_OPTMGMT_REQ. 4933 */ 4934 lvalue = so->so_sndbuf; 4935 if (lvalue == 0) { 4936 mutex_exit(&so->so_lock); 4937 (void) strqget(strvp2wq(SOTOV(so))->q_next, 4938 QHIWAT, 0, &lvalue); 4939 mutex_enter(&so->so_lock); 4940 dprintso(so, 1, 4941 ("got SO_SNDBUF %ld from q\n", lvalue)); 4942 } 4943 value = (int)lvalue; 4944 option = &value; 4945 len = (t_uscalar_t)sizeof (so->so_sndbuf); 4946 break; 4947 } 4948 case SO_RCVBUF: { 4949 ssize_t lvalue; 4950 4951 /* 4952 * If the option has not been set then get a default 4953 * value from the read queue. This value is 4954 * returned if the transport fails 4955 * the T_SVR4_OPTMGMT_REQ. 4956 * 4957 * XXX If SO_RCVBUF has been set and this is an 4958 * XPG 4.2 application then do not ask the transport 4959 * since the transport might adjust the value and not 4960 * return exactly what was set by the application. 4961 * For non-XPG 4.2 application we return the value 4962 * that the transport is actually using. 4963 */ 4964 lvalue = so->so_rcvbuf; 4965 if (lvalue == 0) { 4966 mutex_exit(&so->so_lock); 4967 (void) strqget(RD(strvp2wq(SOTOV(so))), 4968 QHIWAT, 0, &lvalue); 4969 mutex_enter(&so->so_lock); 4970 dprintso(so, 1, 4971 ("got SO_RCVBUF %ld from q\n", lvalue)); 4972 } else if (flags & _SOGETSOCKOPT_XPG4_2) { 4973 value = (int)lvalue; 4974 option = &value; 4975 goto copyout; /* skip asking transport */ 4976 } 4977 value = (int)lvalue; 4978 option = &value; 4979 len = (t_uscalar_t)sizeof (so->so_rcvbuf); 4980 break; 4981 } 4982 case SO_DOMAIN: 4983 value = so->so_family; 4984 option = &value; 4985 goto copyout; /* No need to issue T_SVR4_OPTMGMT_REQ */ 4986 4987 #ifdef notyet 4988 /* 4989 * We do not implement the semantics of these options 4990 * thus we shouldn't implement the options either. 4991 */ 4992 case SO_SNDLOWAT: 4993 value = so->so_sndlowat; 4994 option = &value; 4995 break; 4996 case SO_RCVLOWAT: 4997 value = so->so_rcvlowat; 4998 option = &value; 4999 break; 5000 case SO_SNDTIMEO: 5001 value = so->so_sndtimeo; 5002 option = &value; 5003 break; 5004 case SO_RCVTIMEO: 5005 value = so->so_rcvtimeo; 5006 option = &value; 5007 break; 5008 #endif /* notyet */ 5009 } 5010 } 5011 5012 mutex_exit(&so->so_lock); 5013 5014 /* Send request */ 5015 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; 5016 optmgmt_req.MGMT_flags = T_CHECK; 5017 optmgmt_req.OPT_length = (t_scalar_t)(sizeof (oh) + maxlen); 5018 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); 5019 5020 oh.level = level; 5021 oh.name = option_name; 5022 oh.len = maxlen; 5023 5024 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), 5025 &oh, sizeof (oh), NULL, maxlen, 0, _ALLOC_SLEEP); 5026 /* Let option management work in the presence of data flow control */ 5027 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 5028 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 5029 mp = NULL; 5030 mutex_enter(&so->so_lock); 5031 if (error) { 5032 eprintsoline(so, error); 5033 goto done2; 5034 } 5035 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, 5036 (t_uscalar_t)(sizeof (*optmgmt_ack) + sizeof (*opt_res)), &mp, 0); 5037 if (error) { 5038 if (option != NULL) { 5039 /* We have a fallback value */ 5040 error = 0; 5041 goto copyout; 5042 } 5043 eprintsoline(so, error); 5044 goto done2; 5045 } 5046 ASSERT(mp); 5047 optmgmt_ack = (struct T_optmgmt_ack *)mp->b_rptr; 5048 opt_res = (struct opthdr *)sogetoff(mp, optmgmt_ack->OPT_offset, 5049 optmgmt_ack->OPT_length, __TPI_ALIGN_SIZE); 5050 if (opt_res == NULL) { 5051 if (option != NULL) { 5052 /* We have a fallback value */ 5053 error = 0; 5054 goto copyout; 5055 } 5056 error = EPROTO; 5057 eprintsoline(so, error); 5058 goto done; 5059 } 5060 option = &opt_res[1]; 5061 5062 /* check to ensure that the option is within bounds */ 5063 if (((uintptr_t)option + opt_res->len < (uintptr_t)option) || 5064 (uintptr_t)option + opt_res->len > (uintptr_t)mp->b_wptr) { 5065 if (option != NULL) { 5066 /* We have a fallback value */ 5067 error = 0; 5068 goto copyout; 5069 } 5070 error = EPROTO; 5071 eprintsoline(so, error); 5072 goto done; 5073 } 5074 5075 len = opt_res->len; 5076 5077 copyout: { 5078 t_uscalar_t size = MIN(len, maxlen); 5079 bcopy(option, optval, size); 5080 bcopy(&size, optlenp, sizeof (size)); 5081 } 5082 done: 5083 freemsg(mp); 5084 done2: 5085 so_unlock_single(so, SOLOCKED); 5086 mutex_exit(&so->so_lock); 5087 return (error); 5088 } 5089 5090 /* 5091 * Set socket options. All options are passed down in a T_SVR4_OPTMGMT_REQ. 5092 * SOL_SOCKET options are also recorded in the sonode. A setsockopt for 5093 * SOL_SOCKET options will not fail just because the T_SVR4_OPTMGMT_REQ fails - 5094 * setsockopt has to work even if the transport does not support the option. 5095 */ 5096 int 5097 sotpi_setsockopt(struct sonode *so, int level, int option_name, 5098 const void *optval, t_uscalar_t optlen) 5099 { 5100 struct T_optmgmt_req optmgmt_req; 5101 struct opthdr oh; 5102 mblk_t *mp; 5103 int error = 0; 5104 boolean_t handled = B_FALSE; 5105 5106 dprintso(so, 1, ("sotpi_setsockopt(%p, 0x%x, 0x%x, %p, %d) %s\n", 5107 so, level, option_name, optval, optlen, 5108 pr_state(so->so_state, so->so_mode))); 5109 5110 5111 /* X/Open requires this check */ 5112 if ((so->so_state & SS_CANTSENDMORE) && !xnet_skip_checks) { 5113 if (xnet_check_print) 5114 printf("sockfs: X/Open setsockopt check => EINVAL\n"); 5115 return (EINVAL); 5116 } 5117 5118 /* Caller allocates aligned optval, or passes null */ 5119 ASSERT(((uintptr_t)optval & (sizeof (t_scalar_t) - 1)) == 0); 5120 /* If optval is null optlen is 0, and vice-versa */ 5121 ASSERT(optval != NULL || optlen == 0); 5122 ASSERT(optlen != 0 || optval == NULL); 5123 5124 mutex_enter(&so->so_lock); 5125 so_lock_single(so); /* Set SOLOCKED */ 5126 mutex_exit(&so->so_lock); 5127 5128 /* 5129 * For SOCKET or TCP level options, try to set it here itself 5130 * provided socket has not been popped and we know the tcp 5131 * structure (stored in so_priv). 5132 */ 5133 if ((level == SOL_SOCKET || level == IPPROTO_TCP) && 5134 (so->so_family == AF_INET || so->so_family == AF_INET6) && 5135 (so->so_version == SOV_SOCKSTREAM) && (so->so_priv != NULL)) { 5136 tcp_t *tcp = so->so_priv; 5137 boolean_t onoff; 5138 5139 #define intvalue (*(int32_t *)optval) 5140 5141 switch (level) { 5142 case SOL_SOCKET: 5143 switch (option_name) { /* Check length param */ 5144 case SO_DEBUG: 5145 case SO_REUSEADDR: 5146 case SO_DONTROUTE: 5147 case SO_BROADCAST: 5148 case SO_USELOOPBACK: 5149 case SO_OOBINLINE: 5150 case SO_DGRAM_ERRIND: 5151 if (optlen != (t_uscalar_t)sizeof (int32_t)) { 5152 error = EINVAL; 5153 eprintsoline(so, error); 5154 mutex_enter(&so->so_lock); 5155 goto done2; 5156 } 5157 ASSERT(optval); 5158 onoff = intvalue != 0; 5159 handled = B_TRUE; 5160 break; 5161 case SO_LINGER: 5162 if (optlen != 5163 (t_uscalar_t)sizeof (struct linger)) { 5164 error = EINVAL; 5165 eprintsoline(so, error); 5166 mutex_enter(&so->so_lock); 5167 goto done2; 5168 } 5169 ASSERT(optval); 5170 handled = B_TRUE; 5171 break; 5172 } 5173 5174 switch (option_name) { /* Do actions */ 5175 case SO_LINGER: { 5176 struct linger *lgr = (struct linger *)optval; 5177 5178 if (lgr->l_onoff) { 5179 tcp->tcp_linger = 1; 5180 tcp->tcp_lingertime = lgr->l_linger; 5181 so->so_linger.l_onoff = SO_LINGER; 5182 so->so_options |= SO_LINGER; 5183 } else { 5184 tcp->tcp_linger = 0; 5185 tcp->tcp_lingertime = 0; 5186 so->so_linger.l_onoff = 0; 5187 so->so_options &= ~SO_LINGER; 5188 } 5189 so->so_linger.l_linger = lgr->l_linger; 5190 handled = B_TRUE; 5191 break; 5192 } 5193 case SO_DEBUG: 5194 tcp->tcp_debug = onoff; 5195 #ifdef SOCK_TEST 5196 if (intvalue & 2) 5197 sock_test_timelimit = 10 * hz; 5198 else 5199 sock_test_timelimit = 0; 5200 5201 if (intvalue & 4) 5202 do_useracc = 0; 5203 else 5204 do_useracc = 1; 5205 #endif /* SOCK_TEST */ 5206 break; 5207 case SO_DONTROUTE: 5208 /* 5209 * SO_DONTROUTE, SO_USELOOPBACK and 5210 * SO_BROADCAST are only of interest to IP. 5211 * We track them here only so 5212 * that we can report their current value. 5213 */ 5214 tcp->tcp_dontroute = onoff; 5215 if (onoff) 5216 so->so_options |= option_name; 5217 else 5218 so->so_options &= ~option_name; 5219 break; 5220 case SO_USELOOPBACK: 5221 tcp->tcp_useloopback = onoff; 5222 if (onoff) 5223 so->so_options |= option_name; 5224 else 5225 so->so_options &= ~option_name; 5226 break; 5227 case SO_BROADCAST: 5228 tcp->tcp_broadcast = onoff; 5229 if (onoff) 5230 so->so_options |= option_name; 5231 else 5232 so->so_options &= ~option_name; 5233 break; 5234 case SO_REUSEADDR: 5235 tcp->tcp_reuseaddr = onoff; 5236 if (onoff) 5237 so->so_options |= option_name; 5238 else 5239 so->so_options &= ~option_name; 5240 break; 5241 case SO_OOBINLINE: 5242 tcp->tcp_oobinline = onoff; 5243 if (onoff) 5244 so->so_options |= option_name; 5245 else 5246 so->so_options &= ~option_name; 5247 break; 5248 case SO_DGRAM_ERRIND: 5249 tcp->tcp_dgram_errind = onoff; 5250 if (onoff) 5251 so->so_options |= option_name; 5252 else 5253 so->so_options &= ~option_name; 5254 break; 5255 } 5256 break; 5257 case IPPROTO_TCP: 5258 switch (option_name) { 5259 case TCP_NODELAY: 5260 if (optlen != (t_uscalar_t)sizeof (int32_t)) { 5261 error = EINVAL; 5262 eprintsoline(so, error); 5263 mutex_enter(&so->so_lock); 5264 goto done2; 5265 } 5266 ASSERT(optval); 5267 tcp->tcp_naglim = intvalue ? 1 : tcp->tcp_mss; 5268 handled = B_TRUE; 5269 break; 5270 } 5271 break; 5272 default: 5273 handled = B_FALSE; 5274 break; 5275 } 5276 } 5277 5278 if (handled) { 5279 mutex_enter(&so->so_lock); 5280 goto done2; 5281 } 5282 5283 optmgmt_req.PRIM_type = T_SVR4_OPTMGMT_REQ; 5284 optmgmt_req.MGMT_flags = T_NEGOTIATE; 5285 optmgmt_req.OPT_length = (t_scalar_t)sizeof (oh) + optlen; 5286 optmgmt_req.OPT_offset = (t_scalar_t)sizeof (optmgmt_req); 5287 5288 oh.level = level; 5289 oh.name = option_name; 5290 oh.len = optlen; 5291 5292 mp = soallocproto3(&optmgmt_req, sizeof (optmgmt_req), 5293 &oh, sizeof (oh), optval, optlen, 0, _ALLOC_SLEEP); 5294 /* Let option management work in the presence of data flow control */ 5295 error = kstrputmsg(SOTOV(so), mp, NULL, 0, 0, 5296 MSG_BAND|MSG_HOLDSIG|MSG_IGNERROR|MSG_IGNFLOW, 0); 5297 mp = NULL; 5298 mutex_enter(&so->so_lock); 5299 if (error) { 5300 eprintsoline(so, error); 5301 goto done; 5302 } 5303 error = sowaitprim(so, T_SVR4_OPTMGMT_REQ, T_OPTMGMT_ACK, 5304 (t_uscalar_t)sizeof (struct T_optmgmt_ack), &mp, 0); 5305 if (error) { 5306 eprintsoline(so, error); 5307 goto done; 5308 } 5309 ASSERT(mp); 5310 /* No need to verify T_optmgmt_ack */ 5311 freemsg(mp); 5312 done: 5313 /* 5314 * Check for SOL_SOCKET options and record their values. 5315 * If we know about a SOL_SOCKET parameter and the transport 5316 * failed it with TBADOPT or TOUTSTATE (i.e. ENOPROTOOPT or 5317 * EPROTO) we let the setsockopt succeed. 5318 */ 5319 if (level == SOL_SOCKET) { 5320 /* Check parameters */ 5321 switch (option_name) { 5322 case SO_DEBUG: 5323 case SO_REUSEADDR: 5324 case SO_KEEPALIVE: 5325 case SO_DONTROUTE: 5326 case SO_BROADCAST: 5327 case SO_USELOOPBACK: 5328 case SO_OOBINLINE: 5329 case SO_SNDBUF: 5330 case SO_RCVBUF: 5331 #ifdef notyet 5332 case SO_SNDLOWAT: 5333 case SO_RCVLOWAT: 5334 case SO_SNDTIMEO: 5335 case SO_RCVTIMEO: 5336 #endif /* notyet */ 5337 case SO_DGRAM_ERRIND: 5338 if (optlen != (t_uscalar_t)sizeof (int32_t)) { 5339 error = EINVAL; 5340 eprintsoline(so, error); 5341 goto done2; 5342 } 5343 ASSERT(optval); 5344 handled = B_TRUE; 5345 break; 5346 case SO_LINGER: 5347 if (optlen != (t_uscalar_t)sizeof (struct linger)) { 5348 error = EINVAL; 5349 eprintsoline(so, error); 5350 goto done2; 5351 } 5352 ASSERT(optval); 5353 handled = B_TRUE; 5354 break; 5355 } 5356 5357 #define intvalue (*(int32_t *)optval) 5358 5359 switch (option_name) { 5360 case SO_TYPE: 5361 case SO_ERROR: 5362 case SO_ACCEPTCONN: 5363 /* Can't be set */ 5364 error = ENOPROTOOPT; 5365 goto done2; 5366 case SO_LINGER: { 5367 struct linger *l = (struct linger *)optval; 5368 5369 so->so_linger.l_linger = l->l_linger; 5370 if (l->l_onoff) { 5371 so->so_linger.l_onoff = SO_LINGER; 5372 so->so_options |= SO_LINGER; 5373 } else { 5374 so->so_linger.l_onoff = 0; 5375 so->so_options &= ~SO_LINGER; 5376 } 5377 break; 5378 } 5379 5380 case SO_DEBUG: 5381 #ifdef SOCK_TEST 5382 if (intvalue & 2) 5383 sock_test_timelimit = 10 * hz; 5384 else 5385 sock_test_timelimit = 0; 5386 5387 if (intvalue & 4) 5388 do_useracc = 0; 5389 else 5390 do_useracc = 1; 5391 #endif /* SOCK_TEST */ 5392 /* FALLTHRU */ 5393 case SO_REUSEADDR: 5394 case SO_KEEPALIVE: 5395 case SO_DONTROUTE: 5396 case SO_BROADCAST: 5397 case SO_USELOOPBACK: 5398 case SO_OOBINLINE: 5399 case SO_DGRAM_ERRIND: 5400 if (intvalue != 0) { 5401 dprintso(so, 1, 5402 ("sotpi_setsockopt: setting 0x%x\n", 5403 option_name)); 5404 so->so_options |= option_name; 5405 } else { 5406 dprintso(so, 1, 5407 ("sotpi_setsockopt: clearing 0x%x\n", 5408 option_name)); 5409 so->so_options &= ~option_name; 5410 } 5411 break; 5412 /* 5413 * The following options are only returned by us when the 5414 * T_SVR4_OPTMGMT_REQ fails. 5415 * XXX XPG 4.2 applications retrieve SO_RCVBUF from sockfs 5416 * since the transport might adjust the value and not 5417 * return exactly what was set by the application. 5418 */ 5419 case SO_SNDBUF: 5420 so->so_sndbuf = intvalue; 5421 break; 5422 case SO_RCVBUF: 5423 so->so_rcvbuf = intvalue; 5424 break; 5425 #ifdef notyet 5426 /* 5427 * We do not implement the semantics of these options 5428 * thus we shouldn't implement the options either. 5429 */ 5430 case SO_SNDLOWAT: 5431 so->so_sndlowat = intvalue; 5432 break; 5433 case SO_RCVLOWAT: 5434 so->so_rcvlowat = intvalue; 5435 break; 5436 case SO_SNDTIMEO: 5437 so->so_sndtimeo = intvalue; 5438 break; 5439 case SO_RCVTIMEO: 5440 so->so_rcvtimeo = intvalue; 5441 break; 5442 #endif /* notyet */ 5443 } 5444 #undef intvalue 5445 5446 if (error) { 5447 if ((error == ENOPROTOOPT || error == EPROTO || 5448 error == EINVAL) && handled) { 5449 dprintso(so, 1, 5450 ("setsockopt: ignoring error %d for 0x%x\n", 5451 error, option_name)); 5452 error = 0; 5453 } 5454 } 5455 } 5456 done2: 5457 ret: 5458 so_unlock_single(so, SOLOCKED); 5459 mutex_exit(&so->so_lock); 5460 return (error); 5461 } 5462