1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/t_lock.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/buf.h> 32 #include <sys/conf.h> 33 #include <sys/cred.h> 34 #include <sys/kmem.h> 35 #include <sys/sysmacros.h> 36 #include <sys/vfs.h> 37 #include <sys/vnode.h> 38 #include <sys/debug.h> 39 #include <sys/errno.h> 40 #include <sys/time.h> 41 #include <sys/file.h> 42 #include <sys/user.h> 43 #include <sys/stream.h> 44 #include <sys/strsubr.h> 45 #include <sys/strsun.h> 46 #include <sys/sunddi.h> 47 #include <sys/esunddi.h> 48 #include <sys/flock.h> 49 #include <sys/modctl.h> 50 #include <sys/cmn_err.h> 51 #include <sys/vmsystm.h> 52 #include <sys/policy.h> 53 54 #include <sys/socket.h> 55 #include <sys/socketvar.h> 56 57 #include <sys/isa_defs.h> 58 #include <sys/inttypes.h> 59 #include <sys/systm.h> 60 #include <sys/cpuvar.h> 61 #include <sys/filio.h> 62 #include <sys/sendfile.h> 63 #include <sys/ddi.h> 64 #include <vm/seg.h> 65 #include <vm/seg_map.h> 66 #include <vm/seg_kpm.h> 67 68 #include <fs/sockfs/nl7c.h> 69 #include <fs/sockfs/sockcommon.h> 70 #include <fs/sockfs/socktpi.h> 71 72 #ifdef SOCK_TEST 73 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 74 #else 75 #define do_useracc 1 76 #endif /* SOCK_TEST */ 77 78 extern int xnet_truncate_print; 79 80 /* 81 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 82 * as there isn't a formal definition of IOV_MAX ??? 83 */ 84 #define MSG_MAXIOVLEN 16 85 86 /* 87 * Kernel component of socket creation. 88 * 89 * The socket library determines which version number to use. 90 * First the library calls this with a NULL devpath. If this fails 91 * to find a transport (using solookup) the library will look in /etc/netconfig 92 * for the appropriate transport. If one is found it will pass in the 93 * devpath for the kernel to use. 94 */ 95 int 96 so_socket(int family, int type, int protocol, char *devpath, int version) 97 { 98 struct sonode *so; 99 vnode_t *vp; 100 struct file *fp; 101 int fd; 102 int error; 103 104 if (devpath != NULL) { 105 char *buf; 106 size_t kdevpathlen = 0; 107 108 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 109 if ((error = copyinstr(devpath, buf, 110 MAXPATHLEN, &kdevpathlen)) != 0) { 111 kmem_free(buf, MAXPATHLEN); 112 return (set_errno(error)); 113 } 114 so = socket_create(family, type, protocol, buf, NULL, 115 SOCKET_SLEEP, version, CRED(), &error); 116 kmem_free(buf, MAXPATHLEN); 117 } else { 118 so = socket_create(family, type, protocol, NULL, NULL, 119 SOCKET_SLEEP, version, CRED(), &error); 120 } 121 if (so == NULL) 122 return (set_errno(error)); 123 124 /* Allocate a file descriptor for the socket */ 125 vp = SOTOV(so); 126 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 127 (void) socket_close(so, 0, CRED()); 128 socket_destroy(so); 129 return (set_errno(error)); 130 } 131 132 /* 133 * Now fill in the entries that falloc reserved 134 */ 135 mutex_exit(&fp->f_tlock); 136 setf(fd, fp); 137 138 return (fd); 139 } 140 141 /* 142 * Map from a file descriptor to a socket node. 143 * Returns with the file descriptor held i.e. the caller has to 144 * use releasef when done with the file descriptor. 145 */ 146 struct sonode * 147 getsonode(int sock, int *errorp, file_t **fpp) 148 { 149 file_t *fp; 150 vnode_t *vp; 151 struct sonode *so; 152 153 if ((fp = getf(sock)) == NULL) { 154 *errorp = EBADF; 155 eprintline(*errorp); 156 return (NULL); 157 } 158 vp = fp->f_vnode; 159 /* Check if it is a socket */ 160 if (vp->v_type != VSOCK) { 161 releasef(sock); 162 *errorp = ENOTSOCK; 163 eprintline(*errorp); 164 return (NULL); 165 } 166 /* 167 * Use the stream head to find the real socket vnode. 168 * This is needed when namefs sits above sockfs. 169 */ 170 if (vp->v_stream) { 171 ASSERT(vp->v_stream->sd_vnode); 172 vp = vp->v_stream->sd_vnode; 173 174 so = VTOSO(vp); 175 if (so->so_version == SOV_STREAM) { 176 releasef(sock); 177 *errorp = ENOTSOCK; 178 eprintsoline(so, *errorp); 179 return (NULL); 180 } 181 } else { 182 so = VTOSO(vp); 183 } 184 if (fpp) 185 *fpp = fp; 186 return (so); 187 } 188 189 /* 190 * Allocate and copyin a sockaddr. 191 * Ensures NULL termination for AF_UNIX addresses by extending them 192 * with one NULL byte if need be. Verifies that the length is not 193 * excessive to prevent an application from consuming all of kernel 194 * memory. Returns NULL when an error occurred. 195 */ 196 static struct sockaddr * 197 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 198 int *errorp) 199 { 200 char *faddr; 201 size_t namelen = (size_t)*namelenp; 202 203 ASSERT(namelen != 0); 204 if (namelen > SO_MAXARGSIZE) { 205 *errorp = EINVAL; 206 eprintsoline(so, *errorp); 207 return (NULL); 208 } 209 210 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 211 if (copyin(name, faddr, namelen)) { 212 kmem_free(faddr, namelen); 213 *errorp = EFAULT; 214 eprintsoline(so, *errorp); 215 return (NULL); 216 } 217 218 /* 219 * Add space for NULL termination if needed. 220 * Do a quick check if the last byte is NUL. 221 */ 222 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 223 /* Check if there is any NULL termination */ 224 size_t i; 225 int foundnull = 0; 226 227 for (i = sizeof (name->sa_family); i < namelen; i++) { 228 if (faddr[i] == '\0') { 229 foundnull = 1; 230 break; 231 } 232 } 233 if (!foundnull) { 234 /* Add extra byte for NUL padding */ 235 char *nfaddr; 236 237 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 238 bcopy(faddr, nfaddr, namelen); 239 kmem_free(faddr, namelen); 240 241 /* NUL terminate */ 242 nfaddr[namelen] = '\0'; 243 namelen++; 244 ASSERT((socklen_t)namelen == namelen); 245 *namelenp = (socklen_t)namelen; 246 faddr = nfaddr; 247 } 248 } 249 return ((struct sockaddr *)faddr); 250 } 251 252 /* 253 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 254 */ 255 static int 256 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, 257 void *kaddr, socklen_t klen) 258 { 259 if (uaddr != NULL) { 260 if (ulen > klen) 261 ulen = klen; 262 263 if (ulen != 0) { 264 if (copyout(kaddr, uaddr, ulen)) 265 return (EFAULT); 266 } 267 } else 268 ulen = 0; 269 270 if (ulenp != NULL) { 271 if (copyout(&ulen, ulenp, sizeof (ulen))) 272 return (EFAULT); 273 } 274 return (0); 275 } 276 277 /* 278 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 279 * If klen is greater than ulen it still uses the non-truncated 280 * klen to update ulenp. 281 */ 282 static int 283 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, 284 void *kaddr, socklen_t klen) 285 { 286 if (uaddr != NULL) { 287 if (ulen >= klen) 288 ulen = klen; 289 else if (ulen != 0 && xnet_truncate_print) { 290 printf("sockfs: truncating copyout of address using " 291 "XNET semantics for pid = %d. Lengths %d, %d\n", 292 curproc->p_pid, klen, ulen); 293 } 294 295 if (ulen != 0) { 296 if (copyout(kaddr, uaddr, ulen)) 297 return (EFAULT); 298 } else 299 klen = 0; 300 } else 301 klen = 0; 302 303 if (ulenp != NULL) { 304 if (copyout(&klen, ulenp, sizeof (klen))) 305 return (EFAULT); 306 } 307 return (0); 308 } 309 310 /* 311 * The socketpair() code in libsocket creates two sockets (using 312 * the /etc/netconfig fallback if needed) before calling this routine 313 * to connect the two sockets together. 314 * 315 * For a SOCK_STREAM socketpair a listener is needed - in that case this 316 * routine will create a new file descriptor as part of accepting the 317 * connection. The library socketpair() will check if svs[2] has changed 318 * in which case it will close the changed fd. 319 * 320 * Note that this code could use the TPI feature of accepting the connection 321 * on the listening endpoint. However, that would require significant changes 322 * to soaccept. 323 */ 324 int 325 so_socketpair(int sv[2]) 326 { 327 int svs[2]; 328 struct sonode *so1, *so2; 329 int error; 330 struct sockaddr_ux *name; 331 size_t namelen; 332 sotpi_info_t *sti1; 333 sotpi_info_t *sti2; 334 335 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 336 337 error = useracc(sv, sizeof (svs), B_WRITE); 338 if (error && do_useracc) 339 return (set_errno(EFAULT)); 340 341 if (copyin(sv, svs, sizeof (svs))) 342 return (set_errno(EFAULT)); 343 344 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 345 return (set_errno(error)); 346 347 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 348 releasef(svs[0]); 349 return (set_errno(error)); 350 } 351 352 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 353 error = EOPNOTSUPP; 354 goto done; 355 } 356 357 sti1 = SOTOTPI(so1); 358 sti2 = SOTOTPI(so2); 359 360 /* 361 * The code below makes assumptions about the "sockfs" implementation. 362 * So make sure that the correct implementation is really used. 363 */ 364 ASSERT(so1->so_ops == &sotpi_sonodeops); 365 ASSERT(so2->so_ops == &sotpi_sonodeops); 366 367 if (so1->so_type == SOCK_DGRAM) { 368 /* 369 * Bind both sockets and connect them with each other. 370 * Need to allocate name/namelen for soconnect. 371 */ 372 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 373 if (error) { 374 eprintsoline(so1, error); 375 goto done; 376 } 377 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 378 if (error) { 379 eprintsoline(so2, error); 380 goto done; 381 } 382 namelen = sizeof (struct sockaddr_ux); 383 name = kmem_alloc(namelen, KM_SLEEP); 384 name->sou_family = AF_UNIX; 385 name->sou_addr = sti2->sti_ux_laddr; 386 error = socket_connect(so1, 387 (struct sockaddr *)name, 388 (socklen_t)namelen, 389 0, _SOCONNECT_NOXLATE, CRED()); 390 if (error) { 391 kmem_free(name, namelen); 392 eprintsoline(so1, error); 393 goto done; 394 } 395 name->sou_addr = sti1->sti_ux_laddr; 396 error = socket_connect(so2, 397 (struct sockaddr *)name, 398 (socklen_t)namelen, 399 0, _SOCONNECT_NOXLATE, CRED()); 400 kmem_free(name, namelen); 401 if (error) { 402 eprintsoline(so2, error); 403 goto done; 404 } 405 releasef(svs[0]); 406 releasef(svs[1]); 407 } else { 408 /* 409 * Bind both sockets, with so1 being a listener. 410 * Connect so2 to so1 - nonblocking to avoid waiting for 411 * soaccept to complete. 412 * Accept a connection on so1. Pass out the new fd as sv[0]. 413 * The library will detect the changed fd and close 414 * the original one. 415 */ 416 struct sonode *nso; 417 struct vnode *nvp; 418 struct file *nfp; 419 int nfd; 420 421 /* 422 * We could simply call socket_listen() here (which would do the 423 * binding automatically) if the code didn't rely on passing 424 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 425 */ 426 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 427 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 428 CRED()); 429 if (error) { 430 eprintsoline(so1, error); 431 goto done; 432 } 433 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 434 if (error) { 435 eprintsoline(so2, error); 436 goto done; 437 } 438 439 namelen = sizeof (struct sockaddr_ux); 440 name = kmem_alloc(namelen, KM_SLEEP); 441 name->sou_family = AF_UNIX; 442 name->sou_addr = sti1->sti_ux_laddr; 443 error = socket_connect(so2, 444 (struct sockaddr *)name, 445 (socklen_t)namelen, 446 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 447 kmem_free(name, namelen); 448 if (error) { 449 if (error != EINPROGRESS) { 450 eprintsoline(so2, error); goto done; 451 } 452 } 453 454 error = socket_accept(so1, 0, CRED(), &nso); 455 if (error) { 456 eprintsoline(so1, error); 457 goto done; 458 } 459 460 /* wait for so2 being SS_CONNECTED ignoring signals */ 461 mutex_enter(&so2->so_lock); 462 error = sowaitconnected(so2, 0, 1); 463 mutex_exit(&so2->so_lock); 464 if (error != 0) { 465 (void) socket_close(nso, 0, CRED()); 466 socket_destroy(nso); 467 eprintsoline(so2, error); 468 goto done; 469 } 470 471 nvp = SOTOV(nso); 472 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 473 (void) socket_close(nso, 0, CRED()); 474 socket_destroy(nso); 475 eprintsoline(nso, error); 476 goto done; 477 } 478 /* 479 * fill in the entries that falloc reserved 480 */ 481 mutex_exit(&nfp->f_tlock); 482 setf(nfd, nfp); 483 484 releasef(svs[0]); 485 releasef(svs[1]); 486 svs[0] = nfd; 487 488 /* 489 * The socketpair library routine will close the original 490 * svs[0] when this code passes out a different file 491 * descriptor. 492 */ 493 if (copyout(svs, sv, sizeof (svs))) { 494 (void) closeandsetf(nfd, NULL); 495 eprintline(EFAULT); 496 return (set_errno(EFAULT)); 497 } 498 } 499 return (0); 500 501 done: 502 releasef(svs[0]); 503 releasef(svs[1]); 504 return (set_errno(error)); 505 } 506 507 int 508 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 509 { 510 struct sonode *so; 511 int error; 512 513 dprint(1, ("bind(%d, %p, %d)\n", 514 sock, (void *)name, namelen)); 515 516 if ((so = getsonode(sock, &error, NULL)) == NULL) 517 return (set_errno(error)); 518 519 /* Allocate and copyin name */ 520 /* 521 * X/Open test does not expect EFAULT with NULL name and non-zero 522 * namelen. 523 */ 524 if (name != NULL && namelen != 0) { 525 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 526 name = copyin_name(so, name, &namelen, &error); 527 if (name == NULL) { 528 releasef(sock); 529 return (set_errno(error)); 530 } 531 } else { 532 name = NULL; 533 namelen = 0; 534 } 535 536 switch (version) { 537 default: 538 error = socket_bind(so, name, namelen, 0, CRED()); 539 break; 540 case SOV_XPG4_2: 541 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 542 break; 543 case SOV_SOCKBSD: 544 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 545 break; 546 } 547 done: 548 releasef(sock); 549 if (name != NULL) 550 kmem_free(name, (size_t)namelen); 551 552 if (error) 553 return (set_errno(error)); 554 return (0); 555 } 556 557 /* ARGSUSED2 */ 558 int 559 listen(int sock, int backlog, int version) 560 { 561 struct sonode *so; 562 int error; 563 564 dprint(1, ("listen(%d, %d)\n", 565 sock, backlog)); 566 567 if ((so = getsonode(sock, &error, NULL)) == NULL) 568 return (set_errno(error)); 569 570 error = socket_listen(so, backlog, CRED()); 571 572 releasef(sock); 573 if (error) 574 return (set_errno(error)); 575 return (0); 576 } 577 578 /*ARGSUSED3*/ 579 int 580 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 581 { 582 struct sonode *so; 583 file_t *fp; 584 int error; 585 socklen_t namelen; 586 struct sonode *nso; 587 struct vnode *nvp; 588 struct file *nfp; 589 int nfd; 590 struct sockaddr *addrp; 591 socklen_t addrlen; 592 593 dprint(1, ("accept(%d, %p, %p)\n", 594 sock, (void *)name, (void *)namelenp)); 595 596 if ((so = getsonode(sock, &error, &fp)) == NULL) 597 return (set_errno(error)); 598 599 if (name != NULL) { 600 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 601 if (copyin(namelenp, &namelen, sizeof (namelen))) { 602 releasef(sock); 603 return (set_errno(EFAULT)); 604 } 605 if (namelen != 0) { 606 error = useracc(name, (size_t)namelen, B_WRITE); 607 if (error && do_useracc) { 608 releasef(sock); 609 return (set_errno(EFAULT)); 610 } 611 } else 612 name = NULL; 613 } else { 614 namelen = 0; 615 } 616 617 /* 618 * Allocate the user fd before socket_accept() in order to 619 * catch EMFILE errors before calling socket_accept(). 620 */ 621 if ((nfd = ufalloc(0)) == -1) { 622 eprintsoline(so, EMFILE); 623 releasef(sock); 624 return (set_errno(EMFILE)); 625 } 626 error = socket_accept(so, fp->f_flag, CRED(), &nso); 627 if (error) { 628 setf(nfd, NULL); 629 releasef(sock); 630 return (set_errno(error)); 631 } 632 633 nvp = SOTOV(nso); 634 635 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 636 if (namelen != 0) { 637 addrlen = so->so_max_addr_len; 638 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 639 640 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 641 &addrlen, B_TRUE, CRED())) == 0) { 642 error = copyout_name(name, namelen, namelenp, 643 addrp, addrlen); 644 } else { 645 ASSERT(error == EINVAL || error == ENOTCONN); 646 error = ECONNABORTED; 647 } 648 kmem_free(addrp, so->so_max_addr_len); 649 } 650 651 if (error) { 652 setf(nfd, NULL); 653 (void) socket_close(nso, 0, CRED()); 654 socket_destroy(nso); 655 releasef(sock); 656 return (set_errno(error)); 657 } 658 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 659 setf(nfd, NULL); 660 (void) socket_close(nso, 0, CRED()); 661 socket_destroy(nso); 662 eprintsoline(so, error); 663 releasef(sock); 664 return (set_errno(error)); 665 } 666 /* 667 * fill in the entries that falloc reserved 668 */ 669 nfp->f_vnode = nvp; 670 mutex_exit(&nfp->f_tlock); 671 setf(nfd, nfp); 672 673 /* 674 * Copy FNDELAY and FNONBLOCK from listener to acceptor 675 */ 676 if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) { 677 uint_t oflag = nfp->f_flag; 678 int arg = 0; 679 680 if (so->so_state & SS_NONBLOCK) 681 arg |= FNONBLOCK; 682 else if (so->so_state & SS_NDELAY) 683 arg |= FNDELAY; 684 685 /* 686 * This code is a simplification of the F_SETFL code in fcntl() 687 * Ignore any errors from VOP_SETFL. 688 */ 689 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 690 != 0) { 691 eprintsoline(so, error); 692 error = 0; 693 } else { 694 mutex_enter(&nfp->f_tlock); 695 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 696 nfp->f_flag |= arg; 697 mutex_exit(&nfp->f_tlock); 698 } 699 } 700 releasef(sock); 701 return (nfd); 702 } 703 704 int 705 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 706 { 707 struct sonode *so; 708 file_t *fp; 709 int error; 710 711 dprint(1, ("connect(%d, %p, %d)\n", 712 sock, (void *)name, namelen)); 713 714 if ((so = getsonode(sock, &error, &fp)) == NULL) 715 return (set_errno(error)); 716 717 /* Allocate and copyin name */ 718 if (namelen != 0) { 719 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 720 name = copyin_name(so, name, &namelen, &error); 721 if (name == NULL) { 722 releasef(sock); 723 return (set_errno(error)); 724 } 725 } else 726 name = NULL; 727 728 error = socket_connect(so, name, namelen, fp->f_flag, 729 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 730 releasef(sock); 731 if (name) 732 kmem_free(name, (size_t)namelen); 733 if (error) 734 return (set_errno(error)); 735 return (0); 736 } 737 738 /*ARGSUSED2*/ 739 int 740 shutdown(int sock, int how, int version) 741 { 742 struct sonode *so; 743 int error; 744 745 dprint(1, ("shutdown(%d, %d)\n", 746 sock, how)); 747 748 if ((so = getsonode(sock, &error, NULL)) == NULL) 749 return (set_errno(error)); 750 751 error = socket_shutdown(so, how, CRED()); 752 753 releasef(sock); 754 if (error) 755 return (set_errno(error)); 756 return (0); 757 } 758 759 /* 760 * Common receive routine. 761 */ 762 static ssize_t 763 recvit(int sock, 764 struct nmsghdr *msg, 765 struct uio *uiop, 766 int flags, 767 socklen_t *namelenp, 768 socklen_t *controllenp, 769 int *flagsp) 770 { 771 struct sonode *so; 772 file_t *fp; 773 void *name; 774 socklen_t namelen; 775 void *control; 776 socklen_t controllen; 777 ssize_t len; 778 int error; 779 780 if ((so = getsonode(sock, &error, &fp)) == NULL) 781 return (set_errno(error)); 782 783 len = uiop->uio_resid; 784 uiop->uio_fmode = fp->f_flag; 785 uiop->uio_extflg = UIO_COPY_CACHED; 786 787 name = msg->msg_name; 788 namelen = msg->msg_namelen; 789 control = msg->msg_control; 790 controllen = msg->msg_controllen; 791 792 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 793 MSG_DONTWAIT | MSG_XPG4_2); 794 795 error = socket_recvmsg(so, msg, uiop, CRED()); 796 if (error) { 797 releasef(sock); 798 return (set_errno(error)); 799 } 800 lwp_stat_update(LWP_STAT_MSGRCV, 1); 801 releasef(sock); 802 803 error = copyout_name(name, namelen, namelenp, 804 msg->msg_name, msg->msg_namelen); 805 if (error) 806 goto err; 807 808 if (flagsp != NULL) { 809 /* 810 * Clear internal flag. 811 */ 812 msg->msg_flags &= ~MSG_XPG4_2; 813 814 /* 815 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 816 * when controllen is zero and there is control data to 817 * copy out. 818 */ 819 if (controllen != 0 && 820 (msg->msg_controllen > controllen || control == NULL)) { 821 dprint(1, ("recvit: CTRUNC %d %d %p\n", 822 msg->msg_controllen, controllen, control)); 823 824 msg->msg_flags |= MSG_CTRUNC; 825 } 826 if (copyout(&msg->msg_flags, flagsp, 827 sizeof (msg->msg_flags))) { 828 error = EFAULT; 829 goto err; 830 } 831 } 832 /* 833 * Note: This MUST be done last. There can be no "goto err" after this 834 * point since it could make so_closefds run twice on some part 835 * of the file descriptor array. 836 */ 837 if (controllen != 0) { 838 if (!(flags & MSG_XPG4_2)) { 839 /* 840 * Good old msg_accrights can only return a multiple 841 * of 4 bytes. 842 */ 843 controllen &= ~((int)sizeof (uint32_t) - 1); 844 } 845 error = copyout_arg(control, controllen, controllenp, 846 msg->msg_control, msg->msg_controllen); 847 if (error) 848 goto err; 849 850 if (msg->msg_controllen > controllen || control == NULL) { 851 if (control == NULL) 852 controllen = 0; 853 so_closefds(msg->msg_control, msg->msg_controllen, 854 !(flags & MSG_XPG4_2), controllen); 855 } 856 } 857 if (msg->msg_namelen != 0) 858 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 859 if (msg->msg_controllen != 0) 860 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 861 return (len - uiop->uio_resid); 862 863 err: 864 /* 865 * If we fail and the control part contains file descriptors 866 * we have to close the fd's. 867 */ 868 if (msg->msg_controllen != 0) 869 so_closefds(msg->msg_control, msg->msg_controllen, 870 !(flags & MSG_XPG4_2), 0); 871 if (msg->msg_namelen != 0) 872 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 873 if (msg->msg_controllen != 0) 874 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 875 return (set_errno(error)); 876 } 877 878 /* 879 * Native system call 880 */ 881 ssize_t 882 recv(int sock, void *buffer, size_t len, int flags) 883 { 884 struct nmsghdr lmsg; 885 struct uio auio; 886 struct iovec aiov[1]; 887 888 dprint(1, ("recv(%d, %p, %ld, %d)\n", 889 sock, buffer, len, flags)); 890 891 if ((ssize_t)len < 0) { 892 return (set_errno(EINVAL)); 893 } 894 895 aiov[0].iov_base = buffer; 896 aiov[0].iov_len = len; 897 auio.uio_loffset = 0; 898 auio.uio_iov = aiov; 899 auio.uio_iovcnt = 1; 900 auio.uio_resid = len; 901 auio.uio_segflg = UIO_USERSPACE; 902 auio.uio_limit = 0; 903 904 lmsg.msg_namelen = 0; 905 lmsg.msg_controllen = 0; 906 lmsg.msg_flags = 0; 907 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 908 } 909 910 ssize_t 911 recvfrom(int sock, void *buffer, size_t len, int flags, 912 struct sockaddr *name, socklen_t *namelenp) 913 { 914 struct nmsghdr lmsg; 915 struct uio auio; 916 struct iovec aiov[1]; 917 918 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 919 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 920 921 if ((ssize_t)len < 0) { 922 return (set_errno(EINVAL)); 923 } 924 925 aiov[0].iov_base = buffer; 926 aiov[0].iov_len = len; 927 auio.uio_loffset = 0; 928 auio.uio_iov = aiov; 929 auio.uio_iovcnt = 1; 930 auio.uio_resid = len; 931 auio.uio_segflg = UIO_USERSPACE; 932 auio.uio_limit = 0; 933 934 lmsg.msg_name = (char *)name; 935 if (namelenp != NULL) { 936 if (copyin(namelenp, &lmsg.msg_namelen, 937 sizeof (lmsg.msg_namelen))) 938 return (set_errno(EFAULT)); 939 } else { 940 lmsg.msg_namelen = 0; 941 } 942 lmsg.msg_controllen = 0; 943 lmsg.msg_flags = 0; 944 945 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 946 } 947 948 /* 949 * Uses the MSG_XPG4_2 flag to determine if the caller is using 950 * struct omsghdr or struct nmsghdr. 951 */ 952 ssize_t 953 recvmsg(int sock, struct nmsghdr *msg, int flags) 954 { 955 STRUCT_DECL(nmsghdr, u_lmsg); 956 STRUCT_HANDLE(nmsghdr, umsgptr); 957 struct nmsghdr lmsg; 958 struct uio auio; 959 struct iovec aiov[MSG_MAXIOVLEN]; 960 int iovcnt; 961 ssize_t len; 962 int i; 963 int *flagsp; 964 model_t model; 965 966 dprint(1, ("recvmsg(%d, %p, %d)\n", 967 sock, (void *)msg, flags)); 968 969 model = get_udatamodel(); 970 STRUCT_INIT(u_lmsg, model); 971 STRUCT_SET_HANDLE(umsgptr, model, msg); 972 973 if (flags & MSG_XPG4_2) { 974 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 975 return (set_errno(EFAULT)); 976 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 977 } else { 978 /* 979 * Assumes that nmsghdr and omsghdr are identically shaped 980 * except for the added msg_flags field. 981 */ 982 if (copyin(msg, STRUCT_BUF(u_lmsg), 983 SIZEOF_STRUCT(omsghdr, model))) 984 return (set_errno(EFAULT)); 985 STRUCT_FSET(u_lmsg, msg_flags, 0); 986 flagsp = NULL; 987 } 988 989 /* 990 * Code below us will kmem_alloc memory and hang it 991 * off msg_control and msg_name fields. This forces 992 * us to copy the structure to its native form. 993 */ 994 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 995 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 996 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 997 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 998 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 999 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1000 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1001 1002 iovcnt = lmsg.msg_iovlen; 1003 1004 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1005 return (set_errno(EMSGSIZE)); 1006 } 1007 1008 #ifdef _SYSCALL32_IMPL 1009 /* 1010 * 32-bit callers need to have their iovec expanded, while ensuring 1011 * that they can't move more than 2Gbytes of data in a single call. 1012 */ 1013 if (model == DATAMODEL_ILP32) { 1014 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1015 ssize32_t count32; 1016 1017 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1018 iovcnt * sizeof (struct iovec32))) 1019 return (set_errno(EFAULT)); 1020 1021 count32 = 0; 1022 for (i = 0; i < iovcnt; i++) { 1023 ssize32_t iovlen32; 1024 1025 iovlen32 = aiov32[i].iov_len; 1026 count32 += iovlen32; 1027 if (iovlen32 < 0 || count32 < 0) 1028 return (set_errno(EINVAL)); 1029 aiov[i].iov_len = iovlen32; 1030 aiov[i].iov_base = 1031 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1032 } 1033 } else 1034 #endif /* _SYSCALL32_IMPL */ 1035 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1036 return (set_errno(EFAULT)); 1037 } 1038 len = 0; 1039 for (i = 0; i < iovcnt; i++) { 1040 ssize_t iovlen = aiov[i].iov_len; 1041 len += iovlen; 1042 if (iovlen < 0 || len < 0) { 1043 return (set_errno(EINVAL)); 1044 } 1045 } 1046 auio.uio_loffset = 0; 1047 auio.uio_iov = aiov; 1048 auio.uio_iovcnt = iovcnt; 1049 auio.uio_resid = len; 1050 auio.uio_segflg = UIO_USERSPACE; 1051 auio.uio_limit = 0; 1052 1053 if (lmsg.msg_control != NULL && 1054 (do_useracc == 0 || 1055 useracc(lmsg.msg_control, lmsg.msg_controllen, 1056 B_WRITE) != 0)) { 1057 return (set_errno(EFAULT)); 1058 } 1059 1060 return (recvit(sock, &lmsg, &auio, flags, 1061 STRUCT_FADDR(umsgptr, msg_namelen), 1062 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1063 } 1064 1065 /* 1066 * Common send function. 1067 */ 1068 static ssize_t 1069 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1070 { 1071 struct sonode *so; 1072 file_t *fp; 1073 void *name; 1074 socklen_t namelen; 1075 void *control; 1076 socklen_t controllen; 1077 ssize_t len; 1078 int error; 1079 1080 if ((so = getsonode(sock, &error, &fp)) == NULL) 1081 return (set_errno(error)); 1082 1083 uiop->uio_fmode = fp->f_flag; 1084 1085 if (so->so_family == AF_UNIX) 1086 uiop->uio_extflg = UIO_COPY_CACHED; 1087 else 1088 uiop->uio_extflg = UIO_COPY_DEFAULT; 1089 1090 /* Allocate and copyin name and control */ 1091 name = msg->msg_name; 1092 namelen = msg->msg_namelen; 1093 if (name != NULL && namelen != 0) { 1094 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1095 name = copyin_name(so, 1096 (struct sockaddr *)name, 1097 &namelen, &error); 1098 if (name == NULL) 1099 goto done3; 1100 /* copyin_name null terminates addresses for AF_UNIX */ 1101 msg->msg_namelen = namelen; 1102 msg->msg_name = name; 1103 } else { 1104 msg->msg_name = name = NULL; 1105 msg->msg_namelen = namelen = 0; 1106 } 1107 1108 control = msg->msg_control; 1109 controllen = msg->msg_controllen; 1110 if ((control != NULL) && (controllen != 0)) { 1111 /* 1112 * Verify that the length is not excessive to prevent 1113 * an application from consuming all of kernel memory. 1114 */ 1115 if (controllen > SO_MAXARGSIZE) { 1116 error = EINVAL; 1117 goto done2; 1118 } 1119 control = kmem_alloc(controllen, KM_SLEEP); 1120 1121 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1122 if (copyin(msg->msg_control, control, controllen)) { 1123 error = EFAULT; 1124 goto done1; 1125 } 1126 msg->msg_control = control; 1127 } else { 1128 msg->msg_control = control = NULL; 1129 msg->msg_controllen = controllen = 0; 1130 } 1131 1132 len = uiop->uio_resid; 1133 msg->msg_flags = flags; 1134 1135 error = socket_sendmsg(so, msg, uiop, CRED()); 1136 done1: 1137 if (control != NULL) 1138 kmem_free(control, controllen); 1139 done2: 1140 if (name != NULL) 1141 kmem_free(name, namelen); 1142 done3: 1143 if (error != 0) { 1144 releasef(sock); 1145 return (set_errno(error)); 1146 } 1147 lwp_stat_update(LWP_STAT_MSGSND, 1); 1148 releasef(sock); 1149 return (len - uiop->uio_resid); 1150 } 1151 1152 /* 1153 * Native system call 1154 */ 1155 ssize_t 1156 send(int sock, void *buffer, size_t len, int flags) 1157 { 1158 struct nmsghdr lmsg; 1159 struct uio auio; 1160 struct iovec aiov[1]; 1161 1162 dprint(1, ("send(%d, %p, %ld, %d)\n", 1163 sock, buffer, len, flags)); 1164 1165 if ((ssize_t)len < 0) { 1166 return (set_errno(EINVAL)); 1167 } 1168 1169 aiov[0].iov_base = buffer; 1170 aiov[0].iov_len = len; 1171 auio.uio_loffset = 0; 1172 auio.uio_iov = aiov; 1173 auio.uio_iovcnt = 1; 1174 auio.uio_resid = len; 1175 auio.uio_segflg = UIO_USERSPACE; 1176 auio.uio_limit = 0; 1177 1178 lmsg.msg_name = NULL; 1179 lmsg.msg_control = NULL; 1180 if (!(flags & MSG_XPG4_2)) { 1181 /* 1182 * In order to be compatible with the libsocket/sockmod 1183 * implementation we set EOR for all send* calls. 1184 */ 1185 flags |= MSG_EOR; 1186 } 1187 return (sendit(sock, &lmsg, &auio, flags)); 1188 } 1189 1190 /* 1191 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1192 * struct omsghdr or struct nmsghdr. 1193 */ 1194 ssize_t 1195 sendmsg(int sock, struct nmsghdr *msg, int flags) 1196 { 1197 struct nmsghdr lmsg; 1198 STRUCT_DECL(nmsghdr, u_lmsg); 1199 struct uio auio; 1200 struct iovec aiov[MSG_MAXIOVLEN]; 1201 int iovcnt; 1202 ssize_t len; 1203 int i; 1204 model_t model; 1205 1206 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1207 1208 model = get_udatamodel(); 1209 STRUCT_INIT(u_lmsg, model); 1210 1211 if (flags & MSG_XPG4_2) { 1212 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1213 STRUCT_SIZE(u_lmsg))) 1214 return (set_errno(EFAULT)); 1215 } else { 1216 /* 1217 * Assumes that nmsghdr and omsghdr are identically shaped 1218 * except for the added msg_flags field. 1219 */ 1220 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1221 SIZEOF_STRUCT(omsghdr, model))) 1222 return (set_errno(EFAULT)); 1223 /* 1224 * In order to be compatible with the libsocket/sockmod 1225 * implementation we set EOR for all send* calls. 1226 */ 1227 flags |= MSG_EOR; 1228 } 1229 1230 /* 1231 * Code below us will kmem_alloc memory and hang it 1232 * off msg_control and msg_name fields. This forces 1233 * us to copy the structure to its native form. 1234 */ 1235 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1236 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1237 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1238 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1239 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1240 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1241 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1242 1243 iovcnt = lmsg.msg_iovlen; 1244 1245 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1246 /* 1247 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1248 * be compatible with SunOS 4.X and 4.4BSD. 1249 */ 1250 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1251 return (set_errno(EMSGSIZE)); 1252 } 1253 1254 #ifdef _SYSCALL32_IMPL 1255 /* 1256 * 32-bit callers need to have their iovec expanded, while ensuring 1257 * that they can't move more than 2Gbytes of data in a single call. 1258 */ 1259 if (model == DATAMODEL_ILP32) { 1260 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1261 ssize32_t count32; 1262 1263 if (iovcnt != 0 && 1264 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1265 iovcnt * sizeof (struct iovec32))) 1266 return (set_errno(EFAULT)); 1267 1268 count32 = 0; 1269 for (i = 0; i < iovcnt; i++) { 1270 ssize32_t iovlen32; 1271 1272 iovlen32 = aiov32[i].iov_len; 1273 count32 += iovlen32; 1274 if (iovlen32 < 0 || count32 < 0) 1275 return (set_errno(EINVAL)); 1276 aiov[i].iov_len = iovlen32; 1277 aiov[i].iov_base = 1278 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1279 } 1280 } else 1281 #endif /* _SYSCALL32_IMPL */ 1282 if (iovcnt != 0 && 1283 copyin(lmsg.msg_iov, aiov, 1284 (unsigned)iovcnt * sizeof (struct iovec))) { 1285 return (set_errno(EFAULT)); 1286 } 1287 len = 0; 1288 for (i = 0; i < iovcnt; i++) { 1289 ssize_t iovlen = aiov[i].iov_len; 1290 len += iovlen; 1291 if (iovlen < 0 || len < 0) { 1292 return (set_errno(EINVAL)); 1293 } 1294 } 1295 auio.uio_loffset = 0; 1296 auio.uio_iov = aiov; 1297 auio.uio_iovcnt = iovcnt; 1298 auio.uio_resid = len; 1299 auio.uio_segflg = UIO_USERSPACE; 1300 auio.uio_limit = 0; 1301 1302 return (sendit(sock, &lmsg, &auio, flags)); 1303 } 1304 1305 ssize_t 1306 sendto(int sock, void *buffer, size_t len, int flags, 1307 struct sockaddr *name, socklen_t namelen) 1308 { 1309 struct nmsghdr lmsg; 1310 struct uio auio; 1311 struct iovec aiov[1]; 1312 1313 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1314 sock, buffer, len, flags, (void *)name, namelen)); 1315 1316 if ((ssize_t)len < 0) { 1317 return (set_errno(EINVAL)); 1318 } 1319 1320 aiov[0].iov_base = buffer; 1321 aiov[0].iov_len = len; 1322 auio.uio_loffset = 0; 1323 auio.uio_iov = aiov; 1324 auio.uio_iovcnt = 1; 1325 auio.uio_resid = len; 1326 auio.uio_segflg = UIO_USERSPACE; 1327 auio.uio_limit = 0; 1328 1329 lmsg.msg_name = (char *)name; 1330 lmsg.msg_namelen = namelen; 1331 lmsg.msg_control = NULL; 1332 if (!(flags & MSG_XPG4_2)) { 1333 /* 1334 * In order to be compatible with the libsocket/sockmod 1335 * implementation we set EOR for all send* calls. 1336 */ 1337 flags |= MSG_EOR; 1338 } 1339 return (sendit(sock, &lmsg, &auio, flags)); 1340 } 1341 1342 /*ARGSUSED3*/ 1343 int 1344 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1345 { 1346 struct sonode *so; 1347 int error; 1348 socklen_t namelen; 1349 socklen_t sock_addrlen; 1350 struct sockaddr *sock_addrp; 1351 1352 dprint(1, ("getpeername(%d, %p, %p)\n", 1353 sock, (void *)name, (void *)namelenp)); 1354 1355 if ((so = getsonode(sock, &error, NULL)) == NULL) 1356 goto bad; 1357 1358 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1359 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1360 (name == NULL && namelen != 0)) { 1361 error = EFAULT; 1362 goto rel_out; 1363 } 1364 sock_addrlen = so->so_max_addr_len; 1365 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1366 1367 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1368 B_FALSE, CRED())) == 0) { 1369 ASSERT(sock_addrlen <= so->so_max_addr_len); 1370 error = copyout_name(name, namelen, namelenp, 1371 (void *)sock_addrp, sock_addrlen); 1372 } 1373 kmem_free(sock_addrp, so->so_max_addr_len); 1374 rel_out: 1375 releasef(sock); 1376 bad: return (error != 0 ? set_errno(error) : 0); 1377 } 1378 1379 /*ARGSUSED3*/ 1380 int 1381 getsockname(int sock, struct sockaddr *name, 1382 socklen_t *namelenp, int version) 1383 { 1384 struct sonode *so; 1385 int error; 1386 socklen_t namelen, sock_addrlen; 1387 struct sockaddr *sock_addrp; 1388 1389 dprint(1, ("getsockname(%d, %p, %p)\n", 1390 sock, (void *)name, (void *)namelenp)); 1391 1392 if ((so = getsonode(sock, &error, NULL)) == NULL) 1393 goto bad; 1394 1395 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1396 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1397 (name == NULL && namelen != 0)) { 1398 error = EFAULT; 1399 goto rel_out; 1400 } 1401 1402 sock_addrlen = so->so_max_addr_len; 1403 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1404 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1405 CRED())) == 0) { 1406 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1407 ASSERT(sock_addrlen <= so->so_max_addr_len); 1408 error = copyout_name(name, namelen, namelenp, 1409 (void *)sock_addrp, sock_addrlen); 1410 } 1411 kmem_free(sock_addrp, so->so_max_addr_len); 1412 rel_out: 1413 releasef(sock); 1414 bad: return (error != 0 ? set_errno(error) : 0); 1415 } 1416 1417 /*ARGSUSED5*/ 1418 int 1419 getsockopt(int sock, 1420 int level, 1421 int option_name, 1422 void *option_value, 1423 socklen_t *option_lenp, 1424 int version) 1425 { 1426 struct sonode *so; 1427 socklen_t optlen, optlen_res; 1428 void *optval; 1429 int error; 1430 1431 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1432 sock, level, option_name, option_value, (void *)option_lenp)); 1433 1434 if ((so = getsonode(sock, &error, NULL)) == NULL) 1435 return (set_errno(error)); 1436 1437 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1438 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1439 releasef(sock); 1440 return (set_errno(EFAULT)); 1441 } 1442 /* 1443 * Verify that the length is not excessive to prevent 1444 * an application from consuming all of kernel memory. 1445 */ 1446 if (optlen > SO_MAXARGSIZE) { 1447 error = EINVAL; 1448 releasef(sock); 1449 return (set_errno(error)); 1450 } 1451 optval = kmem_alloc(optlen, KM_SLEEP); 1452 optlen_res = optlen; 1453 error = socket_getsockopt(so, level, option_name, optval, 1454 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1455 CRED()); 1456 releasef(sock); 1457 if (error) { 1458 kmem_free(optval, optlen); 1459 return (set_errno(error)); 1460 } 1461 error = copyout_arg(option_value, optlen, option_lenp, 1462 optval, optlen_res); 1463 kmem_free(optval, optlen); 1464 if (error) 1465 return (set_errno(error)); 1466 return (0); 1467 } 1468 1469 /*ARGSUSED5*/ 1470 int 1471 setsockopt(int sock, 1472 int level, 1473 int option_name, 1474 void *option_value, 1475 socklen_t option_len, 1476 int version) 1477 { 1478 struct sonode *so; 1479 intptr_t buffer[2]; 1480 void *optval = NULL; 1481 int error; 1482 1483 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1484 sock, level, option_name, option_value, option_len)); 1485 1486 if ((so = getsonode(sock, &error, NULL)) == NULL) 1487 return (set_errno(error)); 1488 1489 if (option_value != NULL) { 1490 if (option_len != 0) { 1491 /* 1492 * Verify that the length is not excessive to prevent 1493 * an application from consuming all of kernel memory. 1494 */ 1495 if (option_len > SO_MAXARGSIZE) { 1496 error = EINVAL; 1497 goto done2; 1498 } 1499 optval = option_len <= sizeof (buffer) ? 1500 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1501 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1502 if (copyin(option_value, optval, (size_t)option_len)) { 1503 error = EFAULT; 1504 goto done1; 1505 } 1506 } 1507 } else 1508 option_len = 0; 1509 1510 error = socket_setsockopt(so, level, option_name, optval, 1511 (t_uscalar_t)option_len, CRED()); 1512 done1: 1513 if (optval != buffer) 1514 kmem_free(optval, (size_t)option_len); 1515 done2: 1516 releasef(sock); 1517 if (error) 1518 return (set_errno(error)); 1519 return (0); 1520 } 1521 1522 /* 1523 * Add config info when name is non-NULL; delete info when name is NULL. 1524 * name could be a device name or a module name and are user address. 1525 */ 1526 int 1527 sockconfig(int family, int type, int protocol, char *name) 1528 { 1529 char *kdevpath = NULL; /* Copied in devpath string */ 1530 char *kmodule = NULL; 1531 size_t pathlen = 0; 1532 int error = 0; 1533 1534 dprint(1, ("sockconfig(%d, %d, %d, %p)\n", 1535 family, type, protocol, (void *)name)); 1536 1537 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1538 return (set_errno(EPERM)); 1539 1540 /* 1541 * By default set the kdevpath and kmodule to NULL to delete an entry. 1542 * Otherwise when name is not NULL, set the kdevpath or kmodule 1543 * value to add an entry. 1544 */ 1545 if (name != NULL) { 1546 /* 1547 * Adding an entry. 1548 * Copyin the name. 1549 * This also makes it possible to check for too long pathnames. 1550 * Compress the space needed for the name before passing it 1551 * to soconfig - soconfig will store the string until 1552 * the configuration is removed. 1553 */ 1554 char *buf; 1555 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1556 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1557 kmem_free(buf, MAXPATHLEN); 1558 goto done; 1559 } 1560 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1561 /* For device */ 1562 1563 /* 1564 * Special handling for NCA: 1565 * 1566 * DEV_NCA is never opened even if an application 1567 * requests for AF_NCA. The device opened is instead a 1568 * predefined AF_INET transport (NCA_INET_DEV). 1569 * 1570 * Prior to Volo (PSARC/2007/587) NCA would determine 1571 * the device using a lookup, which worked then because 1572 * all protocols were based on TPI. Since TPI is no 1573 * longer the default, we have to explicitly state 1574 * which device to use. 1575 */ 1576 if (strcmp(buf, NCA_DEV) == 0) { 1577 /* only support entry <28, 2, 0> */ 1578 if (family != AF_NCA || type != SOCK_STREAM || 1579 protocol != 0) { 1580 kmem_free(buf, MAXPATHLEN); 1581 error = EINVAL; 1582 goto done; 1583 } 1584 1585 pathlen = strlen(NCA_INET_DEV) + 1; 1586 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1587 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1588 kdevpath[pathlen - 1] = '\0'; 1589 } else { 1590 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1591 bcopy(buf, kdevpath, pathlen); 1592 kdevpath[pathlen - 1] = '\0'; 1593 } 1594 } else { 1595 /* For socket module */ 1596 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1597 bcopy(buf, kmodule, pathlen); 1598 kmodule[pathlen - 1] = '\0'; 1599 1600 pathlen = 0; 1601 if (strcmp(kmodule, "tcp") == 0) { 1602 /* Get the tcp device name for fallback */ 1603 if (family == 2) { 1604 pathlen = strlen("/dev/tcp") + 1; 1605 kdevpath = kmem_alloc(pathlen, 1606 KM_SLEEP); 1607 bcopy("/dev/tcp", kdevpath, 1608 pathlen); 1609 kdevpath[pathlen - 1] = '\0'; 1610 } else { 1611 ASSERT(family == 26); 1612 pathlen = strlen("/dev/tcp6") + 1; 1613 kdevpath = kmem_alloc(pathlen, 1614 KM_SLEEP); 1615 bcopy("/dev/tcp6", kdevpath, pathlen); 1616 kdevpath[pathlen - 1] = '\0'; 1617 } 1618 } else if (strcmp(kmodule, "udp") == 0) { 1619 /* Get the udp device name for fallback */ 1620 if (family == 2) { 1621 pathlen = strlen("/dev/udp") + 1; 1622 kdevpath = kmem_alloc(pathlen, 1623 KM_SLEEP); 1624 bcopy("/dev/udp", kdevpath, pathlen); 1625 kdevpath[pathlen - 1] = '\0'; 1626 } else { 1627 ASSERT(family == 26); 1628 pathlen = strlen("/dev/udp6") + 1; 1629 kdevpath = kmem_alloc(pathlen, 1630 KM_SLEEP); 1631 bcopy("/dev/udp6", kdevpath, pathlen); 1632 kdevpath[pathlen - 1] = '\0'; 1633 } 1634 } else if (strcmp(kmodule, "icmp") == 0) { 1635 /* Get the icmp device name for fallback */ 1636 if (family == 2) { 1637 pathlen = strlen("/dev/rawip") + 1; 1638 kdevpath = kmem_alloc(pathlen, 1639 KM_SLEEP); 1640 bcopy("/dev/rawip", kdevpath, pathlen); 1641 kdevpath[pathlen - 1] = '\0'; 1642 } else { 1643 ASSERT(family == 26); 1644 pathlen = strlen("/dev/rawip6") + 1; 1645 kdevpath = kmem_alloc(pathlen, 1646 KM_SLEEP); 1647 bcopy("/dev/rawip6", kdevpath, pathlen); 1648 kdevpath[pathlen - 1] = '\0'; 1649 } 1650 } 1651 } 1652 1653 kmem_free(buf, MAXPATHLEN); 1654 } 1655 error = soconfig(family, type, protocol, kdevpath, (int)pathlen, 1656 kmodule); 1657 done: 1658 if (error) { 1659 eprintline(error); 1660 return (set_errno(error)); 1661 } 1662 return (0); 1663 } 1664 1665 1666 /* 1667 * Sendfile is implemented through two schemes, direct I/O or by 1668 * caching in the filesystem page cache. We cache the input file by 1669 * default and use direct I/O only if sendfile_max_size is set 1670 * appropriately as explained below. Note that this logic is consistent 1671 * with other filesystems where caching is turned on by default 1672 * unless explicitly turned off by using the DIRECTIO ioctl. 1673 * 1674 * We choose a slightly different scheme here. One can turn off 1675 * caching by setting sendfile_max_size to 0. One can also enable 1676 * caching of files <= sendfile_max_size by setting sendfile_max_size 1677 * to an appropriate value. By default sendfile_max_size is set to the 1678 * maximum value so that all files are cached. In future, we may provide 1679 * better interfaces for caching the file. 1680 * 1681 * Sendfile through Direct I/O (Zero copy) 1682 * -------------------------------------- 1683 * 1684 * As disks are normally slower than the network, we can't have a 1685 * single thread that reads the disk and writes to the network. We 1686 * need to have parallelism. This is done by having the sendfile 1687 * thread create another thread that reads from the filesystem 1688 * and queues it for network processing. In this scheme, the data 1689 * is never copied anywhere i.e it is zero copy unlike the other 1690 * scheme. 1691 * 1692 * We have a sendfile queue (snfq) where each sendfile 1693 * request (snf_req_t) is queued for processing by a thread. Number 1694 * of threads is dynamically allocated and they exit if they are idling 1695 * beyond a specified amount of time. When each request (snf_req_t) is 1696 * processed by a thread, it produces a number of mblk_t structures to 1697 * be consumed by the sendfile thread. snf_deque and snf_enque are 1698 * used for consuming and producing mblks. Size of the filesystem 1699 * read is determined by the tunable (sendfile_read_size). A single 1700 * mblk holds sendfile_read_size worth of data (except the last 1701 * read of the file) which is sent down as a whole to the network. 1702 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1703 * value for the UFS filesystem backed by a striped storage array. 1704 * 1705 * Synchronisation between read (producer) and write (consumer) threads. 1706 * -------------------------------------------------------------------- 1707 * 1708 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1709 * adding and deleting items in this list. Error can happen anytime 1710 * during read or write. There could be unprocessed mblks in the 1711 * sr_ib_XXX list when a read or write error occurs. Whenever error 1712 * is encountered, we need two things to happen : 1713 * 1714 * a) One of the threads need to clean the mblks. 1715 * b) When one thread encounters an error, the other should stop. 1716 * 1717 * For (a), we don't want to penalize the reader thread as it could do 1718 * some useful work processing other requests. For (b), the error can 1719 * be detected by examining sr_read_error or sr_write_error. 1720 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1721 * writer encounters error, we need to report the write error back to 1722 * the application as that's what would have happened if the operations 1723 * were done sequentially. With this in mind, following should work : 1724 * 1725 * - Check for errors before read or write. 1726 * - If the reader encounters error, set the error in sr_read_error. 1727 * Check sr_write_error, if it is set, send cv_signal as it is 1728 * waiting for reader to complete. If it is not set, the writer 1729 * is either running sinking data to the network or blocked 1730 * because of flow control. For handling the latter case, we 1731 * always send a signal. In any case, it will examine sr_read_error 1732 * and return. sr_read_error is marked with SR_READ_DONE to tell 1733 * the writer that the reader is done in all the cases. 1734 * - If the writer encounters error, set the error in sr_write_error. 1735 * The reader thread is either blocked because of flow control or 1736 * running reading data from the disk. For the former, we need to 1737 * wakeup the thread. Again to keep it simple, we always wake up 1738 * the reader thread. Then, wait for the read thread to complete 1739 * if it is not done yet. Cleanup and return. 1740 * 1741 * High and low water marks for the read thread. 1742 * -------------------------------------------- 1743 * 1744 * If sendfile() is used to send data over a slow network, we need to 1745 * make sure that the read thread does not produce data at a faster 1746 * rate than the network. This can happen if the disk is faster than 1747 * the network. In such a case, we don't want to build a very large queue. 1748 * But we would still like to get all of the network throughput possible. 1749 * This implies that network should never block waiting for data. 1750 * As there are lot of disk throughput/network throughput combinations 1751 * possible, it is difficult to come up with an accurate number. 1752 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1753 * latency of 3ms for reading a disk block. Thus, the total latency to 1754 * initiate a new read, transfer data from the disk and queue for 1755 * transmission would take about a max of 25ms. Todays max transfer rate 1756 * for network is 100MB/sec. If the thread is blocked because of flow 1757 * control, it would take 25ms to get new data ready for transmission. 1758 * We have to make sure that network is not idling, while we are initiating 1759 * new transfers. So, at 100MB/sec, to keep network busy we would need 1760 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 1761 * We need to pick a high water mark so that the woken up thread would 1762 * do considerable work before blocking again to prevent thrashing. Currently, 1763 * we pick this to be 10 times that of the low water mark. 1764 * 1765 * Sendfile with segmap caching (One copy from page cache to mblks). 1766 * ---------------------------------------------------------------- 1767 * 1768 * We use the segmap cache for caching the file, if the size of file 1769 * is <= sendfile_max_size. In this case we don't use threads as VM 1770 * is reasonably fast enough to keep up with the network. If the underlying 1771 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1772 * of data into segmap space, and use the virtual address from segmap 1773 * directly through desballoc() to avoid copy. Once the transport is done 1774 * with the data, the mapping will be released through segmap_release() 1775 * called by the call-back routine. 1776 * 1777 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1778 * to copy the data from the filesystem into our temporary network buffer. 1779 * 1780 * To disable caching, set sendfile_max_size to 0. 1781 */ 1782 1783 uint_t sendfile_read_size = 1024 * 1024; 1784 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 1785 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 1786 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 1787 struct sendfile_stats sf_stats; 1788 struct sendfile_queue *snfq; 1789 clock_t snfq_timeout; 1790 off64_t sendfile_max_size; 1791 1792 static void snf_enque(snf_req_t *, mblk_t *); 1793 static mblk_t *snf_deque(snf_req_t *); 1794 1795 void 1796 sendfile_init(void) 1797 { 1798 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 1799 1800 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 1801 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 1802 snfq->snfq_max_threads = max_ncpus; 1803 snfq_timeout = SNFQ_TIMEOUT; 1804 /* Cache all files by default. */ 1805 sendfile_max_size = MAXOFFSET_T; 1806 } 1807 1808 /* 1809 * Queues a mblk_t for network processing. 1810 */ 1811 static void 1812 snf_enque(snf_req_t *sr, mblk_t *mp) 1813 { 1814 mp->b_next = NULL; 1815 mutex_enter(&sr->sr_lock); 1816 if (sr->sr_mp_head == NULL) { 1817 sr->sr_mp_head = sr->sr_mp_tail = mp; 1818 cv_signal(&sr->sr_cv); 1819 } else { 1820 sr->sr_mp_tail->b_next = mp; 1821 sr->sr_mp_tail = mp; 1822 } 1823 sr->sr_qlen += MBLKL(mp); 1824 while ((sr->sr_qlen > sr->sr_hiwat) && 1825 (sr->sr_write_error == 0)) { 1826 sf_stats.ss_full_waits++; 1827 cv_wait(&sr->sr_cv, &sr->sr_lock); 1828 } 1829 mutex_exit(&sr->sr_lock); 1830 } 1831 1832 /* 1833 * De-queues a mblk_t for network processing. 1834 */ 1835 static mblk_t * 1836 snf_deque(snf_req_t *sr) 1837 { 1838 mblk_t *mp; 1839 1840 mutex_enter(&sr->sr_lock); 1841 /* 1842 * If we have encountered an error on read or read is 1843 * completed and no more mblks, return NULL. 1844 * We need to check for NULL sr_mp_head also as 1845 * the reads could have completed and there is 1846 * nothing more to come. 1847 */ 1848 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 1849 ((sr->sr_read_error & SR_READ_DONE) && 1850 sr->sr_mp_head == NULL)) { 1851 mutex_exit(&sr->sr_lock); 1852 return (NULL); 1853 } 1854 /* 1855 * To start with neither SR_READ_DONE is marked nor 1856 * the error is set. When we wake up from cv_wait, 1857 * following are the possibilities : 1858 * 1859 * a) sr_read_error is zero and mblks are queued. 1860 * b) sr_read_error is set to SR_READ_DONE 1861 * and mblks are queued. 1862 * c) sr_read_error is set to SR_READ_DONE 1863 * and no mblks. 1864 * d) sr_read_error is set to some error other 1865 * than SR_READ_DONE. 1866 */ 1867 1868 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 1869 sf_stats.ss_empty_waits++; 1870 cv_wait(&sr->sr_cv, &sr->sr_lock); 1871 } 1872 /* Handle (a) and (b) first - the normal case. */ 1873 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 1874 (sr->sr_mp_head != NULL)) { 1875 mp = sr->sr_mp_head; 1876 sr->sr_mp_head = mp->b_next; 1877 sr->sr_qlen -= MBLKL(mp); 1878 if (sr->sr_qlen < sr->sr_lowat) 1879 cv_signal(&sr->sr_cv); 1880 mutex_exit(&sr->sr_lock); 1881 mp->b_next = NULL; 1882 return (mp); 1883 } 1884 /* Handle (c) and (d). */ 1885 mutex_exit(&sr->sr_lock); 1886 return (NULL); 1887 } 1888 1889 /* 1890 * Reads data from the filesystem and queues it for network processing. 1891 */ 1892 void 1893 snf_async_read(snf_req_t *sr) 1894 { 1895 size_t iosize; 1896 u_offset_t fileoff; 1897 u_offset_t size; 1898 int ret_size; 1899 int error; 1900 file_t *fp; 1901 mblk_t *mp; 1902 struct vnode *vp; 1903 int extra = 0; 1904 int maxblk = 0; 1905 int wroff = 0; 1906 struct sonode *so; 1907 1908 fp = sr->sr_fp; 1909 size = sr->sr_file_size; 1910 fileoff = sr->sr_file_off; 1911 1912 /* 1913 * Ignore the error for filesystems that doesn't support DIRECTIO. 1914 */ 1915 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 1916 kcred, NULL, NULL); 1917 1918 vp = sr->sr_vp; 1919 if (vp->v_type == VSOCK) { 1920 stdata_t *stp; 1921 1922 /* 1923 * Get the extra space to insert a header and a trailer. 1924 */ 1925 so = VTOSO(vp); 1926 stp = vp->v_stream; 1927 if (stp == NULL) { 1928 wroff = so->so_proto_props.sopp_wroff; 1929 maxblk = so->so_proto_props.sopp_maxblk; 1930 extra = wroff + so->so_proto_props.sopp_tail; 1931 } else { 1932 wroff = (int)(stp->sd_wroff); 1933 maxblk = (int)(stp->sd_maxblk); 1934 extra = wroff + (int)(stp->sd_tail); 1935 } 1936 } 1937 1938 while ((size != 0) && (sr->sr_write_error == 0)) { 1939 1940 iosize = (int)MIN(sr->sr_maxpsz, size); 1941 1942 /* 1943 * For sockets acting as an SSL proxy, we 1944 * need to adjust the size to the maximum 1945 * SSL record size set in the stream head. 1946 */ 1947 if (vp->v_type == VSOCK && !SOCK_IS_NONSTR(so) && 1948 SOTOTPI(so)->sti_kssl_ctx != NULL) 1949 iosize = (int)MIN(iosize, maxblk); 1950 1951 if (is_system_labeled()) { 1952 mp = allocb_cred(iosize + extra, CRED(), 1953 curproc->p_pid); 1954 } else { 1955 mp = allocb(iosize + extra, BPRI_MED); 1956 } 1957 if (mp == NULL) { 1958 error = EAGAIN; 1959 break; 1960 } 1961 1962 mp->b_rptr += wroff; 1963 1964 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 1965 1966 /* Error or Reached EOF ? */ 1967 if ((error != 0) || (ret_size == 0)) { 1968 freeb(mp); 1969 break; 1970 } 1971 mp->b_wptr = mp->b_rptr + ret_size; 1972 1973 snf_enque(sr, mp); 1974 size -= ret_size; 1975 fileoff += ret_size; 1976 } 1977 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 1978 kcred, NULL, NULL); 1979 mutex_enter(&sr->sr_lock); 1980 sr->sr_read_error = error; 1981 sr->sr_read_error |= SR_READ_DONE; 1982 cv_signal(&sr->sr_cv); 1983 mutex_exit(&sr->sr_lock); 1984 } 1985 1986 void 1987 snf_async_thread(void) 1988 { 1989 snf_req_t *sr; 1990 callb_cpr_t cprinfo; 1991 clock_t time_left = 1; 1992 1993 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 1994 1995 mutex_enter(&snfq->snfq_lock); 1996 for (;;) { 1997 /* 1998 * If we didn't find a entry, then block until woken up 1999 * again and then look through the queues again. 2000 */ 2001 while ((sr = snfq->snfq_req_head) == NULL) { 2002 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2003 if (time_left <= 0) { 2004 snfq->snfq_svc_threads--; 2005 CALLB_CPR_EXIT(&cprinfo); 2006 thread_exit(); 2007 /* NOTREACHED */ 2008 } 2009 snfq->snfq_idle_cnt++; 2010 2011 time_left = cv_reltimedwait(&snfq->snfq_cv, 2012 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2013 snfq->snfq_idle_cnt--; 2014 2015 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2016 } 2017 snfq->snfq_req_head = sr->sr_next; 2018 snfq->snfq_req_cnt--; 2019 mutex_exit(&snfq->snfq_lock); 2020 snf_async_read(sr); 2021 mutex_enter(&snfq->snfq_lock); 2022 } 2023 } 2024 2025 2026 snf_req_t * 2027 create_thread(int operation, struct vnode *vp, file_t *fp, 2028 u_offset_t fileoff, u_offset_t size) 2029 { 2030 snf_req_t *sr; 2031 stdata_t *stp; 2032 2033 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2034 2035 sr->sr_vp = vp; 2036 sr->sr_fp = fp; 2037 stp = vp->v_stream; 2038 2039 /* 2040 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2041 * stream might be closed before thread returns from snf_async_read. 2042 */ 2043 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2044 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2045 } else { 2046 sr->sr_maxpsz = MAXBSIZE; 2047 } 2048 2049 sr->sr_operation = operation; 2050 sr->sr_file_off = fileoff; 2051 sr->sr_file_size = size; 2052 sr->sr_hiwat = sendfile_req_hiwat; 2053 sr->sr_lowat = sendfile_req_lowat; 2054 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2055 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2056 /* 2057 * See whether we need another thread for servicing this 2058 * request. If there are already enough requests queued 2059 * for the threads, create one if not exceeding 2060 * snfq_max_threads. 2061 */ 2062 mutex_enter(&snfq->snfq_lock); 2063 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2064 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2065 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2066 TS_RUN, minclsyspri); 2067 snfq->snfq_svc_threads++; 2068 } 2069 if (snfq->snfq_req_head == NULL) { 2070 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2071 cv_signal(&snfq->snfq_cv); 2072 } else { 2073 snfq->snfq_req_tail->sr_next = sr; 2074 snfq->snfq_req_tail = sr; 2075 } 2076 snfq->snfq_req_cnt++; 2077 mutex_exit(&snfq->snfq_lock); 2078 return (sr); 2079 } 2080 2081 int 2082 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2083 ssize_t *count) 2084 { 2085 snf_req_t *sr; 2086 mblk_t *mp; 2087 int iosize; 2088 int error = 0; 2089 short fflag; 2090 struct vnode *vp; 2091 int ksize; 2092 struct nmsghdr msg; 2093 2094 ksize = 0; 2095 *count = 0; 2096 bzero(&msg, sizeof (msg)); 2097 2098 vp = fp->f_vnode; 2099 fflag = fp->f_flag; 2100 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2101 return (EAGAIN); 2102 2103 /* 2104 * We check for read error in snf_deque. It has to check 2105 * for successful READ_DONE and return NULL, and we might 2106 * as well make an additional check there. 2107 */ 2108 while ((mp = snf_deque(sr)) != NULL) { 2109 2110 if (ISSIG(curthread, JUSTLOOKING)) { 2111 freeb(mp); 2112 error = EINTR; 2113 break; 2114 } 2115 iosize = MBLKL(mp); 2116 2117 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2118 2119 if (error != 0) { 2120 if (mp != NULL) 2121 freeb(mp); 2122 break; 2123 } 2124 ksize += iosize; 2125 } 2126 *count = ksize; 2127 2128 mutex_enter(&sr->sr_lock); 2129 sr->sr_write_error = error; 2130 /* Look at the big comments on why we cv_signal here. */ 2131 cv_signal(&sr->sr_cv); 2132 2133 /* Wait for the reader to complete always. */ 2134 while (!(sr->sr_read_error & SR_READ_DONE)) { 2135 cv_wait(&sr->sr_cv, &sr->sr_lock); 2136 } 2137 /* If there is no write error, check for read error. */ 2138 if (error == 0) 2139 error = (sr->sr_read_error & ~SR_READ_DONE); 2140 2141 if (error != 0) { 2142 mblk_t *next_mp; 2143 2144 mp = sr->sr_mp_head; 2145 while (mp != NULL) { 2146 next_mp = mp->b_next; 2147 mp->b_next = NULL; 2148 freeb(mp); 2149 mp = next_mp; 2150 } 2151 } 2152 mutex_exit(&sr->sr_lock); 2153 kmem_free(sr, sizeof (snf_req_t)); 2154 return (error); 2155 } 2156 2157 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2158 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2159 2160 /* 2161 * Maximum no.of elements in the list returned by vpm, including 2162 * NULL for the last entry 2163 */ 2164 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2165 2166 typedef struct { 2167 unsigned int snfv_ref; 2168 frtn_t snfv_frtn; 2169 vnode_t *snfv_vp; 2170 struct vmap snfv_vml[SNF_MAXVMAPS]; 2171 } snf_vmap_desbinfo; 2172 2173 typedef struct { 2174 frtn_t snfi_frtn; 2175 caddr_t snfi_base; 2176 uint_t snfi_mapoff; 2177 size_t snfi_len; 2178 vnode_t *snfi_vp; 2179 } snf_smap_desbinfo; 2180 2181 /* 2182 * The callback function used for vpm mapped mblks called when the last ref of 2183 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2184 * can be the driver too due to lazy reclaim. 2185 */ 2186 void 2187 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2188 { 2189 ASSERT(snfv->snfv_ref != 0); 2190 if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) { 2191 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2192 VN_RELE(snfv->snfv_vp); 2193 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2194 } 2195 } 2196 2197 /* 2198 * The callback function used for segmap'ped mblks called when the last ref of 2199 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2200 * can be the driver too due to lazy reclaim. 2201 */ 2202 void 2203 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2204 { 2205 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2206 /* 2207 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2208 * segmap_kpm as long as the latter never falls back to 2209 * "use_segmap_range". (See segmap_getmapflt().) 2210 * 2211 * Using S_OTHER saves an redundant hat_setref() in 2212 * segmap_unlock() 2213 */ 2214 (void) segmap_fault(kas.a_hat, segkmap, 2215 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2216 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2217 F_SOFTUNLOCK, S_OTHER); 2218 } 2219 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2220 VN_RELE(snfi->snfi_vp); 2221 kmem_free(snfi, sizeof (*snfi)); 2222 } 2223 2224 /* 2225 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2226 * When segmap is used, the mblk contains a segmap slot of no more 2227 * than MAXBSIZE. 2228 * 2229 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2230 * in each iteration and sent by socket_sendmblk until an error occurs or 2231 * the requested size has been transferred. An mblk is esballoca'ed from 2232 * each mapped page and a chain of these mblk is sent to the transport layer. 2233 * vpm will be called to unmap the pages when all mblks have been freed by 2234 * free_func. 2235 * 2236 * At the end of the whole sendfile() operation, we wait till the data from 2237 * the last mblk is ack'ed by the transport before returning so that the 2238 * caller of sendfile() can safely modify the file content. 2239 */ 2240 int 2241 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2242 ssize_t *count, boolean_t nowait) 2243 { 2244 caddr_t base; 2245 int mapoff; 2246 vnode_t *vp; 2247 mblk_t *mp = NULL; 2248 int chain_size; 2249 int error; 2250 short fflag; 2251 int ksize; 2252 struct vattr va; 2253 boolean_t dowait = B_FALSE; 2254 struct nmsghdr msg; 2255 2256 vp = fp->f_vnode; 2257 fflag = fp->f_flag; 2258 ksize = 0; 2259 bzero(&msg, sizeof (msg)); 2260 2261 for (;;) { 2262 if (ISSIG(curthread, JUSTLOOKING)) { 2263 error = EINTR; 2264 break; 2265 } 2266 2267 if (vpm_enable) { 2268 snf_vmap_desbinfo *snfv; 2269 mblk_t *nmp; 2270 int mblk_size; 2271 int maxsize; 2272 int i; 2273 2274 mapoff = fileoff & PAGEOFFSET; 2275 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2276 2277 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2278 KM_SLEEP); 2279 2280 /* Get vpm mappings for maxsize with read access */ 2281 if (vpm_map_pages(fvp, fileoff, (size_t)maxsize, 2282 (VPM_FETCHPAGE), snfv->snfv_vml, SNF_MAXVMAPS, 2283 NULL, S_READ) != 0) { 2284 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2285 error = EIO; 2286 goto out; 2287 } 2288 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2289 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2290 2291 /* Construct the mblk chain from the page mappings */ 2292 chain_size = 0; 2293 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2294 total_size > 0; i++) { 2295 ASSERT(chain_size < maxsize); 2296 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2297 mapoff, total_size); 2298 nmp = esballoca( 2299 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2300 mapoff, mblk_size, BPRI_HI, 2301 &snfv->snfv_frtn); 2302 2303 /* 2304 * We return EAGAIN after unmapping the pages 2305 * if we cannot allocate the the head of the 2306 * chain. Otherwise, we continue sending the 2307 * mblks constructed so far. 2308 */ 2309 if (nmp == NULL) { 2310 if (i == 0) { 2311 vpm_unmap_pages(snfv->snfv_vml, 2312 S_READ); 2313 kmem_free(snfv, 2314 sizeof (snf_vmap_desbinfo)); 2315 error = EAGAIN; 2316 goto out; 2317 } 2318 break; 2319 } 2320 /* Mark this dblk with the zero-copy flag */ 2321 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2322 nmp->b_wptr += mblk_size; 2323 chain_size += mblk_size; 2324 fileoff += mblk_size; 2325 total_size -= mblk_size; 2326 snfv->snfv_ref++; 2327 mapoff = 0; 2328 if (i > 0) 2329 linkb(mp, nmp); 2330 else 2331 mp = nmp; 2332 } 2333 VN_HOLD(fvp); 2334 snfv->snfv_vp = fvp; 2335 } else { 2336 /* vpm not supported. fallback to segmap */ 2337 snf_smap_desbinfo *snfi; 2338 2339 mapoff = fileoff & MAXBOFFSET; 2340 chain_size = MAXBSIZE - mapoff; 2341 if (chain_size > total_size) 2342 chain_size = total_size; 2343 /* 2344 * we don't forcefault because we'll call 2345 * segmap_fault(F_SOFTLOCK) next. 2346 * 2347 * S_READ will get the ref bit set (by either 2348 * segmap_getmapflt() or segmap_fault()) and page 2349 * shared locked. 2350 */ 2351 base = segmap_getmapflt(segkmap, fvp, fileoff, 2352 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2353 2354 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2355 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2356 PAGESIZE)- (mapoff & PAGEMASK); 2357 /* 2358 * We must call segmap_fault() even for segmap_kpm 2359 * because that's how error gets returned. 2360 * (segmap_getmapflt() never fails but segmap_fault() 2361 * does.) 2362 */ 2363 if (segmap_fault(kas.a_hat, segkmap, 2364 (caddr_t)(uintptr_t)(((uintptr_t)base + mapoff) & 2365 PAGEMASK), snfi->snfi_len, 2366 F_SOFTLOCK, S_READ) != 0) { 2367 (void) segmap_release(segkmap, base, 0); 2368 kmem_free(snfi, sizeof (*snfi)); 2369 error = EIO; 2370 goto out; 2371 } 2372 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2373 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2374 snfi->snfi_base = base; 2375 snfi->snfi_mapoff = mapoff; 2376 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2377 BPRI_HI, &snfi->snfi_frtn); 2378 2379 if (mp == NULL) { 2380 (void) segmap_fault(kas.a_hat, segkmap, 2381 (caddr_t)(uintptr_t)(((uintptr_t)base + 2382 mapoff) & PAGEMASK), snfi->snfi_len, 2383 F_SOFTUNLOCK, S_OTHER); 2384 (void) segmap_release(segkmap, base, 0); 2385 kmem_free(snfi, sizeof (*snfi)); 2386 freemsg(mp); 2387 error = EAGAIN; 2388 goto out; 2389 } 2390 VN_HOLD(fvp); 2391 snfi->snfi_vp = fvp; 2392 mp->b_wptr += chain_size; 2393 2394 /* Mark this dblk with the zero-copy flag */ 2395 mp->b_datap->db_struioflag |= STRUIO_ZC; 2396 fileoff += chain_size; 2397 total_size -= chain_size; 2398 } 2399 2400 if (total_size == 0 && !nowait) { 2401 ASSERT(!dowait); 2402 dowait = B_TRUE; 2403 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2404 } 2405 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2406 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2407 if (error != 0) { 2408 /* 2409 * mp contains the mblks that were not sent by 2410 * socket_sendmblk. Use its size to update *count 2411 */ 2412 *count = ksize + (chain_size - msgdsize(mp)); 2413 if (mp != NULL) 2414 freemsg(mp); 2415 return (error); 2416 } 2417 ksize += chain_size; 2418 if (total_size == 0) 2419 goto done; 2420 2421 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2422 va.va_mask = AT_SIZE; 2423 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2424 if (error) 2425 break; 2426 /* Read as much as possible. */ 2427 if (fileoff >= va.va_size) 2428 break; 2429 if (total_size + fileoff > va.va_size) 2430 total_size = va.va_size - fileoff; 2431 } 2432 out: 2433 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2434 done: 2435 *count = ksize; 2436 if (dowait) { 2437 stdata_t *stp; 2438 2439 stp = vp->v_stream; 2440 if (stp == NULL) { 2441 struct sonode *so; 2442 so = VTOSO(vp); 2443 error = so_zcopy_wait(so); 2444 } else { 2445 mutex_enter(&stp->sd_lock); 2446 while (!(stp->sd_flag & STZCNOTIFY)) { 2447 if (cv_wait_sig(&stp->sd_zcopy_wait, 2448 &stp->sd_lock) == 0) { 2449 error = EINTR; 2450 break; 2451 } 2452 } 2453 stp->sd_flag &= ~STZCNOTIFY; 2454 mutex_exit(&stp->sd_lock); 2455 } 2456 } 2457 return (error); 2458 } 2459 2460 int 2461 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2462 uint_t maxpsz, ssize_t *count) 2463 { 2464 struct vnode *vp; 2465 mblk_t *mp; 2466 int iosize; 2467 int extra = 0; 2468 int error; 2469 short fflag; 2470 int ksize; 2471 int ioflag; 2472 struct uio auio; 2473 struct iovec aiov; 2474 struct vattr va; 2475 int maxblk = 0; 2476 int wroff = 0; 2477 struct sonode *so; 2478 struct nmsghdr msg; 2479 2480 vp = fp->f_vnode; 2481 if (vp->v_type == VSOCK) { 2482 stdata_t *stp; 2483 2484 /* 2485 * Get the extra space to insert a header and a trailer. 2486 */ 2487 so = VTOSO(vp); 2488 stp = vp->v_stream; 2489 if (stp == NULL) { 2490 wroff = so->so_proto_props.sopp_wroff; 2491 maxblk = so->so_proto_props.sopp_maxblk; 2492 extra = wroff + so->so_proto_props.sopp_tail; 2493 } else { 2494 wroff = (int)(stp->sd_wroff); 2495 maxblk = (int)(stp->sd_maxblk); 2496 extra = wroff + (int)(stp->sd_tail); 2497 } 2498 } 2499 bzero(&msg, sizeof (msg)); 2500 fflag = fp->f_flag; 2501 ksize = 0; 2502 auio.uio_iov = &aiov; 2503 auio.uio_iovcnt = 1; 2504 auio.uio_segflg = UIO_SYSSPACE; 2505 auio.uio_llimit = MAXOFFSET_T; 2506 auio.uio_fmode = fflag; 2507 auio.uio_extflg = UIO_COPY_CACHED; 2508 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2509 /* If read sync is not asked for, filter sync flags */ 2510 if ((ioflag & FRSYNC) == 0) 2511 ioflag &= ~(FSYNC|FDSYNC); 2512 for (;;) { 2513 if (ISSIG(curthread, JUSTLOOKING)) { 2514 error = EINTR; 2515 break; 2516 } 2517 iosize = (int)MIN(maxpsz, size); 2518 2519 /* 2520 * For sockets acting as an SSL proxy, we 2521 * need to adjust the size to the maximum 2522 * SSL record size set in the stream head. 2523 */ 2524 if (vp->v_type == VSOCK && !SOCK_IS_NONSTR(so) && 2525 SOTOTPI(so)->sti_kssl_ctx != NULL) 2526 iosize = (int)MIN(iosize, maxblk); 2527 2528 if (is_system_labeled()) { 2529 mp = allocb_cred(iosize + extra, CRED(), 2530 curproc->p_pid); 2531 } else { 2532 mp = allocb(iosize + extra, BPRI_MED); 2533 } 2534 if (mp == NULL) { 2535 error = EAGAIN; 2536 break; 2537 } 2538 2539 mp->b_rptr += wroff; 2540 2541 aiov.iov_base = (caddr_t)mp->b_rptr; 2542 aiov.iov_len = iosize; 2543 auio.uio_loffset = fileoff; 2544 auio.uio_resid = iosize; 2545 2546 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2547 iosize -= auio.uio_resid; 2548 2549 if (error == EINTR && iosize != 0) 2550 error = 0; 2551 2552 if (error != 0 || iosize == 0) { 2553 freeb(mp); 2554 break; 2555 } 2556 mp->b_wptr = mp->b_rptr + iosize; 2557 2558 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2559 2560 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2561 2562 if (error != 0) { 2563 *count = ksize; 2564 if (mp != NULL) 2565 freeb(mp); 2566 return (error); 2567 } 2568 ksize += iosize; 2569 size -= iosize; 2570 if (size == 0) 2571 goto done; 2572 2573 fileoff += iosize; 2574 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2575 va.va_mask = AT_SIZE; 2576 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2577 if (error) 2578 break; 2579 /* Read as much as possible. */ 2580 if (fileoff >= va.va_size) 2581 size = 0; 2582 else if (size + fileoff > va.va_size) 2583 size = va.va_size - fileoff; 2584 } 2585 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2586 done: 2587 *count = ksize; 2588 return (error); 2589 } 2590 2591 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2592 /* 2593 * Largefile support for 32 bit applications only. 2594 */ 2595 int 2596 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2597 ssize32_t *count32) 2598 { 2599 ssize32_t sfv_len; 2600 u_offset_t sfv_off, va_size; 2601 struct vnode *vp, *fvp, *realvp; 2602 struct vattr va; 2603 stdata_t *stp; 2604 ssize_t count = 0; 2605 int error = 0; 2606 boolean_t dozcopy = B_FALSE; 2607 uint_t maxpsz; 2608 2609 sfv_len = (ssize32_t)sfv->sfv_len; 2610 if (sfv_len < 0) { 2611 error = EINVAL; 2612 goto out; 2613 } 2614 2615 if (sfv_len == 0) goto out; 2616 2617 sfv_off = (u_offset_t)sfv->sfv_off; 2618 2619 /* Same checks as in pread */ 2620 if (sfv_off > MAXOFFSET_T) { 2621 error = EINVAL; 2622 goto out; 2623 } 2624 if (sfv_off + sfv_len > MAXOFFSET_T) 2625 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2626 2627 /* 2628 * There are no more checks on sfv_len. So, we cast it to 2629 * u_offset_t and share the snf_direct_io/snf_cache code between 2630 * 32 bit and 64 bit. 2631 * 2632 * TODO: should do nbl_need_check() like read()? 2633 */ 2634 if (sfv_len > sendfile_max_size) { 2635 sf_stats.ss_file_not_cached++; 2636 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2637 &count); 2638 goto out; 2639 } 2640 fvp = rfp->f_vnode; 2641 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2642 fvp = realvp; 2643 /* 2644 * Grab the lock as a reader to prevent the file size 2645 * from changing underneath. 2646 */ 2647 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2648 va.va_mask = AT_SIZE; 2649 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2650 va_size = va.va_size; 2651 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2652 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2653 goto out; 2654 } 2655 /* Read as much as possible. */ 2656 if (sfv_off + sfv_len > va_size) 2657 sfv_len = va_size - sfv_off; 2658 2659 vp = fp->f_vnode; 2660 stp = vp->v_stream; 2661 /* 2662 * When the NOWAIT flag is not set, we enable zero-copy only if the 2663 * transfer size is large enough. This prevents performance loss 2664 * when the caller sends the file piece by piece. 2665 */ 2666 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2667 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2668 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2669 uint_t copyflag; 2670 copyflag = stp != NULL ? stp->sd_copyflag : 2671 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2672 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2673 int on = 1; 2674 2675 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2676 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2677 dozcopy = B_TRUE; 2678 } else { 2679 dozcopy = copyflag & STZCVMSAFE; 2680 } 2681 } 2682 if (dozcopy) { 2683 sf_stats.ss_file_segmap++; 2684 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2685 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2686 } else { 2687 if (vp->v_type == VSOCK && stp == NULL) { 2688 sonode_t *so = VTOSO(vp); 2689 maxpsz = so->so_proto_props.sopp_maxpsz; 2690 } else if (stp != NULL) { 2691 maxpsz = stp->sd_qn_maxpsz; 2692 } else { 2693 maxpsz = maxphys; 2694 } 2695 2696 if (maxpsz == INFPSZ) 2697 maxpsz = maxphys; 2698 else 2699 maxpsz = roundup(maxpsz, MAXBSIZE); 2700 sf_stats.ss_file_cached++; 2701 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2702 maxpsz, &count); 2703 } 2704 out: 2705 releasef(sfv->sfv_fd); 2706 *count32 = (ssize32_t)count; 2707 return (error); 2708 } 2709 #endif 2710 2711 #ifdef _SYSCALL32_IMPL 2712 /* 2713 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2714 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2715 */ 2716 2717 ssize_t 2718 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2719 { 2720 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2721 } 2722 2723 ssize_t 2724 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2725 caddr32_t name, caddr32_t namelenp) 2726 { 2727 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2728 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2729 } 2730 2731 ssize_t 2732 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2733 { 2734 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2735 } 2736 2737 ssize_t 2738 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2739 caddr32_t name, socklen_t namelen) 2740 { 2741 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2742 (void *)(uintptr_t)name, namelen)); 2743 } 2744 #endif /* _SYSCALL32_IMPL */ 2745 2746 /* 2747 * Function wrappers (mostly around the sonode switch) for 2748 * backward compatibility. 2749 */ 2750 2751 int 2752 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 2753 { 2754 return (socket_accept(so, fflag, CRED(), nsop)); 2755 } 2756 2757 int 2758 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 2759 int backlog, int flags) 2760 { 2761 int error; 2762 2763 error = socket_bind(so, name, namelen, flags, CRED()); 2764 if (error == 0 && backlog != 0) 2765 return (socket_listen(so, backlog, CRED())); 2766 2767 return (error); 2768 } 2769 2770 int 2771 solisten(struct sonode *so, int backlog) 2772 { 2773 return (socket_listen(so, backlog, CRED())); 2774 } 2775 2776 int 2777 soconnect(struct sonode *so, const struct sockaddr *name, socklen_t namelen, 2778 int fflag, int flags) 2779 { 2780 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 2781 } 2782 2783 int 2784 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2785 { 2786 return (socket_recvmsg(so, msg, uiop, CRED())); 2787 } 2788 2789 int 2790 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2791 { 2792 return (socket_sendmsg(so, msg, uiop, CRED())); 2793 } 2794 2795 int 2796 soshutdown(struct sonode *so, int how) 2797 { 2798 return (socket_shutdown(so, how, CRED())); 2799 } 2800 2801 int 2802 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 2803 socklen_t *optlenp, int flags) 2804 { 2805 return (socket_getsockopt(so, level, option_name, optval, optlenp, 2806 flags, CRED())); 2807 } 2808 2809 int 2810 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 2811 t_uscalar_t optlen) 2812 { 2813 return (socket_setsockopt(so, level, option_name, optval, optlen, 2814 CRED())); 2815 } 2816 2817 /* 2818 * Because this is backward compatibility interface it only needs to be 2819 * able to handle the creation of TPI sockfs sockets. 2820 */ 2821 struct sonode * 2822 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 2823 int *errorp) 2824 { 2825 struct sonode *so; 2826 2827 ASSERT(sp != NULL); 2828 2829 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 2830 version, SOCKET_SLEEP, errorp, CRED()); 2831 if (so == NULL) { 2832 SOCKPARAMS_DEC_REF(sp); 2833 } else { 2834 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 2835 /* Cannot fail, only bumps so_count */ 2836 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 2837 } else { 2838 socket_destroy(so); 2839 so = NULL; 2840 } 2841 } 2842 return (so); 2843 } 2844