1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/t_lock.h> 28 #include <sys/param.h> 29 #include <sys/systm.h> 30 #include <sys/buf.h> 31 #include <sys/conf.h> 32 #include <sys/cred.h> 33 #include <sys/kmem.h> 34 #include <sys/sysmacros.h> 35 #include <sys/vfs.h> 36 #include <sys/vnode.h> 37 #include <sys/debug.h> 38 #include <sys/errno.h> 39 #include <sys/time.h> 40 #include <sys/file.h> 41 #include <sys/user.h> 42 #include <sys/stream.h> 43 #include <sys/strsubr.h> 44 #include <sys/strsun.h> 45 #include <sys/sunddi.h> 46 #include <sys/esunddi.h> 47 #include <sys/flock.h> 48 #include <sys/modctl.h> 49 #include <sys/cmn_err.h> 50 #include <sys/vmsystm.h> 51 #include <sys/policy.h> 52 53 #include <sys/socket.h> 54 #include <sys/socketvar.h> 55 56 #include <sys/isa_defs.h> 57 #include <sys/inttypes.h> 58 #include <sys/systm.h> 59 #include <sys/cpuvar.h> 60 #include <sys/filio.h> 61 #include <sys/sendfile.h> 62 #include <sys/ddi.h> 63 #include <vm/seg.h> 64 #include <vm/seg_map.h> 65 #include <vm/seg_kpm.h> 66 67 #include <fs/sockfs/nl7c.h> 68 #include <fs/sockfs/sockcommon.h> 69 #include <fs/sockfs/sockfilter_impl.h> 70 #include <fs/sockfs/socktpi.h> 71 72 #ifdef SOCK_TEST 73 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 74 #else 75 #define do_useracc 1 76 #endif /* SOCK_TEST */ 77 78 extern int xnet_truncate_print; 79 80 extern void nl7c_init(void); 81 extern int sockfs_defer_nl7c_init; 82 83 /* 84 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 85 * as there isn't a formal definition of IOV_MAX ??? 86 */ 87 #define MSG_MAXIOVLEN 16 88 89 /* 90 * Kernel component of socket creation. 91 * 92 * The socket library determines which version number to use. 93 * First the library calls this with a NULL devpath. If this fails 94 * to find a transport (using solookup) the library will look in /etc/netconfig 95 * for the appropriate transport. If one is found it will pass in the 96 * devpath for the kernel to use. 97 */ 98 int 99 so_socket(int family, int type, int protocol, char *devpath, int version) 100 { 101 struct sonode *so; 102 vnode_t *vp; 103 struct file *fp; 104 int fd; 105 int error; 106 107 if (devpath != NULL) { 108 char *buf; 109 size_t kdevpathlen = 0; 110 111 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 112 if ((error = copyinstr(devpath, buf, 113 MAXPATHLEN, &kdevpathlen)) != 0) { 114 kmem_free(buf, MAXPATHLEN); 115 return (set_errno(error)); 116 } 117 so = socket_create(family, type, protocol, buf, NULL, 118 SOCKET_SLEEP, version, CRED(), &error); 119 kmem_free(buf, MAXPATHLEN); 120 } else { 121 so = socket_create(family, type, protocol, NULL, NULL, 122 SOCKET_SLEEP, version, CRED(), &error); 123 } 124 if (so == NULL) 125 return (set_errno(error)); 126 127 /* Allocate a file descriptor for the socket */ 128 vp = SOTOV(so); 129 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 130 (void) socket_close(so, 0, CRED()); 131 socket_destroy(so); 132 return (set_errno(error)); 133 } 134 135 /* 136 * Now fill in the entries that falloc reserved 137 */ 138 mutex_exit(&fp->f_tlock); 139 setf(fd, fp); 140 141 return (fd); 142 } 143 144 /* 145 * Map from a file descriptor to a socket node. 146 * Returns with the file descriptor held i.e. the caller has to 147 * use releasef when done with the file descriptor. 148 */ 149 struct sonode * 150 getsonode(int sock, int *errorp, file_t **fpp) 151 { 152 file_t *fp; 153 vnode_t *vp; 154 struct sonode *so; 155 156 if ((fp = getf(sock)) == NULL) { 157 *errorp = EBADF; 158 eprintline(*errorp); 159 return (NULL); 160 } 161 vp = fp->f_vnode; 162 /* Check if it is a socket */ 163 if (vp->v_type != VSOCK) { 164 releasef(sock); 165 *errorp = ENOTSOCK; 166 eprintline(*errorp); 167 return (NULL); 168 } 169 /* 170 * Use the stream head to find the real socket vnode. 171 * This is needed when namefs sits above sockfs. 172 */ 173 if (vp->v_stream) { 174 ASSERT(vp->v_stream->sd_vnode); 175 vp = vp->v_stream->sd_vnode; 176 177 so = VTOSO(vp); 178 if (so->so_version == SOV_STREAM) { 179 releasef(sock); 180 *errorp = ENOTSOCK; 181 eprintsoline(so, *errorp); 182 return (NULL); 183 } 184 } else { 185 so = VTOSO(vp); 186 } 187 if (fpp) 188 *fpp = fp; 189 return (so); 190 } 191 192 /* 193 * Allocate and copyin a sockaddr. 194 * Ensures NULL termination for AF_UNIX addresses by extending them 195 * with one NULL byte if need be. Verifies that the length is not 196 * excessive to prevent an application from consuming all of kernel 197 * memory. Returns NULL when an error occurred. 198 */ 199 static struct sockaddr * 200 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 201 int *errorp) 202 { 203 char *faddr; 204 size_t namelen = (size_t)*namelenp; 205 206 ASSERT(namelen != 0); 207 if (namelen > SO_MAXARGSIZE) { 208 *errorp = EINVAL; 209 eprintsoline(so, *errorp); 210 return (NULL); 211 } 212 213 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 214 if (copyin(name, faddr, namelen)) { 215 kmem_free(faddr, namelen); 216 *errorp = EFAULT; 217 eprintsoline(so, *errorp); 218 return (NULL); 219 } 220 221 /* 222 * Add space for NULL termination if needed. 223 * Do a quick check if the last byte is NUL. 224 */ 225 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 226 /* Check if there is any NULL termination */ 227 size_t i; 228 int foundnull = 0; 229 230 for (i = sizeof (name->sa_family); i < namelen; i++) { 231 if (faddr[i] == '\0') { 232 foundnull = 1; 233 break; 234 } 235 } 236 if (!foundnull) { 237 /* Add extra byte for NUL padding */ 238 char *nfaddr; 239 240 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 241 bcopy(faddr, nfaddr, namelen); 242 kmem_free(faddr, namelen); 243 244 /* NUL terminate */ 245 nfaddr[namelen] = '\0'; 246 namelen++; 247 ASSERT((socklen_t)namelen == namelen); 248 *namelenp = (socklen_t)namelen; 249 faddr = nfaddr; 250 } 251 } 252 return ((struct sockaddr *)faddr); 253 } 254 255 /* 256 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 257 */ 258 static int 259 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, 260 void *kaddr, socklen_t klen) 261 { 262 if (uaddr != NULL) { 263 if (ulen > klen) 264 ulen = klen; 265 266 if (ulen != 0) { 267 if (copyout(kaddr, uaddr, ulen)) 268 return (EFAULT); 269 } 270 } else 271 ulen = 0; 272 273 if (ulenp != NULL) { 274 if (copyout(&ulen, ulenp, sizeof (ulen))) 275 return (EFAULT); 276 } 277 return (0); 278 } 279 280 /* 281 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 282 * If klen is greater than ulen it still uses the non-truncated 283 * klen to update ulenp. 284 */ 285 static int 286 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, 287 void *kaddr, socklen_t klen) 288 { 289 if (uaddr != NULL) { 290 if (ulen >= klen) 291 ulen = klen; 292 else if (ulen != 0 && xnet_truncate_print) { 293 printf("sockfs: truncating copyout of address using " 294 "XNET semantics for pid = %d. Lengths %d, %d\n", 295 curproc->p_pid, klen, ulen); 296 } 297 298 if (ulen != 0) { 299 if (copyout(kaddr, uaddr, ulen)) 300 return (EFAULT); 301 } else 302 klen = 0; 303 } else 304 klen = 0; 305 306 if (ulenp != NULL) { 307 if (copyout(&klen, ulenp, sizeof (klen))) 308 return (EFAULT); 309 } 310 return (0); 311 } 312 313 /* 314 * The socketpair() code in libsocket creates two sockets (using 315 * the /etc/netconfig fallback if needed) before calling this routine 316 * to connect the two sockets together. 317 * 318 * For a SOCK_STREAM socketpair a listener is needed - in that case this 319 * routine will create a new file descriptor as part of accepting the 320 * connection. The library socketpair() will check if svs[2] has changed 321 * in which case it will close the changed fd. 322 * 323 * Note that this code could use the TPI feature of accepting the connection 324 * on the listening endpoint. However, that would require significant changes 325 * to soaccept. 326 */ 327 int 328 so_socketpair(int sv[2]) 329 { 330 int svs[2]; 331 struct sonode *so1, *so2; 332 int error; 333 struct sockaddr_ux *name; 334 size_t namelen; 335 sotpi_info_t *sti1; 336 sotpi_info_t *sti2; 337 338 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 339 340 error = useracc(sv, sizeof (svs), B_WRITE); 341 if (error && do_useracc) 342 return (set_errno(EFAULT)); 343 344 if (copyin(sv, svs, sizeof (svs))) 345 return (set_errno(EFAULT)); 346 347 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 348 return (set_errno(error)); 349 350 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 351 releasef(svs[0]); 352 return (set_errno(error)); 353 } 354 355 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 356 error = EOPNOTSUPP; 357 goto done; 358 } 359 360 sti1 = SOTOTPI(so1); 361 sti2 = SOTOTPI(so2); 362 363 /* 364 * The code below makes assumptions about the "sockfs" implementation. 365 * So make sure that the correct implementation is really used. 366 */ 367 ASSERT(so1->so_ops == &sotpi_sonodeops); 368 ASSERT(so2->so_ops == &sotpi_sonodeops); 369 370 if (so1->so_type == SOCK_DGRAM) { 371 /* 372 * Bind both sockets and connect them with each other. 373 * Need to allocate name/namelen for soconnect. 374 */ 375 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 376 if (error) { 377 eprintsoline(so1, error); 378 goto done; 379 } 380 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 381 if (error) { 382 eprintsoline(so2, error); 383 goto done; 384 } 385 namelen = sizeof (struct sockaddr_ux); 386 name = kmem_alloc(namelen, KM_SLEEP); 387 name->sou_family = AF_UNIX; 388 name->sou_addr = sti2->sti_ux_laddr; 389 error = socket_connect(so1, 390 (struct sockaddr *)name, 391 (socklen_t)namelen, 392 0, _SOCONNECT_NOXLATE, CRED()); 393 if (error) { 394 kmem_free(name, namelen); 395 eprintsoline(so1, error); 396 goto done; 397 } 398 name->sou_addr = sti1->sti_ux_laddr; 399 error = socket_connect(so2, 400 (struct sockaddr *)name, 401 (socklen_t)namelen, 402 0, _SOCONNECT_NOXLATE, CRED()); 403 kmem_free(name, namelen); 404 if (error) { 405 eprintsoline(so2, error); 406 goto done; 407 } 408 releasef(svs[0]); 409 releasef(svs[1]); 410 } else { 411 /* 412 * Bind both sockets, with so1 being a listener. 413 * Connect so2 to so1 - nonblocking to avoid waiting for 414 * soaccept to complete. 415 * Accept a connection on so1. Pass out the new fd as sv[0]. 416 * The library will detect the changed fd and close 417 * the original one. 418 */ 419 struct sonode *nso; 420 struct vnode *nvp; 421 struct file *nfp; 422 int nfd; 423 424 /* 425 * We could simply call socket_listen() here (which would do the 426 * binding automatically) if the code didn't rely on passing 427 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 428 */ 429 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 430 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 431 CRED()); 432 if (error) { 433 eprintsoline(so1, error); 434 goto done; 435 } 436 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 437 if (error) { 438 eprintsoline(so2, error); 439 goto done; 440 } 441 442 namelen = sizeof (struct sockaddr_ux); 443 name = kmem_alloc(namelen, KM_SLEEP); 444 name->sou_family = AF_UNIX; 445 name->sou_addr = sti1->sti_ux_laddr; 446 error = socket_connect(so2, 447 (struct sockaddr *)name, 448 (socklen_t)namelen, 449 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 450 kmem_free(name, namelen); 451 if (error) { 452 if (error != EINPROGRESS) { 453 eprintsoline(so2, error); goto done; 454 } 455 } 456 457 error = socket_accept(so1, 0, CRED(), &nso); 458 if (error) { 459 eprintsoline(so1, error); 460 goto done; 461 } 462 463 /* wait for so2 being SS_CONNECTED ignoring signals */ 464 mutex_enter(&so2->so_lock); 465 error = sowaitconnected(so2, 0, 1); 466 mutex_exit(&so2->so_lock); 467 if (error != 0) { 468 (void) socket_close(nso, 0, CRED()); 469 socket_destroy(nso); 470 eprintsoline(so2, error); 471 goto done; 472 } 473 474 nvp = SOTOV(nso); 475 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 476 (void) socket_close(nso, 0, CRED()); 477 socket_destroy(nso); 478 eprintsoline(nso, error); 479 goto done; 480 } 481 /* 482 * fill in the entries that falloc reserved 483 */ 484 mutex_exit(&nfp->f_tlock); 485 setf(nfd, nfp); 486 487 releasef(svs[0]); 488 releasef(svs[1]); 489 svs[0] = nfd; 490 491 /* 492 * The socketpair library routine will close the original 493 * svs[0] when this code passes out a different file 494 * descriptor. 495 */ 496 if (copyout(svs, sv, sizeof (svs))) { 497 (void) closeandsetf(nfd, NULL); 498 eprintline(EFAULT); 499 return (set_errno(EFAULT)); 500 } 501 } 502 return (0); 503 504 done: 505 releasef(svs[0]); 506 releasef(svs[1]); 507 return (set_errno(error)); 508 } 509 510 int 511 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 512 { 513 struct sonode *so; 514 int error; 515 516 dprint(1, ("bind(%d, %p, %d)\n", 517 sock, (void *)name, namelen)); 518 519 if ((so = getsonode(sock, &error, NULL)) == NULL) 520 return (set_errno(error)); 521 522 /* Allocate and copyin name */ 523 /* 524 * X/Open test does not expect EFAULT with NULL name and non-zero 525 * namelen. 526 */ 527 if (name != NULL && namelen != 0) { 528 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 529 name = copyin_name(so, name, &namelen, &error); 530 if (name == NULL) { 531 releasef(sock); 532 return (set_errno(error)); 533 } 534 } else { 535 name = NULL; 536 namelen = 0; 537 } 538 539 switch (version) { 540 default: 541 error = socket_bind(so, name, namelen, 0, CRED()); 542 break; 543 case SOV_XPG4_2: 544 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 545 break; 546 case SOV_SOCKBSD: 547 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 548 break; 549 } 550 done: 551 releasef(sock); 552 if (name != NULL) 553 kmem_free(name, (size_t)namelen); 554 555 if (error) 556 return (set_errno(error)); 557 return (0); 558 } 559 560 /* ARGSUSED2 */ 561 int 562 listen(int sock, int backlog, int version) 563 { 564 struct sonode *so; 565 int error; 566 567 dprint(1, ("listen(%d, %d)\n", 568 sock, backlog)); 569 570 if ((so = getsonode(sock, &error, NULL)) == NULL) 571 return (set_errno(error)); 572 573 error = socket_listen(so, backlog, CRED()); 574 575 releasef(sock); 576 if (error) 577 return (set_errno(error)); 578 return (0); 579 } 580 581 /*ARGSUSED3*/ 582 int 583 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 584 { 585 struct sonode *so; 586 file_t *fp; 587 int error; 588 socklen_t namelen; 589 struct sonode *nso; 590 struct vnode *nvp; 591 struct file *nfp; 592 int nfd; 593 struct sockaddr *addrp; 594 socklen_t addrlen; 595 596 dprint(1, ("accept(%d, %p, %p)\n", 597 sock, (void *)name, (void *)namelenp)); 598 599 if ((so = getsonode(sock, &error, &fp)) == NULL) 600 return (set_errno(error)); 601 602 if (name != NULL) { 603 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 604 if (copyin(namelenp, &namelen, sizeof (namelen))) { 605 releasef(sock); 606 return (set_errno(EFAULT)); 607 } 608 if (namelen != 0) { 609 error = useracc(name, (size_t)namelen, B_WRITE); 610 if (error && do_useracc) { 611 releasef(sock); 612 return (set_errno(EFAULT)); 613 } 614 } else 615 name = NULL; 616 } else { 617 namelen = 0; 618 } 619 620 /* 621 * Allocate the user fd before socket_accept() in order to 622 * catch EMFILE errors before calling socket_accept(). 623 */ 624 if ((nfd = ufalloc(0)) == -1) { 625 eprintsoline(so, EMFILE); 626 releasef(sock); 627 return (set_errno(EMFILE)); 628 } 629 error = socket_accept(so, fp->f_flag, CRED(), &nso); 630 if (error) { 631 setf(nfd, NULL); 632 releasef(sock); 633 return (set_errno(error)); 634 } 635 636 nvp = SOTOV(nso); 637 638 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 639 if (namelen != 0) { 640 addrlen = so->so_max_addr_len; 641 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 642 643 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 644 &addrlen, B_TRUE, CRED())) == 0) { 645 error = copyout_name(name, namelen, namelenp, 646 addrp, addrlen); 647 } else { 648 ASSERT(error == EINVAL || error == ENOTCONN); 649 error = ECONNABORTED; 650 } 651 kmem_free(addrp, so->so_max_addr_len); 652 } 653 654 if (error) { 655 setf(nfd, NULL); 656 (void) socket_close(nso, 0, CRED()); 657 socket_destroy(nso); 658 releasef(sock); 659 return (set_errno(error)); 660 } 661 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 662 setf(nfd, NULL); 663 (void) socket_close(nso, 0, CRED()); 664 socket_destroy(nso); 665 eprintsoline(so, error); 666 releasef(sock); 667 return (set_errno(error)); 668 } 669 /* 670 * fill in the entries that falloc reserved 671 */ 672 nfp->f_vnode = nvp; 673 mutex_exit(&nfp->f_tlock); 674 setf(nfd, nfp); 675 676 /* 677 * Copy FNDELAY and FNONBLOCK from listener to acceptor 678 */ 679 if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) { 680 uint_t oflag = nfp->f_flag; 681 int arg = 0; 682 683 if (so->so_state & SS_NONBLOCK) 684 arg |= FNONBLOCK; 685 else if (so->so_state & SS_NDELAY) 686 arg |= FNDELAY; 687 688 /* 689 * This code is a simplification of the F_SETFL code in fcntl() 690 * Ignore any errors from VOP_SETFL. 691 */ 692 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 693 != 0) { 694 eprintsoline(so, error); 695 error = 0; 696 } else { 697 mutex_enter(&nfp->f_tlock); 698 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 699 nfp->f_flag |= arg; 700 mutex_exit(&nfp->f_tlock); 701 } 702 } 703 releasef(sock); 704 return (nfd); 705 } 706 707 int 708 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 709 { 710 struct sonode *so; 711 file_t *fp; 712 int error; 713 714 dprint(1, ("connect(%d, %p, %d)\n", 715 sock, (void *)name, namelen)); 716 717 if ((so = getsonode(sock, &error, &fp)) == NULL) 718 return (set_errno(error)); 719 720 /* Allocate and copyin name */ 721 if (namelen != 0) { 722 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 723 name = copyin_name(so, name, &namelen, &error); 724 if (name == NULL) { 725 releasef(sock); 726 return (set_errno(error)); 727 } 728 } else 729 name = NULL; 730 731 error = socket_connect(so, name, namelen, fp->f_flag, 732 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 733 releasef(sock); 734 if (name) 735 kmem_free(name, (size_t)namelen); 736 if (error) 737 return (set_errno(error)); 738 return (0); 739 } 740 741 /*ARGSUSED2*/ 742 int 743 shutdown(int sock, int how, int version) 744 { 745 struct sonode *so; 746 int error; 747 748 dprint(1, ("shutdown(%d, %d)\n", 749 sock, how)); 750 751 if ((so = getsonode(sock, &error, NULL)) == NULL) 752 return (set_errno(error)); 753 754 error = socket_shutdown(so, how, CRED()); 755 756 releasef(sock); 757 if (error) 758 return (set_errno(error)); 759 return (0); 760 } 761 762 /* 763 * Common receive routine. 764 */ 765 static ssize_t 766 recvit(int sock, 767 struct nmsghdr *msg, 768 struct uio *uiop, 769 int flags, 770 socklen_t *namelenp, 771 socklen_t *controllenp, 772 int *flagsp) 773 { 774 struct sonode *so; 775 file_t *fp; 776 void *name; 777 socklen_t namelen; 778 void *control; 779 socklen_t controllen; 780 ssize_t len; 781 int error; 782 783 if ((so = getsonode(sock, &error, &fp)) == NULL) 784 return (set_errno(error)); 785 786 len = uiop->uio_resid; 787 uiop->uio_fmode = fp->f_flag; 788 uiop->uio_extflg = UIO_COPY_CACHED; 789 790 name = msg->msg_name; 791 namelen = msg->msg_namelen; 792 control = msg->msg_control; 793 controllen = msg->msg_controllen; 794 795 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 796 MSG_DONTWAIT | MSG_XPG4_2); 797 798 error = socket_recvmsg(so, msg, uiop, CRED()); 799 if (error) { 800 releasef(sock); 801 return (set_errno(error)); 802 } 803 lwp_stat_update(LWP_STAT_MSGRCV, 1); 804 releasef(sock); 805 806 error = copyout_name(name, namelen, namelenp, 807 msg->msg_name, msg->msg_namelen); 808 if (error) 809 goto err; 810 811 if (flagsp != NULL) { 812 /* 813 * Clear internal flag. 814 */ 815 msg->msg_flags &= ~MSG_XPG4_2; 816 817 /* 818 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 819 * when controllen is zero and there is control data to 820 * copy out. 821 */ 822 if (controllen != 0 && 823 (msg->msg_controllen > controllen || control == NULL)) { 824 dprint(1, ("recvit: CTRUNC %d %d %p\n", 825 msg->msg_controllen, controllen, control)); 826 827 msg->msg_flags |= MSG_CTRUNC; 828 } 829 if (copyout(&msg->msg_flags, flagsp, 830 sizeof (msg->msg_flags))) { 831 error = EFAULT; 832 goto err; 833 } 834 } 835 /* 836 * Note: This MUST be done last. There can be no "goto err" after this 837 * point since it could make so_closefds run twice on some part 838 * of the file descriptor array. 839 */ 840 if (controllen != 0) { 841 if (!(flags & MSG_XPG4_2)) { 842 /* 843 * Good old msg_accrights can only return a multiple 844 * of 4 bytes. 845 */ 846 controllen &= ~((int)sizeof (uint32_t) - 1); 847 } 848 error = copyout_arg(control, controllen, controllenp, 849 msg->msg_control, msg->msg_controllen); 850 if (error) 851 goto err; 852 853 if (msg->msg_controllen > controllen || control == NULL) { 854 if (control == NULL) 855 controllen = 0; 856 so_closefds(msg->msg_control, msg->msg_controllen, 857 !(flags & MSG_XPG4_2), controllen); 858 } 859 } 860 if (msg->msg_namelen != 0) 861 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 862 if (msg->msg_controllen != 0) 863 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 864 return (len - uiop->uio_resid); 865 866 err: 867 /* 868 * If we fail and the control part contains file descriptors 869 * we have to close the fd's. 870 */ 871 if (msg->msg_controllen != 0) 872 so_closefds(msg->msg_control, msg->msg_controllen, 873 !(flags & MSG_XPG4_2), 0); 874 if (msg->msg_namelen != 0) 875 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 876 if (msg->msg_controllen != 0) 877 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 878 return (set_errno(error)); 879 } 880 881 /* 882 * Native system call 883 */ 884 ssize_t 885 recv(int sock, void *buffer, size_t len, int flags) 886 { 887 struct nmsghdr lmsg; 888 struct uio auio; 889 struct iovec aiov[1]; 890 891 dprint(1, ("recv(%d, %p, %ld, %d)\n", 892 sock, buffer, len, flags)); 893 894 if ((ssize_t)len < 0) { 895 return (set_errno(EINVAL)); 896 } 897 898 aiov[0].iov_base = buffer; 899 aiov[0].iov_len = len; 900 auio.uio_loffset = 0; 901 auio.uio_iov = aiov; 902 auio.uio_iovcnt = 1; 903 auio.uio_resid = len; 904 auio.uio_segflg = UIO_USERSPACE; 905 auio.uio_limit = 0; 906 907 lmsg.msg_namelen = 0; 908 lmsg.msg_controllen = 0; 909 lmsg.msg_flags = 0; 910 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 911 } 912 913 ssize_t 914 recvfrom(int sock, void *buffer, size_t len, int flags, 915 struct sockaddr *name, socklen_t *namelenp) 916 { 917 struct nmsghdr lmsg; 918 struct uio auio; 919 struct iovec aiov[1]; 920 921 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 922 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 923 924 if ((ssize_t)len < 0) { 925 return (set_errno(EINVAL)); 926 } 927 928 aiov[0].iov_base = buffer; 929 aiov[0].iov_len = len; 930 auio.uio_loffset = 0; 931 auio.uio_iov = aiov; 932 auio.uio_iovcnt = 1; 933 auio.uio_resid = len; 934 auio.uio_segflg = UIO_USERSPACE; 935 auio.uio_limit = 0; 936 937 lmsg.msg_name = (char *)name; 938 if (namelenp != NULL) { 939 if (copyin(namelenp, &lmsg.msg_namelen, 940 sizeof (lmsg.msg_namelen))) 941 return (set_errno(EFAULT)); 942 } else { 943 lmsg.msg_namelen = 0; 944 } 945 lmsg.msg_controllen = 0; 946 lmsg.msg_flags = 0; 947 948 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 949 } 950 951 /* 952 * Uses the MSG_XPG4_2 flag to determine if the caller is using 953 * struct omsghdr or struct nmsghdr. 954 */ 955 ssize_t 956 recvmsg(int sock, struct nmsghdr *msg, int flags) 957 { 958 STRUCT_DECL(nmsghdr, u_lmsg); 959 STRUCT_HANDLE(nmsghdr, umsgptr); 960 struct nmsghdr lmsg; 961 struct uio auio; 962 struct iovec aiov[MSG_MAXIOVLEN]; 963 int iovcnt; 964 ssize_t len; 965 int i; 966 int *flagsp; 967 model_t model; 968 969 dprint(1, ("recvmsg(%d, %p, %d)\n", 970 sock, (void *)msg, flags)); 971 972 model = get_udatamodel(); 973 STRUCT_INIT(u_lmsg, model); 974 STRUCT_SET_HANDLE(umsgptr, model, msg); 975 976 if (flags & MSG_XPG4_2) { 977 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 978 return (set_errno(EFAULT)); 979 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 980 } else { 981 /* 982 * Assumes that nmsghdr and omsghdr are identically shaped 983 * except for the added msg_flags field. 984 */ 985 if (copyin(msg, STRUCT_BUF(u_lmsg), 986 SIZEOF_STRUCT(omsghdr, model))) 987 return (set_errno(EFAULT)); 988 STRUCT_FSET(u_lmsg, msg_flags, 0); 989 flagsp = NULL; 990 } 991 992 /* 993 * Code below us will kmem_alloc memory and hang it 994 * off msg_control and msg_name fields. This forces 995 * us to copy the structure to its native form. 996 */ 997 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 998 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 999 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1000 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1001 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1002 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1003 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1004 1005 iovcnt = lmsg.msg_iovlen; 1006 1007 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1008 return (set_errno(EMSGSIZE)); 1009 } 1010 1011 #ifdef _SYSCALL32_IMPL 1012 /* 1013 * 32-bit callers need to have their iovec expanded, while ensuring 1014 * that they can't move more than 2Gbytes of data in a single call. 1015 */ 1016 if (model == DATAMODEL_ILP32) { 1017 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1018 ssize32_t count32; 1019 1020 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1021 iovcnt * sizeof (struct iovec32))) 1022 return (set_errno(EFAULT)); 1023 1024 count32 = 0; 1025 for (i = 0; i < iovcnt; i++) { 1026 ssize32_t iovlen32; 1027 1028 iovlen32 = aiov32[i].iov_len; 1029 count32 += iovlen32; 1030 if (iovlen32 < 0 || count32 < 0) 1031 return (set_errno(EINVAL)); 1032 aiov[i].iov_len = iovlen32; 1033 aiov[i].iov_base = 1034 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1035 } 1036 } else 1037 #endif /* _SYSCALL32_IMPL */ 1038 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1039 return (set_errno(EFAULT)); 1040 } 1041 len = 0; 1042 for (i = 0; i < iovcnt; i++) { 1043 ssize_t iovlen = aiov[i].iov_len; 1044 len += iovlen; 1045 if (iovlen < 0 || len < 0) { 1046 return (set_errno(EINVAL)); 1047 } 1048 } 1049 auio.uio_loffset = 0; 1050 auio.uio_iov = aiov; 1051 auio.uio_iovcnt = iovcnt; 1052 auio.uio_resid = len; 1053 auio.uio_segflg = UIO_USERSPACE; 1054 auio.uio_limit = 0; 1055 1056 if (lmsg.msg_control != NULL && 1057 (do_useracc == 0 || 1058 useracc(lmsg.msg_control, lmsg.msg_controllen, 1059 B_WRITE) != 0)) { 1060 return (set_errno(EFAULT)); 1061 } 1062 1063 return (recvit(sock, &lmsg, &auio, flags, 1064 STRUCT_FADDR(umsgptr, msg_namelen), 1065 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1066 } 1067 1068 /* 1069 * Common send function. 1070 */ 1071 static ssize_t 1072 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1073 { 1074 struct sonode *so; 1075 file_t *fp; 1076 void *name; 1077 socklen_t namelen; 1078 void *control; 1079 socklen_t controllen; 1080 ssize_t len; 1081 int error; 1082 1083 if ((so = getsonode(sock, &error, &fp)) == NULL) 1084 return (set_errno(error)); 1085 1086 uiop->uio_fmode = fp->f_flag; 1087 1088 if (so->so_family == AF_UNIX) 1089 uiop->uio_extflg = UIO_COPY_CACHED; 1090 else 1091 uiop->uio_extflg = UIO_COPY_DEFAULT; 1092 1093 /* Allocate and copyin name and control */ 1094 name = msg->msg_name; 1095 namelen = msg->msg_namelen; 1096 if (name != NULL && namelen != 0) { 1097 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1098 name = copyin_name(so, 1099 (struct sockaddr *)name, 1100 &namelen, &error); 1101 if (name == NULL) 1102 goto done3; 1103 /* copyin_name null terminates addresses for AF_UNIX */ 1104 msg->msg_namelen = namelen; 1105 msg->msg_name = name; 1106 } else { 1107 msg->msg_name = name = NULL; 1108 msg->msg_namelen = namelen = 0; 1109 } 1110 1111 control = msg->msg_control; 1112 controllen = msg->msg_controllen; 1113 if ((control != NULL) && (controllen != 0)) { 1114 /* 1115 * Verify that the length is not excessive to prevent 1116 * an application from consuming all of kernel memory. 1117 */ 1118 if (controllen > SO_MAXARGSIZE) { 1119 error = EINVAL; 1120 goto done2; 1121 } 1122 control = kmem_alloc(controllen, KM_SLEEP); 1123 1124 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1125 if (copyin(msg->msg_control, control, controllen)) { 1126 error = EFAULT; 1127 goto done1; 1128 } 1129 msg->msg_control = control; 1130 } else { 1131 msg->msg_control = control = NULL; 1132 msg->msg_controllen = controllen = 0; 1133 } 1134 1135 len = uiop->uio_resid; 1136 msg->msg_flags = flags; 1137 1138 error = socket_sendmsg(so, msg, uiop, CRED()); 1139 done1: 1140 if (control != NULL) 1141 kmem_free(control, controllen); 1142 done2: 1143 if (name != NULL) 1144 kmem_free(name, namelen); 1145 done3: 1146 if (error != 0) { 1147 releasef(sock); 1148 return (set_errno(error)); 1149 } 1150 lwp_stat_update(LWP_STAT_MSGSND, 1); 1151 releasef(sock); 1152 return (len - uiop->uio_resid); 1153 } 1154 1155 /* 1156 * Native system call 1157 */ 1158 ssize_t 1159 send(int sock, void *buffer, size_t len, int flags) 1160 { 1161 struct nmsghdr lmsg; 1162 struct uio auio; 1163 struct iovec aiov[1]; 1164 1165 dprint(1, ("send(%d, %p, %ld, %d)\n", 1166 sock, buffer, len, flags)); 1167 1168 if ((ssize_t)len < 0) { 1169 return (set_errno(EINVAL)); 1170 } 1171 1172 aiov[0].iov_base = buffer; 1173 aiov[0].iov_len = len; 1174 auio.uio_loffset = 0; 1175 auio.uio_iov = aiov; 1176 auio.uio_iovcnt = 1; 1177 auio.uio_resid = len; 1178 auio.uio_segflg = UIO_USERSPACE; 1179 auio.uio_limit = 0; 1180 1181 lmsg.msg_name = NULL; 1182 lmsg.msg_control = NULL; 1183 if (!(flags & MSG_XPG4_2)) { 1184 /* 1185 * In order to be compatible with the libsocket/sockmod 1186 * implementation we set EOR for all send* calls. 1187 */ 1188 flags |= MSG_EOR; 1189 } 1190 return (sendit(sock, &lmsg, &auio, flags)); 1191 } 1192 1193 /* 1194 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1195 * struct omsghdr or struct nmsghdr. 1196 */ 1197 ssize_t 1198 sendmsg(int sock, struct nmsghdr *msg, int flags) 1199 { 1200 struct nmsghdr lmsg; 1201 STRUCT_DECL(nmsghdr, u_lmsg); 1202 struct uio auio; 1203 struct iovec aiov[MSG_MAXIOVLEN]; 1204 int iovcnt; 1205 ssize_t len; 1206 int i; 1207 model_t model; 1208 1209 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1210 1211 model = get_udatamodel(); 1212 STRUCT_INIT(u_lmsg, model); 1213 1214 if (flags & MSG_XPG4_2) { 1215 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1216 STRUCT_SIZE(u_lmsg))) 1217 return (set_errno(EFAULT)); 1218 } else { 1219 /* 1220 * Assumes that nmsghdr and omsghdr are identically shaped 1221 * except for the added msg_flags field. 1222 */ 1223 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1224 SIZEOF_STRUCT(omsghdr, model))) 1225 return (set_errno(EFAULT)); 1226 /* 1227 * In order to be compatible with the libsocket/sockmod 1228 * implementation we set EOR for all send* calls. 1229 */ 1230 flags |= MSG_EOR; 1231 } 1232 1233 /* 1234 * Code below us will kmem_alloc memory and hang it 1235 * off msg_control and msg_name fields. This forces 1236 * us to copy the structure to its native form. 1237 */ 1238 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1239 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1240 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1241 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1242 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1243 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1244 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1245 1246 iovcnt = lmsg.msg_iovlen; 1247 1248 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1249 /* 1250 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1251 * be compatible with SunOS 4.X and 4.4BSD. 1252 */ 1253 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1254 return (set_errno(EMSGSIZE)); 1255 } 1256 1257 #ifdef _SYSCALL32_IMPL 1258 /* 1259 * 32-bit callers need to have their iovec expanded, while ensuring 1260 * that they can't move more than 2Gbytes of data in a single call. 1261 */ 1262 if (model == DATAMODEL_ILP32) { 1263 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1264 ssize32_t count32; 1265 1266 if (iovcnt != 0 && 1267 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1268 iovcnt * sizeof (struct iovec32))) 1269 return (set_errno(EFAULT)); 1270 1271 count32 = 0; 1272 for (i = 0; i < iovcnt; i++) { 1273 ssize32_t iovlen32; 1274 1275 iovlen32 = aiov32[i].iov_len; 1276 count32 += iovlen32; 1277 if (iovlen32 < 0 || count32 < 0) 1278 return (set_errno(EINVAL)); 1279 aiov[i].iov_len = iovlen32; 1280 aiov[i].iov_base = 1281 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1282 } 1283 } else 1284 #endif /* _SYSCALL32_IMPL */ 1285 if (iovcnt != 0 && 1286 copyin(lmsg.msg_iov, aiov, 1287 (unsigned)iovcnt * sizeof (struct iovec))) { 1288 return (set_errno(EFAULT)); 1289 } 1290 len = 0; 1291 for (i = 0; i < iovcnt; i++) { 1292 ssize_t iovlen = aiov[i].iov_len; 1293 len += iovlen; 1294 if (iovlen < 0 || len < 0) { 1295 return (set_errno(EINVAL)); 1296 } 1297 } 1298 auio.uio_loffset = 0; 1299 auio.uio_iov = aiov; 1300 auio.uio_iovcnt = iovcnt; 1301 auio.uio_resid = len; 1302 auio.uio_segflg = UIO_USERSPACE; 1303 auio.uio_limit = 0; 1304 1305 return (sendit(sock, &lmsg, &auio, flags)); 1306 } 1307 1308 ssize_t 1309 sendto(int sock, void *buffer, size_t len, int flags, 1310 struct sockaddr *name, socklen_t namelen) 1311 { 1312 struct nmsghdr lmsg; 1313 struct uio auio; 1314 struct iovec aiov[1]; 1315 1316 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1317 sock, buffer, len, flags, (void *)name, namelen)); 1318 1319 if ((ssize_t)len < 0) { 1320 return (set_errno(EINVAL)); 1321 } 1322 1323 aiov[0].iov_base = buffer; 1324 aiov[0].iov_len = len; 1325 auio.uio_loffset = 0; 1326 auio.uio_iov = aiov; 1327 auio.uio_iovcnt = 1; 1328 auio.uio_resid = len; 1329 auio.uio_segflg = UIO_USERSPACE; 1330 auio.uio_limit = 0; 1331 1332 lmsg.msg_name = (char *)name; 1333 lmsg.msg_namelen = namelen; 1334 lmsg.msg_control = NULL; 1335 if (!(flags & MSG_XPG4_2)) { 1336 /* 1337 * In order to be compatible with the libsocket/sockmod 1338 * implementation we set EOR for all send* calls. 1339 */ 1340 flags |= MSG_EOR; 1341 } 1342 return (sendit(sock, &lmsg, &auio, flags)); 1343 } 1344 1345 /*ARGSUSED3*/ 1346 int 1347 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1348 { 1349 struct sonode *so; 1350 int error; 1351 socklen_t namelen; 1352 socklen_t sock_addrlen; 1353 struct sockaddr *sock_addrp; 1354 1355 dprint(1, ("getpeername(%d, %p, %p)\n", 1356 sock, (void *)name, (void *)namelenp)); 1357 1358 if ((so = getsonode(sock, &error, NULL)) == NULL) 1359 goto bad; 1360 1361 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1362 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1363 (name == NULL && namelen != 0)) { 1364 error = EFAULT; 1365 goto rel_out; 1366 } 1367 sock_addrlen = so->so_max_addr_len; 1368 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1369 1370 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1371 B_FALSE, CRED())) == 0) { 1372 ASSERT(sock_addrlen <= so->so_max_addr_len); 1373 error = copyout_name(name, namelen, namelenp, 1374 (void *)sock_addrp, sock_addrlen); 1375 } 1376 kmem_free(sock_addrp, so->so_max_addr_len); 1377 rel_out: 1378 releasef(sock); 1379 bad: return (error != 0 ? set_errno(error) : 0); 1380 } 1381 1382 /*ARGSUSED3*/ 1383 int 1384 getsockname(int sock, struct sockaddr *name, 1385 socklen_t *namelenp, int version) 1386 { 1387 struct sonode *so; 1388 int error; 1389 socklen_t namelen, sock_addrlen; 1390 struct sockaddr *sock_addrp; 1391 1392 dprint(1, ("getsockname(%d, %p, %p)\n", 1393 sock, (void *)name, (void *)namelenp)); 1394 1395 if ((so = getsonode(sock, &error, NULL)) == NULL) 1396 goto bad; 1397 1398 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1399 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1400 (name == NULL && namelen != 0)) { 1401 error = EFAULT; 1402 goto rel_out; 1403 } 1404 1405 sock_addrlen = so->so_max_addr_len; 1406 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1407 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1408 CRED())) == 0) { 1409 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1410 ASSERT(sock_addrlen <= so->so_max_addr_len); 1411 error = copyout_name(name, namelen, namelenp, 1412 (void *)sock_addrp, sock_addrlen); 1413 } 1414 kmem_free(sock_addrp, so->so_max_addr_len); 1415 rel_out: 1416 releasef(sock); 1417 bad: return (error != 0 ? set_errno(error) : 0); 1418 } 1419 1420 /*ARGSUSED5*/ 1421 int 1422 getsockopt(int sock, 1423 int level, 1424 int option_name, 1425 void *option_value, 1426 socklen_t *option_lenp, 1427 int version) 1428 { 1429 struct sonode *so; 1430 socklen_t optlen, optlen_res; 1431 void *optval; 1432 int error; 1433 1434 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1435 sock, level, option_name, option_value, (void *)option_lenp)); 1436 1437 if ((so = getsonode(sock, &error, NULL)) == NULL) 1438 return (set_errno(error)); 1439 1440 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1441 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1442 releasef(sock); 1443 return (set_errno(EFAULT)); 1444 } 1445 /* 1446 * Verify that the length is not excessive to prevent 1447 * an application from consuming all of kernel memory. 1448 */ 1449 if (optlen > SO_MAXARGSIZE) { 1450 error = EINVAL; 1451 releasef(sock); 1452 return (set_errno(error)); 1453 } 1454 optval = kmem_alloc(optlen, KM_SLEEP); 1455 optlen_res = optlen; 1456 error = socket_getsockopt(so, level, option_name, optval, 1457 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1458 CRED()); 1459 releasef(sock); 1460 if (error) { 1461 kmem_free(optval, optlen); 1462 return (set_errno(error)); 1463 } 1464 error = copyout_arg(option_value, optlen, option_lenp, 1465 optval, optlen_res); 1466 kmem_free(optval, optlen); 1467 if (error) 1468 return (set_errno(error)); 1469 return (0); 1470 } 1471 1472 /*ARGSUSED5*/ 1473 int 1474 setsockopt(int sock, 1475 int level, 1476 int option_name, 1477 void *option_value, 1478 socklen_t option_len, 1479 int version) 1480 { 1481 struct sonode *so; 1482 intptr_t buffer[2]; 1483 void *optval = NULL; 1484 int error; 1485 1486 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1487 sock, level, option_name, option_value, option_len)); 1488 1489 if ((so = getsonode(sock, &error, NULL)) == NULL) 1490 return (set_errno(error)); 1491 1492 if (option_value != NULL) { 1493 if (option_len != 0) { 1494 /* 1495 * Verify that the length is not excessive to prevent 1496 * an application from consuming all of kernel memory. 1497 */ 1498 if (option_len > SO_MAXARGSIZE) { 1499 error = EINVAL; 1500 goto done2; 1501 } 1502 optval = option_len <= sizeof (buffer) ? 1503 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1504 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1505 if (copyin(option_value, optval, (size_t)option_len)) { 1506 error = EFAULT; 1507 goto done1; 1508 } 1509 } 1510 } else 1511 option_len = 0; 1512 1513 error = socket_setsockopt(so, level, option_name, optval, 1514 (t_uscalar_t)option_len, CRED()); 1515 done1: 1516 if (optval != buffer) 1517 kmem_free(optval, (size_t)option_len); 1518 done2: 1519 releasef(sock); 1520 if (error) 1521 return (set_errno(error)); 1522 return (0); 1523 } 1524 1525 static int 1526 sockconf_add_sock(int family, int type, int protocol, char *name) 1527 { 1528 int error = 0; 1529 char *kdevpath = NULL; 1530 char *kmodule = NULL; 1531 char *buf = NULL; 1532 size_t pathlen = 0; 1533 struct sockparams *sp; 1534 1535 if (name == NULL) 1536 return (EINVAL); 1537 /* 1538 * Copyin the name. 1539 * This also makes it possible to check for too long pathnames. 1540 * Compress the space needed for the name before passing it 1541 * to soconfig - soconfig will store the string until 1542 * the configuration is removed. 1543 */ 1544 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1545 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1546 kmem_free(buf, MAXPATHLEN); 1547 return (error); 1548 } 1549 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1550 /* For device */ 1551 1552 /* 1553 * Special handling for NCA: 1554 * 1555 * DEV_NCA is never opened even if an application 1556 * requests for AF_NCA. The device opened is instead a 1557 * predefined AF_INET transport (NCA_INET_DEV). 1558 * 1559 * Prior to Volo (PSARC/2007/587) NCA would determine 1560 * the device using a lookup, which worked then because 1561 * all protocols were based on TPI. Since TPI is no 1562 * longer the default, we have to explicitly state 1563 * which device to use. 1564 */ 1565 if (strcmp(buf, NCA_DEV) == 0) { 1566 /* only support entry <28, 2, 0> */ 1567 if (family != AF_NCA || type != SOCK_STREAM || 1568 protocol != 0) { 1569 kmem_free(buf, MAXPATHLEN); 1570 return (EINVAL); 1571 } 1572 1573 pathlen = strlen(NCA_INET_DEV) + 1; 1574 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1575 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1576 kdevpath[pathlen - 1] = '\0'; 1577 } else { 1578 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1579 bcopy(buf, kdevpath, pathlen); 1580 kdevpath[pathlen - 1] = '\0'; 1581 } 1582 } else { 1583 /* For socket module */ 1584 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1585 bcopy(buf, kmodule, pathlen); 1586 kmodule[pathlen - 1] = '\0'; 1587 pathlen = 0; 1588 } 1589 kmem_free(buf, MAXPATHLEN); 1590 1591 /* sockparams_create frees mod name and devpath upon failure */ 1592 sp = sockparams_create(family, type, protocol, kmodule, 1593 kdevpath, pathlen, 0, KM_SLEEP, &error); 1594 if (sp != NULL) { 1595 error = sockparams_add(sp); 1596 if (error != 0) 1597 sockparams_destroy(sp); 1598 } 1599 1600 return (error); 1601 } 1602 1603 static int 1604 sockconf_remove_sock(int family, int type, int protocol) 1605 { 1606 return (sockparams_delete(family, type, protocol)); 1607 } 1608 1609 static int 1610 sockconfig_remove_filter(const char *uname) 1611 { 1612 char kname[SOF_MAXNAMELEN]; 1613 size_t len; 1614 int error; 1615 sof_entry_t *ent; 1616 1617 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1618 return (error); 1619 1620 ent = sof_entry_remove_by_name(kname); 1621 if (ent == NULL) 1622 return (ENXIO); 1623 1624 mutex_enter(&ent->sofe_lock); 1625 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1626 if (ent->sofe_refcnt == 0) { 1627 mutex_exit(&ent->sofe_lock); 1628 sof_entry_free(ent); 1629 } else { 1630 /* let the last socket free the filter */ 1631 ent->sofe_flags |= SOFEF_CONDEMED; 1632 mutex_exit(&ent->sofe_lock); 1633 } 1634 1635 return (0); 1636 } 1637 1638 static int 1639 sockconfig_add_filter(const char *uname, void *ufilpropp) 1640 { 1641 struct sockconfig_filter_props filprop; 1642 sof_entry_t *ent; 1643 int error; 1644 size_t tuplesz, len; 1645 char hintbuf[SOF_MAXNAMELEN]; 1646 1647 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1648 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1649 1650 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1651 &len)) != 0) { 1652 sof_entry_free(ent); 1653 return (error); 1654 } 1655 1656 if (get_udatamodel() == DATAMODEL_NATIVE) { 1657 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1658 sof_entry_free(ent); 1659 return (EFAULT); 1660 } 1661 } 1662 #ifdef _SYSCALL32_IMPL 1663 else { 1664 struct sockconfig_filter_props32 filprop32; 1665 1666 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1667 sof_entry_free(ent); 1668 return (EFAULT); 1669 } 1670 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1671 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1672 filprop.sfp_hint = filprop32.sfp_hint; 1673 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1674 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1675 filprop.sfp_socktuple = 1676 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1677 } 1678 #endif /* _SYSCALL32_IMPL */ 1679 1680 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1681 sizeof (ent->sofe_modname), &len)) != 0) { 1682 sof_entry_free(ent); 1683 return (error); 1684 } 1685 1686 /* 1687 * A filter must specify at least one socket tuple. 1688 */ 1689 if (filprop.sfp_socktuple_cnt == 0 || 1690 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1691 sof_entry_free(ent); 1692 return (EINVAL); 1693 } 1694 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1695 ent->sofe_hint = filprop.sfp_hint; 1696 1697 /* 1698 * Verify the hint, and copy in the hint argument, if necessary. 1699 */ 1700 switch (ent->sofe_hint) { 1701 case SOF_HINT_BEFORE: 1702 case SOF_HINT_AFTER: 1703 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1704 sizeof (hintbuf), &len)) != 0) { 1705 sof_entry_free(ent); 1706 return (error); 1707 } 1708 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1709 bcopy(hintbuf, ent->sofe_hintarg, len); 1710 /* FALLTHRU */ 1711 case SOF_HINT_TOP: 1712 case SOF_HINT_BOTTOM: 1713 /* hints cannot be used with programmatic filters */ 1714 if (ent->sofe_flags & SOFEF_PROG) { 1715 sof_entry_free(ent); 1716 return (EINVAL); 1717 } 1718 break; 1719 case SOF_HINT_NONE: 1720 break; 1721 default: 1722 /* bad hint value */ 1723 sof_entry_free(ent); 1724 return (EINVAL); 1725 } 1726 1727 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1728 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1729 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1730 1731 if (get_udatamodel() == DATAMODEL_NATIVE) { 1732 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1733 tuplesz)) { 1734 sof_entry_free(ent); 1735 return (EFAULT); 1736 } 1737 } 1738 #ifdef _SYSCALL32_IMPL 1739 else { 1740 int i; 1741 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1742 sof_socktuple_t *tup = ent->sofe_socktuple; 1743 sof_socktuple32_t tup32; 1744 1745 tup = ent->sofe_socktuple; 1746 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1747 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1748 1749 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1750 sof_entry_free(ent); 1751 return (EFAULT); 1752 } 1753 tup->sofst_family = tup32.sofst_family; 1754 tup->sofst_type = tup32.sofst_type; 1755 tup->sofst_protocol = tup32.sofst_protocol; 1756 1757 data += sizeof (tup32); 1758 } 1759 } 1760 #endif /* _SYSCALL32_IMPL */ 1761 1762 /* Sockets can start using the filter as soon as the filter is added */ 1763 if ((error = sof_entry_add(ent)) != 0) 1764 sof_entry_free(ent); 1765 1766 return (error); 1767 } 1768 1769 /* 1770 * Socket configuration system call. It is used to add and remove 1771 * socket types. 1772 */ 1773 int 1774 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1775 { 1776 int error = 0; 1777 1778 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1779 return (set_errno(EPERM)); 1780 1781 if (sockfs_defer_nl7c_init) { 1782 nl7c_init(); 1783 sockfs_defer_nl7c_init = 0; 1784 } 1785 1786 switch (cmd) { 1787 case SOCKCONFIG_ADD_SOCK: 1788 error = sockconf_add_sock((int)(uintptr_t)arg1, 1789 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1790 break; 1791 case SOCKCONFIG_REMOVE_SOCK: 1792 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1793 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1794 break; 1795 case SOCKCONFIG_ADD_FILTER: 1796 error = sockconfig_add_filter((const char *)arg1, arg2); 1797 break; 1798 case SOCKCONFIG_REMOVE_FILTER: 1799 error = sockconfig_remove_filter((const char *)arg1); 1800 break; 1801 default: 1802 #ifdef DEBUG 1803 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1804 #endif 1805 error = EINVAL; 1806 break; 1807 } 1808 1809 if (error != 0) { 1810 eprintline(error); 1811 return (set_errno(error)); 1812 } 1813 return (0); 1814 } 1815 1816 1817 /* 1818 * Sendfile is implemented through two schemes, direct I/O or by 1819 * caching in the filesystem page cache. We cache the input file by 1820 * default and use direct I/O only if sendfile_max_size is set 1821 * appropriately as explained below. Note that this logic is consistent 1822 * with other filesystems where caching is turned on by default 1823 * unless explicitly turned off by using the DIRECTIO ioctl. 1824 * 1825 * We choose a slightly different scheme here. One can turn off 1826 * caching by setting sendfile_max_size to 0. One can also enable 1827 * caching of files <= sendfile_max_size by setting sendfile_max_size 1828 * to an appropriate value. By default sendfile_max_size is set to the 1829 * maximum value so that all files are cached. In future, we may provide 1830 * better interfaces for caching the file. 1831 * 1832 * Sendfile through Direct I/O (Zero copy) 1833 * -------------------------------------- 1834 * 1835 * As disks are normally slower than the network, we can't have a 1836 * single thread that reads the disk and writes to the network. We 1837 * need to have parallelism. This is done by having the sendfile 1838 * thread create another thread that reads from the filesystem 1839 * and queues it for network processing. In this scheme, the data 1840 * is never copied anywhere i.e it is zero copy unlike the other 1841 * scheme. 1842 * 1843 * We have a sendfile queue (snfq) where each sendfile 1844 * request (snf_req_t) is queued for processing by a thread. Number 1845 * of threads is dynamically allocated and they exit if they are idling 1846 * beyond a specified amount of time. When each request (snf_req_t) is 1847 * processed by a thread, it produces a number of mblk_t structures to 1848 * be consumed by the sendfile thread. snf_deque and snf_enque are 1849 * used for consuming and producing mblks. Size of the filesystem 1850 * read is determined by the tunable (sendfile_read_size). A single 1851 * mblk holds sendfile_read_size worth of data (except the last 1852 * read of the file) which is sent down as a whole to the network. 1853 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1854 * value for the UFS filesystem backed by a striped storage array. 1855 * 1856 * Synchronisation between read (producer) and write (consumer) threads. 1857 * -------------------------------------------------------------------- 1858 * 1859 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1860 * adding and deleting items in this list. Error can happen anytime 1861 * during read or write. There could be unprocessed mblks in the 1862 * sr_ib_XXX list when a read or write error occurs. Whenever error 1863 * is encountered, we need two things to happen : 1864 * 1865 * a) One of the threads need to clean the mblks. 1866 * b) When one thread encounters an error, the other should stop. 1867 * 1868 * For (a), we don't want to penalize the reader thread as it could do 1869 * some useful work processing other requests. For (b), the error can 1870 * be detected by examining sr_read_error or sr_write_error. 1871 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1872 * writer encounters error, we need to report the write error back to 1873 * the application as that's what would have happened if the operations 1874 * were done sequentially. With this in mind, following should work : 1875 * 1876 * - Check for errors before read or write. 1877 * - If the reader encounters error, set the error in sr_read_error. 1878 * Check sr_write_error, if it is set, send cv_signal as it is 1879 * waiting for reader to complete. If it is not set, the writer 1880 * is either running sinking data to the network or blocked 1881 * because of flow control. For handling the latter case, we 1882 * always send a signal. In any case, it will examine sr_read_error 1883 * and return. sr_read_error is marked with SR_READ_DONE to tell 1884 * the writer that the reader is done in all the cases. 1885 * - If the writer encounters error, set the error in sr_write_error. 1886 * The reader thread is either blocked because of flow control or 1887 * running reading data from the disk. For the former, we need to 1888 * wakeup the thread. Again to keep it simple, we always wake up 1889 * the reader thread. Then, wait for the read thread to complete 1890 * if it is not done yet. Cleanup and return. 1891 * 1892 * High and low water marks for the read thread. 1893 * -------------------------------------------- 1894 * 1895 * If sendfile() is used to send data over a slow network, we need to 1896 * make sure that the read thread does not produce data at a faster 1897 * rate than the network. This can happen if the disk is faster than 1898 * the network. In such a case, we don't want to build a very large queue. 1899 * But we would still like to get all of the network throughput possible. 1900 * This implies that network should never block waiting for data. 1901 * As there are lot of disk throughput/network throughput combinations 1902 * possible, it is difficult to come up with an accurate number. 1903 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1904 * latency of 3ms for reading a disk block. Thus, the total latency to 1905 * initiate a new read, transfer data from the disk and queue for 1906 * transmission would take about a max of 25ms. Todays max transfer rate 1907 * for network is 100MB/sec. If the thread is blocked because of flow 1908 * control, it would take 25ms to get new data ready for transmission. 1909 * We have to make sure that network is not idling, while we are initiating 1910 * new transfers. So, at 100MB/sec, to keep network busy we would need 1911 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 1912 * We need to pick a high water mark so that the woken up thread would 1913 * do considerable work before blocking again to prevent thrashing. Currently, 1914 * we pick this to be 10 times that of the low water mark. 1915 * 1916 * Sendfile with segmap caching (One copy from page cache to mblks). 1917 * ---------------------------------------------------------------- 1918 * 1919 * We use the segmap cache for caching the file, if the size of file 1920 * is <= sendfile_max_size. In this case we don't use threads as VM 1921 * is reasonably fast enough to keep up with the network. If the underlying 1922 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1923 * of data into segmap space, and use the virtual address from segmap 1924 * directly through desballoc() to avoid copy. Once the transport is done 1925 * with the data, the mapping will be released through segmap_release() 1926 * called by the call-back routine. 1927 * 1928 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1929 * to copy the data from the filesystem into our temporary network buffer. 1930 * 1931 * To disable caching, set sendfile_max_size to 0. 1932 */ 1933 1934 uint_t sendfile_read_size = 1024 * 1024; 1935 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 1936 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 1937 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 1938 struct sendfile_stats sf_stats; 1939 struct sendfile_queue *snfq; 1940 clock_t snfq_timeout; 1941 off64_t sendfile_max_size; 1942 1943 static void snf_enque(snf_req_t *, mblk_t *); 1944 static mblk_t *snf_deque(snf_req_t *); 1945 1946 void 1947 sendfile_init(void) 1948 { 1949 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 1950 1951 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 1952 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 1953 snfq->snfq_max_threads = max_ncpus; 1954 snfq_timeout = SNFQ_TIMEOUT; 1955 /* Cache all files by default. */ 1956 sendfile_max_size = MAXOFFSET_T; 1957 } 1958 1959 /* 1960 * Queues a mblk_t for network processing. 1961 */ 1962 static void 1963 snf_enque(snf_req_t *sr, mblk_t *mp) 1964 { 1965 mp->b_next = NULL; 1966 mutex_enter(&sr->sr_lock); 1967 if (sr->sr_mp_head == NULL) { 1968 sr->sr_mp_head = sr->sr_mp_tail = mp; 1969 cv_signal(&sr->sr_cv); 1970 } else { 1971 sr->sr_mp_tail->b_next = mp; 1972 sr->sr_mp_tail = mp; 1973 } 1974 sr->sr_qlen += MBLKL(mp); 1975 while ((sr->sr_qlen > sr->sr_hiwat) && 1976 (sr->sr_write_error == 0)) { 1977 sf_stats.ss_full_waits++; 1978 cv_wait(&sr->sr_cv, &sr->sr_lock); 1979 } 1980 mutex_exit(&sr->sr_lock); 1981 } 1982 1983 /* 1984 * De-queues a mblk_t for network processing. 1985 */ 1986 static mblk_t * 1987 snf_deque(snf_req_t *sr) 1988 { 1989 mblk_t *mp; 1990 1991 mutex_enter(&sr->sr_lock); 1992 /* 1993 * If we have encountered an error on read or read is 1994 * completed and no more mblks, return NULL. 1995 * We need to check for NULL sr_mp_head also as 1996 * the reads could have completed and there is 1997 * nothing more to come. 1998 */ 1999 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2000 ((sr->sr_read_error & SR_READ_DONE) && 2001 sr->sr_mp_head == NULL)) { 2002 mutex_exit(&sr->sr_lock); 2003 return (NULL); 2004 } 2005 /* 2006 * To start with neither SR_READ_DONE is marked nor 2007 * the error is set. When we wake up from cv_wait, 2008 * following are the possibilities : 2009 * 2010 * a) sr_read_error is zero and mblks are queued. 2011 * b) sr_read_error is set to SR_READ_DONE 2012 * and mblks are queued. 2013 * c) sr_read_error is set to SR_READ_DONE 2014 * and no mblks. 2015 * d) sr_read_error is set to some error other 2016 * than SR_READ_DONE. 2017 */ 2018 2019 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2020 sf_stats.ss_empty_waits++; 2021 cv_wait(&sr->sr_cv, &sr->sr_lock); 2022 } 2023 /* Handle (a) and (b) first - the normal case. */ 2024 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2025 (sr->sr_mp_head != NULL)) { 2026 mp = sr->sr_mp_head; 2027 sr->sr_mp_head = mp->b_next; 2028 sr->sr_qlen -= MBLKL(mp); 2029 if (sr->sr_qlen < sr->sr_lowat) 2030 cv_signal(&sr->sr_cv); 2031 mutex_exit(&sr->sr_lock); 2032 mp->b_next = NULL; 2033 return (mp); 2034 } 2035 /* Handle (c) and (d). */ 2036 mutex_exit(&sr->sr_lock); 2037 return (NULL); 2038 } 2039 2040 /* 2041 * Reads data from the filesystem and queues it for network processing. 2042 */ 2043 void 2044 snf_async_read(snf_req_t *sr) 2045 { 2046 size_t iosize; 2047 u_offset_t fileoff; 2048 u_offset_t size; 2049 int ret_size; 2050 int error; 2051 file_t *fp; 2052 mblk_t *mp; 2053 struct vnode *vp; 2054 int extra = 0; 2055 int maxblk = 0; 2056 int wroff = 0; 2057 struct sonode *so; 2058 2059 fp = sr->sr_fp; 2060 size = sr->sr_file_size; 2061 fileoff = sr->sr_file_off; 2062 2063 /* 2064 * Ignore the error for filesystems that doesn't support DIRECTIO. 2065 */ 2066 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2067 kcred, NULL, NULL); 2068 2069 vp = sr->sr_vp; 2070 if (vp->v_type == VSOCK) { 2071 stdata_t *stp; 2072 2073 /* 2074 * Get the extra space to insert a header and a trailer. 2075 */ 2076 so = VTOSO(vp); 2077 stp = vp->v_stream; 2078 if (stp == NULL) { 2079 wroff = so->so_proto_props.sopp_wroff; 2080 maxblk = so->so_proto_props.sopp_maxblk; 2081 extra = wroff + so->so_proto_props.sopp_tail; 2082 } else { 2083 wroff = (int)(stp->sd_wroff); 2084 maxblk = (int)(stp->sd_maxblk); 2085 extra = wroff + (int)(stp->sd_tail); 2086 } 2087 } 2088 2089 while ((size != 0) && (sr->sr_write_error == 0)) { 2090 2091 iosize = (int)MIN(sr->sr_maxpsz, size); 2092 2093 /* 2094 * Socket filters can limit the mblk size, 2095 * so limit reads to maxblk if there are 2096 * filters present. 2097 */ 2098 if (vp->v_type == VSOCK && 2099 so->so_filter_active > 0 && maxblk != INFPSZ) 2100 iosize = (int)MIN(iosize, maxblk); 2101 2102 if (is_system_labeled()) { 2103 mp = allocb_cred(iosize + extra, CRED(), 2104 curproc->p_pid); 2105 } else { 2106 mp = allocb(iosize + extra, BPRI_MED); 2107 } 2108 if (mp == NULL) { 2109 error = EAGAIN; 2110 break; 2111 } 2112 2113 mp->b_rptr += wroff; 2114 2115 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2116 2117 /* Error or Reached EOF ? */ 2118 if ((error != 0) || (ret_size == 0)) { 2119 freeb(mp); 2120 break; 2121 } 2122 mp->b_wptr = mp->b_rptr + ret_size; 2123 2124 snf_enque(sr, mp); 2125 size -= ret_size; 2126 fileoff += ret_size; 2127 } 2128 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2129 kcred, NULL, NULL); 2130 mutex_enter(&sr->sr_lock); 2131 sr->sr_read_error = error; 2132 sr->sr_read_error |= SR_READ_DONE; 2133 cv_signal(&sr->sr_cv); 2134 mutex_exit(&sr->sr_lock); 2135 } 2136 2137 void 2138 snf_async_thread(void) 2139 { 2140 snf_req_t *sr; 2141 callb_cpr_t cprinfo; 2142 clock_t time_left = 1; 2143 2144 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2145 2146 mutex_enter(&snfq->snfq_lock); 2147 for (;;) { 2148 /* 2149 * If we didn't find a entry, then block until woken up 2150 * again and then look through the queues again. 2151 */ 2152 while ((sr = snfq->snfq_req_head) == NULL) { 2153 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2154 if (time_left <= 0) { 2155 snfq->snfq_svc_threads--; 2156 CALLB_CPR_EXIT(&cprinfo); 2157 thread_exit(); 2158 /* NOTREACHED */ 2159 } 2160 snfq->snfq_idle_cnt++; 2161 2162 time_left = cv_reltimedwait(&snfq->snfq_cv, 2163 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2164 snfq->snfq_idle_cnt--; 2165 2166 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2167 } 2168 snfq->snfq_req_head = sr->sr_next; 2169 snfq->snfq_req_cnt--; 2170 mutex_exit(&snfq->snfq_lock); 2171 snf_async_read(sr); 2172 mutex_enter(&snfq->snfq_lock); 2173 } 2174 } 2175 2176 2177 snf_req_t * 2178 create_thread(int operation, struct vnode *vp, file_t *fp, 2179 u_offset_t fileoff, u_offset_t size) 2180 { 2181 snf_req_t *sr; 2182 stdata_t *stp; 2183 2184 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2185 2186 sr->sr_vp = vp; 2187 sr->sr_fp = fp; 2188 stp = vp->v_stream; 2189 2190 /* 2191 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2192 * stream might be closed before thread returns from snf_async_read. 2193 */ 2194 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2195 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2196 } else { 2197 sr->sr_maxpsz = MAXBSIZE; 2198 } 2199 2200 sr->sr_operation = operation; 2201 sr->sr_file_off = fileoff; 2202 sr->sr_file_size = size; 2203 sr->sr_hiwat = sendfile_req_hiwat; 2204 sr->sr_lowat = sendfile_req_lowat; 2205 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2206 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2207 /* 2208 * See whether we need another thread for servicing this 2209 * request. If there are already enough requests queued 2210 * for the threads, create one if not exceeding 2211 * snfq_max_threads. 2212 */ 2213 mutex_enter(&snfq->snfq_lock); 2214 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2215 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2216 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2217 TS_RUN, minclsyspri); 2218 snfq->snfq_svc_threads++; 2219 } 2220 if (snfq->snfq_req_head == NULL) { 2221 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2222 cv_signal(&snfq->snfq_cv); 2223 } else { 2224 snfq->snfq_req_tail->sr_next = sr; 2225 snfq->snfq_req_tail = sr; 2226 } 2227 snfq->snfq_req_cnt++; 2228 mutex_exit(&snfq->snfq_lock); 2229 return (sr); 2230 } 2231 2232 int 2233 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2234 ssize_t *count) 2235 { 2236 snf_req_t *sr; 2237 mblk_t *mp; 2238 int iosize; 2239 int error = 0; 2240 short fflag; 2241 struct vnode *vp; 2242 int ksize; 2243 struct nmsghdr msg; 2244 2245 ksize = 0; 2246 *count = 0; 2247 bzero(&msg, sizeof (msg)); 2248 2249 vp = fp->f_vnode; 2250 fflag = fp->f_flag; 2251 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2252 return (EAGAIN); 2253 2254 /* 2255 * We check for read error in snf_deque. It has to check 2256 * for successful READ_DONE and return NULL, and we might 2257 * as well make an additional check there. 2258 */ 2259 while ((mp = snf_deque(sr)) != NULL) { 2260 2261 if (ISSIG(curthread, JUSTLOOKING)) { 2262 freeb(mp); 2263 error = EINTR; 2264 break; 2265 } 2266 iosize = MBLKL(mp); 2267 2268 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2269 2270 if (error != 0) { 2271 if (mp != NULL) 2272 freeb(mp); 2273 break; 2274 } 2275 ksize += iosize; 2276 } 2277 *count = ksize; 2278 2279 mutex_enter(&sr->sr_lock); 2280 sr->sr_write_error = error; 2281 /* Look at the big comments on why we cv_signal here. */ 2282 cv_signal(&sr->sr_cv); 2283 2284 /* Wait for the reader to complete always. */ 2285 while (!(sr->sr_read_error & SR_READ_DONE)) { 2286 cv_wait(&sr->sr_cv, &sr->sr_lock); 2287 } 2288 /* If there is no write error, check for read error. */ 2289 if (error == 0) 2290 error = (sr->sr_read_error & ~SR_READ_DONE); 2291 2292 if (error != 0) { 2293 mblk_t *next_mp; 2294 2295 mp = sr->sr_mp_head; 2296 while (mp != NULL) { 2297 next_mp = mp->b_next; 2298 mp->b_next = NULL; 2299 freeb(mp); 2300 mp = next_mp; 2301 } 2302 } 2303 mutex_exit(&sr->sr_lock); 2304 kmem_free(sr, sizeof (snf_req_t)); 2305 return (error); 2306 } 2307 2308 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2309 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2310 2311 /* 2312 * Maximum no.of elements in the list returned by vpm, including 2313 * NULL for the last entry 2314 */ 2315 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2316 2317 typedef struct { 2318 unsigned int snfv_ref; 2319 frtn_t snfv_frtn; 2320 vnode_t *snfv_vp; 2321 struct vmap snfv_vml[SNF_MAXVMAPS]; 2322 } snf_vmap_desbinfo; 2323 2324 typedef struct { 2325 frtn_t snfi_frtn; 2326 caddr_t snfi_base; 2327 uint_t snfi_mapoff; 2328 size_t snfi_len; 2329 vnode_t *snfi_vp; 2330 } snf_smap_desbinfo; 2331 2332 /* 2333 * The callback function used for vpm mapped mblks called when the last ref of 2334 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2335 * can be the driver too due to lazy reclaim. 2336 */ 2337 void 2338 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2339 { 2340 ASSERT(snfv->snfv_ref != 0); 2341 if (atomic_add_32_nv(&snfv->snfv_ref, -1) == 0) { 2342 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2343 VN_RELE(snfv->snfv_vp); 2344 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2345 } 2346 } 2347 2348 /* 2349 * The callback function used for segmap'ped mblks called when the last ref of 2350 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2351 * can be the driver too due to lazy reclaim. 2352 */ 2353 void 2354 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2355 { 2356 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2357 /* 2358 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2359 * segmap_kpm as long as the latter never falls back to 2360 * "use_segmap_range". (See segmap_getmapflt().) 2361 * 2362 * Using S_OTHER saves an redundant hat_setref() in 2363 * segmap_unlock() 2364 */ 2365 (void) segmap_fault(kas.a_hat, segkmap, 2366 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2367 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2368 F_SOFTUNLOCK, S_OTHER); 2369 } 2370 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2371 VN_RELE(snfi->snfi_vp); 2372 kmem_free(snfi, sizeof (*snfi)); 2373 } 2374 2375 /* 2376 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2377 * When segmap is used, the mblk contains a segmap slot of no more 2378 * than MAXBSIZE. 2379 * 2380 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2381 * in each iteration and sent by socket_sendmblk until an error occurs or 2382 * the requested size has been transferred. An mblk is esballoca'ed from 2383 * each mapped page and a chain of these mblk is sent to the transport layer. 2384 * vpm will be called to unmap the pages when all mblks have been freed by 2385 * free_func. 2386 * 2387 * At the end of the whole sendfile() operation, we wait till the data from 2388 * the last mblk is ack'ed by the transport before returning so that the 2389 * caller of sendfile() can safely modify the file content. 2390 */ 2391 int 2392 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2393 ssize_t *count, boolean_t nowait) 2394 { 2395 caddr_t base; 2396 int mapoff; 2397 vnode_t *vp; 2398 mblk_t *mp = NULL; 2399 int chain_size; 2400 int error; 2401 clock_t deadlk_wait; 2402 short fflag; 2403 int ksize; 2404 struct vattr va; 2405 boolean_t dowait = B_FALSE; 2406 struct nmsghdr msg; 2407 2408 vp = fp->f_vnode; 2409 fflag = fp->f_flag; 2410 ksize = 0; 2411 bzero(&msg, sizeof (msg)); 2412 2413 for (;;) { 2414 if (ISSIG(curthread, JUSTLOOKING)) { 2415 error = EINTR; 2416 break; 2417 } 2418 2419 if (vpm_enable) { 2420 snf_vmap_desbinfo *snfv; 2421 mblk_t *nmp; 2422 int mblk_size; 2423 int maxsize; 2424 int i; 2425 2426 mapoff = fileoff & PAGEOFFSET; 2427 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2428 2429 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2430 KM_SLEEP); 2431 2432 /* 2433 * Get vpm mappings for maxsize with read access. 2434 * If the pages aren't available yet, we get 2435 * DEADLK, so wait and try again a little later using 2436 * an increasing wait. We might be here a long time. 2437 * 2438 * If delay_sig returns EINTR, be sure to exit and 2439 * pass it up to the caller. 2440 */ 2441 deadlk_wait = 0; 2442 while ((error = vpm_map_pages(fvp, fileoff, 2443 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2444 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2445 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2446 if ((error = delay_sig(deadlk_wait)) != 0) { 2447 break; 2448 } 2449 } 2450 if (error != 0) { 2451 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2452 error = (error == EINTR) ? EINTR : EIO; 2453 goto out; 2454 } 2455 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2456 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2457 2458 /* Construct the mblk chain from the page mappings */ 2459 chain_size = 0; 2460 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2461 total_size > 0; i++) { 2462 ASSERT(chain_size < maxsize); 2463 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2464 mapoff, total_size); 2465 nmp = esballoca( 2466 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2467 mapoff, mblk_size, BPRI_HI, 2468 &snfv->snfv_frtn); 2469 2470 /* 2471 * We return EAGAIN after unmapping the pages 2472 * if we cannot allocate the the head of the 2473 * chain. Otherwise, we continue sending the 2474 * mblks constructed so far. 2475 */ 2476 if (nmp == NULL) { 2477 if (i == 0) { 2478 vpm_unmap_pages(snfv->snfv_vml, 2479 S_READ); 2480 kmem_free(snfv, 2481 sizeof (snf_vmap_desbinfo)); 2482 error = EAGAIN; 2483 goto out; 2484 } 2485 break; 2486 } 2487 /* Mark this dblk with the zero-copy flag */ 2488 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2489 nmp->b_wptr += mblk_size; 2490 chain_size += mblk_size; 2491 fileoff += mblk_size; 2492 total_size -= mblk_size; 2493 snfv->snfv_ref++; 2494 mapoff = 0; 2495 if (i > 0) 2496 linkb(mp, nmp); 2497 else 2498 mp = nmp; 2499 } 2500 VN_HOLD(fvp); 2501 snfv->snfv_vp = fvp; 2502 } else { 2503 /* vpm not supported. fallback to segmap */ 2504 snf_smap_desbinfo *snfi; 2505 2506 mapoff = fileoff & MAXBOFFSET; 2507 chain_size = MAXBSIZE - mapoff; 2508 if (chain_size > total_size) 2509 chain_size = total_size; 2510 /* 2511 * we don't forcefault because we'll call 2512 * segmap_fault(F_SOFTLOCK) next. 2513 * 2514 * S_READ will get the ref bit set (by either 2515 * segmap_getmapflt() or segmap_fault()) and page 2516 * shared locked. 2517 */ 2518 base = segmap_getmapflt(segkmap, fvp, fileoff, 2519 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2520 2521 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2522 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2523 PAGESIZE)- (mapoff & PAGEMASK); 2524 /* 2525 * We must call segmap_fault() even for segmap_kpm 2526 * because that's how error gets returned. 2527 * (segmap_getmapflt() never fails but segmap_fault() 2528 * does.) 2529 * 2530 * If the pages aren't available yet, we get 2531 * DEADLK, so wait and try again a little later using 2532 * an increasing wait. We might be here a long time. 2533 * 2534 * If delay_sig returns EINTR, be sure to exit and 2535 * pass it up to the caller. 2536 */ 2537 deadlk_wait = 0; 2538 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2539 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2540 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2541 S_READ))) == EDEADLK) { 2542 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2543 if ((error = delay_sig(deadlk_wait)) != 0) { 2544 break; 2545 } 2546 } 2547 if (error != 0) { 2548 (void) segmap_release(segkmap, base, 0); 2549 kmem_free(snfi, sizeof (*snfi)); 2550 error = (error == EINTR) ? EINTR : EIO; 2551 goto out; 2552 } 2553 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2554 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2555 snfi->snfi_base = base; 2556 snfi->snfi_mapoff = mapoff; 2557 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2558 BPRI_HI, &snfi->snfi_frtn); 2559 2560 if (mp == NULL) { 2561 (void) segmap_fault(kas.a_hat, segkmap, 2562 (caddr_t)(uintptr_t)(((uintptr_t)base + 2563 mapoff) & PAGEMASK), snfi->snfi_len, 2564 F_SOFTUNLOCK, S_OTHER); 2565 (void) segmap_release(segkmap, base, 0); 2566 kmem_free(snfi, sizeof (*snfi)); 2567 freemsg(mp); 2568 error = EAGAIN; 2569 goto out; 2570 } 2571 VN_HOLD(fvp); 2572 snfi->snfi_vp = fvp; 2573 mp->b_wptr += chain_size; 2574 2575 /* Mark this dblk with the zero-copy flag */ 2576 mp->b_datap->db_struioflag |= STRUIO_ZC; 2577 fileoff += chain_size; 2578 total_size -= chain_size; 2579 } 2580 2581 if (total_size == 0 && !nowait) { 2582 ASSERT(!dowait); 2583 dowait = B_TRUE; 2584 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2585 } 2586 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2587 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2588 if (error != 0) { 2589 /* 2590 * mp contains the mblks that were not sent by 2591 * socket_sendmblk. Use its size to update *count 2592 */ 2593 *count = ksize + (chain_size - msgdsize(mp)); 2594 if (mp != NULL) 2595 freemsg(mp); 2596 return (error); 2597 } 2598 ksize += chain_size; 2599 if (total_size == 0) 2600 goto done; 2601 2602 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2603 va.va_mask = AT_SIZE; 2604 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2605 if (error) 2606 break; 2607 /* Read as much as possible. */ 2608 if (fileoff >= va.va_size) 2609 break; 2610 if (total_size + fileoff > va.va_size) 2611 total_size = va.va_size - fileoff; 2612 } 2613 out: 2614 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2615 done: 2616 *count = ksize; 2617 if (dowait) { 2618 stdata_t *stp; 2619 2620 stp = vp->v_stream; 2621 if (stp == NULL) { 2622 struct sonode *so; 2623 so = VTOSO(vp); 2624 error = so_zcopy_wait(so); 2625 } else { 2626 mutex_enter(&stp->sd_lock); 2627 while (!(stp->sd_flag & STZCNOTIFY)) { 2628 if (cv_wait_sig(&stp->sd_zcopy_wait, 2629 &stp->sd_lock) == 0) { 2630 error = EINTR; 2631 break; 2632 } 2633 } 2634 stp->sd_flag &= ~STZCNOTIFY; 2635 mutex_exit(&stp->sd_lock); 2636 } 2637 } 2638 return (error); 2639 } 2640 2641 int 2642 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2643 uint_t maxpsz, ssize_t *count) 2644 { 2645 struct vnode *vp; 2646 mblk_t *mp; 2647 int iosize; 2648 int extra = 0; 2649 int error; 2650 short fflag; 2651 int ksize; 2652 int ioflag; 2653 struct uio auio; 2654 struct iovec aiov; 2655 struct vattr va; 2656 int maxblk = 0; 2657 int wroff = 0; 2658 struct sonode *so; 2659 struct nmsghdr msg; 2660 2661 vp = fp->f_vnode; 2662 if (vp->v_type == VSOCK) { 2663 stdata_t *stp; 2664 2665 /* 2666 * Get the extra space to insert a header and a trailer. 2667 */ 2668 so = VTOSO(vp); 2669 stp = vp->v_stream; 2670 if (stp == NULL) { 2671 wroff = so->so_proto_props.sopp_wroff; 2672 maxblk = so->so_proto_props.sopp_maxblk; 2673 extra = wroff + so->so_proto_props.sopp_tail; 2674 } else { 2675 wroff = (int)(stp->sd_wroff); 2676 maxblk = (int)(stp->sd_maxblk); 2677 extra = wroff + (int)(stp->sd_tail); 2678 } 2679 } 2680 bzero(&msg, sizeof (msg)); 2681 fflag = fp->f_flag; 2682 ksize = 0; 2683 auio.uio_iov = &aiov; 2684 auio.uio_iovcnt = 1; 2685 auio.uio_segflg = UIO_SYSSPACE; 2686 auio.uio_llimit = MAXOFFSET_T; 2687 auio.uio_fmode = fflag; 2688 auio.uio_extflg = UIO_COPY_CACHED; 2689 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2690 /* If read sync is not asked for, filter sync flags */ 2691 if ((ioflag & FRSYNC) == 0) 2692 ioflag &= ~(FSYNC|FDSYNC); 2693 for (;;) { 2694 if (ISSIG(curthread, JUSTLOOKING)) { 2695 error = EINTR; 2696 break; 2697 } 2698 iosize = (int)MIN(maxpsz, size); 2699 2700 /* 2701 * Socket filters can limit the mblk size, 2702 * so limit reads to maxblk if there are 2703 * filters present. 2704 */ 2705 if (vp->v_type == VSOCK && 2706 so->so_filter_active > 0 && maxblk != INFPSZ) 2707 iosize = (int)MIN(iosize, maxblk); 2708 2709 if (is_system_labeled()) { 2710 mp = allocb_cred(iosize + extra, CRED(), 2711 curproc->p_pid); 2712 } else { 2713 mp = allocb(iosize + extra, BPRI_MED); 2714 } 2715 if (mp == NULL) { 2716 error = EAGAIN; 2717 break; 2718 } 2719 2720 mp->b_rptr += wroff; 2721 2722 aiov.iov_base = (caddr_t)mp->b_rptr; 2723 aiov.iov_len = iosize; 2724 auio.uio_loffset = fileoff; 2725 auio.uio_resid = iosize; 2726 2727 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2728 iosize -= auio.uio_resid; 2729 2730 if (error == EINTR && iosize != 0) 2731 error = 0; 2732 2733 if (error != 0 || iosize == 0) { 2734 freeb(mp); 2735 break; 2736 } 2737 mp->b_wptr = mp->b_rptr + iosize; 2738 2739 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2740 2741 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2742 2743 if (error != 0) { 2744 *count = ksize; 2745 if (mp != NULL) 2746 freeb(mp); 2747 return (error); 2748 } 2749 ksize += iosize; 2750 size -= iosize; 2751 if (size == 0) 2752 goto done; 2753 2754 fileoff += iosize; 2755 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2756 va.va_mask = AT_SIZE; 2757 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2758 if (error) 2759 break; 2760 /* Read as much as possible. */ 2761 if (fileoff >= va.va_size) 2762 size = 0; 2763 else if (size + fileoff > va.va_size) 2764 size = va.va_size - fileoff; 2765 } 2766 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2767 done: 2768 *count = ksize; 2769 return (error); 2770 } 2771 2772 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2773 /* 2774 * Largefile support for 32 bit applications only. 2775 */ 2776 int 2777 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2778 ssize32_t *count32) 2779 { 2780 ssize32_t sfv_len; 2781 u_offset_t sfv_off, va_size; 2782 struct vnode *vp, *fvp, *realvp; 2783 struct vattr va; 2784 stdata_t *stp; 2785 ssize_t count = 0; 2786 int error = 0; 2787 boolean_t dozcopy = B_FALSE; 2788 uint_t maxpsz; 2789 2790 sfv_len = (ssize32_t)sfv->sfv_len; 2791 if (sfv_len < 0) { 2792 error = EINVAL; 2793 goto out; 2794 } 2795 2796 if (sfv_len == 0) goto out; 2797 2798 sfv_off = (u_offset_t)sfv->sfv_off; 2799 2800 /* Same checks as in pread */ 2801 if (sfv_off > MAXOFFSET_T) { 2802 error = EINVAL; 2803 goto out; 2804 } 2805 if (sfv_off + sfv_len > MAXOFFSET_T) 2806 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2807 2808 /* 2809 * There are no more checks on sfv_len. So, we cast it to 2810 * u_offset_t and share the snf_direct_io/snf_cache code between 2811 * 32 bit and 64 bit. 2812 * 2813 * TODO: should do nbl_need_check() like read()? 2814 */ 2815 if (sfv_len > sendfile_max_size) { 2816 sf_stats.ss_file_not_cached++; 2817 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2818 &count); 2819 goto out; 2820 } 2821 fvp = rfp->f_vnode; 2822 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2823 fvp = realvp; 2824 /* 2825 * Grab the lock as a reader to prevent the file size 2826 * from changing underneath. 2827 */ 2828 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2829 va.va_mask = AT_SIZE; 2830 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2831 va_size = va.va_size; 2832 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2833 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2834 goto out; 2835 } 2836 /* Read as much as possible. */ 2837 if (sfv_off + sfv_len > va_size) 2838 sfv_len = va_size - sfv_off; 2839 2840 vp = fp->f_vnode; 2841 stp = vp->v_stream; 2842 /* 2843 * When the NOWAIT flag is not set, we enable zero-copy only if the 2844 * transfer size is large enough. This prevents performance loss 2845 * when the caller sends the file piece by piece. 2846 */ 2847 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2848 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2849 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2850 uint_t copyflag; 2851 copyflag = stp != NULL ? stp->sd_copyflag : 2852 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2853 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2854 int on = 1; 2855 2856 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2857 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2858 dozcopy = B_TRUE; 2859 } else { 2860 dozcopy = copyflag & STZCVMSAFE; 2861 } 2862 } 2863 if (dozcopy) { 2864 sf_stats.ss_file_segmap++; 2865 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2866 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2867 } else { 2868 if (vp->v_type == VSOCK && stp == NULL) { 2869 sonode_t *so = VTOSO(vp); 2870 maxpsz = so->so_proto_props.sopp_maxpsz; 2871 } else if (stp != NULL) { 2872 maxpsz = stp->sd_qn_maxpsz; 2873 } else { 2874 maxpsz = maxphys; 2875 } 2876 2877 if (maxpsz == INFPSZ) 2878 maxpsz = maxphys; 2879 else 2880 maxpsz = roundup(maxpsz, MAXBSIZE); 2881 sf_stats.ss_file_cached++; 2882 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2883 maxpsz, &count); 2884 } 2885 out: 2886 releasef(sfv->sfv_fd); 2887 *count32 = (ssize32_t)count; 2888 return (error); 2889 } 2890 #endif 2891 2892 #ifdef _SYSCALL32_IMPL 2893 /* 2894 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2895 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2896 */ 2897 2898 ssize_t 2899 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2900 { 2901 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2902 } 2903 2904 ssize_t 2905 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2906 caddr32_t name, caddr32_t namelenp) 2907 { 2908 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2909 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2910 } 2911 2912 ssize_t 2913 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2914 { 2915 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2916 } 2917 2918 ssize_t 2919 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2920 caddr32_t name, socklen_t namelen) 2921 { 2922 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2923 (void *)(uintptr_t)name, namelen)); 2924 } 2925 #endif /* _SYSCALL32_IMPL */ 2926 2927 /* 2928 * Function wrappers (mostly around the sonode switch) for 2929 * backward compatibility. 2930 */ 2931 2932 int 2933 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 2934 { 2935 return (socket_accept(so, fflag, CRED(), nsop)); 2936 } 2937 2938 int 2939 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 2940 int backlog, int flags) 2941 { 2942 int error; 2943 2944 error = socket_bind(so, name, namelen, flags, CRED()); 2945 if (error == 0 && backlog != 0) 2946 return (socket_listen(so, backlog, CRED())); 2947 2948 return (error); 2949 } 2950 2951 int 2952 solisten(struct sonode *so, int backlog) 2953 { 2954 return (socket_listen(so, backlog, CRED())); 2955 } 2956 2957 int 2958 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 2959 int fflag, int flags) 2960 { 2961 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 2962 } 2963 2964 int 2965 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2966 { 2967 return (socket_recvmsg(so, msg, uiop, CRED())); 2968 } 2969 2970 int 2971 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2972 { 2973 return (socket_sendmsg(so, msg, uiop, CRED())); 2974 } 2975 2976 int 2977 soshutdown(struct sonode *so, int how) 2978 { 2979 return (socket_shutdown(so, how, CRED())); 2980 } 2981 2982 int 2983 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 2984 socklen_t *optlenp, int flags) 2985 { 2986 return (socket_getsockopt(so, level, option_name, optval, optlenp, 2987 flags, CRED())); 2988 } 2989 2990 int 2991 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 2992 t_uscalar_t optlen) 2993 { 2994 return (socket_setsockopt(so, level, option_name, optval, optlen, 2995 CRED())); 2996 } 2997 2998 /* 2999 * Because this is backward compatibility interface it only needs to be 3000 * able to handle the creation of TPI sockfs sockets. 3001 */ 3002 struct sonode * 3003 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3004 int *errorp) 3005 { 3006 struct sonode *so; 3007 3008 ASSERT(sp != NULL); 3009 3010 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3011 version, SOCKET_SLEEP, errorp, CRED()); 3012 if (so == NULL) { 3013 SOCKPARAMS_DEC_REF(sp); 3014 } else { 3015 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3016 /* Cannot fail, only bumps so_count */ 3017 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3018 } else { 3019 socket_destroy(so); 3020 so = NULL; 3021 } 3022 } 3023 return (so); 3024 } 3025