1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vnode.h> 40 #include <sys/debug.h> 41 #include <sys/errno.h> 42 #include <sys/time.h> 43 #include <sys/file.h> 44 #include <sys/user.h> 45 #include <sys/stream.h> 46 #include <sys/strsubr.h> 47 #include <sys/strsun.h> 48 #include <sys/sunddi.h> 49 #include <sys/esunddi.h> 50 #include <sys/flock.h> 51 #include <sys/modctl.h> 52 #include <sys/cmn_err.h> 53 #include <sys/vmsystm.h> 54 #include <sys/policy.h> 55 56 #include <sys/socket.h> 57 #include <sys/socketvar.h> 58 59 #include <sys/isa_defs.h> 60 #include <sys/inttypes.h> 61 #include <sys/systm.h> 62 #include <sys/cpuvar.h> 63 #include <sys/filio.h> 64 #include <sys/sendfile.h> 65 #include <sys/ddi.h> 66 #include <vm/seg.h> 67 #include <vm/seg_map.h> 68 #include <vm/seg_kpm.h> 69 #include <fs/sockfs/nl7c.h> 70 71 #ifdef SOCK_TEST 72 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 73 #else 74 #define do_useracc 1 75 #endif /* SOCK_TEST */ 76 77 extern int xnet_truncate_print; 78 79 /* 80 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 81 * as there isn't a formal definition of IOV_MAX ??? 82 */ 83 #define MSG_MAXIOVLEN 16 84 85 /* 86 * Kernel component of socket creation. 87 * 88 * The socket library determines which version number to use. 89 * First the library calls this with a NULL devpath. If this fails 90 * to find a transport (using solookup) the library will look in /etc/netconfig 91 * for the appropriate transport. If one is found it will pass in the 92 * devpath for the kernel to use. 93 */ 94 int 95 so_socket(int domain, int type, int protocol, char *devpath, int version) 96 { 97 vnode_t *accessvp; 98 struct sonode *so; 99 vnode_t *vp; 100 struct file *fp; 101 int fd; 102 int error; 103 boolean_t wildcard = B_FALSE; 104 int saved_error = 0; 105 int sdomain = domain; 106 107 dprint(1, ("so_socket(%d,%d,%d,%p,%d)\n", 108 domain, type, protocol, devpath, version)); 109 110 if (domain == AF_NCA) { 111 /* 112 * The request is for an NCA socket so for NL7C use the 113 * INET domain instead and mark NL7C_AF_NCA below. 114 */ 115 domain = AF_INET; 116 /* 117 * NL7C is not supported in non-global zones, 118 * we enforce this restriction here. 119 */ 120 if (getzoneid() != GLOBAL_ZONEID) { 121 return (set_errno(ENOTSUP)); 122 } 123 } 124 125 accessvp = solookup(domain, type, protocol, devpath, &error); 126 if (accessvp == NULL) { 127 /* 128 * If there is either an EPROTONOSUPPORT or EPROTOTYPE error 129 * it makes sense doing the wildcard lookup since the 130 * protocol might not be in the table. 131 */ 132 if (devpath != NULL || protocol == 0 || 133 !(error == EPROTONOSUPPORT || error == EPROTOTYPE)) 134 return (set_errno(error)); 135 136 saved_error = error; 137 138 /* 139 * Try wildcard lookup. Never use devpath for wildcards. 140 */ 141 accessvp = solookup(domain, type, 0, NULL, &error); 142 if (accessvp == NULL) { 143 /* 144 * Can't find in kernel table - have library 145 * fall back to /etc/netconfig and tell us 146 * the devpath (The library will do this if it didn't 147 * already pass in a devpath). 148 */ 149 if (saved_error != 0) 150 error = saved_error; 151 return (set_errno(error)); 152 } 153 wildcard = B_TRUE; 154 } 155 156 /* Check the device policy */ 157 if ((error = secpolicy_spec_open(CRED(), 158 accessvp, FREAD|FWRITE)) != 0) { 159 return (set_errno(error)); 160 } 161 162 if (protocol == IPPROTO_SCTP) { 163 so = sosctp_create(accessvp, domain, type, protocol, version, 164 NULL, &error); 165 } else if (protocol == PROTO_SDP) { 166 so = sosdp_create(accessvp, domain, type, protocol, version, 167 NULL, &error); 168 } else { 169 so = sotpi_create(accessvp, domain, type, protocol, version, 170 NULL, &error); 171 } 172 if (so == NULL) { 173 return (set_errno(error)); 174 } 175 if (sdomain == AF_NCA && domain == AF_INET) { 176 so->so_nl7c_flags = NL7C_AF_NCA; 177 } 178 vp = SOTOV(so); 179 180 if (wildcard) { 181 /* 182 * Issue SO_PROTOTYPE setsockopt. 183 */ 184 error = SOP_SETSOCKOPT(so, SOL_SOCKET, SO_PROTOTYPE, 185 &protocol, 186 (t_uscalar_t)sizeof (protocol)); 187 if (error) { 188 (void) VOP_CLOSE(vp, 0, 1, 0, CRED()); 189 VN_RELE(vp); 190 /* 191 * Setsockopt often fails with ENOPROTOOPT but socket() 192 * should fail with EPROTONOSUPPORT/EPROTOTYPE. 193 */ 194 if (saved_error != 0 && error == ENOPROTOOPT) 195 error = saved_error; 196 else 197 error = EPROTONOSUPPORT; 198 return (set_errno(error)); 199 } 200 } 201 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 202 (void) VOP_CLOSE(vp, 0, 1, 0, CRED()); 203 VN_RELE(vp); 204 return (set_errno(error)); 205 } 206 207 /* 208 * Now fill in the entries that falloc reserved 209 */ 210 mutex_exit(&fp->f_tlock); 211 setf(fd, fp); 212 213 return (fd); 214 } 215 216 /* 217 * Map from a file descriptor to a socket node. 218 * Returns with the file descriptor held i.e. the caller has to 219 * use releasef when done with the file descriptor. 220 */ 221 static struct sonode * 222 getsonode(int sock, int *errorp, file_t **fpp) 223 { 224 file_t *fp; 225 vnode_t *vp; 226 struct sonode *so; 227 228 if ((fp = getf(sock)) == NULL) { 229 *errorp = EBADF; 230 eprintline(*errorp); 231 return (NULL); 232 } 233 vp = fp->f_vnode; 234 /* Check if it is a socket */ 235 if (vp->v_type != VSOCK) { 236 releasef(sock); 237 *errorp = ENOTSOCK; 238 eprintline(*errorp); 239 return (NULL); 240 } 241 /* 242 * Use the stream head to find the real socket vnode. 243 * This is needed when namefs sits above sockfs. 244 */ 245 if (vp->v_stream) { 246 ASSERT(vp->v_stream->sd_vnode); 247 vp = vp->v_stream->sd_vnode; 248 249 so = VTOSO(vp); 250 if (so->so_version == SOV_STREAM) { 251 releasef(sock); 252 *errorp = ENOTSOCK; 253 eprintsoline(so, *errorp); 254 return (NULL); 255 } 256 } else { 257 so = VTOSO(vp); 258 } 259 if (fpp) 260 *fpp = fp; 261 return (so); 262 } 263 264 /* 265 * Allocate and copyin a sockaddr. 266 * Ensures NULL termination for AF_UNIX addresses by extending them 267 * with one NULL byte if need be. Verifies that the length is not 268 * excessive to prevent an application from consuming all of kernel 269 * memory. Returns NULL when an error occurred. 270 */ 271 static struct sockaddr * 272 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 273 int *errorp) 274 { 275 char *faddr; 276 size_t namelen = (size_t)*namelenp; 277 278 ASSERT(namelen != 0); 279 if (namelen > SO_MAXARGSIZE) { 280 *errorp = EINVAL; 281 eprintsoline(so, *errorp); 282 return (NULL); 283 } 284 285 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 286 if (copyin(name, faddr, namelen)) { 287 kmem_free(faddr, namelen); 288 *errorp = EFAULT; 289 eprintsoline(so, *errorp); 290 return (NULL); 291 } 292 293 /* 294 * Add space for NULL termination if needed. 295 * Do a quick check if the last byte is NUL. 296 */ 297 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 298 /* Check if there is any NULL termination */ 299 size_t i; 300 int foundnull = 0; 301 302 for (i = sizeof (name->sa_family); i < namelen; i++) { 303 if (faddr[i] == '\0') { 304 foundnull = 1; 305 break; 306 } 307 } 308 if (!foundnull) { 309 /* Add extra byte for NUL padding */ 310 char *nfaddr; 311 312 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 313 bcopy(faddr, nfaddr, namelen); 314 kmem_free(faddr, namelen); 315 316 /* NUL terminate */ 317 nfaddr[namelen] = '\0'; 318 namelen++; 319 ASSERT((socklen_t)namelen == namelen); 320 *namelenp = (socklen_t)namelen; 321 faddr = nfaddr; 322 } 323 } 324 return ((struct sockaddr *)faddr); 325 } 326 327 /* 328 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 329 */ 330 static int 331 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, 332 void *kaddr, socklen_t klen) 333 { 334 if (uaddr != NULL) { 335 if (ulen > klen) 336 ulen = klen; 337 338 if (ulen != 0) { 339 if (copyout(kaddr, uaddr, ulen)) 340 return (EFAULT); 341 } 342 } else 343 ulen = 0; 344 345 if (ulenp != NULL) { 346 if (copyout(&ulen, ulenp, sizeof (ulen))) 347 return (EFAULT); 348 } 349 return (0); 350 } 351 352 /* 353 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 354 * If klen is greater than ulen it still uses the non-truncated 355 * klen to update ulenp. 356 */ 357 static int 358 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, 359 void *kaddr, socklen_t klen) 360 { 361 if (uaddr != NULL) { 362 if (ulen >= klen) 363 ulen = klen; 364 else if (ulen != 0 && xnet_truncate_print) { 365 printf("sockfs: truncating copyout of address using " 366 "XNET semantics for pid = %d. Lengths %d, %d\n", 367 curproc->p_pid, klen, ulen); 368 } 369 370 if (ulen != 0) { 371 if (copyout(kaddr, uaddr, ulen)) 372 return (EFAULT); 373 } else 374 klen = 0; 375 } else 376 klen = 0; 377 378 if (ulenp != NULL) { 379 if (copyout(&klen, ulenp, sizeof (klen))) 380 return (EFAULT); 381 } 382 return (0); 383 } 384 385 /* 386 * The socketpair() code in libsocket creates two sockets (using 387 * the /etc/netconfig fallback if needed) before calling this routine 388 * to connect the two sockets together. 389 * 390 * For a SOCK_STREAM socketpair a listener is needed - in that case this 391 * routine will create a new file descriptor as part of accepting the 392 * connection. The library socketpair() will check if svs[2] has changed 393 * in which case it will close the changed fd. 394 * 395 * Note that this code could use the TPI feature of accepting the connection 396 * on the listening endpoint. However, that would require significant changes 397 * to soaccept. 398 */ 399 int 400 so_socketpair(int sv[2]) 401 { 402 int svs[2]; 403 struct sonode *so1, *so2; 404 int error; 405 struct sockaddr_ux *name; 406 size_t namelen; 407 408 dprint(1, ("so_socketpair(%p)\n", sv)); 409 410 error = useracc(sv, sizeof (svs), B_WRITE); 411 if (error && do_useracc) 412 return (set_errno(EFAULT)); 413 414 if (copyin(sv, svs, sizeof (svs))) 415 return (set_errno(EFAULT)); 416 417 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 418 return (set_errno(error)); 419 420 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 421 releasef(svs[0]); 422 return (set_errno(error)); 423 } 424 425 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 426 error = EOPNOTSUPP; 427 goto done; 428 } 429 430 /* 431 * The code below makes assumptions about the "sockfs" implementation. 432 * So make sure that the correct implementation is really used. 433 */ 434 ASSERT(so1->so_ops == &sotpi_sonodeops); 435 ASSERT(so2->so_ops == &sotpi_sonodeops); 436 437 if (so1->so_type == SOCK_DGRAM) { 438 /* 439 * Bind both sockets and connect them with each other. 440 * Need to allocate name/namelen for soconnect. 441 */ 442 error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC); 443 if (error) { 444 eprintsoline(so1, error); 445 goto done; 446 } 447 error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC); 448 if (error) { 449 eprintsoline(so2, error); 450 goto done; 451 } 452 namelen = sizeof (struct sockaddr_ux); 453 name = kmem_alloc(namelen, KM_SLEEP); 454 name->sou_family = AF_UNIX; 455 name->sou_addr = so2->so_ux_laddr; 456 error = SOP_CONNECT(so1, 457 (struct sockaddr *)name, 458 (socklen_t)namelen, 459 0, _SOCONNECT_NOXLATE); 460 if (error) { 461 kmem_free(name, namelen); 462 eprintsoline(so1, error); 463 goto done; 464 } 465 name->sou_addr = so1->so_ux_laddr; 466 error = SOP_CONNECT(so2, 467 (struct sockaddr *)name, 468 (socklen_t)namelen, 469 0, _SOCONNECT_NOXLATE); 470 kmem_free(name, namelen); 471 if (error) { 472 eprintsoline(so2, error); 473 goto done; 474 } 475 releasef(svs[0]); 476 releasef(svs[1]); 477 } else { 478 /* 479 * Bind both sockets, with so1 being a listener. 480 * Connect so2 to so1 - nonblocking to avoid waiting for 481 * soaccept to complete. 482 * Accept a connection on so1. Pass out the new fd as sv[0]. 483 * The library will detect the changed fd and close 484 * the original one. 485 */ 486 struct sonode *nso; 487 struct vnode *nvp; 488 struct file *nfp; 489 int nfd; 490 491 /* 492 * We could simply call SOP_LISTEN() here (which would do the 493 * binding automatically) if the code didn't rely on passing 494 * _SOBIND_NOXLATE to the TPI implementation of SOP_BIND(). 495 */ 496 error = SOP_BIND(so1, NULL, 0, _SOBIND_UNSPEC|_SOBIND_NOXLATE| 497 _SOBIND_LISTEN|_SOBIND_SOCKETPAIR); 498 if (error) { 499 eprintsoline(so1, error); 500 goto done; 501 } 502 error = SOP_BIND(so2, NULL, 0, _SOBIND_UNSPEC); 503 if (error) { 504 eprintsoline(so2, error); 505 goto done; 506 } 507 508 namelen = sizeof (struct sockaddr_ux); 509 name = kmem_alloc(namelen, KM_SLEEP); 510 name->sou_family = AF_UNIX; 511 name->sou_addr = so1->so_ux_laddr; 512 error = SOP_CONNECT(so2, 513 (struct sockaddr *)name, 514 (socklen_t)namelen, 515 FNONBLOCK, _SOCONNECT_NOXLATE); 516 kmem_free(name, namelen); 517 if (error) { 518 if (error != EINPROGRESS) { 519 eprintsoline(so2, error); 520 goto done; 521 } 522 } 523 524 error = SOP_ACCEPT(so1, 0, &nso); 525 if (error) { 526 eprintsoline(so1, error); 527 goto done; 528 } 529 530 /* wait for so2 being SS_CONNECTED ignoring signals */ 531 mutex_enter(&so2->so_lock); 532 error = sowaitconnected(so2, 0, 1); 533 mutex_exit(&so2->so_lock); 534 nvp = SOTOV(nso); 535 if (error != 0) { 536 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED()); 537 VN_RELE(nvp); 538 eprintsoline(so2, error); 539 goto done; 540 } 541 542 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 543 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED()); 544 VN_RELE(nvp); 545 eprintsoline(nso, error); 546 goto done; 547 } 548 /* 549 * fill in the entries that falloc reserved 550 */ 551 mutex_exit(&nfp->f_tlock); 552 setf(nfd, nfp); 553 554 releasef(svs[0]); 555 releasef(svs[1]); 556 svs[0] = nfd; 557 558 /* 559 * The socketpair library routine will close the original 560 * svs[0] when this code passes out a different file 561 * descriptor. 562 */ 563 if (copyout(svs, sv, sizeof (svs))) { 564 (void) closeandsetf(nfd, NULL); 565 eprintline(EFAULT); 566 return (set_errno(EFAULT)); 567 } 568 } 569 return (0); 570 571 done: 572 releasef(svs[0]); 573 releasef(svs[1]); 574 return (set_errno(error)); 575 } 576 577 int 578 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 579 { 580 struct sonode *so; 581 int error; 582 583 dprint(1, ("bind(%d, %p, %d)\n", 584 sock, name, namelen)); 585 586 if ((so = getsonode(sock, &error, NULL)) == NULL) 587 return (set_errno(error)); 588 589 /* Allocate and copyin name */ 590 /* 591 * X/Open test does not expect EFAULT with NULL name and non-zero 592 * namelen. 593 */ 594 if (name != NULL && namelen != 0) { 595 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 596 name = copyin_name(so, name, &namelen, &error); 597 if (name == NULL) { 598 releasef(sock); 599 return (set_errno(error)); 600 } 601 } else { 602 name = NULL; 603 namelen = 0; 604 } 605 606 switch (version) { 607 default: 608 error = SOP_BIND(so, name, namelen, 0); 609 break; 610 case SOV_XPG4_2: 611 error = SOP_BIND(so, name, namelen, _SOBIND_XPG4_2); 612 break; 613 case SOV_SOCKBSD: 614 error = SOP_BIND(so, name, namelen, _SOBIND_SOCKBSD); 615 break; 616 } 617 done: 618 releasef(sock); 619 if (name != NULL) 620 kmem_free(name, (size_t)namelen); 621 622 if (error) 623 return (set_errno(error)); 624 return (0); 625 } 626 627 /* ARGSUSED2 */ 628 int 629 listen(int sock, int backlog, int version) 630 { 631 struct sonode *so; 632 int error; 633 634 dprint(1, ("listen(%d, %d)\n", 635 sock, backlog)); 636 637 if ((so = getsonode(sock, &error, NULL)) == NULL) 638 return (set_errno(error)); 639 640 error = SOP_LISTEN(so, backlog); 641 642 releasef(sock); 643 if (error) 644 return (set_errno(error)); 645 return (0); 646 } 647 648 /*ARGSUSED3*/ 649 int 650 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 651 { 652 struct sonode *so; 653 file_t *fp; 654 int error; 655 socklen_t namelen; 656 struct sonode *nso; 657 struct vnode *nvp; 658 struct file *nfp; 659 int nfd; 660 661 dprint(1, ("accept(%d, %p, %p)\n", 662 sock, name, namelenp)); 663 664 if ((so = getsonode(sock, &error, &fp)) == NULL) 665 return (set_errno(error)); 666 667 if (name != NULL) { 668 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 669 if (copyin(namelenp, &namelen, sizeof (namelen))) { 670 releasef(sock); 671 return (set_errno(EFAULT)); 672 } 673 if (namelen != 0) { 674 error = useracc(name, (size_t)namelen, B_WRITE); 675 if (error && do_useracc) { 676 releasef(sock); 677 return (set_errno(EFAULT)); 678 } 679 } else 680 name = NULL; 681 } else { 682 namelen = 0; 683 } 684 685 /* 686 * Allocate the user fd before SOP_ACCEPT() in order to 687 * catch EMFILE errors before calling SOP_ACCEPT(). 688 */ 689 if ((nfd = ufalloc(0)) == -1) { 690 eprintsoline(so, EMFILE); 691 releasef(sock); 692 return (set_errno(EMFILE)); 693 } 694 error = SOP_ACCEPT(so, fp->f_flag, &nso); 695 releasef(sock); 696 if (error) { 697 setf(nfd, NULL); 698 return (set_errno(error)); 699 } 700 701 nvp = SOTOV(nso); 702 703 /* 704 * so_faddr_sa can not go away even though we are not holding so_lock. 705 * However, in theory its content could change from underneath us. 706 * But this is not possible in practice since it can only 707 * change due to either some socket system call 708 * or due to a T_CONN_CON being received from the stream head. 709 * Since the falloc/setf have not yet been done no thread 710 * can do any system call on nso and T_CONN_CON can not arrive 711 * on a socket that is already connected. 712 * Thus there is no reason to hold so_lock here. 713 * 714 * SOP_ACCEPT() is required to have set the valid bit for the faddr, 715 * but it could be instantly cleared by a disconnect from the transport. 716 * For that reason we ignore it here. 717 */ 718 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 719 error = copyout_name(name, namelen, namelenp, 720 nso->so_faddr_sa, (socklen_t)nso->so_faddr_len); 721 if (error) { 722 setf(nfd, NULL); 723 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED()); 724 VN_RELE(nvp); 725 return (set_errno(error)); 726 } 727 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 728 setf(nfd, NULL); 729 (void) VOP_CLOSE(nvp, 0, 1, 0, CRED()); 730 VN_RELE(nvp); 731 eprintsoline(so, error); 732 return (set_errno(error)); 733 } 734 /* 735 * fill in the entries that falloc reserved 736 */ 737 nfp->f_vnode = nvp; 738 mutex_exit(&nfp->f_tlock); 739 setf(nfd, nfp); 740 741 /* 742 * Copy FNDELAY and FNONBLOCK from listener to acceptor 743 */ 744 if (so->so_state & (SS_NDELAY|SS_NONBLOCK)) { 745 uint_t oflag = nfp->f_flag; 746 int arg = 0; 747 748 if (so->so_state & SS_NONBLOCK) 749 arg |= FNONBLOCK; 750 else if (so->so_state & SS_NDELAY) 751 arg |= FNDELAY; 752 753 /* 754 * This code is a simplification of the F_SETFL code in fcntl() 755 * Ignore any errors from VOP_SETFL. 756 */ 757 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred)) != 0) { 758 eprintsoline(so, error); 759 error = 0; 760 } else { 761 mutex_enter(&nfp->f_tlock); 762 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 763 nfp->f_flag |= arg; 764 mutex_exit(&nfp->f_tlock); 765 } 766 } 767 return (nfd); 768 } 769 770 int 771 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 772 { 773 struct sonode *so; 774 file_t *fp; 775 int error; 776 777 dprint(1, ("connect(%d, %p, %d)\n", 778 sock, name, namelen)); 779 780 if ((so = getsonode(sock, &error, &fp)) == NULL) 781 return (set_errno(error)); 782 783 /* Allocate and copyin name */ 784 if (namelen != 0) { 785 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 786 name = copyin_name(so, name, &namelen, &error); 787 if (name == NULL) { 788 releasef(sock); 789 return (set_errno(error)); 790 } 791 } else 792 name = NULL; 793 794 error = SOP_CONNECT(so, name, namelen, fp->f_flag, 795 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2); 796 releasef(sock); 797 if (name) 798 kmem_free(name, (size_t)namelen); 799 if (error) 800 return (set_errno(error)); 801 return (0); 802 } 803 804 /*ARGSUSED2*/ 805 int 806 shutdown(int sock, int how, int version) 807 { 808 struct sonode *so; 809 int error; 810 811 dprint(1, ("shutdown(%d, %d)\n", 812 sock, how)); 813 814 if ((so = getsonode(sock, &error, NULL)) == NULL) 815 return (set_errno(error)); 816 817 error = SOP_SHUTDOWN(so, how); 818 819 releasef(sock); 820 if (error) 821 return (set_errno(error)); 822 return (0); 823 } 824 825 /* 826 * Common receive routine. 827 */ 828 static ssize_t 829 recvit(int sock, 830 struct nmsghdr *msg, 831 struct uio *uiop, 832 int flags, 833 socklen_t *namelenp, 834 socklen_t *controllenp, 835 int *flagsp) 836 { 837 struct sonode *so; 838 file_t *fp; 839 void *name; 840 socklen_t namelen; 841 void *control; 842 socklen_t controllen; 843 ssize_t len; 844 int error; 845 846 if ((so = getsonode(sock, &error, &fp)) == NULL) 847 return (set_errno(error)); 848 849 len = uiop->uio_resid; 850 uiop->uio_fmode = fp->f_flag; 851 uiop->uio_extflg = UIO_COPY_CACHED; 852 853 name = msg->msg_name; 854 namelen = msg->msg_namelen; 855 control = msg->msg_control; 856 controllen = msg->msg_controllen; 857 858 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 859 MSG_DONTWAIT | MSG_XPG4_2); 860 861 error = SOP_RECVMSG(so, msg, uiop); 862 if (error) { 863 releasef(sock); 864 return (set_errno(error)); 865 } 866 lwp_stat_update(LWP_STAT_MSGRCV, 1); 867 so_update_attrs(so, SOACC); 868 releasef(sock); 869 870 error = copyout_name(name, namelen, namelenp, 871 msg->msg_name, msg->msg_namelen); 872 if (error) 873 goto err; 874 875 if (flagsp != NULL) { 876 /* 877 * Clear internal flag. 878 */ 879 msg->msg_flags &= ~MSG_XPG4_2; 880 881 /* 882 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 883 * when controllen is zero and there is control data to 884 * copy out. 885 */ 886 if (controllen != 0 && 887 (msg->msg_controllen > controllen || control == NULL)) { 888 dprint(1, ("recvit: CTRUNC %d %d %p\n", 889 msg->msg_controllen, controllen, control)); 890 891 msg->msg_flags |= MSG_CTRUNC; 892 } 893 if (copyout(&msg->msg_flags, flagsp, 894 sizeof (msg->msg_flags))) { 895 error = EFAULT; 896 goto err; 897 } 898 } 899 /* 900 * Note: This MUST be done last. There can be no "goto err" after this 901 * point since it could make so_closefds run twice on some part 902 * of the file descriptor array. 903 */ 904 if (controllen != 0) { 905 if (!(flags & MSG_XPG4_2)) { 906 /* 907 * Good old msg_accrights can only return a multiple 908 * of 4 bytes. 909 */ 910 controllen &= ~((int)sizeof (uint32_t) - 1); 911 } 912 error = copyout_arg(control, controllen, controllenp, 913 msg->msg_control, msg->msg_controllen); 914 if (error) 915 goto err; 916 917 if (msg->msg_controllen > controllen || control == NULL) { 918 if (control == NULL) 919 controllen = 0; 920 so_closefds(msg->msg_control, msg->msg_controllen, 921 !(flags & MSG_XPG4_2), controllen); 922 } 923 } 924 if (msg->msg_namelen != 0) 925 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 926 if (msg->msg_controllen != 0) 927 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 928 return (len - uiop->uio_resid); 929 930 err: 931 /* 932 * If we fail and the control part contains file descriptors 933 * we have to close the fd's. 934 */ 935 if (msg->msg_controllen != 0) 936 so_closefds(msg->msg_control, msg->msg_controllen, 937 !(flags & MSG_XPG4_2), 0); 938 if (msg->msg_namelen != 0) 939 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 940 if (msg->msg_controllen != 0) 941 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 942 return (set_errno(error)); 943 } 944 945 /* 946 * Native system call 947 */ 948 ssize_t 949 recv(int sock, void *buffer, size_t len, int flags) 950 { 951 struct nmsghdr lmsg; 952 struct uio auio; 953 struct iovec aiov[1]; 954 955 dprint(1, ("recv(%d, %p, %ld, %d)\n", 956 sock, buffer, len, flags)); 957 958 if ((ssize_t)len < 0) { 959 return (set_errno(EINVAL)); 960 } 961 962 aiov[0].iov_base = buffer; 963 aiov[0].iov_len = len; 964 auio.uio_loffset = 0; 965 auio.uio_iov = aiov; 966 auio.uio_iovcnt = 1; 967 auio.uio_resid = len; 968 auio.uio_segflg = UIO_USERSPACE; 969 auio.uio_limit = 0; 970 971 lmsg.msg_namelen = 0; 972 lmsg.msg_controllen = 0; 973 lmsg.msg_flags = 0; 974 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 975 } 976 977 ssize_t 978 recvfrom(int sock, void *buffer, size_t len, int flags, 979 struct sockaddr *name, socklen_t *namelenp) 980 { 981 struct nmsghdr lmsg; 982 struct uio auio; 983 struct iovec aiov[1]; 984 985 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 986 sock, buffer, len, flags, name, namelenp)); 987 988 if ((ssize_t)len < 0) { 989 return (set_errno(EINVAL)); 990 } 991 992 aiov[0].iov_base = buffer; 993 aiov[0].iov_len = len; 994 auio.uio_loffset = 0; 995 auio.uio_iov = aiov; 996 auio.uio_iovcnt = 1; 997 auio.uio_resid = len; 998 auio.uio_segflg = UIO_USERSPACE; 999 auio.uio_limit = 0; 1000 1001 lmsg.msg_name = (char *)name; 1002 if (namelenp != NULL) { 1003 if (copyin(namelenp, &lmsg.msg_namelen, 1004 sizeof (lmsg.msg_namelen))) 1005 return (set_errno(EFAULT)); 1006 } else { 1007 lmsg.msg_namelen = 0; 1008 } 1009 lmsg.msg_controllen = 0; 1010 lmsg.msg_flags = 0; 1011 1012 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1013 } 1014 1015 /* 1016 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1017 * struct omsghdr or struct nmsghdr. 1018 */ 1019 ssize_t 1020 recvmsg(int sock, struct nmsghdr *msg, int flags) 1021 { 1022 STRUCT_DECL(nmsghdr, u_lmsg); 1023 STRUCT_HANDLE(nmsghdr, umsgptr); 1024 struct nmsghdr lmsg; 1025 struct uio auio; 1026 struct iovec aiov[MSG_MAXIOVLEN]; 1027 int iovcnt; 1028 ssize_t len; 1029 int i; 1030 int *flagsp; 1031 model_t model; 1032 1033 dprint(1, ("recvmsg(%d, %p, %d)\n", 1034 sock, msg, flags)); 1035 1036 model = get_udatamodel(); 1037 STRUCT_INIT(u_lmsg, model); 1038 STRUCT_SET_HANDLE(umsgptr, model, msg); 1039 1040 if (flags & MSG_XPG4_2) { 1041 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1042 return (set_errno(EFAULT)); 1043 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1044 } else { 1045 /* 1046 * Assumes that nmsghdr and omsghdr are identically shaped 1047 * except for the added msg_flags field. 1048 */ 1049 if (copyin(msg, STRUCT_BUF(u_lmsg), 1050 SIZEOF_STRUCT(omsghdr, model))) 1051 return (set_errno(EFAULT)); 1052 STRUCT_FSET(u_lmsg, msg_flags, 0); 1053 flagsp = NULL; 1054 } 1055 1056 /* 1057 * Code below us will kmem_alloc memory and hang it 1058 * off msg_control and msg_name fields. This forces 1059 * us to copy the structure to its native form. 1060 */ 1061 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1062 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1063 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1064 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1065 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1066 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1067 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1068 1069 iovcnt = lmsg.msg_iovlen; 1070 1071 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1072 return (set_errno(EMSGSIZE)); 1073 } 1074 1075 #ifdef _SYSCALL32_IMPL 1076 /* 1077 * 32-bit callers need to have their iovec expanded, while ensuring 1078 * that they can't move more than 2Gbytes of data in a single call. 1079 */ 1080 if (model == DATAMODEL_ILP32) { 1081 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1082 ssize32_t count32; 1083 1084 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1085 iovcnt * sizeof (struct iovec32))) 1086 return (set_errno(EFAULT)); 1087 1088 count32 = 0; 1089 for (i = 0; i < iovcnt; i++) { 1090 ssize32_t iovlen32; 1091 1092 iovlen32 = aiov32[i].iov_len; 1093 count32 += iovlen32; 1094 if (iovlen32 < 0 || count32 < 0) 1095 return (set_errno(EINVAL)); 1096 aiov[i].iov_len = iovlen32; 1097 aiov[i].iov_base = 1098 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1099 } 1100 } else 1101 #endif /* _SYSCALL32_IMPL */ 1102 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1103 return (set_errno(EFAULT)); 1104 } 1105 len = 0; 1106 for (i = 0; i < iovcnt; i++) { 1107 ssize_t iovlen = aiov[i].iov_len; 1108 len += iovlen; 1109 if (iovlen < 0 || len < 0) { 1110 return (set_errno(EINVAL)); 1111 } 1112 } 1113 auio.uio_loffset = 0; 1114 auio.uio_iov = aiov; 1115 auio.uio_iovcnt = iovcnt; 1116 auio.uio_resid = len; 1117 auio.uio_segflg = UIO_USERSPACE; 1118 auio.uio_limit = 0; 1119 1120 if (lmsg.msg_control != NULL && 1121 (do_useracc == 0 || 1122 useracc(lmsg.msg_control, lmsg.msg_controllen, 1123 B_WRITE) != 0)) { 1124 return (set_errno(EFAULT)); 1125 } 1126 1127 return (recvit(sock, &lmsg, &auio, flags, 1128 STRUCT_FADDR(umsgptr, msg_namelen), 1129 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1130 } 1131 1132 /* 1133 * Common send function. 1134 */ 1135 static ssize_t 1136 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1137 { 1138 struct sonode *so; 1139 file_t *fp; 1140 void *name; 1141 socklen_t namelen; 1142 void *control; 1143 socklen_t controllen; 1144 ssize_t len; 1145 int error; 1146 1147 if ((so = getsonode(sock, &error, &fp)) == NULL) 1148 return (set_errno(error)); 1149 1150 uiop->uio_fmode = fp->f_flag; 1151 1152 if (so->so_family == AF_UNIX) 1153 uiop->uio_extflg = UIO_COPY_CACHED; 1154 else 1155 uiop->uio_extflg = UIO_COPY_DEFAULT; 1156 1157 /* Allocate and copyin name and control */ 1158 name = msg->msg_name; 1159 namelen = msg->msg_namelen; 1160 if (name != NULL && namelen != 0) { 1161 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1162 name = copyin_name(so, 1163 (struct sockaddr *)name, 1164 &namelen, &error); 1165 if (name == NULL) 1166 goto done3; 1167 /* copyin_name null terminates addresses for AF_UNIX */ 1168 msg->msg_namelen = namelen; 1169 msg->msg_name = name; 1170 } else { 1171 msg->msg_name = name = NULL; 1172 msg->msg_namelen = namelen = 0; 1173 } 1174 1175 control = msg->msg_control; 1176 controllen = msg->msg_controllen; 1177 if ((control != NULL) && (controllen != 0)) { 1178 /* 1179 * Verify that the length is not excessive to prevent 1180 * an application from consuming all of kernel memory. 1181 */ 1182 if (controllen > SO_MAXARGSIZE) { 1183 error = EINVAL; 1184 goto done2; 1185 } 1186 control = kmem_alloc(controllen, KM_SLEEP); 1187 1188 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1189 if (copyin(msg->msg_control, control, controllen)) { 1190 error = EFAULT; 1191 goto done1; 1192 } 1193 msg->msg_control = control; 1194 } else { 1195 msg->msg_control = control = NULL; 1196 msg->msg_controllen = controllen = 0; 1197 } 1198 1199 len = uiop->uio_resid; 1200 msg->msg_flags = flags; 1201 1202 error = SOP_SENDMSG(so, msg, uiop); 1203 done1: 1204 if (control != NULL) 1205 kmem_free(control, controllen); 1206 done2: 1207 if (name != NULL) 1208 kmem_free(name, namelen); 1209 done3: 1210 if (error != 0) { 1211 releasef(sock); 1212 return (set_errno(error)); 1213 } 1214 lwp_stat_update(LWP_STAT_MSGSND, 1); 1215 so_update_attrs(so, SOMOD); 1216 releasef(sock); 1217 return (len - uiop->uio_resid); 1218 } 1219 1220 /* 1221 * Native system call 1222 */ 1223 ssize_t 1224 send(int sock, void *buffer, size_t len, int flags) 1225 { 1226 struct nmsghdr lmsg; 1227 struct uio auio; 1228 struct iovec aiov[1]; 1229 1230 dprint(1, ("send(%d, %p, %ld, %d)\n", 1231 sock, buffer, len, flags)); 1232 1233 if ((ssize_t)len < 0) { 1234 return (set_errno(EINVAL)); 1235 } 1236 1237 aiov[0].iov_base = buffer; 1238 aiov[0].iov_len = len; 1239 auio.uio_loffset = 0; 1240 auio.uio_iov = aiov; 1241 auio.uio_iovcnt = 1; 1242 auio.uio_resid = len; 1243 auio.uio_segflg = UIO_USERSPACE; 1244 auio.uio_limit = 0; 1245 1246 lmsg.msg_name = NULL; 1247 lmsg.msg_control = NULL; 1248 if (!(flags & MSG_XPG4_2)) { 1249 /* 1250 * In order to be compatible with the libsocket/sockmod 1251 * implementation we set EOR for all send* calls. 1252 */ 1253 flags |= MSG_EOR; 1254 } 1255 return (sendit(sock, &lmsg, &auio, flags)); 1256 } 1257 1258 /* 1259 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1260 * struct omsghdr or struct nmsghdr. 1261 */ 1262 ssize_t 1263 sendmsg(int sock, struct nmsghdr *msg, int flags) 1264 { 1265 struct nmsghdr lmsg; 1266 STRUCT_DECL(nmsghdr, u_lmsg); 1267 struct uio auio; 1268 struct iovec aiov[MSG_MAXIOVLEN]; 1269 int iovcnt; 1270 ssize_t len; 1271 int i; 1272 model_t model; 1273 1274 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, msg, flags)); 1275 1276 model = get_udatamodel(); 1277 STRUCT_INIT(u_lmsg, model); 1278 1279 if (flags & MSG_XPG4_2) { 1280 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1281 STRUCT_SIZE(u_lmsg))) 1282 return (set_errno(EFAULT)); 1283 } else { 1284 /* 1285 * Assumes that nmsghdr and omsghdr are identically shaped 1286 * except for the added msg_flags field. 1287 */ 1288 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1289 SIZEOF_STRUCT(omsghdr, model))) 1290 return (set_errno(EFAULT)); 1291 /* 1292 * In order to be compatible with the libsocket/sockmod 1293 * implementation we set EOR for all send* calls. 1294 */ 1295 flags |= MSG_EOR; 1296 } 1297 1298 /* 1299 * Code below us will kmem_alloc memory and hang it 1300 * off msg_control and msg_name fields. This forces 1301 * us to copy the structure to its native form. 1302 */ 1303 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1304 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1305 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1306 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1307 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1308 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1309 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1310 1311 iovcnt = lmsg.msg_iovlen; 1312 1313 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1314 /* 1315 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1316 * be compatible with SunOS 4.X and 4.4BSD. 1317 */ 1318 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1319 return (set_errno(EMSGSIZE)); 1320 } 1321 1322 #ifdef _SYSCALL32_IMPL 1323 /* 1324 * 32-bit callers need to have their iovec expanded, while ensuring 1325 * that they can't move more than 2Gbytes of data in a single call. 1326 */ 1327 if (model == DATAMODEL_ILP32) { 1328 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1329 ssize32_t count32; 1330 1331 if (iovcnt != 0 && 1332 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1333 iovcnt * sizeof (struct iovec32))) 1334 return (set_errno(EFAULT)); 1335 1336 count32 = 0; 1337 for (i = 0; i < iovcnt; i++) { 1338 ssize32_t iovlen32; 1339 1340 iovlen32 = aiov32[i].iov_len; 1341 count32 += iovlen32; 1342 if (iovlen32 < 0 || count32 < 0) 1343 return (set_errno(EINVAL)); 1344 aiov[i].iov_len = iovlen32; 1345 aiov[i].iov_base = 1346 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1347 } 1348 } else 1349 #endif /* _SYSCALL32_IMPL */ 1350 if (iovcnt != 0 && 1351 copyin(lmsg.msg_iov, aiov, 1352 (unsigned)iovcnt * sizeof (struct iovec))) { 1353 return (set_errno(EFAULT)); 1354 } 1355 len = 0; 1356 for (i = 0; i < iovcnt; i++) { 1357 ssize_t iovlen = aiov[i].iov_len; 1358 len += iovlen; 1359 if (iovlen < 0 || len < 0) { 1360 return (set_errno(EINVAL)); 1361 } 1362 } 1363 auio.uio_loffset = 0; 1364 auio.uio_iov = aiov; 1365 auio.uio_iovcnt = iovcnt; 1366 auio.uio_resid = len; 1367 auio.uio_segflg = UIO_USERSPACE; 1368 auio.uio_limit = 0; 1369 1370 return (sendit(sock, &lmsg, &auio, flags)); 1371 } 1372 1373 ssize_t 1374 sendto(int sock, void *buffer, size_t len, int flags, 1375 struct sockaddr *name, socklen_t namelen) 1376 { 1377 struct nmsghdr lmsg; 1378 struct uio auio; 1379 struct iovec aiov[1]; 1380 1381 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1382 sock, buffer, len, flags, name, namelen)); 1383 1384 if ((ssize_t)len < 0) { 1385 return (set_errno(EINVAL)); 1386 } 1387 1388 aiov[0].iov_base = buffer; 1389 aiov[0].iov_len = len; 1390 auio.uio_loffset = 0; 1391 auio.uio_iov = aiov; 1392 auio.uio_iovcnt = 1; 1393 auio.uio_resid = len; 1394 auio.uio_segflg = UIO_USERSPACE; 1395 auio.uio_limit = 0; 1396 1397 lmsg.msg_name = (char *)name; 1398 lmsg.msg_namelen = namelen; 1399 lmsg.msg_control = NULL; 1400 if (!(flags & MSG_XPG4_2)) { 1401 /* 1402 * In order to be compatible with the libsocket/sockmod 1403 * implementation we set EOR for all send* calls. 1404 */ 1405 flags |= MSG_EOR; 1406 } 1407 return (sendit(sock, &lmsg, &auio, flags)); 1408 } 1409 1410 /*ARGSUSED3*/ 1411 int 1412 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1413 { 1414 struct sonode *so; 1415 int error; 1416 socklen_t namelen; 1417 union { 1418 struct sockaddr_in sin; 1419 struct sockaddr_in6 sin6; 1420 } sin; /* Temporary buffer, common case */ 1421 void *addr; /* Temporary buffer, uncommon case */ 1422 socklen_t addrlen, size; 1423 1424 dprint(1, ("getpeername(%d, %p, %p)\n", 1425 sock, name, namelenp)); 1426 1427 if ((so = getsonode(sock, &error, NULL)) == NULL) 1428 goto bad; 1429 1430 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1431 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1432 (name == NULL && namelen != 0)) { 1433 error = EFAULT; 1434 goto rel_out; 1435 } 1436 /* 1437 * If a connect or accept has been done, unless we're an Xnet socket, 1438 * the remote address has already been updated in so_faddr_sa. 1439 */ 1440 if (so->so_version != SOV_SOCKSTREAM && so->so_version != SOV_SOCKBSD || 1441 !(so->so_state & SS_FADDR_VALID)) { 1442 if ((error = SOP_GETPEERNAME(so)) != 0) 1443 goto rel_out; 1444 } 1445 1446 if (so->so_faddr_maxlen <= sizeof (sin)) { 1447 size = 0; 1448 addr = &sin; 1449 } else { 1450 /* 1451 * Allocate temporary to avoid holding so_lock across 1452 * copyout 1453 */ 1454 size = so->so_faddr_maxlen; 1455 addr = kmem_alloc(size, KM_SLEEP); 1456 } 1457 /* Prevent so_faddr_sa/len from changing while accessed */ 1458 mutex_enter(&so->so_lock); 1459 if (!(so->so_state & SS_ISCONNECTED)) { 1460 mutex_exit(&so->so_lock); 1461 error = ENOTCONN; 1462 goto free_out; 1463 } 1464 addrlen = so->so_faddr_len; 1465 bcopy(so->so_faddr_sa, addr, addrlen); 1466 mutex_exit(&so->so_lock); 1467 1468 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1469 error = copyout_name(name, namelen, namelenp, addr, 1470 (so->so_state & SS_FADDR_NOXLATE) ? 0 : addrlen); 1471 free_out: 1472 if (size != 0) 1473 kmem_free(addr, size); 1474 rel_out: 1475 releasef(sock); 1476 bad: return (error != 0 ? set_errno(error) : 0); 1477 } 1478 1479 /*ARGSUSED3*/ 1480 int 1481 getsockname(int sock, struct sockaddr *name, 1482 socklen_t *namelenp, int version) 1483 { 1484 struct sonode *so; 1485 int error; 1486 socklen_t namelen; 1487 union { 1488 struct sockaddr_in sin; 1489 struct sockaddr_in6 sin6; 1490 } sin; /* Temporary buffer, common case */ 1491 void *addr; /* Temporary buffer, uncommon case */ 1492 socklen_t addrlen, size; 1493 1494 dprint(1, ("getsockname(%d, %p, %p)\n", 1495 sock, name, namelenp)); 1496 1497 if ((so = getsonode(sock, &error, NULL)) == NULL) 1498 goto bad; 1499 1500 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1501 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1502 (name == NULL && namelen != 0)) { 1503 error = EFAULT; 1504 goto rel_out; 1505 } 1506 1507 /* 1508 * If a bind or accept has been done, unless we're an Xnet endpoint, 1509 * the local address has already been updated in so_laddr_sa. 1510 */ 1511 if ((so->so_version != SOV_SOCKSTREAM && 1512 so->so_version != SOV_SOCKBSD) || 1513 !(so->so_state & SS_LADDR_VALID)) { 1514 if ((error = SOP_GETSOCKNAME(so)) != 0) 1515 goto rel_out; 1516 } 1517 1518 if (so->so_laddr_maxlen <= sizeof (sin)) { 1519 size = 0; 1520 addr = &sin; 1521 } else { 1522 /* 1523 * Allocate temporary to avoid holding so_lock across 1524 * copyout 1525 */ 1526 size = so->so_laddr_maxlen; 1527 addr = kmem_alloc(size, KM_SLEEP); 1528 } 1529 /* Prevent so_laddr_sa/len from changing while accessed */ 1530 mutex_enter(&so->so_lock); 1531 addrlen = so->so_laddr_len; 1532 bcopy(so->so_laddr_sa, addr, addrlen); 1533 mutex_exit(&so->so_lock); 1534 1535 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1536 error = copyout_name(name, namelen, namelenp, 1537 addr, addrlen); 1538 if (size != 0) 1539 kmem_free(addr, size); 1540 rel_out: 1541 releasef(sock); 1542 bad: return (error != 0 ? set_errno(error) : 0); 1543 } 1544 1545 /*ARGSUSED5*/ 1546 int 1547 getsockopt(int sock, 1548 int level, 1549 int option_name, 1550 void *option_value, 1551 socklen_t *option_lenp, 1552 int version) 1553 { 1554 struct sonode *so; 1555 socklen_t optlen, optlen_res; 1556 void *optval; 1557 int error; 1558 1559 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1560 sock, level, option_name, option_value, option_lenp)); 1561 1562 if ((so = getsonode(sock, &error, NULL)) == NULL) 1563 return (set_errno(error)); 1564 1565 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1566 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1567 releasef(sock); 1568 return (set_errno(EFAULT)); 1569 } 1570 /* 1571 * Verify that the length is not excessive to prevent 1572 * an application from consuming all of kernel memory. 1573 */ 1574 if (optlen > SO_MAXARGSIZE) { 1575 error = EINVAL; 1576 releasef(sock); 1577 return (set_errno(error)); 1578 } 1579 optval = kmem_alloc(optlen, KM_SLEEP); 1580 optlen_res = optlen; 1581 error = SOP_GETSOCKOPT(so, level, option_name, optval, 1582 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2); 1583 releasef(sock); 1584 if (error) { 1585 kmem_free(optval, optlen); 1586 return (set_errno(error)); 1587 } 1588 error = copyout_arg(option_value, optlen, option_lenp, 1589 optval, optlen_res); 1590 kmem_free(optval, optlen); 1591 if (error) 1592 return (set_errno(error)); 1593 return (0); 1594 } 1595 1596 /*ARGSUSED5*/ 1597 int 1598 setsockopt(int sock, 1599 int level, 1600 int option_name, 1601 void *option_value, 1602 socklen_t option_len, 1603 int version) 1604 { 1605 struct sonode *so; 1606 intptr_t buffer[2]; 1607 void *optval = NULL; 1608 int error; 1609 1610 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1611 sock, level, option_name, option_value, option_len)); 1612 1613 if ((so = getsonode(sock, &error, NULL)) == NULL) 1614 return (set_errno(error)); 1615 1616 if (option_value != NULL) { 1617 if (option_len != 0) { 1618 /* 1619 * Verify that the length is not excessive to prevent 1620 * an application from consuming all of kernel memory. 1621 */ 1622 if (option_len > SO_MAXARGSIZE) { 1623 error = EINVAL; 1624 goto done2; 1625 } 1626 optval = option_len <= sizeof (buffer) ? 1627 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1628 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1629 if (copyin(option_value, optval, (size_t)option_len)) { 1630 error = EFAULT; 1631 goto done1; 1632 } 1633 } 1634 } else 1635 option_len = 0; 1636 1637 error = SOP_SETSOCKOPT(so, level, option_name, optval, 1638 (t_uscalar_t)option_len); 1639 done1: 1640 if (optval != buffer) 1641 kmem_free(optval, (size_t)option_len); 1642 done2: 1643 releasef(sock); 1644 if (error) 1645 return (set_errno(error)); 1646 return (0); 1647 } 1648 1649 /* 1650 * Add config info when devpath is non-NULL; delete info when devpath is NULL. 1651 * devpath is a user address. 1652 */ 1653 int 1654 sockconfig(int domain, int type, int protocol, char *devpath) 1655 { 1656 char *kdevpath; /* Copied in devpath string */ 1657 size_t kdevpathlen; 1658 int error = 0; 1659 1660 dprint(1, ("sockconfig(%d, %d, %d, %p)\n", 1661 domain, type, protocol, devpath)); 1662 1663 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1664 return (set_errno(EPERM)); 1665 1666 if (devpath == NULL) { 1667 /* Deleting an entry */ 1668 kdevpath = NULL; 1669 kdevpathlen = 0; 1670 } else { 1671 /* 1672 * Adding an entry. 1673 * Copyin the devpath. 1674 * This also makes it possible to check for too long pathnames. 1675 * Compress the space needed for the devpath before passing it 1676 * to soconfig - soconfig will store the string until 1677 * the configuration is removed. 1678 */ 1679 char *buf; 1680 1681 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1682 if ((error = copyinstr(devpath, buf, MAXPATHLEN, 1683 &kdevpathlen)) != 0) { 1684 kmem_free(buf, MAXPATHLEN); 1685 goto done; 1686 } 1687 1688 kdevpath = kmem_alloc(kdevpathlen, KM_SLEEP); 1689 bcopy(buf, kdevpath, kdevpathlen); 1690 kdevpath[kdevpathlen - 1] = '\0'; 1691 1692 kmem_free(buf, MAXPATHLEN); 1693 } 1694 error = soconfig(domain, type, protocol, kdevpath, (int)kdevpathlen); 1695 done: 1696 if (error) { 1697 eprintline(error); 1698 return (set_errno(error)); 1699 } 1700 return (0); 1701 } 1702 1703 1704 /* 1705 * Sendfile is implemented through two schemes, direct I/O or by 1706 * caching in the filesystem page cache. We cache the input file by 1707 * default and use direct I/O only if sendfile_max_size is set 1708 * appropriately as explained below. Note that this logic is consistent 1709 * with other filesystems where caching is turned on by default 1710 * unless explicitly turned off by using the DIRECTIO ioctl. 1711 * 1712 * We choose a slightly different scheme here. One can turn off 1713 * caching by setting sendfile_max_size to 0. One can also enable 1714 * caching of files <= sendfile_max_size by setting sendfile_max_size 1715 * to an appropriate value. By default sendfile_max_size is set to the 1716 * maximum value so that all files are cached. In future, we may provide 1717 * better interfaces for caching the file. 1718 * 1719 * Sendfile through Direct I/O (Zero copy) 1720 * -------------------------------------- 1721 * 1722 * As disks are normally slower than the network, we can't have a 1723 * single thread that reads the disk and writes to the network. We 1724 * need to have parallelism. This is done by having the sendfile 1725 * thread create another thread that reads from the filesystem 1726 * and queues it for network processing. In this scheme, the data 1727 * is never copied anywhere i.e it is zero copy unlike the other 1728 * scheme. 1729 * 1730 * We have a sendfile queue (snfq) where each sendfile 1731 * request (snf_req_t) is queued for processing by a thread. Number 1732 * of threads is dynamically allocated and they exit if they are idling 1733 * beyond a specified amount of time. When each request (snf_req_t) is 1734 * processed by a thread, it produces a number of mblk_t structures to 1735 * be consumed by the sendfile thread. snf_deque and snf_enque are 1736 * used for consuming and producing mblks. Size of the filesystem 1737 * read is determined by the tuneable (sendfile_read_size). A single 1738 * mblk holds sendfile_read_size worth of data (except the last 1739 * read of the file) which is sent down as a whole to the network. 1740 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1741 * value for the UFS filesystem backed by a striped storage array. 1742 * 1743 * Synchronisation between read (producer) and write (consumer) threads. 1744 * -------------------------------------------------------------------- 1745 * 1746 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1747 * adding and deleting items in this list. Error can happen anytime 1748 * during read or write. There could be unprocessed mblks in the 1749 * sr_ib_XXX list when a read or write error occurs. Whenever error 1750 * is encountered, we need two things to happen : 1751 * 1752 * a) One of the threads need to clean the mblks. 1753 * b) When one thread encounters an error, the other should stop. 1754 * 1755 * For (a), we don't want to penalise the reader thread as it could do 1756 * some useful work processing other requests. For (b), the error can 1757 * be detected by examining sr_read_error or sr_write_error. 1758 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1759 * writer encounters error, we need to report the write error back to 1760 * the application as that's what would have happened if the operations 1761 * were done sequentially. With this in mind, following should work : 1762 * 1763 * - Check for errors before read or write. 1764 * - If the reader encounters error, set the error in sr_read_error. 1765 * Check sr_write_error, if it is set, send cv_signal as it is 1766 * waiting for reader to complete. If it is not set, the writer 1767 * is either running sinking data to the network or blocked 1768 * because of flow control. For handling the latter case, we 1769 * always send a signal. In any case, it will examine sr_read_error 1770 * and return. sr_read_error is marked with SR_READ_DONE to tell 1771 * the writer that the reader is done in all the cases. 1772 * - If the writer encounters error, set the error in sr_write_error. 1773 * The reader thread is either blocked because of flow control or 1774 * running reading data from the disk. For the former, we need to 1775 * wakeup the thread. Again to keep it simple, we always wake up 1776 * the reader thread. Then, wait for the read thread to complete 1777 * if it is not done yet. Cleanup and return. 1778 * 1779 * High and low water marks for the read thread. 1780 * -------------------------------------------- 1781 * 1782 * If sendfile() is used to send data over a slow network, we need to 1783 * make sure that the read thread does not produce data at a faster 1784 * rate than the network. This can happen if the disk is faster than 1785 * the network. In such a case, we don't want to build a very large queue. 1786 * But we would still like to get all of the network throughput possible. 1787 * This implies that network should never block waiting for data. 1788 * As there are lot of disk throughput/network throughput combinations 1789 * possible, it is difficult to come up with an accurate number. 1790 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1791 * latency of 3ms for reading a disk block. Thus, the total latency to 1792 * initiate a new read, transfer data from the disk and queue for 1793 * transmission would take about a max of 25ms. Todays max transfer rate 1794 * for network is 100MB/sec. If the thread is blocked because of flow 1795 * control, it would take 25ms to get new data ready for transmission. 1796 * We have to make sure that network is not idling, while we are initiating 1797 * new transfers. So, at 100MB/sec, to keep network busy we would need 1798 * 2.5MB of data. Roundig off, we keep the low water mark to be 3MB of data. 1799 * We need to pick a high water mark so that the woken up thread would 1800 * do considerable work before blocking again to prevent thrashing. Currently, 1801 * we pick this to be 10 times that of the low water mark. 1802 * 1803 * Sendfile with segmap caching (One copy from page cache to mblks). 1804 * ---------------------------------------------------------------- 1805 * 1806 * We use the segmap cache for caching the file, if the size of file 1807 * is <= sendfile_max_size. In this case we don't use threads as VM 1808 * is reasonably fast enough to keep up with the network. If the underlying 1809 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1810 * of data into segmap space, and use the virtual address from segmap 1811 * directly through desballoc() to avoid copy. Once the transport is done 1812 * with the data, the mapping will be released through segmap_release() 1813 * called by the call-back routine. 1814 * 1815 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1816 * to copy the data from the filesystem into our temporary network buffer. 1817 * 1818 * To disable caching, set sendfile_max_size to 0. 1819 */ 1820 1821 uint_t sendfile_read_size = 1024 * 1024; 1822 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 1823 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 1824 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 1825 struct sendfile_stats sf_stats; 1826 struct sendfile_queue *snfq; 1827 clock_t snfq_timeout; 1828 off64_t sendfile_max_size; 1829 1830 static void snf_enque(snf_req_t *, mblk_t *); 1831 static mblk_t *snf_deque(snf_req_t *); 1832 1833 void 1834 sendfile_init(void) 1835 { 1836 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 1837 1838 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 1839 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 1840 snfq->snfq_max_threads = max_ncpus; 1841 snfq_timeout = SNFQ_TIMEOUT; 1842 /* Cache all files by default. */ 1843 sendfile_max_size = MAXOFFSET_T; 1844 } 1845 1846 /* 1847 * Queues a mblk_t for network processing. 1848 */ 1849 static void 1850 snf_enque(snf_req_t *sr, mblk_t *mp) 1851 { 1852 mp->b_next = NULL; 1853 mutex_enter(&sr->sr_lock); 1854 if (sr->sr_mp_head == NULL) { 1855 sr->sr_mp_head = sr->sr_mp_tail = mp; 1856 cv_signal(&sr->sr_cv); 1857 } else { 1858 sr->sr_mp_tail->b_next = mp; 1859 sr->sr_mp_tail = mp; 1860 } 1861 sr->sr_qlen += MBLKL(mp); 1862 while ((sr->sr_qlen > sr->sr_hiwat) && 1863 (sr->sr_write_error == 0)) { 1864 sf_stats.ss_full_waits++; 1865 cv_wait(&sr->sr_cv, &sr->sr_lock); 1866 } 1867 mutex_exit(&sr->sr_lock); 1868 } 1869 1870 /* 1871 * De-queues a mblk_t for network processing. 1872 */ 1873 static mblk_t * 1874 snf_deque(snf_req_t *sr) 1875 { 1876 mblk_t *mp; 1877 1878 mutex_enter(&sr->sr_lock); 1879 /* 1880 * If we have encountered an error on read or read is 1881 * completed and no more mblks, return NULL. 1882 * We need to check for NULL sr_mp_head also as 1883 * the reads could have completed and there is 1884 * nothing more to come. 1885 */ 1886 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 1887 ((sr->sr_read_error & SR_READ_DONE) && 1888 sr->sr_mp_head == NULL)) { 1889 mutex_exit(&sr->sr_lock); 1890 return (NULL); 1891 } 1892 /* 1893 * To start with neither SR_READ_DONE is marked nor 1894 * the error is set. When we wake up from cv_wait, 1895 * following are the possibilities : 1896 * 1897 * a) sr_read_error is zero and mblks are queued. 1898 * b) sr_read_error is set to SR_READ_DONE 1899 * and mblks are queued. 1900 * c) sr_read_error is set to SR_READ_DONE 1901 * and no mblks. 1902 * d) sr_read_error is set to some error other 1903 * than SR_READ_DONE. 1904 */ 1905 1906 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 1907 sf_stats.ss_empty_waits++; 1908 cv_wait(&sr->sr_cv, &sr->sr_lock); 1909 } 1910 /* Handle (a) and (b) first - the normal case. */ 1911 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 1912 (sr->sr_mp_head != NULL)) { 1913 mp = sr->sr_mp_head; 1914 sr->sr_mp_head = mp->b_next; 1915 sr->sr_qlen -= MBLKL(mp); 1916 if (sr->sr_qlen < sr->sr_lowat) 1917 cv_signal(&sr->sr_cv); 1918 mutex_exit(&sr->sr_lock); 1919 mp->b_next = NULL; 1920 return (mp); 1921 } 1922 /* Handle (c) and (d). */ 1923 mutex_exit(&sr->sr_lock); 1924 return (NULL); 1925 } 1926 1927 /* 1928 * Reads data from the filesystem and queues it for network processing. 1929 */ 1930 void 1931 snf_async_read(snf_req_t *sr) 1932 { 1933 size_t iosize; 1934 u_offset_t fileoff; 1935 u_offset_t size; 1936 int ret_size; 1937 int error; 1938 file_t *fp; 1939 mblk_t *mp; 1940 1941 fp = sr->sr_fp; 1942 size = sr->sr_file_size; 1943 fileoff = sr->sr_file_off; 1944 1945 /* 1946 * Ignore the error for filesystems that doesn't support DIRECTIO. 1947 */ 1948 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 1949 kcred, NULL); 1950 1951 while ((size != 0) && (sr->sr_write_error == 0)) { 1952 1953 iosize = (int)MIN(sr->sr_maxpsz, size); 1954 1955 if ((mp = allocb(iosize, BPRI_MED)) == NULL) { 1956 error = EAGAIN; 1957 break; 1958 } 1959 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 1960 1961 /* Error or Reached EOF ? */ 1962 if ((error != 0) || (ret_size == 0)) { 1963 freeb(mp); 1964 break; 1965 } 1966 mp->b_wptr = mp->b_rptr + ret_size; 1967 1968 snf_enque(sr, mp); 1969 size -= ret_size; 1970 fileoff += ret_size; 1971 } 1972 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 1973 kcred, NULL); 1974 mutex_enter(&sr->sr_lock); 1975 sr->sr_read_error = error; 1976 sr->sr_read_error |= SR_READ_DONE; 1977 cv_signal(&sr->sr_cv); 1978 mutex_exit(&sr->sr_lock); 1979 } 1980 1981 void 1982 snf_async_thread(void) 1983 { 1984 snf_req_t *sr; 1985 callb_cpr_t cprinfo; 1986 clock_t time_left = 1; 1987 clock_t now; 1988 1989 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 1990 1991 mutex_enter(&snfq->snfq_lock); 1992 for (;;) { 1993 /* 1994 * If we didn't find a entry, then block until woken up 1995 * again and then look through the queues again. 1996 */ 1997 while ((sr = snfq->snfq_req_head) == NULL) { 1998 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1999 if (time_left <= 0) { 2000 snfq->snfq_svc_threads--; 2001 CALLB_CPR_EXIT(&cprinfo); 2002 thread_exit(); 2003 /* NOTREACHED */ 2004 } 2005 snfq->snfq_idle_cnt++; 2006 2007 time_to_wait(&now, snfq_timeout); 2008 time_left = cv_timedwait(&snfq->snfq_cv, 2009 &snfq->snfq_lock, now); 2010 snfq->snfq_idle_cnt--; 2011 2012 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2013 } 2014 snfq->snfq_req_head = sr->sr_next; 2015 snfq->snfq_req_cnt--; 2016 mutex_exit(&snfq->snfq_lock); 2017 snf_async_read(sr); 2018 mutex_enter(&snfq->snfq_lock); 2019 } 2020 } 2021 2022 2023 snf_req_t * 2024 create_thread(int operation, struct vnode *vp, file_t *fp, 2025 u_offset_t fileoff, u_offset_t size) 2026 { 2027 snf_req_t *sr; 2028 stdata_t *stp; 2029 2030 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2031 2032 sr->sr_vp = vp; 2033 sr->sr_fp = fp; 2034 stp = vp->v_stream; 2035 2036 /* 2037 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2038 * stream might be closed before thread returns from snf_async_read. 2039 */ 2040 if (stp->sd_qn_maxpsz > 0) { 2041 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2042 } else { 2043 sr->sr_maxpsz = MAXBSIZE; 2044 } 2045 2046 sr->sr_operation = operation; 2047 sr->sr_file_off = fileoff; 2048 sr->sr_file_size = size; 2049 sr->sr_hiwat = sendfile_req_hiwat; 2050 sr->sr_lowat = sendfile_req_lowat; 2051 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2052 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2053 /* 2054 * See whether we need another thread for servicing this 2055 * request. If there are already enough requests queued 2056 * for the threads, create one if not exceeding 2057 * snfq_max_threads. 2058 */ 2059 mutex_enter(&snfq->snfq_lock); 2060 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2061 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2062 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2063 TS_RUN, minclsyspri); 2064 snfq->snfq_svc_threads++; 2065 } 2066 if (snfq->snfq_req_head == NULL) { 2067 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2068 cv_signal(&snfq->snfq_cv); 2069 } else { 2070 snfq->snfq_req_tail->sr_next = sr; 2071 snfq->snfq_req_tail = sr; 2072 } 2073 snfq->snfq_req_cnt++; 2074 mutex_exit(&snfq->snfq_lock); 2075 return (sr); 2076 } 2077 2078 int 2079 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2080 ssize_t *count) 2081 { 2082 snf_req_t *sr; 2083 mblk_t *mp; 2084 int iosize; 2085 int error = 0; 2086 short fflag; 2087 struct vnode *vp; 2088 int ksize; 2089 2090 ksize = 0; 2091 *count = 0; 2092 2093 vp = fp->f_vnode; 2094 fflag = fp->f_flag; 2095 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2096 return (EAGAIN); 2097 2098 /* 2099 * We check for read error in snf_deque. It has to check 2100 * for successful READ_DONE and return NULL, and we might 2101 * as well make an additional check there. 2102 */ 2103 while ((mp = snf_deque(sr)) != NULL) { 2104 2105 if (ISSIG(curthread, JUSTLOOKING)) { 2106 freeb(mp); 2107 error = EINTR; 2108 break; 2109 } 2110 iosize = MBLKL(mp); 2111 2112 if ((error = kstrwritemp(vp, mp, fflag)) != 0) { 2113 freeb(mp); 2114 break; 2115 } 2116 ksize += iosize; 2117 } 2118 *count = ksize; 2119 2120 mutex_enter(&sr->sr_lock); 2121 sr->sr_write_error = error; 2122 /* Look at the big comments on why we cv_signal here. */ 2123 cv_signal(&sr->sr_cv); 2124 2125 /* Wait for the reader to complete always. */ 2126 while (!(sr->sr_read_error & SR_READ_DONE)) { 2127 cv_wait(&sr->sr_cv, &sr->sr_lock); 2128 } 2129 /* If there is no write error, check for read error. */ 2130 if (error == 0) 2131 error = (sr->sr_read_error & ~SR_READ_DONE); 2132 2133 if (error != 0) { 2134 mblk_t *next_mp; 2135 2136 mp = sr->sr_mp_head; 2137 while (mp != NULL) { 2138 next_mp = mp->b_next; 2139 mp->b_next = NULL; 2140 freeb(mp); 2141 mp = next_mp; 2142 } 2143 } 2144 mutex_exit(&sr->sr_lock); 2145 kmem_free(sr, sizeof (snf_req_t)); 2146 return (error); 2147 } 2148 2149 typedef struct { 2150 frtn_t snfi_frtn; 2151 caddr_t snfi_base; 2152 uint_t snfi_mapoff; 2153 size_t snfi_len; 2154 vnode_t *snfi_vp; 2155 } snf_smap_desbinfo; 2156 2157 /* 2158 * The callback function when the last ref of the mblk is dropped, 2159 * normally occurs when TCP receives the ack. But it can be the driver 2160 * too due to lazy reclaim. 2161 */ 2162 void 2163 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2164 { 2165 if (!segmap_kpm) { 2166 /* 2167 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2168 * segmap_kpm as long as the latter never falls back to 2169 * "use_segmap_range". (See segmap_getmapflt().) 2170 * 2171 * Using S_OTHER saves an redundant hat_setref() in 2172 * segmap_unlock() 2173 */ 2174 (void) segmap_fault(kas.a_hat, segkmap, 2175 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2176 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2177 F_SOFTUNLOCK, S_OTHER); 2178 } 2179 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2180 VN_RELE(snfi->snfi_vp); 2181 kmem_free(snfi, sizeof (*snfi)); 2182 } 2183 2184 /* 2185 * Use segmap instead of bcopy to send down a chain of desballoca'ed, mblks. 2186 * Each mblk contains a segmap slot of no more than MAXBSIZE. The total 2187 * length of a chain is no more than sd_qn_maxpsz. 2188 * 2189 * At the end of the whole sendfile() operation, we wait till the data from 2190 * the last mblk is ack'ed by the transport before returning so that the 2191 * caller of sendfile() can safely modify the file content. 2192 */ 2193 int 2194 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2195 uint_t maxpsz, ssize_t *count, boolean_t nowait) 2196 { 2197 caddr_t base; 2198 int mapoff; 2199 vnode_t *vp; 2200 mblk_t *mp, *mp1; 2201 int iosize, iosize1; 2202 int error; 2203 short fflag; 2204 int ksize; 2205 snf_smap_desbinfo *snfi; 2206 struct vattr va; 2207 boolean_t dowait = B_FALSE; 2208 2209 vp = fp->f_vnode; 2210 fflag = fp->f_flag; 2211 ksize = 0; 2212 for (;;) { 2213 if (ISSIG(curthread, JUSTLOOKING)) { 2214 error = EINTR; 2215 break; 2216 } 2217 iosize = 0; 2218 mp = NULL; 2219 do { 2220 mapoff = fileoff & MAXBOFFSET; 2221 iosize1 = MAXBSIZE - mapoff; 2222 if (iosize1 > size) 2223 iosize1 = size; 2224 /* 2225 * we don't forcefault because we'll call 2226 * segmap_fault(F_SOFTLOCK) next. 2227 * 2228 * S_READ will get the ref bit set (by either 2229 * segmap_getmapflt() or segmap_fault()) and page 2230 * shared locked. 2231 */ 2232 base = segmap_getmapflt(segkmap, fvp, fileoff, iosize1, 2233 segmap_kpm ? SM_FAULT : 0, S_READ); 2234 2235 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2236 snfi->snfi_len = (size_t)roundup(mapoff+iosize1, 2237 PAGESIZE)- (mapoff & PAGEMASK); 2238 /* 2239 * We must call segmap_fault() even for segmap_kpm 2240 * because that's how error gets returned. 2241 * (segmap_getmapflt() never fails but segmap_fault() 2242 * does.) 2243 */ 2244 if (segmap_fault(kas.a_hat, segkmap, 2245 (caddr_t)(uintptr_t)(((uintptr_t)base + mapoff) & 2246 PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2247 S_READ) != 0) { 2248 (void) segmap_release(segkmap, base, 0); 2249 kmem_free(snfi, sizeof (*snfi)); 2250 freemsg(mp); 2251 error = EIO; 2252 goto out; 2253 } 2254 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2255 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2256 snfi->snfi_base = base; 2257 snfi->snfi_mapoff = mapoff; 2258 mp1 = esballoca((uchar_t *)base + mapoff, 2259 iosize1, BPRI_HI, &snfi->snfi_frtn); 2260 2261 if (mp1 == NULL) { 2262 (void) segmap_fault(kas.a_hat, segkmap, 2263 (caddr_t)(uintptr_t)(((uintptr_t)base + 2264 mapoff) & PAGEMASK), snfi->snfi_len, 2265 F_SOFTUNLOCK, S_OTHER); 2266 (void) segmap_release(segkmap, base, 0); 2267 kmem_free(snfi, sizeof (*snfi)); 2268 freemsg(mp); 2269 error = EAGAIN; 2270 goto out; 2271 } 2272 VN_HOLD(fvp); 2273 snfi->snfi_vp = fvp; 2274 mp1->b_wptr += iosize1; 2275 2276 /* Mark this dblk with the zero-copy flag */ 2277 mp1->b_datap->db_struioflag |= STRUIO_ZC; 2278 if (mp == NULL) 2279 mp = mp1; 2280 else 2281 linkb(mp, mp1); 2282 iosize += iosize1; 2283 fileoff += iosize1; 2284 size -= iosize1; 2285 } while (iosize < maxpsz && size != 0); 2286 2287 if (size == 0 && !nowait) { 2288 ASSERT(!dowait); 2289 dowait = B_TRUE; 2290 mp1->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2291 } 2292 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2293 if ((error = kstrwritemp(vp, mp, fflag)) != 0) { 2294 *count = ksize; 2295 freemsg(mp); 2296 return (error); 2297 } 2298 ksize += iosize; 2299 if (size == 0) 2300 goto done; 2301 2302 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2303 va.va_mask = AT_SIZE; 2304 error = VOP_GETATTR(fvp, &va, 0, kcred); 2305 if (error) 2306 break; 2307 /* Read as much as possible. */ 2308 if (fileoff >= va.va_size) 2309 break; 2310 if (size + fileoff > va.va_size) 2311 size = va.va_size - fileoff; 2312 } 2313 out: 2314 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2315 done: 2316 *count = ksize; 2317 if (dowait) { 2318 stdata_t *stp; 2319 2320 stp = vp->v_stream; 2321 mutex_enter(&stp->sd_lock); 2322 while (!(stp->sd_flag & STZCNOTIFY)) { 2323 if (cv_wait_sig(&stp->sd_zcopy_wait, 2324 &stp->sd_lock) == 0) { 2325 error = EINTR; 2326 break; 2327 } 2328 } 2329 stp->sd_flag &= ~STZCNOTIFY; 2330 mutex_exit(&stp->sd_lock); 2331 } 2332 return (error); 2333 } 2334 2335 int 2336 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2337 uint_t maxpsz, ssize_t *count) 2338 { 2339 struct vnode *vp; 2340 mblk_t *mp; 2341 int iosize; 2342 int error; 2343 short fflag; 2344 int ksize; 2345 int ioflag; 2346 struct uio auio; 2347 struct iovec aiov; 2348 struct vattr va; 2349 2350 vp = fp->f_vnode; 2351 fflag = fp->f_flag; 2352 ksize = 0; 2353 auio.uio_iov = &aiov; 2354 auio.uio_iovcnt = 1; 2355 auio.uio_segflg = UIO_SYSSPACE; 2356 auio.uio_llimit = MAXOFFSET_T; 2357 auio.uio_fmode = fflag; 2358 auio.uio_extflg = UIO_COPY_CACHED; 2359 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2360 /* If read sync is not asked for, filter sync flags */ 2361 if ((ioflag & FRSYNC) == 0) 2362 ioflag &= ~(FSYNC|FDSYNC); 2363 for (;;) { 2364 if (ISSIG(curthread, JUSTLOOKING)) { 2365 error = EINTR; 2366 break; 2367 } 2368 iosize = (int)MIN(maxpsz, size); 2369 if ((mp = allocb(iosize, BPRI_MED)) == NULL) { 2370 error = EAGAIN; 2371 break; 2372 } 2373 aiov.iov_base = (caddr_t)mp->b_rptr; 2374 aiov.iov_len = iosize; 2375 auio.uio_loffset = fileoff; 2376 auio.uio_resid = iosize; 2377 2378 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2379 iosize -= auio.uio_resid; 2380 2381 if (error == EINTR && iosize != 0) 2382 error = 0; 2383 2384 if (error != 0 || iosize == 0) { 2385 freeb(mp); 2386 break; 2387 } 2388 mp->b_wptr = mp->b_rptr + iosize; 2389 2390 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2391 if ((error = kstrwritemp(vp, mp, fflag)) != 0) { 2392 *count = ksize; 2393 freeb(mp); 2394 return (error); 2395 } 2396 ksize += iosize; 2397 size -= iosize; 2398 if (size == 0) 2399 goto done; 2400 2401 fileoff += iosize; 2402 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2403 va.va_mask = AT_SIZE; 2404 error = VOP_GETATTR(fvp, &va, 0, kcred); 2405 if (error) 2406 break; 2407 /* Read as much as possible. */ 2408 if (fileoff >= va.va_size) 2409 size = 0; 2410 else if (size + fileoff > va.va_size) 2411 size = va.va_size - fileoff; 2412 } 2413 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2414 done: 2415 *count = ksize; 2416 return (error); 2417 } 2418 2419 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2420 /* 2421 * Largefile support for 32 bit applications only. 2422 */ 2423 int 2424 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2425 ssize32_t *count32) 2426 { 2427 ssize32_t sfv_len; 2428 u_offset_t sfv_off, va_size; 2429 struct vnode *vp, *fvp, *realvp; 2430 struct vattr va; 2431 stdata_t *stp; 2432 ssize_t count = 0; 2433 int error = 0; 2434 boolean_t dozcopy = B_FALSE; 2435 uint_t maxpsz; 2436 2437 sfv_len = (ssize32_t)sfv->sfv_len; 2438 if (sfv_len < 0) { 2439 error = EINVAL; 2440 goto out; 2441 } 2442 2443 if (sfv_len == 0) goto out; 2444 2445 sfv_off = (u_offset_t)sfv->sfv_off; 2446 2447 /* Same checks as in pread */ 2448 if (sfv_off > MAXOFFSET_T) { 2449 error = EINVAL; 2450 goto out; 2451 } 2452 if (sfv_off + sfv_len > MAXOFFSET_T) 2453 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2454 2455 /* 2456 * There are no more checks on sfv_len. So, we cast it to 2457 * u_offset_t and share the snf_direct_io/snf_cache code between 2458 * 32 bit and 64 bit. 2459 * 2460 * TODO: should do nbl_need_check() like read()? 2461 */ 2462 if (sfv_len > sendfile_max_size) { 2463 sf_stats.ss_file_not_cached++; 2464 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2465 &count); 2466 goto out; 2467 } 2468 fvp = rfp->f_vnode; 2469 if (VOP_REALVP(fvp, &realvp) == 0) 2470 fvp = realvp; 2471 /* 2472 * Grab the lock as a reader to prevent the file size 2473 * from changing underneath. 2474 */ 2475 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2476 va.va_mask = AT_SIZE; 2477 error = VOP_GETATTR(fvp, &va, 0, kcred); 2478 va_size = va.va_size; 2479 if (error == 0 && sfv_off >= va_size) 2480 error = EINVAL; 2481 if (error != 0) { 2482 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2483 goto out; 2484 } 2485 /* Read as much as possible. */ 2486 if (sfv_off + sfv_len > va_size) 2487 sfv_len = va_size - sfv_off; 2488 2489 vp = fp->f_vnode; 2490 stp = vp->v_stream; 2491 if (stp->sd_qn_maxpsz == INFPSZ) 2492 maxpsz = maxphys; 2493 else 2494 maxpsz = roundup(stp->sd_qn_maxpsz, MAXBSIZE); 2495 /* 2496 * When the NOWAIT flag is not set, we enable zero-copy only if the 2497 * transfer size is large enough. This prevents performance loss 2498 * when the caller sends the file piece by piece. 2499 */ 2500 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2501 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2502 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2503 if ((stp->sd_copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2504 int on = 1; 2505 2506 if (SOP_SETSOCKOPT(VTOSO(vp), SOL_SOCKET, 2507 SO_SND_COPYAVOID, &on, sizeof (on)) == 0) 2508 dozcopy = B_TRUE; 2509 } else { 2510 dozcopy = (stp->sd_copyflag & STZCVMSAFE); 2511 } 2512 } 2513 if (dozcopy) { 2514 sf_stats.ss_file_segmap++; 2515 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2516 maxpsz, &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2517 } else { 2518 sf_stats.ss_file_cached++; 2519 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2520 maxpsz, &count); 2521 } 2522 out: 2523 releasef(sfv->sfv_fd); 2524 *count32 = (ssize32_t)count; 2525 return (error); 2526 } 2527 #endif 2528 2529 #ifdef _SYSCALL32_IMPL 2530 /* 2531 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2532 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2533 */ 2534 2535 ssize_t 2536 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2537 { 2538 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2539 } 2540 2541 ssize_t 2542 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2543 caddr32_t name, caddr32_t namelenp) 2544 { 2545 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2546 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2547 } 2548 2549 ssize_t 2550 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2551 { 2552 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2553 } 2554 2555 ssize_t 2556 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2557 caddr32_t name, socklen_t namelen) 2558 { 2559 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2560 (void *)(uintptr_t)name, namelen)); 2561 } 2562 #endif /* _SYSCALL32_IMPL */ 2563 2564 /* 2565 * Function wrappers (mostly arround the sonode switch) for 2566 * backward compatibility. 2567 */ 2568 2569 int 2570 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 2571 { 2572 return (SOP_ACCEPT(so, fflag, nsop)); 2573 } 2574 2575 int 2576 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 2577 int backlog, int flags) 2578 { 2579 int error; 2580 2581 error = SOP_BIND(so, name, namelen, flags); 2582 if (error == 0 && backlog != 0) 2583 return (SOP_LISTEN(so, backlog)); 2584 2585 return (error); 2586 } 2587 2588 int 2589 solisten(struct sonode *so, int backlog) 2590 { 2591 return (SOP_LISTEN(so, backlog)); 2592 } 2593 2594 int 2595 soconnect(struct sonode *so, const struct sockaddr *name, socklen_t namelen, 2596 int fflag, int flags) 2597 { 2598 return (SOP_CONNECT(so, name, namelen, fflag, flags)); 2599 } 2600 2601 int 2602 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2603 { 2604 return (SOP_RECVMSG(so, msg, uiop)); 2605 } 2606 2607 int 2608 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 2609 { 2610 return (SOP_SENDMSG(so, msg, uiop)); 2611 } 2612 2613 int 2614 sogetpeername(struct sonode *so) 2615 { 2616 return (SOP_GETPEERNAME(so)); 2617 } 2618 2619 int 2620 sogetsockname(struct sonode *so) 2621 { 2622 return (SOP_GETSOCKNAME(so)); 2623 } 2624 2625 int 2626 soshutdown(struct sonode *so, int how) 2627 { 2628 return (SOP_SHUTDOWN(so, how)); 2629 } 2630 2631 int 2632 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 2633 socklen_t *optlenp, int flags) 2634 { 2635 return (SOP_GETSOCKOPT(so, level, option_name, optval, optlenp, 2636 flags)); 2637 } 2638 2639 int 2640 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 2641 t_uscalar_t optlen) 2642 { 2643 return (SOP_SETSOCKOPT(so, level, option_name, optval, optlen)); 2644 } 2645 2646 /* 2647 * Because this is backward compatibility interface it only needs to be 2648 * able to handle the creation of TPI sockfs sockets. 2649 */ 2650 struct sonode * 2651 socreate(vnode_t *accessvp, int domain, int type, int protocol, int version, 2652 struct sonode *tso, int *errorp) 2653 { 2654 return (sotpi_create(accessvp, domain, type, protocol, version, tso, 2655 errorp)); 2656 } 2657