1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/buf.h> 34 #include <sys/conf.h> 35 #include <sys/cred.h> 36 #include <sys/kmem.h> 37 #include <sys/sysmacros.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/debug.h> 42 #include <sys/errno.h> 43 #include <sys/time.h> 44 #include <sys/file.h> 45 #include <sys/open.h> 46 #include <sys/user.h> 47 #include <sys/uio.h> 48 #include <sys/termios.h> 49 #include <sys/stream.h> 50 #include <sys/strsubr.h> 51 #include <sys/strsun.h> 52 #include <sys/esunddi.h> 53 #include <sys/flock.h> 54 #include <sys/modctl.h> 55 #include <sys/cmn_err.h> 56 #include <sys/mkdev.h> 57 #include <sys/pathname.h> 58 #include <sys/ddi.h> 59 #include <sys/stat.h> 60 #include <sys/fs/snode.h> 61 #include <sys/fs/dv_node.h> 62 #include <sys/zone.h> 63 64 #include <sys/socket.h> 65 #include <sys/socketvar.h> 66 #include <netinet/in.h> 67 #include <sys/un.h> 68 69 #include <sys/ucred.h> 70 71 #include <sys/tiuser.h> 72 #define _SUN_TPI_VERSION 2 73 #include <sys/tihdr.h> 74 75 #include <c2/audit.h> 76 77 #include <fs/sockfs/nl7c.h> 78 79 /* 80 * Macros that operate on struct cmsghdr. 81 * The CMSG_VALID macro does not assume that the last option buffer is padded. 82 */ 83 #define CMSG_CONTENT(cmsg) (&((cmsg)[1])) 84 #define CMSG_CONTENTLEN(cmsg) ((cmsg)->cmsg_len - sizeof (struct cmsghdr)) 85 #define CMSG_VALID(cmsg, start, end) \ 86 (ISALIGNED_cmsghdr(cmsg) && \ 87 ((uintptr_t)(cmsg) >= (uintptr_t)(start)) && \ 88 ((uintptr_t)(cmsg) < (uintptr_t)(end)) && \ 89 ((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) && \ 90 ((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end))) 91 #define SO_LOCK_WAKEUP_TIME 3000 /* Wakeup time in milliseconds */ 92 93 static struct kmem_cache *socktpi_cache, *socktpi_unix_cache; 94 struct kmem_cache *socktpi_sod_cache; 95 96 dev_t sockdev; /* For fsid in getattr */ 97 98 struct sockparams *sphead; 99 krwlock_t splist_lock; 100 101 struct socklist socklist; 102 103 static int sockfs_update(kstat_t *, int); 104 static int sockfs_snapshot(kstat_t *, void *, int); 105 106 extern void sendfile_init(); 107 108 extern void nl7c_init(void); 109 110 extern int sostr_init(); 111 112 #define ADRSTRLEN (2 * sizeof (void *) + 1) 113 /* 114 * kernel structure for passing the sockinfo data back up to the user. 115 * the strings array allows us to convert AF_UNIX addresses into strings 116 * with a common method regardless of which n-bit kernel we're running. 117 */ 118 struct k_sockinfo { 119 struct sockinfo ks_si; 120 char ks_straddr[3][ADRSTRLEN]; 121 }; 122 123 /* 124 * Translate from a device pathname (e.g. "/dev/tcp") to a vnode. 125 * Returns with the vnode held. 126 */ 127 static int 128 sogetvp(char *devpath, vnode_t **vpp, int uioflag) 129 { 130 struct snode *csp; 131 vnode_t *vp, *dvp; 132 major_t maj; 133 int error; 134 135 ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE); 136 /* 137 * Lookup the underlying filesystem vnode. 138 */ 139 error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp); 140 if (error) 141 return (error); 142 143 /* Check that it is the correct vnode */ 144 if (vp->v_type != VCHR) { 145 VN_RELE(vp); 146 return (ENOTSOCK); 147 } 148 149 /* 150 * If devpath went through devfs, the device should already 151 * be configured. If devpath is a mknod file, however, we 152 * need to make sure the device is properly configured. 153 * To do this, we do something similar to spec_open() 154 * except that we resolve to the minor/leaf level since 155 * we need to return a vnode. 156 */ 157 csp = VTOS(VTOS(vp)->s_commonvp); 158 if (!(csp->s_flag & SDIPSET)) { 159 char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 160 error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname); 161 if (error == 0) 162 error = devfs_lookupname(pathname, NULLVPP, &dvp); 163 VN_RELE(vp); 164 kmem_free(pathname, MAXPATHLEN); 165 if (error != 0) 166 return (ENXIO); 167 vp = dvp; /* use the devfs vp */ 168 } 169 170 /* device is configured at this point */ 171 maj = getmajor(vp->v_rdev); 172 if (!STREAMSTAB(maj)) { 173 VN_RELE(vp); 174 return (ENOSTR); 175 } 176 177 *vpp = vp; 178 return (0); 179 } 180 181 /* 182 * Add or delete (latter if devpath is NULL) an enter to the sockparams 183 * table. If devpathlen is zero the devpath with not be kmem_freed. Otherwise 184 * this routine assumes that the caller has kmem_alloced devpath/devpathlen 185 * for this routine to consume. 186 * The zero devpathlen could be used if the kernel wants to create entries 187 * itself by calling sockconfig(1,2,3, "/dev/tcp", 0); 188 */ 189 int 190 soconfig(int domain, int type, int protocol, 191 char *devpath, int devpathlen) 192 { 193 struct sockparams **spp; 194 struct sockparams *sp; 195 int error = 0; 196 197 dprint(0, ("soconfig(%d,%d,%d,%s,%d)\n", 198 domain, type, protocol, devpath, devpathlen)); 199 200 /* 201 * Look for an existing match. 202 */ 203 rw_enter(&splist_lock, RW_WRITER); 204 for (spp = &sphead; (sp = *spp) != NULL; spp = &sp->sp_next) { 205 if (sp->sp_domain == domain && 206 sp->sp_type == type && 207 sp->sp_protocol == protocol) { 208 break; 209 } 210 } 211 if (devpath == NULL) { 212 ASSERT(devpathlen == 0); 213 214 /* Delete existing entry */ 215 if (sp == NULL) { 216 error = ENXIO; 217 goto done; 218 } 219 /* Unlink and free existing entry */ 220 *spp = sp->sp_next; 221 ASSERT(sp->sp_vnode); 222 VN_RELE(sp->sp_vnode); 223 if (sp->sp_devpathlen != 0) 224 kmem_free(sp->sp_devpath, sp->sp_devpathlen); 225 kmem_free(sp, sizeof (*sp)); 226 } else { 227 vnode_t *vp; 228 229 /* Add new entry */ 230 if (sp != NULL) { 231 error = EEXIST; 232 goto done; 233 } 234 235 error = sogetvp(devpath, &vp, UIO_SYSSPACE); 236 if (error) { 237 dprint(0, ("soconfig: vp %s failed with %d\n", 238 devpath, error)); 239 goto done; 240 } 241 242 dprint(0, ("soconfig: %s => vp %p, dev 0x%lx\n", 243 devpath, vp, vp->v_rdev)); 244 245 sp = kmem_alloc(sizeof (*sp), KM_SLEEP); 246 sp->sp_domain = domain; 247 sp->sp_type = type; 248 sp->sp_protocol = protocol; 249 sp->sp_devpath = devpath; 250 sp->sp_devpathlen = devpathlen; 251 sp->sp_vnode = vp; 252 sp->sp_next = NULL; 253 *spp = sp; 254 } 255 done: 256 rw_exit(&splist_lock); 257 if (error) { 258 if (devpath != NULL) 259 kmem_free(devpath, devpathlen); 260 #ifdef SOCK_DEBUG 261 eprintline(error); 262 #endif /* SOCK_DEBUG */ 263 } 264 return (error); 265 } 266 267 /* 268 * Lookup an entry in the sockparams list based on the triple. 269 * If no entry is found and devpath is not NULL translate devpath to a 270 * vnode. Note that devpath is a pointer to a user address! 271 * Returns with the vnode held. 272 * 273 * When this routine uses devpath it does not create an entry in the sockparams 274 * list since this routine can run on behalf of any user and one user 275 * should not be able to effect the transport used by another user. 276 * 277 * In order to return the correct error this routine has to do wildcard scans 278 * of the list. The errors are (in decreasing precedence): 279 * EAFNOSUPPORT - address family not in list 280 * EPROTONOSUPPORT - address family supported but not protocol. 281 * EPROTOTYPE - address family and protocol supported but not socket type. 282 */ 283 vnode_t * 284 solookup(int domain, int type, int protocol, char *devpath, int *errorp) 285 { 286 struct sockparams *sp; 287 int error; 288 vnode_t *vp; 289 290 rw_enter(&splist_lock, RW_READER); 291 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 292 if (sp->sp_domain == domain && 293 sp->sp_type == type && 294 sp->sp_protocol == protocol) { 295 break; 296 } 297 } 298 if (sp == NULL) { 299 dprint(0, ("solookup(%d,%d,%d) not found\n", 300 domain, type, protocol)); 301 if (devpath == NULL) { 302 /* Determine correct error code */ 303 int found = 0; 304 305 for (sp = sphead; sp != NULL; sp = sp->sp_next) { 306 if (sp->sp_domain == domain && found < 1) 307 found = 1; 308 if (sp->sp_domain == domain && 309 sp->sp_protocol == protocol && found < 2) 310 found = 2; 311 } 312 rw_exit(&splist_lock); 313 switch (found) { 314 case 0: 315 *errorp = EAFNOSUPPORT; 316 break; 317 case 1: 318 *errorp = EPROTONOSUPPORT; 319 break; 320 case 2: 321 *errorp = EPROTOTYPE; 322 break; 323 } 324 return (NULL); 325 } 326 rw_exit(&splist_lock); 327 328 /* 329 * Return vp based on devpath. 330 * Do not enter into table to avoid random users 331 * modifying the sockparams list. 332 */ 333 error = sogetvp(devpath, &vp, UIO_USERSPACE); 334 if (error) { 335 dprint(0, ("solookup: vp %p failed with %d\n", 336 devpath, error)); 337 *errorp = EPROTONOSUPPORT; 338 return (NULL); 339 } 340 dprint(0, ("solookup: %p => vp %p, dev 0x%lx\n", 341 devpath, vp, vp->v_rdev)); 342 343 return (vp); 344 } 345 dprint(0, ("solookup(%d,%d,%d) vp %p devpath %s\n", 346 domain, type, protocol, sp->sp_vnode, sp->sp_devpath)); 347 348 vp = sp->sp_vnode; 349 VN_HOLD(vp); 350 rw_exit(&splist_lock); 351 return (vp); 352 } 353 354 /* 355 * Return a socket vnode. 356 * 357 * Assumes that the caller is "passing" an VN_HOLD for accessvp i.e. 358 * when the socket is freed a VN_RELE will take place. 359 * 360 * Note that sockets assume that the driver will clone (either itself 361 * or by using the clone driver) i.e. a socket() call will always 362 * result in a new vnode being created. 363 */ 364 struct vnode * 365 makesockvp(struct vnode *accessvp, int domain, int type, int protocol) 366 { 367 kmem_cache_t *cp; 368 struct sonode *so; 369 struct vnode *vp; 370 time_t now; 371 dev_t dev; 372 373 cp = (domain == AF_UNIX) ? socktpi_unix_cache : socktpi_cache; 374 so = kmem_cache_alloc(cp, KM_SLEEP); 375 so->so_cache = cp; 376 so->so_obj = so; 377 vp = SOTOV(so); 378 now = gethrestime_sec(); 379 380 so->so_flag = 0; 381 ASSERT(so->so_accessvp == NULL); 382 so->so_accessvp = accessvp; 383 dev = accessvp->v_rdev; 384 385 /* 386 * Record in so_flag that it is a clone. 387 */ 388 if (getmajor(dev) == clone_major) { 389 so->so_flag |= SOCLONE; 390 } 391 so->so_dev = dev; 392 393 so->so_state = 0; 394 so->so_mode = 0; 395 396 so->so_fsid = sockdev; 397 so->so_atime = now; 398 so->so_mtime = now; 399 so->so_ctime = now; /* Never modified */ 400 so->so_count = 0; 401 402 so->so_family = (short)domain; 403 so->so_type = (short)type; 404 so->so_protocol = (short)protocol; 405 so->so_pushcnt = 0; 406 407 so->so_options = 0; 408 so->so_linger.l_onoff = 0; 409 so->so_linger.l_linger = 0; 410 so->so_sndbuf = 0; 411 so->so_rcvbuf = 0; 412 so->so_sndlowat = 0; 413 so->so_rcvlowat = 0; 414 #ifdef notyet 415 so->so_sndtimeo = 0; 416 so->so_rcvtimeo = 0; 417 #endif /* notyet */ 418 so->so_error = 0; 419 so->so_delayed_error = 0; 420 421 ASSERT(so->so_oobmsg == NULL); 422 so->so_oobcnt = 0; 423 so->so_oobsigcnt = 0; 424 so->so_pgrp = 0; 425 so->so_provinfo = NULL; 426 427 ASSERT(so->so_laddr_sa == NULL && so->so_faddr_sa == NULL); 428 so->so_laddr_len = so->so_faddr_len = 0; 429 so->so_laddr_maxlen = so->so_faddr_maxlen = 0; 430 so->so_eaddr_mp = NULL; 431 so->so_priv = NULL; 432 433 so->so_peercred = NULL; 434 435 ASSERT(so->so_ack_mp == NULL); 436 ASSERT(so->so_conn_ind_head == NULL); 437 ASSERT(so->so_conn_ind_tail == NULL); 438 ASSERT(so->so_ux_bound_vp == NULL); 439 ASSERT(so->so_unbind_mp == NULL); 440 441 vn_reinit(vp); 442 vp->v_vfsp = rootvfs; 443 vp->v_type = VSOCK; 444 vp->v_rdev = so->so_dev; 445 vn_exists(vp); 446 447 return (vp); 448 } 449 450 void 451 sockfree(struct sonode *so) 452 { 453 mblk_t *mp; 454 vnode_t *vp; 455 456 ASSERT(so->so_count == 0); 457 ASSERT(so->so_accessvp); 458 ASSERT(so->so_discon_ind_mp == NULL); 459 460 vp = so->so_accessvp; 461 VN_RELE(vp); 462 463 /* 464 * Protect so->so_[lf]addr_sa so that sockfs_snapshot() can safely 465 * indirect them. It also uses so_accessvp as a validity test. 466 */ 467 mutex_enter(&so->so_lock); 468 469 so->so_accessvp = NULL; 470 471 if (so->so_laddr_sa) { 472 ASSERT((caddr_t)so->so_faddr_sa == 473 (caddr_t)so->so_laddr_sa + so->so_laddr_maxlen); 474 ASSERT(so->so_faddr_maxlen == so->so_laddr_maxlen); 475 so->so_state &= ~(SS_LADDR_VALID | SS_FADDR_VALID); 476 kmem_free(so->so_laddr_sa, so->so_laddr_maxlen * 2); 477 so->so_laddr_sa = NULL; 478 so->so_laddr_len = so->so_laddr_maxlen = 0; 479 so->so_faddr_sa = NULL; 480 so->so_faddr_len = so->so_faddr_maxlen = 0; 481 } 482 483 mutex_exit(&so->so_lock); 484 485 if ((mp = so->so_eaddr_mp) != NULL) { 486 freemsg(mp); 487 so->so_eaddr_mp = NULL; 488 so->so_delayed_error = 0; 489 } 490 if ((mp = so->so_ack_mp) != NULL) { 491 freemsg(mp); 492 so->so_ack_mp = NULL; 493 } 494 if ((mp = so->so_conn_ind_head) != NULL) { 495 mblk_t *mp1; 496 497 while (mp) { 498 mp1 = mp->b_next; 499 mp->b_next = NULL; 500 freemsg(mp); 501 mp = mp1; 502 } 503 so->so_conn_ind_head = so->so_conn_ind_tail = NULL; 504 so->so_state &= ~SS_HASCONNIND; 505 } 506 #ifdef DEBUG 507 mutex_enter(&so->so_lock); 508 ASSERT(so_verify_oobstate(so)); 509 mutex_exit(&so->so_lock); 510 #endif /* DEBUG */ 511 if ((mp = so->so_oobmsg) != NULL) { 512 freemsg(mp); 513 so->so_oobmsg = NULL; 514 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA); 515 } 516 517 if ((mp = so->so_nl7c_rcv_mp) != NULL) { 518 so->so_nl7c_rcv_mp = NULL; 519 freemsg(mp); 520 } 521 so->so_nl7c_rcv_rval = 0; 522 if (so->so_nl7c_uri != NULL) { 523 nl7c_urifree(so); 524 /* urifree() cleared nl7c_uri */ 525 } 526 if (so->so_nl7c_flags) { 527 so->so_nl7c_flags = 0; 528 } 529 530 if (so->so_direct != NULL) { 531 sodirect_t *sodp = so->so_direct; 532 533 ASSERT(sodp->sod_uioafh == NULL); 534 535 so->so_direct = NULL; 536 kmem_cache_free(socktpi_sod_cache, sodp); 537 } 538 539 ASSERT(so->so_ux_bound_vp == NULL); 540 if ((mp = so->so_unbind_mp) != NULL) { 541 freemsg(mp); 542 so->so_unbind_mp = NULL; 543 } 544 vn_invalid(SOTOV(so)); 545 546 if (so->so_peercred != NULL) 547 crfree(so->so_peercred); 548 549 kmem_cache_free(so->so_cache, so->so_obj); 550 } 551 552 /* 553 * Update the accessed, updated, or changed times in an sonode 554 * with the current time. 555 * 556 * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable 557 * attributes in a fstat call. (They return the current time and 0 for 558 * all timestamps, respectively.) We maintain the current timestamps 559 * here primarily so that should sockmod be popped the resulting 560 * file descriptor will behave like a stream w.r.t. the timestamps. 561 */ 562 void 563 so_update_attrs(struct sonode *so, int flag) 564 { 565 time_t now = gethrestime_sec(); 566 567 mutex_enter(&so->so_lock); 568 so->so_flag |= flag; 569 if (flag & SOACC) 570 so->so_atime = now; 571 if (flag & SOMOD) 572 so->so_mtime = now; 573 mutex_exit(&so->so_lock); 574 } 575 576 /*ARGSUSED*/ 577 static int 578 socktpi_constructor(void *buf, void *cdrarg, int kmflags) 579 { 580 struct sonode *so = buf; 581 struct vnode *vp; 582 583 vp = so->so_vnode = vn_alloc(kmflags); 584 if (vp == NULL) { 585 return (-1); 586 } 587 vn_setops(vp, socktpi_vnodeops); 588 vp->v_data = so; 589 590 so->so_direct = NULL; 591 592 so->so_nl7c_flags = 0; 593 so->so_nl7c_uri = NULL; 594 so->so_nl7c_rcv_mp = NULL; 595 596 so->so_oobmsg = NULL; 597 so->so_ack_mp = NULL; 598 so->so_conn_ind_head = NULL; 599 so->so_conn_ind_tail = NULL; 600 so->so_discon_ind_mp = NULL; 601 so->so_ux_bound_vp = NULL; 602 so->so_unbind_mp = NULL; 603 so->so_accessvp = NULL; 604 so->so_laddr_sa = NULL; 605 so->so_faddr_sa = NULL; 606 so->so_ops = &sotpi_sonodeops; 607 608 mutex_init(&so->so_lock, NULL, MUTEX_DEFAULT, NULL); 609 mutex_init(&so->so_plumb_lock, NULL, MUTEX_DEFAULT, NULL); 610 cv_init(&so->so_state_cv, NULL, CV_DEFAULT, NULL); 611 cv_init(&so->so_ack_cv, NULL, CV_DEFAULT, NULL); 612 cv_init(&so->so_connind_cv, NULL, CV_DEFAULT, NULL); 613 cv_init(&so->so_want_cv, NULL, CV_DEFAULT, NULL); 614 615 return (0); 616 } 617 618 /*ARGSUSED1*/ 619 static void 620 socktpi_destructor(void *buf, void *cdrarg) 621 { 622 struct sonode *so = buf; 623 struct vnode *vp = SOTOV(so); 624 625 ASSERT(so->so_direct == NULL); 626 627 ASSERT(so->so_nl7c_flags == 0); 628 ASSERT(so->so_nl7c_uri == NULL); 629 ASSERT(so->so_nl7c_rcv_mp == NULL); 630 631 ASSERT(so->so_oobmsg == NULL); 632 ASSERT(so->so_ack_mp == NULL); 633 ASSERT(so->so_conn_ind_head == NULL); 634 ASSERT(so->so_conn_ind_tail == NULL); 635 ASSERT(so->so_discon_ind_mp == NULL); 636 ASSERT(so->so_ux_bound_vp == NULL); 637 ASSERT(so->so_unbind_mp == NULL); 638 ASSERT(so->so_ops == &sotpi_sonodeops); 639 640 ASSERT(vn_matchops(vp, socktpi_vnodeops)); 641 ASSERT(vp->v_data == so); 642 643 vn_free(vp); 644 645 mutex_destroy(&so->so_lock); 646 mutex_destroy(&so->so_plumb_lock); 647 cv_destroy(&so->so_state_cv); 648 cv_destroy(&so->so_ack_cv); 649 cv_destroy(&so->so_connind_cv); 650 cv_destroy(&so->so_want_cv); 651 } 652 653 static int 654 socktpi_unix_constructor(void *buf, void *cdrarg, int kmflags) 655 { 656 int retval; 657 658 if ((retval = socktpi_constructor(buf, cdrarg, kmflags)) == 0) { 659 struct sonode *so = (struct sonode *)buf; 660 661 mutex_enter(&socklist.sl_lock); 662 663 so->so_next = socklist.sl_list; 664 so->so_prev = NULL; 665 if (so->so_next != NULL) 666 so->so_next->so_prev = so; 667 socklist.sl_list = so; 668 669 mutex_exit(&socklist.sl_lock); 670 671 } 672 return (retval); 673 } 674 675 static void 676 socktpi_unix_destructor(void *buf, void *cdrarg) 677 { 678 struct sonode *so = (struct sonode *)buf; 679 680 mutex_enter(&socklist.sl_lock); 681 682 if (so->so_next != NULL) 683 so->so_next->so_prev = so->so_prev; 684 if (so->so_prev != NULL) 685 so->so_prev->so_next = so->so_next; 686 else 687 socklist.sl_list = so->so_next; 688 689 mutex_exit(&socklist.sl_lock); 690 691 socktpi_destructor(buf, cdrarg); 692 } 693 694 /* 695 * Init function called when sockfs is loaded. 696 */ 697 int 698 sockinit(int fstype, char *name) 699 { 700 static const fs_operation_def_t sock_vfsops_template[] = { 701 NULL, NULL 702 }; 703 int error; 704 major_t dev; 705 char *err_str; 706 707 error = vfs_setfsops(fstype, sock_vfsops_template, NULL); 708 if (error != 0) { 709 zcmn_err(GLOBAL_ZONEID, CE_WARN, 710 "sockinit: bad vfs ops template"); 711 return (error); 712 } 713 714 error = vn_make_ops(name, socktpi_vnodeops_template, &socktpi_vnodeops); 715 if (error != 0) { 716 err_str = "sockinit: bad sock vnode ops template"; 717 /* vn_make_ops() does not reset socktpi_vnodeops on failure. */ 718 socktpi_vnodeops = NULL; 719 goto failure; 720 } 721 722 error = sosctp_init(); 723 if (error != 0) { 724 err_str = NULL; 725 goto failure; 726 } 727 728 error = sosdp_init(); 729 if (error != 0) { 730 err_str = NULL; 731 goto failure; 732 } 733 734 error = sostr_init(); 735 if (error != 0) { 736 err_str = NULL; 737 goto failure; 738 } 739 740 /* 741 * Create sonode caches. We create a special one for AF_UNIX so 742 * that we can track them for netstat(1m). 743 */ 744 socktpi_cache = kmem_cache_create("socktpi_cache", 745 sizeof (struct sonode), 0, socktpi_constructor, 746 socktpi_destructor, NULL, NULL, NULL, 0); 747 748 socktpi_unix_cache = kmem_cache_create("socktpi_unix_cache", 749 sizeof (struct sonode), 0, socktpi_unix_constructor, 750 socktpi_unix_destructor, NULL, NULL, NULL, 0); 751 752 /* 753 * Build initial list mapping socket parameters to vnode. 754 */ 755 rw_init(&splist_lock, NULL, RW_DEFAULT, NULL); 756 757 /* 758 * If sockets are needed before init runs /sbin/soconfig 759 * it is possible to preload the sockparams list here using 760 * calls like: 761 * sockconfig(1,2,3, "/dev/tcp", 0); 762 */ 763 764 /* 765 * Create a unique dev_t for use in so_fsid. 766 */ 767 768 if ((dev = getudev()) == (major_t)-1) 769 dev = 0; 770 sockdev = makedevice(dev, 0); 771 772 mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL); 773 sendfile_init(); 774 nl7c_init(); 775 776 return (0); 777 778 failure: 779 (void) vfs_freevfsops_by_type(fstype); 780 if (socktpi_vnodeops != NULL) 781 vn_freevnodeops(socktpi_vnodeops); 782 if (err_str != NULL) 783 zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str); 784 return (error); 785 } 786 787 /* 788 * Caller must hold the mutex. Used to set SOLOCKED. 789 */ 790 void 791 so_lock_single(struct sonode *so) 792 { 793 ASSERT(MUTEX_HELD(&so->so_lock)); 794 795 while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) { 796 so->so_flag |= SOWANT; 797 cv_wait_stop(&so->so_want_cv, &so->so_lock, 798 SO_LOCK_WAKEUP_TIME); 799 } 800 so->so_flag |= SOLOCKED; 801 } 802 803 /* 804 * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND. 805 * Used to clear SOLOCKED or SOASYNC_UNBIND. 806 */ 807 void 808 so_unlock_single(struct sonode *so, int flag) 809 { 810 ASSERT(MUTEX_HELD(&so->so_lock)); 811 ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND)); 812 ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0); 813 ASSERT(so->so_flag & flag); 814 815 /* 816 * Process the T_DISCON_IND on so_discon_ind_mp. 817 * 818 * Call to so_drain_discon_ind will result in so_lock 819 * being dropped and re-acquired later. 820 */ 821 if (so->so_discon_ind_mp != NULL) 822 so_drain_discon_ind(so); 823 824 if (so->so_flag & SOWANT) 825 cv_broadcast(&so->so_want_cv); 826 so->so_flag &= ~(SOWANT|flag); 827 } 828 829 /* 830 * Caller must hold the mutex. Used to set SOREADLOCKED. 831 * If the caller wants nonblocking behavior it should set fmode. 832 */ 833 int 834 so_lock_read(struct sonode *so, int fmode) 835 { 836 ASSERT(MUTEX_HELD(&so->so_lock)); 837 838 while (so->so_flag & SOREADLOCKED) { 839 if (fmode & (FNDELAY|FNONBLOCK)) 840 return (EWOULDBLOCK); 841 so->so_flag |= SOWANT; 842 cv_wait_stop(&so->so_want_cv, &so->so_lock, 843 SO_LOCK_WAKEUP_TIME); 844 } 845 so->so_flag |= SOREADLOCKED; 846 return (0); 847 } 848 849 /* 850 * Like so_lock_read above but allows signals. 851 */ 852 int 853 so_lock_read_intr(struct sonode *so, int fmode) 854 { 855 ASSERT(MUTEX_HELD(&so->so_lock)); 856 857 while (so->so_flag & SOREADLOCKED) { 858 if (fmode & (FNDELAY|FNONBLOCK)) 859 return (EWOULDBLOCK); 860 so->so_flag |= SOWANT; 861 if (!cv_wait_sig(&so->so_want_cv, &so->so_lock)) 862 return (EINTR); 863 } 864 so->so_flag |= SOREADLOCKED; 865 return (0); 866 } 867 868 /* 869 * Caller must hold the mutex. Used to clear SOREADLOCKED, 870 * set in so_lock_read() or so_lock_read_intr(). 871 */ 872 void 873 so_unlock_read(struct sonode *so) 874 { 875 ASSERT(MUTEX_HELD(&so->so_lock)); 876 ASSERT(so->so_flag & SOREADLOCKED); 877 878 if (so->so_flag & SOWANT) 879 cv_broadcast(&so->so_want_cv); 880 so->so_flag &= ~(SOWANT|SOREADLOCKED); 881 } 882 883 /* 884 * Verify that the specified offset falls within the mblk and 885 * that the resulting pointer is aligned. 886 * Returns NULL if not. 887 */ 888 void * 889 sogetoff(mblk_t *mp, t_uscalar_t offset, 890 t_uscalar_t length, uint_t align_size) 891 { 892 uintptr_t ptr1, ptr2; 893 894 ASSERT(mp && mp->b_wptr >= mp->b_rptr); 895 ptr1 = (uintptr_t)mp->b_rptr + offset; 896 ptr2 = (uintptr_t)ptr1 + length; 897 if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) { 898 eprintline(0); 899 return (NULL); 900 } 901 if ((ptr1 & (align_size - 1)) != 0) { 902 eprintline(0); 903 return (NULL); 904 } 905 return ((void *)ptr1); 906 } 907 908 /* 909 * Return the AF_UNIX underlying filesystem vnode matching a given name. 910 * Makes sure the sending and the destination sonodes are compatible. 911 * The vnode is returned held. 912 * 913 * The underlying filesystem VSOCK vnode has a v_stream pointer that 914 * references the actual stream head (hence indirectly the actual sonode). 915 */ 916 static int 917 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess, 918 vnode_t **vpp) 919 { 920 vnode_t *vp; /* Underlying filesystem vnode */ 921 vnode_t *svp; /* sockfs vnode */ 922 struct sonode *so2; 923 int error; 924 925 dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", so, soun->sun_path)); 926 927 error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp); 928 if (error) { 929 eprintsoline(so, error); 930 return (error); 931 } 932 if (vp->v_type != VSOCK) { 933 error = ENOTSOCK; 934 eprintsoline(so, error); 935 goto done2; 936 } 937 938 if (checkaccess) { 939 /* 940 * Check that we have permissions to access the destination 941 * vnode. This check is not done in BSD but it is required 942 * by X/Open. 943 */ 944 if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) { 945 eprintsoline(so, error); 946 goto done2; 947 } 948 } 949 950 /* 951 * Check if the remote socket has been closed. 952 * 953 * Synchronize with vn_rele_stream by holding v_lock while traversing 954 * v_stream->sd_vnode. 955 */ 956 mutex_enter(&vp->v_lock); 957 if (vp->v_stream == NULL) { 958 mutex_exit(&vp->v_lock); 959 if (so->so_type == SOCK_DGRAM) 960 error = EDESTADDRREQ; 961 else 962 error = ECONNREFUSED; 963 964 eprintsoline(so, error); 965 goto done2; 966 } 967 ASSERT(vp->v_stream->sd_vnode); 968 svp = vp->v_stream->sd_vnode; 969 /* 970 * holding v_lock on underlying filesystem vnode and acquiring 971 * it on sockfs vnode. Assumes that no code ever attempts to 972 * acquire these locks in the reverse order. 973 */ 974 VN_HOLD(svp); 975 mutex_exit(&vp->v_lock); 976 977 if (svp->v_type != VSOCK) { 978 error = ENOTSOCK; 979 eprintsoline(so, error); 980 goto done; 981 } 982 983 so2 = VTOSO(svp); 984 985 if (so->so_type != so2->so_type) { 986 error = EPROTOTYPE; 987 eprintsoline(so, error); 988 goto done; 989 } 990 991 VN_RELE(svp); 992 *vpp = vp; 993 return (0); 994 995 done: 996 VN_RELE(svp); 997 done2: 998 VN_RELE(vp); 999 return (error); 1000 } 1001 1002 /* 1003 * Verify peer address for connect and sendto/sendmsg. 1004 * Since sendto/sendmsg would not get synchronous errors from the transport 1005 * provider we have to do these ugly checks in the socket layer to 1006 * preserve compatibility with SunOS 4.X. 1007 */ 1008 int 1009 so_addr_verify(struct sonode *so, const struct sockaddr *name, 1010 socklen_t namelen) 1011 { 1012 int family; 1013 1014 dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n", so, name, namelen)); 1015 1016 ASSERT(name != NULL); 1017 1018 family = so->so_family; 1019 switch (family) { 1020 case AF_INET: 1021 if (name->sa_family != family) { 1022 eprintsoline(so, EAFNOSUPPORT); 1023 return (EAFNOSUPPORT); 1024 } 1025 if (namelen != (socklen_t)sizeof (struct sockaddr_in)) { 1026 eprintsoline(so, EINVAL); 1027 return (EINVAL); 1028 } 1029 break; 1030 case AF_INET6: { 1031 #ifdef DEBUG 1032 struct sockaddr_in6 *sin6; 1033 #endif /* DEBUG */ 1034 1035 if (name->sa_family != family) { 1036 eprintsoline(so, EAFNOSUPPORT); 1037 return (EAFNOSUPPORT); 1038 } 1039 if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) { 1040 eprintsoline(so, EINVAL); 1041 return (EINVAL); 1042 } 1043 #ifdef DEBUG 1044 /* Verify that apps don't forget to clear sin6_scope_id etc */ 1045 sin6 = (struct sockaddr_in6 *)name; 1046 if (sin6->sin6_scope_id != 0 && 1047 !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) { 1048 zcmn_err(getzoneid(), CE_WARN, 1049 "connect/send* with uninitialized sin6_scope_id " 1050 "(%d) on socket. Pid = %d\n", 1051 (int)sin6->sin6_scope_id, (int)curproc->p_pid); 1052 } 1053 #endif /* DEBUG */ 1054 break; 1055 } 1056 case AF_UNIX: 1057 if (so->so_state & SS_FADDR_NOXLATE) { 1058 return (0); 1059 } 1060 if (namelen < (socklen_t)sizeof (short)) { 1061 eprintsoline(so, ENOENT); 1062 return (ENOENT); 1063 } 1064 if (name->sa_family != family) { 1065 eprintsoline(so, EAFNOSUPPORT); 1066 return (EAFNOSUPPORT); 1067 } 1068 /* MAXPATHLEN + soun_family + nul termination */ 1069 if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) { 1070 eprintsoline(so, ENAMETOOLONG); 1071 return (ENAMETOOLONG); 1072 } 1073 1074 break; 1075 1076 default: 1077 /* 1078 * Default is don't do any length or sa_family check 1079 * to allow non-sockaddr style addresses. 1080 */ 1081 break; 1082 } 1083 1084 return (0); 1085 } 1086 1087 1088 /* 1089 * Translate an AF_UNIX sockaddr_un to the transport internal name. 1090 * Assumes caller has called so_addr_verify first. 1091 */ 1092 /*ARGSUSED*/ 1093 int 1094 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name, 1095 socklen_t namelen, int checkaccess, 1096 void **addrp, socklen_t *addrlenp) 1097 { 1098 int error; 1099 struct sockaddr_un *soun; 1100 vnode_t *vp; 1101 void *addr; 1102 socklen_t addrlen; 1103 1104 dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n", 1105 so, name, namelen, checkaccess)); 1106 1107 ASSERT(name != NULL); 1108 ASSERT(so->so_family == AF_UNIX); 1109 ASSERT(!(so->so_state & SS_FADDR_NOXLATE)); 1110 ASSERT(namelen >= (socklen_t)sizeof (short)); 1111 ASSERT(name->sa_family == AF_UNIX); 1112 soun = (struct sockaddr_un *)name; 1113 /* 1114 * Lookup vnode for the specified path name and verify that 1115 * it is a socket. 1116 */ 1117 error = so_ux_lookup(so, soun, checkaccess, &vp); 1118 if (error) { 1119 eprintsoline(so, error); 1120 return (error); 1121 } 1122 /* 1123 * Use the address of the peer vnode as the address to send 1124 * to. We release the peer vnode here. In case it has been 1125 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the 1126 * transport the message will get an error or be dropped. 1127 */ 1128 so->so_ux_faddr.soua_vp = vp; 1129 so->so_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT; 1130 addr = &so->so_ux_faddr; 1131 addrlen = (socklen_t)sizeof (so->so_ux_faddr); 1132 dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n", addrlen, vp)); 1133 VN_RELE(vp); 1134 *addrp = addr; 1135 *addrlenp = (socklen_t)addrlen; 1136 return (0); 1137 } 1138 1139 /* 1140 * Esballoc free function for messages that contain SO_FILEP option. 1141 * Decrement the reference count on the file pointers using closef. 1142 */ 1143 void 1144 fdbuf_free(struct fdbuf *fdbuf) 1145 { 1146 int i; 1147 struct file *fp; 1148 1149 dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd)); 1150 for (i = 0; i < fdbuf->fd_numfd; i++) { 1151 /* 1152 * We need pointer size alignment for fd_fds. On a LP64 1153 * kernel, the required alignment is 8 bytes while 1154 * the option headers and values are only 4 bytes 1155 * aligned. So its safer to do a bcopy compared to 1156 * assigning fdbuf->fd_fds[i] to fp. 1157 */ 1158 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1159 dprint(1, ("fdbuf_free: [%d] = %p\n", i, fp)); 1160 (void) closef(fp); 1161 } 1162 if (fdbuf->fd_ebuf != NULL) 1163 kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen); 1164 kmem_free(fdbuf, fdbuf->fd_size); 1165 } 1166 1167 /* 1168 * Allocate an esballoc'ed message for AF_UNIX file descriptor passing. 1169 * Waits if memory is not available. 1170 */ 1171 mblk_t * 1172 fdbuf_allocmsg(int size, struct fdbuf *fdbuf) 1173 { 1174 uchar_t *buf; 1175 mblk_t *mp; 1176 1177 dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd)); 1178 buf = kmem_alloc(size, KM_SLEEP); 1179 fdbuf->fd_ebuf = (caddr_t)buf; 1180 fdbuf->fd_ebuflen = size; 1181 fdbuf->fd_frtn.free_func = fdbuf_free; 1182 fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf; 1183 1184 mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn); 1185 mp->b_datap->db_type = M_PROTO; 1186 return (mp); 1187 } 1188 1189 /* 1190 * Extract file descriptors from a fdbuf. 1191 * Return list in rights/rightslen. 1192 */ 1193 /*ARGSUSED*/ 1194 static int 1195 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen) 1196 { 1197 int i, fd; 1198 int *rp; 1199 struct file *fp; 1200 int numfd; 1201 1202 dprint(1, ("fdbuf_extract: %d fds, len %d\n", 1203 fdbuf->fd_numfd, rightslen)); 1204 1205 numfd = fdbuf->fd_numfd; 1206 ASSERT(rightslen == numfd * (int)sizeof (int)); 1207 1208 /* 1209 * Allocate a file descriptor and increment the f_count. 1210 * The latter is needed since we always call fdbuf_free 1211 * which performs a closef. 1212 */ 1213 rp = (int *)rights; 1214 for (i = 0; i < numfd; i++) { 1215 if ((fd = ufalloc(0)) == -1) 1216 goto cleanup; 1217 /* 1218 * We need pointer size alignment for fd_fds. On a LP64 1219 * kernel, the required alignment is 8 bytes while 1220 * the option headers and values are only 4 bytes 1221 * aligned. So its safer to do a bcopy compared to 1222 * assigning fdbuf->fd_fds[i] to fp. 1223 */ 1224 bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp)); 1225 mutex_enter(&fp->f_tlock); 1226 fp->f_count++; 1227 mutex_exit(&fp->f_tlock); 1228 setf(fd, fp); 1229 *rp++ = fd; 1230 if (audit_active) 1231 audit_fdrecv(fd, fp); 1232 dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n", 1233 i, fd, fp, fp->f_count)); 1234 } 1235 return (0); 1236 1237 cleanup: 1238 /* 1239 * Undo whatever partial work the loop above has done. 1240 */ 1241 { 1242 int j; 1243 1244 rp = (int *)rights; 1245 for (j = 0; j < i; j++) { 1246 dprint(0, 1247 ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp)); 1248 (void) closeandsetf(*rp++, NULL); 1249 } 1250 } 1251 1252 return (EMFILE); 1253 } 1254 1255 /* 1256 * Insert file descriptors into an fdbuf. 1257 * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed 1258 * by calling fdbuf_free(). 1259 */ 1260 int 1261 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp) 1262 { 1263 int numfd, i; 1264 int *fds; 1265 struct file *fp; 1266 struct fdbuf *fdbuf; 1267 int fdbufsize; 1268 1269 dprint(1, ("fdbuf_create: len %d\n", rightslen)); 1270 1271 numfd = rightslen / (int)sizeof (int); 1272 1273 fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)); 1274 fdbuf = kmem_alloc(fdbufsize, KM_SLEEP); 1275 fdbuf->fd_size = fdbufsize; 1276 fdbuf->fd_numfd = 0; 1277 fdbuf->fd_ebuf = NULL; 1278 fdbuf->fd_ebuflen = 0; 1279 fds = (int *)rights; 1280 for (i = 0; i < numfd; i++) { 1281 if ((fp = getf(fds[i])) == NULL) { 1282 fdbuf_free(fdbuf); 1283 return (EBADF); 1284 } 1285 dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n", 1286 i, fds[i], fp, fp->f_count)); 1287 mutex_enter(&fp->f_tlock); 1288 fp->f_count++; 1289 mutex_exit(&fp->f_tlock); 1290 /* 1291 * The maximum alignment for fdbuf (or any option header 1292 * and its value) it 4 bytes. On a LP64 kernel, the alignment 1293 * is not sufficient for pointers (fd_fds in this case). Since 1294 * we just did a kmem_alloc (we get a double word alignment), 1295 * we don't need to do anything on the send side (we loose 1296 * the double word alignment because fdbuf goes after an 1297 * option header (eg T_unitdata_req) which is only 4 byte 1298 * aligned). We take care of this when we extract the file 1299 * descriptor in fdbuf_extract or fdbuf_free. 1300 */ 1301 fdbuf->fd_fds[i] = fp; 1302 fdbuf->fd_numfd++; 1303 releasef(fds[i]); 1304 if (audit_active) 1305 audit_fdsend(fds[i], fp, 0); 1306 } 1307 *fdbufp = fdbuf; 1308 return (0); 1309 } 1310 1311 static int 1312 fdbuf_optlen(int rightslen) 1313 { 1314 int numfd; 1315 1316 numfd = rightslen / (int)sizeof (int); 1317 1318 return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *))); 1319 } 1320 1321 static t_uscalar_t 1322 fdbuf_cmsglen(int fdbuflen) 1323 { 1324 return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) / 1325 (int)sizeof (struct file *) * (int)sizeof (int)); 1326 } 1327 1328 1329 /* 1330 * Return non-zero if the mblk and fdbuf are consistent. 1331 */ 1332 static int 1333 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen) 1334 { 1335 if (fdbuflen >= FDBUF_HDRSIZE && 1336 fdbuflen == fdbuf->fd_size) { 1337 frtn_t *frp = mp->b_datap->db_frtnp; 1338 /* 1339 * Check that the SO_FILEP portion of the 1340 * message has not been modified by 1341 * the loopback transport. The sending sockfs generates 1342 * a message that is esballoc'ed with the free function 1343 * being fdbuf_free() and where free_arg contains the 1344 * identical information as the SO_FILEP content. 1345 * 1346 * If any of these constraints are not satisfied we 1347 * silently ignore the option. 1348 */ 1349 ASSERT(mp); 1350 if (frp != NULL && 1351 frp->free_func == fdbuf_free && 1352 frp->free_arg != NULL && 1353 bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) { 1354 dprint(1, ("fdbuf_verify: fdbuf %p len %d\n", 1355 fdbuf, fdbuflen)); 1356 return (1); 1357 } else { 1358 zcmn_err(getzoneid(), CE_WARN, 1359 "sockfs: mismatched fdbuf content (%p)", 1360 (void *)mp); 1361 return (0); 1362 } 1363 } else { 1364 zcmn_err(getzoneid(), CE_WARN, 1365 "sockfs: mismatched fdbuf len %d, %d\n", 1366 fdbuflen, fdbuf->fd_size); 1367 return (0); 1368 } 1369 } 1370 1371 /* 1372 * When the file descriptors returned by sorecvmsg can not be passed 1373 * to the application this routine will cleanup the references on 1374 * the files. Start at startoff bytes into the buffer. 1375 */ 1376 static void 1377 close_fds(void *fdbuf, int fdbuflen, int startoff) 1378 { 1379 int *fds = (int *)fdbuf; 1380 int numfd = fdbuflen / (int)sizeof (int); 1381 int i; 1382 1383 dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff)); 1384 1385 for (i = 0; i < numfd; i++) { 1386 if (startoff < 0) 1387 startoff = 0; 1388 if (startoff < (int)sizeof (int)) { 1389 /* 1390 * This file descriptor is partially or fully after 1391 * the offset 1392 */ 1393 dprint(0, 1394 ("close_fds: cleanup[%d] = %d\n", i, fds[i])); 1395 (void) closeandsetf(fds[i], NULL); 1396 } 1397 startoff -= (int)sizeof (int); 1398 } 1399 } 1400 1401 /* 1402 * Close all file descriptors contained in the control part starting at 1403 * the startoffset. 1404 */ 1405 void 1406 so_closefds(void *control, t_uscalar_t controllen, int oldflg, 1407 int startoff) 1408 { 1409 struct cmsghdr *cmsg; 1410 1411 if (control == NULL) 1412 return; 1413 1414 if (oldflg) { 1415 close_fds(control, controllen, startoff); 1416 return; 1417 } 1418 /* Scan control part for file descriptors. */ 1419 for (cmsg = (struct cmsghdr *)control; 1420 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1421 cmsg = CMSG_NEXT(cmsg)) { 1422 if (cmsg->cmsg_level == SOL_SOCKET && 1423 cmsg->cmsg_type == SCM_RIGHTS) { 1424 close_fds(CMSG_CONTENT(cmsg), 1425 (int)CMSG_CONTENTLEN(cmsg), 1426 startoff - (int)sizeof (struct cmsghdr)); 1427 } 1428 startoff -= cmsg->cmsg_len; 1429 } 1430 } 1431 1432 /* 1433 * Returns a pointer/length for the file descriptors contained 1434 * in the control buffer. Returns with *fdlenp == -1 if there are no 1435 * file descriptor options present. This is different than there being 1436 * a zero-length file descriptor option. 1437 * Fail if there are multiple SCM_RIGHT cmsgs. 1438 */ 1439 int 1440 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg, 1441 void **fdsp, int *fdlenp) 1442 { 1443 struct cmsghdr *cmsg; 1444 void *fds; 1445 int fdlen; 1446 1447 if (control == NULL) { 1448 *fdsp = NULL; 1449 *fdlenp = -1; 1450 return (0); 1451 } 1452 1453 if (oldflg) { 1454 *fdsp = control; 1455 if (controllen == 0) 1456 *fdlenp = -1; 1457 else 1458 *fdlenp = controllen; 1459 dprint(1, ("so_getfdopt: old %d\n", *fdlenp)); 1460 return (0); 1461 } 1462 1463 fds = NULL; 1464 fdlen = 0; 1465 1466 for (cmsg = (struct cmsghdr *)control; 1467 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1468 cmsg = CMSG_NEXT(cmsg)) { 1469 if (cmsg->cmsg_level == SOL_SOCKET && 1470 cmsg->cmsg_type == SCM_RIGHTS) { 1471 if (fds != NULL) 1472 return (EINVAL); 1473 fds = CMSG_CONTENT(cmsg); 1474 fdlen = (int)CMSG_CONTENTLEN(cmsg); 1475 dprint(1, ("so_getfdopt: new %lu\n", 1476 (size_t)CMSG_CONTENTLEN(cmsg))); 1477 } 1478 } 1479 if (fds == NULL) { 1480 dprint(1, ("so_getfdopt: NONE\n")); 1481 *fdlenp = -1; 1482 } else 1483 *fdlenp = fdlen; 1484 *fdsp = fds; 1485 return (0); 1486 } 1487 1488 /* 1489 * Return the length of the options including any file descriptor options. 1490 */ 1491 t_uscalar_t 1492 so_optlen(void *control, t_uscalar_t controllen, int oldflg) 1493 { 1494 struct cmsghdr *cmsg; 1495 t_uscalar_t optlen = 0; 1496 t_uscalar_t len; 1497 1498 if (control == NULL) 1499 return (0); 1500 1501 if (oldflg) 1502 return ((t_uscalar_t)(sizeof (struct T_opthdr) + 1503 fdbuf_optlen(controllen))); 1504 1505 for (cmsg = (struct cmsghdr *)control; 1506 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1507 cmsg = CMSG_NEXT(cmsg)) { 1508 if (cmsg->cmsg_level == SOL_SOCKET && 1509 cmsg->cmsg_type == SCM_RIGHTS) { 1510 len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg)); 1511 } else { 1512 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1513 } 1514 optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) + 1515 sizeof (struct T_opthdr)); 1516 } 1517 dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n", 1518 controllen, oldflg, optlen)); 1519 return (optlen); 1520 } 1521 1522 /* 1523 * Copy options from control to the mblk. Skip any file descriptor options. 1524 */ 1525 void 1526 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp) 1527 { 1528 struct T_opthdr toh; 1529 struct cmsghdr *cmsg; 1530 1531 if (control == NULL) 1532 return; 1533 1534 if (oldflg) { 1535 /* No real options - caller has handled file descriptors */ 1536 return; 1537 } 1538 for (cmsg = (struct cmsghdr *)control; 1539 CMSG_VALID(cmsg, control, (uintptr_t)control + controllen); 1540 cmsg = CMSG_NEXT(cmsg)) { 1541 /* 1542 * Note: The caller handles file descriptors prior 1543 * to calling this function. 1544 */ 1545 t_uscalar_t len; 1546 1547 if (cmsg->cmsg_level == SOL_SOCKET && 1548 cmsg->cmsg_type == SCM_RIGHTS) 1549 continue; 1550 1551 len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg); 1552 toh.level = cmsg->cmsg_level; 1553 toh.name = cmsg->cmsg_type; 1554 toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr); 1555 toh.status = 0; 1556 1557 soappendmsg(mp, &toh, sizeof (toh)); 1558 soappendmsg(mp, CMSG_CONTENT(cmsg), len); 1559 mp->b_wptr += _TPI_ALIGN_TOPT(len) - len; 1560 ASSERT(mp->b_wptr <= mp->b_datap->db_lim); 1561 } 1562 } 1563 1564 /* 1565 * Return the length of the control message derived from the options. 1566 * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP. 1567 * When oldflg is set only include SO_FILEP. 1568 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen 1569 * allocates the space that so_opt2cmsg fills. If one changes, the other should 1570 * also be checked for any possible impacts. 1571 */ 1572 t_uscalar_t 1573 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg) 1574 { 1575 t_uscalar_t cmsglen = 0; 1576 struct T_opthdr *tohp; 1577 t_uscalar_t len; 1578 t_uscalar_t last_roundup = 0; 1579 1580 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1581 1582 for (tohp = (struct T_opthdr *)opt; 1583 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1584 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1585 dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n", 1586 tohp->level, tohp->name, tohp->len)); 1587 if (tohp->level == SOL_SOCKET && 1588 (tohp->name == SO_SRCADDR || 1589 tohp->name == SO_UNIX_CLOSE)) { 1590 continue; 1591 } 1592 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1593 struct fdbuf *fdbuf; 1594 int fdbuflen; 1595 1596 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1597 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1598 1599 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1600 continue; 1601 if (oldflg) { 1602 cmsglen += fdbuf_cmsglen(fdbuflen); 1603 continue; 1604 } 1605 len = fdbuf_cmsglen(fdbuflen); 1606 } else if (tohp->level == SOL_SOCKET && 1607 tohp->name == SCM_TIMESTAMP) { 1608 if (oldflg) 1609 continue; 1610 1611 if (get_udatamodel() == DATAMODEL_NATIVE) { 1612 len = sizeof (struct timeval); 1613 } else { 1614 len = sizeof (struct timeval32); 1615 } 1616 } else { 1617 if (oldflg) 1618 continue; 1619 len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1620 } 1621 /* 1622 * Exclude roundup for last option to not set 1623 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit. 1624 */ 1625 last_roundup = (t_uscalar_t) 1626 (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) - 1627 (len + (int)sizeof (struct cmsghdr))); 1628 cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) + 1629 last_roundup; 1630 } 1631 cmsglen -= last_roundup; 1632 dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n", 1633 optlen, oldflg, cmsglen)); 1634 return (cmsglen); 1635 } 1636 1637 /* 1638 * Copy options from options to the control. Convert SO_FILEP to 1639 * file descriptors. 1640 * Returns errno or zero. 1641 * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen 1642 * allocates the space that so_opt2cmsg fills. If one changes, the other should 1643 * also be checked for any possible impacts. 1644 */ 1645 int 1646 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg, 1647 void *control, t_uscalar_t controllen) 1648 { 1649 struct T_opthdr *tohp; 1650 struct cmsghdr *cmsg; 1651 struct fdbuf *fdbuf; 1652 int fdbuflen; 1653 int error; 1654 #if defined(DEBUG) || defined(__lint) 1655 struct cmsghdr *cend = (struct cmsghdr *) 1656 (((uint8_t *)control) + ROUNDUP_cmsglen(controllen)); 1657 #endif 1658 cmsg = (struct cmsghdr *)control; 1659 1660 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1661 1662 for (tohp = (struct T_opthdr *)opt; 1663 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1664 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1665 dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n", 1666 tohp->level, tohp->name, tohp->len)); 1667 1668 if (tohp->level == SOL_SOCKET && 1669 (tohp->name == SO_SRCADDR || 1670 tohp->name == SO_UNIX_CLOSE)) { 1671 continue; 1672 } 1673 ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen); 1674 if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) { 1675 fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp); 1676 fdbuflen = (int)_TPI_TOPT_DATALEN(tohp); 1677 1678 if (!fdbuf_verify(mp, fdbuf, fdbuflen)) 1679 return (EPROTO); 1680 if (oldflg) { 1681 error = fdbuf_extract(fdbuf, control, 1682 (int)controllen); 1683 if (error != 0) 1684 return (error); 1685 continue; 1686 } else { 1687 int fdlen; 1688 1689 fdlen = (int)fdbuf_cmsglen( 1690 (int)_TPI_TOPT_DATALEN(tohp)); 1691 1692 cmsg->cmsg_level = tohp->level; 1693 cmsg->cmsg_type = SCM_RIGHTS; 1694 cmsg->cmsg_len = (socklen_t)(fdlen + 1695 sizeof (struct cmsghdr)); 1696 1697 error = fdbuf_extract(fdbuf, 1698 CMSG_CONTENT(cmsg), fdlen); 1699 if (error != 0) 1700 return (error); 1701 } 1702 } else if (tohp->level == SOL_SOCKET && 1703 tohp->name == SCM_TIMESTAMP) { 1704 timestruc_t *timestamp; 1705 1706 if (oldflg) 1707 continue; 1708 1709 cmsg->cmsg_level = tohp->level; 1710 cmsg->cmsg_type = tohp->name; 1711 1712 timestamp = 1713 (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1], 1714 sizeof (intptr_t)); 1715 1716 if (get_udatamodel() == DATAMODEL_NATIVE) { 1717 struct timeval tv; 1718 1719 cmsg->cmsg_len = sizeof (struct timeval) + 1720 sizeof (struct cmsghdr); 1721 tv.tv_sec = timestamp->tv_sec; 1722 tv.tv_usec = timestamp->tv_nsec / 1723 (NANOSEC / MICROSEC); 1724 /* 1725 * on LP64 systems, the struct timeval in 1726 * the destination will not be 8-byte aligned, 1727 * so use bcopy to avoid alignment trouble 1728 */ 1729 bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv)); 1730 } else { 1731 struct timeval32 *time32; 1732 1733 cmsg->cmsg_len = sizeof (struct timeval32) + 1734 sizeof (struct cmsghdr); 1735 time32 = (struct timeval32 *)CMSG_CONTENT(cmsg); 1736 time32->tv_sec = (time32_t)timestamp->tv_sec; 1737 time32->tv_usec = 1738 (int32_t)(timestamp->tv_nsec / 1739 (NANOSEC / MICROSEC)); 1740 } 1741 1742 } else { 1743 if (oldflg) 1744 continue; 1745 1746 cmsg->cmsg_level = tohp->level; 1747 cmsg->cmsg_type = tohp->name; 1748 cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) + 1749 sizeof (struct cmsghdr)); 1750 1751 /* copy content to control data part */ 1752 bcopy(&tohp[1], CMSG_CONTENT(cmsg), 1753 CMSG_CONTENTLEN(cmsg)); 1754 } 1755 /* move to next CMSG structure! */ 1756 cmsg = CMSG_NEXT(cmsg); 1757 } 1758 dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n", 1759 control, controllen, cend, cmsg)); 1760 ASSERT(cmsg <= cend); 1761 return (0); 1762 } 1763 1764 /* 1765 * Extract the SO_SRCADDR option value if present. 1766 */ 1767 void 1768 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp, 1769 t_uscalar_t *srclenp) 1770 { 1771 struct T_opthdr *tohp; 1772 1773 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1774 1775 ASSERT(srcp != NULL && srclenp != NULL); 1776 *srcp = NULL; 1777 *srclenp = 0; 1778 1779 for (tohp = (struct T_opthdr *)opt; 1780 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1781 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1782 dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n", 1783 tohp->level, tohp->name, tohp->len)); 1784 if (tohp->level == SOL_SOCKET && 1785 tohp->name == SO_SRCADDR) { 1786 *srcp = _TPI_TOPT_DATA(tohp); 1787 *srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp); 1788 } 1789 } 1790 } 1791 1792 /* 1793 * Verify if the SO_UNIX_CLOSE option is present. 1794 */ 1795 int 1796 so_getopt_unix_close(void *opt, t_uscalar_t optlen) 1797 { 1798 struct T_opthdr *tohp; 1799 1800 ASSERT(__TPI_TOPT_ISALIGNED(opt)); 1801 1802 for (tohp = (struct T_opthdr *)opt; 1803 tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen); 1804 tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) { 1805 dprint(1, 1806 ("so_getopt_unix_close: level 0x%x, name %d, len %d\n", 1807 tohp->level, tohp->name, tohp->len)); 1808 if (tohp->level == SOL_SOCKET && 1809 tohp->name == SO_UNIX_CLOSE) 1810 return (1); 1811 } 1812 return (0); 1813 } 1814 1815 /* 1816 * Allocate an M_PROTO message. 1817 * 1818 * If allocation fails the behavior depends on sleepflg: 1819 * _ALLOC_NOSLEEP fail immediately 1820 * _ALLOC_INTR sleep for memory until a signal is caught 1821 * _ALLOC_SLEEP sleep forever. Don't return NULL. 1822 */ 1823 mblk_t * 1824 soallocproto(size_t size, int sleepflg) 1825 { 1826 mblk_t *mp; 1827 1828 /* Round up size for reuse */ 1829 size = MAX(size, 64); 1830 mp = allocb(size, BPRI_MED); 1831 if (mp == NULL) { 1832 int error; /* Dummy - error not returned to caller */ 1833 1834 switch (sleepflg) { 1835 case _ALLOC_SLEEP: 1836 mp = allocb_wait(size, BPRI_MED, STR_NOSIG, &error); 1837 ASSERT(mp); 1838 break; 1839 case _ALLOC_INTR: 1840 mp = allocb_wait(size, BPRI_MED, 0, &error); 1841 if (mp == NULL) { 1842 /* Caught signal while sleeping for memory */ 1843 eprintline(ENOBUFS); 1844 return (NULL); 1845 } 1846 break; 1847 case _ALLOC_NOSLEEP: 1848 default: 1849 eprintline(ENOBUFS); 1850 return (NULL); 1851 } 1852 } 1853 DB_TYPE(mp) = M_PROTO; 1854 return (mp); 1855 } 1856 1857 /* 1858 * Allocate an M_PROTO message with a single component. 1859 * len is the length of buf. size is the amount to allocate. 1860 * 1861 * buf can be NULL with a non-zero len. 1862 * This results in a bzero'ed chunk being placed the message. 1863 */ 1864 mblk_t * 1865 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg) 1866 { 1867 mblk_t *mp; 1868 1869 if (size == 0) 1870 size = len; 1871 1872 ASSERT(size >= len); 1873 /* Round up size for reuse */ 1874 size = MAX(size, 64); 1875 mp = soallocproto(size, sleepflg); 1876 if (mp == NULL) 1877 return (NULL); 1878 mp->b_datap->db_type = M_PROTO; 1879 if (len != 0) { 1880 if (buf != NULL) 1881 bcopy(buf, mp->b_wptr, len); 1882 else 1883 bzero(mp->b_wptr, len); 1884 mp->b_wptr += len; 1885 } 1886 return (mp); 1887 } 1888 1889 /* 1890 * Append buf/len to mp. 1891 * The caller has to ensure that there is enough room in the mblk. 1892 * 1893 * buf can be NULL with a non-zero len. 1894 * This results in a bzero'ed chunk being placed the message. 1895 */ 1896 void 1897 soappendmsg(mblk_t *mp, const void *buf, ssize_t len) 1898 { 1899 ASSERT(mp); 1900 1901 if (len != 0) { 1902 /* Assert for room left */ 1903 ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len); 1904 if (buf != NULL) 1905 bcopy(buf, mp->b_wptr, len); 1906 else 1907 bzero(mp->b_wptr, len); 1908 } 1909 mp->b_wptr += len; 1910 } 1911 1912 /* 1913 * Create a message using two kernel buffers. 1914 * If size is set that will determine the allocation size (e.g. for future 1915 * soappendmsg calls). If size is zero it is derived from the buffer 1916 * lengths. 1917 */ 1918 mblk_t * 1919 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1920 ssize_t size, int sleepflg) 1921 { 1922 mblk_t *mp; 1923 1924 if (size == 0) 1925 size = len1 + len2; 1926 ASSERT(size >= len1 + len2); 1927 1928 mp = soallocproto1(buf1, len1, size, sleepflg); 1929 if (mp) 1930 soappendmsg(mp, buf2, len2); 1931 return (mp); 1932 } 1933 1934 /* 1935 * Create a message using three kernel buffers. 1936 * If size is set that will determine the allocation size (for future 1937 * soappendmsg calls). If size is zero it is derived from the buffer 1938 * lengths. 1939 */ 1940 mblk_t * 1941 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2, 1942 const void *buf3, ssize_t len3, ssize_t size, int sleepflg) 1943 { 1944 mblk_t *mp; 1945 1946 if (size == 0) 1947 size = len1 + len2 +len3; 1948 ASSERT(size >= len1 + len2 + len3); 1949 1950 mp = soallocproto1(buf1, len1, size, sleepflg); 1951 if (mp != NULL) { 1952 soappendmsg(mp, buf2, len2); 1953 soappendmsg(mp, buf3, len3); 1954 } 1955 return (mp); 1956 } 1957 1958 #ifdef DEBUG 1959 char * 1960 pr_state(uint_t state, uint_t mode) 1961 { 1962 static char buf[1024]; 1963 1964 buf[0] = 0; 1965 if (state & SS_ISCONNECTED) 1966 strcat(buf, "ISCONNECTED "); 1967 if (state & SS_ISCONNECTING) 1968 strcat(buf, "ISCONNECTING "); 1969 if (state & SS_ISDISCONNECTING) 1970 strcat(buf, "ISDISCONNECTING "); 1971 if (state & SS_CANTSENDMORE) 1972 strcat(buf, "CANTSENDMORE "); 1973 1974 if (state & SS_CANTRCVMORE) 1975 strcat(buf, "CANTRCVMORE "); 1976 if (state & SS_ISBOUND) 1977 strcat(buf, "ISBOUND "); 1978 if (state & SS_NDELAY) 1979 strcat(buf, "NDELAY "); 1980 if (state & SS_NONBLOCK) 1981 strcat(buf, "NONBLOCK "); 1982 1983 if (state & SS_ASYNC) 1984 strcat(buf, "ASYNC "); 1985 if (state & SS_ACCEPTCONN) 1986 strcat(buf, "ACCEPTCONN "); 1987 if (state & SS_HASCONNIND) 1988 strcat(buf, "HASCONNIND "); 1989 if (state & SS_SAVEDEOR) 1990 strcat(buf, "SAVEDEOR "); 1991 1992 if (state & SS_RCVATMARK) 1993 strcat(buf, "RCVATMARK "); 1994 if (state & SS_OOBPEND) 1995 strcat(buf, "OOBPEND "); 1996 if (state & SS_HAVEOOBDATA) 1997 strcat(buf, "HAVEOOBDATA "); 1998 if (state & SS_HADOOBDATA) 1999 strcat(buf, "HADOOBDATA "); 2000 2001 if (state & SS_FADDR_NOXLATE) 2002 strcat(buf, "FADDR_NOXLATE "); 2003 2004 if (mode & SM_PRIV) 2005 strcat(buf, "PRIV "); 2006 if (mode & SM_ATOMIC) 2007 strcat(buf, "ATOMIC "); 2008 if (mode & SM_ADDR) 2009 strcat(buf, "ADDR "); 2010 if (mode & SM_CONNREQUIRED) 2011 strcat(buf, "CONNREQUIRED "); 2012 2013 if (mode & SM_FDPASSING) 2014 strcat(buf, "FDPASSING "); 2015 if (mode & SM_EXDATA) 2016 strcat(buf, "EXDATA "); 2017 if (mode & SM_OPTDATA) 2018 strcat(buf, "OPTDATA "); 2019 if (mode & SM_BYTESTREAM) 2020 strcat(buf, "BYTESTREAM "); 2021 return (buf); 2022 } 2023 2024 char * 2025 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen) 2026 { 2027 static char buf[1024]; 2028 2029 if (addr == NULL || addrlen == 0) { 2030 sprintf(buf, "(len %d) %p", addrlen, addr); 2031 return (buf); 2032 } 2033 switch (family) { 2034 case AF_INET: { 2035 struct sockaddr_in sin; 2036 2037 bcopy(addr, &sin, sizeof (sin)); 2038 2039 (void) sprintf(buf, "(len %d) %x/%d", 2040 addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 2041 break; 2042 } 2043 case AF_INET6: { 2044 struct sockaddr_in6 sin6; 2045 uint16_t *piece = (uint16_t *)&sin6.sin6_addr; 2046 2047 bcopy((char *)addr, (char *)&sin6, sizeof (sin6)); 2048 sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d", 2049 addrlen, 2050 ntohs(piece[0]), ntohs(piece[1]), 2051 ntohs(piece[2]), ntohs(piece[3]), 2052 ntohs(piece[4]), ntohs(piece[5]), 2053 ntohs(piece[6]), ntohs(piece[7]), 2054 ntohs(sin6.sin6_port)); 2055 break; 2056 } 2057 case AF_UNIX: { 2058 struct sockaddr_un *soun = (struct sockaddr_un *)addr; 2059 2060 (void) sprintf(buf, "(len %d) %s", addrlen, 2061 (soun == NULL) ? "(none)" : soun->sun_path); 2062 break; 2063 } 2064 default: 2065 (void) sprintf(buf, "(unknown af %d)", family); 2066 break; 2067 } 2068 return (buf); 2069 } 2070 2071 /* The logical equivalence operator (a if-and-only-if b) */ 2072 #define EQUIV(a, b) (((a) && (b)) || (!(a) && (!(b)))) 2073 2074 /* 2075 * Verify limitations and invariants on oob state. 2076 * Return 1 if OK, otherwise 0 so that it can be used as 2077 * ASSERT(verify_oobstate(so)); 2078 */ 2079 int 2080 so_verify_oobstate(struct sonode *so) 2081 { 2082 ASSERT(MUTEX_HELD(&so->so_lock)); 2083 2084 /* 2085 * The possible state combinations are: 2086 * 0 2087 * SS_OOBPEND 2088 * SS_OOBPEND|SS_HAVEOOBDATA 2089 * SS_OOBPEND|SS_HADOOBDATA 2090 * SS_HADOOBDATA 2091 */ 2092 switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) { 2093 case 0: 2094 case SS_OOBPEND: 2095 case SS_OOBPEND|SS_HAVEOOBDATA: 2096 case SS_OOBPEND|SS_HADOOBDATA: 2097 case SS_HADOOBDATA: 2098 break; 2099 default: 2100 printf("Bad oob state 1 (%p): counts %d/%d state %s\n", 2101 so, so->so_oobsigcnt, 2102 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2103 return (0); 2104 } 2105 2106 /* SS_RCVATMARK should only be set when SS_OOBPEND is set */ 2107 if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) { 2108 printf("Bad oob state 2 (%p): counts %d/%d state %s\n", 2109 so, so->so_oobsigcnt, 2110 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2111 return (0); 2112 } 2113 2114 /* 2115 * (so_oobsigcnt != 0 or SS_RCVATMARK) iff SS_OOBPEND 2116 */ 2117 if (!EQUIV((so->so_oobsigcnt != 0) || (so->so_state & SS_RCVATMARK), 2118 so->so_state & SS_OOBPEND)) { 2119 printf("Bad oob state 3 (%p): counts %d/%d state %s\n", 2120 so, so->so_oobsigcnt, 2121 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2122 return (0); 2123 } 2124 2125 /* 2126 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA 2127 */ 2128 if (!(so->so_options & SO_OOBINLINE) && 2129 !EQUIV(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) { 2130 printf("Bad oob state 4 (%p): counts %d/%d state %s\n", 2131 so, so->so_oobsigcnt, 2132 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2133 return (0); 2134 } 2135 if (so->so_oobsigcnt < so->so_oobcnt) { 2136 printf("Bad oob state 5 (%p): counts %d/%d state %s\n", 2137 so, so->so_oobsigcnt, 2138 so->so_oobcnt, pr_state(so->so_state, so->so_mode)); 2139 return (0); 2140 } 2141 return (1); 2142 } 2143 #undef EQUIV 2144 2145 #endif /* DEBUG */ 2146 2147 /* initialize sockfs zone specific kstat related items */ 2148 void * 2149 sock_kstat_init(zoneid_t zoneid) 2150 { 2151 kstat_t *ksp; 2152 2153 ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc", 2154 KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid); 2155 2156 if (ksp != NULL) { 2157 ksp->ks_update = sockfs_update; 2158 ksp->ks_snapshot = sockfs_snapshot; 2159 ksp->ks_lock = &socklist.sl_lock; 2160 ksp->ks_private = (void *)(uintptr_t)zoneid; 2161 kstat_install(ksp); 2162 } 2163 2164 return (ksp); 2165 } 2166 2167 /* tear down sockfs zone specific kstat related items */ 2168 /*ARGSUSED*/ 2169 void 2170 sock_kstat_fini(zoneid_t zoneid, void *arg) 2171 { 2172 kstat_t *ksp = (kstat_t *)arg; 2173 2174 if (ksp != NULL) { 2175 ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private); 2176 kstat_delete(ksp); 2177 } 2178 } 2179 2180 /* 2181 * Zones: 2182 * Note that nactive is going to be different for each zone. 2183 * This means we require kstat to call sockfs_update and then sockfs_snapshot 2184 * for the same zone, or sockfs_snapshot will be taken into the wrong size 2185 * buffer. This is safe, but if the buffer is too small, user will not be 2186 * given details of all sockets. However, as this kstat has a ks_lock, kstat 2187 * driver will keep it locked between the update and the snapshot, so no 2188 * other process (zone) can currently get inbetween resulting in a wrong size 2189 * buffer allocation. 2190 */ 2191 static int 2192 sockfs_update(kstat_t *ksp, int rw) 2193 { 2194 uint_t nactive = 0; /* # of active AF_UNIX sockets */ 2195 struct sonode *so; /* current sonode on socklist */ 2196 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2197 2198 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2199 2200 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2201 return (EACCES); 2202 } 2203 2204 for (so = socklist.sl_list; so != NULL; so = so->so_next) { 2205 if (so->so_accessvp != NULL && so->so_zoneid == myzoneid) { 2206 nactive++; 2207 } 2208 } 2209 ksp->ks_ndata = nactive; 2210 ksp->ks_data_size = nactive * sizeof (struct k_sockinfo); 2211 2212 return (0); 2213 } 2214 2215 static int 2216 sockfs_snapshot(kstat_t *ksp, void *buf, int rw) 2217 { 2218 int ns; /* # of sonodes we've copied */ 2219 struct sonode *so; /* current sonode on socklist */ 2220 struct k_sockinfo *pksi; /* where we put sockinfo data */ 2221 t_uscalar_t sn_len; /* soa_len */ 2222 zoneid_t myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private; 2223 2224 ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid()); 2225 2226 ksp->ks_snaptime = gethrtime(); 2227 2228 if (rw == KSTAT_WRITE) { /* bounce all writes */ 2229 return (EACCES); 2230 } 2231 2232 /* 2233 * for each sonode on the socklist, we massage the important 2234 * info into buf, in k_sockinfo format. 2235 */ 2236 pksi = (struct k_sockinfo *)buf; 2237 for (ns = 0, so = socklist.sl_list; so != NULL; so = so->so_next) { 2238 /* only stuff active sonodes and the same zone: */ 2239 if (so->so_accessvp == NULL || so->so_zoneid != myzoneid) { 2240 continue; 2241 } 2242 2243 /* 2244 * If the sonode was activated between the update and the 2245 * snapshot, we're done - as this is only a snapshot. 2246 */ 2247 if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) { 2248 break; 2249 } 2250 2251 /* copy important info into buf: */ 2252 pksi->ks_si.si_size = sizeof (struct k_sockinfo); 2253 pksi->ks_si.si_family = so->so_family; 2254 pksi->ks_si.si_type = so->so_type; 2255 pksi->ks_si.si_flag = so->so_flag; 2256 pksi->ks_si.si_state = so->so_state; 2257 pksi->ks_si.si_serv_type = so->so_serv_type; 2258 pksi->ks_si.si_ux_laddr_sou_magic = so->so_ux_laddr.soua_magic; 2259 pksi->ks_si.si_ux_faddr_sou_magic = so->so_ux_faddr.soua_magic; 2260 pksi->ks_si.si_laddr_soa_len = so->so_laddr.soa_len; 2261 pksi->ks_si.si_faddr_soa_len = so->so_faddr.soa_len; 2262 pksi->ks_si.si_szoneid = so->so_zoneid; 2263 2264 mutex_enter(&so->so_lock); 2265 2266 if (so->so_laddr_sa != NULL) { 2267 ASSERT(so->so_laddr_sa->sa_data != NULL); 2268 sn_len = so->so_laddr_len; 2269 ASSERT(sn_len <= sizeof (short) + 2270 sizeof (pksi->ks_si.si_laddr_sun_path)); 2271 2272 pksi->ks_si.si_laddr_family = 2273 so->so_laddr_sa->sa_family; 2274 if (sn_len != 0) { 2275 /* AF_UNIX socket names are NULL terminated */ 2276 (void) strncpy(pksi->ks_si.si_laddr_sun_path, 2277 so->so_laddr_sa->sa_data, 2278 sizeof (pksi->ks_si.si_laddr_sun_path)); 2279 sn_len = strlen(pksi->ks_si.si_laddr_sun_path); 2280 } 2281 pksi->ks_si.si_laddr_sun_path[sn_len] = 0; 2282 } 2283 2284 if (so->so_faddr_sa != NULL) { 2285 ASSERT(so->so_faddr_sa->sa_data != NULL); 2286 sn_len = so->so_faddr_len; 2287 ASSERT(sn_len <= sizeof (short) + 2288 sizeof (pksi->ks_si.si_faddr_sun_path)); 2289 2290 pksi->ks_si.si_faddr_family = 2291 so->so_faddr_sa->sa_family; 2292 if (sn_len != 0) { 2293 (void) strncpy(pksi->ks_si.si_faddr_sun_path, 2294 so->so_faddr_sa->sa_data, 2295 sizeof (pksi->ks_si.si_faddr_sun_path)); 2296 sn_len = strlen(pksi->ks_si.si_faddr_sun_path); 2297 } 2298 pksi->ks_si.si_faddr_sun_path[sn_len] = 0; 2299 } 2300 2301 mutex_exit(&so->so_lock); 2302 2303 (void) sprintf(pksi->ks_straddr[0], "%p", (void *)so); 2304 (void) sprintf(pksi->ks_straddr[1], "%p", 2305 (void *)so->so_ux_laddr.soua_vp); 2306 (void) sprintf(pksi->ks_straddr[2], "%p", 2307 (void *)so->so_ux_faddr.soua_vp); 2308 2309 ns++; 2310 pksi++; 2311 } 2312 2313 ksp->ks_ndata = ns; 2314 return (0); 2315 } 2316 2317 ssize_t 2318 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size) 2319 { 2320 struct uio auio; 2321 struct iovec aiov[MSG_MAXIOVLEN]; 2322 register vnode_t *vp; 2323 int ioflag, rwflag; 2324 ssize_t cnt; 2325 int error = 0; 2326 int iovcnt = 0; 2327 short fflag; 2328 2329 vp = fp->f_vnode; 2330 fflag = fp->f_flag; 2331 2332 rwflag = 0; 2333 aiov[0].iov_base = (caddr_t)buf; 2334 aiov[0].iov_len = size; 2335 iovcnt = 1; 2336 cnt = (ssize_t)size; 2337 (void) VOP_RWLOCK(vp, rwflag, NULL); 2338 2339 auio.uio_loffset = fileoff; 2340 auio.uio_iov = aiov; 2341 auio.uio_iovcnt = iovcnt; 2342 auio.uio_resid = cnt; 2343 auio.uio_segflg = UIO_SYSSPACE; 2344 auio.uio_llimit = MAXOFFSET_T; 2345 auio.uio_fmode = fflag; 2346 auio.uio_extflg = UIO_COPY_CACHED; 2347 2348 ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC); 2349 2350 /* If read sync is not asked for, filter sync flags */ 2351 if ((ioflag & FRSYNC) == 0) 2352 ioflag &= ~(FSYNC|FDSYNC); 2353 error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL); 2354 cnt -= auio.uio_resid; 2355 2356 VOP_RWUNLOCK(vp, rwflag, NULL); 2357 2358 if (error == EINTR && cnt != 0) 2359 error = 0; 2360 out: 2361 if (error != 0) { 2362 *err = error; 2363 return (0); 2364 } else { 2365 *err = 0; 2366 return (cnt); 2367 } 2368 } 2369