xref: /titanic_41/usr/src/uts/common/fs/sockfs/socksubr.c (revision 2dea4eed7ad1c66ae4770263aa2911815a8b86eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/t_lock.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/buf.h>
32 #include <sys/conf.h>
33 #include <sys/cred.h>
34 #include <sys/kmem.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/debug.h>
40 #include <sys/errno.h>
41 #include <sys/time.h>
42 #include <sys/file.h>
43 #include <sys/open.h>
44 #include <sys/user.h>
45 #include <sys/termios.h>
46 #include <sys/stream.h>
47 #include <sys/strsubr.h>
48 #include <sys/strsun.h>
49 #include <sys/esunddi.h>
50 #include <sys/flock.h>
51 #include <sys/modctl.h>
52 #include <sys/cmn_err.h>
53 #include <sys/mkdev.h>
54 #include <sys/pathname.h>
55 #include <sys/ddi.h>
56 #include <sys/stat.h>
57 #include <sys/fs/snode.h>
58 #include <sys/fs/dv_node.h>
59 #include <sys/zone.h>
60 
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <netinet/in.h>
64 #include <sys/un.h>
65 
66 #include <sys/ucred.h>
67 
68 #include <sys/tiuser.h>
69 #define	_SUN_TPI_VERSION	2
70 #include <sys/tihdr.h>
71 
72 #include <c2/audit.h>
73 
74 #include <fs/sockfs/nl7c.h>
75 #include <fs/sockfs/sockcommon.h>
76 #include <fs/sockfs/socktpi.h>
77 #include <fs/sockfs/socktpi_impl.h>
78 #include <fs/sockfs/sodirect.h>
79 
80 /*
81  * Macros that operate on struct cmsghdr.
82  * The CMSG_VALID macro does not assume that the last option buffer is padded.
83  */
84 #define	CMSG_CONTENT(cmsg)	(&((cmsg)[1]))
85 #define	CMSG_CONTENTLEN(cmsg)	((cmsg)->cmsg_len - sizeof (struct cmsghdr))
86 #define	CMSG_VALID(cmsg, start, end)					\
87 	(ISALIGNED_cmsghdr(cmsg) &&					\
88 	((uintptr_t)(cmsg) >= (uintptr_t)(start)) &&			\
89 	((uintptr_t)(cmsg) < (uintptr_t)(end)) &&			\
90 	((ssize_t)(cmsg)->cmsg_len >= sizeof (struct cmsghdr)) &&	\
91 	((uintptr_t)(cmsg) + (cmsg)->cmsg_len <= (uintptr_t)(end)))
92 #define	SO_LOCK_WAKEUP_TIME	3000	/* Wakeup time in milliseconds */
93 
94 dev_t sockdev;	/* For fsid in getattr */
95 int sockfs_defer_nl7c_init = 0;
96 
97 struct socklist socklist;
98 
99 struct kmem_cache *socket_cache;
100 
101 static int sockfs_update(kstat_t *, int);
102 static int sockfs_snapshot(kstat_t *, void *, int);
103 extern smod_info_t *sotpi_smod_create(void);
104 
105 extern void sendfile_init();
106 
107 extern void nl7c_init(void);
108 
109 extern int modrootloaded;
110 
111 #define	ADRSTRLEN (2 * sizeof (void *) + 1)
112 /*
113  * kernel structure for passing the sockinfo data back up to the user.
114  * the strings array allows us to convert AF_UNIX addresses into strings
115  * with a common method regardless of which n-bit kernel we're running.
116  */
117 struct k_sockinfo {
118 	struct sockinfo	ks_si;
119 	char		ks_straddr[3][ADRSTRLEN];
120 };
121 
122 /*
123  * Translate from a device pathname (e.g. "/dev/tcp") to a vnode.
124  * Returns with the vnode held.
125  */
126 int
127 sogetvp(char *devpath, vnode_t **vpp, int uioflag)
128 {
129 	struct snode *csp;
130 	vnode_t *vp, *dvp;
131 	major_t maj;
132 	int error;
133 
134 	ASSERT(uioflag == UIO_SYSSPACE || uioflag == UIO_USERSPACE);
135 
136 	/*
137 	 * Lookup the underlying filesystem vnode.
138 	 */
139 	error = lookupname(devpath, uioflag, FOLLOW, NULLVPP, &vp);
140 	if (error)
141 		return (error);
142 
143 	/* Check that it is the correct vnode */
144 	if (vp->v_type != VCHR) {
145 		VN_RELE(vp);
146 		return (ENOTSOCK);
147 	}
148 
149 	/*
150 	 * If devpath went through devfs, the device should already
151 	 * be configured. If devpath is a mknod file, however, we
152 	 * need to make sure the device is properly configured.
153 	 * To do this, we do something similar to spec_open()
154 	 * except that we resolve to the minor/leaf level since
155 	 * we need to return a vnode.
156 	 */
157 	csp = VTOS(VTOS(vp)->s_commonvp);
158 	if (!(csp->s_flag & SDIPSET)) {
159 		char *pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
160 		error = ddi_dev_pathname(vp->v_rdev, S_IFCHR, pathname);
161 		if (error == 0)
162 			error = devfs_lookupname(pathname, NULLVPP, &dvp);
163 		VN_RELE(vp);
164 		kmem_free(pathname, MAXPATHLEN);
165 		if (error != 0)
166 			return (ENXIO);
167 		vp = dvp;	/* use the devfs vp */
168 	}
169 
170 	/* device is configured at this point */
171 	maj = getmajor(vp->v_rdev);
172 	if (!STREAMSTAB(maj)) {
173 		VN_RELE(vp);
174 		return (ENOSTR);
175 	}
176 
177 	*vpp = vp;
178 	return (0);
179 }
180 
181 /*
182  * Update the accessed, updated, or changed times in an sonode
183  * with the current time.
184  *
185  * Note that both SunOS 4.X and 4.4BSD sockets do not present reasonable
186  * attributes in a fstat call. (They return the current time and 0 for
187  * all timestamps, respectively.) We maintain the current timestamps
188  * here primarily so that should sockmod be popped the resulting
189  * file descriptor will behave like a stream w.r.t. the timestamps.
190  */
191 void
192 so_update_attrs(struct sonode *so, int flag)
193 {
194 	time_t now = gethrestime_sec();
195 
196 	if (SOCK_IS_NONSTR(so))
197 		return;
198 
199 	mutex_enter(&so->so_lock);
200 	so->so_flag |= flag;
201 	if (flag & SOACC)
202 		SOTOTPI(so)->sti_atime = now;
203 	if (flag & SOMOD)
204 		SOTOTPI(so)->sti_mtime = now;
205 	mutex_exit(&so->so_lock);
206 }
207 
208 extern so_create_func_t sock_comm_create_function;
209 extern so_destroy_func_t sock_comm_destroy_function;
210 /*
211  * Init function called when sockfs is loaded.
212  */
213 int
214 sockinit(int fstype, char *name)
215 {
216 	static const fs_operation_def_t sock_vfsops_template[] = {
217 		NULL, NULL
218 	};
219 	int error;
220 	major_t dev;
221 	char *err_str;
222 
223 	error = vfs_setfsops(fstype, sock_vfsops_template, NULL);
224 	if (error != 0) {
225 		zcmn_err(GLOBAL_ZONEID, CE_WARN,
226 		    "sockinit: bad vfs ops template");
227 		return (error);
228 	}
229 
230 	error = vn_make_ops(name, socket_vnodeops_template,
231 	    &socket_vnodeops);
232 	if (error != 0) {
233 		err_str = "sockinit: bad socket vnode ops template";
234 		/* vn_make_ops() does not reset socktpi_vnodeops on failure. */
235 		socket_vnodeops = NULL;
236 		goto failure;
237 	}
238 
239 	socket_cache = kmem_cache_create("socket_cache",
240 	    sizeof (struct sonode), 0, sonode_constructor,
241 	    sonode_destructor, NULL, NULL, NULL, 0);
242 
243 	error = socktpi_init();
244 	if (error != 0) {
245 		err_str = NULL;
246 		goto failure;
247 	}
248 
249 	error = sod_init();
250 	if (error != 0) {
251 		err_str = NULL;
252 		goto failure;
253 	}
254 
255 	/*
256 	 * Set up the default create and destroy functions
257 	 */
258 	sock_comm_create_function = socket_sonode_create;
259 	sock_comm_destroy_function = socket_sonode_destroy;
260 
261 	/*
262 	 * Build initial list mapping socket parameters to vnode.
263 	 */
264 	smod_init();
265 	smod_add(sotpi_smod_create());
266 
267 	sockparams_init();
268 
269 	/*
270 	 * If sockets are needed before init runs /sbin/soconfig
271 	 * it is possible to preload the sockparams list here using
272 	 * calls like:
273 	 *	sockconfig(1,2,3, "/dev/tcp", 0);
274 	 */
275 
276 	/*
277 	 * Create a unique dev_t for use in so_fsid.
278 	 */
279 
280 	if ((dev = getudev()) == (major_t)-1)
281 		dev = 0;
282 	sockdev = makedevice(dev, 0);
283 
284 	mutex_init(&socklist.sl_lock, NULL, MUTEX_DEFAULT, NULL);
285 	sendfile_init();
286 	if (!modrootloaded) {
287 		sockfs_defer_nl7c_init = 1;
288 	} else {
289 		nl7c_init();
290 	}
291 
292 	return (0);
293 
294 failure:
295 	(void) vfs_freevfsops_by_type(fstype);
296 	if (socket_vnodeops != NULL)
297 		vn_freevnodeops(socket_vnodeops);
298 	if (err_str != NULL)
299 		zcmn_err(GLOBAL_ZONEID, CE_WARN, err_str);
300 	return (error);
301 }
302 
303 /*
304  * Caller must hold the mutex. Used to set SOLOCKED.
305  */
306 void
307 so_lock_single(struct sonode *so)
308 {
309 	ASSERT(MUTEX_HELD(&so->so_lock));
310 
311 	while (so->so_flag & (SOLOCKED | SOASYNC_UNBIND)) {
312 		cv_wait_stop(&so->so_single_cv, &so->so_lock,
313 		    SO_LOCK_WAKEUP_TIME);
314 	}
315 	so->so_flag |= SOLOCKED;
316 }
317 
318 /*
319  * Caller must hold the mutex and pass in SOLOCKED or SOASYNC_UNBIND.
320  * Used to clear SOLOCKED or SOASYNC_UNBIND.
321  */
322 void
323 so_unlock_single(struct sonode *so, int flag)
324 {
325 	ASSERT(MUTEX_HELD(&so->so_lock));
326 	ASSERT(flag & (SOLOCKED|SOASYNC_UNBIND));
327 	ASSERT((flag & ~(SOLOCKED|SOASYNC_UNBIND)) == 0);
328 	ASSERT(so->so_flag & flag);
329 	/*
330 	 * Process the T_DISCON_IND on sti_discon_ind_mp.
331 	 *
332 	 * Call to so_drain_discon_ind will result in so_lock
333 	 * being dropped and re-acquired later.
334 	 */
335 	if (!SOCK_IS_NONSTR(so)) {
336 		sotpi_info_t *sti = SOTOTPI(so);
337 
338 		if (sti->sti_discon_ind_mp != NULL)
339 			so_drain_discon_ind(so);
340 	}
341 
342 	cv_signal(&so->so_single_cv);
343 	so->so_flag &= ~flag;
344 }
345 
346 /*
347  * Caller must hold the mutex. Used to set SOREADLOCKED.
348  * If the caller wants nonblocking behavior it should set fmode.
349  */
350 int
351 so_lock_read(struct sonode *so, int fmode)
352 {
353 	ASSERT(MUTEX_HELD(&so->so_lock));
354 
355 	while (so->so_flag & SOREADLOCKED) {
356 		if (fmode & (FNDELAY|FNONBLOCK))
357 			return (EWOULDBLOCK);
358 		cv_wait_stop(&so->so_read_cv, &so->so_lock,
359 		    SO_LOCK_WAKEUP_TIME);
360 	}
361 	so->so_flag |= SOREADLOCKED;
362 	return (0);
363 }
364 
365 /*
366  * Like so_lock_read above but allows signals.
367  */
368 int
369 so_lock_read_intr(struct sonode *so, int fmode)
370 {
371 	ASSERT(MUTEX_HELD(&so->so_lock));
372 
373 	while (so->so_flag & SOREADLOCKED) {
374 		if (fmode & (FNDELAY|FNONBLOCK))
375 			return (EWOULDBLOCK);
376 		if (!cv_wait_sig(&so->so_read_cv, &so->so_lock))
377 			return (EINTR);
378 	}
379 	so->so_flag |= SOREADLOCKED;
380 	return (0);
381 }
382 
383 /*
384  * Caller must hold the mutex. Used to clear SOREADLOCKED,
385  * set in so_lock_read() or so_lock_read_intr().
386  */
387 void
388 so_unlock_read(struct sonode *so)
389 {
390 	ASSERT(MUTEX_HELD(&so->so_lock));
391 	ASSERT(so->so_flag & SOREADLOCKED);
392 
393 	cv_signal(&so->so_read_cv);
394 	so->so_flag &= ~SOREADLOCKED;
395 }
396 
397 /*
398  * Verify that the specified offset falls within the mblk and
399  * that the resulting pointer is aligned.
400  * Returns NULL if not.
401  */
402 void *
403 sogetoff(mblk_t *mp, t_uscalar_t offset,
404     t_uscalar_t length, uint_t align_size)
405 {
406 	uintptr_t ptr1, ptr2;
407 
408 	ASSERT(mp && mp->b_wptr >= mp->b_rptr);
409 	ptr1 = (uintptr_t)mp->b_rptr + offset;
410 	ptr2 = (uintptr_t)ptr1 + length;
411 	if (ptr1 < (uintptr_t)mp->b_rptr || ptr2 > (uintptr_t)mp->b_wptr) {
412 		eprintline(0);
413 		return (NULL);
414 	}
415 	if ((ptr1 & (align_size - 1)) != 0) {
416 		eprintline(0);
417 		return (NULL);
418 	}
419 	return ((void *)ptr1);
420 }
421 
422 /*
423  * Return the AF_UNIX underlying filesystem vnode matching a given name.
424  * Makes sure the sending and the destination sonodes are compatible.
425  * The vnode is returned held.
426  *
427  * The underlying filesystem VSOCK vnode has a v_stream pointer that
428  * references the actual stream head (hence indirectly the actual sonode).
429  */
430 static int
431 so_ux_lookup(struct sonode *so, struct sockaddr_un *soun, int checkaccess,
432 		vnode_t **vpp)
433 {
434 	vnode_t		*vp;	/* Underlying filesystem vnode */
435 	vnode_t		*rvp;	/* real vnode */
436 	vnode_t		*svp;	/* sockfs vnode */
437 	struct sonode	*so2;
438 	int		error;
439 
440 	dprintso(so, 1, ("so_ux_lookup(%p) name <%s>\n", (void *)so,
441 	    soun->sun_path));
442 
443 	error = lookupname(soun->sun_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
444 	if (error) {
445 		eprintsoline(so, error);
446 		return (error);
447 	}
448 
449 	/*
450 	 * Traverse lofs mounts get the real vnode
451 	 */
452 	if (VOP_REALVP(vp, &rvp, NULL) == 0) {
453 		VN_HOLD(rvp);		/* hold the real vnode */
454 		VN_RELE(vp);		/* release hold from lookup */
455 		vp = rvp;
456 	}
457 
458 	if (vp->v_type != VSOCK) {
459 		error = ENOTSOCK;
460 		eprintsoline(so, error);
461 		goto done2;
462 	}
463 
464 	if (checkaccess) {
465 		/*
466 		 * Check that we have permissions to access the destination
467 		 * vnode. This check is not done in BSD but it is required
468 		 * by X/Open.
469 		 */
470 		if (error = VOP_ACCESS(vp, VREAD|VWRITE, 0, CRED(), NULL)) {
471 			eprintsoline(so, error);
472 			goto done2;
473 		}
474 	}
475 
476 	/*
477 	 * Check if the remote socket has been closed.
478 	 *
479 	 * Synchronize with vn_rele_stream by holding v_lock while traversing
480 	 * v_stream->sd_vnode.
481 	 */
482 	mutex_enter(&vp->v_lock);
483 	if (vp->v_stream == NULL) {
484 		mutex_exit(&vp->v_lock);
485 		if (so->so_type == SOCK_DGRAM)
486 			error = EDESTADDRREQ;
487 		else
488 			error = ECONNREFUSED;
489 
490 		eprintsoline(so, error);
491 		goto done2;
492 	}
493 	ASSERT(vp->v_stream->sd_vnode);
494 	svp = vp->v_stream->sd_vnode;
495 	/*
496 	 * holding v_lock on underlying filesystem vnode and acquiring
497 	 * it on sockfs vnode. Assumes that no code ever attempts to
498 	 * acquire these locks in the reverse order.
499 	 */
500 	VN_HOLD(svp);
501 	mutex_exit(&vp->v_lock);
502 
503 	if (svp->v_type != VSOCK) {
504 		error = ENOTSOCK;
505 		eprintsoline(so, error);
506 		goto done;
507 	}
508 
509 	so2 = VTOSO(svp);
510 
511 	if (so->so_type != so2->so_type) {
512 		error = EPROTOTYPE;
513 		eprintsoline(so, error);
514 		goto done;
515 	}
516 
517 	VN_RELE(svp);
518 	*vpp = vp;
519 	return (0);
520 
521 done:
522 	VN_RELE(svp);
523 done2:
524 	VN_RELE(vp);
525 	return (error);
526 }
527 
528 /*
529  * Verify peer address for connect and sendto/sendmsg.
530  * Since sendto/sendmsg would not get synchronous errors from the transport
531  * provider we have to do these ugly checks in the socket layer to
532  * preserve compatibility with SunOS 4.X.
533  */
534 int
535 so_addr_verify(struct sonode *so, const struct sockaddr *name,
536     socklen_t namelen)
537 {
538 	int		family;
539 
540 	dprintso(so, 1, ("so_addr_verify(%p, %p, %d)\n",
541 	    (void *)so, (void *)name, namelen));
542 
543 	ASSERT(name != NULL);
544 
545 	family = so->so_family;
546 	switch (family) {
547 	case AF_INET:
548 		if (name->sa_family != family) {
549 			eprintsoline(so, EAFNOSUPPORT);
550 			return (EAFNOSUPPORT);
551 		}
552 		if (namelen != (socklen_t)sizeof (struct sockaddr_in)) {
553 			eprintsoline(so, EINVAL);
554 			return (EINVAL);
555 		}
556 		break;
557 	case AF_INET6: {
558 #ifdef DEBUG
559 		struct sockaddr_in6 *sin6;
560 #endif /* DEBUG */
561 
562 		if (name->sa_family != family) {
563 			eprintsoline(so, EAFNOSUPPORT);
564 			return (EAFNOSUPPORT);
565 		}
566 		if (namelen != (socklen_t)sizeof (struct sockaddr_in6)) {
567 			eprintsoline(so, EINVAL);
568 			return (EINVAL);
569 		}
570 #ifdef DEBUG
571 		/* Verify that apps don't forget to clear sin6_scope_id etc */
572 		sin6 = (struct sockaddr_in6 *)name;
573 		if (sin6->sin6_scope_id != 0 &&
574 		    !IN6_IS_ADDR_LINKSCOPE(&sin6->sin6_addr)) {
575 			zcmn_err(getzoneid(), CE_WARN,
576 			    "connect/send* with uninitialized sin6_scope_id "
577 			    "(%d) on socket. Pid = %d\n",
578 			    (int)sin6->sin6_scope_id, (int)curproc->p_pid);
579 		}
580 #endif /* DEBUG */
581 		break;
582 	}
583 	case AF_UNIX:
584 		if (SOTOTPI(so)->sti_faddr_noxlate) {
585 			return (0);
586 		}
587 		if (namelen < (socklen_t)sizeof (short)) {
588 			eprintsoline(so, ENOENT);
589 			return (ENOENT);
590 		}
591 		if (name->sa_family != family) {
592 			eprintsoline(so, EAFNOSUPPORT);
593 			return (EAFNOSUPPORT);
594 		}
595 		/* MAXPATHLEN + soun_family + nul termination */
596 		if (namelen > (socklen_t)(MAXPATHLEN + sizeof (short) + 1)) {
597 			eprintsoline(so, ENAMETOOLONG);
598 			return (ENAMETOOLONG);
599 		}
600 
601 		break;
602 
603 	default:
604 		/*
605 		 * Default is don't do any length or sa_family check
606 		 * to allow non-sockaddr style addresses.
607 		 */
608 		break;
609 	}
610 
611 	return (0);
612 }
613 
614 
615 /*
616  * Translate an AF_UNIX sockaddr_un to the transport internal name.
617  * Assumes caller has called so_addr_verify first.
618  */
619 /*ARGSUSED*/
620 int
621 so_ux_addr_xlate(struct sonode *so, struct sockaddr *name,
622     socklen_t namelen, int checkaccess,
623     void **addrp, socklen_t *addrlenp)
624 {
625 	int			error;
626 	struct sockaddr_un	*soun;
627 	vnode_t			*vp;
628 	void			*addr;
629 	socklen_t		addrlen;
630 	sotpi_info_t		*sti = SOTOTPI(so);
631 
632 	dprintso(so, 1, ("so_ux_addr_xlate(%p, %p, %d, %d)\n",
633 	    (void *)so, (void *)name, namelen, checkaccess));
634 
635 	ASSERT(name != NULL);
636 	ASSERT(so->so_family == AF_UNIX);
637 	ASSERT(!sti->sti_faddr_noxlate);
638 	ASSERT(namelen >= (socklen_t)sizeof (short));
639 	ASSERT(name->sa_family == AF_UNIX);
640 	soun = (struct sockaddr_un *)name;
641 	/*
642 	 * Lookup vnode for the specified path name and verify that
643 	 * it is a socket.
644 	 */
645 	error = so_ux_lookup(so, soun, checkaccess, &vp);
646 	if (error) {
647 		eprintsoline(so, error);
648 		return (error);
649 	}
650 	/*
651 	 * Use the address of the peer vnode as the address to send
652 	 * to. We release the peer vnode here. In case it has been
653 	 * closed by the time the T_CONN_REQ or T_UNIDATA_REQ reaches the
654 	 * transport the message will get an error or be dropped.
655 	 */
656 	sti->sti_ux_faddr.soua_vp = vp;
657 	sti->sti_ux_faddr.soua_magic = SOU_MAGIC_EXPLICIT;
658 	addr = &sti->sti_ux_faddr;
659 	addrlen = (socklen_t)sizeof (sti->sti_ux_faddr);
660 	dprintso(so, 1, ("ux_xlate UNIX: addrlen %d, vp %p\n",
661 	    addrlen, (void *)vp));
662 	VN_RELE(vp);
663 	*addrp = addr;
664 	*addrlenp = (socklen_t)addrlen;
665 	return (0);
666 }
667 
668 /*
669  * Esballoc free function for messages that contain SO_FILEP option.
670  * Decrement the reference count on the file pointers using closef.
671  */
672 void
673 fdbuf_free(struct fdbuf *fdbuf)
674 {
675 	int	i;
676 	struct file *fp;
677 
678 	dprint(1, ("fdbuf_free: %d fds\n", fdbuf->fd_numfd));
679 	for (i = 0; i < fdbuf->fd_numfd; i++) {
680 		/*
681 		 * We need pointer size alignment for fd_fds. On a LP64
682 		 * kernel, the required alignment is 8 bytes while
683 		 * the option headers and values are only 4 bytes
684 		 * aligned. So its safer to do a bcopy compared to
685 		 * assigning fdbuf->fd_fds[i] to fp.
686 		 */
687 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
688 		dprint(1, ("fdbuf_free: [%d] = %p\n", i, (void *)fp));
689 		(void) closef(fp);
690 	}
691 	if (fdbuf->fd_ebuf != NULL)
692 		kmem_free(fdbuf->fd_ebuf, fdbuf->fd_ebuflen);
693 	kmem_free(fdbuf, fdbuf->fd_size);
694 }
695 
696 /*
697  * Allocate an esballoc'ed message for AF_UNIX file descriptor passing.
698  * Waits if memory is not available.
699  */
700 mblk_t *
701 fdbuf_allocmsg(int size, struct fdbuf *fdbuf)
702 {
703 	uchar_t	*buf;
704 	mblk_t	*mp;
705 
706 	dprint(1, ("fdbuf_allocmsg: size %d, %d fds\n", size, fdbuf->fd_numfd));
707 	buf = kmem_alloc(size, KM_SLEEP);
708 	fdbuf->fd_ebuf = (caddr_t)buf;
709 	fdbuf->fd_ebuflen = size;
710 	fdbuf->fd_frtn.free_func = fdbuf_free;
711 	fdbuf->fd_frtn.free_arg = (caddr_t)fdbuf;
712 
713 	mp = esballoc_wait(buf, size, BPRI_MED, &fdbuf->fd_frtn);
714 	mp->b_datap->db_type = M_PROTO;
715 	return (mp);
716 }
717 
718 /*
719  * Extract file descriptors from a fdbuf.
720  * Return list in rights/rightslen.
721  */
722 /*ARGSUSED*/
723 static int
724 fdbuf_extract(struct fdbuf *fdbuf, void *rights, int rightslen)
725 {
726 	int	i, fd;
727 	int	*rp;
728 	struct file *fp;
729 	int	numfd;
730 
731 	dprint(1, ("fdbuf_extract: %d fds, len %d\n",
732 	    fdbuf->fd_numfd, rightslen));
733 
734 	numfd = fdbuf->fd_numfd;
735 	ASSERT(rightslen == numfd * (int)sizeof (int));
736 
737 	/*
738 	 * Allocate a file descriptor and increment the f_count.
739 	 * The latter is needed since we always call fdbuf_free
740 	 * which performs a closef.
741 	 */
742 	rp = (int *)rights;
743 	for (i = 0; i < numfd; i++) {
744 		if ((fd = ufalloc(0)) == -1)
745 			goto cleanup;
746 		/*
747 		 * We need pointer size alignment for fd_fds. On a LP64
748 		 * kernel, the required alignment is 8 bytes while
749 		 * the option headers and values are only 4 bytes
750 		 * aligned. So its safer to do a bcopy compared to
751 		 * assigning fdbuf->fd_fds[i] to fp.
752 		 */
753 		bcopy((char *)&fdbuf->fd_fds[i], (char *)&fp, sizeof (fp));
754 		mutex_enter(&fp->f_tlock);
755 		fp->f_count++;
756 		mutex_exit(&fp->f_tlock);
757 		setf(fd, fp);
758 		*rp++ = fd;
759 		if (audit_active)
760 			audit_fdrecv(fd, fp);
761 		dprint(1, ("fdbuf_extract: [%d] = %d, %p refcnt %d\n",
762 		    i, fd, (void *)fp, fp->f_count));
763 	}
764 	return (0);
765 
766 cleanup:
767 	/*
768 	 * Undo whatever partial work the loop above has done.
769 	 */
770 	{
771 		int j;
772 
773 		rp = (int *)rights;
774 		for (j = 0; j < i; j++) {
775 			dprint(0,
776 			    ("fdbuf_extract: cleanup[%d] = %d\n", j, *rp));
777 			(void) closeandsetf(*rp++, NULL);
778 		}
779 	}
780 
781 	return (EMFILE);
782 }
783 
784 /*
785  * Insert file descriptors into an fdbuf.
786  * Returns a kmem_alloc'ed fdbuf. The fdbuf should be freed
787  * by calling fdbuf_free().
788  */
789 int
790 fdbuf_create(void *rights, int rightslen, struct fdbuf **fdbufp)
791 {
792 	int		numfd, i;
793 	int		*fds;
794 	struct file	*fp;
795 	struct fdbuf	*fdbuf;
796 	int		fdbufsize;
797 
798 	dprint(1, ("fdbuf_create: len %d\n", rightslen));
799 
800 	numfd = rightslen / (int)sizeof (int);
801 
802 	fdbufsize = (int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *));
803 	fdbuf = kmem_alloc(fdbufsize, KM_SLEEP);
804 	fdbuf->fd_size = fdbufsize;
805 	fdbuf->fd_numfd = 0;
806 	fdbuf->fd_ebuf = NULL;
807 	fdbuf->fd_ebuflen = 0;
808 	fds = (int *)rights;
809 	for (i = 0; i < numfd; i++) {
810 		if ((fp = getf(fds[i])) == NULL) {
811 			fdbuf_free(fdbuf);
812 			return (EBADF);
813 		}
814 		dprint(1, ("fdbuf_create: [%d] = %d, %p refcnt %d\n",
815 		    i, fds[i], (void *)fp, fp->f_count));
816 		mutex_enter(&fp->f_tlock);
817 		fp->f_count++;
818 		mutex_exit(&fp->f_tlock);
819 		/*
820 		 * The maximum alignment for fdbuf (or any option header
821 		 * and its value) it 4 bytes. On a LP64 kernel, the alignment
822 		 * is not sufficient for pointers (fd_fds in this case). Since
823 		 * we just did a kmem_alloc (we get a double word alignment),
824 		 * we don't need to do anything on the send side (we loose
825 		 * the double word alignment because fdbuf goes after an
826 		 * option header (eg T_unitdata_req) which is only 4 byte
827 		 * aligned). We take care of this when we extract the file
828 		 * descriptor in fdbuf_extract or fdbuf_free.
829 		 */
830 		fdbuf->fd_fds[i] = fp;
831 		fdbuf->fd_numfd++;
832 		releasef(fds[i]);
833 		if (audit_active)
834 			audit_fdsend(fds[i], fp, 0);
835 	}
836 	*fdbufp = fdbuf;
837 	return (0);
838 }
839 
840 static int
841 fdbuf_optlen(int rightslen)
842 {
843 	int numfd;
844 
845 	numfd = rightslen / (int)sizeof (int);
846 
847 	return ((int)FDBUF_HDRSIZE + (numfd * (int)sizeof (struct file *)));
848 }
849 
850 static t_uscalar_t
851 fdbuf_cmsglen(int fdbuflen)
852 {
853 	return (t_uscalar_t)((fdbuflen - FDBUF_HDRSIZE) /
854 	    (int)sizeof (struct file *) * (int)sizeof (int));
855 }
856 
857 
858 /*
859  * Return non-zero if the mblk and fdbuf are consistent.
860  */
861 static int
862 fdbuf_verify(mblk_t *mp, struct fdbuf *fdbuf, int fdbuflen)
863 {
864 	if (fdbuflen >= FDBUF_HDRSIZE &&
865 	    fdbuflen == fdbuf->fd_size) {
866 		frtn_t *frp = mp->b_datap->db_frtnp;
867 		/*
868 		 * Check that the SO_FILEP portion of the
869 		 * message has not been modified by
870 		 * the loopback transport. The sending sockfs generates
871 		 * a message that is esballoc'ed with the free function
872 		 * being fdbuf_free() and where free_arg contains the
873 		 * identical information as the SO_FILEP content.
874 		 *
875 		 * If any of these constraints are not satisfied we
876 		 * silently ignore the option.
877 		 */
878 		ASSERT(mp);
879 		if (frp != NULL &&
880 		    frp->free_func == fdbuf_free &&
881 		    frp->free_arg != NULL &&
882 		    bcmp(frp->free_arg, fdbuf, fdbuflen) == 0) {
883 			dprint(1, ("fdbuf_verify: fdbuf %p len %d\n",
884 			    (void *)fdbuf, fdbuflen));
885 			return (1);
886 		} else {
887 			zcmn_err(getzoneid(), CE_WARN,
888 			    "sockfs: mismatched fdbuf content (%p)",
889 			    (void *)mp);
890 			return (0);
891 		}
892 	} else {
893 		zcmn_err(getzoneid(), CE_WARN,
894 		    "sockfs: mismatched fdbuf len %d, %d\n",
895 		    fdbuflen, fdbuf->fd_size);
896 		return (0);
897 	}
898 }
899 
900 /*
901  * When the file descriptors returned by sorecvmsg can not be passed
902  * to the application this routine will cleanup the references on
903  * the files. Start at startoff bytes into the buffer.
904  */
905 static void
906 close_fds(void *fdbuf, int fdbuflen, int startoff)
907 {
908 	int *fds = (int *)fdbuf;
909 	int numfd = fdbuflen / (int)sizeof (int);
910 	int i;
911 
912 	dprint(1, ("close_fds(%p, %d, %d)\n", fdbuf, fdbuflen, startoff));
913 
914 	for (i = 0; i < numfd; i++) {
915 		if (startoff < 0)
916 			startoff = 0;
917 		if (startoff < (int)sizeof (int)) {
918 			/*
919 			 * This file descriptor is partially or fully after
920 			 * the offset
921 			 */
922 			dprint(0,
923 			    ("close_fds: cleanup[%d] = %d\n", i, fds[i]));
924 			(void) closeandsetf(fds[i], NULL);
925 		}
926 		startoff -= (int)sizeof (int);
927 	}
928 }
929 
930 /*
931  * Close all file descriptors contained in the control part starting at
932  * the startoffset.
933  */
934 void
935 so_closefds(void *control, t_uscalar_t controllen, int oldflg,
936     int startoff)
937 {
938 	struct cmsghdr *cmsg;
939 
940 	if (control == NULL)
941 		return;
942 
943 	if (oldflg) {
944 		close_fds(control, controllen, startoff);
945 		return;
946 	}
947 	/* Scan control part for file descriptors. */
948 	for (cmsg = (struct cmsghdr *)control;
949 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
950 	    cmsg = CMSG_NEXT(cmsg)) {
951 		if (cmsg->cmsg_level == SOL_SOCKET &&
952 		    cmsg->cmsg_type == SCM_RIGHTS) {
953 			close_fds(CMSG_CONTENT(cmsg),
954 			    (int)CMSG_CONTENTLEN(cmsg),
955 			    startoff - (int)sizeof (struct cmsghdr));
956 		}
957 		startoff -= cmsg->cmsg_len;
958 	}
959 }
960 
961 /*
962  * Returns a pointer/length for the file descriptors contained
963  * in the control buffer. Returns with *fdlenp == -1 if there are no
964  * file descriptor options present. This is different than there being
965  * a zero-length file descriptor option.
966  * Fail if there are multiple SCM_RIGHT cmsgs.
967  */
968 int
969 so_getfdopt(void *control, t_uscalar_t controllen, int oldflg,
970     void **fdsp, int *fdlenp)
971 {
972 	struct cmsghdr *cmsg;
973 	void *fds;
974 	int fdlen;
975 
976 	if (control == NULL) {
977 		*fdsp = NULL;
978 		*fdlenp = -1;
979 		return (0);
980 	}
981 
982 	if (oldflg) {
983 		*fdsp = control;
984 		if (controllen == 0)
985 			*fdlenp = -1;
986 		else
987 			*fdlenp = controllen;
988 		dprint(1, ("so_getfdopt: old %d\n", *fdlenp));
989 		return (0);
990 	}
991 
992 	fds = NULL;
993 	fdlen = 0;
994 
995 	for (cmsg = (struct cmsghdr *)control;
996 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
997 	    cmsg = CMSG_NEXT(cmsg)) {
998 		if (cmsg->cmsg_level == SOL_SOCKET &&
999 		    cmsg->cmsg_type == SCM_RIGHTS) {
1000 			if (fds != NULL)
1001 				return (EINVAL);
1002 			fds = CMSG_CONTENT(cmsg);
1003 			fdlen = (int)CMSG_CONTENTLEN(cmsg);
1004 			dprint(1, ("so_getfdopt: new %lu\n",
1005 			    (size_t)CMSG_CONTENTLEN(cmsg)));
1006 		}
1007 	}
1008 	if (fds == NULL) {
1009 		dprint(1, ("so_getfdopt: NONE\n"));
1010 		*fdlenp = -1;
1011 	} else
1012 		*fdlenp = fdlen;
1013 	*fdsp = fds;
1014 	return (0);
1015 }
1016 
1017 /*
1018  * Return the length of the options including any file descriptor options.
1019  */
1020 t_uscalar_t
1021 so_optlen(void *control, t_uscalar_t controllen, int oldflg)
1022 {
1023 	struct cmsghdr *cmsg;
1024 	t_uscalar_t optlen = 0;
1025 	t_uscalar_t len;
1026 
1027 	if (control == NULL)
1028 		return (0);
1029 
1030 	if (oldflg)
1031 		return ((t_uscalar_t)(sizeof (struct T_opthdr) +
1032 		    fdbuf_optlen(controllen)));
1033 
1034 	for (cmsg = (struct cmsghdr *)control;
1035 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1036 	    cmsg = CMSG_NEXT(cmsg)) {
1037 		if (cmsg->cmsg_level == SOL_SOCKET &&
1038 		    cmsg->cmsg_type == SCM_RIGHTS) {
1039 			len = fdbuf_optlen((int)CMSG_CONTENTLEN(cmsg));
1040 		} else {
1041 			len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1042 		}
1043 		optlen += (t_uscalar_t)(_TPI_ALIGN_TOPT(len) +
1044 		    sizeof (struct T_opthdr));
1045 	}
1046 	dprint(1, ("so_optlen: controllen %d, flg %d -> optlen %d\n",
1047 	    controllen, oldflg, optlen));
1048 	return (optlen);
1049 }
1050 
1051 /*
1052  * Copy options from control to the mblk. Skip any file descriptor options.
1053  */
1054 void
1055 so_cmsg2opt(void *control, t_uscalar_t controllen, int oldflg, mblk_t *mp)
1056 {
1057 	struct T_opthdr toh;
1058 	struct cmsghdr *cmsg;
1059 
1060 	if (control == NULL)
1061 		return;
1062 
1063 	if (oldflg) {
1064 		/* No real options - caller has handled file descriptors */
1065 		return;
1066 	}
1067 	for (cmsg = (struct cmsghdr *)control;
1068 	    CMSG_VALID(cmsg, control, (uintptr_t)control + controllen);
1069 	    cmsg = CMSG_NEXT(cmsg)) {
1070 		/*
1071 		 * Note: The caller handles file descriptors prior
1072 		 * to calling this function.
1073 		 */
1074 		t_uscalar_t len;
1075 
1076 		if (cmsg->cmsg_level == SOL_SOCKET &&
1077 		    cmsg->cmsg_type == SCM_RIGHTS)
1078 			continue;
1079 
1080 		len = (t_uscalar_t)CMSG_CONTENTLEN(cmsg);
1081 		toh.level = cmsg->cmsg_level;
1082 		toh.name = cmsg->cmsg_type;
1083 		toh.len = len + (t_uscalar_t)sizeof (struct T_opthdr);
1084 		toh.status = 0;
1085 
1086 		soappendmsg(mp, &toh, sizeof (toh));
1087 		soappendmsg(mp, CMSG_CONTENT(cmsg), len);
1088 		mp->b_wptr += _TPI_ALIGN_TOPT(len) - len;
1089 		ASSERT(mp->b_wptr <= mp->b_datap->db_lim);
1090 	}
1091 }
1092 
1093 /*
1094  * Return the length of the control message derived from the options.
1095  * Exclude SO_SRCADDR and SO_UNIX_CLOSE options. Include SO_FILEP.
1096  * When oldflg is set only include SO_FILEP.
1097  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1098  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1099  * also be checked for any possible impacts.
1100  */
1101 t_uscalar_t
1102 so_cmsglen(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg)
1103 {
1104 	t_uscalar_t cmsglen = 0;
1105 	struct T_opthdr *tohp;
1106 	t_uscalar_t len;
1107 	t_uscalar_t last_roundup = 0;
1108 
1109 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1110 
1111 	for (tohp = (struct T_opthdr *)opt;
1112 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1113 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1114 		dprint(1, ("so_cmsglen: level 0x%x, name %d, len %d\n",
1115 		    tohp->level, tohp->name, tohp->len));
1116 		if (tohp->level == SOL_SOCKET &&
1117 		    (tohp->name == SO_SRCADDR ||
1118 		    tohp->name == SO_UNIX_CLOSE)) {
1119 			continue;
1120 		}
1121 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1122 			struct fdbuf *fdbuf;
1123 			int fdbuflen;
1124 
1125 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1126 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1127 
1128 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1129 				continue;
1130 			if (oldflg) {
1131 				cmsglen += fdbuf_cmsglen(fdbuflen);
1132 				continue;
1133 			}
1134 			len = fdbuf_cmsglen(fdbuflen);
1135 		} else if (tohp->level == SOL_SOCKET &&
1136 		    tohp->name == SCM_TIMESTAMP) {
1137 			if (oldflg)
1138 				continue;
1139 
1140 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1141 				len = sizeof (struct timeval);
1142 			} else {
1143 				len = sizeof (struct timeval32);
1144 			}
1145 		} else {
1146 			if (oldflg)
1147 				continue;
1148 			len = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1149 		}
1150 		/*
1151 		 * Exclude roundup for last option to not set
1152 		 * MSG_CTRUNC when the cmsg fits but the padding doesn't fit.
1153 		 */
1154 		last_roundup = (t_uscalar_t)
1155 		    (ROUNDUP_cmsglen(len + (int)sizeof (struct cmsghdr)) -
1156 		    (len + (int)sizeof (struct cmsghdr)));
1157 		cmsglen += (t_uscalar_t)(len + (int)sizeof (struct cmsghdr)) +
1158 		    last_roundup;
1159 	}
1160 	cmsglen -= last_roundup;
1161 	dprint(1, ("so_cmsglen: optlen %d, flg %d -> cmsglen %d\n",
1162 	    optlen, oldflg, cmsglen));
1163 	return (cmsglen);
1164 }
1165 
1166 /*
1167  * Copy options from options to the control. Convert SO_FILEP to
1168  * file descriptors.
1169  * Returns errno or zero.
1170  * so_opt2cmsg and so_cmsglen are inter-related since so_cmsglen
1171  * allocates the space that so_opt2cmsg fills. If one changes, the other should
1172  * also be checked for any possible impacts.
1173  */
1174 int
1175 so_opt2cmsg(mblk_t *mp, void *opt, t_uscalar_t optlen, int oldflg,
1176     void *control, t_uscalar_t controllen)
1177 {
1178 	struct T_opthdr *tohp;
1179 	struct cmsghdr *cmsg;
1180 	struct fdbuf *fdbuf;
1181 	int fdbuflen;
1182 	int error;
1183 #if defined(DEBUG) || defined(__lint)
1184 	struct cmsghdr *cend = (struct cmsghdr *)
1185 	    (((uint8_t *)control) + ROUNDUP_cmsglen(controllen));
1186 #endif
1187 	cmsg = (struct cmsghdr *)control;
1188 
1189 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1190 
1191 	for (tohp = (struct T_opthdr *)opt;
1192 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1193 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1194 		dprint(1, ("so_opt2cmsg: level 0x%x, name %d, len %d\n",
1195 		    tohp->level, tohp->name, tohp->len));
1196 
1197 		if (tohp->level == SOL_SOCKET &&
1198 		    (tohp->name == SO_SRCADDR ||
1199 		    tohp->name == SO_UNIX_CLOSE)) {
1200 			continue;
1201 		}
1202 		ASSERT((uintptr_t)cmsg <= (uintptr_t)control + controllen);
1203 		if (tohp->level == SOL_SOCKET && tohp->name == SO_FILEP) {
1204 			fdbuf = (struct fdbuf *)_TPI_TOPT_DATA(tohp);
1205 			fdbuflen = (int)_TPI_TOPT_DATALEN(tohp);
1206 
1207 			if (!fdbuf_verify(mp, fdbuf, fdbuflen))
1208 				return (EPROTO);
1209 			if (oldflg) {
1210 				error = fdbuf_extract(fdbuf, control,
1211 				    (int)controllen);
1212 				if (error != 0)
1213 					return (error);
1214 				continue;
1215 			} else {
1216 				int fdlen;
1217 
1218 				fdlen = (int)fdbuf_cmsglen(
1219 				    (int)_TPI_TOPT_DATALEN(tohp));
1220 
1221 				cmsg->cmsg_level = tohp->level;
1222 				cmsg->cmsg_type = SCM_RIGHTS;
1223 				cmsg->cmsg_len = (socklen_t)(fdlen +
1224 				    sizeof (struct cmsghdr));
1225 
1226 				error = fdbuf_extract(fdbuf,
1227 				    CMSG_CONTENT(cmsg), fdlen);
1228 				if (error != 0)
1229 					return (error);
1230 			}
1231 		} else if (tohp->level == SOL_SOCKET &&
1232 		    tohp->name == SCM_TIMESTAMP) {
1233 			timestruc_t *timestamp;
1234 
1235 			if (oldflg)
1236 				continue;
1237 
1238 			cmsg->cmsg_level = tohp->level;
1239 			cmsg->cmsg_type = tohp->name;
1240 
1241 			timestamp =
1242 			    (timestruc_t *)P2ROUNDUP((intptr_t)&tohp[1],
1243 			    sizeof (intptr_t));
1244 
1245 			if (get_udatamodel() == DATAMODEL_NATIVE) {
1246 				struct timeval tv;
1247 
1248 				cmsg->cmsg_len = sizeof (struct timeval) +
1249 				    sizeof (struct cmsghdr);
1250 				tv.tv_sec = timestamp->tv_sec;
1251 				tv.tv_usec = timestamp->tv_nsec /
1252 				    (NANOSEC / MICROSEC);
1253 				/*
1254 				 * on LP64 systems, the struct timeval in
1255 				 * the destination will not be 8-byte aligned,
1256 				 * so use bcopy to avoid alignment trouble
1257 				 */
1258 				bcopy(&tv, CMSG_CONTENT(cmsg), sizeof (tv));
1259 			} else {
1260 				struct timeval32 *time32;
1261 
1262 				cmsg->cmsg_len = sizeof (struct timeval32) +
1263 				    sizeof (struct cmsghdr);
1264 				time32 = (struct timeval32 *)CMSG_CONTENT(cmsg);
1265 				time32->tv_sec = (time32_t)timestamp->tv_sec;
1266 				time32->tv_usec =
1267 				    (int32_t)(timestamp->tv_nsec /
1268 				    (NANOSEC / MICROSEC));
1269 			}
1270 
1271 		} else {
1272 			if (oldflg)
1273 				continue;
1274 
1275 			cmsg->cmsg_level = tohp->level;
1276 			cmsg->cmsg_type = tohp->name;
1277 			cmsg->cmsg_len = (socklen_t)(_TPI_TOPT_DATALEN(tohp) +
1278 			    sizeof (struct cmsghdr));
1279 
1280 			/* copy content to control data part */
1281 			bcopy(&tohp[1], CMSG_CONTENT(cmsg),
1282 			    CMSG_CONTENTLEN(cmsg));
1283 		}
1284 		/* move to next CMSG structure! */
1285 		cmsg = CMSG_NEXT(cmsg);
1286 	}
1287 	dprint(1, ("so_opt2cmsg: buf %p len %d; cend %p; final cmsg %p\n",
1288 	    control, controllen, (void *)cend, (void *)cmsg));
1289 	ASSERT(cmsg <= cend);
1290 	return (0);
1291 }
1292 
1293 /*
1294  * Extract the SO_SRCADDR option value if present.
1295  */
1296 void
1297 so_getopt_srcaddr(void *opt, t_uscalar_t optlen, void **srcp,
1298     t_uscalar_t *srclenp)
1299 {
1300 	struct T_opthdr		*tohp;
1301 
1302 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1303 
1304 	ASSERT(srcp != NULL && srclenp != NULL);
1305 	*srcp = NULL;
1306 	*srclenp = 0;
1307 
1308 	for (tohp = (struct T_opthdr *)opt;
1309 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1310 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1311 		dprint(1, ("so_getopt_srcaddr: level 0x%x, name %d, len %d\n",
1312 		    tohp->level, tohp->name, tohp->len));
1313 		if (tohp->level == SOL_SOCKET &&
1314 		    tohp->name == SO_SRCADDR) {
1315 			*srcp = _TPI_TOPT_DATA(tohp);
1316 			*srclenp = (t_uscalar_t)_TPI_TOPT_DATALEN(tohp);
1317 		}
1318 	}
1319 }
1320 
1321 /*
1322  * Verify if the SO_UNIX_CLOSE option is present.
1323  */
1324 int
1325 so_getopt_unix_close(void *opt, t_uscalar_t optlen)
1326 {
1327 	struct T_opthdr		*tohp;
1328 
1329 	ASSERT(__TPI_TOPT_ISALIGNED(opt));
1330 
1331 	for (tohp = (struct T_opthdr *)opt;
1332 	    tohp && _TPI_TOPT_VALID(tohp, opt, (uintptr_t)opt + optlen);
1333 	    tohp = _TPI_TOPT_NEXTHDR(opt, optlen, tohp)) {
1334 		dprint(1,
1335 		    ("so_getopt_unix_close: level 0x%x, name %d, len %d\n",
1336 		    tohp->level, tohp->name, tohp->len));
1337 		if (tohp->level == SOL_SOCKET &&
1338 		    tohp->name == SO_UNIX_CLOSE)
1339 			return (1);
1340 	}
1341 	return (0);
1342 }
1343 
1344 /*
1345  * Allocate an M_PROTO message.
1346  *
1347  * If allocation fails the behavior depends on sleepflg:
1348  *	_ALLOC_NOSLEEP	fail immediately
1349  *	_ALLOC_INTR	sleep for memory until a signal is caught
1350  *	_ALLOC_SLEEP	sleep forever. Don't return NULL.
1351  */
1352 mblk_t *
1353 soallocproto(size_t size, int sleepflg, cred_t *cr)
1354 {
1355 	mblk_t	*mp;
1356 
1357 	/* Round up size for reuse */
1358 	size = MAX(size, 64);
1359 	if (cr != NULL)
1360 		mp = allocb_cred(size, cr, curproc->p_pid);
1361 	else
1362 		mp = allocb(size, BPRI_MED);
1363 
1364 	if (mp == NULL) {
1365 		int error;	/* Dummy - error not returned to caller */
1366 
1367 		switch (sleepflg) {
1368 		case _ALLOC_SLEEP:
1369 			if (cr != NULL) {
1370 				mp = allocb_cred_wait(size, STR_NOSIG, &error,
1371 				    cr, curproc->p_pid);
1372 			} else {
1373 				mp = allocb_wait(size, BPRI_MED, STR_NOSIG,
1374 				    &error);
1375 			}
1376 			ASSERT(mp);
1377 			break;
1378 		case _ALLOC_INTR:
1379 			if (cr != NULL) {
1380 				mp = allocb_cred_wait(size, 0, &error, cr,
1381 				    curproc->p_pid);
1382 			} else {
1383 				mp = allocb_wait(size, BPRI_MED, 0, &error);
1384 			}
1385 			if (mp == NULL) {
1386 				/* Caught signal while sleeping for memory */
1387 				eprintline(ENOBUFS);
1388 				return (NULL);
1389 			}
1390 			break;
1391 		case _ALLOC_NOSLEEP:
1392 		default:
1393 			eprintline(ENOBUFS);
1394 			return (NULL);
1395 		}
1396 	}
1397 	DB_TYPE(mp) = M_PROTO;
1398 	return (mp);
1399 }
1400 
1401 /*
1402  * Allocate an M_PROTO message with a single component.
1403  * len is the length of buf. size is the amount to allocate.
1404  *
1405  * buf can be NULL with a non-zero len.
1406  * This results in a bzero'ed chunk being placed the message.
1407  */
1408 mblk_t *
1409 soallocproto1(const void *buf, ssize_t len, ssize_t size, int sleepflg,
1410     cred_t *cr)
1411 {
1412 	mblk_t	*mp;
1413 
1414 	if (size == 0)
1415 		size = len;
1416 
1417 	ASSERT(size >= len);
1418 	/* Round up size for reuse */
1419 	size = MAX(size, 64);
1420 	mp = soallocproto(size, sleepflg, cr);
1421 	if (mp == NULL)
1422 		return (NULL);
1423 	mp->b_datap->db_type = M_PROTO;
1424 	if (len != 0) {
1425 		if (buf != NULL)
1426 			bcopy(buf, mp->b_wptr, len);
1427 		else
1428 			bzero(mp->b_wptr, len);
1429 		mp->b_wptr += len;
1430 	}
1431 	return (mp);
1432 }
1433 
1434 /*
1435  * Append buf/len to mp.
1436  * The caller has to ensure that there is enough room in the mblk.
1437  *
1438  * buf can be NULL with a non-zero len.
1439  * This results in a bzero'ed chunk being placed the message.
1440  */
1441 void
1442 soappendmsg(mblk_t *mp, const void *buf, ssize_t len)
1443 {
1444 	ASSERT(mp);
1445 
1446 	if (len != 0) {
1447 		/* Assert for room left */
1448 		ASSERT(mp->b_datap->db_lim - mp->b_wptr >= len);
1449 		if (buf != NULL)
1450 			bcopy(buf, mp->b_wptr, len);
1451 		else
1452 			bzero(mp->b_wptr, len);
1453 	}
1454 	mp->b_wptr += len;
1455 }
1456 
1457 /*
1458  * Create a message using two kernel buffers.
1459  * If size is set that will determine the allocation size (e.g. for future
1460  * soappendmsg calls). If size is zero it is derived from the buffer
1461  * lengths.
1462  */
1463 mblk_t *
1464 soallocproto2(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1465     ssize_t size, int sleepflg, cred_t *cr)
1466 {
1467 	mblk_t *mp;
1468 
1469 	if (size == 0)
1470 		size = len1 + len2;
1471 	ASSERT(size >= len1 + len2);
1472 
1473 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1474 	if (mp)
1475 		soappendmsg(mp, buf2, len2);
1476 	return (mp);
1477 }
1478 
1479 /*
1480  * Create a message using three kernel buffers.
1481  * If size is set that will determine the allocation size (for future
1482  * soappendmsg calls). If size is zero it is derived from the buffer
1483  * lengths.
1484  */
1485 mblk_t *
1486 soallocproto3(const void *buf1, ssize_t len1, const void *buf2, ssize_t len2,
1487     const void *buf3, ssize_t len3, ssize_t size, int sleepflg, cred_t *cr)
1488 {
1489 	mblk_t *mp;
1490 
1491 	if (size == 0)
1492 		size = len1 + len2 +len3;
1493 	ASSERT(size >= len1 + len2 + len3);
1494 
1495 	mp = soallocproto1(buf1, len1, size, sleepflg, cr);
1496 	if (mp != NULL) {
1497 		soappendmsg(mp, buf2, len2);
1498 		soappendmsg(mp, buf3, len3);
1499 	}
1500 	return (mp);
1501 }
1502 
1503 #ifdef DEBUG
1504 char *
1505 pr_state(uint_t state, uint_t mode)
1506 {
1507 	static char buf[1024];
1508 
1509 	buf[0] = 0;
1510 	if (state & SS_ISCONNECTED)
1511 		(void) strcat(buf, "ISCONNECTED ");
1512 	if (state & SS_ISCONNECTING)
1513 		(void) strcat(buf, "ISCONNECTING ");
1514 	if (state & SS_ISDISCONNECTING)
1515 		(void) strcat(buf, "ISDISCONNECTING ");
1516 	if (state & SS_CANTSENDMORE)
1517 		(void) strcat(buf, "CANTSENDMORE ");
1518 
1519 	if (state & SS_CANTRCVMORE)
1520 		(void) strcat(buf, "CANTRCVMORE ");
1521 	if (state & SS_ISBOUND)
1522 		(void) strcat(buf, "ISBOUND ");
1523 	if (state & SS_NDELAY)
1524 		(void) strcat(buf, "NDELAY ");
1525 	if (state & SS_NONBLOCK)
1526 		(void) strcat(buf, "NONBLOCK ");
1527 
1528 	if (state & SS_ASYNC)
1529 		(void) strcat(buf, "ASYNC ");
1530 	if (state & SS_ACCEPTCONN)
1531 		(void) strcat(buf, "ACCEPTCONN ");
1532 	if (state & SS_SAVEDEOR)
1533 		(void) strcat(buf, "SAVEDEOR ");
1534 
1535 	if (state & SS_RCVATMARK)
1536 		(void) strcat(buf, "RCVATMARK ");
1537 	if (state & SS_OOBPEND)
1538 		(void) strcat(buf, "OOBPEND ");
1539 	if (state & SS_HAVEOOBDATA)
1540 		(void) strcat(buf, "HAVEOOBDATA ");
1541 	if (state & SS_HADOOBDATA)
1542 		(void) strcat(buf, "HADOOBDATA ");
1543 
1544 	if (mode & SM_PRIV)
1545 		(void) strcat(buf, "PRIV ");
1546 	if (mode & SM_ATOMIC)
1547 		(void) strcat(buf, "ATOMIC ");
1548 	if (mode & SM_ADDR)
1549 		(void) strcat(buf, "ADDR ");
1550 	if (mode & SM_CONNREQUIRED)
1551 		(void) strcat(buf, "CONNREQUIRED ");
1552 
1553 	if (mode & SM_FDPASSING)
1554 		(void) strcat(buf, "FDPASSING ");
1555 	if (mode & SM_EXDATA)
1556 		(void) strcat(buf, "EXDATA ");
1557 	if (mode & SM_OPTDATA)
1558 		(void) strcat(buf, "OPTDATA ");
1559 	if (mode & SM_BYTESTREAM)
1560 		(void) strcat(buf, "BYTESTREAM ");
1561 	return (buf);
1562 }
1563 
1564 char *
1565 pr_addr(int family, struct sockaddr *addr, t_uscalar_t addrlen)
1566 {
1567 	static char buf[1024];
1568 
1569 	if (addr == NULL || addrlen == 0) {
1570 		(void) sprintf(buf, "(len %d) %p", addrlen, (void *)addr);
1571 		return (buf);
1572 	}
1573 	switch (family) {
1574 	case AF_INET: {
1575 		struct sockaddr_in sin;
1576 
1577 		bcopy(addr, &sin, sizeof (sin));
1578 
1579 		(void) sprintf(buf, "(len %d) %x/%d",
1580 		    addrlen, ntohl(sin.sin_addr.s_addr), ntohs(sin.sin_port));
1581 		break;
1582 	}
1583 	case AF_INET6: {
1584 		struct sockaddr_in6 sin6;
1585 		uint16_t *piece = (uint16_t *)&sin6.sin6_addr;
1586 
1587 		bcopy((char *)addr, (char *)&sin6, sizeof (sin6));
1588 		(void) sprintf(buf, "(len %d) %x:%x:%x:%x:%x:%x:%x:%x/%d",
1589 		    addrlen,
1590 		    ntohs(piece[0]), ntohs(piece[1]),
1591 		    ntohs(piece[2]), ntohs(piece[3]),
1592 		    ntohs(piece[4]), ntohs(piece[5]),
1593 		    ntohs(piece[6]), ntohs(piece[7]),
1594 		    ntohs(sin6.sin6_port));
1595 		break;
1596 	}
1597 	case AF_UNIX: {
1598 		struct sockaddr_un *soun = (struct sockaddr_un *)addr;
1599 
1600 		(void) sprintf(buf, "(len %d) %s", addrlen,
1601 		    (soun == NULL) ? "(none)" : soun->sun_path);
1602 		break;
1603 	}
1604 	default:
1605 		(void) sprintf(buf, "(unknown af %d)", family);
1606 		break;
1607 	}
1608 	return (buf);
1609 }
1610 
1611 /* The logical equivalence operator (a if-and-only-if b) */
1612 #define	EQUIVALENT(a, b)	(((a) && (b)) || (!(a) && (!(b))))
1613 
1614 /*
1615  * Verify limitations and invariants on oob state.
1616  * Return 1 if OK, otherwise 0 so that it can be used as
1617  *	ASSERT(verify_oobstate(so));
1618  */
1619 int
1620 so_verify_oobstate(struct sonode *so)
1621 {
1622 	boolean_t havemark;
1623 
1624 	ASSERT(MUTEX_HELD(&so->so_lock));
1625 
1626 	/*
1627 	 * The possible state combinations are:
1628 	 *	0
1629 	 *	SS_OOBPEND
1630 	 *	SS_OOBPEND|SS_HAVEOOBDATA
1631 	 *	SS_OOBPEND|SS_HADOOBDATA
1632 	 *	SS_HADOOBDATA
1633 	 */
1634 	switch (so->so_state & (SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA)) {
1635 	case 0:
1636 	case SS_OOBPEND:
1637 	case SS_OOBPEND|SS_HAVEOOBDATA:
1638 	case SS_OOBPEND|SS_HADOOBDATA:
1639 	case SS_HADOOBDATA:
1640 		break;
1641 	default:
1642 		printf("Bad oob state 1 (%p): state %s\n",
1643 		    (void *)so, pr_state(so->so_state, so->so_mode));
1644 		return (0);
1645 	}
1646 
1647 	/* SS_RCVATMARK should only be set when SS_OOBPEND is set */
1648 	if ((so->so_state & (SS_RCVATMARK|SS_OOBPEND)) == SS_RCVATMARK) {
1649 		printf("Bad oob state 2 (%p): state %s\n",
1650 		    (void *)so, pr_state(so->so_state, so->so_mode));
1651 		return (0);
1652 	}
1653 
1654 	/*
1655 	 * (havemark != 0 or SS_RCVATMARK) iff SS_OOBPEND
1656 	 * For TPI, the presence of a "mark" is indicated by sti_oobsigcnt.
1657 	 */
1658 	havemark = (SOCK_IS_NONSTR(so)) ? so->so_oobmark > 0 :
1659 	    SOTOTPI(so)->sti_oobsigcnt > 0;
1660 
1661 	if (!EQUIVALENT(havemark || (so->so_state & SS_RCVATMARK),
1662 	    so->so_state & SS_OOBPEND)) {
1663 		printf("Bad oob state 3 (%p): state %s\n",
1664 		    (void *)so, pr_state(so->so_state, so->so_mode));
1665 		return (0);
1666 	}
1667 
1668 	/*
1669 	 * Unless SO_OOBINLINE we have so_oobmsg != NULL iff SS_HAVEOOBDATA
1670 	 */
1671 	if (!(so->so_options & SO_OOBINLINE) &&
1672 	    !EQUIVALENT(so->so_oobmsg != NULL, so->so_state & SS_HAVEOOBDATA)) {
1673 		printf("Bad oob state 4 (%p): state %s\n",
1674 		    (void *)so, pr_state(so->so_state, so->so_mode));
1675 		return (0);
1676 	}
1677 
1678 	if (!SOCK_IS_NONSTR(so) &&
1679 	    SOTOTPI(so)->sti_oobsigcnt < SOTOTPI(so)->sti_oobcnt) {
1680 		printf("Bad oob state 5 (%p): counts %d/%d state %s\n",
1681 		    (void *)so, SOTOTPI(so)->sti_oobsigcnt,
1682 		    SOTOTPI(so)->sti_oobcnt,
1683 		    pr_state(so->so_state, so->so_mode));
1684 		return (0);
1685 	}
1686 
1687 	return (1);
1688 }
1689 #undef	EQUIVALENT
1690 #endif /* DEBUG */
1691 
1692 /* initialize sockfs zone specific kstat related items			*/
1693 void *
1694 sock_kstat_init(zoneid_t zoneid)
1695 {
1696 	kstat_t	*ksp;
1697 
1698 	ksp = kstat_create_zone("sockfs", 0, "sock_unix_list", "misc",
1699 	    KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VAR_SIZE|KSTAT_FLAG_VIRTUAL, zoneid);
1700 
1701 	if (ksp != NULL) {
1702 		ksp->ks_update = sockfs_update;
1703 		ksp->ks_snapshot = sockfs_snapshot;
1704 		ksp->ks_lock = &socklist.sl_lock;
1705 		ksp->ks_private = (void *)(uintptr_t)zoneid;
1706 		kstat_install(ksp);
1707 	}
1708 
1709 	return (ksp);
1710 }
1711 
1712 /* tear down sockfs zone specific kstat related items			*/
1713 /*ARGSUSED*/
1714 void
1715 sock_kstat_fini(zoneid_t zoneid, void *arg)
1716 {
1717 	kstat_t *ksp = (kstat_t *)arg;
1718 
1719 	if (ksp != NULL) {
1720 		ASSERT(zoneid == (zoneid_t)(uintptr_t)ksp->ks_private);
1721 		kstat_delete(ksp);
1722 	}
1723 }
1724 
1725 /*
1726  * Zones:
1727  * Note that nactive is going to be different for each zone.
1728  * This means we require kstat to call sockfs_update and then sockfs_snapshot
1729  * for the same zone, or sockfs_snapshot will be taken into the wrong size
1730  * buffer. This is safe, but if the buffer is too small, user will not be
1731  * given details of all sockets. However, as this kstat has a ks_lock, kstat
1732  * driver will keep it locked between the update and the snapshot, so no
1733  * other process (zone) can currently get inbetween resulting in a wrong size
1734  * buffer allocation.
1735  */
1736 static int
1737 sockfs_update(kstat_t *ksp, int rw)
1738 {
1739 	uint_t	nactive = 0;		/* # of active AF_UNIX sockets	*/
1740 	struct sonode	*so;		/* current sonode on socklist	*/
1741 	zoneid_t	myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1742 
1743 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1744 
1745 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1746 		return (EACCES);
1747 	}
1748 
1749 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1750 		if (so->so_count != 0 && so->so_zoneid == myzoneid) {
1751 			nactive++;
1752 		}
1753 	}
1754 	ksp->ks_ndata = nactive;
1755 	ksp->ks_data_size = nactive * sizeof (struct k_sockinfo);
1756 
1757 	return (0);
1758 }
1759 
1760 static int
1761 sockfs_snapshot(kstat_t *ksp, void *buf, int rw)
1762 {
1763 	int			ns;	/* # of sonodes we've copied	*/
1764 	struct sonode		*so;	/* current sonode on socklist	*/
1765 	struct k_sockinfo	*pksi;	/* where we put sockinfo data	*/
1766 	t_uscalar_t		sn_len;	/* soa_len			*/
1767 	zoneid_t		myzoneid = (zoneid_t)(uintptr_t)ksp->ks_private;
1768 	sotpi_info_t 		*sti;
1769 
1770 	ASSERT((zoneid_t)(uintptr_t)ksp->ks_private == getzoneid());
1771 
1772 	ksp->ks_snaptime = gethrtime();
1773 
1774 	if (rw == KSTAT_WRITE) {	/* bounce all writes		*/
1775 		return (EACCES);
1776 	}
1777 
1778 	/*
1779 	 * for each sonode on the socklist, we massage the important
1780 	 * info into buf, in k_sockinfo format.
1781 	 */
1782 	pksi = (struct k_sockinfo *)buf;
1783 	ns = 0;
1784 	for (so = socklist.sl_list; so != NULL; so = SOTOTPI(so)->sti_next_so) {
1785 		/* only stuff active sonodes and the same zone:		*/
1786 		if (so->so_count == 0 || so->so_zoneid != myzoneid) {
1787 			continue;
1788 		}
1789 
1790 		/*
1791 		 * If the sonode was activated between the update and the
1792 		 * snapshot, we're done - as this is only a snapshot.
1793 		 */
1794 		if ((caddr_t)(pksi) >= (caddr_t)buf + ksp->ks_data_size) {
1795 			break;
1796 		}
1797 
1798 		sti = SOTOTPI(so);
1799 		/* copy important info into buf:			*/
1800 		pksi->ks_si.si_size = sizeof (struct k_sockinfo);
1801 		pksi->ks_si.si_family = so->so_family;
1802 		pksi->ks_si.si_type = so->so_type;
1803 		pksi->ks_si.si_flag = so->so_flag;
1804 		pksi->ks_si.si_state = so->so_state;
1805 		pksi->ks_si.si_serv_type = sti->sti_serv_type;
1806 		pksi->ks_si.si_ux_laddr_sou_magic =
1807 		    sti->sti_ux_laddr.soua_magic;
1808 		pksi->ks_si.si_ux_faddr_sou_magic =
1809 		    sti->sti_ux_faddr.soua_magic;
1810 		pksi->ks_si.si_laddr_soa_len = sti->sti_laddr.soa_len;
1811 		pksi->ks_si.si_faddr_soa_len = sti->sti_faddr.soa_len;
1812 		pksi->ks_si.si_szoneid = so->so_zoneid;
1813 		pksi->ks_si.si_faddr_noxlate = sti->sti_faddr_noxlate;
1814 
1815 		mutex_enter(&so->so_lock);
1816 
1817 		if (sti->sti_laddr_sa != NULL) {
1818 			ASSERT(sti->sti_laddr_sa->sa_data != NULL);
1819 			sn_len = sti->sti_laddr_len;
1820 			ASSERT(sn_len <= sizeof (short) +
1821 			    sizeof (pksi->ks_si.si_laddr_sun_path));
1822 
1823 			pksi->ks_si.si_laddr_family =
1824 			    sti->sti_laddr_sa->sa_family;
1825 			if (sn_len != 0) {
1826 				/* AF_UNIX socket names are NULL terminated */
1827 				(void) strncpy(pksi->ks_si.si_laddr_sun_path,
1828 				    sti->sti_laddr_sa->sa_data,
1829 				    sizeof (pksi->ks_si.si_laddr_sun_path));
1830 				sn_len = strlen(pksi->ks_si.si_laddr_sun_path);
1831 			}
1832 			pksi->ks_si.si_laddr_sun_path[sn_len] = 0;
1833 		}
1834 
1835 		if (sti->sti_faddr_sa != NULL) {
1836 			ASSERT(sti->sti_faddr_sa->sa_data != NULL);
1837 			sn_len = sti->sti_faddr_len;
1838 			ASSERT(sn_len <= sizeof (short) +
1839 			    sizeof (pksi->ks_si.si_faddr_sun_path));
1840 
1841 			pksi->ks_si.si_faddr_family =
1842 			    sti->sti_faddr_sa->sa_family;
1843 			if (sn_len != 0) {
1844 				(void) strncpy(pksi->ks_si.si_faddr_sun_path,
1845 				    sti->sti_faddr_sa->sa_data,
1846 				    sizeof (pksi->ks_si.si_faddr_sun_path));
1847 				sn_len = strlen(pksi->ks_si.si_faddr_sun_path);
1848 			}
1849 			pksi->ks_si.si_faddr_sun_path[sn_len] = 0;
1850 		}
1851 
1852 		mutex_exit(&so->so_lock);
1853 
1854 		(void) sprintf(pksi->ks_straddr[0], "%p", (void *)so);
1855 		(void) sprintf(pksi->ks_straddr[1], "%p",
1856 		    (void *)sti->sti_ux_laddr.soua_vp);
1857 		(void) sprintf(pksi->ks_straddr[2], "%p",
1858 		    (void *)sti->sti_ux_faddr.soua_vp);
1859 
1860 		ns++;
1861 		pksi++;
1862 	}
1863 
1864 	ksp->ks_ndata = ns;
1865 	return (0);
1866 }
1867 
1868 ssize_t
1869 soreadfile(file_t *fp, uchar_t *buf, u_offset_t fileoff, int *err, size_t size)
1870 {
1871 	struct uio auio;
1872 	struct iovec aiov[MSG_MAXIOVLEN];
1873 	register vnode_t *vp;
1874 	int ioflag, rwflag;
1875 	ssize_t cnt;
1876 	int error = 0;
1877 	int iovcnt = 0;
1878 	short fflag;
1879 
1880 	vp = fp->f_vnode;
1881 	fflag = fp->f_flag;
1882 
1883 	rwflag = 0;
1884 	aiov[0].iov_base = (caddr_t)buf;
1885 	aiov[0].iov_len = size;
1886 	iovcnt = 1;
1887 	cnt = (ssize_t)size;
1888 	(void) VOP_RWLOCK(vp, rwflag, NULL);
1889 
1890 	auio.uio_loffset = fileoff;
1891 	auio.uio_iov = aiov;
1892 	auio.uio_iovcnt = iovcnt;
1893 	auio.uio_resid = cnt;
1894 	auio.uio_segflg = UIO_SYSSPACE;
1895 	auio.uio_llimit = MAXOFFSET_T;
1896 	auio.uio_fmode = fflag;
1897 	auio.uio_extflg = UIO_COPY_CACHED;
1898 
1899 	ioflag = auio.uio_fmode & (FAPPEND|FSYNC|FDSYNC|FRSYNC);
1900 
1901 	/* If read sync is not asked for, filter sync flags */
1902 	if ((ioflag & FRSYNC) == 0)
1903 		ioflag &= ~(FSYNC|FDSYNC);
1904 	error = VOP_READ(vp, &auio, ioflag, fp->f_cred, NULL);
1905 	cnt -= auio.uio_resid;
1906 
1907 	VOP_RWUNLOCK(vp, rwflag, NULL);
1908 
1909 	if (error == EINTR && cnt != 0)
1910 		error = 0;
1911 out:
1912 	if (error != 0) {
1913 		*err = error;
1914 		return (0);
1915 	} else {
1916 		*err = 0;
1917 		return (cnt);
1918 	}
1919 }
1920 
1921 int
1922 so_copyin(const void *from, void *to, size_t size, int fromkernel)
1923 {
1924 	if (fromkernel) {
1925 		bcopy(from, to, size);
1926 		return (0);
1927 	}
1928 	return (xcopyin(from, to, size));
1929 }
1930 
1931 int
1932 so_copyout(const void *from, void *to, size_t size, int tokernel)
1933 {
1934 	if (tokernel) {
1935 		bcopy(from, to, size);
1936 		return (0);
1937 	}
1938 	return (xcopyout(from, to, size));
1939 }
1940