1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/signal.h> 32 #include <sys/cmn_err.h> 33 34 #include <sys/stropts.h> 35 #include <sys/socket.h> 36 #include <sys/socketvar.h> 37 #include <sys/sockio.h> 38 #include <sys/strsubr.h> 39 #include <sys/strsun.h> 40 #include <sys/atomic.h> 41 #include <sys/tihdr.h> 42 43 #include <fs/sockfs/sockcommon.h> 44 #include <fs/sockfs/sockfilter_impl.h> 45 #include <fs/sockfs/socktpi.h> 46 #include <fs/sockfs/sodirect.h> 47 #include <sys/ddi.h> 48 #include <inet/ip.h> 49 #include <sys/time.h> 50 #include <sys/cmn_err.h> 51 52 #ifdef SOCK_TEST 53 extern int do_useracc; 54 extern clock_t sock_test_timelimit; 55 #endif /* SOCK_TEST */ 56 57 #define MBLK_PULL_LEN 64 58 uint32_t so_mblk_pull_len = MBLK_PULL_LEN; 59 60 #ifdef DEBUG 61 boolean_t so_debug_length = B_FALSE; 62 static boolean_t so_check_length(sonode_t *so); 63 #endif 64 65 static int 66 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock, 67 struct sonode **nsop) 68 { 69 struct sonode *nso = NULL; 70 71 *nsop = NULL; 72 ASSERT(MUTEX_HELD(&so->so_acceptq_lock)); 73 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) { 74 /* 75 * No need to check so_error here, because it is not 76 * possible for a listening socket to be reset or otherwise 77 * disconnected. 78 * 79 * So now we just need check if it's ok to wait. 80 */ 81 if (dontblock) 82 return (EWOULDBLOCK); 83 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 84 return (EINTR); 85 86 if (cv_wait_sig_swap(&so->so_acceptq_cv, 87 &so->so_acceptq_lock) == 0) 88 return (EINTR); 89 } 90 91 ASSERT(nso != NULL); 92 ASSERT(so->so_acceptq_len > 0); 93 so->so_acceptq_len--; 94 nso->so_listener = NULL; 95 96 *nsop = nso; 97 98 return (0); 99 } 100 101 /* 102 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **) 103 * 104 * Pulls a connection off of the accept queue. 105 * 106 * Arguments: 107 * so - listening socket 108 * dontblock - indicate whether it's ok to sleep if there are no 109 * connections on the queue 110 * nsop - Value-return argument 111 * 112 * Return values: 113 * 0 when a connection is successfully dequeued, in which case nsop 114 * is set to point to the new connection. Upon failure a non-zero 115 * value is returned, and the value of nsop is set to NULL. 116 * 117 * Note: 118 * so_acceptq_dequeue() may return prematurly if the socket is falling 119 * back to TPI. 120 */ 121 int 122 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock, 123 struct sonode **nsop) 124 { 125 int error; 126 127 mutex_enter(&so->so_acceptq_lock); 128 error = so_acceptq_dequeue_locked(so, dontblock, nsop); 129 mutex_exit(&so->so_acceptq_lock); 130 131 return (error); 132 } 133 134 static void 135 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose) 136 { 137 struct sonode *nso; 138 139 while ((nso = list_remove_head(list)) != NULL) { 140 nso->so_listener = NULL; 141 if (doclose) { 142 (void) socket_close(nso, 0, CRED()); 143 } else { 144 /* 145 * Only used for fallback - not possible when filters 146 * are present. 147 */ 148 ASSERT(so->so_filter_active == 0); 149 /* 150 * Since the socket is on the accept queue, there can 151 * only be one reference. We drop the reference and 152 * just blow off the socket. 153 */ 154 ASSERT(nso->so_count == 1); 155 nso->so_count--; 156 /* drop the proto ref */ 157 VN_RELE(SOTOV(nso)); 158 } 159 socket_destroy(nso); 160 } 161 } 162 /* 163 * void so_acceptq_flush(struct sonode *so) 164 * 165 * Removes all pending connections from a listening socket, and 166 * frees the associated resources. 167 * 168 * Arguments 169 * so - listening socket 170 * doclose - make a close downcall for each socket on the accept queue 171 * 172 * Return values: 173 * None. 174 * 175 * Note: 176 * The caller has to ensure that no calls to so_acceptq_enqueue() or 177 * so_acceptq_dequeue() occur while the accept queue is being flushed. 178 * So either the socket needs to be in a state where no operations 179 * would come in, or so_lock needs to be obtained. 180 */ 181 void 182 so_acceptq_flush(struct sonode *so, boolean_t doclose) 183 { 184 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose); 185 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose); 186 187 so->so_acceptq_len = 0; 188 } 189 190 int 191 so_wait_connected_locked(struct sonode *so, boolean_t nonblock, 192 sock_connid_t id) 193 { 194 ASSERT(MUTEX_HELD(&so->so_lock)); 195 196 /* 197 * The protocol has notified us that a connection attempt is being 198 * made, so before we wait for a notification to arrive we must 199 * clear out any errors associated with earlier connection attempts. 200 */ 201 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id)) 202 so->so_error = 0; 203 204 while (SOCK_CONNID_LT(so->so_proto_connid, id)) { 205 if (nonblock) 206 return (EINPROGRESS); 207 208 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 209 return (EINTR); 210 211 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0) 212 return (EINTR); 213 } 214 215 if (so->so_error != 0) 216 return (sogeterr(so, B_TRUE)); 217 /* 218 * Under normal circumstances, so_error should contain an error 219 * in case the connect failed. However, it is possible for another 220 * thread to come in a consume the error, so generate a sensible 221 * error in that case. 222 */ 223 if ((so->so_state & SS_ISCONNECTED) == 0) 224 return (ECONNREFUSED); 225 226 return (0); 227 } 228 229 /* 230 * int so_wait_connected(struct sonode *so, boolean_t nonblock, 231 * sock_connid_t id) 232 * 233 * Wait until the socket is connected or an error has occured. 234 * 235 * Arguments: 236 * so - socket 237 * nonblock - indicate whether it's ok to sleep if the connection has 238 * not yet been established 239 * gen - generation number that was returned by the protocol 240 * when the operation was started 241 * 242 * Returns: 243 * 0 if the connection attempt was successful, or an error indicating why 244 * the connection attempt failed. 245 */ 246 int 247 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id) 248 { 249 int error; 250 251 mutex_enter(&so->so_lock); 252 error = so_wait_connected_locked(so, nonblock, id); 253 mutex_exit(&so->so_lock); 254 255 return (error); 256 } 257 258 int 259 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock) 260 { 261 int error; 262 263 ASSERT(MUTEX_HELD(&so->so_lock)); 264 while (SO_SND_FLOWCTRLD(so)) { 265 if (so->so_state & SS_CANTSENDMORE) 266 return (EPIPE); 267 if (dontblock) 268 return (EWOULDBLOCK); 269 270 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 271 return (EINTR); 272 273 if (so->so_sndtimeo == 0) { 274 /* 275 * Zero means disable timeout. 276 */ 277 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock); 278 } else { 279 error = cv_reltimedwait_sig(&so->so_snd_cv, 280 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK); 281 } 282 if (error == 0) 283 return (EINTR); 284 else if (error == -1) 285 return (EAGAIN); 286 } 287 return (0); 288 } 289 290 /* 291 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock) 292 * 293 * Wait for the transport to notify us about send buffers becoming 294 * available. 295 */ 296 int 297 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock) 298 { 299 int error = 0; 300 301 mutex_enter(&so->so_lock); 302 so->so_snd_wakeup = B_TRUE; 303 error = so_snd_wait_qnotfull_locked(so, dontblock); 304 so->so_snd_wakeup = B_FALSE; 305 mutex_exit(&so->so_lock); 306 307 return (error); 308 } 309 310 void 311 so_snd_qfull(struct sonode *so) 312 { 313 mutex_enter(&so->so_lock); 314 so->so_snd_qfull = B_TRUE; 315 mutex_exit(&so->so_lock); 316 } 317 318 void 319 so_snd_qnotfull(struct sonode *so) 320 { 321 mutex_enter(&so->so_lock); 322 so->so_snd_qfull = B_FALSE; 323 /* wake up everyone waiting for buffers */ 324 cv_broadcast(&so->so_snd_cv); 325 mutex_exit(&so->so_lock); 326 } 327 328 /* 329 * Change the process/process group to which SIGIO is sent. 330 */ 331 int 332 socket_chgpgrp(struct sonode *so, pid_t pid) 333 { 334 int error; 335 336 ASSERT(MUTEX_HELD(&so->so_lock)); 337 if (pid != 0) { 338 /* 339 * Permissions check by sending signal 0. 340 * Note that when kill fails it does a 341 * set_errno causing the system call to fail. 342 */ 343 error = kill(pid, 0); 344 if (error != 0) { 345 return (error); 346 } 347 } 348 so->so_pgrp = pid; 349 return (0); 350 } 351 352 353 /* 354 * Generate a SIGIO, for 'writable' events include siginfo structure, 355 * for read events just send the signal. 356 */ 357 /*ARGSUSED*/ 358 static void 359 socket_sigproc(proc_t *proc, int event) 360 { 361 k_siginfo_t info; 362 363 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG)); 364 365 if (event & SOCKETSIG_WRITE) { 366 info.si_signo = SIGPOLL; 367 info.si_code = POLL_OUT; 368 info.si_errno = 0; 369 info.si_fd = 0; 370 info.si_band = 0; 371 sigaddq(proc, NULL, &info, KM_NOSLEEP); 372 } 373 if (event & SOCKETSIG_READ) { 374 sigtoproc(proc, NULL, SIGPOLL); 375 } 376 if (event & SOCKETSIG_URG) { 377 sigtoproc(proc, NULL, SIGURG); 378 } 379 } 380 381 void 382 socket_sendsig(struct sonode *so, int event) 383 { 384 proc_t *proc; 385 386 ASSERT(MUTEX_HELD(&so->so_lock)); 387 388 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) && 389 event != SOCKETSIG_URG)) { 390 return; 391 } 392 393 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp)); 394 395 if (so->so_pgrp > 0) { 396 /* 397 * XXX This unfortunately still generates 398 * a signal when a fd is closed but 399 * the proc is active. 400 */ 401 mutex_enter(&pidlock); 402 /* 403 * Even if the thread started in another zone, we're receiving 404 * on behalf of this socket's zone, so find the proc using the 405 * socket's zone ID. 406 */ 407 proc = prfind_zone(so->so_pgrp, so->so_zoneid); 408 if (proc == NULL) { 409 mutex_exit(&pidlock); 410 return; 411 } 412 mutex_enter(&proc->p_lock); 413 mutex_exit(&pidlock); 414 socket_sigproc(proc, event); 415 mutex_exit(&proc->p_lock); 416 } else { 417 /* 418 * Send to process group. Hold pidlock across 419 * calls to socket_sigproc(). 420 */ 421 pid_t pgrp = -so->so_pgrp; 422 423 mutex_enter(&pidlock); 424 /* 425 * Even if the thread started in another zone, we're receiving 426 * on behalf of this socket's zone, so find the pgrp using the 427 * socket's zone ID. 428 */ 429 proc = pgfind_zone(pgrp, so->so_zoneid); 430 while (proc != NULL) { 431 mutex_enter(&proc->p_lock); 432 socket_sigproc(proc, event); 433 mutex_exit(&proc->p_lock); 434 proc = proc->p_pglink; 435 } 436 mutex_exit(&pidlock); 437 } 438 } 439 440 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 441 /* Copy userdata into a new mblk_t */ 442 mblk_t * 443 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk, 444 size_t tail_len, int *errorp) 445 { 446 mblk_t *head = NULL, **tail = &head; 447 448 ASSERT(iosize == INFPSZ || iosize > 0); 449 450 if (iosize == INFPSZ || iosize > uiop->uio_resid) 451 iosize = uiop->uio_resid; 452 453 if (maxblk == INFPSZ) 454 maxblk = iosize; 455 456 /* Nothing to do in these cases, so we're done */ 457 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0)) 458 goto done; 459 460 /* 461 * We will enter the loop below if iosize is 0; it will allocate an 462 * empty message block and call uiomove(9F) which will just return. 463 * We could avoid that with an extra check but would only slow 464 * down the much more likely case where iosize is larger than 0. 465 */ 466 do { 467 ssize_t blocksize; 468 mblk_t *mp; 469 470 blocksize = MIN(iosize, maxblk); 471 ASSERT(blocksize >= 0); 472 mp = allocb(wroff + blocksize + tail_len, BPRI_MED); 473 if (mp == NULL) { 474 *errorp = ENOMEM; 475 return (head); 476 } 477 mp->b_rptr += wroff; 478 mp->b_wptr = mp->b_rptr + blocksize; 479 480 *tail = mp; 481 tail = &mp->b_cont; 482 483 /* uiomove(9F) either returns 0 or EFAULT */ 484 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize, 485 UIO_WRITE, uiop)) != 0) { 486 ASSERT(*errorp != ENOMEM); 487 freemsg(head); 488 return (NULL); 489 } 490 491 iosize -= blocksize; 492 } while (iosize > 0); 493 494 done: 495 *errorp = 0; 496 return (head); 497 } 498 499 mblk_t * 500 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp) 501 { 502 int error; 503 ptrdiff_t n; 504 mblk_t *nmp; 505 506 ASSERT(mp->b_wptr >= mp->b_rptr); 507 508 /* 509 * max_read is the offset of the oobmark and read can not go pass 510 * the oobmark. 511 */ 512 if (max_read == INFPSZ || max_read > uiop->uio_resid) 513 max_read = uiop->uio_resid; 514 515 do { 516 if ((n = MIN(max_read, MBLKL(mp))) != 0) { 517 ASSERT(n > 0); 518 519 error = uiomove(mp->b_rptr, n, UIO_READ, uiop); 520 if (error != 0) { 521 freemsg(mp); 522 *errorp = error; 523 return (NULL); 524 } 525 } 526 527 mp->b_rptr += n; 528 max_read -= n; 529 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) { 530 /* 531 * get rid of zero length mblks 532 */ 533 nmp = mp; 534 mp = mp->b_cont; 535 freeb(nmp); 536 } 537 } while (mp != NULL && max_read > 0); 538 539 *errorp = 0; 540 return (mp); 541 } 542 543 static void 544 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail) 545 { 546 ASSERT(last_tail != NULL); 547 mp->b_next = so->so_rcv_q_head; 548 mp->b_prev = last_tail; 549 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA)); 550 551 if (so->so_rcv_q_head == NULL) { 552 ASSERT(so->so_rcv_q_last_head == NULL); 553 so->so_rcv_q_last_head = mp; 554 #ifdef DEBUG 555 } else { 556 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA)); 557 #endif 558 } 559 so->so_rcv_q_head = mp; 560 561 #ifdef DEBUG 562 if (so_debug_length) { 563 mutex_enter(&so->so_lock); 564 ASSERT(so_check_length(so)); 565 mutex_exit(&so->so_lock); 566 } 567 #endif 568 } 569 570 /* 571 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it 572 * can be processed by so_dequeue_msg(). 573 */ 574 void 575 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head) 576 { 577 if (so->so_filter_active > 0 && 578 (mp_head = sof_filter_data_in_proc(so, mp_head, 579 &mp_last_head)) == NULL) 580 return; 581 582 ASSERT(mp_head->b_prev != NULL); 583 if (so->so_rcv_q_head == NULL) { 584 so->so_rcv_q_head = mp_head; 585 so->so_rcv_q_last_head = mp_last_head; 586 ASSERT(so->so_rcv_q_last_head->b_prev != NULL); 587 } else { 588 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) == 589 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA)); 590 591 if (mp_head->b_next == NULL && 592 DB_TYPE(mp_head) == M_DATA && 593 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) { 594 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 595 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 596 mp_head->b_prev = NULL; 597 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) { 598 /* 599 * Append to last_head if more than one mblks, and both 600 * mp_head and last_head are I/OAT mblks. 601 */ 602 ASSERT(mp_head->b_next != NULL); 603 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 604 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 605 mp_head->b_prev = NULL; 606 607 so->so_rcv_q_last_head->b_next = mp_head->b_next; 608 mp_head->b_next = NULL; 609 so->so_rcv_q_last_head = mp_last_head; 610 } else { 611 #ifdef DEBUG 612 { 613 mblk_t *tmp_mblk; 614 tmp_mblk = mp_head; 615 while (tmp_mblk != NULL) { 616 ASSERT(tmp_mblk->b_prev != NULL); 617 tmp_mblk = tmp_mblk->b_next; 618 } 619 } 620 #endif 621 so->so_rcv_q_last_head->b_next = mp_head; 622 so->so_rcv_q_last_head = mp_last_head; 623 } 624 } 625 } 626 627 /* 628 * Check flow control on a given sonode. Must have so_lock held, and 629 * this function will release the hold. Return true if flow control 630 * is cleared. 631 */ 632 boolean_t 633 so_check_flow_control(struct sonode *so) 634 { 635 ASSERT(MUTEX_HELD(&so->so_lock)); 636 637 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat && 638 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) { 639 so->so_flowctrld = B_FALSE; 640 mutex_exit(&so->so_lock); 641 /* 642 * Open up flow control. SCTP does not have any downcalls, and 643 * it will clr flow ctrl in sosctp_recvmsg(). 644 */ 645 if (so->so_downcalls != NULL && 646 so->so_downcalls->sd_clr_flowctrl != NULL) { 647 (*so->so_downcalls->sd_clr_flowctrl) 648 (so->so_proto_handle); 649 } 650 /* filters can start injecting data */ 651 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0); 652 return (B_TRUE); 653 } else { 654 mutex_exit(&so->so_lock); 655 return (B_FALSE); 656 } 657 } 658 659 int 660 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop, 661 rval_t *rvalp, int flags) 662 { 663 mblk_t *mp, *nmp; 664 mblk_t *savemp, *savemptail; 665 mblk_t *new_msg_head; 666 mblk_t *new_msg_last_head; 667 mblk_t *last_tail; 668 boolean_t partial_read; 669 boolean_t reset_atmark = B_FALSE; 670 int more = 0; 671 int error; 672 ssize_t oobmark; 673 sodirect_t *sodp = so->so_direct; 674 675 partial_read = B_FALSE; 676 *mctlp = NULL; 677 again: 678 mutex_enter(&so->so_lock); 679 again1: 680 #ifdef DEBUG 681 if (so_debug_length) { 682 ASSERT(so_check_length(so)); 683 } 684 #endif 685 if (so->so_state & SS_RCVATMARK) { 686 /* Check whether the caller is OK to read past the mark */ 687 if (flags & MSG_NOMARK) { 688 mutex_exit(&so->so_lock); 689 return (EWOULDBLOCK); 690 } 691 reset_atmark = B_TRUE; 692 } 693 /* 694 * First move messages from the dump area to processing area 695 */ 696 if (sodp != NULL) { 697 if (sodp->sod_enabled) { 698 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) { 699 /* nothing to uioamove */ 700 sodp = NULL; 701 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) { 702 sodp->sod_uioa.uioa_state &= UIOA_CLR; 703 sodp->sod_uioa.uioa_state |= UIOA_ENABLED; 704 /* 705 * try to uioamove() the data that 706 * has already queued. 707 */ 708 sod_uioa_so_init(so, sodp, uiop); 709 } 710 } else { 711 sodp = NULL; 712 } 713 } 714 new_msg_head = so->so_rcv_head; 715 new_msg_last_head = so->so_rcv_last_head; 716 so->so_rcv_head = NULL; 717 so->so_rcv_last_head = NULL; 718 oobmark = so->so_oobmark; 719 /* 720 * We can release the lock as there can only be one reader 721 */ 722 mutex_exit(&so->so_lock); 723 724 if (new_msg_head != NULL) { 725 so_process_new_message(so, new_msg_head, new_msg_last_head); 726 } 727 savemp = savemptail = NULL; 728 rvalp->r_vals = 0; 729 error = 0; 730 mp = so->so_rcv_q_head; 731 732 if (mp != NULL && 733 (so->so_rcv_timer_tid == 0 || 734 so->so_rcv_queued >= so->so_rcv_thresh)) { 735 partial_read = B_FALSE; 736 737 if (flags & MSG_PEEK) { 738 if ((nmp = dupmsg(mp)) == NULL && 739 (nmp = copymsg(mp)) == NULL) { 740 size_t size = msgsize(mp); 741 742 error = strwaitbuf(size, BPRI_HI); 743 if (error) { 744 return (error); 745 } 746 goto again; 747 } 748 mp = nmp; 749 } else { 750 ASSERT(mp->b_prev != NULL); 751 last_tail = mp->b_prev; 752 mp->b_prev = NULL; 753 so->so_rcv_q_head = mp->b_next; 754 if (so->so_rcv_q_head == NULL) { 755 so->so_rcv_q_last_head = NULL; 756 } 757 mp->b_next = NULL; 758 } 759 760 ASSERT(mctlp != NULL); 761 /* 762 * First process PROTO or PCPROTO blocks, if any. 763 */ 764 if (DB_TYPE(mp) != M_DATA) { 765 *mctlp = mp; 766 savemp = mp; 767 savemptail = mp; 768 ASSERT(DB_TYPE(mp) == M_PROTO || 769 DB_TYPE(mp) == M_PCPROTO); 770 while (mp->b_cont != NULL && 771 DB_TYPE(mp->b_cont) != M_DATA) { 772 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO || 773 DB_TYPE(mp->b_cont) == M_PCPROTO); 774 mp = mp->b_cont; 775 savemptail = mp; 776 } 777 mp = savemptail->b_cont; 778 savemptail->b_cont = NULL; 779 } 780 781 ASSERT(DB_TYPE(mp) == M_DATA); 782 /* 783 * Now process DATA blocks, if any. Note that for sodirect 784 * enabled socket, uio_resid can be 0. 785 */ 786 if (uiop->uio_resid >= 0) { 787 ssize_t copied = 0; 788 789 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) { 790 mutex_enter(&so->so_lock); 791 ASSERT(uiop == (uio_t *)&sodp->sod_uioa); 792 copied = sod_uioa_mblk(so, mp); 793 if (copied > 0) 794 partial_read = B_TRUE; 795 mutex_exit(&so->so_lock); 796 /* mark this mblk as processed */ 797 mp = NULL; 798 } else { 799 ssize_t oldresid = uiop->uio_resid; 800 801 if (MBLKL(mp) < so_mblk_pull_len) { 802 if (pullupmsg(mp, -1) == 1) { 803 last_tail = mp; 804 } 805 } 806 /* 807 * Can not read beyond the oobmark 808 */ 809 mp = socopyoutuio(mp, uiop, 810 oobmark == 0 ? INFPSZ : oobmark, &error); 811 if (error != 0) { 812 freemsg(*mctlp); 813 *mctlp = NULL; 814 more = 0; 815 goto done; 816 } 817 ASSERT(oldresid >= uiop->uio_resid); 818 copied = oldresid - uiop->uio_resid; 819 if (oldresid > uiop->uio_resid) 820 partial_read = B_TRUE; 821 } 822 ASSERT(copied >= 0); 823 if (copied > 0 && !(flags & MSG_PEEK)) { 824 mutex_enter(&so->so_lock); 825 so->so_rcv_queued -= copied; 826 ASSERT(so->so_oobmark >= 0); 827 if (so->so_oobmark > 0) { 828 so->so_oobmark -= copied; 829 ASSERT(so->so_oobmark >= 0); 830 if (so->so_oobmark == 0) { 831 ASSERT(so->so_state & 832 SS_OOBPEND); 833 so->so_oobmark = 0; 834 so->so_state |= SS_RCVATMARK; 835 } 836 } 837 /* 838 * so_check_flow_control() will drop 839 * so->so_lock. 840 */ 841 rvalp->r_val2 = so_check_flow_control(so); 842 } 843 } 844 if (mp != NULL) { /* more data blocks in msg */ 845 more |= MOREDATA; 846 if ((flags & (MSG_PEEK|MSG_TRUNC))) { 847 if (flags & MSG_PEEK) { 848 freemsg(mp); 849 } else { 850 unsigned int msize = msgdsize(mp); 851 852 freemsg(mp); 853 mutex_enter(&so->so_lock); 854 so->so_rcv_queued -= msize; 855 /* 856 * so_check_flow_control() will drop 857 * so->so_lock. 858 */ 859 rvalp->r_val2 = 860 so_check_flow_control(so); 861 } 862 } else if (partial_read && !somsghasdata(mp)) { 863 /* 864 * Avoid queuing a zero-length tail part of 865 * a message. partial_read == 1 indicates that 866 * we read some of the message. 867 */ 868 freemsg(mp); 869 more &= ~MOREDATA; 870 } else { 871 if (savemp != NULL && 872 (flags & MSG_DUPCTRL)) { 873 mblk_t *nmp; 874 /* 875 * There should only be non data mblks 876 */ 877 ASSERT(DB_TYPE(savemp) != M_DATA && 878 DB_TYPE(savemptail) != M_DATA); 879 try_again: 880 if ((nmp = dupmsg(savemp)) == NULL && 881 (nmp = copymsg(savemp)) == NULL) { 882 883 size_t size = msgsize(savemp); 884 885 error = strwaitbuf(size, 886 BPRI_HI); 887 if (error != 0) { 888 /* 889 * In case we 890 * cannot copy 891 * control data 892 * free the remaining 893 * data. 894 */ 895 freemsg(mp); 896 goto done; 897 } 898 goto try_again; 899 } 900 901 ASSERT(nmp != NULL); 902 ASSERT(DB_TYPE(nmp) != M_DATA); 903 savemptail->b_cont = mp; 904 *mctlp = nmp; 905 mp = savemp; 906 } 907 /* 908 * putback mp 909 */ 910 so_prepend_msg(so, mp, last_tail); 911 } 912 } 913 914 /* fast check so_rcv_head if there is more data */ 915 if (partial_read && !(so->so_state & SS_RCVATMARK) && 916 *mctlp == NULL && uiop->uio_resid > 0 && 917 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) { 918 goto again; 919 } 920 } else if (!partial_read) { 921 mutex_enter(&so->so_lock); 922 if (so->so_error != 0) { 923 error = sogeterr(so, !(flags & MSG_PEEK)); 924 mutex_exit(&so->so_lock); 925 return (error); 926 } 927 /* 928 * No pending data. Return right away for nonblocking 929 * socket, otherwise sleep waiting for data. 930 */ 931 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) { 932 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 933 (flags & MSG_DONTWAIT)) { 934 error = EWOULDBLOCK; 935 } else { 936 if (so->so_state & (SS_CLOSING | 937 SS_FALLBACK_PENDING)) { 938 mutex_exit(&so->so_lock); 939 error = EINTR; 940 goto done; 941 } 942 943 if (so->so_rcv_head != NULL) { 944 goto again1; 945 } 946 so->so_rcv_wakeup = B_TRUE; 947 so->so_rcv_wanted = uiop->uio_resid; 948 if (so->so_rcvtimeo == 0) { 949 /* 950 * Zero means disable timeout. 951 */ 952 error = cv_wait_sig(&so->so_rcv_cv, 953 &so->so_lock); 954 } else { 955 error = cv_reltimedwait_sig( 956 &so->so_rcv_cv, &so->so_lock, 957 so->so_rcvtimeo, TR_CLOCK_TICK); 958 } 959 so->so_rcv_wakeup = B_FALSE; 960 so->so_rcv_wanted = 0; 961 962 if (error == 0) { 963 error = EINTR; 964 } else if (error == -1) { 965 error = EAGAIN; 966 } else { 967 goto again1; 968 } 969 } 970 } 971 mutex_exit(&so->so_lock); 972 } 973 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) { 974 /* 975 * We are passed the mark, update state 976 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 977 * The draft Posix socket spec states that the mark should 978 * not be cleared when peeking. We follow the latter. 979 */ 980 mutex_enter(&so->so_lock); 981 ASSERT(so_verify_oobstate(so)); 982 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 983 freemsg(so->so_oobmsg); 984 so->so_oobmsg = NULL; 985 ASSERT(so_verify_oobstate(so)); 986 mutex_exit(&so->so_lock); 987 } 988 ASSERT(so->so_rcv_wakeup == B_FALSE); 989 done: 990 if (sodp != NULL) { 991 mutex_enter(&so->so_lock); 992 if (sodp->sod_enabled && 993 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) { 994 SOD_UIOAFINI(sodp); 995 if (sodp->sod_uioa.uioa_mbytes > 0) { 996 ASSERT(so->so_rcv_q_head != NULL || 997 so->so_rcv_head != NULL); 998 so->so_rcv_queued -= sod_uioa_mblk(so, NULL); 999 if (error == EWOULDBLOCK) 1000 error = 0; 1001 } 1002 } 1003 mutex_exit(&so->so_lock); 1004 } 1005 #ifdef DEBUG 1006 if (so_debug_length) { 1007 mutex_enter(&so->so_lock); 1008 ASSERT(so_check_length(so)); 1009 mutex_exit(&so->so_lock); 1010 } 1011 #endif 1012 rvalp->r_val1 = more; 1013 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1014 return (error); 1015 } 1016 1017 /* 1018 * Enqueue data from the protocol on the socket's rcv queue. 1019 * 1020 * We try to hook new M_DATA mblks onto an existing chain, however, 1021 * that cannot be done if the existing chain has already been 1022 * processed by I/OAT. Non-M_DATA mblks are just linked together via 1023 * b_next. In all cases the b_prev of the enqueued mblk is set to 1024 * point to the last mblk in its b_cont chain. 1025 */ 1026 void 1027 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size) 1028 { 1029 ASSERT(MUTEX_HELD(&so->so_lock)); 1030 1031 #ifdef DEBUG 1032 if (so_debug_length) { 1033 ASSERT(so_check_length(so)); 1034 } 1035 #endif 1036 so->so_rcv_queued += msg_size; 1037 1038 if (so->so_rcv_head == NULL) { 1039 ASSERT(so->so_rcv_last_head == NULL); 1040 so->so_rcv_head = mp; 1041 so->so_rcv_last_head = mp; 1042 } else if ((DB_TYPE(mp) == M_DATA && 1043 DB_TYPE(so->so_rcv_last_head) == M_DATA) && 1044 ((DB_FLAGS(mp) & DBLK_UIOA) == 1045 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) { 1046 /* Added to the end */ 1047 ASSERT(so->so_rcv_last_head != NULL); 1048 ASSERT(so->so_rcv_last_head->b_prev != NULL); 1049 so->so_rcv_last_head->b_prev->b_cont = mp; 1050 } else { 1051 /* Start a new end */ 1052 so->so_rcv_last_head->b_next = mp; 1053 so->so_rcv_last_head = mp; 1054 } 1055 while (mp->b_cont != NULL) 1056 mp = mp->b_cont; 1057 1058 so->so_rcv_last_head->b_prev = mp; 1059 #ifdef DEBUG 1060 if (so_debug_length) { 1061 ASSERT(so_check_length(so)); 1062 } 1063 #endif 1064 } 1065 1066 /* 1067 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 1068 */ 1069 boolean_t 1070 somsghasdata(mblk_t *mp) 1071 { 1072 for (; mp; mp = mp->b_cont) 1073 if (mp->b_datap->db_type == M_DATA) { 1074 ASSERT(mp->b_wptr >= mp->b_rptr); 1075 if (mp->b_wptr > mp->b_rptr) 1076 return (B_TRUE); 1077 } 1078 return (B_FALSE); 1079 } 1080 1081 /* 1082 * Flush the read side of sockfs. 1083 * 1084 * The caller must be sure that a reader is not already active when the 1085 * buffer is being flushed. 1086 */ 1087 void 1088 so_rcv_flush(struct sonode *so) 1089 { 1090 mblk_t *mp; 1091 1092 ASSERT(MUTEX_HELD(&so->so_lock)); 1093 1094 if (so->so_oobmsg != NULL) { 1095 freemsg(so->so_oobmsg); 1096 so->so_oobmsg = NULL; 1097 so->so_oobmark = 0; 1098 so->so_state &= 1099 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK); 1100 } 1101 1102 /* 1103 * Free messages sitting in the recv queues 1104 */ 1105 while (so->so_rcv_q_head != NULL) { 1106 mp = so->so_rcv_q_head; 1107 so->so_rcv_q_head = mp->b_next; 1108 mp->b_next = mp->b_prev = NULL; 1109 freemsg(mp); 1110 } 1111 while (so->so_rcv_head != NULL) { 1112 mp = so->so_rcv_head; 1113 so->so_rcv_head = mp->b_next; 1114 mp->b_next = mp->b_prev = NULL; 1115 freemsg(mp); 1116 } 1117 so->so_rcv_queued = 0; 1118 so->so_rcv_q_head = NULL; 1119 so->so_rcv_q_last_head = NULL; 1120 so->so_rcv_head = NULL; 1121 so->so_rcv_last_head = NULL; 1122 } 1123 1124 /* 1125 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK. 1126 */ 1127 int 1128 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags, 1129 boolean_t oob_inline) 1130 { 1131 mblk_t *mp, *nmp; 1132 int error; 1133 1134 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg, 1135 flags)); 1136 1137 if (msg != NULL) { 1138 /* 1139 * There is never any oob data with addresses or control since 1140 * the T_EXDATA_IND does not carry any options. 1141 */ 1142 msg->msg_controllen = 0; 1143 msg->msg_namelen = 0; 1144 msg->msg_flags = 0; 1145 } 1146 1147 mutex_enter(&so->so_lock); 1148 ASSERT(so_verify_oobstate(so)); 1149 if (oob_inline || 1150 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) { 1151 dprintso(so, 1, ("sorecvoob: inline or data consumed\n")); 1152 mutex_exit(&so->so_lock); 1153 return (EINVAL); 1154 } 1155 if (!(so->so_state & SS_HAVEOOBDATA)) { 1156 dprintso(so, 1, ("sorecvoob: no data yet\n")); 1157 mutex_exit(&so->so_lock); 1158 return (EWOULDBLOCK); 1159 } 1160 ASSERT(so->so_oobmsg != NULL); 1161 mp = so->so_oobmsg; 1162 if (flags & MSG_PEEK) { 1163 /* 1164 * Since recv* can not return ENOBUFS we can not use dupmsg. 1165 * Instead we revert to the consolidation private 1166 * allocb_wait plus bcopy. 1167 */ 1168 mblk_t *mp1; 1169 1170 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL); 1171 ASSERT(mp1); 1172 1173 while (mp != NULL) { 1174 ssize_t size; 1175 1176 size = MBLKL(mp); 1177 bcopy(mp->b_rptr, mp1->b_wptr, size); 1178 mp1->b_wptr += size; 1179 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim); 1180 mp = mp->b_cont; 1181 } 1182 mp = mp1; 1183 } else { 1184 /* 1185 * Update the state indicating that the data has been consumed. 1186 * Keep SS_OOBPEND set until data is consumed past the mark. 1187 */ 1188 so->so_oobmsg = NULL; 1189 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA; 1190 } 1191 ASSERT(so_verify_oobstate(so)); 1192 mutex_exit(&so->so_lock); 1193 1194 error = 0; 1195 nmp = mp; 1196 while (nmp != NULL && uiop->uio_resid > 0) { 1197 ssize_t n = MBLKL(nmp); 1198 1199 n = MIN(n, uiop->uio_resid); 1200 if (n > 0) 1201 error = uiomove(nmp->b_rptr, n, 1202 UIO_READ, uiop); 1203 if (error) 1204 break; 1205 nmp = nmp->b_cont; 1206 } 1207 ASSERT(mp->b_next == NULL && mp->b_prev == NULL); 1208 freemsg(mp); 1209 return (error); 1210 } 1211 1212 /* 1213 * Allocate and initializ sonode 1214 */ 1215 /* ARGSUSED */ 1216 struct sonode * 1217 socket_sonode_create(struct sockparams *sp, int family, int type, 1218 int protocol, int version, int sflags, int *errorp, struct cred *cr) 1219 { 1220 sonode_t *so; 1221 int kmflags; 1222 1223 /* 1224 * Choose the right set of sonodeops based on the upcall and 1225 * down call version that the protocol has provided 1226 */ 1227 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version || 1228 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) { 1229 /* 1230 * mismatch 1231 */ 1232 #ifdef DEBUG 1233 cmn_err(CE_CONT, "protocol and socket module version mismatch"); 1234 #endif 1235 *errorp = EINVAL; 1236 return (NULL); 1237 } 1238 1239 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 1240 1241 so = kmem_cache_alloc(socket_cache, kmflags); 1242 if (so == NULL) { 1243 *errorp = ENOMEM; 1244 return (NULL); 1245 } 1246 1247 sonode_init(so, sp, family, type, protocol, &so_sonodeops); 1248 1249 if (version == SOV_DEFAULT) 1250 version = so_default_version; 1251 1252 so->so_version = (short)version; 1253 1254 /* 1255 * set the default values to be INFPSZ 1256 * if a protocol desires it can change the value later 1257 */ 1258 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER; 1259 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER; 1260 so->so_proto_props.sopp_maxpsz = INFPSZ; 1261 so->so_proto_props.sopp_maxblk = INFPSZ; 1262 1263 return (so); 1264 } 1265 1266 int 1267 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr) 1268 { 1269 int error = 0; 1270 1271 if (pso != NULL) { 1272 /* 1273 * We have a passive open, so inherit basic state from 1274 * the parent (listener). 1275 * 1276 * No need to grab the new sonode's lock, since there is no 1277 * one that can have a reference to it. 1278 */ 1279 mutex_enter(&pso->so_lock); 1280 1281 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC); 1282 so->so_pgrp = pso->so_pgrp; 1283 so->so_rcvtimeo = pso->so_rcvtimeo; 1284 so->so_sndtimeo = pso->so_sndtimeo; 1285 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf; 1286 /* 1287 * Make note of the socket level options. TCP and IP level 1288 * options are already inherited. We could do all this after 1289 * accept is successful but doing it here simplifies code and 1290 * no harm done for error case. 1291 */ 1292 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR| 1293 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1294 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1295 so->so_proto_props = pso->so_proto_props; 1296 so->so_mode = pso->so_mode; 1297 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS; 1298 1299 mutex_exit(&pso->so_lock); 1300 1301 /* 1302 * If the parent has any filters, try to inherit them. 1303 */ 1304 if (pso->so_filter_active > 0 && 1305 (error = sof_sonode_inherit_filters(so, pso)) != 0) 1306 return (error); 1307 1308 } else { 1309 struct sockparams *sp = so->so_sockparams; 1310 sock_upcalls_t *upcalls_to_use; 1311 1312 /* 1313 * Attach automatic filters, if there are any. 1314 */ 1315 if (!list_is_empty(&sp->sp_auto_filters) && 1316 (error = sof_sonode_autoattach_filters(so, cr)) != 0) 1317 return (error); 1318 1319 /* OK to attach filters */ 1320 so->so_state |= SS_FILOP_OK; 1321 1322 /* 1323 * Based on the version number select the right upcalls to 1324 * pass down. Currently we only have one version so choose 1325 * default 1326 */ 1327 upcalls_to_use = &so_upcalls; 1328 1329 /* active open, so create a lower handle */ 1330 so->so_proto_handle = 1331 sp->sp_smod_info->smod_proto_create_func(so->so_family, 1332 so->so_type, so->so_protocol, &so->so_downcalls, 1333 &so->so_mode, &error, flags, cr); 1334 1335 if (so->so_proto_handle == NULL) { 1336 ASSERT(error != 0); 1337 /* 1338 * To be safe; if a lower handle cannot be created, and 1339 * the proto does not give a reason why, assume there 1340 * was a lack of memory. 1341 */ 1342 return ((error == 0) ? ENOMEM : error); 1343 } 1344 ASSERT(so->so_downcalls != NULL); 1345 ASSERT(so->so_downcalls->sd_send != NULL || 1346 so->so_downcalls->sd_send_uio != NULL); 1347 if (so->so_downcalls->sd_recv_uio != NULL) { 1348 ASSERT(so->so_downcalls->sd_poll != NULL); 1349 so->so_pollev |= SO_POLLEV_ALWAYS; 1350 } 1351 1352 (*so->so_downcalls->sd_activate)(so->so_proto_handle, 1353 (sock_upper_handle_t)so, upcalls_to_use, 0, cr); 1354 1355 /* Wildcard */ 1356 1357 /* 1358 * FIXME No need for this, the protocol can deal with it in 1359 * sd_create(). Should update ICMP. 1360 */ 1361 if (so->so_protocol != so->so_sockparams->sp_protocol) { 1362 int protocol = so->so_protocol; 1363 int error; 1364 /* 1365 * Issue SO_PROTOTYPE setsockopt. 1366 */ 1367 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, 1368 &protocol, (t_uscalar_t)sizeof (protocol), cr); 1369 if (error) { 1370 (void) (*so->so_downcalls->sd_close) 1371 (so->so_proto_handle, 0, cr); 1372 1373 mutex_enter(&so->so_lock); 1374 so_rcv_flush(so); 1375 mutex_exit(&so->so_lock); 1376 /* 1377 * Setsockopt often fails with ENOPROTOOPT but 1378 * socket() should fail with 1379 * EPROTONOSUPPORT/EPROTOTYPE. 1380 */ 1381 return (EPROTONOSUPPORT); 1382 } 1383 } 1384 } 1385 1386 if (uioasync.enabled) 1387 sod_sock_init(so); 1388 1389 /* put an extra reference on the socket for the protocol */ 1390 VN_HOLD(SOTOV(so)); 1391 1392 return (0); 1393 } 1394 1395 /* 1396 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1397 * struct cred *cr, int32_t *rvalp) 1398 * 1399 * Handle ioctls that manipulate basic socket state; non-blocking, 1400 * async, etc. 1401 * 1402 * Returns: 1403 * < 0 - ioctl was not handle 1404 * >= 0 - ioctl was handled, if > 0, then it is an errno 1405 * 1406 * Notes: 1407 * Assumes the standard receive buffer is used to obtain info for 1408 * NREAD. 1409 */ 1410 /* ARGSUSED */ 1411 int 1412 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1413 struct cred *cr, int32_t *rvalp) 1414 { 1415 switch (cmd) { 1416 case SIOCSQPTR: 1417 /* 1418 * SIOCSQPTR is valid only when helper stream is created 1419 * by the protocol. 1420 */ 1421 1422 return (EOPNOTSUPP); 1423 case FIONBIO: { 1424 int32_t value; 1425 1426 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1427 (mode & (int)FKIOCTL))) 1428 return (EFAULT); 1429 1430 mutex_enter(&so->so_lock); 1431 if (value) { 1432 so->so_state |= SS_NDELAY; 1433 } else { 1434 so->so_state &= ~SS_NDELAY; 1435 } 1436 mutex_exit(&so->so_lock); 1437 return (0); 1438 } 1439 case FIOASYNC: { 1440 int32_t value; 1441 1442 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1443 (mode & (int)FKIOCTL))) 1444 return (EFAULT); 1445 1446 mutex_enter(&so->so_lock); 1447 1448 if (value) { 1449 /* Turn on SIGIO */ 1450 so->so_state |= SS_ASYNC; 1451 } else { 1452 /* Turn off SIGIO */ 1453 so->so_state &= ~SS_ASYNC; 1454 } 1455 mutex_exit(&so->so_lock); 1456 1457 return (0); 1458 } 1459 1460 case SIOCSPGRP: 1461 case FIOSETOWN: { 1462 int error; 1463 pid_t pid; 1464 1465 if (so_copyin((void *)arg, &pid, sizeof (pid_t), 1466 (mode & (int)FKIOCTL))) 1467 return (EFAULT); 1468 1469 mutex_enter(&so->so_lock); 1470 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0; 1471 mutex_exit(&so->so_lock); 1472 return (error); 1473 } 1474 case SIOCGPGRP: 1475 case FIOGETOWN: 1476 if (so_copyout(&so->so_pgrp, (void *)arg, 1477 sizeof (pid_t), (mode & (int)FKIOCTL))) 1478 return (EFAULT); 1479 1480 return (0); 1481 case SIOCATMARK: { 1482 int retval; 1483 1484 /* 1485 * Only protocols that support urgent data can handle ATMARK. 1486 */ 1487 if ((so->so_mode & SM_EXDATA) == 0) 1488 return (EINVAL); 1489 1490 /* 1491 * If the protocol is maintaining its own buffer, then the 1492 * request must be passed down. 1493 */ 1494 if (so->so_downcalls->sd_recv_uio != NULL) 1495 return (-1); 1496 1497 retval = (so->so_state & SS_RCVATMARK) != 0; 1498 1499 if (so_copyout(&retval, (void *)arg, sizeof (int), 1500 (mode & (int)FKIOCTL))) { 1501 return (EFAULT); 1502 } 1503 return (0); 1504 } 1505 1506 case FIONREAD: { 1507 int retval; 1508 1509 /* 1510 * If the protocol is maintaining its own buffer, then the 1511 * request must be passed down. 1512 */ 1513 if (so->so_downcalls->sd_recv_uio != NULL) 1514 return (-1); 1515 1516 retval = MIN(so->so_rcv_queued, INT_MAX); 1517 1518 if (so_copyout(&retval, (void *)arg, 1519 sizeof (retval), (mode & (int)FKIOCTL))) { 1520 return (EFAULT); 1521 } 1522 return (0); 1523 } 1524 1525 case _I_GETPEERCRED: { 1526 int error = 0; 1527 1528 if ((mode & FKIOCTL) == 0) 1529 return (EINVAL); 1530 1531 mutex_enter(&so->so_lock); 1532 if ((so->so_mode & SM_CONNREQUIRED) == 0) { 1533 error = ENOTSUP; 1534 } else if ((so->so_state & SS_ISCONNECTED) == 0) { 1535 error = ENOTCONN; 1536 } else if (so->so_peercred != NULL) { 1537 k_peercred_t *kp = (k_peercred_t *)arg; 1538 kp->pc_cr = so->so_peercred; 1539 kp->pc_cpid = so->so_cpid; 1540 crhold(so->so_peercred); 1541 } else { 1542 error = EINVAL; 1543 } 1544 mutex_exit(&so->so_lock); 1545 return (error); 1546 } 1547 default: 1548 return (-1); 1549 } 1550 } 1551 1552 /* 1553 * Handle the I_NREAD STREAM ioctl. 1554 */ 1555 static int 1556 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp) 1557 { 1558 size_t size = 0; 1559 int retval; 1560 int count = 0; 1561 mblk_t *mp; 1562 clock_t wakeup = drv_usectohz(10); 1563 1564 if (so->so_downcalls == NULL || 1565 so->so_downcalls->sd_recv_uio != NULL) 1566 return (EINVAL); 1567 1568 mutex_enter(&so->so_lock); 1569 /* Wait for reader to get out of the way. */ 1570 while (so->so_flag & SOREADLOCKED) { 1571 /* 1572 * If reader is waiting for data, then there should be nothing 1573 * on the rcv queue. 1574 */ 1575 if (so->so_rcv_wakeup) 1576 goto out; 1577 1578 /* Do a timed sleep, in case the reader goes to sleep. */ 1579 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup, 1580 TR_CLOCK_TICK); 1581 } 1582 1583 /* 1584 * Since we are holding so_lock no new reader will come in, and the 1585 * protocol will not be able to enqueue data. So it's safe to walk 1586 * both rcv queues. 1587 */ 1588 mp = so->so_rcv_q_head; 1589 if (mp != NULL) { 1590 size = msgdsize(so->so_rcv_q_head); 1591 for (; mp != NULL; mp = mp->b_next) 1592 count++; 1593 } else { 1594 /* 1595 * In case the processing list was empty, get the size of the 1596 * next msg in line. 1597 */ 1598 size = msgdsize(so->so_rcv_head); 1599 } 1600 1601 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next) 1602 count++; 1603 out: 1604 mutex_exit(&so->so_lock); 1605 1606 /* 1607 * Drop down from size_t to the "int" required by the 1608 * interface. Cap at INT_MAX. 1609 */ 1610 retval = MIN(size, INT_MAX); 1611 if (so_copyout(&retval, (void *)arg, sizeof (retval), 1612 (mode & (int)FKIOCTL))) { 1613 return (EFAULT); 1614 } else { 1615 *rvalp = count; 1616 return (0); 1617 } 1618 } 1619 1620 /* 1621 * Process STREAM ioctls. 1622 * 1623 * Returns: 1624 * < 0 - ioctl was not handle 1625 * >= 0 - ioctl was handled, if > 0, then it is an errno 1626 */ 1627 int 1628 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1629 struct cred *cr, int32_t *rvalp) 1630 { 1631 int retval; 1632 1633 /* Only STREAM iotcls are handled here */ 1634 if ((cmd & 0xffffff00U) != STR) 1635 return (-1); 1636 1637 switch (cmd) { 1638 case I_CANPUT: 1639 /* 1640 * We return an error for I_CANPUT so that isastream(3C) will 1641 * not report the socket as being a STREAM. 1642 */ 1643 return (EOPNOTSUPP); 1644 case I_NREAD: 1645 /* Avoid doing a fallback for I_NREAD. */ 1646 return (so_strioc_nread(so, arg, mode, rvalp)); 1647 case I_LOOK: 1648 /* Avoid doing a fallback for I_LOOK. */ 1649 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1, 1650 (mode & (int)FKIOCTL))) { 1651 return (EFAULT); 1652 } 1653 return (0); 1654 default: 1655 break; 1656 } 1657 1658 /* 1659 * Try to fall back to TPI, and if successful, reissue the ioctl. 1660 */ 1661 if ((retval = so_tpi_fallback(so, cr)) == 0) { 1662 /* Reissue the ioctl */ 1663 ASSERT(so->so_rcv_q_head == NULL); 1664 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp)); 1665 } else { 1666 return (retval); 1667 } 1668 } 1669 1670 /* 1671 * This is called for all socket types to verify that the buffer size is large 1672 * enough for the option, and if we can, handle the request as well. Most 1673 * options will be forwarded to the protocol. 1674 */ 1675 int 1676 socket_getopt_common(struct sonode *so, int level, int option_name, 1677 void *optval, socklen_t *optlenp, int flags) 1678 { 1679 if (level != SOL_SOCKET) 1680 return (-1); 1681 1682 switch (option_name) { 1683 case SO_ERROR: 1684 case SO_DOMAIN: 1685 case SO_TYPE: 1686 case SO_ACCEPTCONN: { 1687 int32_t value; 1688 socklen_t optlen = *optlenp; 1689 1690 if (optlen < (t_uscalar_t)sizeof (int32_t)) { 1691 return (EINVAL); 1692 } 1693 1694 switch (option_name) { 1695 case SO_ERROR: 1696 mutex_enter(&so->so_lock); 1697 value = sogeterr(so, B_TRUE); 1698 mutex_exit(&so->so_lock); 1699 break; 1700 case SO_DOMAIN: 1701 value = so->so_family; 1702 break; 1703 case SO_TYPE: 1704 value = so->so_type; 1705 break; 1706 case SO_ACCEPTCONN: 1707 if (so->so_state & SS_ACCEPTCONN) 1708 value = SO_ACCEPTCONN; 1709 else 1710 value = 0; 1711 break; 1712 } 1713 1714 bcopy(&value, optval, sizeof (value)); 1715 *optlenp = sizeof (value); 1716 1717 return (0); 1718 } 1719 case SO_SNDTIMEO: 1720 case SO_RCVTIMEO: { 1721 clock_t value; 1722 socklen_t optlen = *optlenp; 1723 1724 if (get_udatamodel() == DATAMODEL_NONE || 1725 get_udatamodel() == DATAMODEL_NATIVE) { 1726 if (optlen < sizeof (struct timeval)) 1727 return (EINVAL); 1728 } else { 1729 if (optlen < sizeof (struct timeval32)) 1730 return (EINVAL); 1731 } 1732 if (option_name == SO_RCVTIMEO) 1733 value = drv_hztousec(so->so_rcvtimeo); 1734 else 1735 value = drv_hztousec(so->so_sndtimeo); 1736 1737 if (get_udatamodel() == DATAMODEL_NONE || 1738 get_udatamodel() == DATAMODEL_NATIVE) { 1739 ((struct timeval *)(optval))->tv_sec = 1740 value / (1000 * 1000); 1741 ((struct timeval *)(optval))->tv_usec = 1742 value % (1000 * 1000); 1743 *optlenp = sizeof (struct timeval); 1744 } else { 1745 ((struct timeval32 *)(optval))->tv_sec = 1746 value / (1000 * 1000); 1747 ((struct timeval32 *)(optval))->tv_usec = 1748 value % (1000 * 1000); 1749 *optlenp = sizeof (struct timeval32); 1750 } 1751 return (0); 1752 } 1753 case SO_DEBUG: 1754 case SO_REUSEADDR: 1755 case SO_KEEPALIVE: 1756 case SO_DONTROUTE: 1757 case SO_BROADCAST: 1758 case SO_USELOOPBACK: 1759 case SO_OOBINLINE: 1760 case SO_SNDBUF: 1761 #ifdef notyet 1762 case SO_SNDLOWAT: 1763 case SO_RCVLOWAT: 1764 #endif /* notyet */ 1765 case SO_DGRAM_ERRIND: { 1766 socklen_t optlen = *optlenp; 1767 1768 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1769 return (EINVAL); 1770 break; 1771 } 1772 case SO_RCVBUF: { 1773 socklen_t optlen = *optlenp; 1774 1775 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1776 return (EINVAL); 1777 1778 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) { 1779 /* 1780 * XXX If SO_RCVBUF has been set and this is an 1781 * XPG 4.2 application then do not ask the transport 1782 * since the transport might adjust the value and not 1783 * return exactly what was set by the application. 1784 * For non-XPG 4.2 application we return the value 1785 * that the transport is actually using. 1786 */ 1787 *(int32_t *)optval = so->so_xpg_rcvbuf; 1788 *optlenp = sizeof (so->so_xpg_rcvbuf); 1789 return (0); 1790 } 1791 /* 1792 * If the option has not been set then get a default 1793 * value from the transport. 1794 */ 1795 break; 1796 } 1797 case SO_LINGER: { 1798 socklen_t optlen = *optlenp; 1799 1800 if (optlen < (t_uscalar_t)sizeof (struct linger)) 1801 return (EINVAL); 1802 break; 1803 } 1804 case SO_SND_BUFINFO: { 1805 socklen_t optlen = *optlenp; 1806 1807 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo)) 1808 return (EINVAL); 1809 ((struct so_snd_bufinfo *)(optval))->sbi_wroff = 1810 (so->so_proto_props).sopp_wroff; 1811 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk = 1812 (so->so_proto_props).sopp_maxblk; 1813 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz = 1814 (so->so_proto_props).sopp_maxpsz; 1815 ((struct so_snd_bufinfo *)(optval))->sbi_tail = 1816 (so->so_proto_props).sopp_tail; 1817 *optlenp = sizeof (struct so_snd_bufinfo); 1818 return (0); 1819 } 1820 case SO_SND_COPYAVOID: { 1821 sof_instance_t *inst; 1822 1823 /* 1824 * Avoid zero-copy if there is a filter with a data_out 1825 * callback. We could let the operation succeed, but then 1826 * the filter would have to copy the data anyway. 1827 */ 1828 for (inst = so->so_filter_top; inst != NULL; 1829 inst = inst->sofi_next) { 1830 if (SOF_INTERESTED(inst, data_out)) 1831 return (EOPNOTSUPP); 1832 } 1833 break; 1834 } 1835 1836 default: 1837 break; 1838 } 1839 1840 /* Unknown Option */ 1841 return (-1); 1842 } 1843 1844 void 1845 socket_sonode_destroy(struct sonode *so) 1846 { 1847 sonode_fini(so); 1848 kmem_cache_free(socket_cache, so); 1849 } 1850 1851 int 1852 so_zcopy_wait(struct sonode *so) 1853 { 1854 int error = 0; 1855 1856 mutex_enter(&so->so_lock); 1857 while (!(so->so_copyflag & STZCNOTIFY)) { 1858 if (so->so_state & SS_CLOSING) { 1859 mutex_exit(&so->so_lock); 1860 return (EINTR); 1861 } 1862 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) { 1863 error = EINTR; 1864 break; 1865 } 1866 } 1867 so->so_copyflag &= ~STZCNOTIFY; 1868 mutex_exit(&so->so_lock); 1869 return (error); 1870 } 1871 1872 void 1873 so_timer_callback(void *arg) 1874 { 1875 struct sonode *so = (struct sonode *)arg; 1876 1877 mutex_enter(&so->so_lock); 1878 1879 so->so_rcv_timer_tid = 0; 1880 if (so->so_rcv_queued > 0) { 1881 so_notify_data(so, so->so_rcv_queued); 1882 } else { 1883 mutex_exit(&so->so_lock); 1884 } 1885 } 1886 1887 #ifdef DEBUG 1888 /* 1889 * Verify that the length stored in so_rcv_queued and the length of data blocks 1890 * queued is same. 1891 */ 1892 static boolean_t 1893 so_check_length(sonode_t *so) 1894 { 1895 mblk_t *mp = so->so_rcv_q_head; 1896 int len = 0; 1897 1898 ASSERT(MUTEX_HELD(&so->so_lock)); 1899 1900 if (mp != NULL) { 1901 len = msgdsize(mp); 1902 while ((mp = mp->b_next) != NULL) 1903 len += msgdsize(mp); 1904 } 1905 mp = so->so_rcv_head; 1906 if (mp != NULL) { 1907 len += msgdsize(mp); 1908 while ((mp = mp->b_next) != NULL) 1909 len += msgdsize(mp); 1910 } 1911 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE); 1912 } 1913 #endif 1914 1915 int 1916 so_get_mod_version(struct sockparams *sp) 1917 { 1918 ASSERT(sp != NULL && sp->sp_smod_info != NULL); 1919 return (sp->sp_smod_info->smod_version); 1920 } 1921 1922 /* 1923 * so_start_fallback() 1924 * 1925 * Block new socket operations from coming in, and wait for active operations 1926 * to complete. Threads that are sleeping will be woken up so they can get 1927 * out of the way. 1928 * 1929 * The caller must be a reader on so_fallback_rwlock. 1930 */ 1931 static boolean_t 1932 so_start_fallback(struct sonode *so) 1933 { 1934 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock)); 1935 1936 mutex_enter(&so->so_lock); 1937 if (so->so_state & SS_FALLBACK_PENDING) { 1938 mutex_exit(&so->so_lock); 1939 return (B_FALSE); 1940 } 1941 so->so_state |= SS_FALLBACK_PENDING; 1942 /* 1943 * Poke all threads that might be sleeping. Any operation that comes 1944 * in after the cv_broadcast will observe the fallback pending flag 1945 * which cause the call to return where it would normally sleep. 1946 */ 1947 cv_broadcast(&so->so_state_cv); /* threads in connect() */ 1948 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */ 1949 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */ 1950 mutex_enter(&so->so_acceptq_lock); 1951 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */ 1952 mutex_exit(&so->so_acceptq_lock); 1953 mutex_exit(&so->so_lock); 1954 1955 /* 1956 * The main reason for the rw_tryupgrade call is to provide 1957 * observability during the fallback process. We want to 1958 * be able to see if there are pending operations. 1959 */ 1960 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) { 1961 /* 1962 * It is safe to drop and reaquire the fallback lock, because 1963 * we are guaranteed that another fallback cannot take place. 1964 */ 1965 rw_exit(&so->so_fallback_rwlock); 1966 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so); 1967 rw_enter(&so->so_fallback_rwlock, RW_WRITER); 1968 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so); 1969 } 1970 1971 return (B_TRUE); 1972 } 1973 1974 /* 1975 * so_end_fallback() 1976 * 1977 * Allow socket opertions back in. 1978 * 1979 * The caller must be a writer on so_fallback_rwlock. 1980 */ 1981 static void 1982 so_end_fallback(struct sonode *so) 1983 { 1984 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock)); 1985 1986 mutex_enter(&so->so_lock); 1987 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN); 1988 mutex_exit(&so->so_lock); 1989 1990 rw_downgrade(&so->so_fallback_rwlock); 1991 } 1992 1993 /* 1994 * so_quiesced_cb() 1995 * 1996 * Callback passed to the protocol during fallback. It is called once 1997 * the endpoint is quiescent. 1998 * 1999 * No requests from the user, no notifications from the protocol, so it 2000 * is safe to synchronize the state. Data can also be moved without 2001 * risk for reordering. 2002 * 2003 * We do not need to hold so_lock, since there can be only one thread 2004 * operating on the sonode. 2005 */ 2006 static mblk_t * 2007 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg, 2008 struct T_capability_ack *tcap, 2009 struct sockaddr *laddr, socklen_t laddrlen, 2010 struct sockaddr *faddr, socklen_t faddrlen, short opts) 2011 { 2012 struct sonode *so = (struct sonode *)sock_handle; 2013 boolean_t atmark; 2014 mblk_t *retmp = NULL, **tailmpp = &retmp; 2015 2016 if (tcap != NULL) 2017 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, 2018 opts); 2019 2020 /* 2021 * Some protocols do not quiece the data path during fallback. Once 2022 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will 2023 * fail and the protocol is responsible for saving the data for later 2024 * delivery (i.e., once the fallback has completed). 2025 */ 2026 mutex_enter(&so->so_lock); 2027 so->so_state |= SS_FALLBACK_DRAIN; 2028 SOCKET_TIMER_CANCEL(so); 2029 mutex_exit(&so->so_lock); 2030 2031 if (so->so_rcv_head != NULL) { 2032 if (so->so_rcv_q_last_head == NULL) 2033 so->so_rcv_q_head = so->so_rcv_head; 2034 else 2035 so->so_rcv_q_last_head->b_next = so->so_rcv_head; 2036 so->so_rcv_q_last_head = so->so_rcv_last_head; 2037 } 2038 2039 atmark = (so->so_state & SS_RCVATMARK) != 0; 2040 /* 2041 * Clear any OOB state having to do with pending data. The TPI 2042 * code path will set the appropriate oob state when we move the 2043 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob 2044 * data has already been consumed. 2045 */ 2046 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA); 2047 2048 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued); 2049 2050 /* 2051 * Move data to the STREAM head. 2052 */ 2053 while (so->so_rcv_q_head != NULL) { 2054 mblk_t *mp = so->so_rcv_q_head; 2055 size_t mlen = msgdsize(mp); 2056 2057 so->so_rcv_q_head = mp->b_next; 2058 mp->b_next = NULL; 2059 mp->b_prev = NULL; 2060 2061 /* 2062 * Send T_EXDATA_IND if we are at the oob mark. 2063 */ 2064 if (atmark) { 2065 struct T_exdata_ind *tei; 2066 mblk_t *mp1 = arg->soqa_exdata_mp; 2067 2068 arg->soqa_exdata_mp = NULL; 2069 ASSERT(mp1 != NULL); 2070 mp1->b_datap->db_type = M_PROTO; 2071 tei = (struct T_exdata_ind *)mp1->b_rptr; 2072 tei->PRIM_type = T_EXDATA_IND; 2073 tei->MORE_flag = 0; 2074 mp1->b_wptr = (uchar_t *)&tei[1]; 2075 2076 if (IS_SO_OOB_INLINE(so)) { 2077 mp1->b_cont = mp; 2078 } else { 2079 ASSERT(so->so_oobmsg != NULL); 2080 mp1->b_cont = so->so_oobmsg; 2081 so->so_oobmsg = NULL; 2082 2083 /* process current mp next time around */ 2084 mp->b_next = so->so_rcv_q_head; 2085 so->so_rcv_q_head = mp; 2086 mlen = 0; 2087 } 2088 mp = mp1; 2089 2090 /* we have consumed the oob mark */ 2091 atmark = B_FALSE; 2092 } else if (so->so_oobmark > 0) { 2093 /* 2094 * Check if the OOB mark is within the current 2095 * mblk chain. In that case we have to split it up. 2096 */ 2097 if (so->so_oobmark < mlen) { 2098 mblk_t *urg_mp = mp; 2099 2100 atmark = B_TRUE; 2101 mp = NULL; 2102 mlen = so->so_oobmark; 2103 2104 /* 2105 * It is assumed that the OOB mark does 2106 * not land within a mblk. 2107 */ 2108 do { 2109 so->so_oobmark -= MBLKL(urg_mp); 2110 mp = urg_mp; 2111 urg_mp = urg_mp->b_cont; 2112 } while (so->so_oobmark > 0); 2113 mp->b_cont = NULL; 2114 if (urg_mp != NULL) { 2115 urg_mp->b_next = so->so_rcv_q_head; 2116 so->so_rcv_q_head = urg_mp; 2117 } 2118 } else { 2119 so->so_oobmark -= mlen; 2120 if (so->so_oobmark == 0) 2121 atmark = B_TRUE; 2122 } 2123 } 2124 2125 /* 2126 * Queue data on the STREAM head. 2127 */ 2128 so->so_rcv_queued -= mlen; 2129 *tailmpp = mp; 2130 tailmpp = &mp->b_next; 2131 } 2132 so->so_rcv_head = NULL; 2133 so->so_rcv_last_head = NULL; 2134 so->so_rcv_q_head = NULL; 2135 so->so_rcv_q_last_head = NULL; 2136 2137 /* 2138 * Check if the oob byte is at the end of the data stream, or if the 2139 * oob byte has not yet arrived. In the latter case we have to send a 2140 * SIGURG and a mark indicator to the STREAM head. The mark indicator 2141 * is needed to guarantee correct behavior for SIOCATMARK. See block 2142 * comment in socktpi.h for more details. 2143 */ 2144 if (atmark || so->so_oobmark > 0) { 2145 mblk_t *mp; 2146 2147 if (atmark && so->so_oobmsg != NULL) { 2148 struct T_exdata_ind *tei; 2149 2150 mp = arg->soqa_exdata_mp; 2151 arg->soqa_exdata_mp = NULL; 2152 ASSERT(mp != NULL); 2153 mp->b_datap->db_type = M_PROTO; 2154 tei = (struct T_exdata_ind *)mp->b_rptr; 2155 tei->PRIM_type = T_EXDATA_IND; 2156 tei->MORE_flag = 0; 2157 mp->b_wptr = (uchar_t *)&tei[1]; 2158 2159 mp->b_cont = so->so_oobmsg; 2160 so->so_oobmsg = NULL; 2161 2162 *tailmpp = mp; 2163 tailmpp = &mp->b_next; 2164 } else { 2165 /* Send up the signal */ 2166 mp = arg->soqa_exdata_mp; 2167 arg->soqa_exdata_mp = NULL; 2168 ASSERT(mp != NULL); 2169 DB_TYPE(mp) = M_PCSIG; 2170 *mp->b_wptr++ = (uchar_t)SIGURG; 2171 *tailmpp = mp; 2172 tailmpp = &mp->b_next; 2173 2174 /* Send up the mark indicator */ 2175 mp = arg->soqa_urgmark_mp; 2176 arg->soqa_urgmark_mp = NULL; 2177 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT; 2178 *tailmpp = mp; 2179 tailmpp = &mp->b_next; 2180 2181 so->so_oobmark = 0; 2182 } 2183 } 2184 ASSERT(so->so_oobmark == 0); 2185 ASSERT(so->so_rcv_queued == 0); 2186 2187 return (retmp); 2188 } 2189 2190 #ifdef DEBUG 2191 /* 2192 * Do an integrity check of the sonode. This should be done if a 2193 * fallback fails after sonode has initially been converted to use 2194 * TPI and subsequently have to be reverted. 2195 * 2196 * Failure to pass the integrity check will panic the system. 2197 */ 2198 void 2199 so_integrity_check(struct sonode *cur, struct sonode *orig) 2200 { 2201 VERIFY(cur->so_vnode == orig->so_vnode); 2202 VERIFY(cur->so_ops == orig->so_ops); 2203 /* 2204 * For so_state we can only VERIFY the state flags in CHECK_STATE. 2205 * The other state flags might be affected by a notification from the 2206 * protocol. 2207 */ 2208 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \ 2209 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \ 2210 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG) 2211 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) == 2212 (orig->so_state & CHECK_STATE)); 2213 VERIFY(cur->so_mode == orig->so_mode); 2214 VERIFY(cur->so_flag == orig->so_flag); 2215 VERIFY(cur->so_count == orig->so_count); 2216 /* Cannot VERIFY so_proto_connid; proto can update it */ 2217 VERIFY(cur->so_sockparams == orig->so_sockparams); 2218 /* an error might have been recorded, but it can not be lost */ 2219 VERIFY(cur->so_error != 0 || orig->so_error == 0); 2220 VERIFY(cur->so_family == orig->so_family); 2221 VERIFY(cur->so_type == orig->so_type); 2222 VERIFY(cur->so_protocol == orig->so_protocol); 2223 VERIFY(cur->so_version == orig->so_version); 2224 /* New conns might have arrived, but none should have been lost */ 2225 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len); 2226 VERIFY(list_head(&cur->so_acceptq_list) == 2227 list_head(&orig->so_acceptq_list)); 2228 VERIFY(cur->so_backlog == orig->so_backlog); 2229 /* New OOB migth have arrived, but mark should not have been lost */ 2230 VERIFY(cur->so_oobmark >= orig->so_oobmark); 2231 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */ 2232 VERIFY(cur->so_pgrp == orig->so_pgrp); 2233 VERIFY(cur->so_peercred == orig->so_peercred); 2234 VERIFY(cur->so_cpid == orig->so_cpid); 2235 VERIFY(cur->so_zoneid == orig->so_zoneid); 2236 /* New data migth have arrived, but none should have been lost */ 2237 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued); 2238 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head); 2239 VERIFY(cur->so_rcv_head == orig->so_rcv_head); 2240 VERIFY(cur->so_proto_handle == orig->so_proto_handle); 2241 VERIFY(cur->so_downcalls == orig->so_downcalls); 2242 /* Cannot VERIFY so_proto_props; they can be updated by proto */ 2243 } 2244 #endif 2245 2246 /* 2247 * so_tpi_fallback() 2248 * 2249 * This is the fallback initation routine; things start here. 2250 * 2251 * Basic strategy: 2252 * o Block new socket operations from coming in 2253 * o Allocate/initate info needed by TPI 2254 * o Quiesce the connection, at which point we sync 2255 * state and move data 2256 * o Change operations (sonodeops) associated with the socket 2257 * o Unblock threads waiting for the fallback to finish 2258 */ 2259 int 2260 so_tpi_fallback(struct sonode *so, struct cred *cr) 2261 { 2262 int error; 2263 queue_t *q; 2264 struct sockparams *sp; 2265 struct sockparams *newsp = NULL; 2266 so_proto_fallback_func_t fbfunc; 2267 const char *devpath; 2268 boolean_t direct; 2269 struct sonode *nso; 2270 sock_quiesce_arg_t arg = { NULL, NULL }; 2271 #ifdef DEBUG 2272 struct sonode origso; 2273 #endif 2274 error = 0; 2275 sp = so->so_sockparams; 2276 fbfunc = sp->sp_smod_info->smod_proto_fallback_func; 2277 2278 /* 2279 * Cannot fallback if the socket has active filters 2280 */ 2281 if (so->so_filter_active > 0) 2282 return (EINVAL); 2283 2284 switch (so->so_family) { 2285 case AF_INET: 2286 devpath = sp->sp_smod_info->smod_fallback_devpath_v4; 2287 break; 2288 case AF_INET6: 2289 devpath = sp->sp_smod_info->smod_fallback_devpath_v6; 2290 break; 2291 default: 2292 return (EINVAL); 2293 } 2294 2295 /* 2296 * Fallback can only happen if the socket module has a TPI device 2297 * and fallback function. 2298 */ 2299 if (devpath == NULL || fbfunc == NULL) 2300 return (EINVAL); 2301 2302 /* 2303 * Initiate fallback; upon success we know that no new requests 2304 * will come in from the user. 2305 */ 2306 if (!so_start_fallback(so)) 2307 return (EAGAIN); 2308 #ifdef DEBUG 2309 /* 2310 * Make a copy of the sonode in case we need to make an integrity 2311 * check later on. 2312 */ 2313 bcopy(so, &origso, sizeof (*so)); 2314 #endif 2315 2316 sp->sp_stats.sps_nfallback.value.ui64++; 2317 2318 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type, 2319 so->so_protocol, devpath, KM_SLEEP, &error); 2320 if (error != 0) 2321 goto out; 2322 2323 if (so->so_direct != NULL) { 2324 sodirect_t *sodp = so->so_direct; 2325 mutex_enter(&so->so_lock); 2326 2327 so->so_direct->sod_enabled = B_FALSE; 2328 so->so_state &= ~SS_SODIRECT; 2329 ASSERT(sodp->sod_uioafh == NULL); 2330 mutex_exit(&so->so_lock); 2331 } 2332 2333 /* Turn sonode into a TPI socket */ 2334 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr); 2335 if (error != 0) 2336 goto out; 2337 /* 2338 * When it comes to urgent data we have two cases to deal with; 2339 * (1) The oob byte has already arrived, or (2) the protocol has 2340 * notified that oob data is pending, but it has not yet arrived. 2341 * 2342 * For (1) all we need to do is send a T_EXDATA_IND to indicate were 2343 * in the byte stream the oob byte is. For (2) we have to send a 2344 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether 2345 * the oob byte will be the next byte from the protocol. 2346 * 2347 * So in the worst case we need two mblks, one for the signal, another 2348 * for mark indication. In that case we use the exdata_mp for the sig. 2349 */ 2350 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind), 2351 BPRI_MED, STR_NOSIG, NULL); 2352 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 2353 2354 /* 2355 * Now tell the protocol to start using TPI. so_quiesced_cb be 2356 * called once it's safe to synchronize state. 2357 */ 2358 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so); 2359 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb, 2360 &arg); 2361 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so); 2362 2363 if (error != 0) { 2364 /* protocol was unable to do a fallback, revert the sonode */ 2365 sotpi_revert_sonode(so, cr); 2366 goto out; 2367 } 2368 2369 /* 2370 * Walk the accept queue and notify the proto that they should 2371 * fall back to TPI. The protocol will send up the T_CONN_IND. 2372 */ 2373 nso = list_head(&so->so_acceptq_list); 2374 while (nso != NULL) { 2375 int rval; 2376 struct sonode *next; 2377 2378 if (arg.soqa_exdata_mp == NULL) { 2379 arg.soqa_exdata_mp = 2380 allocb_wait(sizeof (struct T_exdata_ind), 2381 BPRI_MED, STR_NOSIG, NULL); 2382 } 2383 if (arg.soqa_urgmark_mp == NULL) { 2384 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, 2385 STR_NOSIG, NULL); 2386 } 2387 2388 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso); 2389 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, 2390 so_quiesced_cb, &arg); 2391 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso); 2392 if (rval != 0) { 2393 /* Abort the connection */ 2394 zcmn_err(getzoneid(), CE_WARN, 2395 "Failed to convert socket in accept queue to TPI. " 2396 "Pid = %d\n", curproc->p_pid); 2397 next = list_next(&so->so_acceptq_list, nso); 2398 list_remove(&so->so_acceptq_list, nso); 2399 so->so_acceptq_len--; 2400 2401 (void) socket_close(nso, 0, CRED()); 2402 socket_destroy(nso); 2403 nso = next; 2404 } else { 2405 nso = list_next(&so->so_acceptq_list, nso); 2406 } 2407 } 2408 2409 /* 2410 * Now flush the acceptq, this will destroy all sockets. They will 2411 * be recreated in sotpi_accept(). 2412 */ 2413 so_acceptq_flush(so, B_FALSE); 2414 2415 mutex_enter(&so->so_lock); 2416 so->so_state |= SS_FALLBACK_COMP; 2417 mutex_exit(&so->so_lock); 2418 2419 /* 2420 * Swap the sonode ops. Socket opertations that come in once this 2421 * is done will proceed without blocking. 2422 */ 2423 so->so_ops = &sotpi_sonodeops; 2424 2425 /* 2426 * Wake up any threads stuck in poll. This is needed since the poll 2427 * head changes when the fallback happens (moves from the sonode to 2428 * the STREAMS head). 2429 */ 2430 pollwakeup(&so->so_poll_list, POLLERR); 2431 2432 /* 2433 * When this non-STREAM socket was created we placed an extra ref on 2434 * the associated vnode to support asynchronous close. Drop that ref 2435 * here. 2436 */ 2437 ASSERT(SOTOV(so)->v_count >= 2); 2438 VN_RELE(SOTOV(so)); 2439 out: 2440 so_end_fallback(so); 2441 2442 if (error != 0) { 2443 #ifdef DEBUG 2444 so_integrity_check(so, &origso); 2445 #endif 2446 zcmn_err(getzoneid(), CE_WARN, 2447 "Failed to convert socket to TPI (err=%d). Pid = %d\n", 2448 error, curproc->p_pid); 2449 if (newsp != NULL) 2450 SOCKPARAMS_DEC_REF(newsp); 2451 } 2452 if (arg.soqa_exdata_mp != NULL) 2453 freemsg(arg.soqa_exdata_mp); 2454 if (arg.soqa_urgmark_mp != NULL) 2455 freemsg(arg.soqa_urgmark_mp); 2456 2457 return (error); 2458 } 2459