1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/signal.h> 29 #include <sys/cmn_err.h> 30 31 #include <sys/stropts.h> 32 #include <sys/socket.h> 33 #include <sys/socketvar.h> 34 #include <sys/sockio.h> 35 #include <sys/strsubr.h> 36 #include <sys/strsun.h> 37 #include <sys/atomic.h> 38 #include <sys/tihdr.h> 39 40 #include <fs/sockfs/sockcommon.h> 41 #include <fs/sockfs/sockfilter_impl.h> 42 #include <fs/sockfs/socktpi.h> 43 #include <fs/sockfs/sodirect.h> 44 #include <sys/ddi.h> 45 #include <inet/ip.h> 46 #include <sys/time.h> 47 #include <sys/cmn_err.h> 48 49 #ifdef SOCK_TEST 50 extern int do_useracc; 51 extern clock_t sock_test_timelimit; 52 #endif /* SOCK_TEST */ 53 54 #define MBLK_PULL_LEN 64 55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN; 56 57 #ifdef DEBUG 58 boolean_t so_debug_length = B_FALSE; 59 static boolean_t so_check_length(sonode_t *so); 60 #endif 61 62 static int 63 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock, 64 struct sonode **nsop) 65 { 66 struct sonode *nso = NULL; 67 68 *nsop = NULL; 69 ASSERT(MUTEX_HELD(&so->so_acceptq_lock)); 70 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) { 71 /* 72 * No need to check so_error here, because it is not 73 * possible for a listening socket to be reset or otherwise 74 * disconnected. 75 * 76 * So now we just need check if it's ok to wait. 77 */ 78 if (dontblock) 79 return (EWOULDBLOCK); 80 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 81 return (EINTR); 82 83 if (cv_wait_sig_swap(&so->so_acceptq_cv, 84 &so->so_acceptq_lock) == 0) 85 return (EINTR); 86 } 87 88 ASSERT(nso != NULL); 89 ASSERT(so->so_acceptq_len > 0); 90 so->so_acceptq_len--; 91 nso->so_listener = NULL; 92 93 *nsop = nso; 94 95 return (0); 96 } 97 98 /* 99 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **) 100 * 101 * Pulls a connection off of the accept queue. 102 * 103 * Arguments: 104 * so - listening socket 105 * dontblock - indicate whether it's ok to sleep if there are no 106 * connections on the queue 107 * nsop - Value-return argument 108 * 109 * Return values: 110 * 0 when a connection is successfully dequeued, in which case nsop 111 * is set to point to the new connection. Upon failure a non-zero 112 * value is returned, and the value of nsop is set to NULL. 113 * 114 * Note: 115 * so_acceptq_dequeue() may return prematurly if the socket is falling 116 * back to TPI. 117 */ 118 int 119 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock, 120 struct sonode **nsop) 121 { 122 int error; 123 124 mutex_enter(&so->so_acceptq_lock); 125 error = so_acceptq_dequeue_locked(so, dontblock, nsop); 126 mutex_exit(&so->so_acceptq_lock); 127 128 return (error); 129 } 130 131 static void 132 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose) 133 { 134 struct sonode *nso; 135 136 while ((nso = list_remove_head(list)) != NULL) { 137 nso->so_listener = NULL; 138 if (doclose) { 139 (void) socket_close(nso, 0, CRED()); 140 } else { 141 /* 142 * Only used for fallback - not possible when filters 143 * are present. 144 */ 145 ASSERT(so->so_filter_active == 0); 146 /* 147 * Since the socket is on the accept queue, there can 148 * only be one reference. We drop the reference and 149 * just blow off the socket. 150 */ 151 ASSERT(nso->so_count == 1); 152 nso->so_count--; 153 /* drop the proto ref */ 154 VN_RELE(SOTOV(nso)); 155 } 156 socket_destroy(nso); 157 } 158 } 159 /* 160 * void so_acceptq_flush(struct sonode *so) 161 * 162 * Removes all pending connections from a listening socket, and 163 * frees the associated resources. 164 * 165 * Arguments 166 * so - listening socket 167 * doclose - make a close downcall for each socket on the accept queue 168 * 169 * Return values: 170 * None. 171 * 172 * Note: 173 * The caller has to ensure that no calls to so_acceptq_enqueue() or 174 * so_acceptq_dequeue() occur while the accept queue is being flushed. 175 * So either the socket needs to be in a state where no operations 176 * would come in, or so_lock needs to be obtained. 177 */ 178 void 179 so_acceptq_flush(struct sonode *so, boolean_t doclose) 180 { 181 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose); 182 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose); 183 184 so->so_acceptq_len = 0; 185 } 186 187 int 188 so_wait_connected_locked(struct sonode *so, boolean_t nonblock, 189 sock_connid_t id) 190 { 191 ASSERT(MUTEX_HELD(&so->so_lock)); 192 193 /* 194 * The protocol has notified us that a connection attempt is being 195 * made, so before we wait for a notification to arrive we must 196 * clear out any errors associated with earlier connection attempts. 197 */ 198 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id)) 199 so->so_error = 0; 200 201 while (SOCK_CONNID_LT(so->so_proto_connid, id)) { 202 if (nonblock) 203 return (EINPROGRESS); 204 205 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 206 return (EINTR); 207 208 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0) 209 return (EINTR); 210 } 211 212 if (so->so_error != 0) 213 return (sogeterr(so, B_TRUE)); 214 /* 215 * Under normal circumstances, so_error should contain an error 216 * in case the connect failed. However, it is possible for another 217 * thread to come in a consume the error, so generate a sensible 218 * error in that case. 219 */ 220 if ((so->so_state & SS_ISCONNECTED) == 0) 221 return (ECONNREFUSED); 222 223 return (0); 224 } 225 226 /* 227 * int so_wait_connected(struct sonode *so, boolean_t nonblock, 228 * sock_connid_t id) 229 * 230 * Wait until the socket is connected or an error has occured. 231 * 232 * Arguments: 233 * so - socket 234 * nonblock - indicate whether it's ok to sleep if the connection has 235 * not yet been established 236 * gen - generation number that was returned by the protocol 237 * when the operation was started 238 * 239 * Returns: 240 * 0 if the connection attempt was successful, or an error indicating why 241 * the connection attempt failed. 242 */ 243 int 244 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id) 245 { 246 int error; 247 248 mutex_enter(&so->so_lock); 249 error = so_wait_connected_locked(so, nonblock, id); 250 mutex_exit(&so->so_lock); 251 252 return (error); 253 } 254 255 int 256 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock) 257 { 258 int error; 259 260 ASSERT(MUTEX_HELD(&so->so_lock)); 261 while (SO_SND_FLOWCTRLD(so)) { 262 if (so->so_state & SS_CANTSENDMORE) 263 return (EPIPE); 264 if (dontblock) 265 return (EWOULDBLOCK); 266 267 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 268 return (EINTR); 269 270 if (so->so_sndtimeo == 0) { 271 /* 272 * Zero means disable timeout. 273 */ 274 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock); 275 } else { 276 error = cv_reltimedwait_sig(&so->so_snd_cv, 277 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK); 278 } 279 if (error == 0) 280 return (EINTR); 281 else if (error == -1) 282 return (EAGAIN); 283 } 284 return (0); 285 } 286 287 /* 288 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock) 289 * 290 * Wait for the transport to notify us about send buffers becoming 291 * available. 292 */ 293 int 294 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock) 295 { 296 int error = 0; 297 298 mutex_enter(&so->so_lock); 299 so->so_snd_wakeup = B_TRUE; 300 error = so_snd_wait_qnotfull_locked(so, dontblock); 301 so->so_snd_wakeup = B_FALSE; 302 mutex_exit(&so->so_lock); 303 304 return (error); 305 } 306 307 void 308 so_snd_qfull(struct sonode *so) 309 { 310 mutex_enter(&so->so_lock); 311 so->so_snd_qfull = B_TRUE; 312 mutex_exit(&so->so_lock); 313 } 314 315 void 316 so_snd_qnotfull(struct sonode *so) 317 { 318 mutex_enter(&so->so_lock); 319 so->so_snd_qfull = B_FALSE; 320 /* wake up everyone waiting for buffers */ 321 cv_broadcast(&so->so_snd_cv); 322 mutex_exit(&so->so_lock); 323 } 324 325 /* 326 * Change the process/process group to which SIGIO is sent. 327 */ 328 int 329 socket_chgpgrp(struct sonode *so, pid_t pid) 330 { 331 int error; 332 333 ASSERT(MUTEX_HELD(&so->so_lock)); 334 if (pid != 0) { 335 /* 336 * Permissions check by sending signal 0. 337 * Note that when kill fails it does a 338 * set_errno causing the system call to fail. 339 */ 340 error = kill(pid, 0); 341 if (error != 0) { 342 return (error); 343 } 344 } 345 so->so_pgrp = pid; 346 return (0); 347 } 348 349 350 /* 351 * Generate a SIGIO, for 'writable' events include siginfo structure, 352 * for read events just send the signal. 353 */ 354 /*ARGSUSED*/ 355 static void 356 socket_sigproc(proc_t *proc, int event) 357 { 358 k_siginfo_t info; 359 360 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG)); 361 362 if (event & SOCKETSIG_WRITE) { 363 info.si_signo = SIGPOLL; 364 info.si_code = POLL_OUT; 365 info.si_errno = 0; 366 info.si_fd = 0; 367 info.si_band = 0; 368 sigaddq(proc, NULL, &info, KM_NOSLEEP); 369 } 370 if (event & SOCKETSIG_READ) { 371 sigtoproc(proc, NULL, SIGPOLL); 372 } 373 if (event & SOCKETSIG_URG) { 374 sigtoproc(proc, NULL, SIGURG); 375 } 376 } 377 378 void 379 socket_sendsig(struct sonode *so, int event) 380 { 381 proc_t *proc; 382 383 ASSERT(MUTEX_HELD(&so->so_lock)); 384 385 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) && 386 event != SOCKETSIG_URG)) { 387 return; 388 } 389 390 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp)); 391 392 if (so->so_pgrp > 0) { 393 /* 394 * XXX This unfortunately still generates 395 * a signal when a fd is closed but 396 * the proc is active. 397 */ 398 mutex_enter(&pidlock); 399 proc = prfind(so->so_pgrp); 400 if (proc == NULL) { 401 mutex_exit(&pidlock); 402 return; 403 } 404 mutex_enter(&proc->p_lock); 405 mutex_exit(&pidlock); 406 socket_sigproc(proc, event); 407 mutex_exit(&proc->p_lock); 408 } else { 409 /* 410 * Send to process group. Hold pidlock across 411 * calls to socket_sigproc(). 412 */ 413 pid_t pgrp = -so->so_pgrp; 414 415 mutex_enter(&pidlock); 416 proc = pgfind(pgrp); 417 while (proc != NULL) { 418 mutex_enter(&proc->p_lock); 419 socket_sigproc(proc, event); 420 mutex_exit(&proc->p_lock); 421 proc = proc->p_pglink; 422 } 423 mutex_exit(&pidlock); 424 } 425 } 426 427 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 428 /* Copy userdata into a new mblk_t */ 429 mblk_t * 430 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk, 431 size_t tail_len, int *errorp) 432 { 433 mblk_t *head = NULL, **tail = &head; 434 435 ASSERT(iosize == INFPSZ || iosize > 0); 436 437 if (iosize == INFPSZ || iosize > uiop->uio_resid) 438 iosize = uiop->uio_resid; 439 440 if (maxblk == INFPSZ) 441 maxblk = iosize; 442 443 /* Nothing to do in these cases, so we're done */ 444 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0)) 445 goto done; 446 447 /* 448 * We will enter the loop below if iosize is 0; it will allocate an 449 * empty message block and call uiomove(9F) which will just return. 450 * We could avoid that with an extra check but would only slow 451 * down the much more likely case where iosize is larger than 0. 452 */ 453 do { 454 ssize_t blocksize; 455 mblk_t *mp; 456 457 blocksize = MIN(iosize, maxblk); 458 ASSERT(blocksize >= 0); 459 mp = allocb(wroff + blocksize + tail_len, BPRI_MED); 460 if (mp == NULL) { 461 *errorp = ENOMEM; 462 return (head); 463 } 464 mp->b_rptr += wroff; 465 mp->b_wptr = mp->b_rptr + blocksize; 466 467 *tail = mp; 468 tail = &mp->b_cont; 469 470 /* uiomove(9F) either returns 0 or EFAULT */ 471 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize, 472 UIO_WRITE, uiop)) != 0) { 473 ASSERT(*errorp != ENOMEM); 474 freemsg(head); 475 return (NULL); 476 } 477 478 iosize -= blocksize; 479 } while (iosize > 0); 480 481 done: 482 *errorp = 0; 483 return (head); 484 } 485 486 mblk_t * 487 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp) 488 { 489 int error; 490 ptrdiff_t n; 491 mblk_t *nmp; 492 493 ASSERT(mp->b_wptr >= mp->b_rptr); 494 495 /* 496 * max_read is the offset of the oobmark and read can not go pass 497 * the oobmark. 498 */ 499 if (max_read == INFPSZ || max_read > uiop->uio_resid) 500 max_read = uiop->uio_resid; 501 502 do { 503 if ((n = MIN(max_read, MBLKL(mp))) != 0) { 504 ASSERT(n > 0); 505 506 error = uiomove(mp->b_rptr, n, UIO_READ, uiop); 507 if (error != 0) { 508 freemsg(mp); 509 *errorp = error; 510 return (NULL); 511 } 512 } 513 514 mp->b_rptr += n; 515 max_read -= n; 516 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) { 517 /* 518 * get rid of zero length mblks 519 */ 520 nmp = mp; 521 mp = mp->b_cont; 522 freeb(nmp); 523 } 524 } while (mp != NULL && max_read > 0); 525 526 *errorp = 0; 527 return (mp); 528 } 529 530 static void 531 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail) 532 { 533 ASSERT(last_tail != NULL); 534 mp->b_next = so->so_rcv_q_head; 535 mp->b_prev = last_tail; 536 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA)); 537 538 if (so->so_rcv_q_head == NULL) { 539 ASSERT(so->so_rcv_q_last_head == NULL); 540 so->so_rcv_q_last_head = mp; 541 #ifdef DEBUG 542 } else { 543 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA)); 544 #endif 545 } 546 so->so_rcv_q_head = mp; 547 548 #ifdef DEBUG 549 if (so_debug_length) { 550 mutex_enter(&so->so_lock); 551 ASSERT(so_check_length(so)); 552 mutex_exit(&so->so_lock); 553 } 554 #endif 555 } 556 557 /* 558 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it 559 * can be processed by so_dequeue_msg(). 560 */ 561 void 562 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head) 563 { 564 if (so->so_filter_active > 0 && 565 (mp_head = sof_filter_data_in_proc(so, mp_head, 566 &mp_last_head)) == NULL) 567 return; 568 569 ASSERT(mp_head->b_prev != NULL); 570 if (so->so_rcv_q_head == NULL) { 571 so->so_rcv_q_head = mp_head; 572 so->so_rcv_q_last_head = mp_last_head; 573 ASSERT(so->so_rcv_q_last_head->b_prev != NULL); 574 } else { 575 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) == 576 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA)); 577 578 if (mp_head->b_next == NULL && 579 DB_TYPE(mp_head) == M_DATA && 580 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) { 581 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 582 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 583 mp_head->b_prev = NULL; 584 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) { 585 /* 586 * Append to last_head if more than one mblks, and both 587 * mp_head and last_head are I/OAT mblks. 588 */ 589 ASSERT(mp_head->b_next != NULL); 590 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 591 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 592 mp_head->b_prev = NULL; 593 594 so->so_rcv_q_last_head->b_next = mp_head->b_next; 595 mp_head->b_next = NULL; 596 so->so_rcv_q_last_head = mp_last_head; 597 } else { 598 #ifdef DEBUG 599 { 600 mblk_t *tmp_mblk; 601 tmp_mblk = mp_head; 602 while (tmp_mblk != NULL) { 603 ASSERT(tmp_mblk->b_prev != NULL); 604 tmp_mblk = tmp_mblk->b_next; 605 } 606 } 607 #endif 608 so->so_rcv_q_last_head->b_next = mp_head; 609 so->so_rcv_q_last_head = mp_last_head; 610 } 611 } 612 } 613 614 /* 615 * Check flow control on a given sonode. Must have so_lock held, and 616 * this function will release the hold. 617 */ 618 void 619 so_check_flow_control(struct sonode *so) 620 { 621 ASSERT(MUTEX_HELD(&so->so_lock)); 622 623 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat && 624 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) { 625 so->so_flowctrld = B_FALSE; 626 mutex_exit(&so->so_lock); 627 /* 628 * Open up flow control. SCTP does not have any downcalls, and 629 * it will clr flow ctrl in sosctp_recvmsg(). 630 */ 631 if (so->so_downcalls != NULL && 632 so->so_downcalls->sd_clr_flowctrl != NULL) { 633 (*so->so_downcalls->sd_clr_flowctrl) 634 (so->so_proto_handle); 635 } 636 /* filters can start injecting data */ 637 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0); 638 } else { 639 mutex_exit(&so->so_lock); 640 } 641 } 642 643 int 644 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop, 645 rval_t *rvalp, int flags) 646 { 647 mblk_t *mp, *nmp; 648 mblk_t *savemp, *savemptail; 649 mblk_t *new_msg_head; 650 mblk_t *new_msg_last_head; 651 mblk_t *last_tail; 652 boolean_t partial_read; 653 boolean_t reset_atmark = B_FALSE; 654 int more = 0; 655 int error; 656 ssize_t oobmark; 657 sodirect_t *sodp = so->so_direct; 658 659 partial_read = B_FALSE; 660 *mctlp = NULL; 661 again: 662 mutex_enter(&so->so_lock); 663 again1: 664 #ifdef DEBUG 665 if (so_debug_length) { 666 ASSERT(so_check_length(so)); 667 } 668 #endif 669 if (so->so_state & SS_RCVATMARK) { 670 /* Check whether the caller is OK to read past the mark */ 671 if (flags & MSG_NOMARK) { 672 mutex_exit(&so->so_lock); 673 return (EWOULDBLOCK); 674 } 675 reset_atmark = B_TRUE; 676 } 677 /* 678 * First move messages from the dump area to processing area 679 */ 680 if (sodp != NULL) { 681 if (sodp->sod_enabled) { 682 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) { 683 /* nothing to uioamove */ 684 sodp = NULL; 685 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) { 686 sodp->sod_uioa.uioa_state &= UIOA_CLR; 687 sodp->sod_uioa.uioa_state |= UIOA_ENABLED; 688 /* 689 * try to uioamove() the data that 690 * has already queued. 691 */ 692 sod_uioa_so_init(so, sodp, uiop); 693 } 694 } else { 695 sodp = NULL; 696 } 697 } 698 new_msg_head = so->so_rcv_head; 699 new_msg_last_head = so->so_rcv_last_head; 700 so->so_rcv_head = NULL; 701 so->so_rcv_last_head = NULL; 702 oobmark = so->so_oobmark; 703 /* 704 * We can release the lock as there can only be one reader 705 */ 706 mutex_exit(&so->so_lock); 707 708 if (new_msg_head != NULL) { 709 so_process_new_message(so, new_msg_head, new_msg_last_head); 710 } 711 savemp = savemptail = NULL; 712 rvalp->r_val1 = 0; 713 error = 0; 714 mp = so->so_rcv_q_head; 715 716 if (mp != NULL && 717 (so->so_rcv_timer_tid == 0 || 718 so->so_rcv_queued >= so->so_rcv_thresh)) { 719 partial_read = B_FALSE; 720 721 if (flags & MSG_PEEK) { 722 if ((nmp = dupmsg(mp)) == NULL && 723 (nmp = copymsg(mp)) == NULL) { 724 size_t size = msgsize(mp); 725 726 error = strwaitbuf(size, BPRI_HI); 727 if (error) { 728 return (error); 729 } 730 goto again; 731 } 732 mp = nmp; 733 } else { 734 ASSERT(mp->b_prev != NULL); 735 last_tail = mp->b_prev; 736 mp->b_prev = NULL; 737 so->so_rcv_q_head = mp->b_next; 738 if (so->so_rcv_q_head == NULL) { 739 so->so_rcv_q_last_head = NULL; 740 } 741 mp->b_next = NULL; 742 } 743 744 ASSERT(mctlp != NULL); 745 /* 746 * First process PROTO or PCPROTO blocks, if any. 747 */ 748 if (DB_TYPE(mp) != M_DATA) { 749 *mctlp = mp; 750 savemp = mp; 751 savemptail = mp; 752 ASSERT(DB_TYPE(mp) == M_PROTO || 753 DB_TYPE(mp) == M_PCPROTO); 754 while (mp->b_cont != NULL && 755 DB_TYPE(mp->b_cont) != M_DATA) { 756 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO || 757 DB_TYPE(mp->b_cont) == M_PCPROTO); 758 mp = mp->b_cont; 759 savemptail = mp; 760 } 761 mp = savemptail->b_cont; 762 savemptail->b_cont = NULL; 763 } 764 765 ASSERT(DB_TYPE(mp) == M_DATA); 766 /* 767 * Now process DATA blocks, if any. Note that for sodirect 768 * enabled socket, uio_resid can be 0. 769 */ 770 if (uiop->uio_resid >= 0) { 771 ssize_t copied = 0; 772 773 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) { 774 mutex_enter(&so->so_lock); 775 ASSERT(uiop == (uio_t *)&sodp->sod_uioa); 776 copied = sod_uioa_mblk(so, mp); 777 if (copied > 0) 778 partial_read = B_TRUE; 779 mutex_exit(&so->so_lock); 780 /* mark this mblk as processed */ 781 mp = NULL; 782 } else { 783 ssize_t oldresid = uiop->uio_resid; 784 785 if (MBLKL(mp) < so_mblk_pull_len) { 786 if (pullupmsg(mp, -1) == 1) { 787 last_tail = mp; 788 } 789 } 790 /* 791 * Can not read beyond the oobmark 792 */ 793 mp = socopyoutuio(mp, uiop, 794 oobmark == 0 ? INFPSZ : oobmark, &error); 795 if (error != 0) { 796 freemsg(*mctlp); 797 *mctlp = NULL; 798 more = 0; 799 goto done; 800 } 801 ASSERT(oldresid >= uiop->uio_resid); 802 copied = oldresid - uiop->uio_resid; 803 if (oldresid > uiop->uio_resid) 804 partial_read = B_TRUE; 805 } 806 ASSERT(copied >= 0); 807 if (copied > 0 && !(flags & MSG_PEEK)) { 808 mutex_enter(&so->so_lock); 809 so->so_rcv_queued -= copied; 810 ASSERT(so->so_oobmark >= 0); 811 if (so->so_oobmark > 0) { 812 so->so_oobmark -= copied; 813 ASSERT(so->so_oobmark >= 0); 814 if (so->so_oobmark == 0) { 815 ASSERT(so->so_state & 816 SS_OOBPEND); 817 so->so_oobmark = 0; 818 so->so_state |= SS_RCVATMARK; 819 } 820 } 821 /* 822 * so_check_flow_control() will drop 823 * so->so_lock. 824 */ 825 so_check_flow_control(so); 826 } 827 } 828 if (mp != NULL) { /* more data blocks in msg */ 829 more |= MOREDATA; 830 if ((flags & (MSG_PEEK|MSG_TRUNC))) { 831 if (flags & MSG_PEEK) { 832 freemsg(mp); 833 } else { 834 unsigned int msize = msgdsize(mp); 835 836 freemsg(mp); 837 mutex_enter(&so->so_lock); 838 so->so_rcv_queued -= msize; 839 /* 840 * so_check_flow_control() will drop 841 * so->so_lock. 842 */ 843 so_check_flow_control(so); 844 } 845 } else if (partial_read && !somsghasdata(mp)) { 846 /* 847 * Avoid queuing a zero-length tail part of 848 * a message. partial_read == 1 indicates that 849 * we read some of the message. 850 */ 851 freemsg(mp); 852 more &= ~MOREDATA; 853 } else { 854 if (savemp != NULL && 855 (flags & MSG_DUPCTRL)) { 856 mblk_t *nmp; 857 /* 858 * There should only be non data mblks 859 */ 860 ASSERT(DB_TYPE(savemp) != M_DATA && 861 DB_TYPE(savemptail) != M_DATA); 862 try_again: 863 if ((nmp = dupmsg(savemp)) == NULL && 864 (nmp = copymsg(savemp)) == NULL) { 865 866 size_t size = msgsize(savemp); 867 868 error = strwaitbuf(size, 869 BPRI_HI); 870 if (error != 0) { 871 /* 872 * In case we 873 * cannot copy 874 * control data 875 * free the remaining 876 * data. 877 */ 878 freemsg(mp); 879 goto done; 880 } 881 goto try_again; 882 } 883 884 ASSERT(nmp != NULL); 885 ASSERT(DB_TYPE(nmp) != M_DATA); 886 savemptail->b_cont = mp; 887 *mctlp = nmp; 888 mp = savemp; 889 } 890 /* 891 * putback mp 892 */ 893 so_prepend_msg(so, mp, last_tail); 894 } 895 } 896 897 /* fast check so_rcv_head if there is more data */ 898 if (partial_read && !(so->so_state & SS_RCVATMARK) && 899 *mctlp == NULL && uiop->uio_resid > 0 && 900 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) { 901 goto again; 902 } 903 } else if (!partial_read) { 904 mutex_enter(&so->so_lock); 905 if (so->so_error != 0) { 906 error = sogeterr(so, !(flags & MSG_PEEK)); 907 mutex_exit(&so->so_lock); 908 return (error); 909 } 910 /* 911 * No pending data. Return right away for nonblocking 912 * socket, otherwise sleep waiting for data. 913 */ 914 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) { 915 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 916 (flags & MSG_DONTWAIT)) { 917 error = EWOULDBLOCK; 918 } else { 919 if (so->so_state & (SS_CLOSING | 920 SS_FALLBACK_PENDING)) { 921 mutex_exit(&so->so_lock); 922 error = EINTR; 923 goto done; 924 } 925 926 if (so->so_rcv_head != NULL) { 927 goto again1; 928 } 929 so->so_rcv_wakeup = B_TRUE; 930 so->so_rcv_wanted = uiop->uio_resid; 931 if (so->so_rcvtimeo == 0) { 932 /* 933 * Zero means disable timeout. 934 */ 935 error = cv_wait_sig(&so->so_rcv_cv, 936 &so->so_lock); 937 } else { 938 error = cv_reltimedwait_sig( 939 &so->so_rcv_cv, &so->so_lock, 940 so->so_rcvtimeo, TR_CLOCK_TICK); 941 } 942 so->so_rcv_wakeup = B_FALSE; 943 so->so_rcv_wanted = 0; 944 945 if (error == 0) { 946 error = EINTR; 947 } else if (error == -1) { 948 error = EAGAIN; 949 } else { 950 goto again1; 951 } 952 } 953 } 954 mutex_exit(&so->so_lock); 955 } 956 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) { 957 /* 958 * We are passed the mark, update state 959 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 960 * The draft Posix socket spec states that the mark should 961 * not be cleared when peeking. We follow the latter. 962 */ 963 mutex_enter(&so->so_lock); 964 ASSERT(so_verify_oobstate(so)); 965 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 966 freemsg(so->so_oobmsg); 967 so->so_oobmsg = NULL; 968 ASSERT(so_verify_oobstate(so)); 969 mutex_exit(&so->so_lock); 970 } 971 ASSERT(so->so_rcv_wakeup == B_FALSE); 972 done: 973 if (sodp != NULL) { 974 mutex_enter(&so->so_lock); 975 if (sodp->sod_enabled && 976 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) { 977 SOD_UIOAFINI(sodp); 978 if (sodp->sod_uioa.uioa_mbytes > 0) { 979 ASSERT(so->so_rcv_q_head != NULL || 980 so->so_rcv_head != NULL); 981 so->so_rcv_queued -= sod_uioa_mblk(so, NULL); 982 if (error == EWOULDBLOCK) 983 error = 0; 984 } 985 } 986 mutex_exit(&so->so_lock); 987 } 988 #ifdef DEBUG 989 if (so_debug_length) { 990 mutex_enter(&so->so_lock); 991 ASSERT(so_check_length(so)); 992 mutex_exit(&so->so_lock); 993 } 994 #endif 995 rvalp->r_val1 = more; 996 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 997 return (error); 998 } 999 1000 /* 1001 * Enqueue data from the protocol on the socket's rcv queue. 1002 * 1003 * We try to hook new M_DATA mblks onto an existing chain, however, 1004 * that cannot be done if the existing chain has already been 1005 * processed by I/OAT. Non-M_DATA mblks are just linked together via 1006 * b_next. In all cases the b_prev of the enqueued mblk is set to 1007 * point to the last mblk in its b_cont chain. 1008 */ 1009 void 1010 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size) 1011 { 1012 ASSERT(MUTEX_HELD(&so->so_lock)); 1013 1014 #ifdef DEBUG 1015 if (so_debug_length) { 1016 ASSERT(so_check_length(so)); 1017 } 1018 #endif 1019 so->so_rcv_queued += msg_size; 1020 1021 if (so->so_rcv_head == NULL) { 1022 ASSERT(so->so_rcv_last_head == NULL); 1023 so->so_rcv_head = mp; 1024 so->so_rcv_last_head = mp; 1025 } else if ((DB_TYPE(mp) == M_DATA && 1026 DB_TYPE(so->so_rcv_last_head) == M_DATA) && 1027 ((DB_FLAGS(mp) & DBLK_UIOA) == 1028 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) { 1029 /* Added to the end */ 1030 ASSERT(so->so_rcv_last_head != NULL); 1031 ASSERT(so->so_rcv_last_head->b_prev != NULL); 1032 so->so_rcv_last_head->b_prev->b_cont = mp; 1033 } else { 1034 /* Start a new end */ 1035 so->so_rcv_last_head->b_next = mp; 1036 so->so_rcv_last_head = mp; 1037 } 1038 while (mp->b_cont != NULL) 1039 mp = mp->b_cont; 1040 1041 so->so_rcv_last_head->b_prev = mp; 1042 #ifdef DEBUG 1043 if (so_debug_length) { 1044 ASSERT(so_check_length(so)); 1045 } 1046 #endif 1047 } 1048 1049 /* 1050 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 1051 */ 1052 boolean_t 1053 somsghasdata(mblk_t *mp) 1054 { 1055 for (; mp; mp = mp->b_cont) 1056 if (mp->b_datap->db_type == M_DATA) { 1057 ASSERT(mp->b_wptr >= mp->b_rptr); 1058 if (mp->b_wptr > mp->b_rptr) 1059 return (B_TRUE); 1060 } 1061 return (B_FALSE); 1062 } 1063 1064 /* 1065 * Flush the read side of sockfs. 1066 * 1067 * The caller must be sure that a reader is not already active when the 1068 * buffer is being flushed. 1069 */ 1070 void 1071 so_rcv_flush(struct sonode *so) 1072 { 1073 mblk_t *mp; 1074 1075 ASSERT(MUTEX_HELD(&so->so_lock)); 1076 1077 if (so->so_oobmsg != NULL) { 1078 freemsg(so->so_oobmsg); 1079 so->so_oobmsg = NULL; 1080 so->so_oobmark = 0; 1081 so->so_state &= 1082 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK); 1083 } 1084 1085 /* 1086 * Free messages sitting in the recv queues 1087 */ 1088 while (so->so_rcv_q_head != NULL) { 1089 mp = so->so_rcv_q_head; 1090 so->so_rcv_q_head = mp->b_next; 1091 mp->b_next = mp->b_prev = NULL; 1092 freemsg(mp); 1093 } 1094 while (so->so_rcv_head != NULL) { 1095 mp = so->so_rcv_head; 1096 so->so_rcv_head = mp->b_next; 1097 mp->b_next = mp->b_prev = NULL; 1098 freemsg(mp); 1099 } 1100 so->so_rcv_queued = 0; 1101 so->so_rcv_q_head = NULL; 1102 so->so_rcv_q_last_head = NULL; 1103 so->so_rcv_head = NULL; 1104 so->so_rcv_last_head = NULL; 1105 } 1106 1107 /* 1108 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK. 1109 */ 1110 int 1111 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags, 1112 boolean_t oob_inline) 1113 { 1114 mblk_t *mp, *nmp; 1115 int error; 1116 1117 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg, 1118 flags)); 1119 1120 if (msg != NULL) { 1121 /* 1122 * There is never any oob data with addresses or control since 1123 * the T_EXDATA_IND does not carry any options. 1124 */ 1125 msg->msg_controllen = 0; 1126 msg->msg_namelen = 0; 1127 msg->msg_flags = 0; 1128 } 1129 1130 mutex_enter(&so->so_lock); 1131 ASSERT(so_verify_oobstate(so)); 1132 if (oob_inline || 1133 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) { 1134 dprintso(so, 1, ("sorecvoob: inline or data consumed\n")); 1135 mutex_exit(&so->so_lock); 1136 return (EINVAL); 1137 } 1138 if (!(so->so_state & SS_HAVEOOBDATA)) { 1139 dprintso(so, 1, ("sorecvoob: no data yet\n")); 1140 mutex_exit(&so->so_lock); 1141 return (EWOULDBLOCK); 1142 } 1143 ASSERT(so->so_oobmsg != NULL); 1144 mp = so->so_oobmsg; 1145 if (flags & MSG_PEEK) { 1146 /* 1147 * Since recv* can not return ENOBUFS we can not use dupmsg. 1148 * Instead we revert to the consolidation private 1149 * allocb_wait plus bcopy. 1150 */ 1151 mblk_t *mp1; 1152 1153 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL); 1154 ASSERT(mp1); 1155 1156 while (mp != NULL) { 1157 ssize_t size; 1158 1159 size = MBLKL(mp); 1160 bcopy(mp->b_rptr, mp1->b_wptr, size); 1161 mp1->b_wptr += size; 1162 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim); 1163 mp = mp->b_cont; 1164 } 1165 mp = mp1; 1166 } else { 1167 /* 1168 * Update the state indicating that the data has been consumed. 1169 * Keep SS_OOBPEND set until data is consumed past the mark. 1170 */ 1171 so->so_oobmsg = NULL; 1172 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA; 1173 } 1174 ASSERT(so_verify_oobstate(so)); 1175 mutex_exit(&so->so_lock); 1176 1177 error = 0; 1178 nmp = mp; 1179 while (nmp != NULL && uiop->uio_resid > 0) { 1180 ssize_t n = MBLKL(nmp); 1181 1182 n = MIN(n, uiop->uio_resid); 1183 if (n > 0) 1184 error = uiomove(nmp->b_rptr, n, 1185 UIO_READ, uiop); 1186 if (error) 1187 break; 1188 nmp = nmp->b_cont; 1189 } 1190 ASSERT(mp->b_next == NULL && mp->b_prev == NULL); 1191 freemsg(mp); 1192 return (error); 1193 } 1194 1195 /* 1196 * Allocate and initializ sonode 1197 */ 1198 /* ARGSUSED */ 1199 struct sonode * 1200 socket_sonode_create(struct sockparams *sp, int family, int type, 1201 int protocol, int version, int sflags, int *errorp, struct cred *cr) 1202 { 1203 sonode_t *so; 1204 int kmflags; 1205 1206 /* 1207 * Choose the right set of sonodeops based on the upcall and 1208 * down call version that the protocol has provided 1209 */ 1210 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version || 1211 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) { 1212 /* 1213 * mismatch 1214 */ 1215 #ifdef DEBUG 1216 cmn_err(CE_CONT, "protocol and socket module version mismatch"); 1217 #endif 1218 *errorp = EINVAL; 1219 return (NULL); 1220 } 1221 1222 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 1223 1224 so = kmem_cache_alloc(socket_cache, kmflags); 1225 if (so == NULL) { 1226 *errorp = ENOMEM; 1227 return (NULL); 1228 } 1229 1230 sonode_init(so, sp, family, type, protocol, &so_sonodeops); 1231 1232 if (version == SOV_DEFAULT) 1233 version = so_default_version; 1234 1235 so->so_version = (short)version; 1236 1237 /* 1238 * set the default values to be INFPSZ 1239 * if a protocol desires it can change the value later 1240 */ 1241 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER; 1242 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER; 1243 so->so_proto_props.sopp_maxpsz = INFPSZ; 1244 so->so_proto_props.sopp_maxblk = INFPSZ; 1245 1246 return (so); 1247 } 1248 1249 int 1250 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr) 1251 { 1252 int error = 0; 1253 1254 if (pso != NULL) { 1255 /* 1256 * We have a passive open, so inherit basic state from 1257 * the parent (listener). 1258 * 1259 * No need to grab the new sonode's lock, since there is no 1260 * one that can have a reference to it. 1261 */ 1262 mutex_enter(&pso->so_lock); 1263 1264 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC); 1265 so->so_pgrp = pso->so_pgrp; 1266 so->so_rcvtimeo = pso->so_rcvtimeo; 1267 so->so_sndtimeo = pso->so_sndtimeo; 1268 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf; 1269 /* 1270 * Make note of the socket level options. TCP and IP level 1271 * options are already inherited. We could do all this after 1272 * accept is successful but doing it here simplifies code and 1273 * no harm done for error case. 1274 */ 1275 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR| 1276 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1277 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1278 so->so_proto_props = pso->so_proto_props; 1279 so->so_mode = pso->so_mode; 1280 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS; 1281 1282 mutex_exit(&pso->so_lock); 1283 1284 /* 1285 * If the parent has any filters, try to inherit them. 1286 */ 1287 if (pso->so_filter_active > 0 && 1288 (error = sof_sonode_inherit_filters(so, pso)) != 0) 1289 return (error); 1290 1291 } else { 1292 struct sockparams *sp = so->so_sockparams; 1293 sock_upcalls_t *upcalls_to_use; 1294 1295 /* 1296 * Attach automatic filters, if there are any. 1297 */ 1298 if (!list_is_empty(&sp->sp_auto_filters) && 1299 (error = sof_sonode_autoattach_filters(so, cr)) != 0) 1300 return (error); 1301 1302 /* OK to attach filters */ 1303 so->so_state |= SS_FILOP_OK; 1304 1305 /* 1306 * Based on the version number select the right upcalls to 1307 * pass down. Currently we only have one version so choose 1308 * default 1309 */ 1310 upcalls_to_use = &so_upcalls; 1311 1312 /* active open, so create a lower handle */ 1313 so->so_proto_handle = 1314 sp->sp_smod_info->smod_proto_create_func(so->so_family, 1315 so->so_type, so->so_protocol, &so->so_downcalls, 1316 &so->so_mode, &error, flags, cr); 1317 1318 if (so->so_proto_handle == NULL) { 1319 ASSERT(error != 0); 1320 /* 1321 * To be safe; if a lower handle cannot be created, and 1322 * the proto does not give a reason why, assume there 1323 * was a lack of memory. 1324 */ 1325 return ((error == 0) ? ENOMEM : error); 1326 } 1327 ASSERT(so->so_downcalls != NULL); 1328 ASSERT(so->so_downcalls->sd_send != NULL || 1329 so->so_downcalls->sd_send_uio != NULL); 1330 if (so->so_downcalls->sd_recv_uio != NULL) { 1331 ASSERT(so->so_downcalls->sd_poll != NULL); 1332 so->so_pollev |= SO_POLLEV_ALWAYS; 1333 } 1334 1335 (*so->so_downcalls->sd_activate)(so->so_proto_handle, 1336 (sock_upper_handle_t)so, upcalls_to_use, 0, cr); 1337 1338 /* Wildcard */ 1339 1340 /* 1341 * FIXME No need for this, the protocol can deal with it in 1342 * sd_create(). Should update ICMP. 1343 */ 1344 if (so->so_protocol != so->so_sockparams->sp_protocol) { 1345 int protocol = so->so_protocol; 1346 int error; 1347 /* 1348 * Issue SO_PROTOTYPE setsockopt. 1349 */ 1350 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, 1351 &protocol, (t_uscalar_t)sizeof (protocol), cr); 1352 if (error) { 1353 (void) (*so->so_downcalls->sd_close) 1354 (so->so_proto_handle, 0, cr); 1355 1356 mutex_enter(&so->so_lock); 1357 so_rcv_flush(so); 1358 mutex_exit(&so->so_lock); 1359 /* 1360 * Setsockopt often fails with ENOPROTOOPT but 1361 * socket() should fail with 1362 * EPROTONOSUPPORT/EPROTOTYPE. 1363 */ 1364 return (EPROTONOSUPPORT); 1365 } 1366 } 1367 } 1368 1369 if (uioasync.enabled) 1370 sod_sock_init(so); 1371 1372 /* put an extra reference on the socket for the protocol */ 1373 VN_HOLD(SOTOV(so)); 1374 1375 return (0); 1376 } 1377 1378 /* 1379 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1380 * struct cred *cr, int32_t *rvalp) 1381 * 1382 * Handle ioctls that manipulate basic socket state; non-blocking, 1383 * async, etc. 1384 * 1385 * Returns: 1386 * < 0 - ioctl was not handle 1387 * >= 0 - ioctl was handled, if > 0, then it is an errno 1388 * 1389 * Notes: 1390 * Assumes the standard receive buffer is used to obtain info for 1391 * NREAD. 1392 */ 1393 /* ARGSUSED */ 1394 int 1395 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1396 struct cred *cr, int32_t *rvalp) 1397 { 1398 switch (cmd) { 1399 case SIOCSQPTR: 1400 /* 1401 * SIOCSQPTR is valid only when helper stream is created 1402 * by the protocol. 1403 */ 1404 1405 return (EOPNOTSUPP); 1406 case FIONBIO: { 1407 int32_t value; 1408 1409 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1410 (mode & (int)FKIOCTL))) 1411 return (EFAULT); 1412 1413 mutex_enter(&so->so_lock); 1414 if (value) { 1415 so->so_state |= SS_NDELAY; 1416 } else { 1417 so->so_state &= ~SS_NDELAY; 1418 } 1419 mutex_exit(&so->so_lock); 1420 return (0); 1421 } 1422 case FIOASYNC: { 1423 int32_t value; 1424 1425 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1426 (mode & (int)FKIOCTL))) 1427 return (EFAULT); 1428 1429 mutex_enter(&so->so_lock); 1430 1431 if (value) { 1432 /* Turn on SIGIO */ 1433 so->so_state |= SS_ASYNC; 1434 } else { 1435 /* Turn off SIGIO */ 1436 so->so_state &= ~SS_ASYNC; 1437 } 1438 mutex_exit(&so->so_lock); 1439 1440 return (0); 1441 } 1442 1443 case SIOCSPGRP: 1444 case FIOSETOWN: { 1445 int error; 1446 pid_t pid; 1447 1448 if (so_copyin((void *)arg, &pid, sizeof (pid_t), 1449 (mode & (int)FKIOCTL))) 1450 return (EFAULT); 1451 1452 mutex_enter(&so->so_lock); 1453 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0; 1454 mutex_exit(&so->so_lock); 1455 return (error); 1456 } 1457 case SIOCGPGRP: 1458 case FIOGETOWN: 1459 if (so_copyout(&so->so_pgrp, (void *)arg, 1460 sizeof (pid_t), (mode & (int)FKIOCTL))) 1461 return (EFAULT); 1462 1463 return (0); 1464 case SIOCATMARK: { 1465 int retval; 1466 1467 /* 1468 * Only protocols that support urgent data can handle ATMARK. 1469 */ 1470 if ((so->so_mode & SM_EXDATA) == 0) 1471 return (EINVAL); 1472 1473 /* 1474 * If the protocol is maintaining its own buffer, then the 1475 * request must be passed down. 1476 */ 1477 if (so->so_downcalls->sd_recv_uio != NULL) 1478 return (-1); 1479 1480 retval = (so->so_state & SS_RCVATMARK) != 0; 1481 1482 if (so_copyout(&retval, (void *)arg, sizeof (int), 1483 (mode & (int)FKIOCTL))) { 1484 return (EFAULT); 1485 } 1486 return (0); 1487 } 1488 1489 case FIONREAD: { 1490 int retval; 1491 1492 /* 1493 * If the protocol is maintaining its own buffer, then the 1494 * request must be passed down. 1495 */ 1496 if (so->so_downcalls->sd_recv_uio != NULL) 1497 return (-1); 1498 1499 retval = MIN(so->so_rcv_queued, INT_MAX); 1500 1501 if (so_copyout(&retval, (void *)arg, 1502 sizeof (retval), (mode & (int)FKIOCTL))) { 1503 return (EFAULT); 1504 } 1505 return (0); 1506 } 1507 1508 case _I_GETPEERCRED: { 1509 int error = 0; 1510 1511 if ((mode & FKIOCTL) == 0) 1512 return (EINVAL); 1513 1514 mutex_enter(&so->so_lock); 1515 if ((so->so_mode & SM_CONNREQUIRED) == 0) { 1516 error = ENOTSUP; 1517 } else if ((so->so_state & SS_ISCONNECTED) == 0) { 1518 error = ENOTCONN; 1519 } else if (so->so_peercred != NULL) { 1520 k_peercred_t *kp = (k_peercred_t *)arg; 1521 kp->pc_cr = so->so_peercred; 1522 kp->pc_cpid = so->so_cpid; 1523 crhold(so->so_peercred); 1524 } else { 1525 error = EINVAL; 1526 } 1527 mutex_exit(&so->so_lock); 1528 return (error); 1529 } 1530 default: 1531 return (-1); 1532 } 1533 } 1534 1535 /* 1536 * Handle the I_NREAD STREAM ioctl. 1537 */ 1538 static int 1539 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp) 1540 { 1541 size_t size = 0; 1542 int retval; 1543 int count = 0; 1544 mblk_t *mp; 1545 clock_t wakeup = drv_usectohz(10); 1546 1547 if (so->so_downcalls == NULL || 1548 so->so_downcalls->sd_recv_uio != NULL) 1549 return (EINVAL); 1550 1551 mutex_enter(&so->so_lock); 1552 /* Wait for reader to get out of the way. */ 1553 while (so->so_flag & SOREADLOCKED) { 1554 /* 1555 * If reader is waiting for data, then there should be nothing 1556 * on the rcv queue. 1557 */ 1558 if (so->so_rcv_wakeup) 1559 goto out; 1560 1561 /* Do a timed sleep, in case the reader goes to sleep. */ 1562 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup, 1563 TR_CLOCK_TICK); 1564 } 1565 1566 /* 1567 * Since we are holding so_lock no new reader will come in, and the 1568 * protocol will not be able to enqueue data. So it's safe to walk 1569 * both rcv queues. 1570 */ 1571 mp = so->so_rcv_q_head; 1572 if (mp != NULL) { 1573 size = msgdsize(so->so_rcv_q_head); 1574 for (; mp != NULL; mp = mp->b_next) 1575 count++; 1576 } else { 1577 /* 1578 * In case the processing list was empty, get the size of the 1579 * next msg in line. 1580 */ 1581 size = msgdsize(so->so_rcv_head); 1582 } 1583 1584 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next) 1585 count++; 1586 out: 1587 mutex_exit(&so->so_lock); 1588 1589 /* 1590 * Drop down from size_t to the "int" required by the 1591 * interface. Cap at INT_MAX. 1592 */ 1593 retval = MIN(size, INT_MAX); 1594 if (so_copyout(&retval, (void *)arg, sizeof (retval), 1595 (mode & (int)FKIOCTL))) { 1596 return (EFAULT); 1597 } else { 1598 *rvalp = count; 1599 return (0); 1600 } 1601 } 1602 1603 /* 1604 * Process STREAM ioctls. 1605 * 1606 * Returns: 1607 * < 0 - ioctl was not handle 1608 * >= 0 - ioctl was handled, if > 0, then it is an errno 1609 */ 1610 int 1611 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1612 struct cred *cr, int32_t *rvalp) 1613 { 1614 int retval; 1615 1616 /* Only STREAM iotcls are handled here */ 1617 if ((cmd & 0xffffff00U) != STR) 1618 return (-1); 1619 1620 switch (cmd) { 1621 case I_CANPUT: 1622 /* 1623 * We return an error for I_CANPUT so that isastream(3C) will 1624 * not report the socket as being a STREAM. 1625 */ 1626 return (EOPNOTSUPP); 1627 case I_NREAD: 1628 /* Avoid doing a fallback for I_NREAD. */ 1629 return (so_strioc_nread(so, arg, mode, rvalp)); 1630 case I_LOOK: 1631 /* Avoid doing a fallback for I_LOOK. */ 1632 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1, 1633 (mode & (int)FKIOCTL))) { 1634 return (EFAULT); 1635 } 1636 return (0); 1637 default: 1638 break; 1639 } 1640 1641 /* 1642 * Try to fall back to TPI, and if successful, reissue the ioctl. 1643 */ 1644 if ((retval = so_tpi_fallback(so, cr)) == 0) { 1645 /* Reissue the ioctl */ 1646 ASSERT(so->so_rcv_q_head == NULL); 1647 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp)); 1648 } else { 1649 return (retval); 1650 } 1651 } 1652 1653 /* 1654 * This is called for all socket types to verify that the buffer size is large 1655 * enough for the option, and if we can, handle the request as well. Most 1656 * options will be forwarded to the protocol. 1657 */ 1658 int 1659 socket_getopt_common(struct sonode *so, int level, int option_name, 1660 void *optval, socklen_t *optlenp, int flags) 1661 { 1662 if (level != SOL_SOCKET) 1663 return (-1); 1664 1665 switch (option_name) { 1666 case SO_ERROR: 1667 case SO_DOMAIN: 1668 case SO_TYPE: 1669 case SO_ACCEPTCONN: { 1670 int32_t value; 1671 socklen_t optlen = *optlenp; 1672 1673 if (optlen < (t_uscalar_t)sizeof (int32_t)) { 1674 return (EINVAL); 1675 } 1676 1677 switch (option_name) { 1678 case SO_ERROR: 1679 mutex_enter(&so->so_lock); 1680 value = sogeterr(so, B_TRUE); 1681 mutex_exit(&so->so_lock); 1682 break; 1683 case SO_DOMAIN: 1684 value = so->so_family; 1685 break; 1686 case SO_TYPE: 1687 value = so->so_type; 1688 break; 1689 case SO_ACCEPTCONN: 1690 if (so->so_state & SS_ACCEPTCONN) 1691 value = SO_ACCEPTCONN; 1692 else 1693 value = 0; 1694 break; 1695 } 1696 1697 bcopy(&value, optval, sizeof (value)); 1698 *optlenp = sizeof (value); 1699 1700 return (0); 1701 } 1702 case SO_SNDTIMEO: 1703 case SO_RCVTIMEO: { 1704 clock_t value; 1705 socklen_t optlen = *optlenp; 1706 1707 if (get_udatamodel() == DATAMODEL_NONE || 1708 get_udatamodel() == DATAMODEL_NATIVE) { 1709 if (optlen < sizeof (struct timeval)) 1710 return (EINVAL); 1711 } else { 1712 if (optlen < sizeof (struct timeval32)) 1713 return (EINVAL); 1714 } 1715 if (option_name == SO_RCVTIMEO) 1716 value = drv_hztousec(so->so_rcvtimeo); 1717 else 1718 value = drv_hztousec(so->so_sndtimeo); 1719 1720 if (get_udatamodel() == DATAMODEL_NONE || 1721 get_udatamodel() == DATAMODEL_NATIVE) { 1722 ((struct timeval *)(optval))->tv_sec = 1723 value / (1000 * 1000); 1724 ((struct timeval *)(optval))->tv_usec = 1725 value % (1000 * 1000); 1726 *optlenp = sizeof (struct timeval); 1727 } else { 1728 ((struct timeval32 *)(optval))->tv_sec = 1729 value / (1000 * 1000); 1730 ((struct timeval32 *)(optval))->tv_usec = 1731 value % (1000 * 1000); 1732 *optlenp = sizeof (struct timeval32); 1733 } 1734 return (0); 1735 } 1736 case SO_DEBUG: 1737 case SO_REUSEADDR: 1738 case SO_KEEPALIVE: 1739 case SO_DONTROUTE: 1740 case SO_BROADCAST: 1741 case SO_USELOOPBACK: 1742 case SO_OOBINLINE: 1743 case SO_SNDBUF: 1744 #ifdef notyet 1745 case SO_SNDLOWAT: 1746 case SO_RCVLOWAT: 1747 #endif /* notyet */ 1748 case SO_DGRAM_ERRIND: { 1749 socklen_t optlen = *optlenp; 1750 1751 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1752 return (EINVAL); 1753 break; 1754 } 1755 case SO_RCVBUF: { 1756 socklen_t optlen = *optlenp; 1757 1758 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1759 return (EINVAL); 1760 1761 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) { 1762 /* 1763 * XXX If SO_RCVBUF has been set and this is an 1764 * XPG 4.2 application then do not ask the transport 1765 * since the transport might adjust the value and not 1766 * return exactly what was set by the application. 1767 * For non-XPG 4.2 application we return the value 1768 * that the transport is actually using. 1769 */ 1770 *(int32_t *)optval = so->so_xpg_rcvbuf; 1771 *optlenp = sizeof (so->so_xpg_rcvbuf); 1772 return (0); 1773 } 1774 /* 1775 * If the option has not been set then get a default 1776 * value from the transport. 1777 */ 1778 break; 1779 } 1780 case SO_LINGER: { 1781 socklen_t optlen = *optlenp; 1782 1783 if (optlen < (t_uscalar_t)sizeof (struct linger)) 1784 return (EINVAL); 1785 break; 1786 } 1787 case SO_SND_BUFINFO: { 1788 socklen_t optlen = *optlenp; 1789 1790 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo)) 1791 return (EINVAL); 1792 ((struct so_snd_bufinfo *)(optval))->sbi_wroff = 1793 (so->so_proto_props).sopp_wroff; 1794 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk = 1795 (so->so_proto_props).sopp_maxblk; 1796 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz = 1797 (so->so_proto_props).sopp_maxpsz; 1798 ((struct so_snd_bufinfo *)(optval))->sbi_tail = 1799 (so->so_proto_props).sopp_tail; 1800 *optlenp = sizeof (struct so_snd_bufinfo); 1801 return (0); 1802 } 1803 case SO_SND_COPYAVOID: { 1804 sof_instance_t *inst; 1805 1806 /* 1807 * Avoid zero-copy if there is a filter with a data_out 1808 * callback. We could let the operation succeed, but then 1809 * the filter would have to copy the data anyway. 1810 */ 1811 for (inst = so->so_filter_top; inst != NULL; 1812 inst = inst->sofi_next) { 1813 if (SOF_INTERESTED(inst, data_out)) 1814 return (EOPNOTSUPP); 1815 } 1816 break; 1817 } 1818 1819 default: 1820 break; 1821 } 1822 1823 /* Unknown Option */ 1824 return (-1); 1825 } 1826 1827 void 1828 socket_sonode_destroy(struct sonode *so) 1829 { 1830 sonode_fini(so); 1831 kmem_cache_free(socket_cache, so); 1832 } 1833 1834 int 1835 so_zcopy_wait(struct sonode *so) 1836 { 1837 int error = 0; 1838 1839 mutex_enter(&so->so_lock); 1840 while (!(so->so_copyflag & STZCNOTIFY)) { 1841 if (so->so_state & SS_CLOSING) { 1842 mutex_exit(&so->so_lock); 1843 return (EINTR); 1844 } 1845 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) { 1846 error = EINTR; 1847 break; 1848 } 1849 } 1850 so->so_copyflag &= ~STZCNOTIFY; 1851 mutex_exit(&so->so_lock); 1852 return (error); 1853 } 1854 1855 void 1856 so_timer_callback(void *arg) 1857 { 1858 struct sonode *so = (struct sonode *)arg; 1859 1860 mutex_enter(&so->so_lock); 1861 1862 so->so_rcv_timer_tid = 0; 1863 if (so->so_rcv_queued > 0) { 1864 so_notify_data(so, so->so_rcv_queued); 1865 } else { 1866 mutex_exit(&so->so_lock); 1867 } 1868 } 1869 1870 #ifdef DEBUG 1871 /* 1872 * Verify that the length stored in so_rcv_queued and the length of data blocks 1873 * queued is same. 1874 */ 1875 static boolean_t 1876 so_check_length(sonode_t *so) 1877 { 1878 mblk_t *mp = so->so_rcv_q_head; 1879 int len = 0; 1880 1881 ASSERT(MUTEX_HELD(&so->so_lock)); 1882 1883 if (mp != NULL) { 1884 len = msgdsize(mp); 1885 while ((mp = mp->b_next) != NULL) 1886 len += msgdsize(mp); 1887 } 1888 mp = so->so_rcv_head; 1889 if (mp != NULL) { 1890 len += msgdsize(mp); 1891 while ((mp = mp->b_next) != NULL) 1892 len += msgdsize(mp); 1893 } 1894 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE); 1895 } 1896 #endif 1897 1898 int 1899 so_get_mod_version(struct sockparams *sp) 1900 { 1901 ASSERT(sp != NULL && sp->sp_smod_info != NULL); 1902 return (sp->sp_smod_info->smod_version); 1903 } 1904 1905 /* 1906 * so_start_fallback() 1907 * 1908 * Block new socket operations from coming in, and wait for active operations 1909 * to complete. Threads that are sleeping will be woken up so they can get 1910 * out of the way. 1911 * 1912 * The caller must be a reader on so_fallback_rwlock. 1913 */ 1914 static boolean_t 1915 so_start_fallback(struct sonode *so) 1916 { 1917 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock)); 1918 1919 mutex_enter(&so->so_lock); 1920 if (so->so_state & SS_FALLBACK_PENDING) { 1921 mutex_exit(&so->so_lock); 1922 return (B_FALSE); 1923 } 1924 so->so_state |= SS_FALLBACK_PENDING; 1925 /* 1926 * Poke all threads that might be sleeping. Any operation that comes 1927 * in after the cv_broadcast will observe the fallback pending flag 1928 * which cause the call to return where it would normally sleep. 1929 */ 1930 cv_broadcast(&so->so_state_cv); /* threads in connect() */ 1931 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */ 1932 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */ 1933 mutex_enter(&so->so_acceptq_lock); 1934 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */ 1935 mutex_exit(&so->so_acceptq_lock); 1936 mutex_exit(&so->so_lock); 1937 1938 /* 1939 * The main reason for the rw_tryupgrade call is to provide 1940 * observability during the fallback process. We want to 1941 * be able to see if there are pending operations. 1942 */ 1943 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) { 1944 /* 1945 * It is safe to drop and reaquire the fallback lock, because 1946 * we are guaranteed that another fallback cannot take place. 1947 */ 1948 rw_exit(&so->so_fallback_rwlock); 1949 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so); 1950 rw_enter(&so->so_fallback_rwlock, RW_WRITER); 1951 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so); 1952 } 1953 1954 return (B_TRUE); 1955 } 1956 1957 /* 1958 * so_end_fallback() 1959 * 1960 * Allow socket opertions back in. 1961 * 1962 * The caller must be a writer on so_fallback_rwlock. 1963 */ 1964 static void 1965 so_end_fallback(struct sonode *so) 1966 { 1967 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock)); 1968 1969 mutex_enter(&so->so_lock); 1970 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN); 1971 mutex_exit(&so->so_lock); 1972 1973 rw_downgrade(&so->so_fallback_rwlock); 1974 } 1975 1976 /* 1977 * so_quiesced_cb() 1978 * 1979 * Callback passed to the protocol during fallback. It is called once 1980 * the endpoint is quiescent. 1981 * 1982 * No requests from the user, no notifications from the protocol, so it 1983 * is safe to synchronize the state. Data can also be moved without 1984 * risk for reordering. 1985 * 1986 * We do not need to hold so_lock, since there can be only one thread 1987 * operating on the sonode. 1988 */ 1989 static mblk_t * 1990 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg, 1991 struct T_capability_ack *tcap, 1992 struct sockaddr *laddr, socklen_t laddrlen, 1993 struct sockaddr *faddr, socklen_t faddrlen, short opts) 1994 { 1995 struct sonode *so = (struct sonode *)sock_handle; 1996 boolean_t atmark; 1997 mblk_t *retmp = NULL, **tailmpp = &retmp; 1998 1999 if (tcap != NULL) 2000 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, 2001 opts); 2002 2003 /* 2004 * Some protocols do not quiece the data path during fallback. Once 2005 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will 2006 * fail and the protocol is responsible for saving the data for later 2007 * delivery (i.e., once the fallback has completed). 2008 */ 2009 mutex_enter(&so->so_lock); 2010 so->so_state |= SS_FALLBACK_DRAIN; 2011 SOCKET_TIMER_CANCEL(so); 2012 mutex_exit(&so->so_lock); 2013 2014 if (so->so_rcv_head != NULL) { 2015 if (so->so_rcv_q_last_head == NULL) 2016 so->so_rcv_q_head = so->so_rcv_head; 2017 else 2018 so->so_rcv_q_last_head->b_next = so->so_rcv_head; 2019 so->so_rcv_q_last_head = so->so_rcv_last_head; 2020 } 2021 2022 atmark = (so->so_state & SS_RCVATMARK) != 0; 2023 /* 2024 * Clear any OOB state having to do with pending data. The TPI 2025 * code path will set the appropriate oob state when we move the 2026 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob 2027 * data has already been consumed. 2028 */ 2029 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA); 2030 2031 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued); 2032 2033 /* 2034 * Move data to the STREAM head. 2035 */ 2036 while (so->so_rcv_q_head != NULL) { 2037 mblk_t *mp = so->so_rcv_q_head; 2038 size_t mlen = msgdsize(mp); 2039 2040 so->so_rcv_q_head = mp->b_next; 2041 mp->b_next = NULL; 2042 mp->b_prev = NULL; 2043 2044 /* 2045 * Send T_EXDATA_IND if we are at the oob mark. 2046 */ 2047 if (atmark) { 2048 struct T_exdata_ind *tei; 2049 mblk_t *mp1 = arg->soqa_exdata_mp; 2050 2051 arg->soqa_exdata_mp = NULL; 2052 ASSERT(mp1 != NULL); 2053 mp1->b_datap->db_type = M_PROTO; 2054 tei = (struct T_exdata_ind *)mp1->b_rptr; 2055 tei->PRIM_type = T_EXDATA_IND; 2056 tei->MORE_flag = 0; 2057 mp1->b_wptr = (uchar_t *)&tei[1]; 2058 2059 if (IS_SO_OOB_INLINE(so)) { 2060 mp1->b_cont = mp; 2061 } else { 2062 ASSERT(so->so_oobmsg != NULL); 2063 mp1->b_cont = so->so_oobmsg; 2064 so->so_oobmsg = NULL; 2065 2066 /* process current mp next time around */ 2067 mp->b_next = so->so_rcv_q_head; 2068 so->so_rcv_q_head = mp; 2069 mlen = 0; 2070 } 2071 mp = mp1; 2072 2073 /* we have consumed the oob mark */ 2074 atmark = B_FALSE; 2075 } else if (so->so_oobmark > 0) { 2076 /* 2077 * Check if the OOB mark is within the current 2078 * mblk chain. In that case we have to split it up. 2079 */ 2080 if (so->so_oobmark < mlen) { 2081 mblk_t *urg_mp = mp; 2082 2083 atmark = B_TRUE; 2084 mp = NULL; 2085 mlen = so->so_oobmark; 2086 2087 /* 2088 * It is assumed that the OOB mark does 2089 * not land within a mblk. 2090 */ 2091 do { 2092 so->so_oobmark -= MBLKL(urg_mp); 2093 mp = urg_mp; 2094 urg_mp = urg_mp->b_cont; 2095 } while (so->so_oobmark > 0); 2096 mp->b_cont = NULL; 2097 if (urg_mp != NULL) { 2098 urg_mp->b_next = so->so_rcv_q_head; 2099 so->so_rcv_q_head = urg_mp; 2100 } 2101 } else { 2102 so->so_oobmark -= mlen; 2103 if (so->so_oobmark == 0) 2104 atmark = B_TRUE; 2105 } 2106 } 2107 2108 /* 2109 * Queue data on the STREAM head. 2110 */ 2111 so->so_rcv_queued -= mlen; 2112 *tailmpp = mp; 2113 tailmpp = &mp->b_next; 2114 } 2115 so->so_rcv_head = NULL; 2116 so->so_rcv_last_head = NULL; 2117 so->so_rcv_q_head = NULL; 2118 so->so_rcv_q_last_head = NULL; 2119 2120 /* 2121 * Check if the oob byte is at the end of the data stream, or if the 2122 * oob byte has not yet arrived. In the latter case we have to send a 2123 * SIGURG and a mark indicator to the STREAM head. The mark indicator 2124 * is needed to guarantee correct behavior for SIOCATMARK. See block 2125 * comment in socktpi.h for more details. 2126 */ 2127 if (atmark || so->so_oobmark > 0) { 2128 mblk_t *mp; 2129 2130 if (atmark && so->so_oobmsg != NULL) { 2131 struct T_exdata_ind *tei; 2132 2133 mp = arg->soqa_exdata_mp; 2134 arg->soqa_exdata_mp = NULL; 2135 ASSERT(mp != NULL); 2136 mp->b_datap->db_type = M_PROTO; 2137 tei = (struct T_exdata_ind *)mp->b_rptr; 2138 tei->PRIM_type = T_EXDATA_IND; 2139 tei->MORE_flag = 0; 2140 mp->b_wptr = (uchar_t *)&tei[1]; 2141 2142 mp->b_cont = so->so_oobmsg; 2143 so->so_oobmsg = NULL; 2144 2145 *tailmpp = mp; 2146 tailmpp = &mp->b_next; 2147 } else { 2148 /* Send up the signal */ 2149 mp = arg->soqa_exdata_mp; 2150 arg->soqa_exdata_mp = NULL; 2151 ASSERT(mp != NULL); 2152 DB_TYPE(mp) = M_PCSIG; 2153 *mp->b_wptr++ = (uchar_t)SIGURG; 2154 *tailmpp = mp; 2155 tailmpp = &mp->b_next; 2156 2157 /* Send up the mark indicator */ 2158 mp = arg->soqa_urgmark_mp; 2159 arg->soqa_urgmark_mp = NULL; 2160 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT; 2161 *tailmpp = mp; 2162 tailmpp = &mp->b_next; 2163 2164 so->so_oobmark = 0; 2165 } 2166 } 2167 ASSERT(so->so_oobmark == 0); 2168 ASSERT(so->so_rcv_queued == 0); 2169 2170 return (retmp); 2171 } 2172 2173 #ifdef DEBUG 2174 /* 2175 * Do an integrity check of the sonode. This should be done if a 2176 * fallback fails after sonode has initially been converted to use 2177 * TPI and subsequently have to be reverted. 2178 * 2179 * Failure to pass the integrity check will panic the system. 2180 */ 2181 void 2182 so_integrity_check(struct sonode *cur, struct sonode *orig) 2183 { 2184 VERIFY(cur->so_vnode == orig->so_vnode); 2185 VERIFY(cur->so_ops == orig->so_ops); 2186 /* 2187 * For so_state we can only VERIFY the state flags in CHECK_STATE. 2188 * The other state flags might be affected by a notification from the 2189 * protocol. 2190 */ 2191 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \ 2192 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \ 2193 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG) 2194 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) == 2195 (orig->so_state & CHECK_STATE)); 2196 VERIFY(cur->so_mode == orig->so_mode); 2197 VERIFY(cur->so_flag == orig->so_flag); 2198 VERIFY(cur->so_count == orig->so_count); 2199 /* Cannot VERIFY so_proto_connid; proto can update it */ 2200 VERIFY(cur->so_sockparams == orig->so_sockparams); 2201 /* an error might have been recorded, but it can not be lost */ 2202 VERIFY(cur->so_error != 0 || orig->so_error == 0); 2203 VERIFY(cur->so_family == orig->so_family); 2204 VERIFY(cur->so_type == orig->so_type); 2205 VERIFY(cur->so_protocol == orig->so_protocol); 2206 VERIFY(cur->so_version == orig->so_version); 2207 /* New conns might have arrived, but none should have been lost */ 2208 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len); 2209 VERIFY(list_head(&cur->so_acceptq_list) == 2210 list_head(&orig->so_acceptq_list)); 2211 VERIFY(cur->so_backlog == orig->so_backlog); 2212 /* New OOB migth have arrived, but mark should not have been lost */ 2213 VERIFY(cur->so_oobmark >= orig->so_oobmark); 2214 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */ 2215 VERIFY(cur->so_pgrp == orig->so_pgrp); 2216 VERIFY(cur->so_peercred == orig->so_peercred); 2217 VERIFY(cur->so_cpid == orig->so_cpid); 2218 VERIFY(cur->so_zoneid == orig->so_zoneid); 2219 /* New data migth have arrived, but none should have been lost */ 2220 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued); 2221 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head); 2222 VERIFY(cur->so_rcv_head == orig->so_rcv_head); 2223 VERIFY(cur->so_proto_handle == orig->so_proto_handle); 2224 VERIFY(cur->so_downcalls == orig->so_downcalls); 2225 /* Cannot VERIFY so_proto_props; they can be updated by proto */ 2226 } 2227 #endif 2228 2229 /* 2230 * so_tpi_fallback() 2231 * 2232 * This is the fallback initation routine; things start here. 2233 * 2234 * Basic strategy: 2235 * o Block new socket operations from coming in 2236 * o Allocate/initate info needed by TPI 2237 * o Quiesce the connection, at which point we sync 2238 * state and move data 2239 * o Change operations (sonodeops) associated with the socket 2240 * o Unblock threads waiting for the fallback to finish 2241 */ 2242 int 2243 so_tpi_fallback(struct sonode *so, struct cred *cr) 2244 { 2245 int error; 2246 queue_t *q; 2247 struct sockparams *sp; 2248 struct sockparams *newsp = NULL; 2249 so_proto_fallback_func_t fbfunc; 2250 const char *devpath; 2251 boolean_t direct; 2252 struct sonode *nso; 2253 sock_quiesce_arg_t arg = { NULL, NULL }; 2254 #ifdef DEBUG 2255 struct sonode origso; 2256 #endif 2257 error = 0; 2258 sp = so->so_sockparams; 2259 fbfunc = sp->sp_smod_info->smod_proto_fallback_func; 2260 2261 /* 2262 * Cannot fallback if the socket has active filters 2263 */ 2264 if (so->so_filter_active > 0) 2265 return (EINVAL); 2266 2267 switch (so->so_family) { 2268 case AF_INET: 2269 devpath = sp->sp_smod_info->smod_fallback_devpath_v4; 2270 break; 2271 case AF_INET6: 2272 devpath = sp->sp_smod_info->smod_fallback_devpath_v6; 2273 break; 2274 default: 2275 return (EINVAL); 2276 } 2277 2278 /* 2279 * Fallback can only happen if the socket module has a TPI device 2280 * and fallback function. 2281 */ 2282 if (devpath == NULL || fbfunc == NULL) 2283 return (EINVAL); 2284 2285 /* 2286 * Initiate fallback; upon success we know that no new requests 2287 * will come in from the user. 2288 */ 2289 if (!so_start_fallback(so)) 2290 return (EAGAIN); 2291 #ifdef DEBUG 2292 /* 2293 * Make a copy of the sonode in case we need to make an integrity 2294 * check later on. 2295 */ 2296 bcopy(so, &origso, sizeof (*so)); 2297 #endif 2298 2299 sp->sp_stats.sps_nfallback.value.ui64++; 2300 2301 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type, 2302 so->so_protocol, devpath, KM_SLEEP, &error); 2303 if (error != 0) 2304 goto out; 2305 2306 if (so->so_direct != NULL) { 2307 sodirect_t *sodp = so->so_direct; 2308 mutex_enter(&so->so_lock); 2309 2310 so->so_direct->sod_enabled = B_FALSE; 2311 so->so_state &= ~SS_SODIRECT; 2312 ASSERT(sodp->sod_uioafh == NULL); 2313 mutex_exit(&so->so_lock); 2314 } 2315 2316 /* Turn sonode into a TPI socket */ 2317 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr); 2318 if (error != 0) 2319 goto out; 2320 /* 2321 * When it comes to urgent data we have two cases to deal with; 2322 * (1) The oob byte has already arrived, or (2) the protocol has 2323 * notified that oob data is pending, but it has not yet arrived. 2324 * 2325 * For (1) all we need to do is send a T_EXDATA_IND to indicate were 2326 * in the byte stream the oob byte is. For (2) we have to send a 2327 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether 2328 * the oob byte will be the next byte from the protocol. 2329 * 2330 * So in the worst case we need two mblks, one for the signal, another 2331 * for mark indication. In that case we use the exdata_mp for the sig. 2332 */ 2333 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind), 2334 BPRI_MED, STR_NOSIG, NULL); 2335 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 2336 2337 /* 2338 * Now tell the protocol to start using TPI. so_quiesced_cb be 2339 * called once it's safe to synchronize state. 2340 */ 2341 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so); 2342 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb, 2343 &arg); 2344 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so); 2345 2346 if (error != 0) { 2347 /* protocol was unable to do a fallback, revert the sonode */ 2348 sotpi_revert_sonode(so, cr); 2349 goto out; 2350 } 2351 2352 /* 2353 * Walk the accept queue and notify the proto that they should 2354 * fall back to TPI. The protocol will send up the T_CONN_IND. 2355 */ 2356 nso = list_head(&so->so_acceptq_list); 2357 while (nso != NULL) { 2358 int rval; 2359 struct sonode *next; 2360 2361 if (arg.soqa_exdata_mp == NULL) { 2362 arg.soqa_exdata_mp = 2363 allocb_wait(sizeof (struct T_exdata_ind), 2364 BPRI_MED, STR_NOSIG, NULL); 2365 } 2366 if (arg.soqa_urgmark_mp == NULL) { 2367 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, 2368 STR_NOSIG, NULL); 2369 } 2370 2371 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso); 2372 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, 2373 so_quiesced_cb, &arg); 2374 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso); 2375 if (rval != 0) { 2376 /* Abort the connection */ 2377 zcmn_err(getzoneid(), CE_WARN, 2378 "Failed to convert socket in accept queue to TPI. " 2379 "Pid = %d\n", curproc->p_pid); 2380 next = list_next(&so->so_acceptq_list, nso); 2381 list_remove(&so->so_acceptq_list, nso); 2382 so->so_acceptq_len--; 2383 2384 (void) socket_close(nso, 0, CRED()); 2385 socket_destroy(nso); 2386 nso = next; 2387 } else { 2388 nso = list_next(&so->so_acceptq_list, nso); 2389 } 2390 } 2391 2392 /* 2393 * Now flush the acceptq, this will destroy all sockets. They will 2394 * be recreated in sotpi_accept(). 2395 */ 2396 so_acceptq_flush(so, B_FALSE); 2397 2398 mutex_enter(&so->so_lock); 2399 so->so_state |= SS_FALLBACK_COMP; 2400 mutex_exit(&so->so_lock); 2401 2402 /* 2403 * Swap the sonode ops. Socket opertations that come in once this 2404 * is done will proceed without blocking. 2405 */ 2406 so->so_ops = &sotpi_sonodeops; 2407 2408 /* 2409 * Wake up any threads stuck in poll. This is needed since the poll 2410 * head changes when the fallback happens (moves from the sonode to 2411 * the STREAMS head). 2412 */ 2413 pollwakeup(&so->so_poll_list, POLLERR); 2414 2415 /* 2416 * When this non-STREAM socket was created we placed an extra ref on 2417 * the associated vnode to support asynchronous close. Drop that ref 2418 * here. 2419 */ 2420 ASSERT(SOTOV(so)->v_count >= 2); 2421 VN_RELE(SOTOV(so)); 2422 out: 2423 so_end_fallback(so); 2424 2425 if (error != 0) { 2426 #ifdef DEBUG 2427 so_integrity_check(so, &origso); 2428 #endif 2429 zcmn_err(getzoneid(), CE_WARN, 2430 "Failed to convert socket to TPI (err=%d). Pid = %d\n", 2431 error, curproc->p_pid); 2432 if (newsp != NULL) 2433 SOCKPARAMS_DEC_REF(newsp); 2434 } 2435 if (arg.soqa_exdata_mp != NULL) 2436 freemsg(arg.soqa_exdata_mp); 2437 if (arg.soqa_urgmark_mp != NULL) 2438 freemsg(arg.soqa_urgmark_mp); 2439 2440 return (error); 2441 } 2442