xref: /titanic_41/usr/src/uts/common/fs/sockfs/sockcommon_subr.c (revision 5d5562f583b2b6affe19bdce0b3c8b1840d667a4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/signal.h>
29 #include <sys/cmn_err.h>
30 
31 #include <sys/stropts.h>
32 #include <sys/socket.h>
33 #include <sys/socketvar.h>
34 #include <sys/sockio.h>
35 #include <sys/strsubr.h>
36 #include <sys/strsun.h>
37 #include <sys/atomic.h>
38 #include <sys/tihdr.h>
39 
40 #include <fs/sockfs/sockcommon.h>
41 #include <fs/sockfs/sockfilter_impl.h>
42 #include <fs/sockfs/socktpi.h>
43 #include <fs/sockfs/sodirect.h>
44 #include <sys/ddi.h>
45 #include <inet/ip.h>
46 #include <sys/time.h>
47 #include <sys/cmn_err.h>
48 
49 #ifdef SOCK_TEST
50 extern int do_useracc;
51 extern clock_t sock_test_timelimit;
52 #endif /* SOCK_TEST */
53 
54 #define	MBLK_PULL_LEN 64
55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN;
56 
57 #ifdef DEBUG
58 boolean_t so_debug_length = B_FALSE;
59 static boolean_t so_check_length(sonode_t *so);
60 #endif
61 
62 static int
63 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock,
64     struct sonode **nsop)
65 {
66 	struct sonode *nso = NULL;
67 
68 	*nsop = NULL;
69 	ASSERT(MUTEX_HELD(&so->so_acceptq_lock));
70 	while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) {
71 		/*
72 		 * No need to check so_error here, because it is not
73 		 * possible for a listening socket to be reset or otherwise
74 		 * disconnected.
75 		 *
76 		 * So now we just need check if it's ok to wait.
77 		 */
78 		if (dontblock)
79 			return (EWOULDBLOCK);
80 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
81 			return (EINTR);
82 
83 		if (cv_wait_sig_swap(&so->so_acceptq_cv,
84 		    &so->so_acceptq_lock) == 0)
85 			return (EINTR);
86 	}
87 
88 	ASSERT(nso != NULL);
89 	ASSERT(so->so_acceptq_len > 0);
90 	so->so_acceptq_len--;
91 	nso->so_listener = NULL;
92 
93 	*nsop = nso;
94 
95 	return (0);
96 }
97 
98 /*
99  * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **)
100  *
101  * Pulls a connection off of the accept queue.
102  *
103  * Arguments:
104  *   so	       - listening socket
105  *   dontblock - indicate whether it's ok to sleep if there are no
106  *		 connections on the queue
107  *   nsop      - Value-return argument
108  *
109  * Return values:
110  *   0 when a connection is successfully dequeued, in which case nsop
111  *   is set to point to the new connection. Upon failure a non-zero
112  *   value is returned, and the value of nsop is set to NULL.
113  *
114  * Note:
115  *   so_acceptq_dequeue() may return prematurly if the socket is falling
116  *   back to TPI.
117  */
118 int
119 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock,
120     struct sonode **nsop)
121 {
122 	int error;
123 
124 	mutex_enter(&so->so_acceptq_lock);
125 	error = so_acceptq_dequeue_locked(so, dontblock, nsop);
126 	mutex_exit(&so->so_acceptq_lock);
127 
128 	return (error);
129 }
130 
131 static void
132 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose)
133 {
134 	struct sonode *nso;
135 
136 	while ((nso = list_remove_head(list)) != NULL) {
137 		nso->so_listener = NULL;
138 		if (doclose) {
139 			(void) socket_close(nso, 0, CRED());
140 		} else {
141 			/*
142 			 * Only used for fallback - not possible when filters
143 			 * are present.
144 			 */
145 			ASSERT(so->so_filter_active == 0);
146 			/*
147 			 * Since the socket is on the accept queue, there can
148 			 * only be one reference. We drop the reference and
149 			 * just blow off the socket.
150 			 */
151 			ASSERT(nso->so_count == 1);
152 			nso->so_count--;
153 			/* drop the proto ref */
154 			VN_RELE(SOTOV(nso));
155 		}
156 		socket_destroy(nso);
157 	}
158 }
159 /*
160  * void so_acceptq_flush(struct sonode *so)
161  *
162  * Removes all pending connections from a listening socket, and
163  * frees the associated resources.
164  *
165  * Arguments
166  *   so	     - listening socket
167  *   doclose - make a close downcall for each socket on the accept queue
168  *
169  * Return values:
170  *   None.
171  *
172  * Note:
173  *   The caller has to ensure that no calls to so_acceptq_enqueue() or
174  *   so_acceptq_dequeue() occur while the accept queue is being flushed.
175  *   So either the socket needs to be in a state where no operations
176  *   would come in, or so_lock needs to be obtained.
177  */
178 void
179 so_acceptq_flush(struct sonode *so, boolean_t doclose)
180 {
181 	so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose);
182 	so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose);
183 
184 	so->so_acceptq_len = 0;
185 }
186 
187 int
188 so_wait_connected_locked(struct sonode *so, boolean_t nonblock,
189     sock_connid_t id)
190 {
191 	ASSERT(MUTEX_HELD(&so->so_lock));
192 
193 	/*
194 	 * The protocol has notified us that a connection attempt is being
195 	 * made, so before we wait for a notification to arrive we must
196 	 * clear out any errors associated with earlier connection attempts.
197 	 */
198 	if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id))
199 		so->so_error = 0;
200 
201 	while (SOCK_CONNID_LT(so->so_proto_connid, id)) {
202 		if (nonblock)
203 			return (EINPROGRESS);
204 
205 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
206 			return (EINTR);
207 
208 		if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0)
209 			return (EINTR);
210 	}
211 
212 	if (so->so_error != 0)
213 		return (sogeterr(so, B_TRUE));
214 	/*
215 	 * Under normal circumstances, so_error should contain an error
216 	 * in case the connect failed. However, it is possible for another
217 	 * thread to come in a consume the error, so generate a sensible
218 	 * error in that case.
219 	 */
220 	if ((so->so_state & SS_ISCONNECTED) == 0)
221 		return (ECONNREFUSED);
222 
223 	return (0);
224 }
225 
226 /*
227  * int so_wait_connected(struct sonode *so, boolean_t nonblock,
228  *    sock_connid_t id)
229  *
230  * Wait until the socket is connected or an error has occured.
231  *
232  * Arguments:
233  *   so	      - socket
234  *   nonblock - indicate whether it's ok to sleep if the connection has
235  *		not yet been established
236  *   gen      - generation number that was returned by the protocol
237  *		when the operation was started
238  *
239  * Returns:
240  *   0 if the connection attempt was successful, or an error indicating why
241  *   the connection attempt failed.
242  */
243 int
244 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id)
245 {
246 	int error;
247 
248 	mutex_enter(&so->so_lock);
249 	error = so_wait_connected_locked(so, nonblock, id);
250 	mutex_exit(&so->so_lock);
251 
252 	return (error);
253 }
254 
255 int
256 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock)
257 {
258 	int error;
259 
260 	ASSERT(MUTEX_HELD(&so->so_lock));
261 	while (SO_SND_FLOWCTRLD(so)) {
262 		if (so->so_state & SS_CANTSENDMORE)
263 			return (EPIPE);
264 		if (dontblock)
265 			return (EWOULDBLOCK);
266 
267 		if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING))
268 			return (EINTR);
269 
270 		if (so->so_sndtimeo == 0) {
271 			/*
272 			 * Zero means disable timeout.
273 			 */
274 			error = cv_wait_sig(&so->so_snd_cv, &so->so_lock);
275 		} else {
276 			error = cv_reltimedwait_sig(&so->so_snd_cv,
277 			    &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK);
278 		}
279 		if (error == 0)
280 			return (EINTR);
281 		else if (error == -1)
282 			return (EAGAIN);
283 	}
284 	return (0);
285 }
286 
287 /*
288  * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock)
289  *
290  * Wait for the transport to notify us about send buffers becoming
291  * available.
292  */
293 int
294 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock)
295 {
296 	int error = 0;
297 
298 	mutex_enter(&so->so_lock);
299 	so->so_snd_wakeup = B_TRUE;
300 	error = so_snd_wait_qnotfull_locked(so, dontblock);
301 	so->so_snd_wakeup = B_FALSE;
302 	mutex_exit(&so->so_lock);
303 
304 	return (error);
305 }
306 
307 void
308 so_snd_qfull(struct sonode *so)
309 {
310 	mutex_enter(&so->so_lock);
311 	so->so_snd_qfull = B_TRUE;
312 	mutex_exit(&so->so_lock);
313 }
314 
315 void
316 so_snd_qnotfull(struct sonode *so)
317 {
318 	mutex_enter(&so->so_lock);
319 	so->so_snd_qfull = B_FALSE;
320 	/* wake up everyone waiting for buffers */
321 	cv_broadcast(&so->so_snd_cv);
322 	mutex_exit(&so->so_lock);
323 }
324 
325 /*
326  * Change the process/process group to which SIGIO is sent.
327  */
328 int
329 socket_chgpgrp(struct sonode *so, pid_t pid)
330 {
331 	int error;
332 
333 	ASSERT(MUTEX_HELD(&so->so_lock));
334 	if (pid != 0) {
335 		/*
336 		 * Permissions check by sending signal 0.
337 		 * Note that when kill fails it does a
338 		 * set_errno causing the system call to fail.
339 		 */
340 		error = kill(pid, 0);
341 		if (error != 0) {
342 			return (error);
343 		}
344 	}
345 	so->so_pgrp = pid;
346 	return (0);
347 }
348 
349 
350 /*
351  * Generate a SIGIO, for 'writable' events include siginfo structure,
352  * for read events just send the signal.
353  */
354 /*ARGSUSED*/
355 static void
356 socket_sigproc(proc_t *proc, int event)
357 {
358 	k_siginfo_t info;
359 
360 	ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG));
361 
362 	if (event & SOCKETSIG_WRITE) {
363 		info.si_signo = SIGPOLL;
364 		info.si_code = POLL_OUT;
365 		info.si_errno = 0;
366 		info.si_fd = 0;
367 		info.si_band = 0;
368 		sigaddq(proc, NULL, &info, KM_NOSLEEP);
369 	}
370 	if (event & SOCKETSIG_READ) {
371 		sigtoproc(proc, NULL, SIGPOLL);
372 	}
373 	if (event & SOCKETSIG_URG) {
374 		sigtoproc(proc, NULL, SIGURG);
375 	}
376 }
377 
378 void
379 socket_sendsig(struct sonode *so, int event)
380 {
381 	proc_t *proc;
382 
383 	ASSERT(MUTEX_HELD(&so->so_lock));
384 
385 	if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) &&
386 	    event != SOCKETSIG_URG)) {
387 		return;
388 	}
389 
390 	dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp));
391 
392 	if (so->so_pgrp > 0) {
393 		/*
394 		 * XXX This unfortunately still generates
395 		 * a signal when a fd is closed but
396 		 * the proc is active.
397 		 */
398 		mutex_enter(&pidlock);
399 		proc = prfind(so->so_pgrp);
400 		if (proc == NULL) {
401 			mutex_exit(&pidlock);
402 			return;
403 		}
404 		mutex_enter(&proc->p_lock);
405 		mutex_exit(&pidlock);
406 		socket_sigproc(proc, event);
407 		mutex_exit(&proc->p_lock);
408 	} else {
409 		/*
410 		 * Send to process group. Hold pidlock across
411 		 * calls to socket_sigproc().
412 		 */
413 		pid_t pgrp = -so->so_pgrp;
414 
415 		mutex_enter(&pidlock);
416 		proc = pgfind(pgrp);
417 		while (proc != NULL) {
418 			mutex_enter(&proc->p_lock);
419 			socket_sigproc(proc, event);
420 			mutex_exit(&proc->p_lock);
421 			proc = proc->p_pglink;
422 		}
423 		mutex_exit(&pidlock);
424 	}
425 }
426 
427 #define	MIN(a, b) ((a) < (b) ? (a) : (b))
428 /* Copy userdata into a new mblk_t */
429 mblk_t *
430 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk,
431     size_t tail_len, int *errorp)
432 {
433 	mblk_t	*head = NULL, **tail = &head;
434 
435 	ASSERT(iosize == INFPSZ || iosize > 0);
436 
437 	if (iosize == INFPSZ || iosize > uiop->uio_resid)
438 		iosize = uiop->uio_resid;
439 
440 	if (maxblk == INFPSZ)
441 		maxblk = iosize;
442 
443 	/* Nothing to do in these cases, so we're done */
444 	if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0))
445 		goto done;
446 
447 	/*
448 	 * We will enter the loop below if iosize is 0; it will allocate an
449 	 * empty message block and call uiomove(9F) which will just return.
450 	 * We could avoid that with an extra check but would only slow
451 	 * down the much more likely case where iosize is larger than 0.
452 	 */
453 	do {
454 		ssize_t blocksize;
455 		mblk_t	*mp;
456 
457 		blocksize = MIN(iosize, maxblk);
458 		ASSERT(blocksize >= 0);
459 		mp = allocb(wroff + blocksize + tail_len, BPRI_MED);
460 		if (mp == NULL) {
461 			*errorp = ENOMEM;
462 			return (head);
463 		}
464 		mp->b_rptr += wroff;
465 		mp->b_wptr = mp->b_rptr + blocksize;
466 
467 		*tail = mp;
468 		tail = &mp->b_cont;
469 
470 		/* uiomove(9F) either returns 0 or EFAULT */
471 		if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize,
472 		    UIO_WRITE, uiop)) != 0) {
473 			ASSERT(*errorp != ENOMEM);
474 			freemsg(head);
475 			return (NULL);
476 		}
477 
478 		iosize -= blocksize;
479 	} while (iosize > 0);
480 
481 done:
482 	*errorp = 0;
483 	return (head);
484 }
485 
486 mblk_t *
487 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp)
488 {
489 	int error;
490 	ptrdiff_t n;
491 	mblk_t *nmp;
492 
493 	ASSERT(mp->b_wptr >= mp->b_rptr);
494 
495 	/*
496 	 * max_read is the offset of the oobmark and read can not go pass
497 	 * the oobmark.
498 	 */
499 	if (max_read == INFPSZ || max_read > uiop->uio_resid)
500 		max_read = uiop->uio_resid;
501 
502 	do {
503 		if ((n = MIN(max_read, MBLKL(mp))) != 0) {
504 			ASSERT(n > 0);
505 
506 			error = uiomove(mp->b_rptr, n, UIO_READ, uiop);
507 			if (error != 0) {
508 				freemsg(mp);
509 				*errorp = error;
510 				return (NULL);
511 			}
512 		}
513 
514 		mp->b_rptr += n;
515 		max_read -= n;
516 		while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) {
517 			/*
518 			 * get rid of zero length mblks
519 			 */
520 			nmp = mp;
521 			mp = mp->b_cont;
522 			freeb(nmp);
523 		}
524 	} while (mp != NULL && max_read > 0);
525 
526 	*errorp = 0;
527 	return (mp);
528 }
529 
530 static void
531 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail)
532 {
533 	ASSERT(last_tail != NULL);
534 	mp->b_next = so->so_rcv_q_head;
535 	mp->b_prev = last_tail;
536 	ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA));
537 
538 	if (so->so_rcv_q_head == NULL) {
539 		ASSERT(so->so_rcv_q_last_head == NULL);
540 		so->so_rcv_q_last_head = mp;
541 #ifdef DEBUG
542 	} else {
543 		ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA));
544 #endif
545 	}
546 	so->so_rcv_q_head = mp;
547 
548 #ifdef DEBUG
549 	if (so_debug_length) {
550 		mutex_enter(&so->so_lock);
551 		ASSERT(so_check_length(so));
552 		mutex_exit(&so->so_lock);
553 	}
554 #endif
555 }
556 
557 /*
558  * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it
559  * can be processed by so_dequeue_msg().
560  */
561 void
562 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head)
563 {
564 	if (so->so_filter_active > 0 &&
565 	    (mp_head = sof_filter_data_in_proc(so, mp_head,
566 	    &mp_last_head)) == NULL)
567 		return;
568 
569 	ASSERT(mp_head->b_prev != NULL);
570 	if (so->so_rcv_q_head == NULL) {
571 		so->so_rcv_q_head = mp_head;
572 		so->so_rcv_q_last_head = mp_last_head;
573 		ASSERT(so->so_rcv_q_last_head->b_prev != NULL);
574 	} else {
575 		boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) ==
576 		    (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA));
577 
578 		if (mp_head->b_next == NULL &&
579 		    DB_TYPE(mp_head) == M_DATA &&
580 		    DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) {
581 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
582 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
583 			mp_head->b_prev = NULL;
584 		} else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) {
585 			/*
586 			 * Append to last_head if more than one mblks, and both
587 			 * mp_head and last_head are I/OAT mblks.
588 			 */
589 			ASSERT(mp_head->b_next != NULL);
590 			so->so_rcv_q_last_head->b_prev->b_cont = mp_head;
591 			so->so_rcv_q_last_head->b_prev = mp_head->b_prev;
592 			mp_head->b_prev = NULL;
593 
594 			so->so_rcv_q_last_head->b_next = mp_head->b_next;
595 			mp_head->b_next = NULL;
596 			so->so_rcv_q_last_head = mp_last_head;
597 		} else {
598 #ifdef DEBUG
599 			{
600 				mblk_t *tmp_mblk;
601 				tmp_mblk = mp_head;
602 				while (tmp_mblk != NULL) {
603 					ASSERT(tmp_mblk->b_prev != NULL);
604 					tmp_mblk = tmp_mblk->b_next;
605 				}
606 			}
607 #endif
608 			so->so_rcv_q_last_head->b_next = mp_head;
609 			so->so_rcv_q_last_head = mp_last_head;
610 		}
611 	}
612 }
613 
614 /*
615  * Check flow control on a given sonode.  Must have so_lock held, and
616  * this function will release the hold.
617  */
618 void
619 so_check_flow_control(struct sonode *so)
620 {
621 	ASSERT(MUTEX_HELD(&so->so_lock));
622 
623 	if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat &&
624 	    !(so->so_state & SS_FIL_RCV_FLOWCTRL))) {
625 		so->so_flowctrld = B_FALSE;
626 		mutex_exit(&so->so_lock);
627 		/*
628 		 * Open up flow control. SCTP does not have any downcalls, and
629 		 * it will clr flow ctrl in sosctp_recvmsg().
630 		 */
631 		if (so->so_downcalls != NULL &&
632 		    so->so_downcalls->sd_clr_flowctrl != NULL) {
633 			(*so->so_downcalls->sd_clr_flowctrl)
634 			    (so->so_proto_handle);
635 		}
636 		/* filters can start injecting data */
637 		sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0);
638 	} else {
639 		mutex_exit(&so->so_lock);
640 	}
641 }
642 
643 int
644 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop,
645     rval_t *rvalp, int flags)
646 {
647 	mblk_t	*mp, *nmp;
648 	mblk_t	*savemp, *savemptail;
649 	mblk_t	*new_msg_head;
650 	mblk_t	*new_msg_last_head;
651 	mblk_t	*last_tail;
652 	boolean_t partial_read;
653 	boolean_t reset_atmark = B_FALSE;
654 	int more = 0;
655 	int error;
656 	ssize_t oobmark;
657 	sodirect_t *sodp = so->so_direct;
658 
659 	partial_read = B_FALSE;
660 	*mctlp = NULL;
661 again:
662 	mutex_enter(&so->so_lock);
663 again1:
664 #ifdef DEBUG
665 	if (so_debug_length) {
666 		ASSERT(so_check_length(so));
667 	}
668 #endif
669 	if (so->so_state & SS_RCVATMARK) {
670 		/* Check whether the caller is OK to read past the mark */
671 		if (flags & MSG_NOMARK) {
672 			mutex_exit(&so->so_lock);
673 			return (EWOULDBLOCK);
674 		}
675 		reset_atmark = B_TRUE;
676 	}
677 	/*
678 	 * First move messages from the dump area to processing area
679 	 */
680 	if (sodp != NULL) {
681 		if (sodp->sod_enabled) {
682 			if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) {
683 				/* nothing to uioamove */
684 				sodp = NULL;
685 			} else if (sodp->sod_uioa.uioa_state & UIOA_INIT) {
686 				sodp->sod_uioa.uioa_state &= UIOA_CLR;
687 				sodp->sod_uioa.uioa_state |= UIOA_ENABLED;
688 				/*
689 				 * try to uioamove() the data that
690 				 * has already queued.
691 				 */
692 				sod_uioa_so_init(so, sodp, uiop);
693 			}
694 		} else {
695 			sodp = NULL;
696 		}
697 	}
698 	new_msg_head = so->so_rcv_head;
699 	new_msg_last_head = so->so_rcv_last_head;
700 	so->so_rcv_head = NULL;
701 	so->so_rcv_last_head = NULL;
702 	oobmark = so->so_oobmark;
703 	/*
704 	 * We can release the lock as there can only be one reader
705 	 */
706 	mutex_exit(&so->so_lock);
707 
708 	if (new_msg_head != NULL) {
709 		so_process_new_message(so, new_msg_head, new_msg_last_head);
710 	}
711 	savemp = savemptail = NULL;
712 	rvalp->r_val1 = 0;
713 	error = 0;
714 	mp = so->so_rcv_q_head;
715 
716 	if (mp != NULL &&
717 	    (so->so_rcv_timer_tid == 0 ||
718 	    so->so_rcv_queued >= so->so_rcv_thresh)) {
719 		partial_read = B_FALSE;
720 
721 		if (flags & MSG_PEEK) {
722 			if ((nmp = dupmsg(mp)) == NULL &&
723 			    (nmp = copymsg(mp)) == NULL) {
724 				size_t size = msgsize(mp);
725 
726 				error = strwaitbuf(size, BPRI_HI);
727 				if (error) {
728 					return (error);
729 				}
730 				goto again;
731 			}
732 			mp = nmp;
733 		} else {
734 			ASSERT(mp->b_prev != NULL);
735 			last_tail = mp->b_prev;
736 			mp->b_prev = NULL;
737 			so->so_rcv_q_head = mp->b_next;
738 			if (so->so_rcv_q_head == NULL) {
739 				so->so_rcv_q_last_head = NULL;
740 			}
741 			mp->b_next = NULL;
742 		}
743 
744 		ASSERT(mctlp != NULL);
745 		/*
746 		 * First process PROTO or PCPROTO blocks, if any.
747 		 */
748 		if (DB_TYPE(mp) != M_DATA) {
749 			*mctlp = mp;
750 			savemp = mp;
751 			savemptail = mp;
752 			ASSERT(DB_TYPE(mp) == M_PROTO ||
753 			    DB_TYPE(mp) == M_PCPROTO);
754 			while (mp->b_cont != NULL &&
755 			    DB_TYPE(mp->b_cont) != M_DATA) {
756 				ASSERT(DB_TYPE(mp->b_cont) == M_PROTO ||
757 				    DB_TYPE(mp->b_cont) == M_PCPROTO);
758 				mp = mp->b_cont;
759 				savemptail = mp;
760 			}
761 			mp = savemptail->b_cont;
762 			savemptail->b_cont = NULL;
763 		}
764 
765 		ASSERT(DB_TYPE(mp) == M_DATA);
766 		/*
767 		 * Now process DATA blocks, if any. Note that for sodirect
768 		 * enabled socket, uio_resid can be 0.
769 		 */
770 		if (uiop->uio_resid >= 0) {
771 			ssize_t copied = 0;
772 
773 			if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) {
774 				mutex_enter(&so->so_lock);
775 				ASSERT(uiop == (uio_t *)&sodp->sod_uioa);
776 				copied = sod_uioa_mblk(so, mp);
777 				if (copied > 0)
778 					partial_read = B_TRUE;
779 				mutex_exit(&so->so_lock);
780 				/* mark this mblk as processed */
781 				mp = NULL;
782 			} else {
783 				ssize_t oldresid = uiop->uio_resid;
784 
785 				if (MBLKL(mp) < so_mblk_pull_len) {
786 					if (pullupmsg(mp, -1) == 1) {
787 						last_tail = mp;
788 					}
789 				}
790 				/*
791 				 * Can not read beyond the oobmark
792 				 */
793 				mp = socopyoutuio(mp, uiop,
794 				    oobmark == 0 ? INFPSZ : oobmark, &error);
795 				if (error != 0) {
796 					freemsg(*mctlp);
797 					*mctlp = NULL;
798 					more = 0;
799 					goto done;
800 				}
801 				ASSERT(oldresid >= uiop->uio_resid);
802 				copied = oldresid - uiop->uio_resid;
803 				if (oldresid > uiop->uio_resid)
804 					partial_read = B_TRUE;
805 			}
806 			ASSERT(copied >= 0);
807 			if (copied > 0 && !(flags & MSG_PEEK)) {
808 				mutex_enter(&so->so_lock);
809 				so->so_rcv_queued -= copied;
810 				ASSERT(so->so_oobmark >= 0);
811 				if (so->so_oobmark > 0) {
812 					so->so_oobmark -= copied;
813 					ASSERT(so->so_oobmark >= 0);
814 					if (so->so_oobmark == 0) {
815 						ASSERT(so->so_state &
816 						    SS_OOBPEND);
817 						so->so_oobmark = 0;
818 						so->so_state |= SS_RCVATMARK;
819 					}
820 				}
821 				/*
822 				 * so_check_flow_control() will drop
823 				 * so->so_lock.
824 				 */
825 				so_check_flow_control(so);
826 			}
827 		}
828 		if (mp != NULL) { /* more data blocks in msg */
829 			more |= MOREDATA;
830 			if ((flags & (MSG_PEEK|MSG_TRUNC))) {
831 				if (flags & MSG_PEEK) {
832 					freemsg(mp);
833 				} else {
834 					unsigned int msize = msgdsize(mp);
835 
836 					freemsg(mp);
837 					mutex_enter(&so->so_lock);
838 					so->so_rcv_queued -= msize;
839 					/*
840 					 * so_check_flow_control() will drop
841 					 * so->so_lock.
842 					 */
843 					so_check_flow_control(so);
844 				}
845 			} else if (partial_read && !somsghasdata(mp)) {
846 				/*
847 				 * Avoid queuing a zero-length tail part of
848 				 * a message. partial_read == 1 indicates that
849 				 * we read some of the message.
850 				 */
851 				freemsg(mp);
852 				more &= ~MOREDATA;
853 			} else {
854 				if (savemp != NULL &&
855 				    (flags & MSG_DUPCTRL)) {
856 					mblk_t *nmp;
857 					/*
858 					 * There should only be non data mblks
859 					 */
860 					ASSERT(DB_TYPE(savemp) != M_DATA &&
861 					    DB_TYPE(savemptail) != M_DATA);
862 try_again:
863 					if ((nmp = dupmsg(savemp)) == NULL &&
864 					    (nmp = copymsg(savemp)) == NULL) {
865 
866 						size_t size = msgsize(savemp);
867 
868 						error = strwaitbuf(size,
869 						    BPRI_HI);
870 						if (error != 0) {
871 							/*
872 							 * In case we
873 							 * cannot copy
874 							 * control data
875 							 * free the remaining
876 							 * data.
877 							 */
878 							freemsg(mp);
879 							goto done;
880 						}
881 						goto try_again;
882 					}
883 
884 					ASSERT(nmp != NULL);
885 					ASSERT(DB_TYPE(nmp) != M_DATA);
886 					savemptail->b_cont = mp;
887 					*mctlp = nmp;
888 					mp = savemp;
889 				}
890 				/*
891 				 * putback mp
892 				 */
893 				so_prepend_msg(so, mp, last_tail);
894 			}
895 		}
896 
897 		/* fast check so_rcv_head if there is more data */
898 		if (partial_read && !(so->so_state & SS_RCVATMARK) &&
899 		    *mctlp == NULL && uiop->uio_resid > 0 &&
900 		    !(flags & MSG_PEEK) && so->so_rcv_head != NULL) {
901 			goto again;
902 		}
903 	} else if (!partial_read) {
904 		mutex_enter(&so->so_lock);
905 		if (so->so_error != 0) {
906 			error = sogeterr(so, !(flags & MSG_PEEK));
907 			mutex_exit(&so->so_lock);
908 			return (error);
909 		}
910 		/*
911 		 * No pending data. Return right away for nonblocking
912 		 * socket, otherwise sleep waiting for data.
913 		 */
914 		if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) {
915 			if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) ||
916 			    (flags & MSG_DONTWAIT)) {
917 				error = EWOULDBLOCK;
918 			} else {
919 				if (so->so_state & (SS_CLOSING |
920 				    SS_FALLBACK_PENDING)) {
921 					mutex_exit(&so->so_lock);
922 					error = EINTR;
923 					goto done;
924 				}
925 
926 				if (so->so_rcv_head != NULL) {
927 					goto again1;
928 				}
929 				so->so_rcv_wakeup = B_TRUE;
930 				so->so_rcv_wanted = uiop->uio_resid;
931 				if (so->so_rcvtimeo == 0) {
932 					/*
933 					 * Zero means disable timeout.
934 					 */
935 					error = cv_wait_sig(&so->so_rcv_cv,
936 					    &so->so_lock);
937 				} else {
938 					error = cv_reltimedwait_sig(
939 					    &so->so_rcv_cv, &so->so_lock,
940 					    so->so_rcvtimeo, TR_CLOCK_TICK);
941 				}
942 				so->so_rcv_wakeup = B_FALSE;
943 				so->so_rcv_wanted = 0;
944 
945 				if (error == 0) {
946 					error = EINTR;
947 				} else if (error == -1) {
948 					error = EAGAIN;
949 				} else {
950 					goto again1;
951 				}
952 			}
953 		}
954 		mutex_exit(&so->so_lock);
955 	}
956 	if (reset_atmark && partial_read && !(flags & MSG_PEEK)) {
957 		/*
958 		 * We are passed the mark, update state
959 		 * 4.3BSD and 4.4BSD clears the mark when peeking across it.
960 		 * The draft Posix socket spec states that the mark should
961 		 * not be cleared when peeking. We follow the latter.
962 		 */
963 		mutex_enter(&so->so_lock);
964 		ASSERT(so_verify_oobstate(so));
965 		so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK);
966 		freemsg(so->so_oobmsg);
967 		so->so_oobmsg = NULL;
968 		ASSERT(so_verify_oobstate(so));
969 		mutex_exit(&so->so_lock);
970 	}
971 	ASSERT(so->so_rcv_wakeup == B_FALSE);
972 done:
973 	if (sodp != NULL) {
974 		mutex_enter(&so->so_lock);
975 		if (sodp->sod_enabled &&
976 		    (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) {
977 			SOD_UIOAFINI(sodp);
978 			if (sodp->sod_uioa.uioa_mbytes > 0) {
979 				ASSERT(so->so_rcv_q_head != NULL ||
980 				    so->so_rcv_head != NULL);
981 				so->so_rcv_queued -= sod_uioa_mblk(so, NULL);
982 				if (error == EWOULDBLOCK)
983 					error = 0;
984 			}
985 		}
986 		mutex_exit(&so->so_lock);
987 	}
988 #ifdef DEBUG
989 	if (so_debug_length) {
990 		mutex_enter(&so->so_lock);
991 		ASSERT(so_check_length(so));
992 		mutex_exit(&so->so_lock);
993 	}
994 #endif
995 	rvalp->r_val1 = more;
996 	ASSERT(MUTEX_NOT_HELD(&so->so_lock));
997 	return (error);
998 }
999 
1000 /*
1001  * Enqueue data from the protocol on the socket's rcv queue.
1002  *
1003  * We try to hook new M_DATA mblks onto an existing chain, however,
1004  * that cannot be done if the existing chain has already been
1005  * processed by I/OAT. Non-M_DATA mblks are just linked together via
1006  * b_next. In all cases the b_prev of the enqueued mblk is set to
1007  * point to the last mblk in its b_cont chain.
1008  */
1009 void
1010 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size)
1011 {
1012 	ASSERT(MUTEX_HELD(&so->so_lock));
1013 
1014 #ifdef DEBUG
1015 	if (so_debug_length) {
1016 		ASSERT(so_check_length(so));
1017 	}
1018 #endif
1019 	so->so_rcv_queued += msg_size;
1020 
1021 	if (so->so_rcv_head == NULL) {
1022 		ASSERT(so->so_rcv_last_head == NULL);
1023 		so->so_rcv_head = mp;
1024 		so->so_rcv_last_head = mp;
1025 	} else if ((DB_TYPE(mp) == M_DATA &&
1026 	    DB_TYPE(so->so_rcv_last_head) == M_DATA) &&
1027 	    ((DB_FLAGS(mp) & DBLK_UIOA) ==
1028 	    (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) {
1029 		/* Added to the end */
1030 		ASSERT(so->so_rcv_last_head != NULL);
1031 		ASSERT(so->so_rcv_last_head->b_prev != NULL);
1032 		so->so_rcv_last_head->b_prev->b_cont = mp;
1033 	} else {
1034 		/* Start a new end */
1035 		so->so_rcv_last_head->b_next = mp;
1036 		so->so_rcv_last_head = mp;
1037 	}
1038 	while (mp->b_cont != NULL)
1039 		mp = mp->b_cont;
1040 
1041 	so->so_rcv_last_head->b_prev = mp;
1042 #ifdef DEBUG
1043 	if (so_debug_length) {
1044 		ASSERT(so_check_length(so));
1045 	}
1046 #endif
1047 }
1048 
1049 /*
1050  * Return B_TRUE if there is data in the message, B_FALSE otherwise.
1051  */
1052 boolean_t
1053 somsghasdata(mblk_t *mp)
1054 {
1055 	for (; mp; mp = mp->b_cont)
1056 		if (mp->b_datap->db_type == M_DATA) {
1057 			ASSERT(mp->b_wptr >= mp->b_rptr);
1058 			if (mp->b_wptr > mp->b_rptr)
1059 				return (B_TRUE);
1060 		}
1061 	return (B_FALSE);
1062 }
1063 
1064 /*
1065  * Flush the read side of sockfs.
1066  *
1067  * The caller must be sure that a reader is not already active when the
1068  * buffer is being flushed.
1069  */
1070 void
1071 so_rcv_flush(struct sonode *so)
1072 {
1073 	mblk_t  *mp;
1074 
1075 	ASSERT(MUTEX_HELD(&so->so_lock));
1076 
1077 	if (so->so_oobmsg != NULL) {
1078 		freemsg(so->so_oobmsg);
1079 		so->so_oobmsg = NULL;
1080 		so->so_oobmark = 0;
1081 		so->so_state &=
1082 		    ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK);
1083 	}
1084 
1085 	/*
1086 	 * Free messages sitting in the recv queues
1087 	 */
1088 	while (so->so_rcv_q_head != NULL) {
1089 		mp = so->so_rcv_q_head;
1090 		so->so_rcv_q_head = mp->b_next;
1091 		mp->b_next = mp->b_prev = NULL;
1092 		freemsg(mp);
1093 	}
1094 	while (so->so_rcv_head != NULL) {
1095 		mp = so->so_rcv_head;
1096 		so->so_rcv_head = mp->b_next;
1097 		mp->b_next = mp->b_prev = NULL;
1098 		freemsg(mp);
1099 	}
1100 	so->so_rcv_queued = 0;
1101 	so->so_rcv_q_head = NULL;
1102 	so->so_rcv_q_last_head = NULL;
1103 	so->so_rcv_head = NULL;
1104 	so->so_rcv_last_head = NULL;
1105 }
1106 
1107 /*
1108  * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK.
1109  */
1110 int
1111 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags,
1112     boolean_t oob_inline)
1113 {
1114 	mblk_t		*mp, *nmp;
1115 	int		error;
1116 
1117 	dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg,
1118 	    flags));
1119 
1120 	if (msg != NULL) {
1121 		/*
1122 		 * There is never any oob data with addresses or control since
1123 		 * the T_EXDATA_IND does not carry any options.
1124 		 */
1125 		msg->msg_controllen = 0;
1126 		msg->msg_namelen = 0;
1127 		msg->msg_flags = 0;
1128 	}
1129 
1130 	mutex_enter(&so->so_lock);
1131 	ASSERT(so_verify_oobstate(so));
1132 	if (oob_inline ||
1133 	    (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) {
1134 		dprintso(so, 1, ("sorecvoob: inline or data consumed\n"));
1135 		mutex_exit(&so->so_lock);
1136 		return (EINVAL);
1137 	}
1138 	if (!(so->so_state & SS_HAVEOOBDATA)) {
1139 		dprintso(so, 1, ("sorecvoob: no data yet\n"));
1140 		mutex_exit(&so->so_lock);
1141 		return (EWOULDBLOCK);
1142 	}
1143 	ASSERT(so->so_oobmsg != NULL);
1144 	mp = so->so_oobmsg;
1145 	if (flags & MSG_PEEK) {
1146 		/*
1147 		 * Since recv* can not return ENOBUFS we can not use dupmsg.
1148 		 * Instead we revert to the consolidation private
1149 		 * allocb_wait plus bcopy.
1150 		 */
1151 		mblk_t *mp1;
1152 
1153 		mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL);
1154 		ASSERT(mp1);
1155 
1156 		while (mp != NULL) {
1157 			ssize_t size;
1158 
1159 			size = MBLKL(mp);
1160 			bcopy(mp->b_rptr, mp1->b_wptr, size);
1161 			mp1->b_wptr += size;
1162 			ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim);
1163 			mp = mp->b_cont;
1164 		}
1165 		mp = mp1;
1166 	} else {
1167 		/*
1168 		 * Update the state indicating that the data has been consumed.
1169 		 * Keep SS_OOBPEND set until data is consumed past the mark.
1170 		 */
1171 		so->so_oobmsg = NULL;
1172 		so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA;
1173 	}
1174 	ASSERT(so_verify_oobstate(so));
1175 	mutex_exit(&so->so_lock);
1176 
1177 	error = 0;
1178 	nmp = mp;
1179 	while (nmp != NULL && uiop->uio_resid > 0) {
1180 		ssize_t n = MBLKL(nmp);
1181 
1182 		n = MIN(n, uiop->uio_resid);
1183 		if (n > 0)
1184 			error = uiomove(nmp->b_rptr, n,
1185 			    UIO_READ, uiop);
1186 		if (error)
1187 			break;
1188 		nmp = nmp->b_cont;
1189 	}
1190 	ASSERT(mp->b_next == NULL && mp->b_prev == NULL);
1191 	freemsg(mp);
1192 	return (error);
1193 }
1194 
1195 /*
1196  * Allocate and initializ sonode
1197  */
1198 /* ARGSUSED */
1199 struct sonode *
1200 socket_sonode_create(struct sockparams *sp, int family, int type,
1201     int protocol, int version, int sflags, int *errorp, struct cred *cr)
1202 {
1203 	sonode_t *so;
1204 	int	kmflags;
1205 
1206 	/*
1207 	 * Choose the right set of sonodeops based on the upcall and
1208 	 * down call version that the protocol has provided
1209 	 */
1210 	if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version ||
1211 	    SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) {
1212 		/*
1213 		 * mismatch
1214 		 */
1215 #ifdef DEBUG
1216 		cmn_err(CE_CONT, "protocol and socket module version mismatch");
1217 #endif
1218 		*errorp = EINVAL;
1219 		return (NULL);
1220 	}
1221 
1222 	kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1223 
1224 	so = kmem_cache_alloc(socket_cache, kmflags);
1225 	if (so == NULL) {
1226 		*errorp = ENOMEM;
1227 		return (NULL);
1228 	}
1229 
1230 	sonode_init(so, sp, family, type, protocol, &so_sonodeops);
1231 
1232 	if (version == SOV_DEFAULT)
1233 		version = so_default_version;
1234 
1235 	so->so_version = (short)version;
1236 
1237 	/*
1238 	 * set the default values to be INFPSZ
1239 	 * if a protocol desires it can change the value later
1240 	 */
1241 	so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER;
1242 	so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER;
1243 	so->so_proto_props.sopp_maxpsz = INFPSZ;
1244 	so->so_proto_props.sopp_maxblk = INFPSZ;
1245 
1246 	return (so);
1247 }
1248 
1249 int
1250 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr)
1251 {
1252 	int error = 0;
1253 
1254 	if (pso != NULL) {
1255 		/*
1256 		 * We have a passive open, so inherit basic state from
1257 		 * the parent (listener).
1258 		 *
1259 		 * No need to grab the new sonode's lock, since there is no
1260 		 * one that can have a reference to it.
1261 		 */
1262 		mutex_enter(&pso->so_lock);
1263 
1264 		so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC);
1265 		so->so_pgrp = pso->so_pgrp;
1266 		so->so_rcvtimeo = pso->so_rcvtimeo;
1267 		so->so_sndtimeo = pso->so_sndtimeo;
1268 		so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf;
1269 		/*
1270 		 * Make note of the socket level options. TCP and IP level
1271 		 * options are already inherited. We could do all this after
1272 		 * accept is successful but doing it here simplifies code and
1273 		 * no harm done for error case.
1274 		 */
1275 		so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR|
1276 		    SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK|
1277 		    SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER);
1278 		so->so_proto_props = pso->so_proto_props;
1279 		so->so_mode = pso->so_mode;
1280 		so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS;
1281 
1282 		mutex_exit(&pso->so_lock);
1283 
1284 		/*
1285 		 * If the parent has any filters, try to inherit them.
1286 		 */
1287 		if (pso->so_filter_active > 0 &&
1288 		    (error = sof_sonode_inherit_filters(so, pso)) != 0)
1289 			return (error);
1290 
1291 	} else {
1292 		struct sockparams *sp = so->so_sockparams;
1293 		sock_upcalls_t *upcalls_to_use;
1294 
1295 		/*
1296 		 * Attach automatic filters, if there are any.
1297 		 */
1298 		if (!list_is_empty(&sp->sp_auto_filters) &&
1299 		    (error = sof_sonode_autoattach_filters(so, cr)) != 0)
1300 			return (error);
1301 
1302 		/* OK to attach filters */
1303 		so->so_state |= SS_FILOP_OK;
1304 
1305 		/*
1306 		 * Based on the version number select the right upcalls to
1307 		 * pass down. Currently we only have one version so choose
1308 		 * default
1309 		 */
1310 		upcalls_to_use = &so_upcalls;
1311 
1312 		/* active open, so create a lower handle */
1313 		so->so_proto_handle =
1314 		    sp->sp_smod_info->smod_proto_create_func(so->so_family,
1315 		    so->so_type, so->so_protocol, &so->so_downcalls,
1316 		    &so->so_mode, &error, flags, cr);
1317 
1318 		if (so->so_proto_handle == NULL) {
1319 			ASSERT(error != 0);
1320 			/*
1321 			 * To be safe; if a lower handle cannot be created, and
1322 			 * the proto does not give a reason why, assume there
1323 			 * was a lack of memory.
1324 			 */
1325 			return ((error == 0) ? ENOMEM : error);
1326 		}
1327 		ASSERT(so->so_downcalls != NULL);
1328 		ASSERT(so->so_downcalls->sd_send != NULL ||
1329 		    so->so_downcalls->sd_send_uio != NULL);
1330 		if (so->so_downcalls->sd_recv_uio != NULL) {
1331 			ASSERT(so->so_downcalls->sd_poll != NULL);
1332 			so->so_pollev |= SO_POLLEV_ALWAYS;
1333 		}
1334 
1335 		(*so->so_downcalls->sd_activate)(so->so_proto_handle,
1336 		    (sock_upper_handle_t)so, upcalls_to_use, 0, cr);
1337 
1338 		/* Wildcard */
1339 
1340 		/*
1341 		 * FIXME No need for this, the protocol can deal with it in
1342 		 * sd_create(). Should update ICMP.
1343 		 */
1344 		if (so->so_protocol != so->so_sockparams->sp_protocol) {
1345 			int protocol = so->so_protocol;
1346 			int error;
1347 			/*
1348 			 * Issue SO_PROTOTYPE setsockopt.
1349 			 */
1350 			error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE,
1351 			    &protocol, (t_uscalar_t)sizeof (protocol), cr);
1352 			if (error) {
1353 				(void) (*so->so_downcalls->sd_close)
1354 				    (so->so_proto_handle, 0, cr);
1355 
1356 				mutex_enter(&so->so_lock);
1357 				so_rcv_flush(so);
1358 				mutex_exit(&so->so_lock);
1359 				/*
1360 				 * Setsockopt often fails with ENOPROTOOPT but
1361 				 * socket() should fail with
1362 				 * EPROTONOSUPPORT/EPROTOTYPE.
1363 				 */
1364 				return (EPROTONOSUPPORT);
1365 			}
1366 		}
1367 	}
1368 
1369 	if (uioasync.enabled)
1370 		sod_sock_init(so);
1371 
1372 	/* put an extra reference on the socket for the protocol */
1373 	VN_HOLD(SOTOV(so));
1374 
1375 	return (0);
1376 }
1377 
1378 /*
1379  * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1380  *         struct cred *cr, int32_t *rvalp)
1381  *
1382  * Handle ioctls that manipulate basic socket state; non-blocking,
1383  * async, etc.
1384  *
1385  * Returns:
1386  *   < 0  - ioctl was not handle
1387  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1388  *
1389  * Notes:
1390  *   Assumes the standard receive buffer is used to obtain info for
1391  *   NREAD.
1392  */
1393 /* ARGSUSED */
1394 int
1395 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1396     struct cred *cr, int32_t *rvalp)
1397 {
1398 	switch (cmd) {
1399 	case SIOCSQPTR:
1400 		/*
1401 		 * SIOCSQPTR is valid only when helper stream is created
1402 		 * by the protocol.
1403 		 */
1404 
1405 		return (EOPNOTSUPP);
1406 	case FIONBIO: {
1407 		int32_t value;
1408 
1409 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1410 		    (mode & (int)FKIOCTL)))
1411 			return (EFAULT);
1412 
1413 		mutex_enter(&so->so_lock);
1414 		if (value) {
1415 			so->so_state |= SS_NDELAY;
1416 		} else {
1417 			so->so_state &= ~SS_NDELAY;
1418 		}
1419 		mutex_exit(&so->so_lock);
1420 		return (0);
1421 	}
1422 	case FIOASYNC: {
1423 		int32_t value;
1424 
1425 		if (so_copyin((void *)arg, &value, sizeof (int32_t),
1426 		    (mode & (int)FKIOCTL)))
1427 			return (EFAULT);
1428 
1429 		mutex_enter(&so->so_lock);
1430 
1431 		if (value) {
1432 			/* Turn on SIGIO */
1433 			so->so_state |= SS_ASYNC;
1434 		} else {
1435 			/* Turn off SIGIO */
1436 			so->so_state &= ~SS_ASYNC;
1437 		}
1438 		mutex_exit(&so->so_lock);
1439 
1440 		return (0);
1441 	}
1442 
1443 	case SIOCSPGRP:
1444 	case FIOSETOWN: {
1445 		int error;
1446 		pid_t pid;
1447 
1448 		if (so_copyin((void *)arg, &pid, sizeof (pid_t),
1449 		    (mode & (int)FKIOCTL)))
1450 			return (EFAULT);
1451 
1452 		mutex_enter(&so->so_lock);
1453 		error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0;
1454 		mutex_exit(&so->so_lock);
1455 		return (error);
1456 	}
1457 	case SIOCGPGRP:
1458 	case FIOGETOWN:
1459 		if (so_copyout(&so->so_pgrp, (void *)arg,
1460 		    sizeof (pid_t), (mode & (int)FKIOCTL)))
1461 			return (EFAULT);
1462 
1463 		return (0);
1464 	case SIOCATMARK: {
1465 		int retval;
1466 
1467 		/*
1468 		 * Only protocols that support urgent data can handle ATMARK.
1469 		 */
1470 		if ((so->so_mode & SM_EXDATA) == 0)
1471 			return (EINVAL);
1472 
1473 		/*
1474 		 * If the protocol is maintaining its own buffer, then the
1475 		 * request must be passed down.
1476 		 */
1477 		if (so->so_downcalls->sd_recv_uio != NULL)
1478 			return (-1);
1479 
1480 		retval = (so->so_state & SS_RCVATMARK) != 0;
1481 
1482 		if (so_copyout(&retval, (void *)arg, sizeof (int),
1483 		    (mode & (int)FKIOCTL))) {
1484 			return (EFAULT);
1485 		}
1486 		return (0);
1487 	}
1488 
1489 	case FIONREAD: {
1490 		int retval;
1491 
1492 		/*
1493 		 * If the protocol is maintaining its own buffer, then the
1494 		 * request must be passed down.
1495 		 */
1496 		if (so->so_downcalls->sd_recv_uio != NULL)
1497 			return (-1);
1498 
1499 		retval = MIN(so->so_rcv_queued, INT_MAX);
1500 
1501 		if (so_copyout(&retval, (void *)arg,
1502 		    sizeof (retval), (mode & (int)FKIOCTL))) {
1503 			return (EFAULT);
1504 		}
1505 		return (0);
1506 	}
1507 
1508 	case _I_GETPEERCRED: {
1509 		int error = 0;
1510 
1511 		if ((mode & FKIOCTL) == 0)
1512 			return (EINVAL);
1513 
1514 		mutex_enter(&so->so_lock);
1515 		if ((so->so_mode & SM_CONNREQUIRED) == 0) {
1516 			error = ENOTSUP;
1517 		} else if ((so->so_state & SS_ISCONNECTED) == 0) {
1518 			error = ENOTCONN;
1519 		} else if (so->so_peercred != NULL) {
1520 			k_peercred_t *kp = (k_peercred_t *)arg;
1521 			kp->pc_cr = so->so_peercred;
1522 			kp->pc_cpid = so->so_cpid;
1523 			crhold(so->so_peercred);
1524 		} else {
1525 			error = EINVAL;
1526 		}
1527 		mutex_exit(&so->so_lock);
1528 		return (error);
1529 	}
1530 	default:
1531 		return (-1);
1532 	}
1533 }
1534 
1535 /*
1536  * Handle the I_NREAD STREAM ioctl.
1537  */
1538 static int
1539 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp)
1540 {
1541 	size_t size = 0;
1542 	int retval;
1543 	int count = 0;
1544 	mblk_t *mp;
1545 	clock_t wakeup = drv_usectohz(10);
1546 
1547 	if (so->so_downcalls == NULL ||
1548 	    so->so_downcalls->sd_recv_uio != NULL)
1549 		return (EINVAL);
1550 
1551 	mutex_enter(&so->so_lock);
1552 	/* Wait for reader to get out of the way. */
1553 	while (so->so_flag & SOREADLOCKED) {
1554 		/*
1555 		 * If reader is waiting for data, then there should be nothing
1556 		 * on the rcv queue.
1557 		 */
1558 		if (so->so_rcv_wakeup)
1559 			goto out;
1560 
1561 		/* Do a timed sleep, in case the reader goes to sleep. */
1562 		(void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup,
1563 		    TR_CLOCK_TICK);
1564 	}
1565 
1566 	/*
1567 	 * Since we are holding so_lock no new reader will come in, and the
1568 	 * protocol will not be able to enqueue data. So it's safe to walk
1569 	 * both rcv queues.
1570 	 */
1571 	mp = so->so_rcv_q_head;
1572 	if (mp != NULL) {
1573 		size = msgdsize(so->so_rcv_q_head);
1574 		for (; mp != NULL; mp = mp->b_next)
1575 			count++;
1576 	} else {
1577 		/*
1578 		 * In case the processing list was empty, get the size of the
1579 		 * next msg in line.
1580 		 */
1581 		size = msgdsize(so->so_rcv_head);
1582 	}
1583 
1584 	for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next)
1585 		count++;
1586 out:
1587 	mutex_exit(&so->so_lock);
1588 
1589 	/*
1590 	 * Drop down from size_t to the "int" required by the
1591 	 * interface.  Cap at INT_MAX.
1592 	 */
1593 	retval = MIN(size, INT_MAX);
1594 	if (so_copyout(&retval, (void *)arg, sizeof (retval),
1595 	    (mode & (int)FKIOCTL))) {
1596 		return (EFAULT);
1597 	} else {
1598 		*rvalp = count;
1599 		return (0);
1600 	}
1601 }
1602 
1603 /*
1604  * Process STREAM ioctls.
1605  *
1606  * Returns:
1607  *   < 0  - ioctl was not handle
1608  *  >= 0  - ioctl was handled, if > 0, then it is an errno
1609  */
1610 int
1611 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode,
1612     struct cred *cr, int32_t *rvalp)
1613 {
1614 	int retval;
1615 
1616 	/* Only STREAM iotcls are handled here */
1617 	if ((cmd & 0xffffff00U) != STR)
1618 		return (-1);
1619 
1620 	switch (cmd) {
1621 	case I_CANPUT:
1622 		/*
1623 		 * We return an error for I_CANPUT so that isastream(3C) will
1624 		 * not report the socket as being a STREAM.
1625 		 */
1626 		return (EOPNOTSUPP);
1627 	case I_NREAD:
1628 		/* Avoid doing a fallback for I_NREAD. */
1629 		return (so_strioc_nread(so, arg, mode, rvalp));
1630 	case I_LOOK:
1631 		/* Avoid doing a fallback for I_LOOK. */
1632 		if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1,
1633 		    (mode & (int)FKIOCTL))) {
1634 			return (EFAULT);
1635 		}
1636 		return (0);
1637 	default:
1638 		break;
1639 	}
1640 
1641 	/*
1642 	 * Try to fall back to TPI, and if successful, reissue the ioctl.
1643 	 */
1644 	if ((retval = so_tpi_fallback(so, cr)) == 0) {
1645 		/* Reissue the ioctl */
1646 		ASSERT(so->so_rcv_q_head == NULL);
1647 		return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp));
1648 	} else {
1649 		return (retval);
1650 	}
1651 }
1652 
1653 /*
1654  * This is called for all socket types to verify that the buffer size is large
1655  * enough for the option, and if we can, handle the request as well. Most
1656  * options will be forwarded to the protocol.
1657  */
1658 int
1659 socket_getopt_common(struct sonode *so, int level, int option_name,
1660     void *optval, socklen_t *optlenp, int flags)
1661 {
1662 	if (level != SOL_SOCKET)
1663 		return (-1);
1664 
1665 	switch (option_name) {
1666 	case SO_ERROR:
1667 	case SO_DOMAIN:
1668 	case SO_TYPE:
1669 	case SO_ACCEPTCONN: {
1670 		int32_t value;
1671 		socklen_t optlen = *optlenp;
1672 
1673 		if (optlen < (t_uscalar_t)sizeof (int32_t)) {
1674 			return (EINVAL);
1675 		}
1676 
1677 		switch (option_name) {
1678 		case SO_ERROR:
1679 			mutex_enter(&so->so_lock);
1680 			value = sogeterr(so, B_TRUE);
1681 			mutex_exit(&so->so_lock);
1682 			break;
1683 		case SO_DOMAIN:
1684 			value = so->so_family;
1685 			break;
1686 		case SO_TYPE:
1687 			value = so->so_type;
1688 			break;
1689 		case SO_ACCEPTCONN:
1690 			if (so->so_state & SS_ACCEPTCONN)
1691 				value = SO_ACCEPTCONN;
1692 			else
1693 				value = 0;
1694 			break;
1695 		}
1696 
1697 		bcopy(&value, optval, sizeof (value));
1698 		*optlenp = sizeof (value);
1699 
1700 		return (0);
1701 	}
1702 	case SO_SNDTIMEO:
1703 	case SO_RCVTIMEO: {
1704 		clock_t value;
1705 		socklen_t optlen = *optlenp;
1706 
1707 		if (get_udatamodel() == DATAMODEL_NONE ||
1708 		    get_udatamodel() == DATAMODEL_NATIVE) {
1709 			if (optlen < sizeof (struct timeval))
1710 				return (EINVAL);
1711 		} else {
1712 			if (optlen < sizeof (struct timeval32))
1713 				return (EINVAL);
1714 		}
1715 		if (option_name == SO_RCVTIMEO)
1716 			value = drv_hztousec(so->so_rcvtimeo);
1717 		else
1718 			value = drv_hztousec(so->so_sndtimeo);
1719 
1720 		if (get_udatamodel() == DATAMODEL_NONE ||
1721 		    get_udatamodel() == DATAMODEL_NATIVE) {
1722 			((struct timeval *)(optval))->tv_sec =
1723 			    value / (1000 * 1000);
1724 			((struct timeval *)(optval))->tv_usec =
1725 			    value % (1000 * 1000);
1726 			*optlenp = sizeof (struct timeval);
1727 		} else {
1728 			((struct timeval32 *)(optval))->tv_sec =
1729 			    value / (1000 * 1000);
1730 			((struct timeval32 *)(optval))->tv_usec =
1731 			    value % (1000 * 1000);
1732 			*optlenp = sizeof (struct timeval32);
1733 		}
1734 		return (0);
1735 	}
1736 	case SO_DEBUG:
1737 	case SO_REUSEADDR:
1738 	case SO_KEEPALIVE:
1739 	case SO_DONTROUTE:
1740 	case SO_BROADCAST:
1741 	case SO_USELOOPBACK:
1742 	case SO_OOBINLINE:
1743 	case SO_SNDBUF:
1744 #ifdef notyet
1745 	case SO_SNDLOWAT:
1746 	case SO_RCVLOWAT:
1747 #endif /* notyet */
1748 	case SO_DGRAM_ERRIND: {
1749 		socklen_t optlen = *optlenp;
1750 
1751 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1752 			return (EINVAL);
1753 		break;
1754 	}
1755 	case SO_RCVBUF: {
1756 		socklen_t optlen = *optlenp;
1757 
1758 		if (optlen < (t_uscalar_t)sizeof (int32_t))
1759 			return (EINVAL);
1760 
1761 		if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) {
1762 			/*
1763 			 * XXX If SO_RCVBUF has been set and this is an
1764 			 * XPG 4.2 application then do not ask the transport
1765 			 * since the transport might adjust the value and not
1766 			 * return exactly what was set by the application.
1767 			 * For non-XPG 4.2 application we return the value
1768 			 * that the transport is actually using.
1769 			 */
1770 			*(int32_t *)optval = so->so_xpg_rcvbuf;
1771 			*optlenp = sizeof (so->so_xpg_rcvbuf);
1772 			return (0);
1773 		}
1774 		/*
1775 		 * If the option has not been set then get a default
1776 		 * value from the transport.
1777 		 */
1778 		break;
1779 	}
1780 	case SO_LINGER: {
1781 		socklen_t optlen = *optlenp;
1782 
1783 		if (optlen < (t_uscalar_t)sizeof (struct linger))
1784 			return (EINVAL);
1785 		break;
1786 	}
1787 	case SO_SND_BUFINFO: {
1788 		socklen_t optlen = *optlenp;
1789 
1790 		if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo))
1791 			return (EINVAL);
1792 		((struct so_snd_bufinfo *)(optval))->sbi_wroff =
1793 		    (so->so_proto_props).sopp_wroff;
1794 		((struct so_snd_bufinfo *)(optval))->sbi_maxblk =
1795 		    (so->so_proto_props).sopp_maxblk;
1796 		((struct so_snd_bufinfo *)(optval))->sbi_maxpsz =
1797 		    (so->so_proto_props).sopp_maxpsz;
1798 		((struct so_snd_bufinfo *)(optval))->sbi_tail =
1799 		    (so->so_proto_props).sopp_tail;
1800 		*optlenp = sizeof (struct so_snd_bufinfo);
1801 		return (0);
1802 	}
1803 	case SO_SND_COPYAVOID: {
1804 		sof_instance_t *inst;
1805 
1806 		/*
1807 		 * Avoid zero-copy if there is a filter with a data_out
1808 		 * callback. We could let the operation succeed, but then
1809 		 * the filter would have to copy the data anyway.
1810 		 */
1811 		for (inst = so->so_filter_top; inst != NULL;
1812 		    inst = inst->sofi_next) {
1813 			if (SOF_INTERESTED(inst, data_out))
1814 				return (EOPNOTSUPP);
1815 		}
1816 		break;
1817 	}
1818 
1819 	default:
1820 		break;
1821 	}
1822 
1823 	/* Unknown Option */
1824 	return (-1);
1825 }
1826 
1827 void
1828 socket_sonode_destroy(struct sonode *so)
1829 {
1830 	sonode_fini(so);
1831 	kmem_cache_free(socket_cache, so);
1832 }
1833 
1834 int
1835 so_zcopy_wait(struct sonode *so)
1836 {
1837 	int error = 0;
1838 
1839 	mutex_enter(&so->so_lock);
1840 	while (!(so->so_copyflag & STZCNOTIFY)) {
1841 		if (so->so_state & SS_CLOSING) {
1842 			mutex_exit(&so->so_lock);
1843 			return (EINTR);
1844 		}
1845 		if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) {
1846 			error = EINTR;
1847 			break;
1848 		}
1849 	}
1850 	so->so_copyflag &= ~STZCNOTIFY;
1851 	mutex_exit(&so->so_lock);
1852 	return (error);
1853 }
1854 
1855 void
1856 so_timer_callback(void *arg)
1857 {
1858 	struct sonode *so = (struct sonode *)arg;
1859 
1860 	mutex_enter(&so->so_lock);
1861 
1862 	so->so_rcv_timer_tid = 0;
1863 	if (so->so_rcv_queued > 0) {
1864 		so_notify_data(so, so->so_rcv_queued);
1865 	} else {
1866 		mutex_exit(&so->so_lock);
1867 	}
1868 }
1869 
1870 #ifdef DEBUG
1871 /*
1872  * Verify that the length stored in so_rcv_queued and the length of data blocks
1873  * queued is same.
1874  */
1875 static boolean_t
1876 so_check_length(sonode_t *so)
1877 {
1878 	mblk_t *mp = so->so_rcv_q_head;
1879 	int len = 0;
1880 
1881 	ASSERT(MUTEX_HELD(&so->so_lock));
1882 
1883 	if (mp != NULL) {
1884 		len = msgdsize(mp);
1885 		while ((mp = mp->b_next) != NULL)
1886 			len += msgdsize(mp);
1887 	}
1888 	mp = so->so_rcv_head;
1889 	if (mp != NULL) {
1890 		len += msgdsize(mp);
1891 		while ((mp = mp->b_next) != NULL)
1892 			len += msgdsize(mp);
1893 	}
1894 	return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE);
1895 }
1896 #endif
1897 
1898 int
1899 so_get_mod_version(struct sockparams *sp)
1900 {
1901 	ASSERT(sp != NULL && sp->sp_smod_info != NULL);
1902 	return (sp->sp_smod_info->smod_version);
1903 }
1904 
1905 /*
1906  * so_start_fallback()
1907  *
1908  * Block new socket operations from coming in, and wait for active operations
1909  * to complete. Threads that are sleeping will be woken up so they can get
1910  * out of the way.
1911  *
1912  * The caller must be a reader on so_fallback_rwlock.
1913  */
1914 static boolean_t
1915 so_start_fallback(struct sonode *so)
1916 {
1917 	ASSERT(RW_READ_HELD(&so->so_fallback_rwlock));
1918 
1919 	mutex_enter(&so->so_lock);
1920 	if (so->so_state & SS_FALLBACK_PENDING) {
1921 		mutex_exit(&so->so_lock);
1922 		return (B_FALSE);
1923 	}
1924 	so->so_state |= SS_FALLBACK_PENDING;
1925 	/*
1926 	 * Poke all threads that might be sleeping. Any operation that comes
1927 	 * in after the cv_broadcast will observe the fallback pending flag
1928 	 * which cause the call to return where it would normally sleep.
1929 	 */
1930 	cv_broadcast(&so->so_state_cv);		/* threads in connect() */
1931 	cv_broadcast(&so->so_rcv_cv);		/* threads in recvmsg() */
1932 	cv_broadcast(&so->so_snd_cv);		/* threads in sendmsg() */
1933 	mutex_enter(&so->so_acceptq_lock);
1934 	cv_broadcast(&so->so_acceptq_cv);	/* threads in accept() */
1935 	mutex_exit(&so->so_acceptq_lock);
1936 	mutex_exit(&so->so_lock);
1937 
1938 	/*
1939 	 * The main reason for the rw_tryupgrade call is to provide
1940 	 * observability during the fallback process. We want to
1941 	 * be able to see if there are pending operations.
1942 	 */
1943 	if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) {
1944 		/*
1945 		 * It is safe to drop and reaquire the fallback lock, because
1946 		 * we are guaranteed that another fallback cannot take place.
1947 		 */
1948 		rw_exit(&so->so_fallback_rwlock);
1949 		DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so);
1950 		rw_enter(&so->so_fallback_rwlock, RW_WRITER);
1951 		DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so);
1952 	}
1953 
1954 	return (B_TRUE);
1955 }
1956 
1957 /*
1958  * so_end_fallback()
1959  *
1960  * Allow socket opertions back in.
1961  *
1962  * The caller must be a writer on so_fallback_rwlock.
1963  */
1964 static void
1965 so_end_fallback(struct sonode *so)
1966 {
1967 	ASSERT(RW_ISWRITER(&so->so_fallback_rwlock));
1968 
1969 	mutex_enter(&so->so_lock);
1970 	so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN);
1971 	mutex_exit(&so->so_lock);
1972 
1973 	rw_downgrade(&so->so_fallback_rwlock);
1974 }
1975 
1976 /*
1977  * so_quiesced_cb()
1978  *
1979  * Callback passed to the protocol during fallback. It is called once
1980  * the endpoint is quiescent.
1981  *
1982  * No requests from the user, no notifications from the protocol, so it
1983  * is safe to synchronize the state. Data can also be moved without
1984  * risk for reordering.
1985  *
1986  * We do not need to hold so_lock, since there can be only one thread
1987  * operating on the sonode.
1988  */
1989 static mblk_t *
1990 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg,
1991     struct T_capability_ack *tcap,
1992     struct sockaddr *laddr, socklen_t laddrlen,
1993     struct sockaddr *faddr, socklen_t faddrlen, short opts)
1994 {
1995 	struct sonode *so = (struct sonode *)sock_handle;
1996 	boolean_t atmark;
1997 	mblk_t *retmp = NULL, **tailmpp = &retmp;
1998 
1999 	if (tcap != NULL)
2000 		sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen,
2001 		    opts);
2002 
2003 	/*
2004 	 * Some protocols do not quiece the data path during fallback. Once
2005 	 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will
2006 	 * fail and the protocol is responsible for saving the data for later
2007 	 * delivery (i.e., once the fallback has completed).
2008 	 */
2009 	mutex_enter(&so->so_lock);
2010 	so->so_state |= SS_FALLBACK_DRAIN;
2011 	SOCKET_TIMER_CANCEL(so);
2012 	mutex_exit(&so->so_lock);
2013 
2014 	if (so->so_rcv_head != NULL) {
2015 		if (so->so_rcv_q_last_head == NULL)
2016 			so->so_rcv_q_head = so->so_rcv_head;
2017 		else
2018 			so->so_rcv_q_last_head->b_next = so->so_rcv_head;
2019 		so->so_rcv_q_last_head = so->so_rcv_last_head;
2020 	}
2021 
2022 	atmark = (so->so_state & SS_RCVATMARK) != 0;
2023 	/*
2024 	 * Clear any OOB state having to do with pending data. The TPI
2025 	 * code path will set the appropriate oob state when we move the
2026 	 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob
2027 	 * data has already been consumed.
2028 	 */
2029 	so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA);
2030 
2031 	ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued);
2032 
2033 	/*
2034 	 * Move data to the STREAM head.
2035 	 */
2036 	while (so->so_rcv_q_head != NULL) {
2037 		mblk_t *mp = so->so_rcv_q_head;
2038 		size_t mlen = msgdsize(mp);
2039 
2040 		so->so_rcv_q_head = mp->b_next;
2041 		mp->b_next = NULL;
2042 		mp->b_prev = NULL;
2043 
2044 		/*
2045 		 * Send T_EXDATA_IND if we are at the oob mark.
2046 		 */
2047 		if (atmark) {
2048 			struct T_exdata_ind *tei;
2049 			mblk_t *mp1 = arg->soqa_exdata_mp;
2050 
2051 			arg->soqa_exdata_mp = NULL;
2052 			ASSERT(mp1 != NULL);
2053 			mp1->b_datap->db_type = M_PROTO;
2054 			tei = (struct T_exdata_ind *)mp1->b_rptr;
2055 			tei->PRIM_type = T_EXDATA_IND;
2056 			tei->MORE_flag = 0;
2057 			mp1->b_wptr = (uchar_t *)&tei[1];
2058 
2059 			if (IS_SO_OOB_INLINE(so)) {
2060 				mp1->b_cont = mp;
2061 			} else {
2062 				ASSERT(so->so_oobmsg != NULL);
2063 				mp1->b_cont = so->so_oobmsg;
2064 				so->so_oobmsg = NULL;
2065 
2066 				/* process current mp next time around */
2067 				mp->b_next = so->so_rcv_q_head;
2068 				so->so_rcv_q_head = mp;
2069 				mlen = 0;
2070 			}
2071 			mp = mp1;
2072 
2073 			/* we have consumed the oob mark */
2074 			atmark = B_FALSE;
2075 		} else if (so->so_oobmark > 0) {
2076 			/*
2077 			 * Check if the OOB mark is within the current
2078 			 * mblk chain. In that case we have to split it up.
2079 			 */
2080 			if (so->so_oobmark < mlen) {
2081 				mblk_t *urg_mp = mp;
2082 
2083 				atmark = B_TRUE;
2084 				mp = NULL;
2085 				mlen = so->so_oobmark;
2086 
2087 				/*
2088 				 * It is assumed that the OOB mark does
2089 				 * not land within a mblk.
2090 				 */
2091 				do {
2092 					so->so_oobmark -= MBLKL(urg_mp);
2093 					mp = urg_mp;
2094 					urg_mp = urg_mp->b_cont;
2095 				} while (so->so_oobmark > 0);
2096 				mp->b_cont = NULL;
2097 				if (urg_mp != NULL) {
2098 					urg_mp->b_next = so->so_rcv_q_head;
2099 					so->so_rcv_q_head = urg_mp;
2100 				}
2101 			} else {
2102 				so->so_oobmark -= mlen;
2103 				if (so->so_oobmark == 0)
2104 					atmark = B_TRUE;
2105 			}
2106 		}
2107 
2108 		/*
2109 		 * Queue data on the STREAM head.
2110 		 */
2111 		so->so_rcv_queued -= mlen;
2112 		*tailmpp = mp;
2113 		tailmpp = &mp->b_next;
2114 	}
2115 	so->so_rcv_head = NULL;
2116 	so->so_rcv_last_head = NULL;
2117 	so->so_rcv_q_head = NULL;
2118 	so->so_rcv_q_last_head = NULL;
2119 
2120 	/*
2121 	 * Check if the oob byte is at the end of the data stream, or if the
2122 	 * oob byte has not yet arrived. In the latter case we have to send a
2123 	 * SIGURG and a mark indicator to the STREAM head. The mark indicator
2124 	 * is needed to guarantee correct behavior for SIOCATMARK. See block
2125 	 * comment in socktpi.h for more details.
2126 	 */
2127 	if (atmark || so->so_oobmark > 0) {
2128 		mblk_t *mp;
2129 
2130 		if (atmark && so->so_oobmsg != NULL) {
2131 			struct T_exdata_ind *tei;
2132 
2133 			mp = arg->soqa_exdata_mp;
2134 			arg->soqa_exdata_mp = NULL;
2135 			ASSERT(mp != NULL);
2136 			mp->b_datap->db_type = M_PROTO;
2137 			tei = (struct T_exdata_ind *)mp->b_rptr;
2138 			tei->PRIM_type = T_EXDATA_IND;
2139 			tei->MORE_flag = 0;
2140 			mp->b_wptr = (uchar_t *)&tei[1];
2141 
2142 			mp->b_cont = so->so_oobmsg;
2143 			so->so_oobmsg = NULL;
2144 
2145 			*tailmpp = mp;
2146 			tailmpp = &mp->b_next;
2147 		} else {
2148 			/* Send up the signal */
2149 			mp = arg->soqa_exdata_mp;
2150 			arg->soqa_exdata_mp = NULL;
2151 			ASSERT(mp != NULL);
2152 			DB_TYPE(mp) = M_PCSIG;
2153 			*mp->b_wptr++ = (uchar_t)SIGURG;
2154 			*tailmpp = mp;
2155 			tailmpp = &mp->b_next;
2156 
2157 			/* Send up the mark indicator */
2158 			mp = arg->soqa_urgmark_mp;
2159 			arg->soqa_urgmark_mp = NULL;
2160 			mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT;
2161 			*tailmpp = mp;
2162 			tailmpp = &mp->b_next;
2163 
2164 			so->so_oobmark = 0;
2165 		}
2166 	}
2167 	ASSERT(so->so_oobmark == 0);
2168 	ASSERT(so->so_rcv_queued == 0);
2169 
2170 	return (retmp);
2171 }
2172 
2173 #ifdef DEBUG
2174 /*
2175  * Do an integrity check of the sonode. This should be done if a
2176  * fallback fails after sonode has initially been converted to use
2177  * TPI and subsequently have to be reverted.
2178  *
2179  * Failure to pass the integrity check will panic the system.
2180  */
2181 void
2182 so_integrity_check(struct sonode *cur, struct sonode *orig)
2183 {
2184 	VERIFY(cur->so_vnode == orig->so_vnode);
2185 	VERIFY(cur->so_ops == orig->so_ops);
2186 	/*
2187 	 * For so_state we can only VERIFY the state flags in CHECK_STATE.
2188 	 * The other state flags might be affected by a notification from the
2189 	 * protocol.
2190 	 */
2191 #define	CHECK_STATE	(SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \
2192 	SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \
2193 	SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG)
2194 	VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) ==
2195 	    (orig->so_state & CHECK_STATE));
2196 	VERIFY(cur->so_mode == orig->so_mode);
2197 	VERIFY(cur->so_flag == orig->so_flag);
2198 	VERIFY(cur->so_count == orig->so_count);
2199 	/* Cannot VERIFY so_proto_connid; proto can update it */
2200 	VERIFY(cur->so_sockparams == orig->so_sockparams);
2201 	/* an error might have been recorded, but it can not be lost */
2202 	VERIFY(cur->so_error != 0 || orig->so_error == 0);
2203 	VERIFY(cur->so_family == orig->so_family);
2204 	VERIFY(cur->so_type == orig->so_type);
2205 	VERIFY(cur->so_protocol == orig->so_protocol);
2206 	VERIFY(cur->so_version == orig->so_version);
2207 	/* New conns might have arrived, but none should have been lost */
2208 	VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len);
2209 	VERIFY(list_head(&cur->so_acceptq_list) ==
2210 	    list_head(&orig->so_acceptq_list));
2211 	VERIFY(cur->so_backlog == orig->so_backlog);
2212 	/* New OOB migth have arrived, but mark should not have been lost */
2213 	VERIFY(cur->so_oobmark >= orig->so_oobmark);
2214 	/* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */
2215 	VERIFY(cur->so_pgrp == orig->so_pgrp);
2216 	VERIFY(cur->so_peercred == orig->so_peercred);
2217 	VERIFY(cur->so_cpid == orig->so_cpid);
2218 	VERIFY(cur->so_zoneid == orig->so_zoneid);
2219 	/* New data migth have arrived, but none should have been lost */
2220 	VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued);
2221 	VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head);
2222 	VERIFY(cur->so_rcv_head == orig->so_rcv_head);
2223 	VERIFY(cur->so_proto_handle == orig->so_proto_handle);
2224 	VERIFY(cur->so_downcalls == orig->so_downcalls);
2225 	/* Cannot VERIFY so_proto_props; they can be updated by proto */
2226 }
2227 #endif
2228 
2229 /*
2230  * so_tpi_fallback()
2231  *
2232  * This is the fallback initation routine; things start here.
2233  *
2234  * Basic strategy:
2235  *   o Block new socket operations from coming in
2236  *   o Allocate/initate info needed by TPI
2237  *   o Quiesce the connection, at which point we sync
2238  *     state and move data
2239  *   o Change operations (sonodeops) associated with the socket
2240  *   o Unblock threads waiting for the fallback to finish
2241  */
2242 int
2243 so_tpi_fallback(struct sonode *so, struct cred *cr)
2244 {
2245 	int error;
2246 	queue_t *q;
2247 	struct sockparams *sp;
2248 	struct sockparams *newsp = NULL;
2249 	so_proto_fallback_func_t fbfunc;
2250 	const char *devpath;
2251 	boolean_t direct;
2252 	struct sonode *nso;
2253 	sock_quiesce_arg_t arg = { NULL, NULL };
2254 #ifdef DEBUG
2255 	struct sonode origso;
2256 #endif
2257 	error = 0;
2258 	sp = so->so_sockparams;
2259 	fbfunc = sp->sp_smod_info->smod_proto_fallback_func;
2260 
2261 	/*
2262 	 * Cannot fallback if the socket has active filters
2263 	 */
2264 	if (so->so_filter_active > 0)
2265 		return (EINVAL);
2266 
2267 	switch (so->so_family) {
2268 	case AF_INET:
2269 		devpath = sp->sp_smod_info->smod_fallback_devpath_v4;
2270 		break;
2271 	case AF_INET6:
2272 		devpath = sp->sp_smod_info->smod_fallback_devpath_v6;
2273 		break;
2274 	default:
2275 		return (EINVAL);
2276 	}
2277 
2278 	/*
2279 	 * Fallback can only happen if the socket module has a TPI device
2280 	 * and fallback function.
2281 	 */
2282 	if (devpath == NULL || fbfunc == NULL)
2283 		return (EINVAL);
2284 
2285 	/*
2286 	 * Initiate fallback; upon success we know that no new requests
2287 	 * will come in from the user.
2288 	 */
2289 	if (!so_start_fallback(so))
2290 		return (EAGAIN);
2291 #ifdef DEBUG
2292 	/*
2293 	 * Make a copy of the sonode in case we need to make an integrity
2294 	 * check later on.
2295 	 */
2296 	bcopy(so, &origso, sizeof (*so));
2297 #endif
2298 
2299 	sp->sp_stats.sps_nfallback.value.ui64++;
2300 
2301 	newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type,
2302 	    so->so_protocol, devpath, KM_SLEEP, &error);
2303 	if (error != 0)
2304 		goto out;
2305 
2306 	if (so->so_direct != NULL) {
2307 		sodirect_t *sodp = so->so_direct;
2308 		mutex_enter(&so->so_lock);
2309 
2310 		so->so_direct->sod_enabled = B_FALSE;
2311 		so->so_state &= ~SS_SODIRECT;
2312 		ASSERT(sodp->sod_uioafh == NULL);
2313 		mutex_exit(&so->so_lock);
2314 	}
2315 
2316 	/* Turn sonode into a TPI socket */
2317 	error = sotpi_convert_sonode(so, newsp, &direct, &q, cr);
2318 	if (error != 0)
2319 		goto out;
2320 	/*
2321 	 * When it comes to urgent data we have two cases to deal with;
2322 	 * (1) The oob byte has already arrived, or (2) the protocol has
2323 	 * notified that oob data is pending, but it has not yet arrived.
2324 	 *
2325 	 * For (1) all we need to do is send a T_EXDATA_IND to indicate were
2326 	 * in the byte stream the oob byte is. For (2) we have to send a
2327 	 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether
2328 	 * the oob byte will be the next byte from the protocol.
2329 	 *
2330 	 * So in the worst case we need two mblks, one for the signal, another
2331 	 * for mark indication. In that case we use the exdata_mp for the sig.
2332 	 */
2333 	arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind),
2334 	    BPRI_MED, STR_NOSIG, NULL);
2335 	arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL);
2336 
2337 	/*
2338 	 * Now tell the protocol to start using TPI. so_quiesced_cb be
2339 	 * called once it's safe to synchronize state.
2340 	 */
2341 	DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so);
2342 	error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb,
2343 	    &arg);
2344 	DTRACE_PROBE1(proto__fallback__end, struct sonode *, so);
2345 
2346 	if (error != 0) {
2347 		/* protocol was unable to do a fallback, revert the sonode */
2348 		sotpi_revert_sonode(so, cr);
2349 		goto out;
2350 	}
2351 
2352 	/*
2353 	 * Walk the accept queue and notify the proto that they should
2354 	 * fall back to TPI. The protocol will send up the T_CONN_IND.
2355 	 */
2356 	nso = list_head(&so->so_acceptq_list);
2357 	while (nso != NULL) {
2358 		int rval;
2359 		struct sonode *next;
2360 
2361 		if (arg.soqa_exdata_mp == NULL) {
2362 			arg.soqa_exdata_mp =
2363 			    allocb_wait(sizeof (struct T_exdata_ind),
2364 			    BPRI_MED, STR_NOSIG, NULL);
2365 		}
2366 		if (arg.soqa_urgmark_mp == NULL) {
2367 			arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED,
2368 			    STR_NOSIG, NULL);
2369 		}
2370 
2371 		DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso);
2372 		rval = (*fbfunc)(nso->so_proto_handle, NULL, direct,
2373 		    so_quiesced_cb, &arg);
2374 		DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso);
2375 		if (rval != 0) {
2376 			/* Abort the connection */
2377 			zcmn_err(getzoneid(), CE_WARN,
2378 			    "Failed to convert socket in accept queue to TPI. "
2379 			    "Pid = %d\n", curproc->p_pid);
2380 			next = list_next(&so->so_acceptq_list, nso);
2381 			list_remove(&so->so_acceptq_list, nso);
2382 			so->so_acceptq_len--;
2383 
2384 			(void) socket_close(nso, 0, CRED());
2385 			socket_destroy(nso);
2386 			nso = next;
2387 		} else {
2388 			nso = list_next(&so->so_acceptq_list, nso);
2389 		}
2390 	}
2391 
2392 	/*
2393 	 * Now flush the acceptq, this will destroy all sockets. They will
2394 	 * be recreated in sotpi_accept().
2395 	 */
2396 	so_acceptq_flush(so, B_FALSE);
2397 
2398 	mutex_enter(&so->so_lock);
2399 	so->so_state |= SS_FALLBACK_COMP;
2400 	mutex_exit(&so->so_lock);
2401 
2402 	/*
2403 	 * Swap the sonode ops. Socket opertations that come in once this
2404 	 * is done will proceed without blocking.
2405 	 */
2406 	so->so_ops = &sotpi_sonodeops;
2407 
2408 	/*
2409 	 * Wake up any threads stuck in poll. This is needed since the poll
2410 	 * head changes when the fallback happens (moves from the sonode to
2411 	 * the STREAMS head).
2412 	 */
2413 	pollwakeup(&so->so_poll_list, POLLERR);
2414 
2415 	/*
2416 	 * When this non-STREAM socket was created we placed an extra ref on
2417 	 * the associated vnode to support asynchronous close. Drop that ref
2418 	 * here.
2419 	 */
2420 	ASSERT(SOTOV(so)->v_count >= 2);
2421 	VN_RELE(SOTOV(so));
2422 out:
2423 	so_end_fallback(so);
2424 
2425 	if (error != 0) {
2426 #ifdef DEBUG
2427 		so_integrity_check(so, &origso);
2428 #endif
2429 		zcmn_err(getzoneid(), CE_WARN,
2430 		    "Failed to convert socket to TPI (err=%d). Pid = %d\n",
2431 		    error, curproc->p_pid);
2432 		if (newsp != NULL)
2433 			SOCKPARAMS_DEC_REF(newsp);
2434 	}
2435 	if (arg.soqa_exdata_mp != NULL)
2436 		freemsg(arg.soqa_exdata_mp);
2437 	if (arg.soqa_urgmark_mp != NULL)
2438 		freemsg(arg.soqa_urgmark_mp);
2439 
2440 	return (error);
2441 }
2442