1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/signal.h> 29 #include <sys/cmn_err.h> 30 31 #include <sys/stropts.h> 32 #include <sys/socket.h> 33 #include <sys/socketvar.h> 34 #include <sys/sockio.h> 35 #include <sys/strsubr.h> 36 #include <sys/strsun.h> 37 #include <sys/atomic.h> 38 #include <sys/tihdr.h> 39 40 #include <fs/sockfs/sockcommon.h> 41 #include <fs/sockfs/sockfilter_impl.h> 42 #include <fs/sockfs/socktpi.h> 43 #include <fs/sockfs/sodirect.h> 44 #include <sys/ddi.h> 45 #include <inet/ip.h> 46 #include <sys/time.h> 47 #include <sys/cmn_err.h> 48 49 #ifdef SOCK_TEST 50 extern int do_useracc; 51 extern clock_t sock_test_timelimit; 52 #endif /* SOCK_TEST */ 53 54 #define MBLK_PULL_LEN 64 55 uint32_t so_mblk_pull_len = MBLK_PULL_LEN; 56 57 #ifdef DEBUG 58 boolean_t so_debug_length = B_FALSE; 59 static boolean_t so_check_length(sonode_t *so); 60 #endif 61 62 static int 63 so_acceptq_dequeue_locked(struct sonode *so, boolean_t dontblock, 64 struct sonode **nsop) 65 { 66 struct sonode *nso = NULL; 67 68 *nsop = NULL; 69 ASSERT(MUTEX_HELD(&so->so_acceptq_lock)); 70 while ((nso = list_remove_head(&so->so_acceptq_list)) == NULL) { 71 /* 72 * No need to check so_error here, because it is not 73 * possible for a listening socket to be reset or otherwise 74 * disconnected. 75 * 76 * So now we just need check if it's ok to wait. 77 */ 78 if (dontblock) 79 return (EWOULDBLOCK); 80 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 81 return (EINTR); 82 83 if (cv_wait_sig_swap(&so->so_acceptq_cv, 84 &so->so_acceptq_lock) == 0) 85 return (EINTR); 86 } 87 88 ASSERT(nso != NULL); 89 ASSERT(so->so_acceptq_len > 0); 90 so->so_acceptq_len--; 91 nso->so_listener = NULL; 92 93 *nsop = nso; 94 95 return (0); 96 } 97 98 /* 99 * int so_acceptq_dequeue(struct sonode *, boolean_t, struct sonode **) 100 * 101 * Pulls a connection off of the accept queue. 102 * 103 * Arguments: 104 * so - listening socket 105 * dontblock - indicate whether it's ok to sleep if there are no 106 * connections on the queue 107 * nsop - Value-return argument 108 * 109 * Return values: 110 * 0 when a connection is successfully dequeued, in which case nsop 111 * is set to point to the new connection. Upon failure a non-zero 112 * value is returned, and the value of nsop is set to NULL. 113 * 114 * Note: 115 * so_acceptq_dequeue() may return prematurly if the socket is falling 116 * back to TPI. 117 */ 118 int 119 so_acceptq_dequeue(struct sonode *so, boolean_t dontblock, 120 struct sonode **nsop) 121 { 122 int error; 123 124 mutex_enter(&so->so_acceptq_lock); 125 error = so_acceptq_dequeue_locked(so, dontblock, nsop); 126 mutex_exit(&so->so_acceptq_lock); 127 128 return (error); 129 } 130 131 static void 132 so_acceptq_flush_impl(struct sonode *so, list_t *list, boolean_t doclose) 133 { 134 struct sonode *nso; 135 136 while ((nso = list_remove_head(list)) != NULL) { 137 nso->so_listener = NULL; 138 if (doclose) { 139 (void) socket_close(nso, 0, CRED()); 140 } else { 141 /* 142 * Only used for fallback - not possible when filters 143 * are present. 144 */ 145 ASSERT(so->so_filter_active == 0); 146 /* 147 * Since the socket is on the accept queue, there can 148 * only be one reference. We drop the reference and 149 * just blow off the socket. 150 */ 151 ASSERT(nso->so_count == 1); 152 nso->so_count--; 153 /* drop the proto ref */ 154 VN_RELE(SOTOV(nso)); 155 } 156 socket_destroy(nso); 157 } 158 } 159 /* 160 * void so_acceptq_flush(struct sonode *so) 161 * 162 * Removes all pending connections from a listening socket, and 163 * frees the associated resources. 164 * 165 * Arguments 166 * so - listening socket 167 * doclose - make a close downcall for each socket on the accept queue 168 * 169 * Return values: 170 * None. 171 * 172 * Note: 173 * The caller has to ensure that no calls to so_acceptq_enqueue() or 174 * so_acceptq_dequeue() occur while the accept queue is being flushed. 175 * So either the socket needs to be in a state where no operations 176 * would come in, or so_lock needs to be obtained. 177 */ 178 void 179 so_acceptq_flush(struct sonode *so, boolean_t doclose) 180 { 181 so_acceptq_flush_impl(so, &so->so_acceptq_list, doclose); 182 so_acceptq_flush_impl(so, &so->so_acceptq_defer, doclose); 183 184 so->so_acceptq_len = 0; 185 } 186 187 int 188 so_wait_connected_locked(struct sonode *so, boolean_t nonblock, 189 sock_connid_t id) 190 { 191 ASSERT(MUTEX_HELD(&so->so_lock)); 192 193 /* 194 * The protocol has notified us that a connection attempt is being 195 * made, so before we wait for a notification to arrive we must 196 * clear out any errors associated with earlier connection attempts. 197 */ 198 if (so->so_error != 0 && SOCK_CONNID_LT(so->so_proto_connid, id)) 199 so->so_error = 0; 200 201 while (SOCK_CONNID_LT(so->so_proto_connid, id)) { 202 if (nonblock) 203 return (EINPROGRESS); 204 205 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 206 return (EINTR); 207 208 if (cv_wait_sig_swap(&so->so_state_cv, &so->so_lock) == 0) 209 return (EINTR); 210 } 211 212 if (so->so_error != 0) 213 return (sogeterr(so, B_TRUE)); 214 /* 215 * Under normal circumstances, so_error should contain an error 216 * in case the connect failed. However, it is possible for another 217 * thread to come in a consume the error, so generate a sensible 218 * error in that case. 219 */ 220 if ((so->so_state & SS_ISCONNECTED) == 0) 221 return (ECONNREFUSED); 222 223 return (0); 224 } 225 226 /* 227 * int so_wait_connected(struct sonode *so, boolean_t nonblock, 228 * sock_connid_t id) 229 * 230 * Wait until the socket is connected or an error has occured. 231 * 232 * Arguments: 233 * so - socket 234 * nonblock - indicate whether it's ok to sleep if the connection has 235 * not yet been established 236 * gen - generation number that was returned by the protocol 237 * when the operation was started 238 * 239 * Returns: 240 * 0 if the connection attempt was successful, or an error indicating why 241 * the connection attempt failed. 242 */ 243 int 244 so_wait_connected(struct sonode *so, boolean_t nonblock, sock_connid_t id) 245 { 246 int error; 247 248 mutex_enter(&so->so_lock); 249 error = so_wait_connected_locked(so, nonblock, id); 250 mutex_exit(&so->so_lock); 251 252 return (error); 253 } 254 255 int 256 so_snd_wait_qnotfull_locked(struct sonode *so, boolean_t dontblock) 257 { 258 int error; 259 260 ASSERT(MUTEX_HELD(&so->so_lock)); 261 while (SO_SND_FLOWCTRLD(so)) { 262 if (so->so_state & SS_CANTSENDMORE) 263 return (EPIPE); 264 if (dontblock) 265 return (EWOULDBLOCK); 266 267 if (so->so_state & (SS_CLOSING | SS_FALLBACK_PENDING)) 268 return (EINTR); 269 270 if (so->so_sndtimeo == 0) { 271 /* 272 * Zero means disable timeout. 273 */ 274 error = cv_wait_sig(&so->so_snd_cv, &so->so_lock); 275 } else { 276 error = cv_reltimedwait_sig(&so->so_snd_cv, 277 &so->so_lock, so->so_sndtimeo, TR_CLOCK_TICK); 278 } 279 if (error == 0) 280 return (EINTR); 281 else if (error == -1) 282 return (EAGAIN); 283 } 284 return (0); 285 } 286 287 /* 288 * int so_wait_sendbuf(struct sonode *so, boolean_t dontblock) 289 * 290 * Wait for the transport to notify us about send buffers becoming 291 * available. 292 */ 293 int 294 so_snd_wait_qnotfull(struct sonode *so, boolean_t dontblock) 295 { 296 int error = 0; 297 298 mutex_enter(&so->so_lock); 299 so->so_snd_wakeup = B_TRUE; 300 error = so_snd_wait_qnotfull_locked(so, dontblock); 301 so->so_snd_wakeup = B_FALSE; 302 mutex_exit(&so->so_lock); 303 304 return (error); 305 } 306 307 void 308 so_snd_qfull(struct sonode *so) 309 { 310 mutex_enter(&so->so_lock); 311 so->so_snd_qfull = B_TRUE; 312 mutex_exit(&so->so_lock); 313 } 314 315 void 316 so_snd_qnotfull(struct sonode *so) 317 { 318 mutex_enter(&so->so_lock); 319 so->so_snd_qfull = B_FALSE; 320 /* wake up everyone waiting for buffers */ 321 cv_broadcast(&so->so_snd_cv); 322 mutex_exit(&so->so_lock); 323 } 324 325 /* 326 * Change the process/process group to which SIGIO is sent. 327 */ 328 int 329 socket_chgpgrp(struct sonode *so, pid_t pid) 330 { 331 int error; 332 333 ASSERT(MUTEX_HELD(&so->so_lock)); 334 if (pid != 0) { 335 /* 336 * Permissions check by sending signal 0. 337 * Note that when kill fails it does a 338 * set_errno causing the system call to fail. 339 */ 340 error = kill(pid, 0); 341 if (error != 0) { 342 return (error); 343 } 344 } 345 so->so_pgrp = pid; 346 return (0); 347 } 348 349 350 /* 351 * Generate a SIGIO, for 'writable' events include siginfo structure, 352 * for read events just send the signal. 353 */ 354 /*ARGSUSED*/ 355 static void 356 socket_sigproc(proc_t *proc, int event) 357 { 358 k_siginfo_t info; 359 360 ASSERT(event & (SOCKETSIG_WRITE | SOCKETSIG_READ | SOCKETSIG_URG)); 361 362 if (event & SOCKETSIG_WRITE) { 363 info.si_signo = SIGPOLL; 364 info.si_code = POLL_OUT; 365 info.si_errno = 0; 366 info.si_fd = 0; 367 info.si_band = 0; 368 sigaddq(proc, NULL, &info, KM_NOSLEEP); 369 } 370 if (event & SOCKETSIG_READ) { 371 sigtoproc(proc, NULL, SIGPOLL); 372 } 373 if (event & SOCKETSIG_URG) { 374 sigtoproc(proc, NULL, SIGURG); 375 } 376 } 377 378 void 379 socket_sendsig(struct sonode *so, int event) 380 { 381 proc_t *proc; 382 383 ASSERT(MUTEX_HELD(&so->so_lock)); 384 385 if (so->so_pgrp == 0 || (!(so->so_state & SS_ASYNC) && 386 event != SOCKETSIG_URG)) { 387 return; 388 } 389 390 dprint(3, ("sending sig %d to %d\n", event, so->so_pgrp)); 391 392 if (so->so_pgrp > 0) { 393 /* 394 * XXX This unfortunately still generates 395 * a signal when a fd is closed but 396 * the proc is active. 397 */ 398 mutex_enter(&pidlock); 399 proc = prfind(so->so_pgrp); 400 if (proc == NULL) { 401 mutex_exit(&pidlock); 402 return; 403 } 404 mutex_enter(&proc->p_lock); 405 mutex_exit(&pidlock); 406 socket_sigproc(proc, event); 407 mutex_exit(&proc->p_lock); 408 } else { 409 /* 410 * Send to process group. Hold pidlock across 411 * calls to socket_sigproc(). 412 */ 413 pid_t pgrp = -so->so_pgrp; 414 415 mutex_enter(&pidlock); 416 proc = pgfind(pgrp); 417 while (proc != NULL) { 418 mutex_enter(&proc->p_lock); 419 socket_sigproc(proc, event); 420 mutex_exit(&proc->p_lock); 421 proc = proc->p_pglink; 422 } 423 mutex_exit(&pidlock); 424 } 425 } 426 427 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 428 /* Copy userdata into a new mblk_t */ 429 mblk_t * 430 socopyinuio(uio_t *uiop, ssize_t iosize, size_t wroff, ssize_t maxblk, 431 size_t tail_len, int *errorp) 432 { 433 mblk_t *head = NULL, **tail = &head; 434 435 ASSERT(iosize == INFPSZ || iosize > 0); 436 437 if (iosize == INFPSZ || iosize > uiop->uio_resid) 438 iosize = uiop->uio_resid; 439 440 if (maxblk == INFPSZ) 441 maxblk = iosize; 442 443 /* Nothing to do in these cases, so we're done */ 444 if (iosize < 0 || maxblk < 0 || (maxblk == 0 && iosize > 0)) 445 goto done; 446 447 /* 448 * We will enter the loop below if iosize is 0; it will allocate an 449 * empty message block and call uiomove(9F) which will just return. 450 * We could avoid that with an extra check but would only slow 451 * down the much more likely case where iosize is larger than 0. 452 */ 453 do { 454 ssize_t blocksize; 455 mblk_t *mp; 456 457 blocksize = MIN(iosize, maxblk); 458 ASSERT(blocksize >= 0); 459 mp = allocb(wroff + blocksize + tail_len, BPRI_MED); 460 if (mp == NULL) { 461 *errorp = ENOMEM; 462 return (head); 463 } 464 mp->b_rptr += wroff; 465 mp->b_wptr = mp->b_rptr + blocksize; 466 467 *tail = mp; 468 tail = &mp->b_cont; 469 470 /* uiomove(9F) either returns 0 or EFAULT */ 471 if ((*errorp = uiomove(mp->b_rptr, (size_t)blocksize, 472 UIO_WRITE, uiop)) != 0) { 473 ASSERT(*errorp != ENOMEM); 474 freemsg(head); 475 return (NULL); 476 } 477 478 iosize -= blocksize; 479 } while (iosize > 0); 480 481 done: 482 *errorp = 0; 483 return (head); 484 } 485 486 mblk_t * 487 socopyoutuio(mblk_t *mp, struct uio *uiop, ssize_t max_read, int *errorp) 488 { 489 int error; 490 ptrdiff_t n; 491 mblk_t *nmp; 492 493 ASSERT(mp->b_wptr >= mp->b_rptr); 494 495 /* 496 * max_read is the offset of the oobmark and read can not go pass 497 * the oobmark. 498 */ 499 if (max_read == INFPSZ || max_read > uiop->uio_resid) 500 max_read = uiop->uio_resid; 501 502 do { 503 if ((n = MIN(max_read, MBLKL(mp))) != 0) { 504 ASSERT(n > 0); 505 506 error = uiomove(mp->b_rptr, n, UIO_READ, uiop); 507 if (error != 0) { 508 freemsg(mp); 509 *errorp = error; 510 return (NULL); 511 } 512 } 513 514 mp->b_rptr += n; 515 max_read -= n; 516 while (mp != NULL && (mp->b_rptr >= mp->b_wptr)) { 517 /* 518 * get rid of zero length mblks 519 */ 520 nmp = mp; 521 mp = mp->b_cont; 522 freeb(nmp); 523 } 524 } while (mp != NULL && max_read > 0); 525 526 *errorp = 0; 527 return (mp); 528 } 529 530 static void 531 so_prepend_msg(struct sonode *so, mblk_t *mp, mblk_t *last_tail) 532 { 533 ASSERT(last_tail != NULL); 534 mp->b_next = so->so_rcv_q_head; 535 mp->b_prev = last_tail; 536 ASSERT(!(DB_FLAGS(mp) & DBLK_UIOA)); 537 538 if (so->so_rcv_q_head == NULL) { 539 ASSERT(so->so_rcv_q_last_head == NULL); 540 so->so_rcv_q_last_head = mp; 541 #ifdef DEBUG 542 } else { 543 ASSERT(!(DB_FLAGS(so->so_rcv_q_head) & DBLK_UIOA)); 544 #endif 545 } 546 so->so_rcv_q_head = mp; 547 548 #ifdef DEBUG 549 if (so_debug_length) { 550 mutex_enter(&so->so_lock); 551 ASSERT(so_check_length(so)); 552 mutex_exit(&so->so_lock); 553 } 554 #endif 555 } 556 557 /* 558 * Move a mblk chain (mp_head, mp_last_head) to the sonode's rcv queue so it 559 * can be processed by so_dequeue_msg(). 560 */ 561 void 562 so_process_new_message(struct sonode *so, mblk_t *mp_head, mblk_t *mp_last_head) 563 { 564 if (so->so_filter_active > 0 && 565 (mp_head = sof_filter_data_in_proc(so, mp_head, 566 &mp_last_head)) == NULL) 567 return; 568 569 ASSERT(mp_head->b_prev != NULL); 570 if (so->so_rcv_q_head == NULL) { 571 so->so_rcv_q_head = mp_head; 572 so->so_rcv_q_last_head = mp_last_head; 573 ASSERT(so->so_rcv_q_last_head->b_prev != NULL); 574 } else { 575 boolean_t flag_equal = ((DB_FLAGS(mp_head) & DBLK_UIOA) == 576 (DB_FLAGS(so->so_rcv_q_last_head) & DBLK_UIOA)); 577 578 if (mp_head->b_next == NULL && 579 DB_TYPE(mp_head) == M_DATA && 580 DB_TYPE(so->so_rcv_q_last_head) == M_DATA && flag_equal) { 581 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 582 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 583 mp_head->b_prev = NULL; 584 } else if (flag_equal && (DB_FLAGS(mp_head) & DBLK_UIOA)) { 585 /* 586 * Append to last_head if more than one mblks, and both 587 * mp_head and last_head are I/OAT mblks. 588 */ 589 ASSERT(mp_head->b_next != NULL); 590 so->so_rcv_q_last_head->b_prev->b_cont = mp_head; 591 so->so_rcv_q_last_head->b_prev = mp_head->b_prev; 592 mp_head->b_prev = NULL; 593 594 so->so_rcv_q_last_head->b_next = mp_head->b_next; 595 mp_head->b_next = NULL; 596 so->so_rcv_q_last_head = mp_last_head; 597 } else { 598 #ifdef DEBUG 599 { 600 mblk_t *tmp_mblk; 601 tmp_mblk = mp_head; 602 while (tmp_mblk != NULL) { 603 ASSERT(tmp_mblk->b_prev != NULL); 604 tmp_mblk = tmp_mblk->b_next; 605 } 606 } 607 #endif 608 so->so_rcv_q_last_head->b_next = mp_head; 609 so->so_rcv_q_last_head = mp_last_head; 610 } 611 } 612 } 613 614 /* 615 * Check flow control on a given sonode. Must have so_lock held, and 616 * this function will release the hold. Return true if flow control 617 * is cleared. 618 */ 619 boolean_t 620 so_check_flow_control(struct sonode *so) 621 { 622 ASSERT(MUTEX_HELD(&so->so_lock)); 623 624 if (so->so_flowctrld && (so->so_rcv_queued < so->so_rcvlowat && 625 !(so->so_state & SS_FIL_RCV_FLOWCTRL))) { 626 so->so_flowctrld = B_FALSE; 627 mutex_exit(&so->so_lock); 628 /* 629 * Open up flow control. SCTP does not have any downcalls, and 630 * it will clr flow ctrl in sosctp_recvmsg(). 631 */ 632 if (so->so_downcalls != NULL && 633 so->so_downcalls->sd_clr_flowctrl != NULL) { 634 (*so->so_downcalls->sd_clr_flowctrl) 635 (so->so_proto_handle); 636 } 637 /* filters can start injecting data */ 638 sof_sonode_notify_filters(so, SOF_EV_INJECT_DATA_IN_OK, 0); 639 return (B_TRUE); 640 } else { 641 mutex_exit(&so->so_lock); 642 return (B_FALSE); 643 } 644 } 645 646 int 647 so_dequeue_msg(struct sonode *so, mblk_t **mctlp, struct uio *uiop, 648 rval_t *rvalp, int flags) 649 { 650 mblk_t *mp, *nmp; 651 mblk_t *savemp, *savemptail; 652 mblk_t *new_msg_head; 653 mblk_t *new_msg_last_head; 654 mblk_t *last_tail; 655 boolean_t partial_read; 656 boolean_t reset_atmark = B_FALSE; 657 int more = 0; 658 int error; 659 ssize_t oobmark; 660 sodirect_t *sodp = so->so_direct; 661 662 partial_read = B_FALSE; 663 *mctlp = NULL; 664 again: 665 mutex_enter(&so->so_lock); 666 again1: 667 #ifdef DEBUG 668 if (so_debug_length) { 669 ASSERT(so_check_length(so)); 670 } 671 #endif 672 if (so->so_state & SS_RCVATMARK) { 673 /* Check whether the caller is OK to read past the mark */ 674 if (flags & MSG_NOMARK) { 675 mutex_exit(&so->so_lock); 676 return (EWOULDBLOCK); 677 } 678 reset_atmark = B_TRUE; 679 } 680 /* 681 * First move messages from the dump area to processing area 682 */ 683 if (sodp != NULL) { 684 if (sodp->sod_enabled) { 685 if (sodp->sod_uioa.uioa_state & UIOA_ALLOC) { 686 /* nothing to uioamove */ 687 sodp = NULL; 688 } else if (sodp->sod_uioa.uioa_state & UIOA_INIT) { 689 sodp->sod_uioa.uioa_state &= UIOA_CLR; 690 sodp->sod_uioa.uioa_state |= UIOA_ENABLED; 691 /* 692 * try to uioamove() the data that 693 * has already queued. 694 */ 695 sod_uioa_so_init(so, sodp, uiop); 696 } 697 } else { 698 sodp = NULL; 699 } 700 } 701 new_msg_head = so->so_rcv_head; 702 new_msg_last_head = so->so_rcv_last_head; 703 so->so_rcv_head = NULL; 704 so->so_rcv_last_head = NULL; 705 oobmark = so->so_oobmark; 706 /* 707 * We can release the lock as there can only be one reader 708 */ 709 mutex_exit(&so->so_lock); 710 711 if (new_msg_head != NULL) { 712 so_process_new_message(so, new_msg_head, new_msg_last_head); 713 } 714 savemp = savemptail = NULL; 715 rvalp->r_vals = 0; 716 error = 0; 717 mp = so->so_rcv_q_head; 718 719 if (mp != NULL && 720 (so->so_rcv_timer_tid == 0 || 721 so->so_rcv_queued >= so->so_rcv_thresh)) { 722 partial_read = B_FALSE; 723 724 if (flags & MSG_PEEK) { 725 if ((nmp = dupmsg(mp)) == NULL && 726 (nmp = copymsg(mp)) == NULL) { 727 size_t size = msgsize(mp); 728 729 error = strwaitbuf(size, BPRI_HI); 730 if (error) { 731 return (error); 732 } 733 goto again; 734 } 735 mp = nmp; 736 } else { 737 ASSERT(mp->b_prev != NULL); 738 last_tail = mp->b_prev; 739 mp->b_prev = NULL; 740 so->so_rcv_q_head = mp->b_next; 741 if (so->so_rcv_q_head == NULL) { 742 so->so_rcv_q_last_head = NULL; 743 } 744 mp->b_next = NULL; 745 } 746 747 ASSERT(mctlp != NULL); 748 /* 749 * First process PROTO or PCPROTO blocks, if any. 750 */ 751 if (DB_TYPE(mp) != M_DATA) { 752 *mctlp = mp; 753 savemp = mp; 754 savemptail = mp; 755 ASSERT(DB_TYPE(mp) == M_PROTO || 756 DB_TYPE(mp) == M_PCPROTO); 757 while (mp->b_cont != NULL && 758 DB_TYPE(mp->b_cont) != M_DATA) { 759 ASSERT(DB_TYPE(mp->b_cont) == M_PROTO || 760 DB_TYPE(mp->b_cont) == M_PCPROTO); 761 mp = mp->b_cont; 762 savemptail = mp; 763 } 764 mp = savemptail->b_cont; 765 savemptail->b_cont = NULL; 766 } 767 768 ASSERT(DB_TYPE(mp) == M_DATA); 769 /* 770 * Now process DATA blocks, if any. Note that for sodirect 771 * enabled socket, uio_resid can be 0. 772 */ 773 if (uiop->uio_resid >= 0) { 774 ssize_t copied = 0; 775 776 if (sodp != NULL && (DB_FLAGS(mp) & DBLK_UIOA)) { 777 mutex_enter(&so->so_lock); 778 ASSERT(uiop == (uio_t *)&sodp->sod_uioa); 779 copied = sod_uioa_mblk(so, mp); 780 if (copied > 0) 781 partial_read = B_TRUE; 782 mutex_exit(&so->so_lock); 783 /* mark this mblk as processed */ 784 mp = NULL; 785 } else { 786 ssize_t oldresid = uiop->uio_resid; 787 788 if (MBLKL(mp) < so_mblk_pull_len) { 789 if (pullupmsg(mp, -1) == 1) { 790 last_tail = mp; 791 } 792 } 793 /* 794 * Can not read beyond the oobmark 795 */ 796 mp = socopyoutuio(mp, uiop, 797 oobmark == 0 ? INFPSZ : oobmark, &error); 798 if (error != 0) { 799 freemsg(*mctlp); 800 *mctlp = NULL; 801 more = 0; 802 goto done; 803 } 804 ASSERT(oldresid >= uiop->uio_resid); 805 copied = oldresid - uiop->uio_resid; 806 if (oldresid > uiop->uio_resid) 807 partial_read = B_TRUE; 808 } 809 ASSERT(copied >= 0); 810 if (copied > 0 && !(flags & MSG_PEEK)) { 811 mutex_enter(&so->so_lock); 812 so->so_rcv_queued -= copied; 813 ASSERT(so->so_oobmark >= 0); 814 if (so->so_oobmark > 0) { 815 so->so_oobmark -= copied; 816 ASSERT(so->so_oobmark >= 0); 817 if (so->so_oobmark == 0) { 818 ASSERT(so->so_state & 819 SS_OOBPEND); 820 so->so_oobmark = 0; 821 so->so_state |= SS_RCVATMARK; 822 } 823 } 824 /* 825 * so_check_flow_control() will drop 826 * so->so_lock. 827 */ 828 rvalp->r_val2 = so_check_flow_control(so); 829 } 830 } 831 if (mp != NULL) { /* more data blocks in msg */ 832 more |= MOREDATA; 833 if ((flags & (MSG_PEEK|MSG_TRUNC))) { 834 if (flags & MSG_PEEK) { 835 freemsg(mp); 836 } else { 837 unsigned int msize = msgdsize(mp); 838 839 freemsg(mp); 840 mutex_enter(&so->so_lock); 841 so->so_rcv_queued -= msize; 842 /* 843 * so_check_flow_control() will drop 844 * so->so_lock. 845 */ 846 rvalp->r_val2 = 847 so_check_flow_control(so); 848 } 849 } else if (partial_read && !somsghasdata(mp)) { 850 /* 851 * Avoid queuing a zero-length tail part of 852 * a message. partial_read == 1 indicates that 853 * we read some of the message. 854 */ 855 freemsg(mp); 856 more &= ~MOREDATA; 857 } else { 858 if (savemp != NULL && 859 (flags & MSG_DUPCTRL)) { 860 mblk_t *nmp; 861 /* 862 * There should only be non data mblks 863 */ 864 ASSERT(DB_TYPE(savemp) != M_DATA && 865 DB_TYPE(savemptail) != M_DATA); 866 try_again: 867 if ((nmp = dupmsg(savemp)) == NULL && 868 (nmp = copymsg(savemp)) == NULL) { 869 870 size_t size = msgsize(savemp); 871 872 error = strwaitbuf(size, 873 BPRI_HI); 874 if (error != 0) { 875 /* 876 * In case we 877 * cannot copy 878 * control data 879 * free the remaining 880 * data. 881 */ 882 freemsg(mp); 883 goto done; 884 } 885 goto try_again; 886 } 887 888 ASSERT(nmp != NULL); 889 ASSERT(DB_TYPE(nmp) != M_DATA); 890 savemptail->b_cont = mp; 891 *mctlp = nmp; 892 mp = savemp; 893 } 894 /* 895 * putback mp 896 */ 897 so_prepend_msg(so, mp, last_tail); 898 } 899 } 900 901 /* fast check so_rcv_head if there is more data */ 902 if (partial_read && !(so->so_state & SS_RCVATMARK) && 903 *mctlp == NULL && uiop->uio_resid > 0 && 904 !(flags & MSG_PEEK) && so->so_rcv_head != NULL) { 905 goto again; 906 } 907 } else if (!partial_read) { 908 mutex_enter(&so->so_lock); 909 if (so->so_error != 0) { 910 error = sogeterr(so, !(flags & MSG_PEEK)); 911 mutex_exit(&so->so_lock); 912 return (error); 913 } 914 /* 915 * No pending data. Return right away for nonblocking 916 * socket, otherwise sleep waiting for data. 917 */ 918 if (!(so->so_state & SS_CANTRCVMORE) && uiop->uio_resid > 0) { 919 if ((uiop->uio_fmode & (FNDELAY|FNONBLOCK)) || 920 (flags & MSG_DONTWAIT)) { 921 error = EWOULDBLOCK; 922 } else { 923 if (so->so_state & (SS_CLOSING | 924 SS_FALLBACK_PENDING)) { 925 mutex_exit(&so->so_lock); 926 error = EINTR; 927 goto done; 928 } 929 930 if (so->so_rcv_head != NULL) { 931 goto again1; 932 } 933 so->so_rcv_wakeup = B_TRUE; 934 so->so_rcv_wanted = uiop->uio_resid; 935 if (so->so_rcvtimeo == 0) { 936 /* 937 * Zero means disable timeout. 938 */ 939 error = cv_wait_sig(&so->so_rcv_cv, 940 &so->so_lock); 941 } else { 942 error = cv_reltimedwait_sig( 943 &so->so_rcv_cv, &so->so_lock, 944 so->so_rcvtimeo, TR_CLOCK_TICK); 945 } 946 so->so_rcv_wakeup = B_FALSE; 947 so->so_rcv_wanted = 0; 948 949 if (error == 0) { 950 error = EINTR; 951 } else if (error == -1) { 952 error = EAGAIN; 953 } else { 954 goto again1; 955 } 956 } 957 } 958 mutex_exit(&so->so_lock); 959 } 960 if (reset_atmark && partial_read && !(flags & MSG_PEEK)) { 961 /* 962 * We are passed the mark, update state 963 * 4.3BSD and 4.4BSD clears the mark when peeking across it. 964 * The draft Posix socket spec states that the mark should 965 * not be cleared when peeking. We follow the latter. 966 */ 967 mutex_enter(&so->so_lock); 968 ASSERT(so_verify_oobstate(so)); 969 so->so_state &= ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_RCVATMARK); 970 freemsg(so->so_oobmsg); 971 so->so_oobmsg = NULL; 972 ASSERT(so_verify_oobstate(so)); 973 mutex_exit(&so->so_lock); 974 } 975 ASSERT(so->so_rcv_wakeup == B_FALSE); 976 done: 977 if (sodp != NULL) { 978 mutex_enter(&so->so_lock); 979 if (sodp->sod_enabled && 980 (sodp->sod_uioa.uioa_state & UIOA_ENABLED)) { 981 SOD_UIOAFINI(sodp); 982 if (sodp->sod_uioa.uioa_mbytes > 0) { 983 ASSERT(so->so_rcv_q_head != NULL || 984 so->so_rcv_head != NULL); 985 so->so_rcv_queued -= sod_uioa_mblk(so, NULL); 986 if (error == EWOULDBLOCK) 987 error = 0; 988 } 989 } 990 mutex_exit(&so->so_lock); 991 } 992 #ifdef DEBUG 993 if (so_debug_length) { 994 mutex_enter(&so->so_lock); 995 ASSERT(so_check_length(so)); 996 mutex_exit(&so->so_lock); 997 } 998 #endif 999 rvalp->r_val1 = more; 1000 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1001 return (error); 1002 } 1003 1004 /* 1005 * Enqueue data from the protocol on the socket's rcv queue. 1006 * 1007 * We try to hook new M_DATA mblks onto an existing chain, however, 1008 * that cannot be done if the existing chain has already been 1009 * processed by I/OAT. Non-M_DATA mblks are just linked together via 1010 * b_next. In all cases the b_prev of the enqueued mblk is set to 1011 * point to the last mblk in its b_cont chain. 1012 */ 1013 void 1014 so_enqueue_msg(struct sonode *so, mblk_t *mp, size_t msg_size) 1015 { 1016 ASSERT(MUTEX_HELD(&so->so_lock)); 1017 1018 #ifdef DEBUG 1019 if (so_debug_length) { 1020 ASSERT(so_check_length(so)); 1021 } 1022 #endif 1023 so->so_rcv_queued += msg_size; 1024 1025 if (so->so_rcv_head == NULL) { 1026 ASSERT(so->so_rcv_last_head == NULL); 1027 so->so_rcv_head = mp; 1028 so->so_rcv_last_head = mp; 1029 } else if ((DB_TYPE(mp) == M_DATA && 1030 DB_TYPE(so->so_rcv_last_head) == M_DATA) && 1031 ((DB_FLAGS(mp) & DBLK_UIOA) == 1032 (DB_FLAGS(so->so_rcv_last_head) & DBLK_UIOA))) { 1033 /* Added to the end */ 1034 ASSERT(so->so_rcv_last_head != NULL); 1035 ASSERT(so->so_rcv_last_head->b_prev != NULL); 1036 so->so_rcv_last_head->b_prev->b_cont = mp; 1037 } else { 1038 /* Start a new end */ 1039 so->so_rcv_last_head->b_next = mp; 1040 so->so_rcv_last_head = mp; 1041 } 1042 while (mp->b_cont != NULL) 1043 mp = mp->b_cont; 1044 1045 so->so_rcv_last_head->b_prev = mp; 1046 #ifdef DEBUG 1047 if (so_debug_length) { 1048 ASSERT(so_check_length(so)); 1049 } 1050 #endif 1051 } 1052 1053 /* 1054 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 1055 */ 1056 boolean_t 1057 somsghasdata(mblk_t *mp) 1058 { 1059 for (; mp; mp = mp->b_cont) 1060 if (mp->b_datap->db_type == M_DATA) { 1061 ASSERT(mp->b_wptr >= mp->b_rptr); 1062 if (mp->b_wptr > mp->b_rptr) 1063 return (B_TRUE); 1064 } 1065 return (B_FALSE); 1066 } 1067 1068 /* 1069 * Flush the read side of sockfs. 1070 * 1071 * The caller must be sure that a reader is not already active when the 1072 * buffer is being flushed. 1073 */ 1074 void 1075 so_rcv_flush(struct sonode *so) 1076 { 1077 mblk_t *mp; 1078 1079 ASSERT(MUTEX_HELD(&so->so_lock)); 1080 1081 if (so->so_oobmsg != NULL) { 1082 freemsg(so->so_oobmsg); 1083 so->so_oobmsg = NULL; 1084 so->so_oobmark = 0; 1085 so->so_state &= 1086 ~(SS_OOBPEND|SS_HAVEOOBDATA|SS_HADOOBDATA|SS_RCVATMARK); 1087 } 1088 1089 /* 1090 * Free messages sitting in the recv queues 1091 */ 1092 while (so->so_rcv_q_head != NULL) { 1093 mp = so->so_rcv_q_head; 1094 so->so_rcv_q_head = mp->b_next; 1095 mp->b_next = mp->b_prev = NULL; 1096 freemsg(mp); 1097 } 1098 while (so->so_rcv_head != NULL) { 1099 mp = so->so_rcv_head; 1100 so->so_rcv_head = mp->b_next; 1101 mp->b_next = mp->b_prev = NULL; 1102 freemsg(mp); 1103 } 1104 so->so_rcv_queued = 0; 1105 so->so_rcv_q_head = NULL; 1106 so->so_rcv_q_last_head = NULL; 1107 so->so_rcv_head = NULL; 1108 so->so_rcv_last_head = NULL; 1109 } 1110 1111 /* 1112 * Handle recv* calls that set MSG_OOB or MSG_OOB together with MSG_PEEK. 1113 */ 1114 int 1115 sorecvoob(struct sonode *so, struct nmsghdr *msg, struct uio *uiop, int flags, 1116 boolean_t oob_inline) 1117 { 1118 mblk_t *mp, *nmp; 1119 int error; 1120 1121 dprintso(so, 1, ("sorecvoob(%p, %p, 0x%x)\n", (void *)so, (void *)msg, 1122 flags)); 1123 1124 if (msg != NULL) { 1125 /* 1126 * There is never any oob data with addresses or control since 1127 * the T_EXDATA_IND does not carry any options. 1128 */ 1129 msg->msg_controllen = 0; 1130 msg->msg_namelen = 0; 1131 msg->msg_flags = 0; 1132 } 1133 1134 mutex_enter(&so->so_lock); 1135 ASSERT(so_verify_oobstate(so)); 1136 if (oob_inline || 1137 (so->so_state & (SS_OOBPEND|SS_HADOOBDATA)) != SS_OOBPEND) { 1138 dprintso(so, 1, ("sorecvoob: inline or data consumed\n")); 1139 mutex_exit(&so->so_lock); 1140 return (EINVAL); 1141 } 1142 if (!(so->so_state & SS_HAVEOOBDATA)) { 1143 dprintso(so, 1, ("sorecvoob: no data yet\n")); 1144 mutex_exit(&so->so_lock); 1145 return (EWOULDBLOCK); 1146 } 1147 ASSERT(so->so_oobmsg != NULL); 1148 mp = so->so_oobmsg; 1149 if (flags & MSG_PEEK) { 1150 /* 1151 * Since recv* can not return ENOBUFS we can not use dupmsg. 1152 * Instead we revert to the consolidation private 1153 * allocb_wait plus bcopy. 1154 */ 1155 mblk_t *mp1; 1156 1157 mp1 = allocb_wait(msgdsize(mp), BPRI_MED, STR_NOSIG, NULL); 1158 ASSERT(mp1); 1159 1160 while (mp != NULL) { 1161 ssize_t size; 1162 1163 size = MBLKL(mp); 1164 bcopy(mp->b_rptr, mp1->b_wptr, size); 1165 mp1->b_wptr += size; 1166 ASSERT(mp1->b_wptr <= mp1->b_datap->db_lim); 1167 mp = mp->b_cont; 1168 } 1169 mp = mp1; 1170 } else { 1171 /* 1172 * Update the state indicating that the data has been consumed. 1173 * Keep SS_OOBPEND set until data is consumed past the mark. 1174 */ 1175 so->so_oobmsg = NULL; 1176 so->so_state ^= SS_HAVEOOBDATA|SS_HADOOBDATA; 1177 } 1178 ASSERT(so_verify_oobstate(so)); 1179 mutex_exit(&so->so_lock); 1180 1181 error = 0; 1182 nmp = mp; 1183 while (nmp != NULL && uiop->uio_resid > 0) { 1184 ssize_t n = MBLKL(nmp); 1185 1186 n = MIN(n, uiop->uio_resid); 1187 if (n > 0) 1188 error = uiomove(nmp->b_rptr, n, 1189 UIO_READ, uiop); 1190 if (error) 1191 break; 1192 nmp = nmp->b_cont; 1193 } 1194 ASSERT(mp->b_next == NULL && mp->b_prev == NULL); 1195 freemsg(mp); 1196 return (error); 1197 } 1198 1199 /* 1200 * Allocate and initializ sonode 1201 */ 1202 /* ARGSUSED */ 1203 struct sonode * 1204 socket_sonode_create(struct sockparams *sp, int family, int type, 1205 int protocol, int version, int sflags, int *errorp, struct cred *cr) 1206 { 1207 sonode_t *so; 1208 int kmflags; 1209 1210 /* 1211 * Choose the right set of sonodeops based on the upcall and 1212 * down call version that the protocol has provided 1213 */ 1214 if (SOCK_UC_VERSION != sp->sp_smod_info->smod_uc_version || 1215 SOCK_DC_VERSION != sp->sp_smod_info->smod_dc_version) { 1216 /* 1217 * mismatch 1218 */ 1219 #ifdef DEBUG 1220 cmn_err(CE_CONT, "protocol and socket module version mismatch"); 1221 #endif 1222 *errorp = EINVAL; 1223 return (NULL); 1224 } 1225 1226 kmflags = (sflags & SOCKET_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP; 1227 1228 so = kmem_cache_alloc(socket_cache, kmflags); 1229 if (so == NULL) { 1230 *errorp = ENOMEM; 1231 return (NULL); 1232 } 1233 1234 sonode_init(so, sp, family, type, protocol, &so_sonodeops); 1235 1236 if (version == SOV_DEFAULT) 1237 version = so_default_version; 1238 1239 so->so_version = (short)version; 1240 1241 /* 1242 * set the default values to be INFPSZ 1243 * if a protocol desires it can change the value later 1244 */ 1245 so->so_proto_props.sopp_rxhiwat = SOCKET_RECVHIWATER; 1246 so->so_proto_props.sopp_rxlowat = SOCKET_RECVLOWATER; 1247 so->so_proto_props.sopp_maxpsz = INFPSZ; 1248 so->so_proto_props.sopp_maxblk = INFPSZ; 1249 1250 return (so); 1251 } 1252 1253 int 1254 socket_init_common(struct sonode *so, struct sonode *pso, int flags, cred_t *cr) 1255 { 1256 int error = 0; 1257 1258 if (pso != NULL) { 1259 /* 1260 * We have a passive open, so inherit basic state from 1261 * the parent (listener). 1262 * 1263 * No need to grab the new sonode's lock, since there is no 1264 * one that can have a reference to it. 1265 */ 1266 mutex_enter(&pso->so_lock); 1267 1268 so->so_state |= SS_ISCONNECTED | (pso->so_state & SS_ASYNC); 1269 so->so_pgrp = pso->so_pgrp; 1270 so->so_rcvtimeo = pso->so_rcvtimeo; 1271 so->so_sndtimeo = pso->so_sndtimeo; 1272 so->so_xpg_rcvbuf = pso->so_xpg_rcvbuf; 1273 /* 1274 * Make note of the socket level options. TCP and IP level 1275 * options are already inherited. We could do all this after 1276 * accept is successful but doing it here simplifies code and 1277 * no harm done for error case. 1278 */ 1279 so->so_options = pso->so_options & (SO_DEBUG|SO_REUSEADDR| 1280 SO_KEEPALIVE|SO_DONTROUTE|SO_BROADCAST|SO_USELOOPBACK| 1281 SO_OOBINLINE|SO_DGRAM_ERRIND|SO_LINGER); 1282 so->so_proto_props = pso->so_proto_props; 1283 so->so_mode = pso->so_mode; 1284 so->so_pollev = pso->so_pollev & SO_POLLEV_ALWAYS; 1285 1286 mutex_exit(&pso->so_lock); 1287 1288 /* 1289 * If the parent has any filters, try to inherit them. 1290 */ 1291 if (pso->so_filter_active > 0 && 1292 (error = sof_sonode_inherit_filters(so, pso)) != 0) 1293 return (error); 1294 1295 } else { 1296 struct sockparams *sp = so->so_sockparams; 1297 sock_upcalls_t *upcalls_to_use; 1298 1299 /* 1300 * Attach automatic filters, if there are any. 1301 */ 1302 if (!list_is_empty(&sp->sp_auto_filters) && 1303 (error = sof_sonode_autoattach_filters(so, cr)) != 0) 1304 return (error); 1305 1306 /* OK to attach filters */ 1307 so->so_state |= SS_FILOP_OK; 1308 1309 /* 1310 * Based on the version number select the right upcalls to 1311 * pass down. Currently we only have one version so choose 1312 * default 1313 */ 1314 upcalls_to_use = &so_upcalls; 1315 1316 /* active open, so create a lower handle */ 1317 so->so_proto_handle = 1318 sp->sp_smod_info->smod_proto_create_func(so->so_family, 1319 so->so_type, so->so_protocol, &so->so_downcalls, 1320 &so->so_mode, &error, flags, cr); 1321 1322 if (so->so_proto_handle == NULL) { 1323 ASSERT(error != 0); 1324 /* 1325 * To be safe; if a lower handle cannot be created, and 1326 * the proto does not give a reason why, assume there 1327 * was a lack of memory. 1328 */ 1329 return ((error == 0) ? ENOMEM : error); 1330 } 1331 ASSERT(so->so_downcalls != NULL); 1332 ASSERT(so->so_downcalls->sd_send != NULL || 1333 so->so_downcalls->sd_send_uio != NULL); 1334 if (so->so_downcalls->sd_recv_uio != NULL) { 1335 ASSERT(so->so_downcalls->sd_poll != NULL); 1336 so->so_pollev |= SO_POLLEV_ALWAYS; 1337 } 1338 1339 (*so->so_downcalls->sd_activate)(so->so_proto_handle, 1340 (sock_upper_handle_t)so, upcalls_to_use, 0, cr); 1341 1342 /* Wildcard */ 1343 1344 /* 1345 * FIXME No need for this, the protocol can deal with it in 1346 * sd_create(). Should update ICMP. 1347 */ 1348 if (so->so_protocol != so->so_sockparams->sp_protocol) { 1349 int protocol = so->so_protocol; 1350 int error; 1351 /* 1352 * Issue SO_PROTOTYPE setsockopt. 1353 */ 1354 error = socket_setsockopt(so, SOL_SOCKET, SO_PROTOTYPE, 1355 &protocol, (t_uscalar_t)sizeof (protocol), cr); 1356 if (error) { 1357 (void) (*so->so_downcalls->sd_close) 1358 (so->so_proto_handle, 0, cr); 1359 1360 mutex_enter(&so->so_lock); 1361 so_rcv_flush(so); 1362 mutex_exit(&so->so_lock); 1363 /* 1364 * Setsockopt often fails with ENOPROTOOPT but 1365 * socket() should fail with 1366 * EPROTONOSUPPORT/EPROTOTYPE. 1367 */ 1368 return (EPROTONOSUPPORT); 1369 } 1370 } 1371 } 1372 1373 if (uioasync.enabled) 1374 sod_sock_init(so); 1375 1376 /* put an extra reference on the socket for the protocol */ 1377 VN_HOLD(SOTOV(so)); 1378 1379 return (0); 1380 } 1381 1382 /* 1383 * int socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1384 * struct cred *cr, int32_t *rvalp) 1385 * 1386 * Handle ioctls that manipulate basic socket state; non-blocking, 1387 * async, etc. 1388 * 1389 * Returns: 1390 * < 0 - ioctl was not handle 1391 * >= 0 - ioctl was handled, if > 0, then it is an errno 1392 * 1393 * Notes: 1394 * Assumes the standard receive buffer is used to obtain info for 1395 * NREAD. 1396 */ 1397 /* ARGSUSED */ 1398 int 1399 socket_ioctl_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1400 struct cred *cr, int32_t *rvalp) 1401 { 1402 switch (cmd) { 1403 case SIOCSQPTR: 1404 /* 1405 * SIOCSQPTR is valid only when helper stream is created 1406 * by the protocol. 1407 */ 1408 1409 return (EOPNOTSUPP); 1410 case FIONBIO: { 1411 int32_t value; 1412 1413 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1414 (mode & (int)FKIOCTL))) 1415 return (EFAULT); 1416 1417 mutex_enter(&so->so_lock); 1418 if (value) { 1419 so->so_state |= SS_NDELAY; 1420 } else { 1421 so->so_state &= ~SS_NDELAY; 1422 } 1423 mutex_exit(&so->so_lock); 1424 return (0); 1425 } 1426 case FIOASYNC: { 1427 int32_t value; 1428 1429 if (so_copyin((void *)arg, &value, sizeof (int32_t), 1430 (mode & (int)FKIOCTL))) 1431 return (EFAULT); 1432 1433 mutex_enter(&so->so_lock); 1434 1435 if (value) { 1436 /* Turn on SIGIO */ 1437 so->so_state |= SS_ASYNC; 1438 } else { 1439 /* Turn off SIGIO */ 1440 so->so_state &= ~SS_ASYNC; 1441 } 1442 mutex_exit(&so->so_lock); 1443 1444 return (0); 1445 } 1446 1447 case SIOCSPGRP: 1448 case FIOSETOWN: { 1449 int error; 1450 pid_t pid; 1451 1452 if (so_copyin((void *)arg, &pid, sizeof (pid_t), 1453 (mode & (int)FKIOCTL))) 1454 return (EFAULT); 1455 1456 mutex_enter(&so->so_lock); 1457 error = (pid != so->so_pgrp) ? socket_chgpgrp(so, pid) : 0; 1458 mutex_exit(&so->so_lock); 1459 return (error); 1460 } 1461 case SIOCGPGRP: 1462 case FIOGETOWN: 1463 if (so_copyout(&so->so_pgrp, (void *)arg, 1464 sizeof (pid_t), (mode & (int)FKIOCTL))) 1465 return (EFAULT); 1466 1467 return (0); 1468 case SIOCATMARK: { 1469 int retval; 1470 1471 /* 1472 * Only protocols that support urgent data can handle ATMARK. 1473 */ 1474 if ((so->so_mode & SM_EXDATA) == 0) 1475 return (EINVAL); 1476 1477 /* 1478 * If the protocol is maintaining its own buffer, then the 1479 * request must be passed down. 1480 */ 1481 if (so->so_downcalls->sd_recv_uio != NULL) 1482 return (-1); 1483 1484 retval = (so->so_state & SS_RCVATMARK) != 0; 1485 1486 if (so_copyout(&retval, (void *)arg, sizeof (int), 1487 (mode & (int)FKIOCTL))) { 1488 return (EFAULT); 1489 } 1490 return (0); 1491 } 1492 1493 case FIONREAD: { 1494 int retval; 1495 1496 /* 1497 * If the protocol is maintaining its own buffer, then the 1498 * request must be passed down. 1499 */ 1500 if (so->so_downcalls->sd_recv_uio != NULL) 1501 return (-1); 1502 1503 retval = MIN(so->so_rcv_queued, INT_MAX); 1504 1505 if (so_copyout(&retval, (void *)arg, 1506 sizeof (retval), (mode & (int)FKIOCTL))) { 1507 return (EFAULT); 1508 } 1509 return (0); 1510 } 1511 1512 case _I_GETPEERCRED: { 1513 int error = 0; 1514 1515 if ((mode & FKIOCTL) == 0) 1516 return (EINVAL); 1517 1518 mutex_enter(&so->so_lock); 1519 if ((so->so_mode & SM_CONNREQUIRED) == 0) { 1520 error = ENOTSUP; 1521 } else if ((so->so_state & SS_ISCONNECTED) == 0) { 1522 error = ENOTCONN; 1523 } else if (so->so_peercred != NULL) { 1524 k_peercred_t *kp = (k_peercred_t *)arg; 1525 kp->pc_cr = so->so_peercred; 1526 kp->pc_cpid = so->so_cpid; 1527 crhold(so->so_peercred); 1528 } else { 1529 error = EINVAL; 1530 } 1531 mutex_exit(&so->so_lock); 1532 return (error); 1533 } 1534 default: 1535 return (-1); 1536 } 1537 } 1538 1539 /* 1540 * Handle the I_NREAD STREAM ioctl. 1541 */ 1542 static int 1543 so_strioc_nread(struct sonode *so, intptr_t arg, int mode, int32_t *rvalp) 1544 { 1545 size_t size = 0; 1546 int retval; 1547 int count = 0; 1548 mblk_t *mp; 1549 clock_t wakeup = drv_usectohz(10); 1550 1551 if (so->so_downcalls == NULL || 1552 so->so_downcalls->sd_recv_uio != NULL) 1553 return (EINVAL); 1554 1555 mutex_enter(&so->so_lock); 1556 /* Wait for reader to get out of the way. */ 1557 while (so->so_flag & SOREADLOCKED) { 1558 /* 1559 * If reader is waiting for data, then there should be nothing 1560 * on the rcv queue. 1561 */ 1562 if (so->so_rcv_wakeup) 1563 goto out; 1564 1565 /* Do a timed sleep, in case the reader goes to sleep. */ 1566 (void) cv_reltimedwait(&so->so_read_cv, &so->so_lock, wakeup, 1567 TR_CLOCK_TICK); 1568 } 1569 1570 /* 1571 * Since we are holding so_lock no new reader will come in, and the 1572 * protocol will not be able to enqueue data. So it's safe to walk 1573 * both rcv queues. 1574 */ 1575 mp = so->so_rcv_q_head; 1576 if (mp != NULL) { 1577 size = msgdsize(so->so_rcv_q_head); 1578 for (; mp != NULL; mp = mp->b_next) 1579 count++; 1580 } else { 1581 /* 1582 * In case the processing list was empty, get the size of the 1583 * next msg in line. 1584 */ 1585 size = msgdsize(so->so_rcv_head); 1586 } 1587 1588 for (mp = so->so_rcv_head; mp != NULL; mp = mp->b_next) 1589 count++; 1590 out: 1591 mutex_exit(&so->so_lock); 1592 1593 /* 1594 * Drop down from size_t to the "int" required by the 1595 * interface. Cap at INT_MAX. 1596 */ 1597 retval = MIN(size, INT_MAX); 1598 if (so_copyout(&retval, (void *)arg, sizeof (retval), 1599 (mode & (int)FKIOCTL))) { 1600 return (EFAULT); 1601 } else { 1602 *rvalp = count; 1603 return (0); 1604 } 1605 } 1606 1607 /* 1608 * Process STREAM ioctls. 1609 * 1610 * Returns: 1611 * < 0 - ioctl was not handle 1612 * >= 0 - ioctl was handled, if > 0, then it is an errno 1613 */ 1614 int 1615 socket_strioc_common(struct sonode *so, int cmd, intptr_t arg, int mode, 1616 struct cred *cr, int32_t *rvalp) 1617 { 1618 int retval; 1619 1620 /* Only STREAM iotcls are handled here */ 1621 if ((cmd & 0xffffff00U) != STR) 1622 return (-1); 1623 1624 switch (cmd) { 1625 case I_CANPUT: 1626 /* 1627 * We return an error for I_CANPUT so that isastream(3C) will 1628 * not report the socket as being a STREAM. 1629 */ 1630 return (EOPNOTSUPP); 1631 case I_NREAD: 1632 /* Avoid doing a fallback for I_NREAD. */ 1633 return (so_strioc_nread(so, arg, mode, rvalp)); 1634 case I_LOOK: 1635 /* Avoid doing a fallback for I_LOOK. */ 1636 if (so_copyout("sockmod", (void *)arg, strlen("sockmod") + 1, 1637 (mode & (int)FKIOCTL))) { 1638 return (EFAULT); 1639 } 1640 return (0); 1641 default: 1642 break; 1643 } 1644 1645 /* 1646 * Try to fall back to TPI, and if successful, reissue the ioctl. 1647 */ 1648 if ((retval = so_tpi_fallback(so, cr)) == 0) { 1649 /* Reissue the ioctl */ 1650 ASSERT(so->so_rcv_q_head == NULL); 1651 return (SOP_IOCTL(so, cmd, arg, mode, cr, rvalp)); 1652 } else { 1653 return (retval); 1654 } 1655 } 1656 1657 /* 1658 * This is called for all socket types to verify that the buffer size is large 1659 * enough for the option, and if we can, handle the request as well. Most 1660 * options will be forwarded to the protocol. 1661 */ 1662 int 1663 socket_getopt_common(struct sonode *so, int level, int option_name, 1664 void *optval, socklen_t *optlenp, int flags) 1665 { 1666 if (level != SOL_SOCKET) 1667 return (-1); 1668 1669 switch (option_name) { 1670 case SO_ERROR: 1671 case SO_DOMAIN: 1672 case SO_TYPE: 1673 case SO_ACCEPTCONN: { 1674 int32_t value; 1675 socklen_t optlen = *optlenp; 1676 1677 if (optlen < (t_uscalar_t)sizeof (int32_t)) { 1678 return (EINVAL); 1679 } 1680 1681 switch (option_name) { 1682 case SO_ERROR: 1683 mutex_enter(&so->so_lock); 1684 value = sogeterr(so, B_TRUE); 1685 mutex_exit(&so->so_lock); 1686 break; 1687 case SO_DOMAIN: 1688 value = so->so_family; 1689 break; 1690 case SO_TYPE: 1691 value = so->so_type; 1692 break; 1693 case SO_ACCEPTCONN: 1694 if (so->so_state & SS_ACCEPTCONN) 1695 value = SO_ACCEPTCONN; 1696 else 1697 value = 0; 1698 break; 1699 } 1700 1701 bcopy(&value, optval, sizeof (value)); 1702 *optlenp = sizeof (value); 1703 1704 return (0); 1705 } 1706 case SO_SNDTIMEO: 1707 case SO_RCVTIMEO: { 1708 clock_t value; 1709 socklen_t optlen = *optlenp; 1710 1711 if (get_udatamodel() == DATAMODEL_NONE || 1712 get_udatamodel() == DATAMODEL_NATIVE) { 1713 if (optlen < sizeof (struct timeval)) 1714 return (EINVAL); 1715 } else { 1716 if (optlen < sizeof (struct timeval32)) 1717 return (EINVAL); 1718 } 1719 if (option_name == SO_RCVTIMEO) 1720 value = drv_hztousec(so->so_rcvtimeo); 1721 else 1722 value = drv_hztousec(so->so_sndtimeo); 1723 1724 if (get_udatamodel() == DATAMODEL_NONE || 1725 get_udatamodel() == DATAMODEL_NATIVE) { 1726 ((struct timeval *)(optval))->tv_sec = 1727 value / (1000 * 1000); 1728 ((struct timeval *)(optval))->tv_usec = 1729 value % (1000 * 1000); 1730 *optlenp = sizeof (struct timeval); 1731 } else { 1732 ((struct timeval32 *)(optval))->tv_sec = 1733 value / (1000 * 1000); 1734 ((struct timeval32 *)(optval))->tv_usec = 1735 value % (1000 * 1000); 1736 *optlenp = sizeof (struct timeval32); 1737 } 1738 return (0); 1739 } 1740 case SO_DEBUG: 1741 case SO_REUSEADDR: 1742 case SO_KEEPALIVE: 1743 case SO_DONTROUTE: 1744 case SO_BROADCAST: 1745 case SO_USELOOPBACK: 1746 case SO_OOBINLINE: 1747 case SO_SNDBUF: 1748 #ifdef notyet 1749 case SO_SNDLOWAT: 1750 case SO_RCVLOWAT: 1751 #endif /* notyet */ 1752 case SO_DGRAM_ERRIND: { 1753 socklen_t optlen = *optlenp; 1754 1755 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1756 return (EINVAL); 1757 break; 1758 } 1759 case SO_RCVBUF: { 1760 socklen_t optlen = *optlenp; 1761 1762 if (optlen < (t_uscalar_t)sizeof (int32_t)) 1763 return (EINVAL); 1764 1765 if ((flags & _SOGETSOCKOPT_XPG4_2) && so->so_xpg_rcvbuf != 0) { 1766 /* 1767 * XXX If SO_RCVBUF has been set and this is an 1768 * XPG 4.2 application then do not ask the transport 1769 * since the transport might adjust the value and not 1770 * return exactly what was set by the application. 1771 * For non-XPG 4.2 application we return the value 1772 * that the transport is actually using. 1773 */ 1774 *(int32_t *)optval = so->so_xpg_rcvbuf; 1775 *optlenp = sizeof (so->so_xpg_rcvbuf); 1776 return (0); 1777 } 1778 /* 1779 * If the option has not been set then get a default 1780 * value from the transport. 1781 */ 1782 break; 1783 } 1784 case SO_LINGER: { 1785 socklen_t optlen = *optlenp; 1786 1787 if (optlen < (t_uscalar_t)sizeof (struct linger)) 1788 return (EINVAL); 1789 break; 1790 } 1791 case SO_SND_BUFINFO: { 1792 socklen_t optlen = *optlenp; 1793 1794 if (optlen < (t_uscalar_t)sizeof (struct so_snd_bufinfo)) 1795 return (EINVAL); 1796 ((struct so_snd_bufinfo *)(optval))->sbi_wroff = 1797 (so->so_proto_props).sopp_wroff; 1798 ((struct so_snd_bufinfo *)(optval))->sbi_maxblk = 1799 (so->so_proto_props).sopp_maxblk; 1800 ((struct so_snd_bufinfo *)(optval))->sbi_maxpsz = 1801 (so->so_proto_props).sopp_maxpsz; 1802 ((struct so_snd_bufinfo *)(optval))->sbi_tail = 1803 (so->so_proto_props).sopp_tail; 1804 *optlenp = sizeof (struct so_snd_bufinfo); 1805 return (0); 1806 } 1807 case SO_SND_COPYAVOID: { 1808 sof_instance_t *inst; 1809 1810 /* 1811 * Avoid zero-copy if there is a filter with a data_out 1812 * callback. We could let the operation succeed, but then 1813 * the filter would have to copy the data anyway. 1814 */ 1815 for (inst = so->so_filter_top; inst != NULL; 1816 inst = inst->sofi_next) { 1817 if (SOF_INTERESTED(inst, data_out)) 1818 return (EOPNOTSUPP); 1819 } 1820 break; 1821 } 1822 1823 default: 1824 break; 1825 } 1826 1827 /* Unknown Option */ 1828 return (-1); 1829 } 1830 1831 void 1832 socket_sonode_destroy(struct sonode *so) 1833 { 1834 sonode_fini(so); 1835 kmem_cache_free(socket_cache, so); 1836 } 1837 1838 int 1839 so_zcopy_wait(struct sonode *so) 1840 { 1841 int error = 0; 1842 1843 mutex_enter(&so->so_lock); 1844 while (!(so->so_copyflag & STZCNOTIFY)) { 1845 if (so->so_state & SS_CLOSING) { 1846 mutex_exit(&so->so_lock); 1847 return (EINTR); 1848 } 1849 if (cv_wait_sig(&so->so_copy_cv, &so->so_lock) == 0) { 1850 error = EINTR; 1851 break; 1852 } 1853 } 1854 so->so_copyflag &= ~STZCNOTIFY; 1855 mutex_exit(&so->so_lock); 1856 return (error); 1857 } 1858 1859 void 1860 so_timer_callback(void *arg) 1861 { 1862 struct sonode *so = (struct sonode *)arg; 1863 1864 mutex_enter(&so->so_lock); 1865 1866 so->so_rcv_timer_tid = 0; 1867 if (so->so_rcv_queued > 0) { 1868 so_notify_data(so, so->so_rcv_queued); 1869 } else { 1870 mutex_exit(&so->so_lock); 1871 } 1872 } 1873 1874 #ifdef DEBUG 1875 /* 1876 * Verify that the length stored in so_rcv_queued and the length of data blocks 1877 * queued is same. 1878 */ 1879 static boolean_t 1880 so_check_length(sonode_t *so) 1881 { 1882 mblk_t *mp = so->so_rcv_q_head; 1883 int len = 0; 1884 1885 ASSERT(MUTEX_HELD(&so->so_lock)); 1886 1887 if (mp != NULL) { 1888 len = msgdsize(mp); 1889 while ((mp = mp->b_next) != NULL) 1890 len += msgdsize(mp); 1891 } 1892 mp = so->so_rcv_head; 1893 if (mp != NULL) { 1894 len += msgdsize(mp); 1895 while ((mp = mp->b_next) != NULL) 1896 len += msgdsize(mp); 1897 } 1898 return ((len == so->so_rcv_queued) ? B_TRUE : B_FALSE); 1899 } 1900 #endif 1901 1902 int 1903 so_get_mod_version(struct sockparams *sp) 1904 { 1905 ASSERT(sp != NULL && sp->sp_smod_info != NULL); 1906 return (sp->sp_smod_info->smod_version); 1907 } 1908 1909 /* 1910 * so_start_fallback() 1911 * 1912 * Block new socket operations from coming in, and wait for active operations 1913 * to complete. Threads that are sleeping will be woken up so they can get 1914 * out of the way. 1915 * 1916 * The caller must be a reader on so_fallback_rwlock. 1917 */ 1918 static boolean_t 1919 so_start_fallback(struct sonode *so) 1920 { 1921 ASSERT(RW_READ_HELD(&so->so_fallback_rwlock)); 1922 1923 mutex_enter(&so->so_lock); 1924 if (so->so_state & SS_FALLBACK_PENDING) { 1925 mutex_exit(&so->so_lock); 1926 return (B_FALSE); 1927 } 1928 so->so_state |= SS_FALLBACK_PENDING; 1929 /* 1930 * Poke all threads that might be sleeping. Any operation that comes 1931 * in after the cv_broadcast will observe the fallback pending flag 1932 * which cause the call to return where it would normally sleep. 1933 */ 1934 cv_broadcast(&so->so_state_cv); /* threads in connect() */ 1935 cv_broadcast(&so->so_rcv_cv); /* threads in recvmsg() */ 1936 cv_broadcast(&so->so_snd_cv); /* threads in sendmsg() */ 1937 mutex_enter(&so->so_acceptq_lock); 1938 cv_broadcast(&so->so_acceptq_cv); /* threads in accept() */ 1939 mutex_exit(&so->so_acceptq_lock); 1940 mutex_exit(&so->so_lock); 1941 1942 /* 1943 * The main reason for the rw_tryupgrade call is to provide 1944 * observability during the fallback process. We want to 1945 * be able to see if there are pending operations. 1946 */ 1947 if (rw_tryupgrade(&so->so_fallback_rwlock) == 0) { 1948 /* 1949 * It is safe to drop and reaquire the fallback lock, because 1950 * we are guaranteed that another fallback cannot take place. 1951 */ 1952 rw_exit(&so->so_fallback_rwlock); 1953 DTRACE_PROBE1(pending__ops__wait, (struct sonode *), so); 1954 rw_enter(&so->so_fallback_rwlock, RW_WRITER); 1955 DTRACE_PROBE1(pending__ops__complete, (struct sonode *), so); 1956 } 1957 1958 return (B_TRUE); 1959 } 1960 1961 /* 1962 * so_end_fallback() 1963 * 1964 * Allow socket opertions back in. 1965 * 1966 * The caller must be a writer on so_fallback_rwlock. 1967 */ 1968 static void 1969 so_end_fallback(struct sonode *so) 1970 { 1971 ASSERT(RW_ISWRITER(&so->so_fallback_rwlock)); 1972 1973 mutex_enter(&so->so_lock); 1974 so->so_state &= ~(SS_FALLBACK_PENDING|SS_FALLBACK_DRAIN); 1975 mutex_exit(&so->so_lock); 1976 1977 rw_downgrade(&so->so_fallback_rwlock); 1978 } 1979 1980 /* 1981 * so_quiesced_cb() 1982 * 1983 * Callback passed to the protocol during fallback. It is called once 1984 * the endpoint is quiescent. 1985 * 1986 * No requests from the user, no notifications from the protocol, so it 1987 * is safe to synchronize the state. Data can also be moved without 1988 * risk for reordering. 1989 * 1990 * We do not need to hold so_lock, since there can be only one thread 1991 * operating on the sonode. 1992 */ 1993 static mblk_t * 1994 so_quiesced_cb(sock_upper_handle_t sock_handle, sock_quiesce_arg_t *arg, 1995 struct T_capability_ack *tcap, 1996 struct sockaddr *laddr, socklen_t laddrlen, 1997 struct sockaddr *faddr, socklen_t faddrlen, short opts) 1998 { 1999 struct sonode *so = (struct sonode *)sock_handle; 2000 boolean_t atmark; 2001 mblk_t *retmp = NULL, **tailmpp = &retmp; 2002 2003 if (tcap != NULL) 2004 sotpi_update_state(so, tcap, laddr, laddrlen, faddr, faddrlen, 2005 opts); 2006 2007 /* 2008 * Some protocols do not quiece the data path during fallback. Once 2009 * we set the SS_FALLBACK_DRAIN flag any attempt to queue data will 2010 * fail and the protocol is responsible for saving the data for later 2011 * delivery (i.e., once the fallback has completed). 2012 */ 2013 mutex_enter(&so->so_lock); 2014 so->so_state |= SS_FALLBACK_DRAIN; 2015 SOCKET_TIMER_CANCEL(so); 2016 mutex_exit(&so->so_lock); 2017 2018 if (so->so_rcv_head != NULL) { 2019 if (so->so_rcv_q_last_head == NULL) 2020 so->so_rcv_q_head = so->so_rcv_head; 2021 else 2022 so->so_rcv_q_last_head->b_next = so->so_rcv_head; 2023 so->so_rcv_q_last_head = so->so_rcv_last_head; 2024 } 2025 2026 atmark = (so->so_state & SS_RCVATMARK) != 0; 2027 /* 2028 * Clear any OOB state having to do with pending data. The TPI 2029 * code path will set the appropriate oob state when we move the 2030 * oob data to the STREAM head. We leave SS_HADOOBDATA since the oob 2031 * data has already been consumed. 2032 */ 2033 so->so_state &= ~(SS_RCVATMARK|SS_OOBPEND|SS_HAVEOOBDATA); 2034 2035 ASSERT(so->so_oobmsg != NULL || so->so_oobmark <= so->so_rcv_queued); 2036 2037 /* 2038 * Move data to the STREAM head. 2039 */ 2040 while (so->so_rcv_q_head != NULL) { 2041 mblk_t *mp = so->so_rcv_q_head; 2042 size_t mlen = msgdsize(mp); 2043 2044 so->so_rcv_q_head = mp->b_next; 2045 mp->b_next = NULL; 2046 mp->b_prev = NULL; 2047 2048 /* 2049 * Send T_EXDATA_IND if we are at the oob mark. 2050 */ 2051 if (atmark) { 2052 struct T_exdata_ind *tei; 2053 mblk_t *mp1 = arg->soqa_exdata_mp; 2054 2055 arg->soqa_exdata_mp = NULL; 2056 ASSERT(mp1 != NULL); 2057 mp1->b_datap->db_type = M_PROTO; 2058 tei = (struct T_exdata_ind *)mp1->b_rptr; 2059 tei->PRIM_type = T_EXDATA_IND; 2060 tei->MORE_flag = 0; 2061 mp1->b_wptr = (uchar_t *)&tei[1]; 2062 2063 if (IS_SO_OOB_INLINE(so)) { 2064 mp1->b_cont = mp; 2065 } else { 2066 ASSERT(so->so_oobmsg != NULL); 2067 mp1->b_cont = so->so_oobmsg; 2068 so->so_oobmsg = NULL; 2069 2070 /* process current mp next time around */ 2071 mp->b_next = so->so_rcv_q_head; 2072 so->so_rcv_q_head = mp; 2073 mlen = 0; 2074 } 2075 mp = mp1; 2076 2077 /* we have consumed the oob mark */ 2078 atmark = B_FALSE; 2079 } else if (so->so_oobmark > 0) { 2080 /* 2081 * Check if the OOB mark is within the current 2082 * mblk chain. In that case we have to split it up. 2083 */ 2084 if (so->so_oobmark < mlen) { 2085 mblk_t *urg_mp = mp; 2086 2087 atmark = B_TRUE; 2088 mp = NULL; 2089 mlen = so->so_oobmark; 2090 2091 /* 2092 * It is assumed that the OOB mark does 2093 * not land within a mblk. 2094 */ 2095 do { 2096 so->so_oobmark -= MBLKL(urg_mp); 2097 mp = urg_mp; 2098 urg_mp = urg_mp->b_cont; 2099 } while (so->so_oobmark > 0); 2100 mp->b_cont = NULL; 2101 if (urg_mp != NULL) { 2102 urg_mp->b_next = so->so_rcv_q_head; 2103 so->so_rcv_q_head = urg_mp; 2104 } 2105 } else { 2106 so->so_oobmark -= mlen; 2107 if (so->so_oobmark == 0) 2108 atmark = B_TRUE; 2109 } 2110 } 2111 2112 /* 2113 * Queue data on the STREAM head. 2114 */ 2115 so->so_rcv_queued -= mlen; 2116 *tailmpp = mp; 2117 tailmpp = &mp->b_next; 2118 } 2119 so->so_rcv_head = NULL; 2120 so->so_rcv_last_head = NULL; 2121 so->so_rcv_q_head = NULL; 2122 so->so_rcv_q_last_head = NULL; 2123 2124 /* 2125 * Check if the oob byte is at the end of the data stream, or if the 2126 * oob byte has not yet arrived. In the latter case we have to send a 2127 * SIGURG and a mark indicator to the STREAM head. The mark indicator 2128 * is needed to guarantee correct behavior for SIOCATMARK. See block 2129 * comment in socktpi.h for more details. 2130 */ 2131 if (atmark || so->so_oobmark > 0) { 2132 mblk_t *mp; 2133 2134 if (atmark && so->so_oobmsg != NULL) { 2135 struct T_exdata_ind *tei; 2136 2137 mp = arg->soqa_exdata_mp; 2138 arg->soqa_exdata_mp = NULL; 2139 ASSERT(mp != NULL); 2140 mp->b_datap->db_type = M_PROTO; 2141 tei = (struct T_exdata_ind *)mp->b_rptr; 2142 tei->PRIM_type = T_EXDATA_IND; 2143 tei->MORE_flag = 0; 2144 mp->b_wptr = (uchar_t *)&tei[1]; 2145 2146 mp->b_cont = so->so_oobmsg; 2147 so->so_oobmsg = NULL; 2148 2149 *tailmpp = mp; 2150 tailmpp = &mp->b_next; 2151 } else { 2152 /* Send up the signal */ 2153 mp = arg->soqa_exdata_mp; 2154 arg->soqa_exdata_mp = NULL; 2155 ASSERT(mp != NULL); 2156 DB_TYPE(mp) = M_PCSIG; 2157 *mp->b_wptr++ = (uchar_t)SIGURG; 2158 *tailmpp = mp; 2159 tailmpp = &mp->b_next; 2160 2161 /* Send up the mark indicator */ 2162 mp = arg->soqa_urgmark_mp; 2163 arg->soqa_urgmark_mp = NULL; 2164 mp->b_flag = atmark ? MSGMARKNEXT : MSGNOTMARKNEXT; 2165 *tailmpp = mp; 2166 tailmpp = &mp->b_next; 2167 2168 so->so_oobmark = 0; 2169 } 2170 } 2171 ASSERT(so->so_oobmark == 0); 2172 ASSERT(so->so_rcv_queued == 0); 2173 2174 return (retmp); 2175 } 2176 2177 #ifdef DEBUG 2178 /* 2179 * Do an integrity check of the sonode. This should be done if a 2180 * fallback fails after sonode has initially been converted to use 2181 * TPI and subsequently have to be reverted. 2182 * 2183 * Failure to pass the integrity check will panic the system. 2184 */ 2185 void 2186 so_integrity_check(struct sonode *cur, struct sonode *orig) 2187 { 2188 VERIFY(cur->so_vnode == orig->so_vnode); 2189 VERIFY(cur->so_ops == orig->so_ops); 2190 /* 2191 * For so_state we can only VERIFY the state flags in CHECK_STATE. 2192 * The other state flags might be affected by a notification from the 2193 * protocol. 2194 */ 2195 #define CHECK_STATE (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_NDELAY|SS_NONBLOCK| \ 2196 SS_ASYNC|SS_ACCEPTCONN|SS_SAVEDEOR|SS_RCVATMARK|SS_OOBPEND| \ 2197 SS_HAVEOOBDATA|SS_HADOOBDATA|SS_SENTLASTREADSIG|SS_SENTLASTWRITESIG) 2198 VERIFY((cur->so_state & (orig->so_state & CHECK_STATE)) == 2199 (orig->so_state & CHECK_STATE)); 2200 VERIFY(cur->so_mode == orig->so_mode); 2201 VERIFY(cur->so_flag == orig->so_flag); 2202 VERIFY(cur->so_count == orig->so_count); 2203 /* Cannot VERIFY so_proto_connid; proto can update it */ 2204 VERIFY(cur->so_sockparams == orig->so_sockparams); 2205 /* an error might have been recorded, but it can not be lost */ 2206 VERIFY(cur->so_error != 0 || orig->so_error == 0); 2207 VERIFY(cur->so_family == orig->so_family); 2208 VERIFY(cur->so_type == orig->so_type); 2209 VERIFY(cur->so_protocol == orig->so_protocol); 2210 VERIFY(cur->so_version == orig->so_version); 2211 /* New conns might have arrived, but none should have been lost */ 2212 VERIFY(cur->so_acceptq_len >= orig->so_acceptq_len); 2213 VERIFY(list_head(&cur->so_acceptq_list) == 2214 list_head(&orig->so_acceptq_list)); 2215 VERIFY(cur->so_backlog == orig->so_backlog); 2216 /* New OOB migth have arrived, but mark should not have been lost */ 2217 VERIFY(cur->so_oobmark >= orig->so_oobmark); 2218 /* Cannot VERIFY so_oobmsg; the proto might have sent up a new one */ 2219 VERIFY(cur->so_pgrp == orig->so_pgrp); 2220 VERIFY(cur->so_peercred == orig->so_peercred); 2221 VERIFY(cur->so_cpid == orig->so_cpid); 2222 VERIFY(cur->so_zoneid == orig->so_zoneid); 2223 /* New data migth have arrived, but none should have been lost */ 2224 VERIFY(cur->so_rcv_queued >= orig->so_rcv_queued); 2225 VERIFY(cur->so_rcv_q_head == orig->so_rcv_q_head); 2226 VERIFY(cur->so_rcv_head == orig->so_rcv_head); 2227 VERIFY(cur->so_proto_handle == orig->so_proto_handle); 2228 VERIFY(cur->so_downcalls == orig->so_downcalls); 2229 /* Cannot VERIFY so_proto_props; they can be updated by proto */ 2230 } 2231 #endif 2232 2233 /* 2234 * so_tpi_fallback() 2235 * 2236 * This is the fallback initation routine; things start here. 2237 * 2238 * Basic strategy: 2239 * o Block new socket operations from coming in 2240 * o Allocate/initate info needed by TPI 2241 * o Quiesce the connection, at which point we sync 2242 * state and move data 2243 * o Change operations (sonodeops) associated with the socket 2244 * o Unblock threads waiting for the fallback to finish 2245 */ 2246 int 2247 so_tpi_fallback(struct sonode *so, struct cred *cr) 2248 { 2249 int error; 2250 queue_t *q; 2251 struct sockparams *sp; 2252 struct sockparams *newsp = NULL; 2253 so_proto_fallback_func_t fbfunc; 2254 const char *devpath; 2255 boolean_t direct; 2256 struct sonode *nso; 2257 sock_quiesce_arg_t arg = { NULL, NULL }; 2258 #ifdef DEBUG 2259 struct sonode origso; 2260 #endif 2261 error = 0; 2262 sp = so->so_sockparams; 2263 fbfunc = sp->sp_smod_info->smod_proto_fallback_func; 2264 2265 /* 2266 * Cannot fallback if the socket has active filters 2267 */ 2268 if (so->so_filter_active > 0) 2269 return (EINVAL); 2270 2271 switch (so->so_family) { 2272 case AF_INET: 2273 devpath = sp->sp_smod_info->smod_fallback_devpath_v4; 2274 break; 2275 case AF_INET6: 2276 devpath = sp->sp_smod_info->smod_fallback_devpath_v6; 2277 break; 2278 default: 2279 return (EINVAL); 2280 } 2281 2282 /* 2283 * Fallback can only happen if the socket module has a TPI device 2284 * and fallback function. 2285 */ 2286 if (devpath == NULL || fbfunc == NULL) 2287 return (EINVAL); 2288 2289 /* 2290 * Initiate fallback; upon success we know that no new requests 2291 * will come in from the user. 2292 */ 2293 if (!so_start_fallback(so)) 2294 return (EAGAIN); 2295 #ifdef DEBUG 2296 /* 2297 * Make a copy of the sonode in case we need to make an integrity 2298 * check later on. 2299 */ 2300 bcopy(so, &origso, sizeof (*so)); 2301 #endif 2302 2303 sp->sp_stats.sps_nfallback.value.ui64++; 2304 2305 newsp = sockparams_hold_ephemeral_bydev(so->so_family, so->so_type, 2306 so->so_protocol, devpath, KM_SLEEP, &error); 2307 if (error != 0) 2308 goto out; 2309 2310 if (so->so_direct != NULL) { 2311 sodirect_t *sodp = so->so_direct; 2312 mutex_enter(&so->so_lock); 2313 2314 so->so_direct->sod_enabled = B_FALSE; 2315 so->so_state &= ~SS_SODIRECT; 2316 ASSERT(sodp->sod_uioafh == NULL); 2317 mutex_exit(&so->so_lock); 2318 } 2319 2320 /* Turn sonode into a TPI socket */ 2321 error = sotpi_convert_sonode(so, newsp, &direct, &q, cr); 2322 if (error != 0) 2323 goto out; 2324 /* 2325 * When it comes to urgent data we have two cases to deal with; 2326 * (1) The oob byte has already arrived, or (2) the protocol has 2327 * notified that oob data is pending, but it has not yet arrived. 2328 * 2329 * For (1) all we need to do is send a T_EXDATA_IND to indicate were 2330 * in the byte stream the oob byte is. For (2) we have to send a 2331 * SIGURG (M_PCSIG), followed by a zero-length mblk indicating whether 2332 * the oob byte will be the next byte from the protocol. 2333 * 2334 * So in the worst case we need two mblks, one for the signal, another 2335 * for mark indication. In that case we use the exdata_mp for the sig. 2336 */ 2337 arg.soqa_exdata_mp = allocb_wait(sizeof (struct T_exdata_ind), 2338 BPRI_MED, STR_NOSIG, NULL); 2339 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 2340 2341 /* 2342 * Now tell the protocol to start using TPI. so_quiesced_cb be 2343 * called once it's safe to synchronize state. 2344 */ 2345 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, so); 2346 error = (*fbfunc)(so->so_proto_handle, q, direct, so_quiesced_cb, 2347 &arg); 2348 DTRACE_PROBE1(proto__fallback__end, struct sonode *, so); 2349 2350 if (error != 0) { 2351 /* protocol was unable to do a fallback, revert the sonode */ 2352 sotpi_revert_sonode(so, cr); 2353 goto out; 2354 } 2355 2356 /* 2357 * Walk the accept queue and notify the proto that they should 2358 * fall back to TPI. The protocol will send up the T_CONN_IND. 2359 */ 2360 nso = list_head(&so->so_acceptq_list); 2361 while (nso != NULL) { 2362 int rval; 2363 struct sonode *next; 2364 2365 if (arg.soqa_exdata_mp == NULL) { 2366 arg.soqa_exdata_mp = 2367 allocb_wait(sizeof (struct T_exdata_ind), 2368 BPRI_MED, STR_NOSIG, NULL); 2369 } 2370 if (arg.soqa_urgmark_mp == NULL) { 2371 arg.soqa_urgmark_mp = allocb_wait(0, BPRI_MED, 2372 STR_NOSIG, NULL); 2373 } 2374 2375 DTRACE_PROBE1(proto__fallback__begin, struct sonode *, nso); 2376 rval = (*fbfunc)(nso->so_proto_handle, NULL, direct, 2377 so_quiesced_cb, &arg); 2378 DTRACE_PROBE1(proto__fallback__end, struct sonode *, nso); 2379 if (rval != 0) { 2380 /* Abort the connection */ 2381 zcmn_err(getzoneid(), CE_WARN, 2382 "Failed to convert socket in accept queue to TPI. " 2383 "Pid = %d\n", curproc->p_pid); 2384 next = list_next(&so->so_acceptq_list, nso); 2385 list_remove(&so->so_acceptq_list, nso); 2386 so->so_acceptq_len--; 2387 2388 (void) socket_close(nso, 0, CRED()); 2389 socket_destroy(nso); 2390 nso = next; 2391 } else { 2392 nso = list_next(&so->so_acceptq_list, nso); 2393 } 2394 } 2395 2396 /* 2397 * Now flush the acceptq, this will destroy all sockets. They will 2398 * be recreated in sotpi_accept(). 2399 */ 2400 so_acceptq_flush(so, B_FALSE); 2401 2402 mutex_enter(&so->so_lock); 2403 so->so_state |= SS_FALLBACK_COMP; 2404 mutex_exit(&so->so_lock); 2405 2406 /* 2407 * Swap the sonode ops. Socket opertations that come in once this 2408 * is done will proceed without blocking. 2409 */ 2410 so->so_ops = &sotpi_sonodeops; 2411 2412 /* 2413 * Wake up any threads stuck in poll. This is needed since the poll 2414 * head changes when the fallback happens (moves from the sonode to 2415 * the STREAMS head). 2416 */ 2417 pollwakeup(&so->so_poll_list, POLLERR); 2418 2419 /* 2420 * When this non-STREAM socket was created we placed an extra ref on 2421 * the associated vnode to support asynchronous close. Drop that ref 2422 * here. 2423 */ 2424 ASSERT(SOTOV(so)->v_count >= 2); 2425 VN_RELE(SOTOV(so)); 2426 out: 2427 so_end_fallback(so); 2428 2429 if (error != 0) { 2430 #ifdef DEBUG 2431 so_integrity_check(so, &origso); 2432 #endif 2433 zcmn_err(getzoneid(), CE_WARN, 2434 "Failed to convert socket to TPI (err=%d). Pid = %d\n", 2435 error, curproc->p_pid); 2436 if (newsp != NULL) 2437 SOCKPARAMS_DEC_REF(newsp); 2438 } 2439 if (arg.soqa_exdata_mp != NULL) 2440 freemsg(arg.soqa_exdata_mp); 2441 if (arg.soqa_urgmark_mp != NULL) 2442 freemsg(arg.soqa_urgmark_mp); 2443 2444 return (error); 2445 } 2446