1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/strsubr.h> 29 #include <sys/strsun.h> 30 #include <sys/param.h> 31 #include <sys/sysmacros.h> 32 #include <vm/seg_map.h> 33 #include <vm/seg_kpm.h> 34 #include <sys/condvar_impl.h> 35 #include <sys/sendfile.h> 36 #include <fs/sockfs/nl7c.h> 37 #include <fs/sockfs/nl7curi.h> 38 39 #include <inet/common.h> 40 #include <inet/ip.h> 41 #include <inet/ip6.h> 42 #include <inet/tcp.h> 43 #include <inet/led.h> 44 #include <inet/mi.h> 45 46 #include <inet/nca/ncadoorhdr.h> 47 #include <inet/nca/ncalogd.h> 48 #include <inet/nca/ncandd.h> 49 50 #include <sys/promif.h> 51 52 /* 53 * Some externs: 54 */ 55 56 extern boolean_t nl7c_logd_enabled; 57 extern void nl7c_logd_log(uri_desc_t *, uri_desc_t *, 58 time_t, ipaddr_t); 59 extern boolean_t nl7c_close_addr(struct sonode *); 60 extern struct sonode *nl7c_addr2portso(void *); 61 extern uri_desc_t *nl7c_http_cond(uri_desc_t *, uri_desc_t *); 62 63 /* 64 * Various global tuneables: 65 */ 66 67 clock_t nl7c_uri_ttl = -1; /* TTL in seconds (-1 == infinite) */ 68 69 boolean_t nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */ 70 71 uint64_t nl7c_file_prefetch = 1; /* File cache prefetch pages */ 72 73 uint64_t nl7c_uri_max = 0; /* Maximum bytes (0 == infinite) */ 74 uint64_t nl7c_uri_bytes = 0; /* Bytes of kmem used by URIs */ 75 76 /* 77 * Locals: 78 */ 79 80 static int uri_rd_response(struct sonode *, uri_desc_t *, 81 uri_rd_t *, boolean_t); 82 static int uri_response(struct sonode *, uri_desc_t *); 83 84 /* 85 * HTTP scheme functions called from nl7chttp.c: 86 */ 87 88 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *); 89 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *); 90 boolean_t nl7c_http_cmp(void *, void *); 91 mblk_t *nl7c_http_persist(struct sonode *); 92 void nl7c_http_free(void *arg); 93 void nl7c_http_init(void); 94 95 /* 96 * Counters that need to move to kstat and/or be removed: 97 */ 98 99 volatile uint64_t nl7c_uri_request = 0; 100 volatile uint64_t nl7c_uri_hit = 0; 101 volatile uint64_t nl7c_uri_pass = 0; 102 volatile uint64_t nl7c_uri_miss = 0; 103 volatile uint64_t nl7c_uri_temp = 0; 104 volatile uint64_t nl7c_uri_more = 0; 105 volatile uint64_t nl7c_uri_data = 0; 106 volatile uint64_t nl7c_uri_sendfilev = 0; 107 volatile uint64_t nl7c_uri_reclaim_calls = 0; 108 volatile uint64_t nl7c_uri_reclaim_cnt = 0; 109 volatile uint64_t nl7c_uri_pass_urifail = 0; 110 volatile uint64_t nl7c_uri_pass_dupbfail = 0; 111 volatile uint64_t nl7c_uri_more_get = 0; 112 volatile uint64_t nl7c_uri_pass_method = 0; 113 volatile uint64_t nl7c_uri_pass_option = 0; 114 volatile uint64_t nl7c_uri_more_eol = 0; 115 volatile uint64_t nl7c_uri_more_http = 0; 116 volatile uint64_t nl7c_uri_pass_http = 0; 117 volatile uint64_t nl7c_uri_pass_addfail = 0; 118 volatile uint64_t nl7c_uri_pass_temp = 0; 119 volatile uint64_t nl7c_uri_expire = 0; 120 volatile uint64_t nl7c_uri_purge = 0; 121 volatile uint64_t nl7c_uri_NULL1 = 0; 122 volatile uint64_t nl7c_uri_NULL2 = 0; 123 volatile uint64_t nl7c_uri_close = 0; 124 volatile uint64_t nl7c_uri_temp_close = 0; 125 volatile uint64_t nl7c_uri_free = 0; 126 volatile uint64_t nl7c_uri_temp_free = 0; 127 volatile uint64_t nl7c_uri_temp_mk = 0; 128 volatile uint64_t nl7c_uri_rd_EAGAIN = 0; 129 130 /* 131 * Various kmem_cache_t's: 132 */ 133 134 kmem_cache_t *nl7c_uri_kmc; 135 kmem_cache_t *nl7c_uri_rd_kmc; 136 static kmem_cache_t *uri_desb_kmc; 137 static kmem_cache_t *uri_segmap_kmc; 138 139 static void uri_kmc_reclaim(void *); 140 141 static void nl7c_uri_reclaim(void); 142 143 /* 144 * The URI hash is a dynamically sized A/B bucket hash, when the current 145 * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of 146 * the next P2Ps[] size is created. 147 * 148 * All lookups are done in the current hash then the new hash (if any), 149 * if there is a new has then when a current hash bucket chain is examined 150 * any uri_desc_t members will be migrated to the new hash and when the 151 * last uri_desc_t has been migrated then the new hash will become the 152 * current and the previous current hash will be freed leaving a single 153 * hash. 154 * 155 * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[] 156 * and can be accessed only after aquiring the uri_hash_access lock (for 157 * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t 158 * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD() 159 * is placed on all uri_desc_t uri_hash_t list members. 160 * 161 * uri_hash_access - rwlock for all uri_hash_* variables, READER for read 162 * access and WRITER for write access. Note, WRITER is only required for 163 * hash geometry changes. 164 * 165 * uri_hash_which - which uri_hash_ab[] is the current hash. 166 * 167 * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[]. 168 * 169 * uri_hash_sz[] - the size for each uri_hash_ab[]. 170 * 171 * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[]. 172 * 173 * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when 174 * a new uri_hash_ab[] needs to be created. 175 * 176 * uri_hash_ab[] - the uri_hash_t entries. 177 * 178 * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim. 179 */ 180 181 typedef struct uri_hash_s { 182 struct uri_desc_s *list; /* List of uri_t(s) */ 183 kmutex_t lock; 184 } uri_hash_t; 185 186 #define URI_HASH_AVRG 5 /* Desired average hash chain length */ 187 #define URI_HASH_N_INIT 9 /* P2Ps[] initial index */ 188 189 static krwlock_t uri_hash_access; 190 static uint32_t uri_hash_which = 0; 191 static uint32_t uri_hash_n[2] = {URI_HASH_N_INIT, 0}; 192 static uint32_t uri_hash_sz[2] = {0, 0}; 193 static uint32_t uri_hash_cnt[2] = {0, 0}; 194 static uint32_t uri_hash_overflow[2] = {0, 0}; 195 static uri_hash_t *uri_hash_ab[2] = {NULL, NULL}; 196 static uri_hash_t *uri_hash_lru[2] = {NULL, NULL}; 197 198 /* 199 * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2)) 200 * these primes have been foud to be useful for prime sized hash tables. 201 */ 202 203 static const int P2Ps[] = { 204 0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, 205 6143, 12281, 24571, 49139, 98299, 196597, 393209, 206 786431, 1572853, 3145721, 6291449, 12582893, 0}; 207 208 /* 209 * Hash macros: 210 * 211 * H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII) 212 * hex multichar of the format "%HH" pointeded to by *cp to a char and 213 * return in c, *ep points to past end of (char *), on return *cp will 214 * point to the last char consumed. 215 * 216 * URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from 217 * *cp to *ep to the unsigned hix, cp nor ep are modified. 218 * 219 * URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to 220 * a hash index 0 - (uri_hash_sz[which] - 1). 221 * 222 * URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list 223 * uri_desc_t members from hash from to hash to. 224 * 225 * URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t 226 * *uri which is a member of the uri_hash_t *hp list with a previous 227 * list member of *puri for the uri_hash_ab[] cur. After unlinking 228 * check for cur hash empty, if so make new cur. Note, as this macro 229 * can change a hash chain it needs to be run under hash_access as 230 * RW_WRITER, futher as it can change the new hash to cur any access 231 * to the hash state must be done after either dropping locks and 232 * starting over or making sure the global state is consistent after 233 * as before. 234 */ 235 236 #define H2A(cp, ep, c) { \ 237 int _h = 2; \ 238 int _n = 0; \ 239 char _hc; \ 240 \ 241 while (_h > 0 && ++(cp) < (ep)) { \ 242 if (_h == 1) \ 243 _n *= 0x10; \ 244 _hc = *(cp); \ 245 if (_hc >= '0' && _hc <= '9') \ 246 _n += _hc - '0'; \ 247 else if (_hc >= 'a' || _hc <= 'f') \ 248 _n += _hc - 'W'; \ 249 else if (_hc >= 'A' || _hc <= 'F') \ 250 _n += _hc - '7'; \ 251 _h--; \ 252 } \ 253 (c) = _n; \ 254 } 255 256 #define URI_HASH(hv, cp, ep) { \ 257 char *_s = (cp); \ 258 char _c; \ 259 \ 260 while (_s < (ep)) { \ 261 if ((_c = *_s) == '%') { \ 262 H2A(_s, (ep), _c); \ 263 } \ 264 CHASH(hv, _c); \ 265 _s++; \ 266 } \ 267 } 268 269 #define URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)]) 270 271 #define URI_HASH_MIGRATE(from, hp, to) { \ 272 uri_desc_t *_nuri; \ 273 uint32_t _nhix; \ 274 uri_hash_t *_nhp; \ 275 \ 276 mutex_enter(&(hp)->lock); \ 277 while ((_nuri = (hp)->list) != NULL) { \ 278 (hp)->list = _nuri->hash; \ 279 atomic_add_32(&uri_hash_cnt[(from)], -1); \ 280 atomic_add_32(&uri_hash_cnt[(to)], 1); \ 281 _nhix = _nuri->hvalue; \ 282 URI_HASH_IX(_nhix, to); \ 283 _nhp = &uri_hash_ab[(to)][_nhix]; \ 284 mutex_enter(&_nhp->lock); \ 285 _nuri->hash = _nhp->list; \ 286 _nhp->list = _nuri; \ 287 _nuri->hit = 0; \ 288 mutex_exit(&_nhp->lock); \ 289 } \ 290 mutex_exit(&(hp)->lock); \ 291 } 292 293 #define URI_HASH_UNLINK(cur, new, hp, puri, uri) { \ 294 if ((puri) != NULL) { \ 295 (puri)->hash = (uri)->hash; \ 296 } else { \ 297 (hp)->list = (uri)->hash; \ 298 } \ 299 if (atomic_add_32_nv(&uri_hash_cnt[(cur)], -1) == 0 && \ 300 uri_hash_ab[(new)] != NULL) { \ 301 kmem_free(uri_hash_ab[cur], \ 302 sizeof (uri_hash_t) * uri_hash_sz[cur]); \ 303 uri_hash_ab[(cur)] = NULL; \ 304 uri_hash_lru[(cur)] = NULL; \ 305 uri_hash_which = (new); \ 306 } else { \ 307 uri_hash_lru[(cur)] = (hp); \ 308 } \ 309 } 310 311 void 312 nl7c_uri_init(void) 313 { 314 uint32_t cur = uri_hash_which; 315 316 rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL); 317 318 uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT]; 319 uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG; 320 uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur], 321 KM_SLEEP); 322 uri_hash_lru[cur] = uri_hash_ab[cur]; 323 324 nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t), 325 0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0); 326 327 nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc", 328 sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 329 330 uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc", 331 sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 332 333 uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc", 334 sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 335 336 nl7c_http_init(); 337 } 338 339 #define CV_SZ 16 340 341 void 342 nl7c_mi_report_hash(mblk_t *mp) 343 { 344 uri_hash_t *hp, *pend; 345 uri_desc_t *uri; 346 uint32_t cur; 347 uint32_t new; 348 int n, nz, tot; 349 uint32_t cv[CV_SZ + 1]; 350 351 rw_enter(&uri_hash_access, RW_READER); 352 cur = uri_hash_which; 353 new = cur ? 0 : 1; 354 next: 355 for (n = 0; n <= CV_SZ; n++) 356 cv[n] = 0; 357 nz = 0; 358 tot = 0; 359 hp = &uri_hash_ab[cur][0]; 360 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 361 while (hp < pend) { 362 n = 0; 363 for (uri = hp->list; uri != NULL; uri = uri->hash) { 364 n++; 365 } 366 tot += n; 367 if (n > 0) 368 nz++; 369 if (n > CV_SZ) 370 n = CV_SZ; 371 cv[n]++; 372 hp++; 373 } 374 375 (void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, " 376 "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW", 377 uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0); 378 (void) mi_mpprintf(mp, "Free=%d", cv[0]); 379 for (n = 1; n < CV_SZ; n++) { 380 int pn = 0; 381 char pv[5]; 382 char *pp = pv; 383 384 for (pn = n; pn < 1000; pn *= 10) 385 *pp++ = ' '; 386 *pp = 0; 387 (void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]); 388 } 389 (void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]); 390 391 if (cur != new && uri_hash_ab[new] != NULL) { 392 cur = new; 393 goto next; 394 } 395 rw_exit(&uri_hash_access); 396 } 397 398 void 399 nl7c_mi_report_uri(mblk_t *mp) 400 { 401 uri_hash_t *hp; 402 uri_desc_t *uri; 403 uint32_t cur; 404 uint32_t new; 405 int ix; 406 int ret; 407 char sc; 408 409 rw_enter(&uri_hash_access, RW_READER); 410 cur = uri_hash_which; 411 new = cur ? 0 : 1; 412 next: 413 for (ix = 0; ix < uri_hash_sz[cur]; ix++) { 414 hp = &uri_hash_ab[cur][ix]; 415 mutex_enter(&hp->lock); 416 uri = hp->list; 417 while (uri != NULL) { 418 sc = *(uri->path.ep); 419 *(uri->path.ep) = 0; 420 ret = mi_mpprintf(mp, "%s: %d %d %d", 421 uri->path.cp, (int)uri->resplen, 422 (int)uri->respclen, (int)uri->count); 423 *(uri->path.ep) = sc; 424 if (ret == -1) break; 425 uri = uri->hash; 426 } 427 mutex_exit(&hp->lock); 428 if (ret == -1) break; 429 } 430 if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) { 431 cur = new; 432 goto next; 433 } 434 rw_exit(&uri_hash_access); 435 } 436 437 /* 438 * The uri_desc_t ref_t inactive function called on the last REF_RELE(), 439 * free all resources contained in the uri_desc_t. Note, the uri_desc_t 440 * will be freed by REF_RELE() on return. 441 */ 442 443 void 444 nl7c_uri_inactive(uri_desc_t *uri) 445 { 446 int64_t bytes = 0; 447 448 if (uri->tail) { 449 uri_rd_t *rdp = &uri->response; 450 uri_rd_t *free = NULL; 451 452 while (rdp) { 453 if (rdp->off == -1) { 454 bytes += rdp->sz; 455 kmem_free(rdp->data.kmem, rdp->sz); 456 } else { 457 VN_RELE(rdp->data.vnode); 458 } 459 rdp = rdp->next; 460 if (free != NULL) { 461 kmem_cache_free(nl7c_uri_rd_kmc, free); 462 } 463 free = rdp; 464 } 465 } 466 if (bytes) { 467 atomic_add_64(&nl7c_uri_bytes, -bytes); 468 } 469 if (uri->scheme != NULL) { 470 nl7c_http_free(uri->scheme); 471 } 472 if (uri->reqmp) { 473 freeb(uri->reqmp); 474 } 475 } 476 477 /* 478 * The reclaim is called by the kmem subsystem when kmem is running 479 * low. More work is needed to determine the best reclaim policy, for 480 * now we just manipulate the nl7c_uri_max global maximum bytes threshold 481 * value using a simple arithmetic backoff of the value every time this 482 * function is called then call uri_reclaim() to enforce it. 483 * 484 * Note, this value remains in place and enforced for all subsequent 485 * URI request/response processing. 486 * 487 * Note, nl7c_uri_max is currently initialized to 0 or infinite such that 488 * the first call here set it to the current uri_bytes value then backoff 489 * from there. 490 * 491 * XXX how do we determine when to increase nl7c_uri_max ??? 492 */ 493 494 /*ARGSUSED*/ 495 static void 496 uri_kmc_reclaim(void *arg) 497 { 498 uint64_t new_max; 499 500 if ((new_max = nl7c_uri_max) == 0) { 501 /* Currently infinite, initialize to current bytes used */ 502 nl7c_uri_max = nl7c_uri_bytes; 503 new_max = nl7c_uri_bytes; 504 } 505 if (new_max > 1) { 506 /* Lower max_bytes to 93% of current value */ 507 new_max >>= 1; /* 50% */ 508 new_max += (new_max >> 1); /* 75% */ 509 new_max += (new_max >> 2); /* 93% */ 510 if (new_max < nl7c_uri_max) 511 nl7c_uri_max = new_max; 512 else 513 nl7c_uri_max = 1; 514 } 515 nl7c_uri_reclaim(); 516 } 517 518 /* 519 * Delete a uri_desc_t from the URI hash. 520 */ 521 522 static void 523 uri_delete(uri_desc_t *del) 524 { 525 uint32_t hix; 526 uri_hash_t *hp; 527 uri_desc_t *uri; 528 uri_desc_t *puri; 529 uint32_t cur; 530 uint32_t new; 531 532 ASSERT(del->hash != URI_TEMP); 533 rw_enter(&uri_hash_access, RW_WRITER); 534 cur = uri_hash_which; 535 new = cur ? 0 : 1; 536 next: 537 puri = NULL; 538 hix = del->hvalue; 539 URI_HASH_IX(hix, cur); 540 hp = &uri_hash_ab[cur][hix]; 541 for (uri = hp->list; uri != NULL; uri = uri->hash) { 542 if (uri != del) { 543 puri = uri; 544 continue; 545 } 546 /* 547 * Found the URI, unlink from the hash chain, 548 * drop locks, ref release it. 549 */ 550 URI_HASH_UNLINK(cur, new, hp, puri, uri); 551 rw_exit(&uri_hash_access); 552 REF_RELE(uri); 553 return; 554 } 555 if (cur != new && uri_hash_ab[new] != NULL) { 556 /* 557 * Not found in current hash and have a new hash so 558 * check the new hash next. 559 */ 560 cur = new; 561 goto next; 562 } 563 rw_exit(&uri_hash_access); 564 } 565 566 /* 567 * Add a uri_desc_t to the URI hash. 568 */ 569 570 static void 571 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking) 572 { 573 uint32_t hix; 574 uri_hash_t *hp; 575 uint32_t cur = uri_hash_which; 576 uint32_t new = cur ? 0 : 1; 577 578 /* 579 * Caller of uri_add() must hold the uri_hash_access rwlock. 580 */ 581 ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) || 582 (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access))); 583 /* 584 * uri_add() always succeeds so add a hash ref to the URI now. 585 */ 586 REF_HOLD(uri); 587 again: 588 hix = uri->hvalue; 589 URI_HASH_IX(hix, cur); 590 if (uri_hash_ab[new] == NULL && 591 uri_hash_cnt[cur] < uri_hash_overflow[cur]) { 592 /* 593 * Easy case, no new hash and current hasn't overflowed, 594 * add URI to current hash and return. 595 * 596 * Note, the check for uri_hash_cnt[] above aren't done 597 * atomictally, i.e. multiple threads can be in this code 598 * as RW_READER and update the cnt[], this isn't a problem 599 * as the check is only advisory. 600 */ 601 fast: 602 atomic_add_32(&uri_hash_cnt[cur], 1); 603 hp = &uri_hash_ab[cur][hix]; 604 mutex_enter(&hp->lock); 605 uri->hash = hp->list; 606 hp->list = uri; 607 mutex_exit(&hp->lock); 608 rw_exit(&uri_hash_access); 609 return; 610 } 611 if (uri_hash_ab[new] == NULL) { 612 /* 613 * Need a new a or b hash, if not already RW_WRITER 614 * try to upgrade our lock to writer. 615 */ 616 if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) { 617 /* 618 * Upgrade failed, we can't simple exit and reenter 619 * the lock as after the exit and before the reenter 620 * the whole world can change so just wait for writer 621 * then do everything again. 622 */ 623 if (nonblocking) { 624 /* 625 * Can't block, use fast-path above. 626 * 627 * XXX should have a background thread to 628 * handle new ab[] in this case so as to 629 * not overflow the cur hash to much. 630 */ 631 goto fast; 632 } 633 rw_exit(&uri_hash_access); 634 rwlock = RW_WRITER; 635 rw_enter(&uri_hash_access, rwlock); 636 cur = uri_hash_which; 637 new = cur ? 0 : 1; 638 goto again; 639 } 640 rwlock = RW_WRITER; 641 if (uri_hash_ab[new] == NULL) { 642 /* 643 * Still need a new hash, allocate and initialize 644 * the new hash. 645 */ 646 uri_hash_n[new] = uri_hash_n[cur] + 1; 647 if (uri_hash_n[new] == 0) { 648 /* 649 * No larger P2Ps[] value so use current, 650 * i.e. 2 of the largest are better than 1 ? 651 */ 652 uri_hash_n[new] = uri_hash_n[cur]; 653 cmn_err(CE_NOTE, "NL7C: hash index overflow"); 654 } 655 uri_hash_sz[new] = P2Ps[uri_hash_n[new]]; 656 ASSERT(uri_hash_cnt[new] == 0); 657 uri_hash_overflow[new] = uri_hash_sz[new] * 658 URI_HASH_AVRG; 659 uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) * 660 uri_hash_sz[new], nonblocking ? KM_NOSLEEP : 661 KM_SLEEP); 662 if (uri_hash_ab[new] == NULL) { 663 /* 664 * Alloc failed, use fast-path above. 665 * 666 * XXX should have a background thread to 667 * handle new ab[] in this case so as to 668 * not overflow the cur hash to much. 669 */ 670 goto fast; 671 } 672 uri_hash_lru[new] = uri_hash_ab[new]; 673 } 674 } 675 /* 676 * Hashed against current hash so migrate any current hash chain 677 * members, if any. 678 * 679 * Note, the hash chain list can be checked for a non empty list 680 * outside of the hash chain list lock as the hash chain struct 681 * can't be destroyed while in the uri_hash_access rwlock, worst 682 * case is that a non empty list is found and after acquiring the 683 * lock another thread beats us to it (i.e. migrated the list). 684 */ 685 hp = &uri_hash_ab[cur][hix]; 686 if (hp->list != NULL) { 687 URI_HASH_MIGRATE(cur, hp, new); 688 } 689 /* 690 * If new hash has overflowed before current hash has been 691 * completely migrated then walk all current hash chains and 692 * migrate list members now. 693 */ 694 if (atomic_add_32_nv(&uri_hash_cnt[new], 1) >= uri_hash_overflow[new]) { 695 for (hix = 0; hix < uri_hash_sz[cur]; hix++) { 696 hp = &uri_hash_ab[cur][hix]; 697 if (hp->list != NULL) { 698 URI_HASH_MIGRATE(cur, hp, new); 699 } 700 } 701 } 702 /* 703 * Add URI to new hash. 704 */ 705 hix = uri->hvalue; 706 URI_HASH_IX(hix, new); 707 hp = &uri_hash_ab[new][hix]; 708 mutex_enter(&hp->lock); 709 uri->hash = hp->list; 710 hp->list = uri; 711 mutex_exit(&hp->lock); 712 /* 713 * Last, check to see if last cur hash chain has been 714 * migrated, if so free cur hash and make new hash cur. 715 */ 716 if (uri_hash_cnt[cur] == 0) { 717 /* 718 * If we don't already hold the uri_hash_access rwlock for 719 * RW_WRITE try to upgrade to RW_WRITE and if successful 720 * check again and to see if still need to do the free. 721 */ 722 if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) && 723 uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) { 724 kmem_free(uri_hash_ab[cur], 725 sizeof (uri_hash_t) * uri_hash_sz[cur]); 726 uri_hash_ab[cur] = NULL; 727 uri_hash_lru[cur] = NULL; 728 uri_hash_which = new; 729 } 730 } 731 rw_exit(&uri_hash_access); 732 } 733 734 /* 735 * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t 736 * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if 737 * add B_TRUE use the request URI to create a new hash entry. Else if add 738 * B_FALSE ... 739 */ 740 741 static uri_desc_t * 742 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking) 743 { 744 uint32_t hix; 745 uri_hash_t *hp; 746 uri_desc_t *uri; 747 uri_desc_t *puri; 748 uint32_t cur; 749 uint32_t new; 750 char *rcp = ruri->path.cp; 751 char *rep = ruri->path.ep; 752 753 again: 754 rw_enter(&uri_hash_access, RW_READER); 755 cur = uri_hash_which; 756 new = cur ? 0 : 1; 757 nexthash: 758 puri = NULL; 759 hix = ruri->hvalue; 760 URI_HASH_IX(hix, cur); 761 hp = &uri_hash_ab[cur][hix]; 762 mutex_enter(&hp->lock); 763 for (uri = hp->list; uri != NULL; uri = uri->hash) { 764 char *ap = uri->path.cp; 765 char *bp = rcp; 766 char a, b; 767 768 /* Compare paths */ 769 while (bp < rep && ap < uri->path.ep) { 770 if ((a = *ap) == '%') { 771 /* Escaped hex multichar, convert it */ 772 H2A(ap, uri->path.ep, a); 773 } 774 if ((b = *bp) == '%') { 775 /* Escaped hex multichar, convert it */ 776 H2A(bp, rep, b); 777 } 778 if (a != b) { 779 /* Char's don't match */ 780 goto nexturi; 781 } 782 ap++; 783 bp++; 784 } 785 if (bp != rep || ap != uri->path.ep) { 786 /* Not same length */ 787 goto nexturi; 788 } 789 ap = uri->auth.cp; 790 bp = ruri->auth.cp; 791 if (ap != NULL) { 792 if (bp == NULL) { 793 /* URI has auth request URI doesn't */ 794 goto nexturi; 795 } 796 while (bp < ruri->auth.ep && ap < uri->auth.ep) { 797 if ((a = *ap) == '%') { 798 /* Escaped hex multichar, convert it */ 799 H2A(ap, uri->path.ep, a); 800 } 801 if ((b = *bp) == '%') { 802 /* Escaped hex multichar, convert it */ 803 H2A(bp, rep, b); 804 } 805 if (a != b) { 806 /* Char's don't match */ 807 goto nexturi; 808 } 809 ap++; 810 bp++; 811 } 812 if (bp != ruri->auth.ep || ap != uri->auth.ep) { 813 /* Not same length */ 814 goto nexturi; 815 } 816 } else if (bp != NULL) { 817 /* URI doesn't have auth and request URI does */ 818 goto nexturi; 819 } 820 /* 821 * Have a path/auth match so before any other processing 822 * of requested URI, check for expire or request no cache 823 * purge. 824 */ 825 if (uri->expire >= 0 && uri->expire <= lbolt || ruri->nocache) { 826 /* 827 * URI has expired or request specified to not use 828 * the cached version, unlink the URI from the hash 829 * chain, release all locks, release the hash ref 830 * on the URI, and last look it up again. 831 * 832 * Note, this will cause all variants of the named 833 * URI to be purged. 834 */ 835 if (puri != NULL) { 836 puri->hash = uri->hash; 837 } else { 838 hp->list = uri->hash; 839 } 840 mutex_exit(&hp->lock); 841 atomic_add_32(&uri_hash_cnt[cur], -1); 842 rw_exit(&uri_hash_access); 843 if (ruri->nocache) 844 nl7c_uri_purge++; 845 else 846 nl7c_uri_expire++; 847 REF_RELE(uri); 848 goto again; 849 } 850 if (uri->scheme != NULL) { 851 /* 852 * URI has scheme private qualifier(s), if request 853 * URI doesn't or if no match skip this URI. 854 */ 855 if (ruri->scheme == NULL || 856 ! nl7c_http_cmp(uri->scheme, ruri->scheme)) 857 goto nexturi; 858 } else if (ruri->scheme != NULL) { 859 /* 860 * URI doesn't have scheme private qualifiers but 861 * request URI does, no match, skip this URI. 862 */ 863 goto nexturi; 864 } 865 /* 866 * Have a match, ready URI for return, first put a reference 867 * hold on the URI, if this URI is currently being processed 868 * then have to wait for the processing to be completed and 869 * redo the lookup, else return it. 870 */ 871 REF_HOLD(uri); 872 mutex_enter(&uri->proclock); 873 if (uri->proc != NULL) { 874 /* The URI is being processed, wait for completion */ 875 mutex_exit(&hp->lock); 876 rw_exit(&uri_hash_access); 877 if (! nonblocking && 878 cv_wait_sig(&uri->waiting, &uri->proclock)) { 879 /* 880 * URI has been processed but things may 881 * have changed while we were away so do 882 * most everything again. 883 */ 884 mutex_exit(&uri->proclock); 885 REF_RELE(uri); 886 goto again; 887 } else { 888 /* 889 * A nonblocking socket or an interrupted 890 * cv_wait_sig() in the first case can't 891 * block waiting for the processing of the 892 * uri hash hit uri to complete, in both 893 * cases just return failure to lookup. 894 */ 895 mutex_exit(&uri->proclock); 896 REF_RELE(uri); 897 return (NULL); 898 } 899 } 900 mutex_exit(&uri->proclock); 901 uri->hit++; 902 mutex_exit(&hp->lock); 903 rw_exit(&uri_hash_access); 904 return (uri); 905 nexturi: 906 puri = uri; 907 } 908 mutex_exit(&hp->lock); 909 if (cur != new && uri_hash_ab[new] != NULL) { 910 /* 911 * Not found in current hash and have a new hash so 912 * check the new hash next. 913 */ 914 cur = new; 915 goto nexthash; 916 } 917 add: 918 if (! add) { 919 /* Lookup only so return failure */ 920 rw_exit(&uri_hash_access); 921 return (NULL); 922 } 923 /* 924 * URI not hashed, finish intialization of the 925 * request URI, add it to the hash, return it. 926 */ 927 ruri->hit = 0; 928 ruri->expire = -1; 929 ruri->response.sz = 0; 930 ruri->proc = (struct sonode *)~NULL; 931 cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL); 932 mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL); 933 uri_add(ruri, RW_READER, nonblocking); 934 /* uri_add() has done rw_exit(&uri_hash_access) */ 935 return (ruri); 936 } 937 938 /* 939 * Reclaim URIs until max cache size threshold has been reached. 940 * 941 * A CLOCK based reclaim modified with a history (hit counter) counter. 942 */ 943 944 static void 945 nl7c_uri_reclaim(void) 946 { 947 uri_hash_t *hp, *start, *pend; 948 uri_desc_t *uri; 949 uri_desc_t *puri; 950 uint32_t cur; 951 uint32_t new; 952 953 nl7c_uri_reclaim_calls++; 954 again: 955 rw_enter(&uri_hash_access, RW_WRITER); 956 cur = uri_hash_which; 957 new = cur ? 0 : 1; 958 next: 959 hp = uri_hash_lru[cur]; 960 start = hp; 961 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 962 while (nl7c_uri_bytes > nl7c_uri_max) { 963 puri = NULL; 964 for (uri = hp->list; uri != NULL; uri = uri->hash) { 965 if (uri->hit != 0) { 966 /* 967 * Decrement URI activity counter and skip. 968 */ 969 uri->hit--; 970 puri = uri; 971 continue; 972 } 973 if (uri->proc != NULL) { 974 /* 975 * Currently being processed by a socket, skip. 976 */ 977 continue; 978 } 979 /* 980 * Found a candidate, no hit(s) since added or last 981 * reclaim pass, unlink from it's hash chain, update 982 * lru scan pointer, drop lock, ref release it. 983 */ 984 URI_HASH_UNLINK(cur, new, hp, puri, uri); 985 if (cur == uri_hash_which) { 986 if (++hp == pend) { 987 /* Wrap pointer */ 988 hp = uri_hash_ab[cur]; 989 } 990 uri_hash_lru[cur] = hp; 991 } 992 rw_exit(&uri_hash_access); 993 REF_RELE(uri); 994 nl7c_uri_reclaim_cnt++; 995 goto again; 996 } 997 if (++hp == pend) { 998 /* Wrap pointer */ 999 hp = uri_hash_ab[cur]; 1000 } 1001 if (hp == start) { 1002 if (cur != new && uri_hash_ab[new] != NULL) { 1003 /* 1004 * Done with the current hash and have a 1005 * new hash so check the new hash next. 1006 */ 1007 cur = new; 1008 goto next; 1009 } 1010 } 1011 } 1012 rw_exit(&uri_hash_access); 1013 } 1014 1015 /* 1016 * Called for a socket which is being freed prior to close, e.g. errored. 1017 */ 1018 1019 void 1020 nl7c_urifree(struct sonode *so) 1021 { 1022 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1023 1024 so->so_nl7c_uri = NULL; 1025 if (uri->hash != URI_TEMP) { 1026 uri_delete(uri); 1027 mutex_enter(&uri->proclock); 1028 uri->proc = NULL; 1029 if (CV_HAS_WAITERS(&uri->waiting)) { 1030 cv_broadcast(&uri->waiting); 1031 } 1032 mutex_exit(&uri->proclock); 1033 nl7c_uri_free++; 1034 } else { 1035 /* No proclock as uri exclusively owned by so */ 1036 uri->proc = NULL; 1037 nl7c_uri_temp_free++; 1038 } 1039 REF_RELE(uri); 1040 } 1041 1042 /* 1043 * ... 1044 * 1045 * < 0 need more data 1046 * 1047 * 0 parse complete 1048 * 1049 * > 0 parse error 1050 */ 1051 1052 volatile uint64_t nl7c_resp_pfail = 0; 1053 volatile uint64_t nl7c_resp_ntemp = 0; 1054 volatile uint64_t nl7c_resp_pass = 0; 1055 1056 static int 1057 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz) 1058 { 1059 if (! nl7c_http_response(&data, &data[sz], uri, so)) { 1060 if (data == NULL) { 1061 /* Parse fail */ 1062 goto pfail; 1063 } 1064 /* More data */ 1065 data = NULL; 1066 } else if (data == NULL) { 1067 goto pass; 1068 } 1069 if (uri->hash != URI_TEMP && uri->nocache) { 1070 /* 1071 * After response parse now no cache, 1072 * delete it from cache, wakeup any 1073 * waiters on this URI, make URI_TEMP. 1074 */ 1075 uri_delete(uri); 1076 mutex_enter(&uri->proclock); 1077 if (CV_HAS_WAITERS(&uri->waiting)) { 1078 cv_broadcast(&uri->waiting); 1079 } 1080 mutex_exit(&uri->proclock); 1081 uri->hash = URI_TEMP; 1082 nl7c_uri_temp_mk++; 1083 } 1084 if (data == NULL) { 1085 /* More data needed */ 1086 return (-1); 1087 } 1088 /* Success */ 1089 return (0); 1090 1091 pfail: 1092 nl7c_resp_pfail++; 1093 return (EINVAL); 1094 1095 pass: 1096 nl7c_resp_pass++; 1097 return (ENOTSUP); 1098 } 1099 1100 /* 1101 * Called to sink application response data, the processing of the data 1102 * is the same for a cached or temp URI (i.e. a URI for which we aren't 1103 * going to cache the URI but want to parse it for detecting response 1104 * data end such that for a persistent connection we can parse the next 1105 * request). 1106 * 1107 * On return 0 is returned for sink success, > 0 on error, and < 0 on 1108 * no so URI (note, data not sinked). 1109 */ 1110 1111 int 1112 nl7c_data(struct sonode *so, uio_t *uio) 1113 { 1114 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1115 iovec_t *iov; 1116 int cnt; 1117 int sz = uio->uio_resid; 1118 char *data, *alloc; 1119 char *bp; 1120 uri_rd_t *rdp; 1121 boolean_t first; 1122 int error, perror; 1123 1124 nl7c_uri_data++; 1125 1126 if (uri == NULL) { 1127 /* Socket & NL7C out of sync, disable NL7C */ 1128 so->so_nl7c_flags = 0; 1129 nl7c_uri_NULL1++; 1130 return (-1); 1131 } 1132 1133 if (so->so_nl7c_flags & NL7C_WAITWRITE) { 1134 so->so_nl7c_flags &= ~NL7C_WAITWRITE; 1135 first = B_TRUE; 1136 } else { 1137 first = B_FALSE; 1138 } 1139 1140 alloc = kmem_alloc(sz, KM_SLEEP); 1141 URI_RD_ADD(uri, rdp, sz, -1); 1142 if (rdp == NULL) { 1143 error = ENOMEM; 1144 goto fail; 1145 } 1146 1147 if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) { 1148 uri_delete(uri); 1149 uri->hash = URI_TEMP; 1150 } 1151 data = alloc; 1152 alloc = NULL; 1153 rdp->data.kmem = data; 1154 atomic_add_64(&nl7c_uri_bytes, sz); 1155 1156 bp = data; 1157 while (uio->uio_resid > 0) { 1158 iov = uio->uio_iov; 1159 if ((cnt = iov->iov_len) == 0) { 1160 goto next; 1161 } 1162 cnt = MIN(cnt, uio->uio_resid); 1163 error = xcopyin(iov->iov_base, bp, cnt); 1164 if (error) 1165 goto fail; 1166 1167 iov->iov_base += cnt; 1168 iov->iov_len -= cnt; 1169 uio->uio_resid -= cnt; 1170 uio->uio_loffset += cnt; 1171 bp += cnt; 1172 next: 1173 uio->uio_iov++; 1174 uio->uio_iovcnt--; 1175 } 1176 1177 /* Successfull sink of data, response parse the data */ 1178 perror = nl7c_resp_parse(so, uri, data, sz); 1179 1180 /* Send the data out the connection */ 1181 error = uri_rd_response(so, uri, rdp, first); 1182 if (error) 1183 goto fail; 1184 1185 /* Success */ 1186 if (perror == 0 && 1187 ((uri->respclen == URI_LEN_NOVALUE && 1188 uri->resplen == URI_LEN_NOVALUE) || 1189 uri->count >= uri->resplen)) { 1190 /* 1191 * No more data needed and no pending response 1192 * data or current data count >= response length 1193 * so close the URI processing for this so. 1194 */ 1195 nl7c_close(so); 1196 if (! (so->so_nl7c_flags & NL7C_SOPERSIST)) { 1197 /* Not a persistent connection */ 1198 so->so_nl7c_flags = 0; 1199 } 1200 } 1201 1202 return (0); 1203 1204 fail: 1205 if (alloc != NULL) { 1206 kmem_free(alloc, sz); 1207 } 1208 so->so_nl7c_flags = 0; 1209 nl7c_urifree(so); 1210 1211 return (error); 1212 } 1213 1214 /* 1215 * Called to read data from file "*fp" at offset "*off" of length "*len" 1216 * for a maximum of "*max_rem" bytes. 1217 * 1218 * On success a pointer to the kmem_alloc()ed file data is returned, "*off" 1219 * and "*len" are updated for the acutal number of bytes read and "*max_rem" 1220 * is updated with the number of bytes remaining to be read. 1221 * 1222 * Else, "NULL" is returned. 1223 */ 1224 1225 static char * 1226 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret) 1227 { 1228 vnode_t *vp = fp->f_vnode; 1229 int flg = 0; 1230 size_t size = MIN(*len, max); 1231 char *data; 1232 int error; 1233 uio_t uio; 1234 iovec_t iov; 1235 1236 (void) VOP_RWLOCK(vp, flg, NULL); 1237 1238 if (*off > MAXOFFSET_T) { 1239 VOP_RWUNLOCK(vp, flg, NULL); 1240 *ret = EFBIG; 1241 return (NULL); 1242 } 1243 1244 if (*off + size > MAXOFFSET_T) 1245 size = (ssize32_t)(MAXOFFSET_T - *off); 1246 1247 data = kmem_alloc(size, KM_SLEEP); 1248 1249 iov.iov_base = data; 1250 iov.iov_len = size; 1251 uio.uio_loffset = *off; 1252 uio.uio_iov = &iov; 1253 uio.uio_iovcnt = 1; 1254 uio.uio_resid = size; 1255 uio.uio_segflg = UIO_SYSSPACE; 1256 uio.uio_llimit = MAXOFFSET_T; 1257 uio.uio_fmode = fp->f_flag; 1258 1259 error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL); 1260 VOP_RWUNLOCK(vp, flg, NULL); 1261 *ret = error; 1262 if (error) { 1263 kmem_free(data, size); 1264 return (NULL); 1265 } 1266 *len = size; 1267 *off += size; 1268 return (data); 1269 } 1270 1271 /* 1272 * Called to sink application response sendfilev, as with nl7c_data() above 1273 * all the data will be processed by NL7C unless there's an error. 1274 */ 1275 1276 int 1277 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp, 1278 int sfvc, ssize_t *xfer) 1279 { 1280 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1281 file_t *fp = NULL; 1282 vnode_t *vp = NULL; 1283 char *data = NULL; 1284 u_offset_t off; 1285 int len; 1286 int cnt; 1287 int total_count = 0; 1288 char *alloc; 1289 uri_rd_t *rdp; 1290 int max; 1291 int perror; 1292 int error = 0; 1293 boolean_t first = B_TRUE; 1294 1295 nl7c_uri_sendfilev++; 1296 1297 if (uri == NULL) { 1298 /* Socket & NL7C out of sync, disable NL7C */ 1299 so->so_nl7c_flags = 0; 1300 nl7c_uri_NULL2++; 1301 return (0); 1302 } 1303 1304 if (so->so_nl7c_flags & NL7C_WAITWRITE) 1305 so->so_nl7c_flags &= ~NL7C_WAITWRITE; 1306 1307 while (sfvc-- > 0) { 1308 /* 1309 * off - the current sfv read file offset or user address. 1310 * 1311 * len - the current sfv length in bytes. 1312 * 1313 * cnt - number of bytes kmem_alloc()ed. 1314 * 1315 * alloc - the kmem_alloc()ed buffer of size "cnt". 1316 * 1317 * data - copy of "alloc" used for post alloc references. 1318 * 1319 * fp - the current sfv file_t pointer. 1320 * 1321 * vp - the current "*vp" vnode_t pointer. 1322 * 1323 * Note, for "data" and "fp" and "vp" a NULL value is used 1324 * when not allocated such that the common failure path "fail" 1325 * is used. 1326 */ 1327 off = sfvp->sfv_off; 1328 len = sfvp->sfv_len; 1329 cnt = len; 1330 if (sfvp->sfv_fd == SFV_FD_SELF) { 1331 /* 1332 * User memory, copyin() all the bytes. 1333 */ 1334 alloc = kmem_alloc(cnt, KM_SLEEP); 1335 error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt); 1336 if (error) 1337 goto fail; 1338 } else { 1339 /* 1340 * File descriptor, prefetch some bytes. 1341 */ 1342 if ((fp = getf(sfvp->sfv_fd)) == NULL) { 1343 error = EBADF; 1344 goto fail; 1345 } 1346 if ((fp->f_flag & FREAD) == 0) { 1347 error = EACCES; 1348 goto fail; 1349 } 1350 vp = fp->f_vnode; 1351 if (vp->v_type != VREG) { 1352 error = EINVAL; 1353 goto fail; 1354 } 1355 VN_HOLD(vp); 1356 1357 /* Read max_rem bytes from file for prefetch */ 1358 if (nl7c_use_kmem) { 1359 max = cnt; 1360 } else { 1361 max = MAXBSIZE * nl7c_file_prefetch; 1362 } 1363 alloc = nl7c_readfile(fp, &off, &cnt, max, &error); 1364 if (alloc == NULL) 1365 goto fail; 1366 1367 releasef(sfvp->sfv_fd); 1368 fp = NULL; 1369 } 1370 URI_RD_ADD(uri, rdp, cnt, -1); 1371 if (rdp == NULL) { 1372 error = ENOMEM; 1373 goto fail; 1374 } 1375 data = alloc; 1376 alloc = NULL; 1377 rdp->data.kmem = data; 1378 total_count += cnt; 1379 if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) { 1380 uri_delete(uri); 1381 uri->hash = URI_TEMP; 1382 } 1383 1384 /* Response parse */ 1385 perror = nl7c_resp_parse(so, uri, data, len); 1386 1387 /* Send kmem data out the connection */ 1388 error = uri_rd_response(so, uri, rdp, first); 1389 1390 if (error) 1391 goto fail; 1392 1393 if (sfvp->sfv_fd != SFV_FD_SELF) { 1394 /* 1395 * File descriptor, if any bytes left save vnode_t. 1396 */ 1397 if (len > cnt) { 1398 /* More file data so add it */ 1399 URI_RD_ADD(uri, rdp, len - cnt, off); 1400 if (rdp == NULL) { 1401 error = ENOMEM; 1402 goto fail; 1403 } 1404 rdp->data.vnode = vp; 1405 1406 /* Send vnode data out the connection */ 1407 error = uri_rd_response(so, uri, rdp, first); 1408 } else { 1409 /* All file data fit in the prefetch */ 1410 VN_RELE(vp); 1411 } 1412 *fileoff += len; 1413 vp = NULL; 1414 } 1415 *xfer += len; 1416 sfvp++; 1417 1418 if (first) 1419 first = B_FALSE; 1420 } 1421 if (total_count > 0) { 1422 atomic_add_64(&nl7c_uri_bytes, total_count); 1423 } 1424 if (perror == 0 && 1425 ((uri->respclen == URI_LEN_NOVALUE && 1426 uri->resplen == URI_LEN_NOVALUE) || 1427 uri->count >= uri->resplen)) { 1428 /* 1429 * No more data needed and no pending response 1430 * data or current data count >= response length 1431 * so close the URI processing for this so. 1432 */ 1433 nl7c_close(so); 1434 if (! (so->so_nl7c_flags & NL7C_SOPERSIST)) { 1435 /* Not a persistent connection */ 1436 so->so_nl7c_flags = 0; 1437 } 1438 } 1439 1440 return (0); 1441 1442 fail: 1443 if (alloc != NULL) 1444 kmem_free(data, len); 1445 1446 if (vp != NULL) 1447 VN_RELE(vp); 1448 1449 if (fp != NULL) 1450 releasef(sfvp->sfv_fd); 1451 1452 if (total_count > 0) { 1453 atomic_add_64(&nl7c_uri_bytes, total_count); 1454 } 1455 1456 so->so_nl7c_flags = 0; 1457 nl7c_urifree(so); 1458 1459 return (error); 1460 } 1461 1462 /* 1463 * Called for a socket which is closing or when an application has 1464 * completed sending all the response data (i.e. for a persistent 1465 * connection called once for each completed application response). 1466 */ 1467 1468 void 1469 nl7c_close(struct sonode *so) 1470 { 1471 uri_desc_t *uri = (uri_desc_t *)so->so_nl7c_uri; 1472 1473 if (uri == NULL) { 1474 /* 1475 * No URI being processed so might be a listen()er 1476 * if so do any cleanup, else nothing more to do. 1477 */ 1478 if (so->so_state & SS_ACCEPTCONN) { 1479 (void) nl7c_close_addr(so); 1480 } 1481 return; 1482 } 1483 so->so_nl7c_uri = NULL; 1484 if (uri->hash != URI_TEMP) { 1485 mutex_enter(&uri->proclock); 1486 uri->proc = NULL; 1487 if (CV_HAS_WAITERS(&uri->waiting)) { 1488 cv_broadcast(&uri->waiting); 1489 } 1490 mutex_exit(&uri->proclock); 1491 nl7c_uri_close++; 1492 } else { 1493 /* No proclock as uri exclusively owned by so */ 1494 uri->proc = NULL; 1495 nl7c_uri_temp_close++; 1496 } 1497 REF_RELE(uri); 1498 if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) { 1499 nl7c_uri_reclaim(); 1500 } 1501 } 1502 1503 /* 1504 * The uri_segmap_t ref_t inactive function called on the last REF_RELE(), 1505 * release the segmap mapping. Note, the uri_segmap_t will be freed by 1506 * REF_RELE() on return. 1507 */ 1508 1509 void 1510 uri_segmap_inactive(uri_segmap_t *smp) 1511 { 1512 if (!segmap_kpm) { 1513 (void) segmap_fault(kas.a_hat, segkmap, smp->base, 1514 smp->len, F_SOFTUNLOCK, S_OTHER); 1515 } 1516 (void) segmap_release(segkmap, smp->base, SM_DONTNEED); 1517 VN_RELE(smp->vp); 1518 } 1519 1520 /* 1521 * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t 1522 * release the reference, one per desballoc() of a segmap page, if a rd_t 1523 * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t, 1524 * last kmem free the uri_desb_t. 1525 */ 1526 1527 static void 1528 uri_desb_free(uri_desb_t *desb) 1529 { 1530 if (desb->segmap != NULL) { 1531 REF_RELE(desb->segmap); 1532 } 1533 REF_RELE(desb->uri); 1534 kmem_cache_free(uri_desb_kmc, desb); 1535 } 1536 1537 /* 1538 * Segmap map up to a page of a uri_rd_t file descriptor. 1539 */ 1540 1541 uri_segmap_t * 1542 uri_segmap_map(uri_rd_t *rdp, int bytes) 1543 { 1544 uri_segmap_t *segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP); 1545 int len = MIN(rdp->sz, MAXBSIZE); 1546 1547 if (len > bytes) 1548 len = bytes; 1549 1550 REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc); 1551 segmap->len = len; 1552 VN_HOLD(rdp->data.vnode); 1553 segmap->vp = rdp->data.vnode; 1554 1555 segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len, 1556 segmap_kpm ? SM_FAULT : 0, S_READ); 1557 1558 if (segmap_fault(kas.a_hat, segkmap, segmap->base, len, 1559 F_SOFTLOCK, S_READ) != 0) { 1560 REF_RELE(segmap); 1561 return (NULL); 1562 } 1563 return (segmap); 1564 } 1565 1566 /* 1567 * Chop up the kernel virtual memory area *data of size *sz bytes for 1568 * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using 1569 * the given template uri_desb_t *temp of max_mblk bytes per. 1570 * 1571 * The values of *data, *sz, and *bytes are updated on return, the 1572 * mblk_t chain is returned. 1573 */ 1574 1575 static mblk_t * 1576 uri_desb_chop( 1577 char **data, 1578 size_t *sz, 1579 int *bytes, 1580 uri_desb_t *temp, 1581 int max_mblk, 1582 char *eoh, 1583 mblk_t *persist 1584 ) 1585 { 1586 char *ldata = *data; 1587 size_t lsz = *sz; 1588 int lbytes = bytes ? *bytes : lsz; 1589 uri_desb_t *desb; 1590 mblk_t *mp = NULL; 1591 mblk_t *nmp, *pmp = NULL; 1592 int msz; 1593 1594 if (lbytes == 0 && lsz == 0) 1595 return (NULL); 1596 1597 while (lbytes > 0 && lsz > 0) { 1598 msz = MIN(lbytes, max_mblk); 1599 msz = MIN(msz, lsz); 1600 if (persist && eoh >= ldata && eoh < &ldata[msz]) { 1601 msz = (eoh - ldata); 1602 pmp = persist; 1603 persist = NULL; 1604 if (msz == 0) { 1605 nmp = pmp; 1606 pmp = NULL; 1607 goto zero; 1608 } 1609 } 1610 desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP); 1611 REF_HOLD(temp->uri); 1612 if (temp->segmap) { 1613 REF_HOLD(temp->segmap); 1614 } 1615 bcopy(temp, desb, sizeof (*desb)); 1616 desb->frtn.free_arg = (caddr_t)desb; 1617 nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn); 1618 if (nmp == NULL) { 1619 if (temp->segmap) { 1620 REF_RELE(temp->segmap); 1621 } 1622 REF_RELE(temp->uri); 1623 if (mp != NULL) { 1624 mp->b_next = NULL; 1625 freemsg(mp); 1626 } 1627 if (persist != NULL) { 1628 freeb(persist); 1629 } 1630 return (NULL); 1631 } 1632 nmp->b_wptr += msz; 1633 zero: 1634 if (mp != NULL) { 1635 mp->b_next->b_cont = nmp; 1636 } else { 1637 mp = nmp; 1638 } 1639 if (pmp != NULL) { 1640 nmp->b_cont = pmp; 1641 nmp = pmp; 1642 pmp = NULL; 1643 } 1644 mp->b_next = nmp; 1645 ldata += msz; 1646 lsz -= msz; 1647 lbytes -= msz; 1648 } 1649 *data = ldata; 1650 *sz = lsz; 1651 if (bytes) 1652 *bytes = lbytes; 1653 return (mp); 1654 } 1655 1656 /* 1657 * Experimential noqwait (i.e. no canput()/qwait() checks), just send 1658 * the entire mblk_t chain down without flow-control checks. 1659 */ 1660 1661 static int 1662 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp) 1663 { 1664 struct stdata *stp; 1665 int error = 0; 1666 1667 ASSERT(vp->v_stream); 1668 stp = vp->v_stream; 1669 1670 /* Fast check of flags before acquiring the lock */ 1671 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 1672 mutex_enter(&stp->sd_lock); 1673 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); 1674 mutex_exit(&stp->sd_lock); 1675 if (error != 0) { 1676 if (!(stp->sd_flag & STPLEX) && 1677 (stp->sd_wput_opt & SW_SIGPIPE)) { 1678 tsignal(curthread, SIGPIPE); 1679 error = EPIPE; 1680 } 1681 return (error); 1682 } 1683 } 1684 putnext(stp->sd_wrq, mp); 1685 return (0); 1686 } 1687 1688 /* 1689 * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so. 1690 */ 1691 1692 static int 1693 uri_rd_response(struct sonode *so, 1694 uri_desc_t *uri, 1695 uri_rd_t *rdp, 1696 boolean_t first) 1697 { 1698 vnode_t *vp = SOTOV(so); 1699 int max_mblk = (int)((tcp_t *)so->so_priv)->tcp_mss; 1700 int wsz; 1701 mblk_t *mp, *wmp, *persist; 1702 int write_bytes; 1703 uri_rd_t rd; 1704 uri_desb_t desb; 1705 uri_segmap_t *segmap = NULL; 1706 char *segmap_data; 1707 size_t segmap_sz; 1708 int error; 1709 int fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) | 1710 ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0); 1711 1712 1713 /* Initialize template uri_desb_t */ 1714 desb.frtn.free_func = uri_desb_free; 1715 desb.frtn.free_arg = NULL; 1716 desb.uri = uri; 1717 1718 /* Get a local copy of the rd_t */ 1719 bcopy(rdp, &rd, sizeof (rd)); 1720 do { 1721 if (first) { 1722 /* 1723 * For first kstrwrite() enough data to get 1724 * things going, note non blocking version of 1725 * kstrwrite() will be used below. 1726 */ 1727 write_bytes = P2ROUNDUP((max_mblk * 4), 1728 MAXBSIZE * nl7c_file_prefetch); 1729 } else { 1730 if ((write_bytes = so->so_sndbuf) == 0) 1731 write_bytes = vp->v_stream->sd_qn_maxpsz; 1732 ASSERT(write_bytes > 0); 1733 write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE); 1734 } 1735 /* 1736 * Chop up to a write_bytes worth of data. 1737 */ 1738 wmp = NULL; 1739 wsz = write_bytes; 1740 do { 1741 if (rd.sz == 0) 1742 break; 1743 if (rd.off == -1) { 1744 if (uri->eoh >= rd.data.kmem && 1745 uri->eoh < &rd.data.kmem[rd.sz]) { 1746 persist = nl7c_http_persist(so); 1747 } else { 1748 persist = NULL; 1749 } 1750 desb.segmap = NULL; 1751 mp = uri_desb_chop(&rd.data.kmem, &rd.sz, 1752 &wsz, &desb, max_mblk, uri->eoh, persist); 1753 if (mp == NULL) { 1754 error = ENOMEM; 1755 goto invalidate; 1756 } 1757 } else { 1758 if (segmap == NULL) { 1759 segmap = uri_segmap_map(&rd, 1760 write_bytes); 1761 if (segmap == NULL) { 1762 error = ENOMEM; 1763 goto invalidate; 1764 } 1765 desb.segmap = segmap; 1766 segmap_data = segmap->base; 1767 segmap_sz = segmap->len; 1768 } 1769 mp = uri_desb_chop(&segmap_data, &segmap_sz, 1770 &wsz, &desb, max_mblk, NULL, NULL); 1771 if (mp == NULL) { 1772 error = ENOMEM; 1773 goto invalidate; 1774 } 1775 if (segmap_sz == 0) { 1776 rd.sz -= segmap->len; 1777 rd.off += segmap->len; 1778 REF_RELE(segmap); 1779 segmap = NULL; 1780 } 1781 } 1782 if (wmp == NULL) { 1783 wmp = mp; 1784 } else { 1785 wmp->b_next->b_cont = mp; 1786 wmp->b_next = mp->b_next; 1787 mp->b_next = NULL; 1788 } 1789 } while (wsz > 0 && rd.sz > 0); 1790 1791 wmp->b_next = NULL; 1792 if (first) { 1793 /* First kstrwrite(), use noqwait */ 1794 if ((error = kstrwritempnoqwait(vp, wmp)) != 0) 1795 goto invalidate; 1796 /* 1797 * For the rest of the kstrwrite()s use SO_SNDBUF 1798 * worth of data at a time, note these kstrwrite()s 1799 * may (will) block one or more times. 1800 */ 1801 first = B_FALSE; 1802 } else { 1803 if ((error = kstrwritemp(vp, wmp, fflg)) != 0) { 1804 if (error == EAGAIN) { 1805 nl7c_uri_rd_EAGAIN++; 1806 if ((error = 1807 kstrwritempnoqwait(vp, wmp)) != 0) 1808 goto invalidate; 1809 } else 1810 goto invalidate; 1811 } 1812 } 1813 } while (rd.sz > 0); 1814 1815 return (0); 1816 1817 invalidate: 1818 if (segmap) { 1819 REF_RELE(segmap); 1820 } 1821 if (wmp) 1822 freemsg(wmp); 1823 1824 return (error); 1825 } 1826 1827 /* 1828 * Send the URI uri_desc_t *uri response out the socket_t *so. 1829 */ 1830 1831 static int 1832 uri_response(struct sonode *so, uri_desc_t *uri) 1833 { 1834 uri_rd_t *rdp = &uri->response; 1835 boolean_t first = B_TRUE; 1836 int error; 1837 1838 while (rdp != NULL) { 1839 error = uri_rd_response(so, uri, rdp, first); 1840 if (error != 0) { 1841 goto invalidate; 1842 } 1843 first = B_FALSE; 1844 rdp = rdp->next; 1845 } 1846 return (0); 1847 1848 invalidate: 1849 uri_delete(uri); 1850 return (error); 1851 } 1852 1853 /* 1854 * The pchars[] array is indexed by a char to determine if it's a 1855 * valid URI path component chararcter where: 1856 * 1857 * pchar = unreserved | escaped | 1858 * ":" | "@" | "&" | "=" | "+" | "$" | "," 1859 * 1860 * unreserved = alphanum | mark 1861 * 1862 * alphanum = alpha | digit 1863 * 1864 * alpha = lowalpha | upalpha 1865 * 1866 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | 1867 * "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | 1868 * "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | 1869 * "y" | "z" 1870 * 1871 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | 1872 * "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | 1873 * "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | 1874 * "Y" | "Z" 1875 * 1876 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 1877 * "8" | "9" 1878 * 1879 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" 1880 * 1881 * escaped = "%" hex hex 1882 * hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 1883 * "a" | "b" | "c" | "d" | "e" | "f" 1884 */ 1885 1886 static char pchars[] = { 1887 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x07 */ 1888 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 - 0x0F */ 1889 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x17 */ 1890 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 - 0x1F */ 1891 0, 1, 0, 0, 1, 1, 1, 1, /* 0x20 - 0x27 */ 1892 0, 0, 1, 1, 1, 1, 1, 1, /* 0x28 - 0x2F */ 1893 1, 1, 1, 1, 1, 1, 1, 1, /* 0x30 - 0x37 */ 1894 1, 1, 1, 0, 0, 1, 0, 0, /* 0x38 - 0x3F */ 1895 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x47 */ 1896 1, 1, 1, 1, 1, 1, 1, 1, /* 0x48 - 0x4F */ 1897 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x57 */ 1898 1, 1, 1, 0, 0, 0, 0, 1, /* 0x58 - 0x5F */ 1899 0, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x67 */ 1900 1, 1, 1, 1, 1, 1, 1, 1, /* 0x68 - 0x6F */ 1901 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x77 */ 1902 1, 1, 1, 0, 0, 0, 1, 0 /* 0x78 - 0x7F */ 1903 }; 1904 1905 #define PCHARS_MASK 0x7F 1906 1907 /* 1908 * This is the main L7 request message parse, we are called each time 1909 * new data is availble for a socket, each time a single buffer of the 1910 * entire message to date is given. 1911 * 1912 * Here we parse the request looking for the URI, parse it, and if a 1913 * supported scheme call the scheme parser to commplete the parse of any 1914 * headers which may further qualify the identity of the requested object 1915 * then lookup it up in the URI hash. 1916 * 1917 * Return B_TRUE for more processing. 1918 * 1919 * Note, at this time the parser supports the generic message format as 1920 * specified in RFC 822 with potentional limitations as specified in RFC 1921 * 2616 for HTTP messages. 1922 * 1923 * Note, the caller supports an mblk_t chain, for now the parser(s) 1924 * require the complete header in a single mblk_t. This is the common 1925 * case and certainly for high performance environments, if at a future 1926 * date mblk_t chains are important the parse can be reved to process 1927 * mblk_t chains. 1928 */ 1929 1930 boolean_t 1931 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret) 1932 { 1933 char *cp = (char *)so->so_nl7c_rcv_mp->b_rptr; 1934 char *ep = (char *)so->so_nl7c_rcv_mp->b_wptr; 1935 char *get = "GET "; 1936 char *post = "POST "; 1937 char c; 1938 char *uris; 1939 uri_desc_t *uri = NULL; 1940 uri_desc_t *ruri = NULL; 1941 mblk_t *reqmp; 1942 uint32_t hv = 0; 1943 1944 if ((reqmp = dupb(so->so_nl7c_rcv_mp)) == NULL) { 1945 nl7c_uri_pass_dupbfail++; 1946 goto pass; 1947 } 1948 /* 1949 * Allocate and initialize minimumal state for the request 1950 * uri_desc_t, in the cache hit case this uri_desc_t will 1951 * be freed. 1952 */ 1953 uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP); 1954 REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc); 1955 uri->hash = NULL; 1956 uri->tail = NULL; 1957 uri->scheme = NULL; 1958 uri->count = 0; 1959 uri->reqmp = reqmp; 1960 1961 /* 1962 * Set request time to current time. 1963 */ 1964 so->so_nl7c_rtime = gethrestime_sec(); 1965 1966 /* 1967 * Parse the Request-Line for the URI. 1968 * 1969 * For backwards HTTP version compatable reasons skip any leading 1970 * CRLF (or CR or LF) line terminator(s) preceding Request-Line. 1971 */ 1972 while (cp < ep && (*cp == '\r' || *cp == '\n')) { 1973 cp++; 1974 } 1975 while (cp < ep && *get == *cp) { 1976 get++; 1977 cp++; 1978 } 1979 if (*get != 0) { 1980 /* Note a "GET", check for "POST" */ 1981 while (cp < ep && *post == *cp) { 1982 post++; 1983 cp++; 1984 } 1985 if (*post != 0) { 1986 if (cp == ep) { 1987 nl7c_uri_more_get++; 1988 goto more; 1989 } 1990 /* Not a "GET" or a "POST", just pass */ 1991 nl7c_uri_pass_method++; 1992 goto pass; 1993 } 1994 /* "POST", don't cache but still may want to parse */ 1995 uri->hash = URI_TEMP; 1996 } 1997 /* 1998 * Skip over URI path char(s) and save start and past end pointers. 1999 */ 2000 uris = cp; 2001 while (cp < ep && (c = *cp) != ' ' && c != '\r') { 2002 if (c == '?') { 2003 /* Don't cache but still may want to parse */ 2004 uri->hash = URI_TEMP; 2005 } 2006 CHASH(hv, c); 2007 cp++; 2008 } 2009 if (c != '\r' && cp == ep) { 2010 nl7c_uri_more_eol++; 2011 goto more; 2012 } 2013 /* 2014 * Request-Line URI parsed, pass the rest of the request on 2015 * to the the http scheme parse. 2016 */ 2017 uri->path.cp = uris; 2018 uri->path.ep = cp; 2019 uri->hvalue = hv; 2020 if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) { 2021 /* 2022 * Parse not successful or pass on request, the pointer 2023 * to the parse pointer "cp" is overloaded such that ! NULL 2024 * for more data and NULL for bad parse of request or pass. 2025 */ 2026 if (cp != NULL) { 2027 nl7c_uri_more_http++; 2028 goto more; 2029 } 2030 nl7c_uri_pass_http++; 2031 goto pass; 2032 } 2033 if (uri->nocache) { 2034 uri->hash = URI_TEMP; 2035 (void) uri_lookup(uri, B_FALSE, nonblocking); 2036 } else if (uri->hash == URI_TEMP) { 2037 uri->nocache = B_TRUE; 2038 (void) uri_lookup(uri, B_FALSE, nonblocking); 2039 } 2040 2041 if (uri->hash == URI_TEMP) { 2042 if (so->so_nl7c_flags & NL7C_SOPERSIST) { 2043 /* Temporary URI so skip hash processing */ 2044 nl7c_uri_request++; 2045 nl7c_uri_temp++; 2046 goto temp; 2047 } 2048 /* Not persistent so not interested in the response */ 2049 nl7c_uri_pass_temp++; 2050 goto pass; 2051 } 2052 /* 2053 * Check the URI hash for a cached response, save the request 2054 * uri in case we need it below. 2055 */ 2056 ruri = uri; 2057 if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) { 2058 /* 2059 * Failed to lookup due to nonblocking wait required, 2060 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc 2061 * failure, ... Just pass on this request. 2062 */ 2063 nl7c_uri_pass_addfail++; 2064 goto pass; 2065 } 2066 nl7c_uri_request++; 2067 if (uri->response.sz > 0) { 2068 /* 2069 * We have the response cached, update recv mblk rptr 2070 * to reflect the data consumed in parse. 2071 */ 2072 mblk_t *mp = so->so_nl7c_rcv_mp; 2073 2074 if (cp == (char *)mp->b_wptr) { 2075 so->so_nl7c_rcv_mp = mp->b_cont; 2076 mp->b_cont = NULL; 2077 freeb(mp); 2078 } else { 2079 mp->b_rptr = (unsigned char *)cp; 2080 } 2081 nl7c_uri_hit++; 2082 /* If conditional request check for substitute response */ 2083 if (ruri->conditional) { 2084 uri = nl7c_http_cond(ruri, uri); 2085 } 2086 /* If logging enabled log request */ 2087 if (nl7c_logd_enabled) { 2088 ipaddr_t faddr; 2089 2090 if (so->so_family == AF_INET) { 2091 /* Only support IPv4 addrs */ 2092 faddr = ((struct sockaddr_in *) 2093 so->so_faddr_sa) ->sin_addr.s_addr; 2094 } else { 2095 faddr = 0; 2096 } 2097 /* XXX need to pass response type, e.g. 200, 304 */ 2098 nl7c_logd_log(ruri, uri, so->so_nl7c_rtime, faddr); 2099 } 2100 /* 2101 * Release reference on request URI, send the response out 2102 * the socket, release reference on response uri, set the 2103 * *ret value to B_TRUE to indicate request was consumed 2104 * then return B_FALSE to indcate no more data needed. 2105 */ 2106 REF_RELE(ruri); 2107 (void) uri_response(so, uri); 2108 REF_RELE(uri); 2109 *ret = B_TRUE; 2110 return (B_FALSE); 2111 } 2112 /* 2113 * Miss the cache, the request URI is in the cache waiting for 2114 * application write-side data to fill it. 2115 */ 2116 nl7c_uri_miss++; 2117 temp: 2118 /* 2119 * A miss or temp URI for which response data is needed, link 2120 * uri to so and so to uri, set WAITWRITE in the so such that 2121 * read-side processing is suspended (so the next read() gets 2122 * the request data) until a write() is processed by NL7C. 2123 * 2124 * Note, so->so_nl7c_uri now owns the REF_INIT() ref. 2125 */ 2126 uri->proc = so; 2127 so->so_nl7c_uri = uri; 2128 so->so_nl7c_flags |= NL7C_WAITWRITE; 2129 *ret = B_FALSE; 2130 return (B_FALSE); 2131 2132 more: 2133 /* More data is needed, note fragmented recv not supported */ 2134 nl7c_uri_more++; 2135 2136 pass: 2137 /* Pass on this request */ 2138 nl7c_uri_pass++; 2139 nl7c_uri_request++; 2140 if (ruri != NULL) { 2141 REF_RELE(ruri); 2142 } 2143 if (uri) { 2144 REF_RELE(uri); 2145 } 2146 so->so_nl7c_flags = 0; 2147 *ret = B_FALSE; 2148 return (B_FALSE); 2149 } 2150