1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/strsubr.h> 27 #include <sys/strsun.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <vm/seg_map.h> 31 #include <vm/seg_kpm.h> 32 #include <sys/condvar_impl.h> 33 #include <sys/sendfile.h> 34 #include <fs/sockfs/nl7c.h> 35 #include <fs/sockfs/nl7curi.h> 36 #include <fs/sockfs/socktpi_impl.h> 37 38 #include <inet/common.h> 39 #include <inet/ip.h> 40 #include <inet/ip6.h> 41 #include <inet/tcp.h> 42 #include <inet/led.h> 43 #include <inet/mi.h> 44 45 #include <inet/nca/ncadoorhdr.h> 46 #include <inet/nca/ncalogd.h> 47 #include <inet/nca/ncandd.h> 48 49 #include <sys/promif.h> 50 51 /* 52 * Some externs: 53 */ 54 55 extern boolean_t nl7c_logd_enabled; 56 extern void nl7c_logd_log(uri_desc_t *, uri_desc_t *, 57 time_t, ipaddr_t); 58 extern boolean_t nl7c_close_addr(struct sonode *); 59 extern struct sonode *nl7c_addr2portso(void *); 60 extern uri_desc_t *nl7c_http_cond(uri_desc_t *, uri_desc_t *); 61 62 /* 63 * Various global tuneables: 64 */ 65 66 clock_t nl7c_uri_ttl = -1; /* TTL in seconds (-1 == infinite) */ 67 68 boolean_t nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */ 69 70 uint64_t nl7c_file_prefetch = 1; /* File cache prefetch pages */ 71 72 uint64_t nl7c_uri_max = 0; /* Maximum bytes (0 == infinite) */ 73 uint64_t nl7c_uri_bytes = 0; /* Bytes of kmem used by URIs */ 74 75 /* 76 * Locals: 77 */ 78 79 static int uri_rd_response(struct sonode *, uri_desc_t *, 80 uri_rd_t *, boolean_t); 81 static int uri_response(struct sonode *, uri_desc_t *); 82 83 /* 84 * HTTP scheme functions called from nl7chttp.c: 85 */ 86 87 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *); 88 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *); 89 boolean_t nl7c_http_cmp(void *, void *); 90 mblk_t *nl7c_http_persist(struct sonode *); 91 void nl7c_http_free(void *arg); 92 void nl7c_http_init(void); 93 94 /* 95 * Counters that need to move to kstat and/or be removed: 96 */ 97 98 volatile uint64_t nl7c_uri_request = 0; 99 volatile uint64_t nl7c_uri_hit = 0; 100 volatile uint64_t nl7c_uri_pass = 0; 101 volatile uint64_t nl7c_uri_miss = 0; 102 volatile uint64_t nl7c_uri_temp = 0; 103 volatile uint64_t nl7c_uri_more = 0; 104 volatile uint64_t nl7c_uri_data = 0; 105 volatile uint64_t nl7c_uri_sendfilev = 0; 106 volatile uint64_t nl7c_uri_reclaim_calls = 0; 107 volatile uint64_t nl7c_uri_reclaim_cnt = 0; 108 volatile uint64_t nl7c_uri_pass_urifail = 0; 109 volatile uint64_t nl7c_uri_pass_dupbfail = 0; 110 volatile uint64_t nl7c_uri_more_get = 0; 111 volatile uint64_t nl7c_uri_pass_method = 0; 112 volatile uint64_t nl7c_uri_pass_option = 0; 113 volatile uint64_t nl7c_uri_more_eol = 0; 114 volatile uint64_t nl7c_uri_more_http = 0; 115 volatile uint64_t nl7c_uri_pass_http = 0; 116 volatile uint64_t nl7c_uri_pass_addfail = 0; 117 volatile uint64_t nl7c_uri_pass_temp = 0; 118 volatile uint64_t nl7c_uri_expire = 0; 119 volatile uint64_t nl7c_uri_purge = 0; 120 volatile uint64_t nl7c_uri_NULL1 = 0; 121 volatile uint64_t nl7c_uri_NULL2 = 0; 122 volatile uint64_t nl7c_uri_close = 0; 123 volatile uint64_t nl7c_uri_temp_close = 0; 124 volatile uint64_t nl7c_uri_free = 0; 125 volatile uint64_t nl7c_uri_temp_free = 0; 126 volatile uint64_t nl7c_uri_temp_mk = 0; 127 volatile uint64_t nl7c_uri_rd_EAGAIN = 0; 128 129 /* 130 * Various kmem_cache_t's: 131 */ 132 133 kmem_cache_t *nl7c_uri_kmc; 134 kmem_cache_t *nl7c_uri_rd_kmc; 135 static kmem_cache_t *uri_desb_kmc; 136 static kmem_cache_t *uri_segmap_kmc; 137 138 static void uri_kmc_reclaim(void *); 139 140 static void nl7c_uri_reclaim(void); 141 142 /* 143 * The URI hash is a dynamically sized A/B bucket hash, when the current 144 * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of 145 * the next P2Ps[] size is created. 146 * 147 * All lookups are done in the current hash then the new hash (if any), 148 * if there is a new has then when a current hash bucket chain is examined 149 * any uri_desc_t members will be migrated to the new hash and when the 150 * last uri_desc_t has been migrated then the new hash will become the 151 * current and the previous current hash will be freed leaving a single 152 * hash. 153 * 154 * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[] 155 * and can be accessed only after aquiring the uri_hash_access lock (for 156 * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t 157 * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD() 158 * is placed on all uri_desc_t uri_hash_t list members. 159 * 160 * uri_hash_access - rwlock for all uri_hash_* variables, READER for read 161 * access and WRITER for write access. Note, WRITER is only required for 162 * hash geometry changes. 163 * 164 * uri_hash_which - which uri_hash_ab[] is the current hash. 165 * 166 * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[]. 167 * 168 * uri_hash_sz[] - the size for each uri_hash_ab[]. 169 * 170 * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[]. 171 * 172 * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when 173 * a new uri_hash_ab[] needs to be created. 174 * 175 * uri_hash_ab[] - the uri_hash_t entries. 176 * 177 * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim. 178 */ 179 180 typedef struct uri_hash_s { 181 struct uri_desc_s *list; /* List of uri_t(s) */ 182 kmutex_t lock; 183 } uri_hash_t; 184 185 #define URI_HASH_AVRG 5 /* Desired average hash chain length */ 186 #define URI_HASH_N_INIT 9 /* P2Ps[] initial index */ 187 188 static krwlock_t uri_hash_access; 189 static uint32_t uri_hash_which = 0; 190 static uint32_t uri_hash_n[2] = {URI_HASH_N_INIT, 0}; 191 static uint32_t uri_hash_sz[2] = {0, 0}; 192 static uint32_t uri_hash_cnt[2] = {0, 0}; 193 static uint32_t uri_hash_overflow[2] = {0, 0}; 194 static uri_hash_t *uri_hash_ab[2] = {NULL, NULL}; 195 static uri_hash_t *uri_hash_lru[2] = {NULL, NULL}; 196 197 /* 198 * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2)) 199 * these primes have been foud to be useful for prime sized hash tables. 200 */ 201 202 static const int P2Ps[] = { 203 0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, 204 6143, 12281, 24571, 49139, 98299, 196597, 393209, 205 786431, 1572853, 3145721, 6291449, 12582893, 0}; 206 207 /* 208 * Hash macros: 209 * 210 * H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII) 211 * hex multichar of the format "%HH" pointeded to by *cp to a char and 212 * return in c, *ep points to past end of (char *), on return *cp will 213 * point to the last char consumed. 214 * 215 * URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from 216 * *cp to *ep to the unsigned hix, cp nor ep are modified. 217 * 218 * URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to 219 * a hash index 0 - (uri_hash_sz[which] - 1). 220 * 221 * URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list 222 * uri_desc_t members from hash from to hash to. 223 * 224 * URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t 225 * *uri which is a member of the uri_hash_t *hp list with a previous 226 * list member of *puri for the uri_hash_ab[] cur. After unlinking 227 * check for cur hash empty, if so make new cur. Note, as this macro 228 * can change a hash chain it needs to be run under hash_access as 229 * RW_WRITER, futher as it can change the new hash to cur any access 230 * to the hash state must be done after either dropping locks and 231 * starting over or making sure the global state is consistent after 232 * as before. 233 */ 234 235 #define H2A(cp, ep, c) { \ 236 int _h = 2; \ 237 int _n = 0; \ 238 char _hc; \ 239 \ 240 while (_h > 0 && ++(cp) < (ep)) { \ 241 if (_h == 1) \ 242 _n *= 0x10; \ 243 _hc = *(cp); \ 244 if (_hc >= '0' && _hc <= '9') \ 245 _n += _hc - '0'; \ 246 else if (_hc >= 'a' || _hc <= 'f') \ 247 _n += _hc - 'W'; \ 248 else if (_hc >= 'A' || _hc <= 'F') \ 249 _n += _hc - '7'; \ 250 _h--; \ 251 } \ 252 (c) = _n; \ 253 } 254 255 #define URI_HASH(hv, cp, ep) { \ 256 char *_s = (cp); \ 257 char _c; \ 258 \ 259 while (_s < (ep)) { \ 260 if ((_c = *_s) == '%') { \ 261 H2A(_s, (ep), _c); \ 262 } \ 263 CHASH(hv, _c); \ 264 _s++; \ 265 } \ 266 } 267 268 #define URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)]) 269 270 #define URI_HASH_MIGRATE(from, hp, to) { \ 271 uri_desc_t *_nuri; \ 272 uint32_t _nhix; \ 273 uri_hash_t *_nhp; \ 274 \ 275 mutex_enter(&(hp)->lock); \ 276 while ((_nuri = (hp)->list) != NULL) { \ 277 (hp)->list = _nuri->hash; \ 278 atomic_add_32(&uri_hash_cnt[(from)], -1); \ 279 atomic_add_32(&uri_hash_cnt[(to)], 1); \ 280 _nhix = _nuri->hvalue; \ 281 URI_HASH_IX(_nhix, to); \ 282 _nhp = &uri_hash_ab[(to)][_nhix]; \ 283 mutex_enter(&_nhp->lock); \ 284 _nuri->hash = _nhp->list; \ 285 _nhp->list = _nuri; \ 286 _nuri->hit = 0; \ 287 mutex_exit(&_nhp->lock); \ 288 } \ 289 mutex_exit(&(hp)->lock); \ 290 } 291 292 #define URI_HASH_UNLINK(cur, new, hp, puri, uri) { \ 293 if ((puri) != NULL) { \ 294 (puri)->hash = (uri)->hash; \ 295 } else { \ 296 (hp)->list = (uri)->hash; \ 297 } \ 298 if (atomic_add_32_nv(&uri_hash_cnt[(cur)], -1) == 0 && \ 299 uri_hash_ab[(new)] != NULL) { \ 300 kmem_free(uri_hash_ab[cur], \ 301 sizeof (uri_hash_t) * uri_hash_sz[cur]); \ 302 uri_hash_ab[(cur)] = NULL; \ 303 uri_hash_lru[(cur)] = NULL; \ 304 uri_hash_which = (new); \ 305 } else { \ 306 uri_hash_lru[(cur)] = (hp); \ 307 } \ 308 } 309 310 void 311 nl7c_uri_init(void) 312 { 313 uint32_t cur = uri_hash_which; 314 315 rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL); 316 317 uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT]; 318 uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG; 319 uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur], 320 KM_SLEEP); 321 uri_hash_lru[cur] = uri_hash_ab[cur]; 322 323 nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t), 324 0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0); 325 326 nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc", 327 sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 328 329 uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc", 330 sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 331 332 uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc", 333 sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 334 335 nl7c_http_init(); 336 } 337 338 #define CV_SZ 16 339 340 void 341 nl7c_mi_report_hash(mblk_t *mp) 342 { 343 uri_hash_t *hp, *pend; 344 uri_desc_t *uri; 345 uint32_t cur; 346 uint32_t new; 347 int n, nz, tot; 348 uint32_t cv[CV_SZ + 1]; 349 350 rw_enter(&uri_hash_access, RW_READER); 351 cur = uri_hash_which; 352 new = cur ? 0 : 1; 353 next: 354 for (n = 0; n <= CV_SZ; n++) 355 cv[n] = 0; 356 nz = 0; 357 tot = 0; 358 hp = &uri_hash_ab[cur][0]; 359 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 360 while (hp < pend) { 361 n = 0; 362 for (uri = hp->list; uri != NULL; uri = uri->hash) { 363 n++; 364 } 365 tot += n; 366 if (n > 0) 367 nz++; 368 if (n > CV_SZ) 369 n = CV_SZ; 370 cv[n]++; 371 hp++; 372 } 373 374 (void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, " 375 "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW", 376 uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0); 377 (void) mi_mpprintf(mp, "Free=%d", cv[0]); 378 for (n = 1; n < CV_SZ; n++) { 379 int pn = 0; 380 char pv[5]; 381 char *pp = pv; 382 383 for (pn = n; pn < 1000; pn *= 10) 384 *pp++ = ' '; 385 *pp = 0; 386 (void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]); 387 } 388 (void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]); 389 390 if (cur != new && uri_hash_ab[new] != NULL) { 391 cur = new; 392 goto next; 393 } 394 rw_exit(&uri_hash_access); 395 } 396 397 void 398 nl7c_mi_report_uri(mblk_t *mp) 399 { 400 uri_hash_t *hp; 401 uri_desc_t *uri; 402 uint32_t cur; 403 uint32_t new; 404 int ix; 405 int ret; 406 char sc; 407 408 rw_enter(&uri_hash_access, RW_READER); 409 cur = uri_hash_which; 410 new = cur ? 0 : 1; 411 next: 412 for (ix = 0; ix < uri_hash_sz[cur]; ix++) { 413 hp = &uri_hash_ab[cur][ix]; 414 mutex_enter(&hp->lock); 415 uri = hp->list; 416 while (uri != NULL) { 417 sc = *(uri->path.ep); 418 *(uri->path.ep) = 0; 419 ret = mi_mpprintf(mp, "%s: %d %d %d", 420 uri->path.cp, (int)uri->resplen, 421 (int)uri->respclen, (int)uri->count); 422 *(uri->path.ep) = sc; 423 if (ret == -1) break; 424 uri = uri->hash; 425 } 426 mutex_exit(&hp->lock); 427 if (ret == -1) break; 428 } 429 if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) { 430 cur = new; 431 goto next; 432 } 433 rw_exit(&uri_hash_access); 434 } 435 436 /* 437 * The uri_desc_t ref_t inactive function called on the last REF_RELE(), 438 * free all resources contained in the uri_desc_t. Note, the uri_desc_t 439 * will be freed by REF_RELE() on return. 440 */ 441 442 void 443 nl7c_uri_inactive(uri_desc_t *uri) 444 { 445 int64_t bytes = 0; 446 447 if (uri->tail) { 448 uri_rd_t *rdp = &uri->response; 449 uri_rd_t *free = NULL; 450 451 while (rdp) { 452 if (rdp->off == -1) { 453 bytes += rdp->sz; 454 kmem_free(rdp->data.kmem, rdp->sz); 455 } else { 456 VN_RELE(rdp->data.vnode); 457 } 458 rdp = rdp->next; 459 if (free != NULL) { 460 kmem_cache_free(nl7c_uri_rd_kmc, free); 461 } 462 free = rdp; 463 } 464 } 465 if (bytes) { 466 atomic_add_64(&nl7c_uri_bytes, -bytes); 467 } 468 if (uri->scheme != NULL) { 469 nl7c_http_free(uri->scheme); 470 } 471 if (uri->reqmp) { 472 freeb(uri->reqmp); 473 } 474 } 475 476 /* 477 * The reclaim is called by the kmem subsystem when kmem is running 478 * low. More work is needed to determine the best reclaim policy, for 479 * now we just manipulate the nl7c_uri_max global maximum bytes threshold 480 * value using a simple arithmetic backoff of the value every time this 481 * function is called then call uri_reclaim() to enforce it. 482 * 483 * Note, this value remains in place and enforced for all subsequent 484 * URI request/response processing. 485 * 486 * Note, nl7c_uri_max is currently initialized to 0 or infinite such that 487 * the first call here set it to the current uri_bytes value then backoff 488 * from there. 489 * 490 * XXX how do we determine when to increase nl7c_uri_max ??? 491 */ 492 493 /*ARGSUSED*/ 494 static void 495 uri_kmc_reclaim(void *arg) 496 { 497 uint64_t new_max; 498 499 if ((new_max = nl7c_uri_max) == 0) { 500 /* Currently infinite, initialize to current bytes used */ 501 nl7c_uri_max = nl7c_uri_bytes; 502 new_max = nl7c_uri_bytes; 503 } 504 if (new_max > 1) { 505 /* Lower max_bytes to 93% of current value */ 506 new_max >>= 1; /* 50% */ 507 new_max += (new_max >> 1); /* 75% */ 508 new_max += (new_max >> 2); /* 93% */ 509 if (new_max < nl7c_uri_max) 510 nl7c_uri_max = new_max; 511 else 512 nl7c_uri_max = 1; 513 } 514 nl7c_uri_reclaim(); 515 } 516 517 /* 518 * Delete a uri_desc_t from the URI hash. 519 */ 520 521 static void 522 uri_delete(uri_desc_t *del) 523 { 524 uint32_t hix; 525 uri_hash_t *hp; 526 uri_desc_t *uri; 527 uri_desc_t *puri; 528 uint32_t cur; 529 uint32_t new; 530 531 ASSERT(del->hash != URI_TEMP); 532 rw_enter(&uri_hash_access, RW_WRITER); 533 cur = uri_hash_which; 534 new = cur ? 0 : 1; 535 next: 536 puri = NULL; 537 hix = del->hvalue; 538 URI_HASH_IX(hix, cur); 539 hp = &uri_hash_ab[cur][hix]; 540 for (uri = hp->list; uri != NULL; uri = uri->hash) { 541 if (uri != del) { 542 puri = uri; 543 continue; 544 } 545 /* 546 * Found the URI, unlink from the hash chain, 547 * drop locks, ref release it. 548 */ 549 URI_HASH_UNLINK(cur, new, hp, puri, uri); 550 rw_exit(&uri_hash_access); 551 REF_RELE(uri); 552 return; 553 } 554 if (cur != new && uri_hash_ab[new] != NULL) { 555 /* 556 * Not found in current hash and have a new hash so 557 * check the new hash next. 558 */ 559 cur = new; 560 goto next; 561 } 562 rw_exit(&uri_hash_access); 563 } 564 565 /* 566 * Add a uri_desc_t to the URI hash. 567 */ 568 569 static void 570 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking) 571 { 572 uint32_t hix; 573 uri_hash_t *hp; 574 uint32_t cur = uri_hash_which; 575 uint32_t new = cur ? 0 : 1; 576 577 /* 578 * Caller of uri_add() must hold the uri_hash_access rwlock. 579 */ 580 ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) || 581 (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access))); 582 /* 583 * uri_add() always succeeds so add a hash ref to the URI now. 584 */ 585 REF_HOLD(uri); 586 again: 587 hix = uri->hvalue; 588 URI_HASH_IX(hix, cur); 589 if (uri_hash_ab[new] == NULL && 590 uri_hash_cnt[cur] < uri_hash_overflow[cur]) { 591 /* 592 * Easy case, no new hash and current hasn't overflowed, 593 * add URI to current hash and return. 594 * 595 * Note, the check for uri_hash_cnt[] above aren't done 596 * atomictally, i.e. multiple threads can be in this code 597 * as RW_READER and update the cnt[], this isn't a problem 598 * as the check is only advisory. 599 */ 600 fast: 601 atomic_add_32(&uri_hash_cnt[cur], 1); 602 hp = &uri_hash_ab[cur][hix]; 603 mutex_enter(&hp->lock); 604 uri->hash = hp->list; 605 hp->list = uri; 606 mutex_exit(&hp->lock); 607 rw_exit(&uri_hash_access); 608 return; 609 } 610 if (uri_hash_ab[new] == NULL) { 611 /* 612 * Need a new a or b hash, if not already RW_WRITER 613 * try to upgrade our lock to writer. 614 */ 615 if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) { 616 /* 617 * Upgrade failed, we can't simple exit and reenter 618 * the lock as after the exit and before the reenter 619 * the whole world can change so just wait for writer 620 * then do everything again. 621 */ 622 if (nonblocking) { 623 /* 624 * Can't block, use fast-path above. 625 * 626 * XXX should have a background thread to 627 * handle new ab[] in this case so as to 628 * not overflow the cur hash to much. 629 */ 630 goto fast; 631 } 632 rw_exit(&uri_hash_access); 633 rwlock = RW_WRITER; 634 rw_enter(&uri_hash_access, rwlock); 635 cur = uri_hash_which; 636 new = cur ? 0 : 1; 637 goto again; 638 } 639 rwlock = RW_WRITER; 640 if (uri_hash_ab[new] == NULL) { 641 /* 642 * Still need a new hash, allocate and initialize 643 * the new hash. 644 */ 645 uri_hash_n[new] = uri_hash_n[cur] + 1; 646 if (uri_hash_n[new] == 0) { 647 /* 648 * No larger P2Ps[] value so use current, 649 * i.e. 2 of the largest are better than 1 ? 650 */ 651 uri_hash_n[new] = uri_hash_n[cur]; 652 cmn_err(CE_NOTE, "NL7C: hash index overflow"); 653 } 654 uri_hash_sz[new] = P2Ps[uri_hash_n[new]]; 655 ASSERT(uri_hash_cnt[new] == 0); 656 uri_hash_overflow[new] = uri_hash_sz[new] * 657 URI_HASH_AVRG; 658 uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) * 659 uri_hash_sz[new], nonblocking ? KM_NOSLEEP : 660 KM_SLEEP); 661 if (uri_hash_ab[new] == NULL) { 662 /* 663 * Alloc failed, use fast-path above. 664 * 665 * XXX should have a background thread to 666 * handle new ab[] in this case so as to 667 * not overflow the cur hash to much. 668 */ 669 goto fast; 670 } 671 uri_hash_lru[new] = uri_hash_ab[new]; 672 } 673 } 674 /* 675 * Hashed against current hash so migrate any current hash chain 676 * members, if any. 677 * 678 * Note, the hash chain list can be checked for a non empty list 679 * outside of the hash chain list lock as the hash chain struct 680 * can't be destroyed while in the uri_hash_access rwlock, worst 681 * case is that a non empty list is found and after acquiring the 682 * lock another thread beats us to it (i.e. migrated the list). 683 */ 684 hp = &uri_hash_ab[cur][hix]; 685 if (hp->list != NULL) { 686 URI_HASH_MIGRATE(cur, hp, new); 687 } 688 /* 689 * If new hash has overflowed before current hash has been 690 * completely migrated then walk all current hash chains and 691 * migrate list members now. 692 */ 693 if (atomic_add_32_nv(&uri_hash_cnt[new], 1) >= uri_hash_overflow[new]) { 694 for (hix = 0; hix < uri_hash_sz[cur]; hix++) { 695 hp = &uri_hash_ab[cur][hix]; 696 if (hp->list != NULL) { 697 URI_HASH_MIGRATE(cur, hp, new); 698 } 699 } 700 } 701 /* 702 * Add URI to new hash. 703 */ 704 hix = uri->hvalue; 705 URI_HASH_IX(hix, new); 706 hp = &uri_hash_ab[new][hix]; 707 mutex_enter(&hp->lock); 708 uri->hash = hp->list; 709 hp->list = uri; 710 mutex_exit(&hp->lock); 711 /* 712 * Last, check to see if last cur hash chain has been 713 * migrated, if so free cur hash and make new hash cur. 714 */ 715 if (uri_hash_cnt[cur] == 0) { 716 /* 717 * If we don't already hold the uri_hash_access rwlock for 718 * RW_WRITE try to upgrade to RW_WRITE and if successful 719 * check again and to see if still need to do the free. 720 */ 721 if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) && 722 uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) { 723 kmem_free(uri_hash_ab[cur], 724 sizeof (uri_hash_t) * uri_hash_sz[cur]); 725 uri_hash_ab[cur] = NULL; 726 uri_hash_lru[cur] = NULL; 727 uri_hash_which = new; 728 } 729 } 730 rw_exit(&uri_hash_access); 731 } 732 733 /* 734 * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t 735 * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if 736 * add B_TRUE use the request URI to create a new hash entry. Else if add 737 * B_FALSE ... 738 */ 739 740 static uri_desc_t * 741 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking) 742 { 743 uint32_t hix; 744 uri_hash_t *hp; 745 uri_desc_t *uri; 746 uri_desc_t *puri; 747 uint32_t cur; 748 uint32_t new; 749 char *rcp = ruri->path.cp; 750 char *rep = ruri->path.ep; 751 752 again: 753 rw_enter(&uri_hash_access, RW_READER); 754 cur = uri_hash_which; 755 new = cur ? 0 : 1; 756 nexthash: 757 puri = NULL; 758 hix = ruri->hvalue; 759 URI_HASH_IX(hix, cur); 760 hp = &uri_hash_ab[cur][hix]; 761 mutex_enter(&hp->lock); 762 for (uri = hp->list; uri != NULL; uri = uri->hash) { 763 char *ap = uri->path.cp; 764 char *bp = rcp; 765 char a, b; 766 767 /* Compare paths */ 768 while (bp < rep && ap < uri->path.ep) { 769 if ((a = *ap) == '%') { 770 /* Escaped hex multichar, convert it */ 771 H2A(ap, uri->path.ep, a); 772 } 773 if ((b = *bp) == '%') { 774 /* Escaped hex multichar, convert it */ 775 H2A(bp, rep, b); 776 } 777 if (a != b) { 778 /* Char's don't match */ 779 goto nexturi; 780 } 781 ap++; 782 bp++; 783 } 784 if (bp != rep || ap != uri->path.ep) { 785 /* Not same length */ 786 goto nexturi; 787 } 788 ap = uri->auth.cp; 789 bp = ruri->auth.cp; 790 if (ap != NULL) { 791 if (bp == NULL) { 792 /* URI has auth request URI doesn't */ 793 goto nexturi; 794 } 795 while (bp < ruri->auth.ep && ap < uri->auth.ep) { 796 if ((a = *ap) == '%') { 797 /* Escaped hex multichar, convert it */ 798 H2A(ap, uri->path.ep, a); 799 } 800 if ((b = *bp) == '%') { 801 /* Escaped hex multichar, convert it */ 802 H2A(bp, rep, b); 803 } 804 if (a != b) { 805 /* Char's don't match */ 806 goto nexturi; 807 } 808 ap++; 809 bp++; 810 } 811 if (bp != ruri->auth.ep || ap != uri->auth.ep) { 812 /* Not same length */ 813 goto nexturi; 814 } 815 } else if (bp != NULL) { 816 /* URI doesn't have auth and request URI does */ 817 goto nexturi; 818 } 819 /* 820 * Have a path/auth match so before any other processing 821 * of requested URI, check for expire or request no cache 822 * purge. 823 */ 824 if (uri->expire >= 0 && uri->expire <= ddi_get_lbolt() || 825 ruri->nocache) { 826 /* 827 * URI has expired or request specified to not use 828 * the cached version, unlink the URI from the hash 829 * chain, release all locks, release the hash ref 830 * on the URI, and last look it up again. 831 * 832 * Note, this will cause all variants of the named 833 * URI to be purged. 834 */ 835 if (puri != NULL) { 836 puri->hash = uri->hash; 837 } else { 838 hp->list = uri->hash; 839 } 840 mutex_exit(&hp->lock); 841 atomic_add_32(&uri_hash_cnt[cur], -1); 842 rw_exit(&uri_hash_access); 843 if (ruri->nocache) 844 nl7c_uri_purge++; 845 else 846 nl7c_uri_expire++; 847 REF_RELE(uri); 848 goto again; 849 } 850 if (uri->scheme != NULL) { 851 /* 852 * URI has scheme private qualifier(s), if request 853 * URI doesn't or if no match skip this URI. 854 */ 855 if (ruri->scheme == NULL || 856 ! nl7c_http_cmp(uri->scheme, ruri->scheme)) 857 goto nexturi; 858 } else if (ruri->scheme != NULL) { 859 /* 860 * URI doesn't have scheme private qualifiers but 861 * request URI does, no match, skip this URI. 862 */ 863 goto nexturi; 864 } 865 /* 866 * Have a match, ready URI for return, first put a reference 867 * hold on the URI, if this URI is currently being processed 868 * then have to wait for the processing to be completed and 869 * redo the lookup, else return it. 870 */ 871 REF_HOLD(uri); 872 mutex_enter(&uri->proclock); 873 if (uri->proc != NULL) { 874 /* The URI is being processed, wait for completion */ 875 mutex_exit(&hp->lock); 876 rw_exit(&uri_hash_access); 877 if (! nonblocking && 878 cv_wait_sig(&uri->waiting, &uri->proclock)) { 879 /* 880 * URI has been processed but things may 881 * have changed while we were away so do 882 * most everything again. 883 */ 884 mutex_exit(&uri->proclock); 885 REF_RELE(uri); 886 goto again; 887 } else { 888 /* 889 * A nonblocking socket or an interrupted 890 * cv_wait_sig() in the first case can't 891 * block waiting for the processing of the 892 * uri hash hit uri to complete, in both 893 * cases just return failure to lookup. 894 */ 895 mutex_exit(&uri->proclock); 896 REF_RELE(uri); 897 return (NULL); 898 } 899 } 900 mutex_exit(&uri->proclock); 901 uri->hit++; 902 mutex_exit(&hp->lock); 903 rw_exit(&uri_hash_access); 904 return (uri); 905 nexturi: 906 puri = uri; 907 } 908 mutex_exit(&hp->lock); 909 if (cur != new && uri_hash_ab[new] != NULL) { 910 /* 911 * Not found in current hash and have a new hash so 912 * check the new hash next. 913 */ 914 cur = new; 915 goto nexthash; 916 } 917 add: 918 if (! add) { 919 /* Lookup only so return failure */ 920 rw_exit(&uri_hash_access); 921 return (NULL); 922 } 923 /* 924 * URI not hashed, finish intialization of the 925 * request URI, add it to the hash, return it. 926 */ 927 ruri->hit = 0; 928 ruri->expire = -1; 929 ruri->response.sz = 0; 930 ruri->proc = (struct sonode *)~NULL; 931 cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL); 932 mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL); 933 uri_add(ruri, RW_READER, nonblocking); 934 /* uri_add() has done rw_exit(&uri_hash_access) */ 935 return (ruri); 936 } 937 938 /* 939 * Reclaim URIs until max cache size threshold has been reached. 940 * 941 * A CLOCK based reclaim modified with a history (hit counter) counter. 942 */ 943 944 static void 945 nl7c_uri_reclaim(void) 946 { 947 uri_hash_t *hp, *start, *pend; 948 uri_desc_t *uri; 949 uri_desc_t *puri; 950 uint32_t cur; 951 uint32_t new; 952 953 nl7c_uri_reclaim_calls++; 954 again: 955 rw_enter(&uri_hash_access, RW_WRITER); 956 cur = uri_hash_which; 957 new = cur ? 0 : 1; 958 next: 959 hp = uri_hash_lru[cur]; 960 start = hp; 961 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 962 while (nl7c_uri_bytes > nl7c_uri_max) { 963 puri = NULL; 964 for (uri = hp->list; uri != NULL; uri = uri->hash) { 965 if (uri->hit != 0) { 966 /* 967 * Decrement URI activity counter and skip. 968 */ 969 uri->hit--; 970 puri = uri; 971 continue; 972 } 973 if (uri->proc != NULL) { 974 /* 975 * Currently being processed by a socket, skip. 976 */ 977 continue; 978 } 979 /* 980 * Found a candidate, no hit(s) since added or last 981 * reclaim pass, unlink from it's hash chain, update 982 * lru scan pointer, drop lock, ref release it. 983 */ 984 URI_HASH_UNLINK(cur, new, hp, puri, uri); 985 if (cur == uri_hash_which) { 986 if (++hp == pend) { 987 /* Wrap pointer */ 988 hp = uri_hash_ab[cur]; 989 } 990 uri_hash_lru[cur] = hp; 991 } 992 rw_exit(&uri_hash_access); 993 REF_RELE(uri); 994 nl7c_uri_reclaim_cnt++; 995 goto again; 996 } 997 if (++hp == pend) { 998 /* Wrap pointer */ 999 hp = uri_hash_ab[cur]; 1000 } 1001 if (hp == start) { 1002 if (cur != new && uri_hash_ab[new] != NULL) { 1003 /* 1004 * Done with the current hash and have a 1005 * new hash so check the new hash next. 1006 */ 1007 cur = new; 1008 goto next; 1009 } 1010 } 1011 } 1012 rw_exit(&uri_hash_access); 1013 } 1014 1015 /* 1016 * Called for a socket which is being freed prior to close, e.g. errored. 1017 */ 1018 1019 void 1020 nl7c_urifree(struct sonode *so) 1021 { 1022 sotpi_info_t *sti = SOTOTPI(so); 1023 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1024 1025 sti->sti_nl7c_uri = NULL; 1026 if (uri->hash != URI_TEMP) { 1027 uri_delete(uri); 1028 mutex_enter(&uri->proclock); 1029 uri->proc = NULL; 1030 if (CV_HAS_WAITERS(&uri->waiting)) { 1031 cv_broadcast(&uri->waiting); 1032 } 1033 mutex_exit(&uri->proclock); 1034 nl7c_uri_free++; 1035 } else { 1036 /* No proclock as uri exclusively owned by so */ 1037 uri->proc = NULL; 1038 nl7c_uri_temp_free++; 1039 } 1040 REF_RELE(uri); 1041 } 1042 1043 /* 1044 * ... 1045 * 1046 * < 0 need more data 1047 * 1048 * 0 parse complete 1049 * 1050 * > 0 parse error 1051 */ 1052 1053 volatile uint64_t nl7c_resp_pfail = 0; 1054 volatile uint64_t nl7c_resp_ntemp = 0; 1055 volatile uint64_t nl7c_resp_pass = 0; 1056 1057 static int 1058 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz) 1059 { 1060 if (! nl7c_http_response(&data, &data[sz], uri, so)) { 1061 if (data == NULL) { 1062 /* Parse fail */ 1063 goto pfail; 1064 } 1065 /* More data */ 1066 data = NULL; 1067 } else if (data == NULL) { 1068 goto pass; 1069 } 1070 if (uri->hash != URI_TEMP && uri->nocache) { 1071 /* 1072 * After response parse now no cache, 1073 * delete it from cache, wakeup any 1074 * waiters on this URI, make URI_TEMP. 1075 */ 1076 uri_delete(uri); 1077 mutex_enter(&uri->proclock); 1078 if (CV_HAS_WAITERS(&uri->waiting)) { 1079 cv_broadcast(&uri->waiting); 1080 } 1081 mutex_exit(&uri->proclock); 1082 uri->hash = URI_TEMP; 1083 nl7c_uri_temp_mk++; 1084 } 1085 if (data == NULL) { 1086 /* More data needed */ 1087 return (-1); 1088 } 1089 /* Success */ 1090 return (0); 1091 1092 pfail: 1093 nl7c_resp_pfail++; 1094 return (EINVAL); 1095 1096 pass: 1097 nl7c_resp_pass++; 1098 return (ENOTSUP); 1099 } 1100 1101 /* 1102 * Called to sink application response data, the processing of the data 1103 * is the same for a cached or temp URI (i.e. a URI for which we aren't 1104 * going to cache the URI but want to parse it for detecting response 1105 * data end such that for a persistent connection we can parse the next 1106 * request). 1107 * 1108 * On return 0 is returned for sink success, > 0 on error, and < 0 on 1109 * no so URI (note, data not sinked). 1110 */ 1111 1112 int 1113 nl7c_data(struct sonode *so, uio_t *uio) 1114 { 1115 sotpi_info_t *sti = SOTOTPI(so); 1116 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1117 iovec_t *iov; 1118 int cnt; 1119 int sz = uio->uio_resid; 1120 char *data, *alloc; 1121 char *bp; 1122 uri_rd_t *rdp; 1123 boolean_t first; 1124 int error, perror; 1125 1126 nl7c_uri_data++; 1127 1128 if (uri == NULL) { 1129 /* Socket & NL7C out of sync, disable NL7C */ 1130 sti->sti_nl7c_flags = 0; 1131 nl7c_uri_NULL1++; 1132 return (-1); 1133 } 1134 1135 if (sti->sti_nl7c_flags & NL7C_WAITWRITE) { 1136 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE; 1137 first = B_TRUE; 1138 } else { 1139 first = B_FALSE; 1140 } 1141 1142 alloc = kmem_alloc(sz, KM_SLEEP); 1143 URI_RD_ADD(uri, rdp, sz, -1); 1144 if (rdp == NULL) { 1145 error = ENOMEM; 1146 goto fail; 1147 } 1148 1149 if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) { 1150 uri_delete(uri); 1151 uri->hash = URI_TEMP; 1152 } 1153 data = alloc; 1154 alloc = NULL; 1155 rdp->data.kmem = data; 1156 atomic_add_64(&nl7c_uri_bytes, sz); 1157 1158 bp = data; 1159 while (uio->uio_resid > 0) { 1160 iov = uio->uio_iov; 1161 if ((cnt = iov->iov_len) == 0) { 1162 goto next; 1163 } 1164 cnt = MIN(cnt, uio->uio_resid); 1165 error = xcopyin(iov->iov_base, bp, cnt); 1166 if (error) 1167 goto fail; 1168 1169 iov->iov_base += cnt; 1170 iov->iov_len -= cnt; 1171 uio->uio_resid -= cnt; 1172 uio->uio_loffset += cnt; 1173 bp += cnt; 1174 next: 1175 uio->uio_iov++; 1176 uio->uio_iovcnt--; 1177 } 1178 1179 /* Successfull sink of data, response parse the data */ 1180 perror = nl7c_resp_parse(so, uri, data, sz); 1181 1182 /* Send the data out the connection */ 1183 error = uri_rd_response(so, uri, rdp, first); 1184 if (error) 1185 goto fail; 1186 1187 /* Success */ 1188 if (perror == 0 && 1189 ((uri->respclen == URI_LEN_NOVALUE && 1190 uri->resplen == URI_LEN_NOVALUE) || 1191 uri->count >= uri->resplen)) { 1192 /* 1193 * No more data needed and no pending response 1194 * data or current data count >= response length 1195 * so close the URI processing for this so. 1196 */ 1197 nl7c_close(so); 1198 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) { 1199 /* Not a persistent connection */ 1200 sti->sti_nl7c_flags = 0; 1201 } 1202 } 1203 1204 return (0); 1205 1206 fail: 1207 if (alloc != NULL) { 1208 kmem_free(alloc, sz); 1209 } 1210 sti->sti_nl7c_flags = 0; 1211 nl7c_urifree(so); 1212 1213 return (error); 1214 } 1215 1216 /* 1217 * Called to read data from file "*fp" at offset "*off" of length "*len" 1218 * for a maximum of "*max_rem" bytes. 1219 * 1220 * On success a pointer to the kmem_alloc()ed file data is returned, "*off" 1221 * and "*len" are updated for the acutal number of bytes read and "*max_rem" 1222 * is updated with the number of bytes remaining to be read. 1223 * 1224 * Else, "NULL" is returned. 1225 */ 1226 1227 static char * 1228 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret) 1229 { 1230 vnode_t *vp = fp->f_vnode; 1231 int flg = 0; 1232 size_t size = MIN(*len, max); 1233 char *data; 1234 int error; 1235 uio_t uio; 1236 iovec_t iov; 1237 1238 (void) VOP_RWLOCK(vp, flg, NULL); 1239 1240 if (*off > MAXOFFSET_T) { 1241 VOP_RWUNLOCK(vp, flg, NULL); 1242 *ret = EFBIG; 1243 return (NULL); 1244 } 1245 1246 if (*off + size > MAXOFFSET_T) 1247 size = (ssize32_t)(MAXOFFSET_T - *off); 1248 1249 data = kmem_alloc(size, KM_SLEEP); 1250 1251 iov.iov_base = data; 1252 iov.iov_len = size; 1253 uio.uio_loffset = *off; 1254 uio.uio_iov = &iov; 1255 uio.uio_iovcnt = 1; 1256 uio.uio_resid = size; 1257 uio.uio_segflg = UIO_SYSSPACE; 1258 uio.uio_llimit = MAXOFFSET_T; 1259 uio.uio_fmode = fp->f_flag; 1260 1261 error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL); 1262 VOP_RWUNLOCK(vp, flg, NULL); 1263 *ret = error; 1264 if (error) { 1265 kmem_free(data, size); 1266 return (NULL); 1267 } 1268 *len = size; 1269 *off += size; 1270 return (data); 1271 } 1272 1273 /* 1274 * Called to sink application response sendfilev, as with nl7c_data() above 1275 * all the data will be processed by NL7C unless there's an error. 1276 */ 1277 1278 int 1279 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp, 1280 int sfvc, ssize_t *xfer) 1281 { 1282 sotpi_info_t *sti = SOTOTPI(so); 1283 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1284 file_t *fp = NULL; 1285 vnode_t *vp = NULL; 1286 char *data = NULL; 1287 u_offset_t off; 1288 int len; 1289 int cnt; 1290 int total_count = 0; 1291 char *alloc; 1292 uri_rd_t *rdp; 1293 int max; 1294 int perror; 1295 int error = 0; 1296 boolean_t first = B_TRUE; 1297 1298 nl7c_uri_sendfilev++; 1299 1300 if (uri == NULL) { 1301 /* Socket & NL7C out of sync, disable NL7C */ 1302 sti->sti_nl7c_flags = 0; 1303 nl7c_uri_NULL2++; 1304 return (0); 1305 } 1306 1307 if (sti->sti_nl7c_flags & NL7C_WAITWRITE) 1308 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE; 1309 1310 while (sfvc-- > 0) { 1311 /* 1312 * off - the current sfv read file offset or user address. 1313 * 1314 * len - the current sfv length in bytes. 1315 * 1316 * cnt - number of bytes kmem_alloc()ed. 1317 * 1318 * alloc - the kmem_alloc()ed buffer of size "cnt". 1319 * 1320 * data - copy of "alloc" used for post alloc references. 1321 * 1322 * fp - the current sfv file_t pointer. 1323 * 1324 * vp - the current "*vp" vnode_t pointer. 1325 * 1326 * Note, for "data" and "fp" and "vp" a NULL value is used 1327 * when not allocated such that the common failure path "fail" 1328 * is used. 1329 */ 1330 off = sfvp->sfv_off; 1331 len = sfvp->sfv_len; 1332 cnt = len; 1333 1334 if (len == 0) { 1335 sfvp++; 1336 continue; 1337 } 1338 1339 if (sfvp->sfv_fd == SFV_FD_SELF) { 1340 /* 1341 * User memory, copyin() all the bytes. 1342 */ 1343 alloc = kmem_alloc(cnt, KM_SLEEP); 1344 error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt); 1345 if (error) 1346 goto fail; 1347 } else { 1348 /* 1349 * File descriptor, prefetch some bytes. 1350 */ 1351 if ((fp = getf(sfvp->sfv_fd)) == NULL) { 1352 error = EBADF; 1353 goto fail; 1354 } 1355 if ((fp->f_flag & FREAD) == 0) { 1356 error = EACCES; 1357 goto fail; 1358 } 1359 vp = fp->f_vnode; 1360 if (vp->v_type != VREG) { 1361 error = EINVAL; 1362 goto fail; 1363 } 1364 VN_HOLD(vp); 1365 1366 /* Read max_rem bytes from file for prefetch */ 1367 if (nl7c_use_kmem) { 1368 max = cnt; 1369 } else { 1370 max = MAXBSIZE * nl7c_file_prefetch; 1371 } 1372 alloc = nl7c_readfile(fp, &off, &cnt, max, &error); 1373 if (alloc == NULL) 1374 goto fail; 1375 1376 releasef(sfvp->sfv_fd); 1377 fp = NULL; 1378 } 1379 URI_RD_ADD(uri, rdp, cnt, -1); 1380 if (rdp == NULL) { 1381 error = ENOMEM; 1382 goto fail; 1383 } 1384 data = alloc; 1385 alloc = NULL; 1386 rdp->data.kmem = data; 1387 total_count += cnt; 1388 if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) { 1389 uri_delete(uri); 1390 uri->hash = URI_TEMP; 1391 } 1392 1393 /* Response parse */ 1394 perror = nl7c_resp_parse(so, uri, data, len); 1395 1396 /* Send kmem data out the connection */ 1397 error = uri_rd_response(so, uri, rdp, first); 1398 1399 if (error) 1400 goto fail; 1401 1402 if (sfvp->sfv_fd != SFV_FD_SELF) { 1403 /* 1404 * File descriptor, if any bytes left save vnode_t. 1405 */ 1406 if (len > cnt) { 1407 /* More file data so add it */ 1408 URI_RD_ADD(uri, rdp, len - cnt, off); 1409 if (rdp == NULL) { 1410 error = ENOMEM; 1411 goto fail; 1412 } 1413 rdp->data.vnode = vp; 1414 1415 /* Send vnode data out the connection */ 1416 error = uri_rd_response(so, uri, rdp, first); 1417 } else { 1418 /* All file data fit in the prefetch */ 1419 VN_RELE(vp); 1420 } 1421 *fileoff += len; 1422 vp = NULL; 1423 } 1424 *xfer += len; 1425 sfvp++; 1426 1427 if (first) 1428 first = B_FALSE; 1429 } 1430 if (total_count > 0) { 1431 atomic_add_64(&nl7c_uri_bytes, total_count); 1432 } 1433 if (perror == 0 && 1434 ((uri->respclen == URI_LEN_NOVALUE && 1435 uri->resplen == URI_LEN_NOVALUE) || 1436 uri->count >= uri->resplen)) { 1437 /* 1438 * No more data needed and no pending response 1439 * data or current data count >= response length 1440 * so close the URI processing for this so. 1441 */ 1442 nl7c_close(so); 1443 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) { 1444 /* Not a persistent connection */ 1445 sti->sti_nl7c_flags = 0; 1446 } 1447 } 1448 1449 return (0); 1450 1451 fail: 1452 if (error == EPIPE) 1453 tsignal(curthread, SIGPIPE); 1454 1455 if (alloc != NULL) 1456 kmem_free(data, len); 1457 1458 if (vp != NULL) 1459 VN_RELE(vp); 1460 1461 if (fp != NULL) 1462 releasef(sfvp->sfv_fd); 1463 1464 if (total_count > 0) { 1465 atomic_add_64(&nl7c_uri_bytes, total_count); 1466 } 1467 1468 sti->sti_nl7c_flags = 0; 1469 nl7c_urifree(so); 1470 1471 return (error); 1472 } 1473 1474 /* 1475 * Called for a socket which is closing or when an application has 1476 * completed sending all the response data (i.e. for a persistent 1477 * connection called once for each completed application response). 1478 */ 1479 1480 void 1481 nl7c_close(struct sonode *so) 1482 { 1483 sotpi_info_t *sti = SOTOTPI(so); 1484 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1485 1486 if (uri == NULL) { 1487 /* 1488 * No URI being processed so might be a listen()er 1489 * if so do any cleanup, else nothing more to do. 1490 */ 1491 if (so->so_state & SS_ACCEPTCONN) { 1492 (void) nl7c_close_addr(so); 1493 } 1494 return; 1495 } 1496 sti->sti_nl7c_uri = NULL; 1497 if (uri->hash != URI_TEMP) { 1498 mutex_enter(&uri->proclock); 1499 uri->proc = NULL; 1500 if (CV_HAS_WAITERS(&uri->waiting)) { 1501 cv_broadcast(&uri->waiting); 1502 } 1503 mutex_exit(&uri->proclock); 1504 nl7c_uri_close++; 1505 } else { 1506 /* No proclock as uri exclusively owned by so */ 1507 uri->proc = NULL; 1508 nl7c_uri_temp_close++; 1509 } 1510 REF_RELE(uri); 1511 if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) { 1512 nl7c_uri_reclaim(); 1513 } 1514 } 1515 1516 /* 1517 * The uri_segmap_t ref_t inactive function called on the last REF_RELE(), 1518 * release the segmap mapping. Note, the uri_segmap_t will be freed by 1519 * REF_RELE() on return. 1520 */ 1521 1522 void 1523 uri_segmap_inactive(uri_segmap_t *smp) 1524 { 1525 if (!segmap_kpm) { 1526 (void) segmap_fault(kas.a_hat, segkmap, smp->base, 1527 smp->len, F_SOFTUNLOCK, S_OTHER); 1528 } 1529 (void) segmap_release(segkmap, smp->base, SM_DONTNEED); 1530 VN_RELE(smp->vp); 1531 } 1532 1533 /* 1534 * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t 1535 * release the reference, one per desballoc() of a segmap page, if a rd_t 1536 * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t, 1537 * last kmem free the uri_desb_t. 1538 */ 1539 1540 static void 1541 uri_desb_free(uri_desb_t *desb) 1542 { 1543 if (desb->segmap != NULL) { 1544 REF_RELE(desb->segmap); 1545 } 1546 REF_RELE(desb->uri); 1547 kmem_cache_free(uri_desb_kmc, desb); 1548 } 1549 1550 /* 1551 * Segmap map up to a page of a uri_rd_t file descriptor. 1552 */ 1553 1554 uri_segmap_t * 1555 uri_segmap_map(uri_rd_t *rdp, int bytes) 1556 { 1557 uri_segmap_t *segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP); 1558 int len = MIN(rdp->sz, MAXBSIZE); 1559 1560 if (len > bytes) 1561 len = bytes; 1562 1563 REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc); 1564 segmap->len = len; 1565 VN_HOLD(rdp->data.vnode); 1566 segmap->vp = rdp->data.vnode; 1567 1568 segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len, 1569 segmap_kpm ? SM_FAULT : 0, S_READ); 1570 1571 if (segmap_fault(kas.a_hat, segkmap, segmap->base, len, 1572 F_SOFTLOCK, S_READ) != 0) { 1573 REF_RELE(segmap); 1574 return (NULL); 1575 } 1576 return (segmap); 1577 } 1578 1579 /* 1580 * Chop up the kernel virtual memory area *data of size *sz bytes for 1581 * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using 1582 * the given template uri_desb_t *temp of max_mblk bytes per. 1583 * 1584 * The values of *data, *sz, and *bytes are updated on return, the 1585 * mblk_t chain is returned. 1586 */ 1587 1588 static mblk_t * 1589 uri_desb_chop( 1590 char **data, 1591 size_t *sz, 1592 int *bytes, 1593 uri_desb_t *temp, 1594 int max_mblk, 1595 char *eoh, 1596 mblk_t *persist 1597 ) 1598 { 1599 char *ldata = *data; 1600 size_t lsz = *sz; 1601 int lbytes = bytes ? *bytes : lsz; 1602 uri_desb_t *desb; 1603 mblk_t *mp = NULL; 1604 mblk_t *nmp, *pmp = NULL; 1605 int msz; 1606 1607 if (lbytes == 0 && lsz == 0) 1608 return (NULL); 1609 1610 while (lbytes > 0 && lsz > 0) { 1611 msz = MIN(lbytes, max_mblk); 1612 msz = MIN(msz, lsz); 1613 if (persist && eoh >= ldata && eoh < &ldata[msz]) { 1614 msz = (eoh - ldata); 1615 pmp = persist; 1616 persist = NULL; 1617 if (msz == 0) { 1618 nmp = pmp; 1619 pmp = NULL; 1620 goto zero; 1621 } 1622 } 1623 desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP); 1624 REF_HOLD(temp->uri); 1625 if (temp->segmap) { 1626 REF_HOLD(temp->segmap); 1627 } 1628 bcopy(temp, desb, sizeof (*desb)); 1629 desb->frtn.free_arg = (caddr_t)desb; 1630 nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn); 1631 if (nmp == NULL) { 1632 if (temp->segmap) { 1633 REF_RELE(temp->segmap); 1634 } 1635 REF_RELE(temp->uri); 1636 if (mp != NULL) { 1637 mp->b_next = NULL; 1638 freemsg(mp); 1639 } 1640 if (persist != NULL) { 1641 freeb(persist); 1642 } 1643 return (NULL); 1644 } 1645 nmp->b_wptr += msz; 1646 zero: 1647 if (mp != NULL) { 1648 mp->b_next->b_cont = nmp; 1649 } else { 1650 mp = nmp; 1651 } 1652 if (pmp != NULL) { 1653 nmp->b_cont = pmp; 1654 nmp = pmp; 1655 pmp = NULL; 1656 } 1657 mp->b_next = nmp; 1658 ldata += msz; 1659 lsz -= msz; 1660 lbytes -= msz; 1661 } 1662 *data = ldata; 1663 *sz = lsz; 1664 if (bytes) 1665 *bytes = lbytes; 1666 return (mp); 1667 } 1668 1669 /* 1670 * Experimential noqwait (i.e. no canput()/qwait() checks), just send 1671 * the entire mblk_t chain down without flow-control checks. 1672 */ 1673 1674 static int 1675 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp) 1676 { 1677 struct stdata *stp; 1678 int error = 0; 1679 1680 ASSERT(vp->v_stream); 1681 stp = vp->v_stream; 1682 1683 /* Fast check of flags before acquiring the lock */ 1684 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 1685 mutex_enter(&stp->sd_lock); 1686 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); 1687 mutex_exit(&stp->sd_lock); 1688 if (error != 0) { 1689 if (!(stp->sd_flag & STPLEX) && 1690 (stp->sd_wput_opt & SW_SIGPIPE)) { 1691 error = EPIPE; 1692 } 1693 return (error); 1694 } 1695 } 1696 putnext(stp->sd_wrq, mp); 1697 return (0); 1698 } 1699 1700 /* 1701 * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so. 1702 */ 1703 1704 static int 1705 uri_rd_response(struct sonode *so, 1706 uri_desc_t *uri, 1707 uri_rd_t *rdp, 1708 boolean_t first) 1709 { 1710 vnode_t *vp = SOTOV(so); 1711 int max_mblk = (int)vp->v_stream->sd_maxblk; 1712 int wsz; 1713 mblk_t *mp, *wmp, *persist; 1714 int write_bytes; 1715 uri_rd_t rd; 1716 uri_desb_t desb; 1717 uri_segmap_t *segmap = NULL; 1718 char *segmap_data; 1719 size_t segmap_sz; 1720 int error; 1721 int fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) | 1722 ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0); 1723 1724 1725 /* Initialize template uri_desb_t */ 1726 desb.frtn.free_func = uri_desb_free; 1727 desb.frtn.free_arg = NULL; 1728 desb.uri = uri; 1729 1730 /* Get a local copy of the rd_t */ 1731 bcopy(rdp, &rd, sizeof (rd)); 1732 do { 1733 if (first) { 1734 /* 1735 * For first kstrwrite() enough data to get 1736 * things going, note non blocking version of 1737 * kstrwrite() will be used below. 1738 */ 1739 write_bytes = P2ROUNDUP((max_mblk * 4), 1740 MAXBSIZE * nl7c_file_prefetch); 1741 } else { 1742 if ((write_bytes = so->so_sndbuf) == 0) 1743 write_bytes = vp->v_stream->sd_qn_maxpsz; 1744 ASSERT(write_bytes > 0); 1745 write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE); 1746 } 1747 /* 1748 * Chop up to a write_bytes worth of data. 1749 */ 1750 wmp = NULL; 1751 wsz = write_bytes; 1752 do { 1753 if (rd.sz == 0) 1754 break; 1755 if (rd.off == -1) { 1756 if (uri->eoh >= rd.data.kmem && 1757 uri->eoh < &rd.data.kmem[rd.sz]) { 1758 persist = nl7c_http_persist(so); 1759 } else { 1760 persist = NULL; 1761 } 1762 desb.segmap = NULL; 1763 mp = uri_desb_chop(&rd.data.kmem, &rd.sz, 1764 &wsz, &desb, max_mblk, uri->eoh, persist); 1765 if (mp == NULL) { 1766 error = ENOMEM; 1767 goto invalidate; 1768 } 1769 } else { 1770 if (segmap == NULL) { 1771 segmap = uri_segmap_map(&rd, 1772 write_bytes); 1773 if (segmap == NULL) { 1774 error = ENOMEM; 1775 goto invalidate; 1776 } 1777 desb.segmap = segmap; 1778 segmap_data = segmap->base; 1779 segmap_sz = segmap->len; 1780 } 1781 mp = uri_desb_chop(&segmap_data, &segmap_sz, 1782 &wsz, &desb, max_mblk, NULL, NULL); 1783 if (mp == NULL) { 1784 error = ENOMEM; 1785 goto invalidate; 1786 } 1787 if (segmap_sz == 0) { 1788 rd.sz -= segmap->len; 1789 rd.off += segmap->len; 1790 REF_RELE(segmap); 1791 segmap = NULL; 1792 } 1793 } 1794 if (wmp == NULL) { 1795 wmp = mp; 1796 } else { 1797 wmp->b_next->b_cont = mp; 1798 wmp->b_next = mp->b_next; 1799 mp->b_next = NULL; 1800 } 1801 } while (wsz > 0 && rd.sz > 0); 1802 1803 wmp->b_next = NULL; 1804 if (first) { 1805 /* First kstrwrite(), use noqwait */ 1806 if ((error = kstrwritempnoqwait(vp, wmp)) != 0) 1807 goto invalidate; 1808 /* 1809 * For the rest of the kstrwrite()s use SO_SNDBUF 1810 * worth of data at a time, note these kstrwrite()s 1811 * may (will) block one or more times. 1812 */ 1813 first = B_FALSE; 1814 } else { 1815 if ((error = kstrwritemp(vp, wmp, fflg)) != 0) { 1816 if (error == EAGAIN) { 1817 nl7c_uri_rd_EAGAIN++; 1818 if ((error = 1819 kstrwritempnoqwait(vp, wmp)) != 0) 1820 goto invalidate; 1821 } else 1822 goto invalidate; 1823 } 1824 } 1825 } while (rd.sz > 0); 1826 1827 return (0); 1828 1829 invalidate: 1830 if (segmap) { 1831 REF_RELE(segmap); 1832 } 1833 if (wmp) 1834 freemsg(wmp); 1835 1836 return (error); 1837 } 1838 1839 /* 1840 * Send the URI uri_desc_t *uri response out the socket_t *so. 1841 */ 1842 1843 static int 1844 uri_response(struct sonode *so, uri_desc_t *uri) 1845 { 1846 uri_rd_t *rdp = &uri->response; 1847 boolean_t first = B_TRUE; 1848 int error; 1849 1850 while (rdp != NULL) { 1851 error = uri_rd_response(so, uri, rdp, first); 1852 if (error != 0) { 1853 goto invalidate; 1854 } 1855 first = B_FALSE; 1856 rdp = rdp->next; 1857 } 1858 return (0); 1859 1860 invalidate: 1861 uri_delete(uri); 1862 return (error); 1863 } 1864 1865 /* 1866 * The pchars[] array is indexed by a char to determine if it's a 1867 * valid URI path component chararcter where: 1868 * 1869 * pchar = unreserved | escaped | 1870 * ":" | "@" | "&" | "=" | "+" | "$" | "," 1871 * 1872 * unreserved = alphanum | mark 1873 * 1874 * alphanum = alpha | digit 1875 * 1876 * alpha = lowalpha | upalpha 1877 * 1878 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | 1879 * "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | 1880 * "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | 1881 * "y" | "z" 1882 * 1883 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | 1884 * "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | 1885 * "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | 1886 * "Y" | "Z" 1887 * 1888 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 1889 * "8" | "9" 1890 * 1891 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" 1892 * 1893 * escaped = "%" hex hex 1894 * hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 1895 * "a" | "b" | "c" | "d" | "e" | "f" 1896 */ 1897 1898 static char pchars[] = { 1899 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x07 */ 1900 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 - 0x0F */ 1901 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x17 */ 1902 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 - 0x1F */ 1903 0, 1, 0, 0, 1, 1, 1, 1, /* 0x20 - 0x27 */ 1904 0, 0, 1, 1, 1, 1, 1, 1, /* 0x28 - 0x2F */ 1905 1, 1, 1, 1, 1, 1, 1, 1, /* 0x30 - 0x37 */ 1906 1, 1, 1, 0, 0, 1, 0, 0, /* 0x38 - 0x3F */ 1907 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x47 */ 1908 1, 1, 1, 1, 1, 1, 1, 1, /* 0x48 - 0x4F */ 1909 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x57 */ 1910 1, 1, 1, 0, 0, 0, 0, 1, /* 0x58 - 0x5F */ 1911 0, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x67 */ 1912 1, 1, 1, 1, 1, 1, 1, 1, /* 0x68 - 0x6F */ 1913 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x77 */ 1914 1, 1, 1, 0, 0, 0, 1, 0 /* 0x78 - 0x7F */ 1915 }; 1916 1917 #define PCHARS_MASK 0x7F 1918 1919 /* 1920 * This is the main L7 request message parse, we are called each time 1921 * new data is availble for a socket, each time a single buffer of the 1922 * entire message to date is given. 1923 * 1924 * Here we parse the request looking for the URI, parse it, and if a 1925 * supported scheme call the scheme parser to commplete the parse of any 1926 * headers which may further qualify the identity of the requested object 1927 * then lookup it up in the URI hash. 1928 * 1929 * Return B_TRUE for more processing. 1930 * 1931 * Note, at this time the parser supports the generic message format as 1932 * specified in RFC 822 with potentional limitations as specified in RFC 1933 * 2616 for HTTP messages. 1934 * 1935 * Note, the caller supports an mblk_t chain, for now the parser(s) 1936 * require the complete header in a single mblk_t. This is the common 1937 * case and certainly for high performance environments, if at a future 1938 * date mblk_t chains are important the parse can be reved to process 1939 * mblk_t chains. 1940 */ 1941 1942 boolean_t 1943 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret) 1944 { 1945 sotpi_info_t *sti = SOTOTPI(so); 1946 char *cp = (char *)sti->sti_nl7c_rcv_mp->b_rptr; 1947 char *ep = (char *)sti->sti_nl7c_rcv_mp->b_wptr; 1948 char *get = "GET "; 1949 char *post = "POST "; 1950 char c; 1951 char *uris; 1952 uri_desc_t *uri = NULL; 1953 uri_desc_t *ruri = NULL; 1954 mblk_t *reqmp; 1955 uint32_t hv = 0; 1956 1957 if ((reqmp = dupb(sti->sti_nl7c_rcv_mp)) == NULL) { 1958 nl7c_uri_pass_dupbfail++; 1959 goto pass; 1960 } 1961 /* 1962 * Allocate and initialize minimumal state for the request 1963 * uri_desc_t, in the cache hit case this uri_desc_t will 1964 * be freed. 1965 */ 1966 uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP); 1967 REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc); 1968 uri->hash = NULL; 1969 uri->tail = NULL; 1970 uri->scheme = NULL; 1971 uri->count = 0; 1972 uri->reqmp = reqmp; 1973 1974 /* 1975 * Set request time to current time. 1976 */ 1977 sti->sti_nl7c_rtime = gethrestime_sec(); 1978 1979 /* 1980 * Parse the Request-Line for the URI. 1981 * 1982 * For backwards HTTP version compatable reasons skip any leading 1983 * CRLF (or CR or LF) line terminator(s) preceding Request-Line. 1984 */ 1985 while (cp < ep && (*cp == '\r' || *cp == '\n')) { 1986 cp++; 1987 } 1988 while (cp < ep && *get == *cp) { 1989 get++; 1990 cp++; 1991 } 1992 if (*get != 0) { 1993 /* Note a "GET", check for "POST" */ 1994 while (cp < ep && *post == *cp) { 1995 post++; 1996 cp++; 1997 } 1998 if (*post != 0) { 1999 if (cp == ep) { 2000 nl7c_uri_more_get++; 2001 goto more; 2002 } 2003 /* Not a "GET" or a "POST", just pass */ 2004 nl7c_uri_pass_method++; 2005 goto pass; 2006 } 2007 /* "POST", don't cache but still may want to parse */ 2008 uri->hash = URI_TEMP; 2009 } 2010 /* 2011 * Skip over URI path char(s) and save start and past end pointers. 2012 */ 2013 uris = cp; 2014 while (cp < ep && (c = *cp) != ' ' && c != '\r') { 2015 if (c == '?') { 2016 /* Don't cache but still may want to parse */ 2017 uri->hash = URI_TEMP; 2018 } 2019 CHASH(hv, c); 2020 cp++; 2021 } 2022 if (c != '\r' && cp == ep) { 2023 nl7c_uri_more_eol++; 2024 goto more; 2025 } 2026 /* 2027 * Request-Line URI parsed, pass the rest of the request on 2028 * to the the http scheme parse. 2029 */ 2030 uri->path.cp = uris; 2031 uri->path.ep = cp; 2032 uri->hvalue = hv; 2033 if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) { 2034 /* 2035 * Parse not successful or pass on request, the pointer 2036 * to the parse pointer "cp" is overloaded such that ! NULL 2037 * for more data and NULL for bad parse of request or pass. 2038 */ 2039 if (cp != NULL) { 2040 nl7c_uri_more_http++; 2041 goto more; 2042 } 2043 nl7c_uri_pass_http++; 2044 goto pass; 2045 } 2046 if (uri->nocache) { 2047 uri->hash = URI_TEMP; 2048 (void) uri_lookup(uri, B_FALSE, nonblocking); 2049 } else if (uri->hash == URI_TEMP) { 2050 uri->nocache = B_TRUE; 2051 (void) uri_lookup(uri, B_FALSE, nonblocking); 2052 } 2053 2054 if (uri->hash == URI_TEMP) { 2055 if (sti->sti_nl7c_flags & NL7C_SOPERSIST) { 2056 /* Temporary URI so skip hash processing */ 2057 nl7c_uri_request++; 2058 nl7c_uri_temp++; 2059 goto temp; 2060 } 2061 /* Not persistent so not interested in the response */ 2062 nl7c_uri_pass_temp++; 2063 goto pass; 2064 } 2065 /* 2066 * Check the URI hash for a cached response, save the request 2067 * uri in case we need it below. 2068 */ 2069 ruri = uri; 2070 if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) { 2071 /* 2072 * Failed to lookup due to nonblocking wait required, 2073 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc 2074 * failure, ... Just pass on this request. 2075 */ 2076 nl7c_uri_pass_addfail++; 2077 goto pass; 2078 } 2079 nl7c_uri_request++; 2080 if (uri->response.sz > 0) { 2081 /* 2082 * We have the response cached, update recv mblk rptr 2083 * to reflect the data consumed in parse. 2084 */ 2085 mblk_t *mp = sti->sti_nl7c_rcv_mp; 2086 2087 if (cp == (char *)mp->b_wptr) { 2088 sti->sti_nl7c_rcv_mp = mp->b_cont; 2089 mp->b_cont = NULL; 2090 freeb(mp); 2091 } else { 2092 mp->b_rptr = (unsigned char *)cp; 2093 } 2094 nl7c_uri_hit++; 2095 /* If logging enabled log request */ 2096 if (nl7c_logd_enabled) { 2097 ipaddr_t faddr; 2098 2099 if (so->so_family == AF_INET) { 2100 /* Only support IPv4 addrs */ 2101 faddr = ((struct sockaddr_in *) 2102 sti->sti_faddr_sa) ->sin_addr.s_addr; 2103 } else { 2104 faddr = 0; 2105 } 2106 /* XXX need to pass response type, e.g. 200, 304 */ 2107 nl7c_logd_log(ruri, uri, sti->sti_nl7c_rtime, faddr); 2108 } 2109 2110 /* If conditional request check for substitute response */ 2111 if (ruri->conditional) { 2112 uri = nl7c_http_cond(ruri, uri); 2113 } 2114 2115 /* 2116 * Release reference on request URI, send the response out 2117 * the socket, release reference on response uri, set the 2118 * *ret value to B_TRUE to indicate request was consumed 2119 * then return B_FALSE to indcate no more data needed. 2120 */ 2121 REF_RELE(ruri); 2122 (void) uri_response(so, uri); 2123 REF_RELE(uri); 2124 *ret = B_TRUE; 2125 return (B_FALSE); 2126 } 2127 /* 2128 * Miss the cache, the request URI is in the cache waiting for 2129 * application write-side data to fill it. 2130 */ 2131 nl7c_uri_miss++; 2132 temp: 2133 /* 2134 * A miss or temp URI for which response data is needed, link 2135 * uri to so and so to uri, set WAITWRITE in the so such that 2136 * read-side processing is suspended (so the next read() gets 2137 * the request data) until a write() is processed by NL7C. 2138 * 2139 * Note, sti->sti_nl7c_uri now owns the REF_INIT() ref. 2140 */ 2141 uri->proc = so; 2142 sti->sti_nl7c_uri = uri; 2143 sti->sti_nl7c_flags |= NL7C_WAITWRITE; 2144 *ret = B_FALSE; 2145 return (B_FALSE); 2146 2147 more: 2148 /* More data is needed, note fragmented recv not supported */ 2149 nl7c_uri_more++; 2150 2151 pass: 2152 /* Pass on this request */ 2153 nl7c_uri_pass++; 2154 nl7c_uri_request++; 2155 if (ruri != NULL) { 2156 REF_RELE(ruri); 2157 } 2158 if (uri) { 2159 REF_RELE(uri); 2160 } 2161 sti->sti_nl7c_flags = 0; 2162 *ret = B_FALSE; 2163 return (B_FALSE); 2164 } 2165