xref: /titanic_41/usr/src/uts/common/fs/smbsrv/smb_kutil.c (revision 8d62b2231107e557adb17ea75579d9c49511457b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/types.h>
29 #include <sys/tzfile.h>
30 #include <sys/atomic.h>
31 #include <sys/kidmap.h>
32 #include <sys/time.h>
33 #include <sys/spl.h>
34 #include <sys/cpuvar.h>
35 #include <sys/random.h>
36 #include <smbsrv/smb_kproto.h>
37 #include <smbsrv/smb_fsops.h>
38 #include <smbsrv/smbinfo.h>
39 #include <smbsrv/smb_xdr.h>
40 #include <smbsrv/smb_vops.h>
41 #include <smbsrv/smb_idmap.h>
42 
43 #include <sys/sid.h>
44 #include <sys/priv_names.h>
45 
46 static kmem_cache_t	*smb_dtor_cache;
47 static boolean_t	smb_llist_initialized = B_FALSE;
48 
49 static boolean_t smb_thread_continue_timedwait_locked(smb_thread_t *, int);
50 
51 static boolean_t smb_avl_hold(smb_avl_t *);
52 static void smb_avl_rele(smb_avl_t *);
53 
54 time_t tzh_leapcnt = 0;
55 
56 struct tm
57 *smb_gmtime_r(time_t *clock, struct tm *result);
58 
59 time_t
60 smb_timegm(struct tm *tm);
61 
62 struct	tm {
63 	int	tm_sec;
64 	int	tm_min;
65 	int	tm_hour;
66 	int	tm_mday;
67 	int	tm_mon;
68 	int	tm_year;
69 	int	tm_wday;
70 	int	tm_yday;
71 	int	tm_isdst;
72 };
73 
74 static int days_in_month[] = {
75 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
76 };
77 
78 int
79 smb_ascii_or_unicode_strlen(struct smb_request *sr, char *str)
80 {
81 	if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
82 		return (smb_wcequiv_strlen(str));
83 	return (strlen(str));
84 }
85 
86 int
87 smb_ascii_or_unicode_strlen_null(struct smb_request *sr, char *str)
88 {
89 	if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
90 		return (smb_wcequiv_strlen(str) + 2);
91 	return (strlen(str) + 1);
92 }
93 
94 int
95 smb_ascii_or_unicode_null_len(struct smb_request *sr)
96 {
97 	if (sr->smb_flg2 & SMB_FLAGS2_UNICODE)
98 		return (2);
99 	return (1);
100 }
101 
102 /*
103  *
104  * Convert old-style (DOS, LanMan) wildcard strings to NT style.
105  * This should ONLY happen to patterns that come from old clients,
106  * meaning dialect LANMAN2_1 etc. (dialect < NT_LM_0_12).
107  *
108  *	? is converted to >
109  *	* is converted to < if it is followed by .
110  *	. is converted to " if it is followed by ? or * or end of pattern
111  *
112  * Note: modifies pattern in place.
113  */
114 void
115 smb_convert_wildcards(char *pattern)
116 {
117 	char	*p;
118 
119 	for (p = pattern; *p != '\0'; p++) {
120 		switch (*p) {
121 		case '?':
122 			*p = '>';
123 			break;
124 		case '*':
125 			if (p[1] == '.')
126 				*p = '<';
127 			break;
128 		case '.':
129 			if (p[1] == '?' || p[1] == '*' || p[1] == '\0')
130 				*p = '\"';
131 			break;
132 		}
133 	}
134 }
135 
136 /*
137  * smb_sattr_check
138  *
139  * Check file attributes against a search attribute (sattr) mask.
140  *
141  * Normal files, which includes READONLY and ARCHIVE, always pass
142  * this check.  If the DIRECTORY, HIDDEN or SYSTEM special attributes
143  * are set then they must appear in the search mask.  The special
144  * attributes are inclusive, i.e. all special attributes that appear
145  * in sattr must also appear in the file attributes for the check to
146  * pass.
147  *
148  * The following examples show how this works:
149  *
150  *		fileA:	READONLY
151  *		fileB:	0 (no attributes = normal file)
152  *		fileC:	READONLY, ARCHIVE
153  *		fileD:	HIDDEN
154  *		fileE:	READONLY, HIDDEN, SYSTEM
155  *		dirA:	DIRECTORY
156  *
157  * search attribute: 0
158  *		Returns: fileA, fileB and fileC.
159  * search attribute: HIDDEN
160  *		Returns: fileA, fileB, fileC and fileD.
161  * search attribute: SYSTEM
162  *		Returns: fileA, fileB and fileC.
163  * search attribute: DIRECTORY
164  *		Returns: fileA, fileB, fileC and dirA.
165  * search attribute: HIDDEN and SYSTEM
166  *		Returns: fileA, fileB, fileC, fileD and fileE.
167  *
168  * Returns true if the file and sattr match; otherwise, returns false.
169  */
170 boolean_t
171 smb_sattr_check(uint16_t dosattr, uint16_t sattr)
172 {
173 	if ((dosattr & FILE_ATTRIBUTE_DIRECTORY) &&
174 	    !(sattr & FILE_ATTRIBUTE_DIRECTORY))
175 		return (B_FALSE);
176 
177 	if ((dosattr & FILE_ATTRIBUTE_HIDDEN) &&
178 	    !(sattr & FILE_ATTRIBUTE_HIDDEN))
179 		return (B_FALSE);
180 
181 	if ((dosattr & FILE_ATTRIBUTE_SYSTEM) &&
182 	    !(sattr & FILE_ATTRIBUTE_SYSTEM))
183 		return (B_FALSE);
184 
185 	return (B_TRUE);
186 }
187 
188 int
189 microtime(timestruc_t *tvp)
190 {
191 	tvp->tv_sec = gethrestime_sec();
192 	tvp->tv_nsec = 0;
193 	return (0);
194 }
195 
196 int32_t
197 clock_get_milli_uptime()
198 {
199 	return (TICK_TO_MSEC(ddi_get_lbolt()));
200 }
201 
202 /*
203  * smb_idpool_increment
204  *
205  * This function increments the ID pool by doubling the current size. This
206  * function assumes the caller entered the mutex of the pool.
207  */
208 static int
209 smb_idpool_increment(
210     smb_idpool_t	*pool)
211 {
212 	uint8_t		*new_pool;
213 	uint32_t	new_size;
214 
215 	ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
216 
217 	new_size = pool->id_size * 2;
218 	if (new_size <= SMB_IDPOOL_MAX_SIZE) {
219 		new_pool = kmem_alloc(new_size / 8, KM_NOSLEEP);
220 		if (new_pool) {
221 			bzero(new_pool, new_size / 8);
222 			bcopy(pool->id_pool, new_pool, pool->id_size / 8);
223 			kmem_free(pool->id_pool, pool->id_size / 8);
224 			pool->id_pool = new_pool;
225 			pool->id_free_counter += new_size - pool->id_size;
226 			pool->id_max_free_counter += new_size - pool->id_size;
227 			pool->id_size = new_size;
228 			pool->id_idx_msk = (new_size / 8) - 1;
229 			if (new_size >= SMB_IDPOOL_MAX_SIZE) {
230 				/* id -1 made unavailable */
231 				pool->id_pool[pool->id_idx_msk] = 0x80;
232 				pool->id_free_counter--;
233 				pool->id_max_free_counter--;
234 			}
235 			return (0);
236 		}
237 	}
238 	return (-1);
239 }
240 
241 /*
242  * smb_idpool_constructor
243  *
244  * This function initializes the pool structure provided.
245  */
246 int
247 smb_idpool_constructor(
248     smb_idpool_t	*pool)
249 {
250 
251 	ASSERT(pool->id_magic != SMB_IDPOOL_MAGIC);
252 
253 	pool->id_size = SMB_IDPOOL_MIN_SIZE;
254 	pool->id_idx_msk = (SMB_IDPOOL_MIN_SIZE / 8) - 1;
255 	pool->id_free_counter = SMB_IDPOOL_MIN_SIZE - 1;
256 	pool->id_max_free_counter = SMB_IDPOOL_MIN_SIZE - 1;
257 	pool->id_bit = 0x02;
258 	pool->id_bit_idx = 1;
259 	pool->id_idx = 0;
260 	pool->id_pool = (uint8_t *)kmem_alloc((SMB_IDPOOL_MIN_SIZE / 8),
261 	    KM_SLEEP);
262 	bzero(pool->id_pool, (SMB_IDPOOL_MIN_SIZE / 8));
263 	/* -1 id made unavailable */
264 	pool->id_pool[0] = 0x01;		/* id 0 made unavailable */
265 	mutex_init(&pool->id_mutex, NULL, MUTEX_DEFAULT, NULL);
266 	pool->id_magic = SMB_IDPOOL_MAGIC;
267 	return (0);
268 }
269 
270 /*
271  * smb_idpool_destructor
272  *
273  * This function tears down and frees the resources associated with the
274  * pool provided.
275  */
276 void
277 smb_idpool_destructor(
278     smb_idpool_t	*pool)
279 {
280 	ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
281 	ASSERT(pool->id_free_counter == pool->id_max_free_counter);
282 	pool->id_magic = (uint32_t)~SMB_IDPOOL_MAGIC;
283 	mutex_destroy(&pool->id_mutex);
284 	kmem_free(pool->id_pool, (size_t)(pool->id_size / 8));
285 }
286 
287 /*
288  * smb_idpool_alloc
289  *
290  * This function allocates an ID from the pool provided.
291  */
292 int
293 smb_idpool_alloc(
294     smb_idpool_t	*pool,
295     uint16_t		*id)
296 {
297 	uint32_t	i;
298 	uint8_t		bit;
299 	uint8_t		bit_idx;
300 	uint8_t		byte;
301 
302 	ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
303 
304 	mutex_enter(&pool->id_mutex);
305 	if ((pool->id_free_counter == 0) && smb_idpool_increment(pool)) {
306 		mutex_exit(&pool->id_mutex);
307 		return (-1);
308 	}
309 
310 	i = pool->id_size;
311 	while (i) {
312 		bit = pool->id_bit;
313 		bit_idx = pool->id_bit_idx;
314 		byte = pool->id_pool[pool->id_idx];
315 		while (bit) {
316 			if (byte & bit) {
317 				bit = bit << 1;
318 				bit_idx++;
319 				continue;
320 			}
321 			pool->id_pool[pool->id_idx] |= bit;
322 			*id = (uint16_t)(pool->id_idx * 8 + (uint32_t)bit_idx);
323 			pool->id_free_counter--;
324 			pool->id_bit = bit;
325 			pool->id_bit_idx = bit_idx;
326 			mutex_exit(&pool->id_mutex);
327 			return (0);
328 		}
329 		pool->id_bit = 1;
330 		pool->id_bit_idx = 0;
331 		pool->id_idx++;
332 		pool->id_idx &= pool->id_idx_msk;
333 		--i;
334 	}
335 	/*
336 	 * This section of code shouldn't be reached. If there are IDs
337 	 * available and none could be found there's a problem.
338 	 */
339 	ASSERT(0);
340 	mutex_exit(&pool->id_mutex);
341 	return (-1);
342 }
343 
344 /*
345  * smb_idpool_free
346  *
347  * This function frees the ID provided.
348  */
349 void
350 smb_idpool_free(
351     smb_idpool_t	*pool,
352     uint16_t		id)
353 {
354 	ASSERT(pool->id_magic == SMB_IDPOOL_MAGIC);
355 	ASSERT(id != 0);
356 	ASSERT(id != 0xFFFF);
357 
358 	mutex_enter(&pool->id_mutex);
359 	if (pool->id_pool[id >> 3] & (1 << (id & 7))) {
360 		pool->id_pool[id >> 3] &= ~(1 << (id & 7));
361 		pool->id_free_counter++;
362 		ASSERT(pool->id_free_counter <= pool->id_max_free_counter);
363 		mutex_exit(&pool->id_mutex);
364 		return;
365 	}
366 	/* Freeing a free ID. */
367 	ASSERT(0);
368 	mutex_exit(&pool->id_mutex);
369 }
370 
371 /*
372  * Initialize the llist delete queue object cache.
373  */
374 void
375 smb_llist_init(void)
376 {
377 	if (smb_llist_initialized)
378 		return;
379 
380 	smb_dtor_cache = kmem_cache_create("smb_dtor_cache",
381 	    sizeof (smb_dtor_t), 8, NULL, NULL, NULL, NULL, NULL, 0);
382 
383 	smb_llist_initialized = B_TRUE;
384 }
385 
386 /*
387  * Destroy the llist delete queue object cache.
388  */
389 void
390 smb_llist_fini(void)
391 {
392 	if (!smb_llist_initialized)
393 		return;
394 
395 	kmem_cache_destroy(smb_dtor_cache);
396 	smb_llist_initialized = B_FALSE;
397 }
398 
399 /*
400  * smb_llist_constructor
401  *
402  * This function initializes a locked list.
403  */
404 void
405 smb_llist_constructor(
406     smb_llist_t	*ll,
407     size_t	size,
408     size_t	offset)
409 {
410 	rw_init(&ll->ll_lock, NULL, RW_DEFAULT, NULL);
411 	mutex_init(&ll->ll_mutex, NULL, MUTEX_DEFAULT, NULL);
412 	list_create(&ll->ll_list, size, offset);
413 	list_create(&ll->ll_deleteq, sizeof (smb_dtor_t),
414 	    offsetof(smb_dtor_t, dt_lnd));
415 	ll->ll_count = 0;
416 	ll->ll_wrop = 0;
417 	ll->ll_deleteq_count = 0;
418 	ll->ll_flushing = B_FALSE;
419 }
420 
421 /*
422  * Flush the delete queue and destroy a locked list.
423  */
424 void
425 smb_llist_destructor(
426     smb_llist_t	*ll)
427 {
428 	smb_llist_flush(ll);
429 
430 	ASSERT(ll->ll_count == 0);
431 	ASSERT(ll->ll_deleteq_count == 0);
432 
433 	rw_destroy(&ll->ll_lock);
434 	list_destroy(&ll->ll_list);
435 	list_destroy(&ll->ll_deleteq);
436 	mutex_destroy(&ll->ll_mutex);
437 }
438 
439 /*
440  * Post an object to the delete queue.  The delete queue will be processed
441  * during list exit or list destruction.  Objects are often posted for
442  * deletion during list iteration (while the list is locked) but that is
443  * not required, and an object can be posted at any time.
444  */
445 void
446 smb_llist_post(smb_llist_t *ll, void *object, smb_dtorproc_t dtorproc)
447 {
448 	smb_dtor_t	*dtor;
449 
450 	ASSERT((object != NULL) && (dtorproc != NULL));
451 
452 	dtor = kmem_cache_alloc(smb_dtor_cache, KM_SLEEP);
453 	bzero(dtor, sizeof (smb_dtor_t));
454 	dtor->dt_magic = SMB_DTOR_MAGIC;
455 	dtor->dt_object = object;
456 	dtor->dt_proc = dtorproc;
457 
458 	mutex_enter(&ll->ll_mutex);
459 	list_insert_tail(&ll->ll_deleteq, dtor);
460 	++ll->ll_deleteq_count;
461 	mutex_exit(&ll->ll_mutex);
462 }
463 
464 /*
465  * Exit the list lock and process the delete queue.
466  */
467 void
468 smb_llist_exit(smb_llist_t *ll)
469 {
470 	rw_exit(&ll->ll_lock);
471 	smb_llist_flush(ll);
472 }
473 
474 /*
475  * Flush the list delete queue.  The mutex is dropped across the destructor
476  * call in case this leads to additional objects being posted to the delete
477  * queue.
478  */
479 void
480 smb_llist_flush(smb_llist_t *ll)
481 {
482 	smb_dtor_t    *dtor;
483 
484 	mutex_enter(&ll->ll_mutex);
485 	if (ll->ll_flushing) {
486 		mutex_exit(&ll->ll_mutex);
487 		return;
488 	}
489 	ll->ll_flushing = B_TRUE;
490 
491 	dtor = list_head(&ll->ll_deleteq);
492 	while (dtor != NULL) {
493 		SMB_DTOR_VALID(dtor);
494 		ASSERT((dtor->dt_object != NULL) && (dtor->dt_proc != NULL));
495 		list_remove(&ll->ll_deleteq, dtor);
496 		--ll->ll_deleteq_count;
497 		mutex_exit(&ll->ll_mutex);
498 
499 		dtor->dt_proc(dtor->dt_object);
500 
501 		dtor->dt_magic = (uint32_t)~SMB_DTOR_MAGIC;
502 		kmem_cache_free(smb_dtor_cache, dtor);
503 		mutex_enter(&ll->ll_mutex);
504 		dtor = list_head(&ll->ll_deleteq);
505 	}
506 	ll->ll_flushing = B_FALSE;
507 
508 	mutex_exit(&ll->ll_mutex);
509 }
510 
511 /*
512  * smb_llist_upgrade
513  *
514  * This function tries to upgrade the lock of the locked list. It assumes the
515  * locked has already been entered in RW_READER mode. It first tries using the
516  * Solaris function rw_tryupgrade(). If that call fails the lock is released
517  * and reentered in RW_WRITER mode. In that last case a window is opened during
518  * which the contents of the list may have changed. The return code indicates
519  * whether or not the list was modified when the lock was exited.
520  */
521 int smb_llist_upgrade(
522     smb_llist_t *ll)
523 {
524 	uint64_t	wrop;
525 
526 	if (rw_tryupgrade(&ll->ll_lock) != 0) {
527 		return (0);
528 	}
529 	wrop = ll->ll_wrop;
530 	rw_exit(&ll->ll_lock);
531 	rw_enter(&ll->ll_lock, RW_WRITER);
532 	return (wrop != ll->ll_wrop);
533 }
534 
535 /*
536  * smb_llist_insert_head
537  *
538  * This function inserts the object passed a the beginning of the list. This
539  * function assumes the lock of the list has already been entered.
540  */
541 void
542 smb_llist_insert_head(
543     smb_llist_t	*ll,
544     void	*obj)
545 {
546 	list_insert_head(&ll->ll_list, obj);
547 	++ll->ll_wrop;
548 	++ll->ll_count;
549 }
550 
551 /*
552  * smb_llist_insert_tail
553  *
554  * This function appends to the object passed to the list. This function assumes
555  * the lock of the list has already been entered.
556  *
557  */
558 void
559 smb_llist_insert_tail(
560     smb_llist_t	*ll,
561     void	*obj)
562 {
563 	list_insert_tail(&ll->ll_list, obj);
564 	++ll->ll_wrop;
565 	++ll->ll_count;
566 }
567 
568 /*
569  * smb_llist_remove
570  *
571  * This function removes the object passed from the list. This function assumes
572  * the lock of the list has already been entered.
573  */
574 void
575 smb_llist_remove(
576     smb_llist_t	*ll,
577     void	*obj)
578 {
579 	list_remove(&ll->ll_list, obj);
580 	++ll->ll_wrop;
581 	--ll->ll_count;
582 }
583 
584 /*
585  * smb_llist_get_count
586  *
587  * This function returns the number of elements in the specified list.
588  */
589 uint32_t
590 smb_llist_get_count(
591     smb_llist_t *ll)
592 {
593 	return (ll->ll_count);
594 }
595 
596 /*
597  * smb_slist_constructor
598  *
599  * Synchronized list constructor.
600  */
601 void
602 smb_slist_constructor(
603     smb_slist_t	*sl,
604     size_t	size,
605     size_t	offset)
606 {
607 	mutex_init(&sl->sl_mutex, NULL, MUTEX_DEFAULT, NULL);
608 	cv_init(&sl->sl_cv, NULL, CV_DEFAULT, NULL);
609 	list_create(&sl->sl_list, size, offset);
610 	sl->sl_count = 0;
611 	sl->sl_waiting = B_FALSE;
612 }
613 
614 /*
615  * smb_slist_destructor
616  *
617  * Synchronized list destructor.
618  */
619 void
620 smb_slist_destructor(
621     smb_slist_t	*sl)
622 {
623 	VERIFY(sl->sl_count == 0);
624 
625 	mutex_destroy(&sl->sl_mutex);
626 	cv_destroy(&sl->sl_cv);
627 	list_destroy(&sl->sl_list);
628 }
629 
630 /*
631  * smb_slist_insert_head
632  *
633  * This function inserts the object passed a the beginning of the list.
634  */
635 void
636 smb_slist_insert_head(
637     smb_slist_t	*sl,
638     void	*obj)
639 {
640 	mutex_enter(&sl->sl_mutex);
641 	list_insert_head(&sl->sl_list, obj);
642 	++sl->sl_count;
643 	mutex_exit(&sl->sl_mutex);
644 }
645 
646 /*
647  * smb_slist_insert_tail
648  *
649  * This function appends the object passed to the list.
650  */
651 void
652 smb_slist_insert_tail(
653     smb_slist_t	*sl,
654     void	*obj)
655 {
656 	mutex_enter(&sl->sl_mutex);
657 	list_insert_tail(&sl->sl_list, obj);
658 	++sl->sl_count;
659 	mutex_exit(&sl->sl_mutex);
660 }
661 
662 /*
663  * smb_llist_remove
664  *
665  * This function removes the object passed by the caller from the list.
666  */
667 void
668 smb_slist_remove(
669     smb_slist_t	*sl,
670     void	*obj)
671 {
672 	mutex_enter(&sl->sl_mutex);
673 	list_remove(&sl->sl_list, obj);
674 	if ((--sl->sl_count == 0) && (sl->sl_waiting)) {
675 		sl->sl_waiting = B_FALSE;
676 		cv_broadcast(&sl->sl_cv);
677 	}
678 	mutex_exit(&sl->sl_mutex);
679 }
680 
681 /*
682  * smb_slist_move_tail
683  *
684  * This function transfers all the contents of the synchronized list to the
685  * list_t provided. It returns the number of objects transferred.
686  */
687 uint32_t
688 smb_slist_move_tail(
689     list_t	*lst,
690     smb_slist_t	*sl)
691 {
692 	uint32_t	rv;
693 
694 	mutex_enter(&sl->sl_mutex);
695 	rv = sl->sl_count;
696 	if (sl->sl_count) {
697 		list_move_tail(lst, &sl->sl_list);
698 		sl->sl_count = 0;
699 		if (sl->sl_waiting) {
700 			sl->sl_waiting = B_FALSE;
701 			cv_broadcast(&sl->sl_cv);
702 		}
703 	}
704 	mutex_exit(&sl->sl_mutex);
705 	return (rv);
706 }
707 
708 /*
709  * smb_slist_obj_move
710  *
711  * This function moves an object from one list to the end of the other list. It
712  * assumes the mutex of each list has been entered.
713  */
714 void
715 smb_slist_obj_move(
716     smb_slist_t	*dst,
717     smb_slist_t	*src,
718     void	*obj)
719 {
720 	ASSERT(dst->sl_list.list_offset == src->sl_list.list_offset);
721 	ASSERT(dst->sl_list.list_size == src->sl_list.list_size);
722 
723 	list_remove(&src->sl_list, obj);
724 	list_insert_tail(&dst->sl_list, obj);
725 	dst->sl_count++;
726 	src->sl_count--;
727 	if ((src->sl_count == 0) && (src->sl_waiting)) {
728 		src->sl_waiting = B_FALSE;
729 		cv_broadcast(&src->sl_cv);
730 	}
731 }
732 
733 /*
734  * smb_slist_wait_for_empty
735  *
736  * This function waits for a list to be emptied.
737  */
738 void
739 smb_slist_wait_for_empty(
740     smb_slist_t	*sl)
741 {
742 	mutex_enter(&sl->sl_mutex);
743 	while (sl->sl_count) {
744 		sl->sl_waiting = B_TRUE;
745 		cv_wait(&sl->sl_cv, &sl->sl_mutex);
746 	}
747 	mutex_exit(&sl->sl_mutex);
748 }
749 
750 /*
751  * smb_slist_exit
752  *
753  * This function exits the muetx of the list and signal the condition variable
754  * if the list is empty.
755  */
756 void
757 smb_slist_exit(smb_slist_t *sl)
758 {
759 	if ((sl->sl_count == 0) && (sl->sl_waiting)) {
760 		sl->sl_waiting = B_FALSE;
761 		cv_broadcast(&sl->sl_cv);
762 	}
763 	mutex_exit(&sl->sl_mutex);
764 }
765 
766 /*
767  * smb_thread_entry_point
768  *
769  * Common entry point for all the threads created through smb_thread_start.
770  * The state of the thread is set to "running" at the beginning and moved to
771  * "exiting" just before calling thread_exit(). The condition variable is
772  *  also signaled.
773  */
774 static void
775 smb_thread_entry_point(
776     smb_thread_t	*thread)
777 {
778 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
779 	mutex_enter(&thread->sth_mtx);
780 	ASSERT(thread->sth_state == SMB_THREAD_STATE_STARTING);
781 	thread->sth_th = curthread;
782 	thread->sth_did = thread->sth_th->t_did;
783 
784 	if (!thread->sth_kill) {
785 		thread->sth_state = SMB_THREAD_STATE_RUNNING;
786 		cv_signal(&thread->sth_cv);
787 		mutex_exit(&thread->sth_mtx);
788 		thread->sth_ep(thread, thread->sth_ep_arg);
789 		mutex_enter(&thread->sth_mtx);
790 	}
791 	thread->sth_th = NULL;
792 	thread->sth_state = SMB_THREAD_STATE_EXITING;
793 	cv_broadcast(&thread->sth_cv);
794 	mutex_exit(&thread->sth_mtx);
795 	thread_exit();
796 }
797 
798 /*
799  * smb_thread_init
800  */
801 void
802 smb_thread_init(
803     smb_thread_t	*thread,
804     char		*name,
805     smb_thread_ep_t	ep,
806     void		*ep_arg)
807 {
808 	ASSERT(thread->sth_magic != SMB_THREAD_MAGIC);
809 
810 	bzero(thread, sizeof (*thread));
811 
812 	(void) strlcpy(thread->sth_name, name, sizeof (thread->sth_name));
813 	thread->sth_ep = ep;
814 	thread->sth_ep_arg = ep_arg;
815 	thread->sth_state = SMB_THREAD_STATE_EXITED;
816 	mutex_init(&thread->sth_mtx, NULL, MUTEX_DEFAULT, NULL);
817 	cv_init(&thread->sth_cv, NULL, CV_DEFAULT, NULL);
818 	thread->sth_magic = SMB_THREAD_MAGIC;
819 }
820 
821 /*
822  * smb_thread_destroy
823  */
824 void
825 smb_thread_destroy(
826     smb_thread_t	*thread)
827 {
828 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
829 	ASSERT(thread->sth_state == SMB_THREAD_STATE_EXITED);
830 	thread->sth_magic = 0;
831 	mutex_destroy(&thread->sth_mtx);
832 	cv_destroy(&thread->sth_cv);
833 }
834 
835 /*
836  * smb_thread_start
837  *
838  * This function starts a thread with the parameters provided. It waits until
839  * the state of the thread has been moved to running.
840  */
841 /*ARGSUSED*/
842 int
843 smb_thread_start(
844     smb_thread_t	*thread)
845 {
846 	int		rc = 0;
847 	kthread_t	*tmpthread;
848 
849 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
850 
851 	mutex_enter(&thread->sth_mtx);
852 	switch (thread->sth_state) {
853 	case SMB_THREAD_STATE_EXITED:
854 		thread->sth_state = SMB_THREAD_STATE_STARTING;
855 		mutex_exit(&thread->sth_mtx);
856 		tmpthread = thread_create(NULL, 0, smb_thread_entry_point,
857 		    thread, 0, &p0, TS_RUN, minclsyspri);
858 		ASSERT(tmpthread != NULL);
859 		mutex_enter(&thread->sth_mtx);
860 		while (thread->sth_state == SMB_THREAD_STATE_STARTING)
861 			cv_wait(&thread->sth_cv, &thread->sth_mtx);
862 		if (thread->sth_state != SMB_THREAD_STATE_RUNNING)
863 			rc = -1;
864 		break;
865 	default:
866 		ASSERT(0);
867 		rc = -1;
868 		break;
869 	}
870 	mutex_exit(&thread->sth_mtx);
871 	return (rc);
872 }
873 
874 /*
875  * smb_thread_stop
876  *
877  * This function signals a thread to kill itself and waits until the "exiting"
878  * state has been reached.
879  */
880 void
881 smb_thread_stop(smb_thread_t *thread)
882 {
883 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
884 
885 	mutex_enter(&thread->sth_mtx);
886 	switch (thread->sth_state) {
887 	case SMB_THREAD_STATE_RUNNING:
888 	case SMB_THREAD_STATE_STARTING:
889 		if (!thread->sth_kill) {
890 			thread->sth_kill = B_TRUE;
891 			cv_broadcast(&thread->sth_cv);
892 			while (thread->sth_state != SMB_THREAD_STATE_EXITING)
893 				cv_wait(&thread->sth_cv, &thread->sth_mtx);
894 			mutex_exit(&thread->sth_mtx);
895 			thread_join(thread->sth_did);
896 			mutex_enter(&thread->sth_mtx);
897 			thread->sth_state = SMB_THREAD_STATE_EXITED;
898 			thread->sth_did = 0;
899 			thread->sth_kill = B_FALSE;
900 			cv_broadcast(&thread->sth_cv);
901 			break;
902 		}
903 		/*FALLTHRU*/
904 
905 	case SMB_THREAD_STATE_EXITING:
906 		if (thread->sth_kill) {
907 			while (thread->sth_state != SMB_THREAD_STATE_EXITED)
908 				cv_wait(&thread->sth_cv, &thread->sth_mtx);
909 		} else {
910 			thread->sth_state = SMB_THREAD_STATE_EXITED;
911 			thread->sth_did = 0;
912 		}
913 		break;
914 
915 	case SMB_THREAD_STATE_EXITED:
916 		break;
917 
918 	default:
919 		ASSERT(0);
920 		break;
921 	}
922 	mutex_exit(&thread->sth_mtx);
923 }
924 
925 /*
926  * smb_thread_signal
927  *
928  * This function signals a thread.
929  */
930 void
931 smb_thread_signal(smb_thread_t *thread)
932 {
933 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
934 
935 	mutex_enter(&thread->sth_mtx);
936 	switch (thread->sth_state) {
937 	case SMB_THREAD_STATE_RUNNING:
938 		cv_signal(&thread->sth_cv);
939 		break;
940 
941 	default:
942 		break;
943 	}
944 	mutex_exit(&thread->sth_mtx);
945 }
946 
947 boolean_t
948 smb_thread_continue(smb_thread_t *thread)
949 {
950 	boolean_t result;
951 
952 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
953 
954 	mutex_enter(&thread->sth_mtx);
955 	result = smb_thread_continue_timedwait_locked(thread, 0);
956 	mutex_exit(&thread->sth_mtx);
957 
958 	return (result);
959 }
960 
961 boolean_t
962 smb_thread_continue_nowait(smb_thread_t *thread)
963 {
964 	boolean_t result;
965 
966 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
967 
968 	mutex_enter(&thread->sth_mtx);
969 	/*
970 	 * Setting ticks=-1 requests a non-blocking check.  We will
971 	 * still block if the thread is in "suspend" state.
972 	 */
973 	result = smb_thread_continue_timedwait_locked(thread, -1);
974 	mutex_exit(&thread->sth_mtx);
975 
976 	return (result);
977 }
978 
979 boolean_t
980 smb_thread_continue_timedwait(smb_thread_t *thread, int seconds)
981 {
982 	boolean_t result;
983 
984 	ASSERT(thread->sth_magic == SMB_THREAD_MAGIC);
985 
986 	mutex_enter(&thread->sth_mtx);
987 	result = smb_thread_continue_timedwait_locked(thread,
988 	    SEC_TO_TICK(seconds));
989 	mutex_exit(&thread->sth_mtx);
990 
991 	return (result);
992 }
993 
994 /*
995  * smb_thread_continue_timedwait_locked
996  *
997  * Internal only.  Ticks==-1 means don't block, Ticks == 0 means wait
998  * indefinitely
999  */
1000 static boolean_t
1001 smb_thread_continue_timedwait_locked(smb_thread_t *thread, int ticks)
1002 {
1003 	boolean_t	result;
1004 
1005 	/* -1 means don't block */
1006 	if (ticks != -1 && !thread->sth_kill) {
1007 		if (ticks == 0) {
1008 			cv_wait(&thread->sth_cv, &thread->sth_mtx);
1009 		} else {
1010 			(void) cv_reltimedwait(&thread->sth_cv,
1011 			    &thread->sth_mtx, (clock_t)ticks, TR_CLOCK_TICK);
1012 		}
1013 	}
1014 	result = (thread->sth_kill == 0);
1015 
1016 	return (result);
1017 }
1018 
1019 /*
1020  * smb_rwx_init
1021  */
1022 void
1023 smb_rwx_init(
1024     smb_rwx_t	*rwx)
1025 {
1026 	bzero(rwx, sizeof (smb_rwx_t));
1027 	cv_init(&rwx->rwx_cv, NULL, CV_DEFAULT, NULL);
1028 	mutex_init(&rwx->rwx_mutex, NULL, MUTEX_DEFAULT, NULL);
1029 	rw_init(&rwx->rwx_lock, NULL, RW_DEFAULT, NULL);
1030 }
1031 
1032 /*
1033  * smb_rwx_destroy
1034  */
1035 void
1036 smb_rwx_destroy(
1037     smb_rwx_t	*rwx)
1038 {
1039 	mutex_destroy(&rwx->rwx_mutex);
1040 	cv_destroy(&rwx->rwx_cv);
1041 	rw_destroy(&rwx->rwx_lock);
1042 }
1043 
1044 /*
1045  * smb_rwx_rwexit
1046  */
1047 void
1048 smb_rwx_rwexit(
1049     smb_rwx_t	*rwx)
1050 {
1051 	if (rw_write_held(&rwx->rwx_lock)) {
1052 		ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
1053 		mutex_enter(&rwx->rwx_mutex);
1054 		if (rwx->rwx_waiting) {
1055 			rwx->rwx_waiting = B_FALSE;
1056 			cv_broadcast(&rwx->rwx_cv);
1057 		}
1058 		mutex_exit(&rwx->rwx_mutex);
1059 	}
1060 	rw_exit(&rwx->rwx_lock);
1061 }
1062 
1063 /*
1064  * smb_rwx_rwupgrade
1065  */
1066 krw_t
1067 smb_rwx_rwupgrade(
1068     smb_rwx_t	*rwx)
1069 {
1070 	if (rw_write_held(&rwx->rwx_lock)) {
1071 		ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
1072 		return (RW_WRITER);
1073 	}
1074 	if (!rw_tryupgrade(&rwx->rwx_lock)) {
1075 		rw_exit(&rwx->rwx_lock);
1076 		rw_enter(&rwx->rwx_lock, RW_WRITER);
1077 	}
1078 	return (RW_READER);
1079 }
1080 
1081 /*
1082  * smb_rwx_rwrestore
1083  */
1084 void
1085 smb_rwx_rwdowngrade(
1086     smb_rwx_t	*rwx,
1087     krw_t	mode)
1088 {
1089 	ASSERT(rw_write_held(&rwx->rwx_lock));
1090 	ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
1091 
1092 	if (mode == RW_WRITER) {
1093 		return;
1094 	}
1095 	ASSERT(mode == RW_READER);
1096 	mutex_enter(&rwx->rwx_mutex);
1097 	if (rwx->rwx_waiting) {
1098 		rwx->rwx_waiting = B_FALSE;
1099 		cv_broadcast(&rwx->rwx_cv);
1100 	}
1101 	mutex_exit(&rwx->rwx_mutex);
1102 	rw_downgrade(&rwx->rwx_lock);
1103 }
1104 
1105 /*
1106  * smb_rwx_wait
1107  *
1108  * This function assumes the smb_rwx lock was enter in RW_READER or RW_WRITER
1109  * mode. It will:
1110  *
1111  *	1) release the lock and save its current mode.
1112  *	2) wait until the condition variable is signaled. This can happen for
1113  *	   2 reasons: When a writer releases the lock or when the time out (if
1114  *	   provided) expires.
1115  *	3) re-acquire the lock in the mode saved in (1).
1116  */
1117 int
1118 smb_rwx_rwwait(
1119     smb_rwx_t	*rwx,
1120     clock_t	timeout)
1121 {
1122 	int	rc;
1123 	krw_t	mode;
1124 
1125 	mutex_enter(&rwx->rwx_mutex);
1126 	rwx->rwx_waiting = B_TRUE;
1127 	mutex_exit(&rwx->rwx_mutex);
1128 
1129 	if (rw_write_held(&rwx->rwx_lock)) {
1130 		ASSERT(rw_owner(&rwx->rwx_lock) == curthread);
1131 		mode = RW_WRITER;
1132 	} else {
1133 		ASSERT(rw_read_held(&rwx->rwx_lock));
1134 		mode = RW_READER;
1135 	}
1136 	rw_exit(&rwx->rwx_lock);
1137 
1138 	mutex_enter(&rwx->rwx_mutex);
1139 	if (rwx->rwx_waiting) {
1140 		if (timeout == -1) {
1141 			rc = 1;
1142 			cv_wait(&rwx->rwx_cv, &rwx->rwx_mutex);
1143 		} else {
1144 			rc = cv_reltimedwait(&rwx->rwx_cv, &rwx->rwx_mutex,
1145 			    timeout, TR_CLOCK_TICK);
1146 		}
1147 	}
1148 	mutex_exit(&rwx->rwx_mutex);
1149 
1150 	rw_enter(&rwx->rwx_lock, mode);
1151 	return (rc);
1152 }
1153 
1154 /*
1155  * SMB ID mapping
1156  *
1157  * Solaris ID mapping service (aka Winchester) works with domain SIDs
1158  * and RIDs where domain SIDs are in string format. CIFS service works
1159  * with binary SIDs understandable by CIFS clients. A layer of SMB ID
1160  * mapping functions are implemeted to hide the SID conversion details
1161  * and also hide the handling of array of batch mapping requests.
1162  *
1163  * IMPORTANT NOTE The Winchester API requires a zone. Because CIFS server
1164  * currently only runs in the global zone the global zone is specified.
1165  * This needs to be fixed when the CIFS server supports zones.
1166  */
1167 
1168 static int smb_idmap_batch_binsid(smb_idmap_batch_t *sib);
1169 
1170 /*
1171  * smb_idmap_getid
1172  *
1173  * Maps the given Windows SID to a Solaris ID using the
1174  * simple mapping API.
1175  */
1176 idmap_stat
1177 smb_idmap_getid(smb_sid_t *sid, uid_t *id, int *idtype)
1178 {
1179 	smb_idmap_t sim;
1180 	char sidstr[SMB_SID_STRSZ];
1181 
1182 	smb_sid_tostr(sid, sidstr);
1183 	if (smb_sid_splitstr(sidstr, &sim.sim_rid) != 0)
1184 		return (IDMAP_ERR_SID);
1185 	sim.sim_domsid = sidstr;
1186 	sim.sim_id = id;
1187 
1188 	switch (*idtype) {
1189 	case SMB_IDMAP_USER:
1190 		sim.sim_stat = kidmap_getuidbysid(global_zone, sim.sim_domsid,
1191 		    sim.sim_rid, sim.sim_id);
1192 		break;
1193 
1194 	case SMB_IDMAP_GROUP:
1195 		sim.sim_stat = kidmap_getgidbysid(global_zone, sim.sim_domsid,
1196 		    sim.sim_rid, sim.sim_id);
1197 		break;
1198 
1199 	case SMB_IDMAP_UNKNOWN:
1200 		sim.sim_stat = kidmap_getpidbysid(global_zone, sim.sim_domsid,
1201 		    sim.sim_rid, sim.sim_id, &sim.sim_idtype);
1202 		break;
1203 
1204 	default:
1205 		ASSERT(0);
1206 		return (IDMAP_ERR_ARG);
1207 	}
1208 
1209 	*idtype = sim.sim_idtype;
1210 
1211 	return (sim.sim_stat);
1212 }
1213 
1214 /*
1215  * smb_idmap_getsid
1216  *
1217  * Maps the given Solaris ID to a Windows SID using the
1218  * simple mapping API.
1219  */
1220 idmap_stat
1221 smb_idmap_getsid(uid_t id, int idtype, smb_sid_t **sid)
1222 {
1223 	smb_idmap_t sim;
1224 
1225 	switch (idtype) {
1226 	case SMB_IDMAP_USER:
1227 		sim.sim_stat = kidmap_getsidbyuid(global_zone, id,
1228 		    (const char **)&sim.sim_domsid, &sim.sim_rid);
1229 		break;
1230 
1231 	case SMB_IDMAP_GROUP:
1232 		sim.sim_stat = kidmap_getsidbygid(global_zone, id,
1233 		    (const char **)&sim.sim_domsid, &sim.sim_rid);
1234 		break;
1235 
1236 	case SMB_IDMAP_EVERYONE:
1237 		/* Everyone S-1-1-0 */
1238 		sim.sim_domsid = "S-1-1";
1239 		sim.sim_rid = 0;
1240 		sim.sim_stat = IDMAP_SUCCESS;
1241 		break;
1242 
1243 	default:
1244 		ASSERT(0);
1245 		return (IDMAP_ERR_ARG);
1246 	}
1247 
1248 	if (sim.sim_stat != IDMAP_SUCCESS)
1249 		return (sim.sim_stat);
1250 
1251 	if (sim.sim_domsid == NULL)
1252 		return (IDMAP_ERR_NOMAPPING);
1253 
1254 	sim.sim_sid = smb_sid_fromstr(sim.sim_domsid);
1255 	if (sim.sim_sid == NULL)
1256 		return (IDMAP_ERR_INTERNAL);
1257 
1258 	*sid = smb_sid_splice(sim.sim_sid, sim.sim_rid);
1259 	smb_sid_free(sim.sim_sid);
1260 	if (*sid == NULL)
1261 		sim.sim_stat = IDMAP_ERR_INTERNAL;
1262 
1263 	return (sim.sim_stat);
1264 }
1265 
1266 /*
1267  * smb_idmap_batch_create
1268  *
1269  * Creates and initializes the context for batch ID mapping.
1270  */
1271 idmap_stat
1272 smb_idmap_batch_create(smb_idmap_batch_t *sib, uint16_t nmap, int flags)
1273 {
1274 	ASSERT(sib);
1275 
1276 	bzero(sib, sizeof (smb_idmap_batch_t));
1277 
1278 	sib->sib_idmaph = kidmap_get_create(global_zone);
1279 
1280 	sib->sib_flags = flags;
1281 	sib->sib_nmap = nmap;
1282 	sib->sib_size = nmap * sizeof (smb_idmap_t);
1283 	sib->sib_maps = kmem_zalloc(sib->sib_size, KM_SLEEP);
1284 
1285 	return (IDMAP_SUCCESS);
1286 }
1287 
1288 /*
1289  * smb_idmap_batch_destroy
1290  *
1291  * Frees the batch ID mapping context.
1292  * If ID mapping is Solaris -> Windows it frees memories
1293  * allocated for binary SIDs.
1294  */
1295 void
1296 smb_idmap_batch_destroy(smb_idmap_batch_t *sib)
1297 {
1298 	char *domsid;
1299 	int i;
1300 
1301 	ASSERT(sib);
1302 	ASSERT(sib->sib_maps);
1303 
1304 	if (sib->sib_idmaph)
1305 		kidmap_get_destroy(sib->sib_idmaph);
1306 
1307 	if (sib->sib_flags & SMB_IDMAP_ID2SID) {
1308 		/*
1309 		 * SIDs are allocated only when mapping
1310 		 * UID/GID to SIDs
1311 		 */
1312 		for (i = 0; i < sib->sib_nmap; i++)
1313 			smb_sid_free(sib->sib_maps[i].sim_sid);
1314 	} else if (sib->sib_flags & SMB_IDMAP_SID2ID) {
1315 		/*
1316 		 * SID prefixes are allocated only when mapping
1317 		 * SIDs to UID/GID
1318 		 */
1319 		for (i = 0; i < sib->sib_nmap; i++) {
1320 			domsid = sib->sib_maps[i].sim_domsid;
1321 			if (domsid)
1322 				smb_mem_free(domsid);
1323 		}
1324 	}
1325 
1326 	if (sib->sib_size && sib->sib_maps)
1327 		kmem_free(sib->sib_maps, sib->sib_size);
1328 }
1329 
1330 /*
1331  * smb_idmap_batch_getid
1332  *
1333  * Queue a request to map the given SID to a UID or GID.
1334  *
1335  * sim->sim_id should point to variable that's supposed to
1336  * hold the returned UID/GID. This needs to be setup by caller
1337  * of this function.
1338  *
1339  * If requested ID type is known, it's passed as 'idtype',
1340  * if it's unknown it'll be returned in sim->sim_idtype.
1341  */
1342 idmap_stat
1343 smb_idmap_batch_getid(idmap_get_handle_t *idmaph, smb_idmap_t *sim,
1344     smb_sid_t *sid, int idtype)
1345 {
1346 	char strsid[SMB_SID_STRSZ];
1347 	idmap_stat idm_stat;
1348 
1349 	ASSERT(idmaph);
1350 	ASSERT(sim);
1351 	ASSERT(sid);
1352 
1353 	smb_sid_tostr(sid, strsid);
1354 	if (smb_sid_splitstr(strsid, &sim->sim_rid) != 0)
1355 		return (IDMAP_ERR_SID);
1356 	sim->sim_domsid = smb_mem_strdup(strsid);
1357 
1358 	switch (idtype) {
1359 	case SMB_IDMAP_USER:
1360 		idm_stat = kidmap_batch_getuidbysid(idmaph, sim->sim_domsid,
1361 		    sim->sim_rid, sim->sim_id, &sim->sim_stat);
1362 		break;
1363 
1364 	case SMB_IDMAP_GROUP:
1365 		idm_stat = kidmap_batch_getgidbysid(idmaph, sim->sim_domsid,
1366 		    sim->sim_rid, sim->sim_id, &sim->sim_stat);
1367 		break;
1368 
1369 	case SMB_IDMAP_UNKNOWN:
1370 		idm_stat = kidmap_batch_getpidbysid(idmaph, sim->sim_domsid,
1371 		    sim->sim_rid, sim->sim_id, &sim->sim_idtype,
1372 		    &sim->sim_stat);
1373 		break;
1374 
1375 	default:
1376 		ASSERT(0);
1377 		return (IDMAP_ERR_ARG);
1378 	}
1379 
1380 	return (idm_stat);
1381 }
1382 
1383 /*
1384  * smb_idmap_batch_getsid
1385  *
1386  * Queue a request to map the given UID/GID to a SID.
1387  *
1388  * sim->sim_domsid and sim->sim_rid will contain the mapping
1389  * result upon successful process of the batched request.
1390  */
1391 idmap_stat
1392 smb_idmap_batch_getsid(idmap_get_handle_t *idmaph, smb_idmap_t *sim,
1393     uid_t id, int idtype)
1394 {
1395 	idmap_stat idm_stat;
1396 
1397 	switch (idtype) {
1398 	case SMB_IDMAP_USER:
1399 		idm_stat = kidmap_batch_getsidbyuid(idmaph, id,
1400 		    (const char **)&sim->sim_domsid, &sim->sim_rid,
1401 		    &sim->sim_stat);
1402 		break;
1403 
1404 	case SMB_IDMAP_GROUP:
1405 		idm_stat = kidmap_batch_getsidbygid(idmaph, id,
1406 		    (const char **)&sim->sim_domsid, &sim->sim_rid,
1407 		    &sim->sim_stat);
1408 		break;
1409 
1410 	case SMB_IDMAP_OWNERAT:
1411 		/* Current Owner S-1-5-32-766 */
1412 		sim->sim_domsid = NT_BUILTIN_DOMAIN_SIDSTR;
1413 		sim->sim_rid = SECURITY_CURRENT_OWNER_RID;
1414 		sim->sim_stat = IDMAP_SUCCESS;
1415 		idm_stat = IDMAP_SUCCESS;
1416 		break;
1417 
1418 	case SMB_IDMAP_GROUPAT:
1419 		/* Current Group S-1-5-32-767 */
1420 		sim->sim_domsid = NT_BUILTIN_DOMAIN_SIDSTR;
1421 		sim->sim_rid = SECURITY_CURRENT_GROUP_RID;
1422 		sim->sim_stat = IDMAP_SUCCESS;
1423 		idm_stat = IDMAP_SUCCESS;
1424 		break;
1425 
1426 	case SMB_IDMAP_EVERYONE:
1427 		/* Everyone S-1-1-0 */
1428 		sim->sim_domsid = NT_WORLD_AUTH_SIDSTR;
1429 		sim->sim_rid = 0;
1430 		sim->sim_stat = IDMAP_SUCCESS;
1431 		idm_stat = IDMAP_SUCCESS;
1432 		break;
1433 
1434 	default:
1435 		ASSERT(0);
1436 		return (IDMAP_ERR_ARG);
1437 	}
1438 
1439 	return (idm_stat);
1440 }
1441 
1442 /*
1443  * smb_idmap_batch_binsid
1444  *
1445  * Convert sidrids to binary sids
1446  *
1447  * Returns 0 if successful and non-zero upon failure.
1448  */
1449 static int
1450 smb_idmap_batch_binsid(smb_idmap_batch_t *sib)
1451 {
1452 	smb_sid_t *sid;
1453 	smb_idmap_t *sim;
1454 	int i;
1455 
1456 	if (sib->sib_flags & SMB_IDMAP_SID2ID)
1457 		/* This operation is not required */
1458 		return (0);
1459 
1460 	sim = sib->sib_maps;
1461 	for (i = 0; i < sib->sib_nmap; sim++, i++) {
1462 		ASSERT(sim->sim_domsid);
1463 		if (sim->sim_domsid == NULL)
1464 			return (1);
1465 
1466 		if ((sid = smb_sid_fromstr(sim->sim_domsid)) == NULL)
1467 			return (1);
1468 
1469 		sim->sim_sid = smb_sid_splice(sid, sim->sim_rid);
1470 		smb_sid_free(sid);
1471 	}
1472 
1473 	return (0);
1474 }
1475 
1476 /*
1477  * smb_idmap_batch_getmappings
1478  *
1479  * trigger ID mapping service to get the mappings for queued
1480  * requests.
1481  *
1482  * Checks the result of all the queued requests.
1483  * If this is a Solaris -> Windows mapping it generates
1484  * binary SIDs from returned (domsid, rid) pairs.
1485  */
1486 idmap_stat
1487 smb_idmap_batch_getmappings(smb_idmap_batch_t *sib)
1488 {
1489 	idmap_stat idm_stat = IDMAP_SUCCESS;
1490 	int i;
1491 
1492 	idm_stat = kidmap_get_mappings(sib->sib_idmaph);
1493 	if (idm_stat != IDMAP_SUCCESS)
1494 		return (idm_stat);
1495 
1496 	/*
1497 	 * Check the status for all the queued requests
1498 	 */
1499 	for (i = 0; i < sib->sib_nmap; i++) {
1500 		if (sib->sib_maps[i].sim_stat != IDMAP_SUCCESS)
1501 			return (sib->sib_maps[i].sim_stat);
1502 	}
1503 
1504 	if (smb_idmap_batch_binsid(sib) != 0)
1505 		idm_stat = IDMAP_ERR_OTHER;
1506 
1507 	return (idm_stat);
1508 }
1509 
1510 uint64_t
1511 smb_time_unix_to_nt(timestruc_t *unix_time)
1512 {
1513 	uint64_t nt_time;
1514 
1515 	if ((unix_time->tv_sec == 0) && (unix_time->tv_nsec == 0))
1516 		return (0);
1517 
1518 	nt_time = unix_time->tv_sec;
1519 	nt_time *= 10000000;  /* seconds to 100ns */
1520 	nt_time += unix_time->tv_nsec / 100;
1521 	return (nt_time + NT_TIME_BIAS);
1522 }
1523 
1524 void
1525 smb_time_nt_to_unix(uint64_t nt_time, timestruc_t *unix_time)
1526 {
1527 	uint32_t seconds;
1528 
1529 	ASSERT(unix_time);
1530 
1531 	if ((nt_time == 0) || (nt_time == -1)) {
1532 		unix_time->tv_sec = 0;
1533 		unix_time->tv_nsec = 0;
1534 		return;
1535 	}
1536 
1537 	nt_time -= NT_TIME_BIAS;
1538 	seconds = nt_time / 10000000;
1539 	unix_time->tv_sec = seconds;
1540 	unix_time->tv_nsec = (nt_time  % 10000000) * 100;
1541 }
1542 
1543 /*
1544  * smb_time_gmt_to_local, smb_time_local_to_gmt
1545  *
1546  * Apply the gmt offset to convert between local time and gmt
1547  */
1548 int32_t
1549 smb_time_gmt_to_local(smb_request_t *sr, int32_t gmt)
1550 {
1551 	if ((gmt == 0) || (gmt == -1))
1552 		return (0);
1553 
1554 	return (gmt - sr->sr_gmtoff);
1555 }
1556 
1557 int32_t
1558 smb_time_local_to_gmt(smb_request_t *sr, int32_t local)
1559 {
1560 	if ((local == 0) || (local == -1))
1561 		return (0);
1562 
1563 	return (local + sr->sr_gmtoff);
1564 }
1565 
1566 
1567 /*
1568  * smb_time_dos_to_unix
1569  *
1570  * Convert SMB_DATE & SMB_TIME values to a unix timestamp.
1571  *
1572  * A date/time field of 0 means that that server file system
1573  * assigned value need not be changed. The behaviour when the
1574  * date/time field is set to -1 is not documented but is
1575  * generally treated like 0.
1576  * If date or time is 0 or -1 the unix time is returned as 0
1577  * so that the caller can identify and handle this special case.
1578  */
1579 int32_t
1580 smb_time_dos_to_unix(int16_t date, int16_t time)
1581 {
1582 	struct tm	atm;
1583 
1584 	if (((date == 0) || (time == 0)) ||
1585 	    ((date == -1) || (time == -1))) {
1586 		return (0);
1587 	}
1588 
1589 	atm.tm_year = ((date >>  9) & 0x3F) + 80;
1590 	atm.tm_mon  = ((date >>  5) & 0x0F) - 1;
1591 	atm.tm_mday = ((date >>  0) & 0x1F);
1592 	atm.tm_hour = ((time >> 11) & 0x1F);
1593 	atm.tm_min  = ((time >>  5) & 0x3F);
1594 	atm.tm_sec  = ((time >>  0) & 0x1F) << 1;
1595 
1596 	return (smb_timegm(&atm));
1597 }
1598 
1599 void
1600 smb_time_unix_to_dos(int32_t ux_time, int16_t *date_p, int16_t *time_p)
1601 {
1602 	struct tm	atm;
1603 	int		i;
1604 	time_t		tmp_time;
1605 
1606 	if (ux_time == 0) {
1607 		*date_p = 0;
1608 		*time_p = 0;
1609 		return;
1610 	}
1611 
1612 	tmp_time = (time_t)ux_time;
1613 	(void) smb_gmtime_r(&tmp_time, &atm);
1614 
1615 	if (date_p) {
1616 		i = 0;
1617 		i += atm.tm_year - 80;
1618 		i <<= 4;
1619 		i += atm.tm_mon + 1;
1620 		i <<= 5;
1621 		i += atm.tm_mday;
1622 
1623 		*date_p = (short)i;
1624 	}
1625 	if (time_p) {
1626 		i = 0;
1627 		i += atm.tm_hour;
1628 		i <<= 6;
1629 		i += atm.tm_min;
1630 		i <<= 5;
1631 		i += atm.tm_sec >> 1;
1632 
1633 		*time_p = (short)i;
1634 	}
1635 }
1636 
1637 
1638 /*
1639  * smb_gmtime_r
1640  *
1641  * Thread-safe version of smb_gmtime. Returns a null pointer if either
1642  * input parameter is a null pointer. Otherwise returns a pointer
1643  * to result.
1644  *
1645  * Day of the week calculation: the Epoch was a thursday.
1646  *
1647  * There are no timezone corrections so tm_isdst and tm_gmtoff are
1648  * always zero, and the zone is always WET.
1649  */
1650 struct tm *
1651 smb_gmtime_r(time_t *clock, struct tm *result)
1652 {
1653 	time_t tsec;
1654 	int year;
1655 	int month;
1656 	int sec_per_month;
1657 
1658 	if (clock == 0 || result == 0)
1659 		return (0);
1660 
1661 	bzero(result, sizeof (struct tm));
1662 	tsec = *clock;
1663 	tsec -= tzh_leapcnt;
1664 
1665 	result->tm_wday = tsec / SECSPERDAY;
1666 	result->tm_wday = (result->tm_wday + TM_THURSDAY) % DAYSPERWEEK;
1667 
1668 	year = EPOCH_YEAR;
1669 	while (tsec >= (isleap(year) ? (SECSPERDAY * DAYSPERLYEAR) :
1670 	    (SECSPERDAY * DAYSPERNYEAR))) {
1671 		if (isleap(year))
1672 			tsec -= SECSPERDAY * DAYSPERLYEAR;
1673 		else
1674 			tsec -= SECSPERDAY * DAYSPERNYEAR;
1675 
1676 		++year;
1677 	}
1678 
1679 	result->tm_year = year - TM_YEAR_BASE;
1680 	result->tm_yday = tsec / SECSPERDAY;
1681 
1682 	for (month = TM_JANUARY; month <= TM_DECEMBER; ++month) {
1683 		sec_per_month = days_in_month[month] * SECSPERDAY;
1684 
1685 		if (month == TM_FEBRUARY && isleap(year))
1686 			sec_per_month += SECSPERDAY;
1687 
1688 		if (tsec < sec_per_month)
1689 			break;
1690 
1691 		tsec -= sec_per_month;
1692 	}
1693 
1694 	result->tm_mon = month;
1695 	result->tm_mday = (tsec / SECSPERDAY) + 1;
1696 	tsec %= SECSPERDAY;
1697 	result->tm_sec = tsec % 60;
1698 	tsec /= 60;
1699 	result->tm_min = tsec % 60;
1700 	tsec /= 60;
1701 	result->tm_hour = (int)tsec;
1702 
1703 	return (result);
1704 }
1705 
1706 
1707 /*
1708  * smb_timegm
1709  *
1710  * Converts the broken-down time in tm to a time value, i.e. the number
1711  * of seconds since the Epoch (00:00:00 UTC, January 1, 1970). This is
1712  * not a POSIX or ANSI function. Per the man page, the input values of
1713  * tm_wday and tm_yday are ignored and, as the input data is assumed to
1714  * represent GMT, we force tm_isdst and tm_gmtoff to 0.
1715  *
1716  * Before returning the clock time, we use smb_gmtime_r to set up tm_wday
1717  * and tm_yday, and bring the other fields within normal range. I don't
1718  * think this is really how it should be done but it's convenient for
1719  * now.
1720  */
1721 time_t
1722 smb_timegm(struct tm *tm)
1723 {
1724 	time_t tsec;
1725 	int dd;
1726 	int mm;
1727 	int yy;
1728 	int year;
1729 
1730 	if (tm == 0)
1731 		return (-1);
1732 
1733 	year = tm->tm_year + TM_YEAR_BASE;
1734 	tsec = tzh_leapcnt;
1735 
1736 	for (yy = EPOCH_YEAR; yy < year; ++yy) {
1737 		if (isleap(yy))
1738 			tsec += SECSPERDAY * DAYSPERLYEAR;
1739 		else
1740 			tsec += SECSPERDAY * DAYSPERNYEAR;
1741 	}
1742 
1743 	for (mm = TM_JANUARY; mm < tm->tm_mon; ++mm) {
1744 		dd = days_in_month[mm] * SECSPERDAY;
1745 
1746 		if (mm == TM_FEBRUARY && isleap(year))
1747 			dd += SECSPERDAY;
1748 
1749 		tsec += dd;
1750 	}
1751 
1752 	tsec += (tm->tm_mday - 1) * SECSPERDAY;
1753 	tsec += tm->tm_sec;
1754 	tsec += tm->tm_min * SECSPERMIN;
1755 	tsec += tm->tm_hour * SECSPERHOUR;
1756 
1757 	tm->tm_isdst = 0;
1758 	(void) smb_gmtime_r(&tsec, tm);
1759 	return (tsec);
1760 }
1761 
1762 /*
1763  * smb_pad_align
1764  *
1765  * Returns the number of bytes required to pad an offset to the
1766  * specified alignment.
1767  */
1768 uint32_t
1769 smb_pad_align(uint32_t offset, uint32_t align)
1770 {
1771 	uint32_t pad = offset % align;
1772 
1773 	if (pad != 0)
1774 		pad = align - pad;
1775 
1776 	return (pad);
1777 }
1778 
1779 /*
1780  * smb_panic
1781  *
1782  * Logs the file name, function name and line number passed in and panics the
1783  * system.
1784  */
1785 void
1786 smb_panic(char *file, const char *func, int line)
1787 {
1788 	cmn_err(CE_PANIC, "%s:%s:%d\n", file, func, line);
1789 }
1790 
1791 /*
1792  * Creates an AVL tree and initializes the given smb_avl_t
1793  * structure using the passed args
1794  */
1795 void
1796 smb_avl_create(smb_avl_t *avl, size_t size, size_t offset, smb_avl_nops_t *ops)
1797 {
1798 	ASSERT(avl);
1799 	ASSERT(ops);
1800 
1801 	rw_init(&avl->avl_lock, NULL, RW_DEFAULT, NULL);
1802 	mutex_init(&avl->avl_mutex, NULL, MUTEX_DEFAULT, NULL);
1803 
1804 	avl->avl_nops = ops;
1805 	avl->avl_state = SMB_AVL_STATE_READY;
1806 	avl->avl_refcnt = 0;
1807 	(void) random_get_pseudo_bytes((uint8_t *)&avl->avl_sequence,
1808 	    sizeof (uint32_t));
1809 
1810 	avl_create(&avl->avl_tree, ops->avln_cmp, size, offset);
1811 }
1812 
1813 /*
1814  * Destroys the specified AVL tree.
1815  * It waits for all the in-flight operations to finish
1816  * before destroying the AVL.
1817  */
1818 void
1819 smb_avl_destroy(smb_avl_t *avl)
1820 {
1821 	void *cookie = NULL;
1822 	void *node;
1823 
1824 	ASSERT(avl);
1825 
1826 	mutex_enter(&avl->avl_mutex);
1827 	if (avl->avl_state != SMB_AVL_STATE_READY) {
1828 		mutex_exit(&avl->avl_mutex);
1829 		return;
1830 	}
1831 
1832 	avl->avl_state = SMB_AVL_STATE_DESTROYING;
1833 
1834 	while (avl->avl_refcnt > 0)
1835 		(void) cv_wait(&avl->avl_cv, &avl->avl_mutex);
1836 	mutex_exit(&avl->avl_mutex);
1837 
1838 	rw_enter(&avl->avl_lock, RW_WRITER);
1839 	while ((node = avl_destroy_nodes(&avl->avl_tree, &cookie)) != NULL)
1840 		avl->avl_nops->avln_destroy(node);
1841 
1842 	avl_destroy(&avl->avl_tree);
1843 	rw_exit(&avl->avl_lock);
1844 
1845 	rw_destroy(&avl->avl_lock);
1846 
1847 	mutex_destroy(&avl->avl_mutex);
1848 	bzero(avl, sizeof (smb_avl_t));
1849 }
1850 
1851 /*
1852  * Adds the given item to the AVL if it's
1853  * not already there.
1854  *
1855  * Returns:
1856  *
1857  * 	ENOTACTIVE	AVL is not in READY state
1858  * 	EEXIST		The item is already in AVL
1859  */
1860 int
1861 smb_avl_add(smb_avl_t *avl, void *item)
1862 {
1863 	avl_index_t where;
1864 
1865 	ASSERT(avl);
1866 	ASSERT(item);
1867 
1868 	if (!smb_avl_hold(avl))
1869 		return (ENOTACTIVE);
1870 
1871 	rw_enter(&avl->avl_lock, RW_WRITER);
1872 	if (avl_find(&avl->avl_tree, item, &where) != NULL) {
1873 		rw_exit(&avl->avl_lock);
1874 		smb_avl_rele(avl);
1875 		return (EEXIST);
1876 	}
1877 
1878 	avl_insert(&avl->avl_tree, item, where);
1879 	avl->avl_sequence++;
1880 	rw_exit(&avl->avl_lock);
1881 
1882 	smb_avl_rele(avl);
1883 	return (0);
1884 }
1885 
1886 /*
1887  * Removes the given item from the AVL.
1888  * If no reference is left on the item
1889  * it will also be destroyed by calling the
1890  * registered destroy operation.
1891  */
1892 void
1893 smb_avl_remove(smb_avl_t *avl, void *item)
1894 {
1895 	avl_index_t where;
1896 	void *rm_item;
1897 
1898 	ASSERT(avl);
1899 	ASSERT(item);
1900 
1901 	if (!smb_avl_hold(avl))
1902 		return;
1903 
1904 	rw_enter(&avl->avl_lock, RW_WRITER);
1905 	if ((rm_item = avl_find(&avl->avl_tree, item, &where)) == NULL) {
1906 		rw_exit(&avl->avl_lock);
1907 		smb_avl_rele(avl);
1908 		return;
1909 	}
1910 
1911 	avl_remove(&avl->avl_tree, rm_item);
1912 	if (avl->avl_nops->avln_rele(rm_item))
1913 		avl->avl_nops->avln_destroy(rm_item);
1914 	avl->avl_sequence++;
1915 	rw_exit(&avl->avl_lock);
1916 
1917 	smb_avl_rele(avl);
1918 }
1919 
1920 /*
1921  * Looks up the AVL for the given item.
1922  * If the item is found a hold on the object
1923  * is taken before the pointer to it is
1924  * returned to the caller. The caller MUST
1925  * always call smb_avl_release() after it's done
1926  * using the returned object to release the hold
1927  * taken on the object.
1928  */
1929 void *
1930 smb_avl_lookup(smb_avl_t *avl, void *item)
1931 {
1932 	void *node = NULL;
1933 
1934 	ASSERT(avl);
1935 	ASSERT(item);
1936 
1937 	if (!smb_avl_hold(avl))
1938 		return (NULL);
1939 
1940 	rw_enter(&avl->avl_lock, RW_READER);
1941 	node = avl_find(&avl->avl_tree, item, NULL);
1942 	if (node != NULL)
1943 		avl->avl_nops->avln_hold(node);
1944 	rw_exit(&avl->avl_lock);
1945 
1946 	if (node == NULL)
1947 		smb_avl_rele(avl);
1948 
1949 	return (node);
1950 }
1951 
1952 /*
1953  * The hold on the given object is released.
1954  * This function MUST always be called after
1955  * smb_avl_lookup() and smb_avl_iterate() for
1956  * the returned object.
1957  *
1958  * If AVL is in DESTROYING state, the destroying
1959  * thread will be notified.
1960  */
1961 void
1962 smb_avl_release(smb_avl_t *avl, void *item)
1963 {
1964 	ASSERT(avl);
1965 	ASSERT(item);
1966 
1967 	if (avl->avl_nops->avln_rele(item))
1968 		avl->avl_nops->avln_destroy(item);
1969 
1970 	smb_avl_rele(avl);
1971 }
1972 
1973 /*
1974  * Initializes the given cursor for the AVL.
1975  * The cursor will be used to iterate through the AVL
1976  */
1977 void
1978 smb_avl_iterinit(smb_avl_t *avl, smb_avl_cursor_t *cursor)
1979 {
1980 	ASSERT(avl);
1981 	ASSERT(cursor);
1982 
1983 	cursor->avlc_next = NULL;
1984 	cursor->avlc_sequence = avl->avl_sequence;
1985 }
1986 
1987 /*
1988  * Iterates through the AVL using the given cursor.
1989  * It always starts at the beginning and then returns
1990  * a pointer to the next object on each subsequent call.
1991  *
1992  * If a new object is added to or removed from the AVL
1993  * between two calls to this function, the iteration
1994  * will terminate prematurely.
1995  *
1996  * The caller MUST always call smb_avl_release() after it's
1997  * done using the returned object to release the hold taken
1998  * on the object.
1999  */
2000 void *
2001 smb_avl_iterate(smb_avl_t *avl, smb_avl_cursor_t *cursor)
2002 {
2003 	void *node;
2004 
2005 	ASSERT(avl);
2006 	ASSERT(cursor);
2007 
2008 	if (!smb_avl_hold(avl))
2009 		return (NULL);
2010 
2011 	rw_enter(&avl->avl_lock, RW_READER);
2012 	if (cursor->avlc_sequence != avl->avl_sequence) {
2013 		rw_exit(&avl->avl_lock);
2014 		smb_avl_rele(avl);
2015 		return (NULL);
2016 	}
2017 
2018 	if (cursor->avlc_next == NULL)
2019 		node = avl_first(&avl->avl_tree);
2020 	else
2021 		node = AVL_NEXT(&avl->avl_tree, cursor->avlc_next);
2022 
2023 	if (node != NULL)
2024 		avl->avl_nops->avln_hold(node);
2025 
2026 	cursor->avlc_next = node;
2027 	rw_exit(&avl->avl_lock);
2028 
2029 	if (node == NULL)
2030 		smb_avl_rele(avl);
2031 
2032 	return (node);
2033 }
2034 
2035 /*
2036  * Increments the AVL reference count in order to
2037  * prevent the avl from being destroyed while it's
2038  * being accessed.
2039  */
2040 static boolean_t
2041 smb_avl_hold(smb_avl_t *avl)
2042 {
2043 	mutex_enter(&avl->avl_mutex);
2044 	if (avl->avl_state != SMB_AVL_STATE_READY) {
2045 		mutex_exit(&avl->avl_mutex);
2046 		return (B_FALSE);
2047 	}
2048 	avl->avl_refcnt++;
2049 	mutex_exit(&avl->avl_mutex);
2050 
2051 	return (B_TRUE);
2052 }
2053 
2054 /*
2055  * Decrements the AVL reference count to release the
2056  * hold. If another thread is trying to destroy the
2057  * AVL and is waiting for the reference count to become
2058  * 0, it is signaled to wake up.
2059  */
2060 static void
2061 smb_avl_rele(smb_avl_t *avl)
2062 {
2063 	mutex_enter(&avl->avl_mutex);
2064 	ASSERT(avl->avl_refcnt > 0);
2065 	avl->avl_refcnt--;
2066 	if (avl->avl_state == SMB_AVL_STATE_DESTROYING)
2067 		cv_broadcast(&avl->avl_cv);
2068 	mutex_exit(&avl->avl_mutex);
2069 }
2070 
2071 /*
2072  * smb_latency_init
2073  */
2074 void
2075 smb_latency_init(smb_latency_t *lat)
2076 {
2077 	bzero(lat, sizeof (*lat));
2078 	mutex_init(&lat->ly_mutex, NULL, MUTEX_SPIN, (void *)ipltospl(SPL7));
2079 }
2080 
2081 /*
2082  * smb_latency_destroy
2083  */
2084 void
2085 smb_latency_destroy(smb_latency_t *lat)
2086 {
2087 	mutex_destroy(&lat->ly_mutex);
2088 }
2089 
2090 /*
2091  * smb_latency_add_sample
2092  *
2093  * Uses the new sample to calculate the new mean and standard deviation. The
2094  * sample must be a scaled value.
2095  */
2096 void
2097 smb_latency_add_sample(smb_latency_t *lat, hrtime_t sample)
2098 {
2099 	hrtime_t	a_mean;
2100 	hrtime_t	d_mean;
2101 
2102 	mutex_enter(&lat->ly_mutex);
2103 	lat->ly_a_nreq++;
2104 	lat->ly_a_sum += sample;
2105 	if (lat->ly_a_nreq != 0) {
2106 		a_mean = lat->ly_a_sum / lat->ly_a_nreq;
2107 		lat->ly_a_stddev =
2108 		    (sample - a_mean) * (sample - lat->ly_a_mean);
2109 		lat->ly_a_mean = a_mean;
2110 	}
2111 	lat->ly_d_nreq++;
2112 	lat->ly_d_sum += sample;
2113 	if (lat->ly_d_nreq != 0) {
2114 		d_mean = lat->ly_d_sum / lat->ly_d_nreq;
2115 		lat->ly_d_stddev =
2116 		    (sample - d_mean) * (sample - lat->ly_d_mean);
2117 		lat->ly_d_mean = d_mean;
2118 	}
2119 	mutex_exit(&lat->ly_mutex);
2120 }
2121 
2122 /*
2123  * smb_srqueue_init
2124  */
2125 void
2126 smb_srqueue_init(smb_srqueue_t *srq)
2127 {
2128 	bzero(srq, sizeof (*srq));
2129 	mutex_init(&srq->srq_mutex, NULL, MUTEX_SPIN, (void *)ipltospl(SPL7));
2130 	srq->srq_wlastupdate = srq->srq_rlastupdate = gethrtime_unscaled();
2131 }
2132 
2133 /*
2134  * smb_srqueue_destroy
2135  */
2136 void
2137 smb_srqueue_destroy(smb_srqueue_t *srq)
2138 {
2139 	mutex_destroy(&srq->srq_mutex);
2140 }
2141 
2142 /*
2143  * smb_srqueue_waitq_enter
2144  */
2145 void
2146 smb_srqueue_waitq_enter(smb_srqueue_t *srq)
2147 {
2148 	hrtime_t	new;
2149 	hrtime_t	delta;
2150 	uint32_t	wcnt;
2151 
2152 	mutex_enter(&srq->srq_mutex);
2153 	new = gethrtime_unscaled();
2154 	delta = new - srq->srq_wlastupdate;
2155 	srq->srq_wlastupdate = new;
2156 	wcnt = srq->srq_wcnt++;
2157 	if (wcnt != 0) {
2158 		srq->srq_wlentime += delta * wcnt;
2159 		srq->srq_wtime += delta;
2160 	}
2161 	mutex_exit(&srq->srq_mutex);
2162 }
2163 
2164 /*
2165  * smb_srqueue_runq_exit
2166  */
2167 void
2168 smb_srqueue_runq_exit(smb_srqueue_t *srq)
2169 {
2170 	hrtime_t	new;
2171 	hrtime_t	delta;
2172 	uint32_t	rcnt;
2173 
2174 	mutex_enter(&srq->srq_mutex);
2175 	new = gethrtime_unscaled();
2176 	delta = new - srq->srq_rlastupdate;
2177 	srq->srq_rlastupdate = new;
2178 	rcnt = srq->srq_rcnt--;
2179 	ASSERT(rcnt > 0);
2180 	srq->srq_rlentime += delta * rcnt;
2181 	srq->srq_rtime += delta;
2182 	mutex_exit(&srq->srq_mutex);
2183 }
2184 
2185 /*
2186  * smb_srqueue_waitq_to_runq
2187  */
2188 void
2189 smb_srqueue_waitq_to_runq(smb_srqueue_t *srq)
2190 {
2191 	hrtime_t	new;
2192 	hrtime_t	delta;
2193 	uint32_t	wcnt;
2194 	uint32_t	rcnt;
2195 
2196 	mutex_enter(&srq->srq_mutex);
2197 	new = gethrtime_unscaled();
2198 	delta = new - srq->srq_wlastupdate;
2199 	srq->srq_wlastupdate = new;
2200 	wcnt = srq->srq_wcnt--;
2201 	ASSERT(wcnt > 0);
2202 	srq->srq_wlentime += delta * wcnt;
2203 	srq->srq_wtime += delta;
2204 	delta = new - srq->srq_rlastupdate;
2205 	srq->srq_rlastupdate = new;
2206 	rcnt = srq->srq_rcnt++;
2207 	if (rcnt != 0) {
2208 		srq->srq_rlentime += delta * rcnt;
2209 		srq->srq_rtime += delta;
2210 	}
2211 	mutex_exit(&srq->srq_mutex);
2212 }
2213 
2214 /*
2215  * smb_srqueue_update
2216  *
2217  * Takes a snapshot of the smb_sr_stat_t structure passed in.
2218  */
2219 void
2220 smb_srqueue_update(smb_srqueue_t *srq, smb_kstat_utilization_t *kd)
2221 {
2222 	hrtime_t	delta;
2223 	hrtime_t	snaptime;
2224 
2225 	mutex_enter(&srq->srq_mutex);
2226 	snaptime = gethrtime_unscaled();
2227 	delta = snaptime - srq->srq_wlastupdate;
2228 	srq->srq_wlastupdate = snaptime;
2229 	if (srq->srq_wcnt != 0) {
2230 		srq->srq_wlentime += delta * srq->srq_wcnt;
2231 		srq->srq_wtime += delta;
2232 	}
2233 	delta = snaptime - srq->srq_rlastupdate;
2234 	srq->srq_rlastupdate = snaptime;
2235 	if (srq->srq_rcnt != 0) {
2236 		srq->srq_rlentime += delta * srq->srq_rcnt;
2237 		srq->srq_rtime += delta;
2238 	}
2239 	kd->ku_rlentime = srq->srq_rlentime;
2240 	kd->ku_rtime = srq->srq_rtime;
2241 	kd->ku_wlentime = srq->srq_wlentime;
2242 	kd->ku_wtime = srq->srq_wtime;
2243 	mutex_exit(&srq->srq_mutex);
2244 	scalehrtime(&kd->ku_rlentime);
2245 	scalehrtime(&kd->ku_rtime);
2246 	scalehrtime(&kd->ku_wlentime);
2247 	scalehrtime(&kd->ku_wtime);
2248 }
2249 
2250 void
2251 smb_threshold_init(smb_cmd_threshold_t *ct, char *cmd, int threshold,
2252     int timeout)
2253 {
2254 	bzero(ct, sizeof (smb_cmd_threshold_t));
2255 	mutex_init(&ct->ct_mutex, NULL, MUTEX_DEFAULT, NULL);
2256 	ct->ct_cmd = cmd;
2257 	ct->ct_threshold = threshold;
2258 	ct->ct_event = smb_event_create(timeout);
2259 	ct->ct_event_id = smb_event_txid(ct->ct_event);
2260 
2261 	if (smb_threshold_debug) {
2262 		cmn_err(CE_NOTE, "smb_threshold_init[%s]: threshold (%d), "
2263 		    "timeout (%d)", cmd, threshold, timeout);
2264 	}
2265 }
2266 
2267 /*
2268  * This function must be called prior to SMB_SERVER_STATE_STOPPING state
2269  * so that ct_event can be successfully removed from the event list.
2270  * It should not be called when the server mutex is held or when the
2271  * server is removed from the server list.
2272  */
2273 void
2274 smb_threshold_fini(smb_cmd_threshold_t *ct)
2275 {
2276 	smb_event_destroy(ct->ct_event);
2277 	mutex_destroy(&ct->ct_mutex);
2278 	bzero(ct, sizeof (smb_cmd_threshold_t));
2279 }
2280 
2281 /*
2282  * This threshold mechanism can be used to limit the number of simultaneous
2283  * requests, which serves to limit the stress that can be applied to the
2284  * service and also allows the service to respond to requests before the
2285  * client times out and reports that the server is not responding,
2286  *
2287  * If the number of requests exceeds the threshold, new requests will be
2288  * stalled until the number drops back to the threshold.  Stalled requests
2289  * will be notified as appropriate, in which case 0 will be returned.
2290  * If the timeout expires before the request is notified, a non-zero errno
2291  * value will be returned.
2292  *
2293  * To avoid a flood of messages, the message rate is throttled as well.
2294  */
2295 int
2296 smb_threshold_enter(smb_cmd_threshold_t *ct)
2297 {
2298 	int	rc;
2299 
2300 	mutex_enter(&ct->ct_mutex);
2301 	if (ct->ct_active_cnt >= ct->ct_threshold && ct->ct_event != NULL) {
2302 		atomic_inc_32(&ct->ct_blocked_cnt);
2303 
2304 		if (smb_threshold_debug) {
2305 			cmn_err(CE_NOTE, "smb_threshold_enter[%s]: blocked "
2306 			    "(blocked ops: %u, inflight ops: %u)",
2307 			    ct->ct_cmd, ct->ct_blocked_cnt, ct->ct_active_cnt);
2308 		}
2309 
2310 		mutex_exit(&ct->ct_mutex);
2311 
2312 		if ((rc = smb_event_wait(ct->ct_event)) != 0) {
2313 			if (rc == ECANCELED)
2314 				return (rc);
2315 
2316 			mutex_enter(&ct->ct_mutex);
2317 			if (ct->ct_active_cnt >= ct->ct_threshold) {
2318 
2319 				if ((ct->ct_error_cnt %
2320 				    SMB_THRESHOLD_REPORT_THROTTLE) == 0) {
2321 					cmn_err(CE_NOTE, "%s: server busy: "
2322 					    "threshold %d exceeded)",
2323 					    ct->ct_cmd, ct->ct_threshold);
2324 				}
2325 
2326 				atomic_inc_32(&ct->ct_error_cnt);
2327 				mutex_exit(&ct->ct_mutex);
2328 				return (rc);
2329 			}
2330 
2331 			mutex_exit(&ct->ct_mutex);
2332 
2333 		}
2334 
2335 		mutex_enter(&ct->ct_mutex);
2336 		atomic_dec_32(&ct->ct_blocked_cnt);
2337 		if (smb_threshold_debug) {
2338 			cmn_err(CE_NOTE, "smb_threshold_enter[%s]: resumed "
2339 			    "(blocked ops: %u, inflight ops: %u)", ct->ct_cmd,
2340 			    ct->ct_blocked_cnt, ct->ct_active_cnt);
2341 		}
2342 	}
2343 
2344 	atomic_inc_32(&ct->ct_active_cnt);
2345 	mutex_exit(&ct->ct_mutex);
2346 	return (0);
2347 }
2348 
2349 void
2350 smb_threshold_exit(smb_cmd_threshold_t *ct, smb_server_t *sv)
2351 {
2352 	mutex_enter(&ct->ct_mutex);
2353 	atomic_dec_32(&ct->ct_active_cnt);
2354 	mutex_exit(&ct->ct_mutex);
2355 	smb_event_notify(sv, ct->ct_event_id);
2356 }
2357