xref: /titanic_41/usr/src/uts/common/fs/objfs/objfs_data.c (revision 864221ad7169608e293fbeaa9df563afc9f345a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <fs/fs_subr.h>
29 
30 #include <sys/elf.h>
31 #include <sys/errno.h>
32 #include <sys/file.h>
33 #include <sys/kmem.h>
34 #include <sys/kobj.h>
35 #include <sys/objfs.h>
36 #include <sys/objfs_impl.h>
37 #include <sys/stat.h>
38 #include <sys/systm.h>
39 #include <sys/sysmacros.h>
40 #include <sys/vfs_opreg.h>
41 
42 /*
43  * /system/object/<obj>/object
44  *
45  * This is an ELF file that contains information about data stored in the
46  * kernel.  We use a special ELF file type, ET_SUNWPSEUDO, so that we can
47  * control which fields and sections have meaning.  The file contains the
48  * following sections:
49  *
50  * 	.shstrtab	Section header string table
51  * 	.SUNW_ctf	CTF data
52  * 	.symtab		Symbol table
53  * 	.strtab		String table
54  * 	.text		Text
55  * 	.data		Data
56  * 	.bss		BSS
57  * 	.filename	Filename of module
58  * 	.info		Private module info structure
59  *
60  * The .text, .data, and .bss sections are all marked SHT_NOBITS, and the data
61  * is not actually exported in the file for security reasons.  The section
62  * headers do contain the address and size of the sections, which is needed by
63  * DTrace.  The CTF data, symbol table, and string table are present only if
64  * they exist in the kernel.
65  */
66 
67 typedef enum {
68 	SECT_TYPE_DATA,
69 	SECT_TYPE_SHSTRTAB,
70 	SECT_TYPE_DUMMY,
71 	SECT_TYPE_SYMTAB,
72 	SECT_TYPE_STRTAB,
73 	SECT_TYPE_FILENAME,
74 	SECT_TYPE_INFO
75 } sect_type_t;
76 
77 typedef struct section_desc {
78 	sect_type_t	sect_id;
79 	const char	*sect_name;
80 	uintptr_t	sect_addr;
81 	size_t		sect_size;
82 	int		sect_type;
83 	int		sect_flags;
84 	size_t		sect_str;
85 	int		sect_link;
86 	int		sect_entsize;
87 	int		sect_align;
88 } section_desc_t;
89 
90 /*
91  * For data sections, 'addr' and 'size' refer to offsets within the module
92  * structure where we can find the address and size of the section.
93  */
94 #define	SECT_DATA(name, addr, size, type, flags, align) \
95 	{ SECT_TYPE_DATA, name, offsetof(struct module, addr), \
96 	offsetof(struct module, size), type, flags, 0, 0, 0, align }
97 
98 /*
99  * The dummy section is the initial section of the file.  It is put into this
100  * array only for convenience when reading the file.
101  */
102 #define	SECT_DUMMY	{ SECT_TYPE_DUMMY, "", 0, 0, 0, 0, 0, 0, 0, 0 }
103 
104 /*
105  * The size of the symbol table and string table are not immediately available
106  * as an offset into the module struct, so we have to create individual types
107  * for each.
108  */
109 #ifdef _LP64
110 #define	SECT_SYMTAB(name, type, flags) \
111 	{ SECT_TYPE_SYMTAB, name, offsetof(struct module, symtbl), 0, type, \
112 	flags, 0, 0, sizeof (Elf64_Sym), sizeof (uint64_t) }
113 #else
114 #define	SECT_SYMTAB(name, type, flags) \
115 	{ SECT_TYPE_SYMTAB, name, offsetof(struct module, symtbl), 0, type, \
116 	flags, 0, 0, sizeof (Elf32_Sym), sizeof (uint32_t) }
117 #endif
118 #define	SECT_STRTAB(name, type, flags) \
119 	{ SECT_TYPE_STRTAB, name, offsetof(struct module, strings), 0, type, \
120 	flags, 0, 0, 0, 1 }
121 
122 /*
123  * The .shstrtab section is constructed when the module is first loaded.
124  */
125 #define	SECT_SHSTRTAB(name, type, flags) \
126 	{ SECT_TYPE_SHSTRTAB, name, 0, 0, type, flags, 0, 0, 0, 1 }
127 
128 /*
129  * Generic module information (objfs_info_t)
130  */
131 #define	SECT_INFO	\
132 	{ SECT_TYPE_INFO, ".info", 0, 0, SHT_PROGBITS, 0, 0, 0, 0, \
133 	sizeof (uint32_t) }
134 
135 /*
136  * Filename section.
137  */
138 #define	SECT_FILENAME	\
139 	{ SECT_TYPE_FILENAME, ".filename", 0, 0, SHT_PROGBITS, 0, 0, 0, 0, 1 }
140 
141 static section_desc_t data_sections[] = {
142 	SECT_DUMMY,
143 	SECT_SHSTRTAB(".shstrtab",
144 	    SHT_STRTAB, SHF_STRINGS),
145 	SECT_DATA(".SUNW_ctf", ctfdata, ctfsize,
146 	    SHT_PROGBITS, 0, sizeof (uint64_t)),
147 	SECT_SYMTAB(".symtab", SHT_SYMTAB, 0),
148 	SECT_STRTAB(".strtab", SHT_STRTAB, SHF_STRINGS),
149 	SECT_DATA(".text", text, text_size,
150 	    SHT_NOBITS, SHF_ALLOC | SHF_EXECINSTR, 0),
151 	SECT_DATA(".data", data, data_size,
152 	    SHT_NOBITS, SHF_WRITE | SHF_ALLOC, 0),
153 	SECT_DATA(".bss", bss, bss_size,
154 	    SHT_NOBITS, SHF_WRITE | SHF_ALLOC, 0),
155 	SECT_INFO,
156 	SECT_FILENAME
157 };
158 
159 #define	NSECTIONS	\
160 	(sizeof (data_sections) / sizeof (section_desc_t))
161 
162 #ifdef _LP64
163 #define	SECTION_OFFSET(section)	\
164 	(sizeof (Elf64_Ehdr) + (section) * sizeof (Elf64_Shdr))
165 #else
166 #define	SECTION_OFFSET(section)	\
167 	(sizeof (Elf32_Ehdr) + (section) * sizeof (Elf32_Shdr))
168 #endif
169 
170 /*
171  * Given a data node, returns the struct module appropriately locked.  If the
172  * object has been unloaded, or re-loaded since the file was first opened, this
173  * function will return NULL.  If successful, the caller must call
174  * objfs_data_unlock().
175  */
176 struct module *
177 objfs_data_lock(vnode_t *vp)
178 {
179 	objfs_datanode_t *dnode = vp->v_data;
180 	objfs_odirnode_t *odir = gfs_file_parent(vp)->v_data;
181 	struct modctl *mp = odir->objfs_odir_modctl;
182 
183 	(void) mod_hold_by_modctl(mp, MOD_WAIT_FOREVER | MOD_LOCK_NOT_HELD);
184 
185 	if (mp->mod_mp == NULL ||
186 	    dnode->objfs_data_gencount < mp->mod_gencount) {
187 		mod_release_mod(mp);
188 		return (NULL);
189 	}
190 
191 	return (mp->mod_mp);
192 }
193 
194 void
195 objfs_data_unlock(vnode_t *vp)
196 {
197 	objfs_odirnode_t *odir = gfs_file_parent(vp)->v_data;
198 
199 	mod_release_mod(odir->objfs_odir_modctl);
200 }
201 
202 
203 /*
204  * Called when the filesystem is first loaded.  Creates and initializes the
205  * section header string table, and fills in the sect_str members of the section
206  * descriptors.  This information could be encoded at compile-time, but this
207  * way keeps the code more maintainable, as we don't have to worry about
208  * duplicating information.
209  */
210 void
211 objfs_data_init(void)
212 {
213 	int i, shstrtab, strtab, symtab;
214 	size_t len = 0;
215 	section_desc_t *sect;
216 	char *strdata;
217 
218 	for (i = 0; i < NSECTIONS; i++) {
219 		sect = &data_sections[i];
220 
221 		ASSERT(sect->sect_align == 0 || ISP2(sect->sect_align));
222 		ASSERT(sect->sect_align <= sizeof (uint64_t));
223 
224 		len += strlen(sect->sect_name) + 1;
225 		if (strcmp(sect->sect_name, ".shstrtab") == 0)
226 			shstrtab = i;
227 		else if (strcmp(sect->sect_name, ".symtab") == 0)
228 			symtab = i;
229 		else if (strcmp(sect->sect_name, ".strtab") == 0)
230 			strtab = i;
231 	}
232 
233 	strdata = kmem_zalloc(len, KM_SLEEP);
234 	sect = &data_sections[shstrtab];
235 	sect->sect_addr = (uintptr_t)strdata;
236 	sect->sect_size = len;
237 
238 	len = 0;
239 	for (i = 0; i < NSECTIONS; i++) {
240 		sect = &data_sections[i];
241 		sect->sect_str = len;
242 		bcopy(sect->sect_name, strdata + len,
243 		    strlen(sect->sect_name) + 1);
244 		len += strlen(sect->sect_name) + 1;
245 
246 		if (strcmp(sect->sect_name, ".SUNW_ctf") == 0)
247 			sect->sect_link = symtab;
248 		else if (strcmp(sect->sect_name, ".symtab") == 0)
249 			sect->sect_link = strtab;
250 	}
251 }
252 
253 /*
254  * Given a section descriptor and module pointer, return the address of the
255  * data.
256  */
257 static uintptr_t
258 sect_addr(section_desc_t *sp, struct module *mp)
259 {
260 	uintptr_t addr;
261 
262 	switch (sp->sect_id) {
263 	case SECT_TYPE_DUMMY:
264 		addr = 0;
265 		break;
266 
267 	case SECT_TYPE_SHSTRTAB:
268 		addr = sp->sect_addr;
269 		break;
270 
271 	case SECT_TYPE_STRTAB:
272 	case SECT_TYPE_SYMTAB:
273 	case SECT_TYPE_DATA:
274 		addr = *((uintptr_t *)((char *)mp + sp->sect_addr));
275 		break;
276 
277 	case SECT_TYPE_FILENAME:
278 		addr = (uintptr_t)mp->filename;
279 		break;
280 
281 	case SECT_TYPE_INFO:
282 		addr = 1;	/* This can be anything nonzero */
283 		break;
284 	}
285 
286 	return (addr);
287 }
288 
289 /*
290  * Given a section descriptor and module pointer, return the size of the data.
291  */
292 static size_t
293 sect_size(section_desc_t *sp, struct module *mp)
294 {
295 	size_t size;
296 
297 	switch (sp->sect_id) {
298 	case SECT_TYPE_DUMMY:
299 		size = 0;
300 		break;
301 
302 	case SECT_TYPE_SHSTRTAB:
303 		size = sp->sect_size;
304 		break;
305 
306 	case SECT_TYPE_DATA:
307 		size = *((size_t *)((char *)mp + sp->sect_size));
308 		break;
309 
310 	case SECT_TYPE_SYMTAB:
311 		size = mp->symhdr->sh_size;
312 		break;
313 
314 	case SECT_TYPE_STRTAB:
315 		size = mp->strhdr->sh_size;
316 		break;
317 
318 	case SECT_TYPE_INFO:
319 		size = sizeof (objfs_info_t);
320 		break;
321 
322 	case SECT_TYPE_FILENAME:
323 		if (mp->filename == NULL)
324 			size = 0;
325 		else
326 			size = strlen(mp->filename) + 1;
327 	}
328 
329 	return (size);
330 }
331 
332 /*
333  * Given a section descriptor and module pointer, return 1 if the section has
334  * valid data and should be included, 0 otherwise.
335  */
336 static int
337 sect_valid(section_desc_t *sp, struct module *mp)
338 {
339 	if (sp->sect_id == SECT_TYPE_DUMMY ||
340 	    sect_addr(sp, mp) != 0)
341 		return (1);
342 
343 	return (0);
344 }
345 
346 /*
347  * Given a section descriptor and module pointer, return the offset into the
348  * file where the data should be placed.
349  */
350 static size_t
351 data_offset(section_desc_t *sp, struct module *mp)
352 {
353 	int i;
354 	size_t len;
355 	section_desc_t *cp;
356 
357 	if (sp != NULL && mp != NULL && !sect_valid(sp, mp))
358 		return (0);
359 
360 #ifdef _LP64
361 	len = sizeof (Elf64_Ehdr);
362 #else
363 	len = sizeof (Elf32_Ehdr);
364 #endif
365 
366 	/*
367 	 * Do a first pass to account for all the section headers.
368 	 */
369 	for (i = 0; i < NSECTIONS; i++) {
370 		if (sect_valid(&data_sections[i], mp)) {
371 #ifdef _LP64
372 			len += sizeof (Elf64_Shdr);
373 #else
374 			len += sizeof (Elf32_Shdr);
375 #endif
376 		}
377 	}
378 
379 	/*
380 	 * Add length of each section until we find the one we're looking for.
381 	 */
382 	for (i = 0; i < NSECTIONS; i++) {
383 		cp = &data_sections[i];
384 
385 		/*
386 		 * Align the section only if it's valid and contains data.  When
387 		 * searching for a specific section, align the section before
388 		 * breaking out of the loop.
389 		 */
390 		if (sect_valid(cp, mp) && cp->sect_type != SHT_NOBITS) {
391 			if (cp->sect_align > 1)
392 				len = P2ROUNDUP(len, cp->sect_align);
393 
394 			if (sp != cp)
395 				len += sect_size(cp, mp);
396 		}
397 
398 		if (sp == cp)
399 			break;
400 	}
401 
402 	return (len);
403 }
404 
405 /*
406  * Given an index into the section table and a module pointer, returns the
407  * data offset of the next section.
408  */
409 static size_t
410 next_offset(int idx, struct module *mp)
411 {
412 	int i;
413 
414 	for (i = idx + 1; i < NSECTIONS; i++) {
415 		if (sect_valid(&data_sections[i], mp))
416 			return (data_offset(&data_sections[i], mp));
417 	}
418 
419 	return (data_offset(NULL, mp));
420 }
421 
422 /*
423  * Given a module pointer, return the total size needed for the file.
424  */
425 static size_t
426 data_size(struct module *mp)
427 {
428 	return (data_offset(NULL, mp));
429 }
430 
431 /*
432  * Returns the size needed for all the headers in the file.
433  */
434 static size_t
435 header_size(void)
436 {
437 	return (data_offset(&data_sections[0], NULL));
438 }
439 
440 /* ARGSUSED */
441 vnode_t *
442 objfs_create_data(vnode_t *pvp)
443 {
444 	objfs_odirnode_t *onode = pvp->v_data;
445 	vnode_t *vp = gfs_file_create(sizeof (objfs_datanode_t), pvp,
446 	    objfs_ops_data);
447 	objfs_datanode_t *dnode = vp->v_data;
448 
449 	dnode->objfs_data_gencount = onode->objfs_odir_modctl->mod_gencount;
450 	dnode->objfs_data_info.objfs_info_primary =
451 	    onode->objfs_odir_modctl->mod_prim;
452 
453 	return (vp);
454 }
455 
456 /* ARGSUSED */
457 static int
458 objfs_data_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
459 	caller_context_t *ct)
460 {
461 	struct module *mp;
462 	timestruc_t now;
463 
464 	if ((mp = objfs_data_lock(vp)) == NULL)
465 		return (EIO);
466 
467 	vap->va_type = VREG;
468 	vap->va_mode = S_IRUSR | S_IRGRP | S_IROTH;
469 	vap->va_nodeid = gfs_file_inode(vp);
470 	vap->va_nlink = 1;
471 	vap->va_size = data_size(mp);
472 	gethrestime(&now);
473 	vap->va_atime = vap->va_ctime = vap->va_mtime = now;
474 
475 	(void) objfs_common_getattr(vp, vap);
476 
477 	objfs_data_unlock(vp);
478 
479 	return (0);
480 }
481 
482 /* ARGSUSED */
483 static int
484 objfs_data_access(vnode_t *vp, int mode, int flags, cred_t *cr,
485 	caller_context_t *ct)
486 {
487 	if (mode & (VWRITE|VEXEC))
488 		return (EACCES);
489 
490 	return (0);
491 }
492 
493 /* ARGSUSED */
494 int
495 objfs_data_open(vnode_t **cpp, int flag, cred_t *cr,
496 	caller_context_t *ct)
497 {
498 	if (flag & FWRITE)
499 		return (EINVAL);
500 
501 	return (0);
502 }
503 
504 /*
505  * Iterate over all symbols in the table and output each one individually,
506  * converting st_shndx to SHN_ABS for each symbol.
507  */
508 static int
509 read_symtab(void *addr, size_t size, off_t offset, uio_t *uio)
510 {
511 #ifdef _LP64
512 	Elf64_Sym sym, *symtab;
513 #else
514 	Elf32_Sym sym, *symtab;
515 #endif
516 	off_t index;
517 	int error;
518 
519 	symtab = addr;
520 
521 	if (offset % sizeof (sym) != 0) {
522 		/*
523 		 * Be careful with the first symbol, as it is not
524 		 * symbol-aligned.
525 		 */
526 		off_t partial = offset % sizeof (sym);
527 
528 		index = offset / sizeof (sym);
529 
530 		sym = symtab[index];
531 		if (sym.st_shndx != SHN_UNDEF)
532 			sym.st_shndx = SHN_ABS;
533 
534 		if ((error = uiomove((char *)&sym + partial,
535 		    sizeof (sym) - partial, UIO_READ, uio)) != 0 ||
536 		    uio->uio_resid <= 0)
537 			return (error);
538 
539 		offset = (index + 1) * sizeof (sym);
540 	}
541 
542 	ASSERT(size % sizeof (sym) == 0);
543 
544 	for (index = offset / sizeof (sym); index < size / sizeof (sym);
545 	    index++) {
546 
547 		sym = symtab[index];
548 		if (sym.st_shndx != SHN_UNDEF)
549 			sym.st_shndx = SHN_ABS;
550 
551 		if ((error = uiomove((char *)&sym, sizeof (sym), UIO_READ,
552 		    uio)) != 0 || uio->uio_resid <= 0)
553 			return (error);
554 	}
555 
556 	return (0);
557 }
558 
559 /* ARGSUSED */
560 static int
561 objfs_data_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr,
562 	caller_context_t *ct)
563 {
564 	int error = 0;
565 	objfs_datanode_t *dnode = vp->v_data;
566 	struct module *mp;
567 	off_t off;
568 #ifdef _LP64
569 	Elf64_Shdr shdr;
570 #else
571 	Elf32_Shdr shdr;
572 #endif
573 	int i, j;
574 	section_desc_t *sp;
575 	void *addr;
576 	int transidx[NSECTIONS];
577 
578 	if ((mp = objfs_data_lock(vp)) == NULL)
579 		return (ENOENT);
580 
581 	if (uio->uio_resid <= 0 || uio->uio_offset >= data_size(mp))
582 		goto error;
583 
584 	/*
585 	 * Construct an array to translate from a generic section header index
586 	 * to an index specific for this object.
587 	 */
588 	for (i = 0, j = 0; i < NSECTIONS; i++) {
589 		transidx[i] = j;
590 		if (sect_valid(&data_sections[i], mp))
591 			j++;
592 
593 	}
594 
595 	/*
596 	 * Check to see if we're in the Elf header
597 	 */
598 	if (uio->uio_loffset < SECTION_OFFSET(0)) {
599 #ifdef _LP64
600 		Elf64_Ehdr ehdr;
601 #else
602 		Elf32_Ehdr ehdr;
603 #endif
604 
605 		bzero(&ehdr, sizeof (ehdr));
606 
607 		bcopy(ELFMAG, ehdr.e_ident, SELFMAG);
608 #ifdef _BIG_ENDIAN
609 		ehdr.e_ident[EI_DATA] = ELFDATA2MSB;
610 #else
611 		ehdr.e_ident[EI_DATA] = ELFDATA2LSB;
612 #endif
613 		ehdr.e_ident[EI_VERSION] = EV_CURRENT;
614 
615 #ifdef _LP64
616 		ehdr.e_ident[EI_CLASS] = ELFCLASS64;
617 		ehdr.e_type = ELFCLASS64;
618 		ehdr.e_ehsize = sizeof (Elf64_Ehdr);
619 		ehdr.e_phentsize = sizeof (Elf64_Phdr);
620 		ehdr.e_shentsize = sizeof (Elf64_Shdr);
621 #else
622 		ehdr.e_ident[EI_CLASS] = ELFCLASS32;
623 		ehdr.e_type = ELFCLASS32;
624 		ehdr.e_ehsize = sizeof (Elf32_Ehdr);
625 		ehdr.e_phentsize = sizeof (Elf32_Phdr);
626 		ehdr.e_shentsize = sizeof (Elf32_Shdr);
627 #endif
628 
629 #ifdef __sparc
630 #ifdef __sparcv9
631 		ehdr.e_machine = EM_SPARCV9;
632 #else
633 		ehdr.e_machine = EM_SPARC;
634 #endif
635 #elif defined(__amd64)
636 		ehdr.e_machine = EM_AMD64;
637 #else
638 		ehdr.e_machine = EM_386;
639 #endif
640 
641 		ehdr.e_version = EV_CURRENT;
642 		ehdr.e_type = ET_SUNWPSEUDO;
643 		ehdr.e_shnum = 0;
644 		ehdr.e_shoff = SECTION_OFFSET(0);
645 
646 		for (i = 0; i < NSECTIONS; i++) {
647 			if (strcmp(data_sections[i].sect_name,
648 			    ".shstrtab") == 0)
649 				ehdr.e_shstrndx = transidx[i];
650 
651 			if (sect_valid(&data_sections[i], mp))
652 				ehdr.e_shnum++;
653 		}
654 
655 		if ((error = uiomove((char *)&ehdr + uio->uio_loffset,
656 		    sizeof (ehdr) - uio->uio_loffset, UIO_READ, uio)) != 0 ||
657 		    uio->uio_resid <= 0)
658 			goto error;
659 	}
660 
661 	/*
662 	 * Go through and construct section headers for each section.
663 	 */
664 	j = 0;
665 	for (i = 0; i < NSECTIONS; i++) {
666 		sp = &data_sections[i];
667 
668 		if (!sect_valid(sp, mp))
669 			continue;
670 
671 		if (uio->uio_loffset < SECTION_OFFSET(j+1)) {
672 			shdr.sh_link = transidx[sp->sect_link];
673 			shdr.sh_entsize = sp->sect_entsize;
674 			shdr.sh_info = 0;
675 			shdr.sh_name = sp->sect_str;
676 			shdr.sh_type = sp->sect_type;
677 			shdr.sh_flags = sp->sect_flags;
678 			shdr.sh_addr = sect_addr(sp, mp);
679 			shdr.sh_offset = data_offset(sp, mp);
680 			shdr.sh_size = sect_size(sp, mp);
681 			shdr.sh_addralign = sp->sect_align;
682 
683 			off = uio->uio_loffset - SECTION_OFFSET(j);
684 			if ((error = uiomove((char *)&shdr + off,
685 			    sizeof (shdr) - off, UIO_READ, uio)) != 0 ||
686 			    uio->uio_resid <= 0)
687 				goto error;
688 		}
689 
690 		j++;
691 	}
692 
693 	/*
694 	 * Output the data for each section
695 	 */
696 	for (i = 0; i < NSECTIONS; i++) {
697 		size_t nextoff;
698 		sp = &data_sections[i];
699 		nextoff = next_offset(i, mp);
700 		if (sect_valid(sp, mp) && sp->sect_type != SHT_NOBITS &&
701 		    uio->uio_loffset < nextoff) {
702 
703 			if (sp->sect_id == SECT_TYPE_INFO)
704 				addr = &dnode->objfs_data_info;
705 			else
706 				addr = (void *)sect_addr(sp, mp);
707 			off = uio->uio_loffset - data_offset(sp, mp);
708 
709 			/*
710 			 * The symtab requires special processing to convert
711 			 * the st_shndx field to SHN_ABS.  Otherwise, simply
712 			 * copy the data in bulk.
713 			 */
714 			if (sp->sect_id == SECT_TYPE_SYMTAB)
715 				error = read_symtab(addr, sect_size(sp, mp),
716 				    off, uio);
717 			else
718 				error = uiomove((char *)addr + off,
719 				    sect_size(sp, mp) - off, UIO_READ, uio);
720 
721 			if (error != 0 || uio->uio_resid <= 0)
722 				goto error;
723 
724 			/*
725 			 * If the next section needs to be aligned, pad out with
726 			 * zeroes.
727 			 */
728 			if (uio->uio_loffset < nextoff) {
729 				uint64_t padding = 0;
730 
731 				ASSERT(nextoff - uio->uio_loffset <
732 				    sizeof (uint64_t));
733 
734 				if ((error = uiomove(&padding,
735 				    nextoff - uio->uio_loffset, UIO_READ,
736 				    uio)) != 0 || uio->uio_resid <= 0)
737 					goto error;
738 
739 			}
740 		}
741 	}
742 
743 error:
744 	objfs_data_unlock(vp);
745 
746 	return (error);
747 }
748 
749 /* ARGSUSED */
750 static int
751 objfs_data_seek(vnode_t *vp, offset_t off, offset_t *offp,
752 	caller_context_t *ct)
753 {
754 	return (0);
755 }
756 
757 const fs_operation_def_t objfs_tops_data[] = {
758 	{ VOPNAME_OPEN,		{ .vop_open = objfs_data_open } },
759 	{ VOPNAME_CLOSE,	{ .vop_close = objfs_common_close } },
760 	{ VOPNAME_IOCTL,	{ .error = fs_inval } },
761 	{ VOPNAME_GETATTR,	{ .vop_getattr = objfs_data_getattr } },
762 	{ VOPNAME_ACCESS,	{ .vop_access = objfs_data_access } },
763 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive } },
764 	{ VOPNAME_READ,		{ .vop_read = objfs_data_read } },
765 	{ VOPNAME_SEEK,		{ .vop_seek = objfs_data_seek } },
766 	{ VOPNAME_MAP,		{ .vop_map = gfs_vop_map } },
767 	{ NULL }
768 };
769