1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/types.h> 31 #include <sys/systm.h> 32 #include <sys/cred.h> 33 #include <sys/time.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/file.h> 38 #include <sys/filio.h> 39 #include <sys/uio.h> 40 #include <sys/buf.h> 41 #include <sys/mman.h> 42 #include <sys/pathname.h> 43 #include <sys/dirent.h> 44 #include <sys/debug.h> 45 #include <sys/vmsystm.h> 46 #include <sys/fcntl.h> 47 #include <sys/flock.h> 48 #include <sys/swap.h> 49 #include <sys/errno.h> 50 #include <sys/strsubr.h> 51 #include <sys/sysmacros.h> 52 #include <sys/kmem.h> 53 #include <sys/cmn_err.h> 54 #include <sys/pathconf.h> 55 #include <sys/utsname.h> 56 #include <sys/dnlc.h> 57 #include <sys/acl.h> 58 #include <sys/atomic.h> 59 #include <sys/policy.h> 60 #include <sys/sdt.h> 61 62 #include <rpc/types.h> 63 #include <rpc/auth.h> 64 #include <rpc/clnt.h> 65 66 #include <nfs/nfs.h> 67 #include <nfs/nfs_clnt.h> 68 #include <nfs/rnode.h> 69 #include <nfs/nfs_acl.h> 70 #include <nfs/lm.h> 71 72 #include <vm/hat.h> 73 #include <vm/as.h> 74 #include <vm/page.h> 75 #include <vm/pvn.h> 76 #include <vm/seg.h> 77 #include <vm/seg_map.h> 78 #include <vm/seg_kpm.h> 79 #include <vm/seg_vn.h> 80 81 #include <fs/fs_subr.h> 82 83 #include <sys/ddi.h> 84 85 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 86 cred_t *); 87 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 88 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 89 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 90 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 91 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 92 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 93 caller_context_t *); 94 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 95 static int nfs_bio(struct buf *, cred_t *); 96 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 97 page_t *[], size_t, struct seg *, caddr_t, 98 enum seg_rw, cred_t *); 99 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 100 cred_t *); 101 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 102 int, cred_t *); 103 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 104 int, cred_t *); 105 static void nfs_delmap_callback(struct as *, void *, uint_t); 106 107 /* 108 * Error flags used to pass information about certain special errors 109 * which need to be handled specially. 110 */ 111 #define NFS_EOF -98 112 113 /* 114 * These are the vnode ops routines which implement the vnode interface to 115 * the networked file system. These routines just take their parameters, 116 * make them look networkish by putting the right info into interface structs, 117 * and then calling the appropriate remote routine(s) to do the work. 118 * 119 * Note on directory name lookup cacheing: If we detect a stale fhandle, 120 * we purge the directory cache relative to that vnode. This way, the 121 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 122 * more details on rnode locking. 123 */ 124 125 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 126 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 127 caller_context_t *); 128 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 129 caller_context_t *); 130 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 133 caller_context_t *); 134 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 137 caller_context_t *); 138 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 139 static int nfs_accessx(void *, int, cred_t *); 140 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 141 caller_context_t *); 142 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 143 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 144 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 145 int, vnode_t *, cred_t *, caller_context_t *, 146 int *, pathname_t *); 147 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 148 int, vnode_t **, cred_t *, int, caller_context_t *, 149 vsecattr_t *); 150 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 151 int); 152 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 153 caller_context_t *, int); 154 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 155 caller_context_t *, int); 156 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 157 cred_t *, caller_context_t *, int, vsecattr_t *); 158 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 159 caller_context_t *, int); 160 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 161 cred_t *, caller_context_t *, int); 162 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 163 caller_context_t *, int); 164 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 165 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 166 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 167 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 168 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 169 page_t *[], size_t, struct seg *, caddr_t, 170 enum seg_rw, cred_t *, caller_context_t *); 171 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 172 caller_context_t *); 173 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 174 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 175 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 176 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 177 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 178 struct flk_callback *, cred_t *, caller_context_t *); 179 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 180 cred_t *, caller_context_t *); 181 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 182 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 183 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 184 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 185 caller_context_t *); 186 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 187 cred_t *, caller_context_t *); 188 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 189 caller_context_t *); 190 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 191 caller_context_t *); 192 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 193 caller_context_t *); 194 195 struct vnodeops *nfs_vnodeops; 196 197 const fs_operation_def_t nfs_vnodeops_template[] = { 198 VOPNAME_OPEN, { .vop_open = nfs_open }, 199 VOPNAME_CLOSE, { .vop_close = nfs_close }, 200 VOPNAME_READ, { .vop_read = nfs_read }, 201 VOPNAME_WRITE, { .vop_write = nfs_write }, 202 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 203 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 204 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 205 VOPNAME_ACCESS, { .vop_access = nfs_access }, 206 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 207 VOPNAME_CREATE, { .vop_create = nfs_create }, 208 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 209 VOPNAME_LINK, { .vop_link = nfs_link }, 210 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 211 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 212 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 213 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 214 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 215 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 216 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 217 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 218 VOPNAME_FID, { .vop_fid = nfs_fid }, 219 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 220 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 221 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 222 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 223 VOPNAME_SPACE, { .vop_space = nfs_space }, 224 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 225 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 226 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 227 VOPNAME_MAP, { .vop_map = nfs_map }, 228 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 229 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 230 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 231 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 232 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 233 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 234 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 235 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 236 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 237 NULL, NULL 238 }; 239 240 /* 241 * XXX: This is referenced in modstubs.s 242 */ 243 struct vnodeops * 244 nfs_getvnodeops(void) 245 { 246 return (nfs_vnodeops); 247 } 248 249 /* ARGSUSED */ 250 static int 251 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 252 { 253 int error; 254 struct vattr va; 255 rnode_t *rp; 256 vnode_t *vp; 257 258 vp = *vpp; 259 rp = VTOR(vp); 260 if (nfs_zone() != VTOMI(vp)->mi_zone) 261 return (EIO); 262 mutex_enter(&rp->r_statelock); 263 if (rp->r_cred == NULL) { 264 crhold(cr); 265 rp->r_cred = cr; 266 } 267 mutex_exit(&rp->r_statelock); 268 269 /* 270 * If there is no cached data or if close-to-open 271 * consistency checking is turned off, we can avoid 272 * the over the wire getattr. Otherwise, if the 273 * file system is mounted readonly, then just verify 274 * the caches are up to date using the normal mechanism. 275 * Else, if the file is not mmap'd, then just mark 276 * the attributes as timed out. They will be refreshed 277 * and the caches validated prior to being used. 278 * Else, the file system is mounted writeable so 279 * force an over the wire GETATTR in order to ensure 280 * that all cached data is valid. 281 */ 282 if (vp->v_count > 1 || 283 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 284 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 285 if (vn_is_readonly(vp)) 286 error = nfs_validate_caches(vp, cr); 287 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 288 PURGE_ATTRCACHE(vp); 289 error = 0; 290 } else { 291 va.va_mask = AT_ALL; 292 error = nfs_getattr_otw(vp, &va, cr); 293 } 294 } else 295 error = 0; 296 297 return (error); 298 } 299 300 /* ARGSUSED */ 301 static int 302 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 303 caller_context_t *ct) 304 { 305 rnode_t *rp; 306 int error; 307 struct vattr va; 308 309 /* 310 * zone_enter(2) prevents processes from changing zones with NFS files 311 * open; if we happen to get here from the wrong zone we can't do 312 * anything over the wire. 313 */ 314 if (VTOMI(vp)->mi_zone != nfs_zone()) { 315 /* 316 * We could attempt to clean up locks, except we're sure 317 * that the current process didn't acquire any locks on 318 * the file: any attempt to lock a file belong to another zone 319 * will fail, and one can't lock an NFS file and then change 320 * zones, as that fails too. 321 * 322 * Returning an error here is the sane thing to do. A 323 * subsequent call to VN_RELE() which translates to a 324 * nfs_inactive() will clean up state: if the zone of the 325 * vnode's origin is still alive and kicking, an async worker 326 * thread will handle the request (from the correct zone), and 327 * everything (minus the final nfs_getattr_otw() call) should 328 * be OK. If the zone is going away nfs_async_inactive() will 329 * throw away cached pages inline. 330 */ 331 return (EIO); 332 } 333 334 /* 335 * If we are using local locking for this filesystem, then 336 * release all of the SYSV style record locks. Otherwise, 337 * we are doing network locking and we need to release all 338 * of the network locks. All of the locks held by this 339 * process on this file are released no matter what the 340 * incoming reference count is. 341 */ 342 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 343 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 344 cleanshares(vp, ttoproc(curthread)->p_pid); 345 } else 346 nfs_lockrelease(vp, flag, offset, cr); 347 348 if (count > 1) 349 return (0); 350 351 /* 352 * If the file has been `unlinked', then purge the 353 * DNLC so that this vnode will get reycled quicker 354 * and the .nfs* file on the server will get removed. 355 */ 356 rp = VTOR(vp); 357 if (rp->r_unldvp != NULL) 358 dnlc_purge_vp(vp); 359 360 /* 361 * If the file was open for write and there are pages, 362 * then if the file system was mounted using the "no-close- 363 * to-open" semantics, then start an asynchronous flush 364 * of the all of the pages in the file. 365 * else the file system was not mounted using the "no-close- 366 * to-open" semantics, then do a synchronous flush and 367 * commit of all of the dirty and uncommitted pages. 368 * 369 * The asynchronous flush of the pages in the "nocto" path 370 * mostly just associates a cred pointer with the rnode so 371 * writes which happen later will have a better chance of 372 * working. It also starts the data being written to the 373 * server, but without unnecessarily delaying the application. 374 */ 375 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 376 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 377 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 378 cr, ct); 379 if (error == EAGAIN) 380 error = 0; 381 } else 382 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 383 if (!error) { 384 mutex_enter(&rp->r_statelock); 385 error = rp->r_error; 386 rp->r_error = 0; 387 mutex_exit(&rp->r_statelock); 388 } 389 } else { 390 mutex_enter(&rp->r_statelock); 391 error = rp->r_error; 392 rp->r_error = 0; 393 mutex_exit(&rp->r_statelock); 394 } 395 396 /* 397 * If RWRITEATTR is set, then issue an over the wire GETATTR to 398 * refresh the attribute cache with a set of attributes which 399 * weren't returned from a WRITE. This will enable the close- 400 * to-open processing to work. 401 */ 402 if (rp->r_flags & RWRITEATTR) 403 (void) nfs_getattr_otw(vp, &va, cr); 404 405 return (error); 406 } 407 408 /* ARGSUSED */ 409 static int 410 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 411 caller_context_t *ct) 412 { 413 rnode_t *rp; 414 u_offset_t off; 415 offset_t diff; 416 int on; 417 size_t n; 418 caddr_t base; 419 uint_t flags; 420 int error; 421 mntinfo_t *mi; 422 423 rp = VTOR(vp); 424 mi = VTOMI(vp); 425 426 if (nfs_zone() != mi->mi_zone) 427 return (EIO); 428 429 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 430 431 if (vp->v_type != VREG) 432 return (EISDIR); 433 434 if (uiop->uio_resid == 0) 435 return (0); 436 437 if (uiop->uio_loffset > MAXOFF32_T) 438 return (EFBIG); 439 440 if (uiop->uio_loffset < 0 || 441 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 442 return (EINVAL); 443 444 /* 445 * Bypass VM if caching has been disabled (e.g., locking) or if 446 * using client-side direct I/O and the file is not mmap'd and 447 * there are no cached pages. 448 */ 449 if ((vp->v_flag & VNOCACHE) || 450 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 451 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 452 !vn_has_cached_data(vp))) { 453 size_t bufsize; 454 size_t resid = 0; 455 456 /* 457 * Let's try to do read in as large a chunk as we can 458 * (Filesystem (NFS client) bsize if possible/needed). 459 * For V3, this is 32K and for V2, this is 8K. 460 */ 461 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 462 base = kmem_alloc(bufsize, KM_SLEEP); 463 do { 464 n = MIN(uiop->uio_resid, bufsize); 465 error = nfsread(vp, base, uiop->uio_offset, n, 466 &resid, cr); 467 if (!error) { 468 n -= resid; 469 error = uiomove(base, n, UIO_READ, uiop); 470 } 471 } while (!error && uiop->uio_resid > 0 && n > 0); 472 kmem_free(base, bufsize); 473 return (error); 474 } 475 476 error = 0; 477 478 do { 479 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 480 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 481 n = MIN(MAXBSIZE - on, uiop->uio_resid); 482 483 error = nfs_validate_caches(vp, cr); 484 if (error) 485 break; 486 487 mutex_enter(&rp->r_statelock); 488 while (rp->r_flags & RINCACHEPURGE) { 489 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 490 mutex_exit(&rp->r_statelock); 491 return (EINTR); 492 } 493 } 494 diff = rp->r_size - uiop->uio_loffset; 495 mutex_exit(&rp->r_statelock); 496 if (diff <= 0) 497 break; 498 if (diff < n) 499 n = (size_t)diff; 500 501 if (vpm_enable) { 502 /* 503 * Copy data. 504 */ 505 error = vpm_data_copy(vp, off + on, n, uiop, 506 1, NULL, 0, S_READ); 507 } else { 508 base = segmap_getmapflt(segkmap, vp, off + on, n, 509 1, S_READ); 510 error = uiomove(base + on, n, UIO_READ, uiop); 511 } 512 513 if (!error) { 514 /* 515 * If read a whole block or read to eof, 516 * won't need this buffer again soon. 517 */ 518 mutex_enter(&rp->r_statelock); 519 if (n + on == MAXBSIZE || 520 uiop->uio_loffset == rp->r_size) 521 flags = SM_DONTNEED; 522 else 523 flags = 0; 524 mutex_exit(&rp->r_statelock); 525 if (vpm_enable) { 526 error = vpm_sync_pages(vp, off, n, flags); 527 } else { 528 error = segmap_release(segkmap, base, flags); 529 } 530 } else { 531 if (vpm_enable) { 532 (void) vpm_sync_pages(vp, off, n, 0); 533 } else { 534 (void) segmap_release(segkmap, base, 0); 535 } 536 } 537 } while (!error && uiop->uio_resid > 0); 538 539 return (error); 540 } 541 542 /* ARGSUSED */ 543 static int 544 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 545 caller_context_t *ct) 546 { 547 rnode_t *rp; 548 u_offset_t off; 549 caddr_t base; 550 uint_t flags; 551 int remainder; 552 size_t n; 553 int on; 554 int error; 555 int resid; 556 offset_t offset; 557 rlim_t limit; 558 mntinfo_t *mi; 559 560 rp = VTOR(vp); 561 562 mi = VTOMI(vp); 563 if (nfs_zone() != mi->mi_zone) 564 return (EIO); 565 if (vp->v_type != VREG) 566 return (EISDIR); 567 568 if (uiop->uio_resid == 0) 569 return (0); 570 571 if (ioflag & FAPPEND) { 572 struct vattr va; 573 574 /* 575 * Must serialize if appending. 576 */ 577 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 578 nfs_rw_exit(&rp->r_rwlock); 579 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 580 INTR(vp))) 581 return (EINTR); 582 } 583 584 va.va_mask = AT_SIZE; 585 error = nfsgetattr(vp, &va, cr); 586 if (error) 587 return (error); 588 uiop->uio_loffset = va.va_size; 589 } 590 591 if (uiop->uio_loffset > MAXOFF32_T) 592 return (EFBIG); 593 594 offset = uiop->uio_loffset + uiop->uio_resid; 595 596 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 597 return (EINVAL); 598 599 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 600 limit = MAXOFF32_T; 601 } else { 602 limit = (rlim_t)uiop->uio_llimit; 603 } 604 605 /* 606 * Check to make sure that the process will not exceed 607 * its limit on file size. It is okay to write up to 608 * the limit, but not beyond. Thus, the write which 609 * reaches the limit will be short and the next write 610 * will return an error. 611 */ 612 remainder = 0; 613 if (offset > limit) { 614 remainder = offset - limit; 615 uiop->uio_resid = limit - uiop->uio_offset; 616 if (uiop->uio_resid <= 0) { 617 proc_t *p = ttoproc(curthread); 618 619 uiop->uio_resid += remainder; 620 mutex_enter(&p->p_lock); 621 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 622 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 623 mutex_exit(&p->p_lock); 624 return (EFBIG); 625 } 626 } 627 628 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 629 return (EINTR); 630 631 /* 632 * Bypass VM if caching has been disabled (e.g., locking) or if 633 * using client-side direct I/O and the file is not mmap'd and 634 * there are no cached pages. 635 */ 636 if ((vp->v_flag & VNOCACHE) || 637 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 638 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 639 !vn_has_cached_data(vp))) { 640 size_t bufsize; 641 int count; 642 uint_t org_offset; 643 644 nfs_fwrite: 645 if (rp->r_flags & RSTALE) { 646 resid = uiop->uio_resid; 647 offset = uiop->uio_loffset; 648 error = rp->r_error; 649 /* 650 * A close may have cleared r_error, if so, 651 * propagate ESTALE error return properly 652 */ 653 if (error == 0) 654 error = ESTALE; 655 goto bottom; 656 } 657 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 658 base = kmem_alloc(bufsize, KM_SLEEP); 659 do { 660 resid = uiop->uio_resid; 661 offset = uiop->uio_loffset; 662 count = MIN(uiop->uio_resid, bufsize); 663 org_offset = uiop->uio_offset; 664 error = uiomove(base, count, UIO_WRITE, uiop); 665 if (!error) { 666 error = nfswrite(vp, base, org_offset, 667 count, cr); 668 } 669 } while (!error && uiop->uio_resid > 0); 670 kmem_free(base, bufsize); 671 goto bottom; 672 } 673 674 do { 675 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 676 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 677 n = MIN(MAXBSIZE - on, uiop->uio_resid); 678 679 resid = uiop->uio_resid; 680 offset = uiop->uio_loffset; 681 682 if (rp->r_flags & RSTALE) { 683 error = rp->r_error; 684 /* 685 * A close may have cleared r_error, if so, 686 * propagate ESTALE error return properly 687 */ 688 if (error == 0) 689 error = ESTALE; 690 break; 691 } 692 693 /* 694 * Don't create dirty pages faster than they 695 * can be cleaned so that the system doesn't 696 * get imbalanced. If the async queue is 697 * maxed out, then wait for it to drain before 698 * creating more dirty pages. Also, wait for 699 * any threads doing pagewalks in the vop_getattr 700 * entry points so that they don't block for 701 * long periods. 702 */ 703 mutex_enter(&rp->r_statelock); 704 while ((mi->mi_max_threads != 0 && 705 rp->r_awcount > 2 * mi->mi_max_threads) || 706 rp->r_gcount > 0) { 707 if (INTR(vp)) { 708 klwp_t *lwp = ttolwp(curthread); 709 710 if (lwp != NULL) 711 lwp->lwp_nostop++; 712 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 713 mutex_exit(&rp->r_statelock); 714 if (lwp != NULL) 715 lwp->lwp_nostop--; 716 error = EINTR; 717 goto bottom; 718 } 719 if (lwp != NULL) 720 lwp->lwp_nostop--; 721 } else 722 cv_wait(&rp->r_cv, &rp->r_statelock); 723 } 724 mutex_exit(&rp->r_statelock); 725 726 /* 727 * Touch the page and fault it in if it is not in core 728 * before segmap_getmapflt or vpm_data_copy can lock it. 729 * This is to avoid the deadlock if the buffer is mapped 730 * to the same file through mmap which we want to write. 731 */ 732 uio_prefaultpages((long)n, uiop); 733 734 if (vpm_enable) { 735 /* 736 * It will use kpm mappings, so no need to 737 * pass an address. 738 */ 739 error = writerp(rp, NULL, n, uiop, 0); 740 } else { 741 if (segmap_kpm) { 742 int pon = uiop->uio_loffset & PAGEOFFSET; 743 size_t pn = MIN(PAGESIZE - pon, 744 uiop->uio_resid); 745 int pagecreate; 746 747 mutex_enter(&rp->r_statelock); 748 pagecreate = (pon == 0) && (pn == PAGESIZE || 749 uiop->uio_loffset + pn >= rp->r_size); 750 mutex_exit(&rp->r_statelock); 751 752 base = segmap_getmapflt(segkmap, vp, off + on, 753 pn, !pagecreate, S_WRITE); 754 755 error = writerp(rp, base + pon, n, uiop, 756 pagecreate); 757 758 } else { 759 base = segmap_getmapflt(segkmap, vp, off + on, 760 n, 0, S_READ); 761 error = writerp(rp, base + on, n, uiop, 0); 762 } 763 } 764 765 if (!error) { 766 if (mi->mi_flags & MI_NOAC) 767 flags = SM_WRITE; 768 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 769 /* 770 * Have written a whole block. 771 * Start an asynchronous write 772 * and mark the buffer to 773 * indicate that it won't be 774 * needed again soon. 775 */ 776 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 777 } else 778 flags = 0; 779 if ((ioflag & (FSYNC|FDSYNC)) || 780 (rp->r_flags & ROUTOFSPACE)) { 781 flags &= ~SM_ASYNC; 782 flags |= SM_WRITE; 783 } 784 if (vpm_enable) { 785 error = vpm_sync_pages(vp, off, n, flags); 786 } else { 787 error = segmap_release(segkmap, base, flags); 788 } 789 } else { 790 if (vpm_enable) { 791 (void) vpm_sync_pages(vp, off, n, 0); 792 } else { 793 (void) segmap_release(segkmap, base, 0); 794 } 795 /* 796 * In the event that we got an access error while 797 * faulting in a page for a write-only file just 798 * force a write. 799 */ 800 if (error == EACCES) 801 goto nfs_fwrite; 802 } 803 } while (!error && uiop->uio_resid > 0); 804 805 bottom: 806 if (error) { 807 uiop->uio_resid = resid + remainder; 808 uiop->uio_loffset = offset; 809 } else 810 uiop->uio_resid += remainder; 811 812 nfs_rw_exit(&rp->r_lkserlock); 813 814 return (error); 815 } 816 817 /* 818 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 819 */ 820 static int 821 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 822 int flags, cred_t *cr) 823 { 824 struct buf *bp; 825 int error; 826 827 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 828 bp = pageio_setup(pp, len, vp, flags); 829 ASSERT(bp != NULL); 830 831 /* 832 * pageio_setup should have set b_addr to 0. This 833 * is correct since we want to do I/O on a page 834 * boundary. bp_mapin will use this addr to calculate 835 * an offset, and then set b_addr to the kernel virtual 836 * address it allocated for us. 837 */ 838 ASSERT(bp->b_un.b_addr == 0); 839 840 bp->b_edev = 0; 841 bp->b_dev = 0; 842 bp->b_lblkno = lbtodb(off); 843 bp->b_file = vp; 844 bp->b_offset = (offset_t)off; 845 bp_mapin(bp); 846 847 error = nfs_bio(bp, cr); 848 849 bp_mapout(bp); 850 pageio_done(bp); 851 852 return (error); 853 } 854 855 /* 856 * Write to file. Writes to remote server in largest size 857 * chunks that the server can handle. Write is synchronous. 858 */ 859 static int 860 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 861 { 862 rnode_t *rp; 863 mntinfo_t *mi; 864 struct nfswriteargs wa; 865 struct nfsattrstat ns; 866 int error; 867 int tsize; 868 int douprintf; 869 870 douprintf = 1; 871 872 rp = VTOR(vp); 873 mi = VTOMI(vp); 874 875 ASSERT(nfs_zone() == mi->mi_zone); 876 877 wa.wa_args = &wa.wa_args_buf; 878 wa.wa_fhandle = *VTOFH(vp); 879 880 do { 881 tsize = MIN(mi->mi_curwrite, count); 882 wa.wa_data = base; 883 wa.wa_begoff = offset; 884 wa.wa_totcount = tsize; 885 wa.wa_count = tsize; 886 wa.wa_offset = offset; 887 888 if (mi->mi_io_kstats) { 889 mutex_enter(&mi->mi_lock); 890 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 891 mutex_exit(&mi->mi_lock); 892 } 893 wa.wa_mblk = NULL; 894 do { 895 error = rfs2call(mi, RFS_WRITE, 896 xdr_writeargs, (caddr_t)&wa, 897 xdr_attrstat, (caddr_t)&ns, cr, 898 &douprintf, &ns.ns_status, 0, NULL); 899 } while (error == ENFS_TRYAGAIN); 900 if (mi->mi_io_kstats) { 901 mutex_enter(&mi->mi_lock); 902 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 903 mutex_exit(&mi->mi_lock); 904 } 905 906 if (!error) { 907 error = geterrno(ns.ns_status); 908 /* 909 * Can't check for stale fhandle and purge caches 910 * here because pages are held by nfs_getpage. 911 * Just mark the attribute cache as timed out 912 * and set RWRITEATTR to indicate that the file 913 * was modified with a WRITE operation. 914 */ 915 if (!error) { 916 count -= tsize; 917 base += tsize; 918 offset += tsize; 919 if (mi->mi_io_kstats) { 920 mutex_enter(&mi->mi_lock); 921 KSTAT_IO_PTR(mi->mi_io_kstats)-> 922 writes++; 923 KSTAT_IO_PTR(mi->mi_io_kstats)-> 924 nwritten += tsize; 925 mutex_exit(&mi->mi_lock); 926 } 927 lwp_stat_update(LWP_STAT_OUBLK, 1); 928 mutex_enter(&rp->r_statelock); 929 PURGE_ATTRCACHE_LOCKED(rp); 930 rp->r_flags |= RWRITEATTR; 931 mutex_exit(&rp->r_statelock); 932 } 933 } 934 } while (!error && count); 935 936 return (error); 937 } 938 939 /* 940 * Read from a file. Reads data in largest chunks our interface can handle. 941 */ 942 static int 943 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 944 int count, size_t *residp, cred_t *cr) 945 { 946 mntinfo_t *mi; 947 struct nfsreadargs ra; 948 struct nfsrdresult rr; 949 int tsize; 950 int error; 951 int douprintf; 952 failinfo_t fi; 953 rnode_t *rp; 954 struct vattr va; 955 hrtime_t t; 956 957 rp = VTOR(vp); 958 mi = VTOMI(vp); 959 960 ASSERT(nfs_zone() == mi->mi_zone); 961 962 douprintf = 1; 963 964 ra.ra_fhandle = *VTOFH(vp); 965 966 fi.vp = vp; 967 fi.fhp = (caddr_t)&ra.ra_fhandle; 968 fi.copyproc = nfscopyfh; 969 fi.lookupproc = nfslookup; 970 fi.xattrdirproc = acl_getxattrdir2; 971 972 do { 973 if (mi->mi_io_kstats) { 974 mutex_enter(&mi->mi_lock); 975 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 976 mutex_exit(&mi->mi_lock); 977 } 978 979 do { 980 tsize = MIN(mi->mi_curread, count); 981 rr.rr_data = base; 982 ra.ra_offset = offset; 983 ra.ra_totcount = tsize; 984 ra.ra_count = tsize; 985 ra.ra_data = base; 986 t = gethrtime(); 987 error = rfs2call(mi, RFS_READ, 988 xdr_readargs, (caddr_t)&ra, 989 xdr_rdresult, (caddr_t)&rr, cr, 990 &douprintf, &rr.rr_status, 0, &fi); 991 } while (error == ENFS_TRYAGAIN); 992 993 if (mi->mi_io_kstats) { 994 mutex_enter(&mi->mi_lock); 995 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 996 mutex_exit(&mi->mi_lock); 997 } 998 999 if (!error) { 1000 error = geterrno(rr.rr_status); 1001 if (!error) { 1002 count -= rr.rr_count; 1003 base += rr.rr_count; 1004 offset += rr.rr_count; 1005 if (mi->mi_io_kstats) { 1006 mutex_enter(&mi->mi_lock); 1007 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1008 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 1009 rr.rr_count; 1010 mutex_exit(&mi->mi_lock); 1011 } 1012 lwp_stat_update(LWP_STAT_INBLK, 1); 1013 } 1014 } 1015 } while (!error && count && rr.rr_count == tsize); 1016 1017 *residp = count; 1018 1019 if (!error) { 1020 /* 1021 * Since no error occurred, we have the current 1022 * attributes and we need to do a cache check and then 1023 * potentially update the cached attributes. We can't 1024 * use the normal attribute check and cache mechanisms 1025 * because they might cause a cache flush which would 1026 * deadlock. Instead, we just check the cache to see 1027 * if the attributes have changed. If it is, then we 1028 * just mark the attributes as out of date. The next 1029 * time that the attributes are checked, they will be 1030 * out of date, new attributes will be fetched, and 1031 * the page cache will be flushed. If the attributes 1032 * weren't changed, then we just update the cached 1033 * attributes with these attributes. 1034 */ 1035 /* 1036 * If NFS_ACL is supported on the server, then the 1037 * attributes returned by server may have minimal 1038 * permissions sometimes denying access to users having 1039 * proper access. To get the proper attributes, mark 1040 * the attributes as expired so that they will be 1041 * regotten via the NFS_ACL GETATTR2 procedure. 1042 */ 1043 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1044 mutex_enter(&rp->r_statelock); 1045 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1046 (mi->mi_flags & MI_ACL)) { 1047 mutex_exit(&rp->r_statelock); 1048 PURGE_ATTRCACHE(vp); 1049 } else { 1050 if (rp->r_mtime <= t) { 1051 nfs_attrcache_va(vp, &va); 1052 } 1053 mutex_exit(&rp->r_statelock); 1054 } 1055 } 1056 1057 return (error); 1058 } 1059 1060 /* ARGSUSED */ 1061 static int 1062 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1063 caller_context_t *ct) 1064 { 1065 1066 if (nfs_zone() != VTOMI(vp)->mi_zone) 1067 return (EIO); 1068 switch (cmd) { 1069 case _FIODIRECTIO: 1070 return (nfs_directio(vp, (int)arg, cr)); 1071 default: 1072 return (ENOTTY); 1073 } 1074 } 1075 1076 /* ARGSUSED */ 1077 static int 1078 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1079 caller_context_t *ct) 1080 { 1081 int error; 1082 rnode_t *rp; 1083 1084 if (nfs_zone() != VTOMI(vp)->mi_zone) 1085 return (EIO); 1086 /* 1087 * If it has been specified that the return value will 1088 * just be used as a hint, and we are only being asked 1089 * for size, fsid or rdevid, then return the client's 1090 * notion of these values without checking to make sure 1091 * that the attribute cache is up to date. 1092 * The whole point is to avoid an over the wire GETATTR 1093 * call. 1094 */ 1095 rp = VTOR(vp); 1096 if (flags & ATTR_HINT) { 1097 if (vap->va_mask == 1098 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1099 mutex_enter(&rp->r_statelock); 1100 if (vap->va_mask | AT_SIZE) 1101 vap->va_size = rp->r_size; 1102 if (vap->va_mask | AT_FSID) 1103 vap->va_fsid = rp->r_attr.va_fsid; 1104 if (vap->va_mask | AT_RDEV) 1105 vap->va_rdev = rp->r_attr.va_rdev; 1106 mutex_exit(&rp->r_statelock); 1107 return (0); 1108 } 1109 } 1110 1111 /* 1112 * Only need to flush pages if asking for the mtime 1113 * and if there any dirty pages or any outstanding 1114 * asynchronous (write) requests for this file. 1115 */ 1116 if (vap->va_mask & AT_MTIME) { 1117 if (vn_has_cached_data(vp) && 1118 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1119 mutex_enter(&rp->r_statelock); 1120 rp->r_gcount++; 1121 mutex_exit(&rp->r_statelock); 1122 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1123 mutex_enter(&rp->r_statelock); 1124 if (error && (error == ENOSPC || error == EDQUOT)) { 1125 if (!rp->r_error) 1126 rp->r_error = error; 1127 } 1128 if (--rp->r_gcount == 0) 1129 cv_broadcast(&rp->r_cv); 1130 mutex_exit(&rp->r_statelock); 1131 } 1132 } 1133 1134 return (nfsgetattr(vp, vap, cr)); 1135 } 1136 1137 /*ARGSUSED4*/ 1138 static int 1139 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1140 caller_context_t *ct) 1141 { 1142 int error; 1143 uint_t mask; 1144 struct vattr va; 1145 1146 mask = vap->va_mask; 1147 1148 if (mask & AT_NOSET) 1149 return (EINVAL); 1150 1151 if ((mask & AT_SIZE) && 1152 vap->va_type == VREG && 1153 vap->va_size > MAXOFF32_T) 1154 return (EFBIG); 1155 1156 if (nfs_zone() != VTOMI(vp)->mi_zone) 1157 return (EIO); 1158 1159 va.va_mask = AT_UID | AT_MODE; 1160 1161 error = nfsgetattr(vp, &va, cr); 1162 if (error) 1163 return (error); 1164 1165 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1166 vp); 1167 1168 if (error) 1169 return (error); 1170 1171 return (nfssetattr(vp, vap, flags, cr)); 1172 } 1173 1174 static int 1175 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1176 { 1177 int error; 1178 uint_t mask; 1179 struct nfssaargs args; 1180 struct nfsattrstat ns; 1181 int douprintf; 1182 rnode_t *rp; 1183 struct vattr va; 1184 mode_t omode; 1185 mntinfo_t *mi; 1186 vsecattr_t *vsp; 1187 hrtime_t t; 1188 1189 mask = vap->va_mask; 1190 1191 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1192 1193 rp = VTOR(vp); 1194 1195 /* 1196 * Only need to flush pages if there are any pages and 1197 * if the file is marked as dirty in some fashion. The 1198 * file must be flushed so that we can accurately 1199 * determine the size of the file and the cached data 1200 * after the SETATTR returns. A file is considered to 1201 * be dirty if it is either marked with RDIRTY, has 1202 * outstanding i/o's active, or is mmap'd. In this 1203 * last case, we can't tell whether there are dirty 1204 * pages, so we flush just to be sure. 1205 */ 1206 if (vn_has_cached_data(vp) && 1207 ((rp->r_flags & RDIRTY) || 1208 rp->r_count > 0 || 1209 rp->r_mapcnt > 0)) { 1210 ASSERT(vp->v_type != VCHR); 1211 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1212 if (error && (error == ENOSPC || error == EDQUOT)) { 1213 mutex_enter(&rp->r_statelock); 1214 if (!rp->r_error) 1215 rp->r_error = error; 1216 mutex_exit(&rp->r_statelock); 1217 } 1218 } 1219 1220 /* 1221 * If the system call was utime(2) or utimes(2) and the 1222 * application did not specify the times, then set the 1223 * mtime nanosecond field to 1 billion. This will get 1224 * translated from 1 billion nanoseconds to 1 million 1225 * microseconds in the over the wire request. The 1226 * server will use 1 million in the microsecond field 1227 * to tell whether both the mtime and atime should be 1228 * set to the server's current time. 1229 * 1230 * This is an overload of the protocol and should be 1231 * documented in the NFS Version 2 protocol specification. 1232 */ 1233 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1234 vap->va_mtime.tv_nsec = 1000000000; 1235 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1236 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1237 error = vattr_to_sattr(vap, &args.saa_sa); 1238 } else { 1239 /* 1240 * Use server times. vap time values will not be used. 1241 * To ensure no time overflow, make sure vap has 1242 * valid values, but retain the original values. 1243 */ 1244 timestruc_t mtime = vap->va_mtime; 1245 timestruc_t atime = vap->va_atime; 1246 time_t now; 1247 1248 now = gethrestime_sec(); 1249 if (NFS_TIME_T_OK(now)) { 1250 /* Just in case server does not know of this */ 1251 vap->va_mtime.tv_sec = now; 1252 vap->va_atime.tv_sec = now; 1253 } else { 1254 vap->va_mtime.tv_sec = 0; 1255 vap->va_atime.tv_sec = 0; 1256 } 1257 error = vattr_to_sattr(vap, &args.saa_sa); 1258 /* set vap times back on */ 1259 vap->va_mtime = mtime; 1260 vap->va_atime = atime; 1261 } 1262 } else { 1263 /* Either do not set times or use the client specified times */ 1264 error = vattr_to_sattr(vap, &args.saa_sa); 1265 } 1266 if (error) { 1267 /* req time field(s) overflow - return immediately */ 1268 return (error); 1269 } 1270 args.saa_fh = *VTOFH(vp); 1271 1272 va.va_mask = AT_MODE; 1273 error = nfsgetattr(vp, &va, cr); 1274 if (error) 1275 return (error); 1276 omode = va.va_mode; 1277 1278 mi = VTOMI(vp); 1279 1280 douprintf = 1; 1281 1282 t = gethrtime(); 1283 1284 error = rfs2call(mi, RFS_SETATTR, 1285 xdr_saargs, (caddr_t)&args, 1286 xdr_attrstat, (caddr_t)&ns, cr, 1287 &douprintf, &ns.ns_status, 0, NULL); 1288 1289 /* 1290 * Purge the access cache and ACL cache if changing either the 1291 * owner of the file, the group owner, or the mode. These may 1292 * change the access permissions of the file, so purge old 1293 * information and start over again. 1294 */ 1295 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1296 (void) nfs_access_purge_rp(rp); 1297 if (rp->r_secattr != NULL) { 1298 mutex_enter(&rp->r_statelock); 1299 vsp = rp->r_secattr; 1300 rp->r_secattr = NULL; 1301 mutex_exit(&rp->r_statelock); 1302 if (vsp != NULL) 1303 nfs_acl_free(vsp); 1304 } 1305 } 1306 1307 if (!error) { 1308 error = geterrno(ns.ns_status); 1309 if (!error) { 1310 /* 1311 * If changing the size of the file, invalidate 1312 * any local cached data which is no longer part 1313 * of the file. We also possibly invalidate the 1314 * last page in the file. We could use 1315 * pvn_vpzero(), but this would mark the page as 1316 * modified and require it to be written back to 1317 * the server for no particularly good reason. 1318 * This way, if we access it, then we bring it 1319 * back in. A read should be cheaper than a 1320 * write. 1321 */ 1322 if (mask & AT_SIZE) { 1323 nfs_invalidate_pages(vp, 1324 (vap->va_size & PAGEMASK), cr); 1325 } 1326 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1327 /* 1328 * If NFS_ACL is supported on the server, then the 1329 * attributes returned by server may have minimal 1330 * permissions sometimes denying access to users having 1331 * proper access. To get the proper attributes, mark 1332 * the attributes as expired so that they will be 1333 * regotten via the NFS_ACL GETATTR2 procedure. 1334 */ 1335 if (mi->mi_flags & MI_ACL) { 1336 PURGE_ATTRCACHE(vp); 1337 } 1338 /* 1339 * This next check attempts to deal with NFS 1340 * servers which can not handle increasing 1341 * the size of the file via setattr. Most 1342 * of these servers do not return an error, 1343 * but do not change the size of the file. 1344 * Hence, this check and then attempt to set 1345 * the file size by writing 1 byte at the 1346 * offset of the end of the file that we need. 1347 */ 1348 if ((mask & AT_SIZE) && 1349 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1350 char zb = '\0'; 1351 1352 error = nfswrite(vp, &zb, 1353 vap->va_size - sizeof (zb), 1354 sizeof (zb), cr); 1355 } 1356 /* 1357 * Some servers will change the mode to clear the setuid 1358 * and setgid bits when changing the uid or gid. The 1359 * client needs to compensate appropriately. 1360 */ 1361 if (mask & (AT_UID | AT_GID)) { 1362 int terror; 1363 1364 va.va_mask = AT_MODE; 1365 terror = nfsgetattr(vp, &va, cr); 1366 if (!terror && 1367 (((mask & AT_MODE) && 1368 va.va_mode != vap->va_mode) || 1369 (!(mask & AT_MODE) && 1370 va.va_mode != omode))) { 1371 va.va_mask = AT_MODE; 1372 if (mask & AT_MODE) 1373 va.va_mode = vap->va_mode; 1374 else 1375 va.va_mode = omode; 1376 (void) nfssetattr(vp, &va, 0, cr); 1377 } 1378 } 1379 } else { 1380 PURGE_ATTRCACHE(vp); 1381 PURGE_STALE_FH(error, vp, cr); 1382 } 1383 } else { 1384 PURGE_ATTRCACHE(vp); 1385 } 1386 1387 return (error); 1388 } 1389 1390 static int 1391 nfs_accessx(void *vp, int mode, cred_t *cr) 1392 { 1393 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1394 return (nfs_access(vp, mode, 0, cr, NULL)); 1395 } 1396 1397 /* ARGSUSED */ 1398 static int 1399 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1400 { 1401 struct vattr va; 1402 int error; 1403 mntinfo_t *mi; 1404 int shift = 0; 1405 1406 mi = VTOMI(vp); 1407 1408 if (nfs_zone() != mi->mi_zone) 1409 return (EIO); 1410 if (mi->mi_flags & MI_ACL) { 1411 error = acl_access2(vp, mode, flags, cr); 1412 if (mi->mi_flags & MI_ACL) 1413 return (error); 1414 } 1415 1416 va.va_mask = AT_MODE | AT_UID | AT_GID; 1417 error = nfsgetattr(vp, &va, cr); 1418 if (error) 1419 return (error); 1420 1421 /* 1422 * Disallow write attempts on read-only 1423 * file systems, unless the file is a 1424 * device node. 1425 */ 1426 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1427 return (EROFS); 1428 1429 /* 1430 * Disallow attempts to access mandatory lock files. 1431 */ 1432 if ((mode & (VWRITE | VREAD | VEXEC)) && 1433 MANDLOCK(vp, va.va_mode)) 1434 return (EACCES); 1435 1436 /* 1437 * Access check is based on only 1438 * one of owner, group, public. 1439 * If not owner, then check group. 1440 * If not a member of the group, 1441 * then check public access. 1442 */ 1443 if (crgetuid(cr) != va.va_uid) { 1444 shift += 3; 1445 if (!groupmember(va.va_gid, cr)) 1446 shift += 3; 1447 } 1448 found: 1449 mode &= ~(va.va_mode << shift); 1450 if (mode == 0) 1451 return (0); 1452 1453 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1454 } 1455 1456 static int nfs_do_symlink_cache = 1; 1457 1458 /* ARGSUSED */ 1459 static int 1460 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1461 { 1462 int error; 1463 struct nfsrdlnres rl; 1464 rnode_t *rp; 1465 int douprintf; 1466 failinfo_t fi; 1467 1468 /* 1469 * We want to be consistent with UFS semantics so we will return 1470 * EINVAL instead of ENXIO. This violates the XNFS spec and 1471 * the RFC 1094, which are wrong any way. BUGID 1138002. 1472 */ 1473 if (vp->v_type != VLNK) 1474 return (EINVAL); 1475 1476 if (nfs_zone() != VTOMI(vp)->mi_zone) 1477 return (EIO); 1478 1479 rp = VTOR(vp); 1480 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1481 error = nfs_validate_caches(vp, cr); 1482 if (error) 1483 return (error); 1484 mutex_enter(&rp->r_statelock); 1485 if (rp->r_symlink.contents != NULL) { 1486 error = uiomove(rp->r_symlink.contents, 1487 rp->r_symlink.len, UIO_READ, uiop); 1488 mutex_exit(&rp->r_statelock); 1489 return (error); 1490 } 1491 mutex_exit(&rp->r_statelock); 1492 } 1493 1494 1495 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1496 1497 fi.vp = vp; 1498 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1499 fi.copyproc = nfscopyfh; 1500 fi.lookupproc = nfslookup; 1501 fi.xattrdirproc = acl_getxattrdir2; 1502 1503 douprintf = 1; 1504 1505 error = rfs2call(VTOMI(vp), RFS_READLINK, 1506 xdr_readlink, (caddr_t)VTOFH(vp), 1507 xdr_rdlnres, (caddr_t)&rl, cr, 1508 &douprintf, &rl.rl_status, 0, &fi); 1509 1510 if (error) { 1511 1512 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1513 return (error); 1514 } 1515 1516 error = geterrno(rl.rl_status); 1517 if (!error) { 1518 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1519 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1520 mutex_enter(&rp->r_statelock); 1521 if (rp->r_symlink.contents == NULL) { 1522 rp->r_symlink.contents = rl.rl_data; 1523 rp->r_symlink.len = (int)rl.rl_count; 1524 rp->r_symlink.size = NFS_MAXPATHLEN; 1525 mutex_exit(&rp->r_statelock); 1526 } else { 1527 mutex_exit(&rp->r_statelock); 1528 1529 kmem_free((void *)rl.rl_data, 1530 NFS_MAXPATHLEN); 1531 } 1532 } else { 1533 1534 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1535 } 1536 } else { 1537 PURGE_STALE_FH(error, vp, cr); 1538 1539 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1540 } 1541 1542 /* 1543 * Conform to UFS semantics (see comment above) 1544 */ 1545 return (error == ENXIO ? EINVAL : error); 1546 } 1547 1548 /* 1549 * Flush local dirty pages to stable storage on the server. 1550 * 1551 * If FNODSYNC is specified, then there is nothing to do because 1552 * metadata changes are not cached on the client before being 1553 * sent to the server. 1554 */ 1555 /* ARGSUSED */ 1556 static int 1557 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1558 { 1559 int error; 1560 1561 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1562 return (0); 1563 1564 if (nfs_zone() != VTOMI(vp)->mi_zone) 1565 return (EIO); 1566 1567 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1568 if (!error) 1569 error = VTOR(vp)->r_error; 1570 return (error); 1571 } 1572 1573 1574 /* 1575 * Weirdness: if the file was removed or the target of a rename 1576 * operation while it was open, it got renamed instead. Here we 1577 * remove the renamed file. 1578 */ 1579 /* ARGSUSED */ 1580 static void 1581 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1582 { 1583 rnode_t *rp; 1584 1585 ASSERT(vp != DNLC_NO_VNODE); 1586 1587 /* 1588 * If this is coming from the wrong zone, we let someone in the right 1589 * zone take care of it asynchronously. We can get here due to 1590 * VN_RELE() being called from pageout() or fsflush(). This call may 1591 * potentially turn into an expensive no-op if, for instance, v_count 1592 * gets incremented in the meantime, but it's still correct. 1593 */ 1594 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1595 nfs_async_inactive(vp, cr, nfs_inactive); 1596 return; 1597 } 1598 1599 rp = VTOR(vp); 1600 redo: 1601 if (rp->r_unldvp != NULL) { 1602 /* 1603 * Save the vnode pointer for the directory where the 1604 * unlinked-open file got renamed, then set it to NULL 1605 * to prevent another thread from getting here before 1606 * we're done with the remove. While we have the 1607 * statelock, make local copies of the pertinent rnode 1608 * fields. If we weren't to do this in an atomic way, the 1609 * the unl* fields could become inconsistent with respect 1610 * to each other due to a race condition between this 1611 * code and nfs_remove(). See bug report 1034328. 1612 */ 1613 mutex_enter(&rp->r_statelock); 1614 if (rp->r_unldvp != NULL) { 1615 vnode_t *unldvp; 1616 char *unlname; 1617 cred_t *unlcred; 1618 struct nfsdiropargs da; 1619 enum nfsstat status; 1620 int douprintf; 1621 int error; 1622 1623 unldvp = rp->r_unldvp; 1624 rp->r_unldvp = NULL; 1625 unlname = rp->r_unlname; 1626 rp->r_unlname = NULL; 1627 unlcred = rp->r_unlcred; 1628 rp->r_unlcred = NULL; 1629 mutex_exit(&rp->r_statelock); 1630 1631 /* 1632 * If there are any dirty pages left, then flush 1633 * them. This is unfortunate because they just 1634 * may get thrown away during the remove operation, 1635 * but we have to do this for correctness. 1636 */ 1637 if (vn_has_cached_data(vp) && 1638 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1639 ASSERT(vp->v_type != VCHR); 1640 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1641 cr, ct); 1642 if (error) { 1643 mutex_enter(&rp->r_statelock); 1644 if (!rp->r_error) 1645 rp->r_error = error; 1646 mutex_exit(&rp->r_statelock); 1647 } 1648 } 1649 1650 /* 1651 * Do the remove operation on the renamed file 1652 */ 1653 setdiropargs(&da, unlname, unldvp); 1654 1655 douprintf = 1; 1656 1657 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1658 xdr_diropargs, (caddr_t)&da, 1659 xdr_enum, (caddr_t)&status, unlcred, 1660 &douprintf, &status, 0, NULL); 1661 1662 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1663 nfs_purge_rddir_cache(unldvp); 1664 PURGE_ATTRCACHE(unldvp); 1665 1666 /* 1667 * Release stuff held for the remove 1668 */ 1669 VN_RELE(unldvp); 1670 kmem_free(unlname, MAXNAMELEN); 1671 crfree(unlcred); 1672 goto redo; 1673 } 1674 mutex_exit(&rp->r_statelock); 1675 } 1676 1677 rp_addfree(rp, cr); 1678 } 1679 1680 /* 1681 * Remote file system operations having to do with directory manipulation. 1682 */ 1683 1684 /* ARGSUSED */ 1685 static int 1686 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1687 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1688 int *direntflags, pathname_t *realpnp) 1689 { 1690 int error; 1691 vnode_t *vp; 1692 vnode_t *avp = NULL; 1693 rnode_t *drp; 1694 1695 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1696 return (EPERM); 1697 1698 drp = VTOR(dvp); 1699 1700 /* 1701 * Are we looking up extended attributes? If so, "dvp" is 1702 * the file or directory for which we want attributes, and 1703 * we need a lookup of the hidden attribute directory 1704 * before we lookup the rest of the path. 1705 */ 1706 if (flags & LOOKUP_XATTR) { 1707 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1708 mntinfo_t *mi; 1709 1710 mi = VTOMI(dvp); 1711 if (!(mi->mi_flags & MI_EXTATTR)) 1712 return (EINVAL); 1713 1714 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1715 return (EINTR); 1716 1717 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1718 if (avp == NULL) 1719 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1720 else 1721 error = 0; 1722 1723 nfs_rw_exit(&drp->r_rwlock); 1724 1725 if (error) { 1726 if (mi->mi_flags & MI_EXTATTR) 1727 return (error); 1728 return (EINVAL); 1729 } 1730 dvp = avp; 1731 drp = VTOR(dvp); 1732 } 1733 1734 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1735 error = EINTR; 1736 goto out; 1737 } 1738 1739 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1740 1741 nfs_rw_exit(&drp->r_rwlock); 1742 1743 /* 1744 * If vnode is a device, create special vnode. 1745 */ 1746 if (!error && IS_DEVVP(*vpp)) { 1747 vp = *vpp; 1748 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1749 VN_RELE(vp); 1750 } 1751 1752 out: 1753 if (avp != NULL) 1754 VN_RELE(avp); 1755 1756 return (error); 1757 } 1758 1759 static int nfs_lookup_neg_cache = 1; 1760 1761 #ifdef DEBUG 1762 static int nfs_lookup_dnlc_hits = 0; 1763 static int nfs_lookup_dnlc_misses = 0; 1764 static int nfs_lookup_dnlc_neg_hits = 0; 1765 static int nfs_lookup_dnlc_disappears = 0; 1766 static int nfs_lookup_dnlc_lookups = 0; 1767 #endif 1768 1769 /* ARGSUSED */ 1770 int 1771 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1772 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1773 { 1774 int error; 1775 1776 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1777 1778 /* 1779 * If lookup is for "", just return dvp. Don't need 1780 * to send it over the wire, look it up in the dnlc, 1781 * or perform any access checks. 1782 */ 1783 if (*nm == '\0') { 1784 VN_HOLD(dvp); 1785 *vpp = dvp; 1786 return (0); 1787 } 1788 1789 /* 1790 * Can't do lookups in non-directories. 1791 */ 1792 if (dvp->v_type != VDIR) 1793 return (ENOTDIR); 1794 1795 /* 1796 * If we're called with RFSCALL_SOFT, it's important that 1797 * the only rfscall is one we make directly; if we permit 1798 * an access call because we're looking up "." or validating 1799 * a dnlc hit, we'll deadlock because that rfscall will not 1800 * have the RFSCALL_SOFT set. 1801 */ 1802 if (rfscall_flags & RFSCALL_SOFT) 1803 goto callit; 1804 1805 /* 1806 * If lookup is for ".", just return dvp. Don't need 1807 * to send it over the wire or look it up in the dnlc, 1808 * just need to check access. 1809 */ 1810 if (strcmp(nm, ".") == 0) { 1811 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1812 if (error) 1813 return (error); 1814 VN_HOLD(dvp); 1815 *vpp = dvp; 1816 return (0); 1817 } 1818 1819 /* 1820 * Lookup this name in the DNLC. If there was a valid entry, 1821 * then return the results of the lookup. 1822 */ 1823 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1824 if (error || *vpp != NULL) 1825 return (error); 1826 1827 callit: 1828 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1829 1830 return (error); 1831 } 1832 1833 static int 1834 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1835 { 1836 int error; 1837 vnode_t *vp; 1838 1839 ASSERT(*nm != '\0'); 1840 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1841 1842 /* 1843 * Lookup this name in the DNLC. If successful, then validate 1844 * the caches and then recheck the DNLC. The DNLC is rechecked 1845 * just in case this entry got invalidated during the call 1846 * to nfs_validate_caches. 1847 * 1848 * An assumption is being made that it is safe to say that a 1849 * file exists which may not on the server. Any operations to 1850 * the server will fail with ESTALE. 1851 */ 1852 #ifdef DEBUG 1853 nfs_lookup_dnlc_lookups++; 1854 #endif 1855 vp = dnlc_lookup(dvp, nm); 1856 if (vp != NULL) { 1857 VN_RELE(vp); 1858 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1859 PURGE_ATTRCACHE(dvp); 1860 } 1861 error = nfs_validate_caches(dvp, cr); 1862 if (error) 1863 return (error); 1864 vp = dnlc_lookup(dvp, nm); 1865 if (vp != NULL) { 1866 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1867 if (error) { 1868 VN_RELE(vp); 1869 return (error); 1870 } 1871 if (vp == DNLC_NO_VNODE) { 1872 VN_RELE(vp); 1873 #ifdef DEBUG 1874 nfs_lookup_dnlc_neg_hits++; 1875 #endif 1876 return (ENOENT); 1877 } 1878 *vpp = vp; 1879 #ifdef DEBUG 1880 nfs_lookup_dnlc_hits++; 1881 #endif 1882 return (0); 1883 } 1884 #ifdef DEBUG 1885 nfs_lookup_dnlc_disappears++; 1886 #endif 1887 } 1888 #ifdef DEBUG 1889 else 1890 nfs_lookup_dnlc_misses++; 1891 #endif 1892 1893 *vpp = NULL; 1894 1895 return (0); 1896 } 1897 1898 static int 1899 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1900 int rfscall_flags) 1901 { 1902 int error; 1903 struct nfsdiropargs da; 1904 struct nfsdiropres dr; 1905 int douprintf; 1906 failinfo_t fi; 1907 hrtime_t t; 1908 1909 ASSERT(*nm != '\0'); 1910 ASSERT(dvp->v_type == VDIR); 1911 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1912 1913 setdiropargs(&da, nm, dvp); 1914 1915 fi.vp = dvp; 1916 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1917 fi.copyproc = nfscopyfh; 1918 fi.lookupproc = nfslookup; 1919 fi.xattrdirproc = acl_getxattrdir2; 1920 1921 douprintf = 1; 1922 1923 t = gethrtime(); 1924 1925 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1926 xdr_diropargs, (caddr_t)&da, 1927 xdr_diropres, (caddr_t)&dr, cr, 1928 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1929 1930 if (!error) { 1931 error = geterrno(dr.dr_status); 1932 if (!error) { 1933 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1934 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1935 /* 1936 * If NFS_ACL is supported on the server, then the 1937 * attributes returned by server may have minimal 1938 * permissions sometimes denying access to users having 1939 * proper access. To get the proper attributes, mark 1940 * the attributes as expired so that they will be 1941 * regotten via the NFS_ACL GETATTR2 procedure. 1942 */ 1943 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1944 PURGE_ATTRCACHE(*vpp); 1945 } 1946 if (!(rfscall_flags & RFSCALL_SOFT)) 1947 dnlc_update(dvp, nm, *vpp); 1948 } else { 1949 PURGE_STALE_FH(error, dvp, cr); 1950 if (error == ENOENT && nfs_lookup_neg_cache) 1951 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1952 } 1953 } 1954 1955 return (error); 1956 } 1957 1958 /* ARGSUSED */ 1959 static int 1960 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1961 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1962 vsecattr_t *vsecp) 1963 { 1964 int error; 1965 struct nfscreatargs args; 1966 struct nfsdiropres dr; 1967 int douprintf; 1968 vnode_t *vp; 1969 rnode_t *rp; 1970 struct vattr vattr; 1971 rnode_t *drp; 1972 vnode_t *tempvp; 1973 hrtime_t t; 1974 1975 drp = VTOR(dvp); 1976 1977 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1978 return (EPERM); 1979 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1980 return (EINTR); 1981 1982 /* 1983 * We make a copy of the attributes because the caller does not 1984 * expect us to change what va points to. 1985 */ 1986 vattr = *va; 1987 1988 /* 1989 * If the pathname is "", just use dvp. Don't need 1990 * to send it over the wire, look it up in the dnlc, 1991 * or perform any access checks. 1992 */ 1993 if (*nm == '\0') { 1994 error = 0; 1995 VN_HOLD(dvp); 1996 vp = dvp; 1997 /* 1998 * If the pathname is ".", just use dvp. Don't need 1999 * to send it over the wire or look it up in the dnlc, 2000 * just need to check access. 2001 */ 2002 } else if (strcmp(nm, ".") == 0) { 2003 error = nfs_access(dvp, VEXEC, 0, cr, ct); 2004 if (error) { 2005 nfs_rw_exit(&drp->r_rwlock); 2006 return (error); 2007 } 2008 VN_HOLD(dvp); 2009 vp = dvp; 2010 /* 2011 * We need to go over the wire, just to be sure whether the 2012 * file exists or not. Using the DNLC can be dangerous in 2013 * this case when making a decision regarding existence. 2014 */ 2015 } else { 2016 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 2017 } 2018 if (!error) { 2019 if (exclusive == EXCL) 2020 error = EEXIST; 2021 else if (vp->v_type == VDIR && (mode & VWRITE)) 2022 error = EISDIR; 2023 else { 2024 /* 2025 * If vnode is a device, create special vnode. 2026 */ 2027 if (IS_DEVVP(vp)) { 2028 tempvp = vp; 2029 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2030 VN_RELE(tempvp); 2031 } 2032 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2033 if ((vattr.va_mask & AT_SIZE) && 2034 vp->v_type == VREG) { 2035 vattr.va_mask = AT_SIZE; 2036 error = nfssetattr(vp, &vattr, 0, cr); 2037 } 2038 } 2039 } 2040 nfs_rw_exit(&drp->r_rwlock); 2041 if (error) { 2042 VN_RELE(vp); 2043 } else { 2044 /* 2045 * existing file got truncated, notify. 2046 */ 2047 vnevent_create(vp, ct); 2048 *vpp = vp; 2049 } 2050 return (error); 2051 } 2052 2053 ASSERT(vattr.va_mask & AT_TYPE); 2054 if (vattr.va_type == VREG) { 2055 ASSERT(vattr.va_mask & AT_MODE); 2056 if (MANDMODE(vattr.va_mode)) { 2057 nfs_rw_exit(&drp->r_rwlock); 2058 return (EACCES); 2059 } 2060 } 2061 2062 dnlc_remove(dvp, nm); 2063 2064 setdiropargs(&args.ca_da, nm, dvp); 2065 2066 /* 2067 * Decide what the group-id of the created file should be. 2068 * Set it in attribute list as advisory...then do a setattr 2069 * if the server didn't get it right the first time. 2070 */ 2071 error = setdirgid(dvp, &vattr.va_gid, cr); 2072 if (error) { 2073 nfs_rw_exit(&drp->r_rwlock); 2074 return (error); 2075 } 2076 vattr.va_mask |= AT_GID; 2077 2078 /* 2079 * This is a completely gross hack to make mknod 2080 * work over the wire until we can wack the protocol 2081 */ 2082 #define IFCHR 0020000 /* character special */ 2083 #define IFBLK 0060000 /* block special */ 2084 #define IFSOCK 0140000 /* socket */ 2085 2086 /* 2087 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2088 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2089 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2090 * minor/major numbers <= 8 bits long, compress the device 2091 * number before sending it. Otherwise, the 4.x server will not 2092 * create the device with the correct device number and nothing can be 2093 * done about this. 2094 */ 2095 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2096 dev_t d = vattr.va_rdev; 2097 dev32_t dev32; 2098 2099 if (vattr.va_type == VCHR) 2100 vattr.va_mode |= IFCHR; 2101 else 2102 vattr.va_mode |= IFBLK; 2103 2104 (void) cmpldev(&dev32, d); 2105 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2106 vattr.va_size = (u_offset_t)dev32; 2107 else 2108 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2109 2110 vattr.va_mask |= AT_MODE|AT_SIZE; 2111 } else if (vattr.va_type == VFIFO) { 2112 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2113 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2114 vattr.va_mask |= AT_MODE|AT_SIZE; 2115 } else if (vattr.va_type == VSOCK) { 2116 vattr.va_mode |= IFSOCK; 2117 /* 2118 * To avoid triggering bugs in the servers set AT_SIZE 2119 * (all other RFS_CREATE calls set this). 2120 */ 2121 vattr.va_size = 0; 2122 vattr.va_mask |= AT_MODE|AT_SIZE; 2123 } 2124 2125 args.ca_sa = &args.ca_sa_buf; 2126 error = vattr_to_sattr(&vattr, args.ca_sa); 2127 if (error) { 2128 /* req time field(s) overflow - return immediately */ 2129 nfs_rw_exit(&drp->r_rwlock); 2130 return (error); 2131 } 2132 2133 douprintf = 1; 2134 2135 t = gethrtime(); 2136 2137 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2138 xdr_creatargs, (caddr_t)&args, 2139 xdr_diropres, (caddr_t)&dr, cr, 2140 &douprintf, &dr.dr_status, 0, NULL); 2141 2142 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2143 2144 if (!error) { 2145 error = geterrno(dr.dr_status); 2146 if (!error) { 2147 if (HAVE_RDDIR_CACHE(drp)) 2148 nfs_purge_rddir_cache(dvp); 2149 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2150 dvp->v_vfsp, t, cr, NULL, NULL); 2151 /* 2152 * If NFS_ACL is supported on the server, then the 2153 * attributes returned by server may have minimal 2154 * permissions sometimes denying access to users having 2155 * proper access. To get the proper attributes, mark 2156 * the attributes as expired so that they will be 2157 * regotten via the NFS_ACL GETATTR2 procedure. 2158 */ 2159 if (VTOMI(vp)->mi_flags & MI_ACL) { 2160 PURGE_ATTRCACHE(vp); 2161 } 2162 dnlc_update(dvp, nm, vp); 2163 rp = VTOR(vp); 2164 if (vattr.va_size == 0) { 2165 mutex_enter(&rp->r_statelock); 2166 rp->r_size = 0; 2167 mutex_exit(&rp->r_statelock); 2168 if (vn_has_cached_data(vp)) { 2169 ASSERT(vp->v_type != VCHR); 2170 nfs_invalidate_pages(vp, 2171 (u_offset_t)0, cr); 2172 } 2173 } 2174 2175 /* 2176 * Make sure the gid was set correctly. 2177 * If not, try to set it (but don't lose 2178 * any sleep over it). 2179 */ 2180 if (vattr.va_gid != rp->r_attr.va_gid) { 2181 vattr.va_mask = AT_GID; 2182 (void) nfssetattr(vp, &vattr, 0, cr); 2183 } 2184 2185 /* 2186 * If vnode is a device create special vnode 2187 */ 2188 if (IS_DEVVP(vp)) { 2189 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2190 VN_RELE(vp); 2191 } else 2192 *vpp = vp; 2193 } else { 2194 PURGE_STALE_FH(error, dvp, cr); 2195 } 2196 } 2197 2198 nfs_rw_exit(&drp->r_rwlock); 2199 2200 return (error); 2201 } 2202 2203 /* 2204 * Weirdness: if the vnode to be removed is open 2205 * we rename it instead of removing it and nfs_inactive 2206 * will remove the new name. 2207 */ 2208 /* ARGSUSED */ 2209 static int 2210 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2211 { 2212 int error; 2213 struct nfsdiropargs da; 2214 enum nfsstat status; 2215 vnode_t *vp; 2216 char *tmpname; 2217 int douprintf; 2218 rnode_t *rp; 2219 rnode_t *drp; 2220 2221 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2222 return (EPERM); 2223 drp = VTOR(dvp); 2224 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2225 return (EINTR); 2226 2227 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2228 if (error) { 2229 nfs_rw_exit(&drp->r_rwlock); 2230 return (error); 2231 } 2232 2233 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2234 VN_RELE(vp); 2235 nfs_rw_exit(&drp->r_rwlock); 2236 return (EPERM); 2237 } 2238 2239 /* 2240 * First just remove the entry from the name cache, as it 2241 * is most likely the only entry for this vp. 2242 */ 2243 dnlc_remove(dvp, nm); 2244 2245 /* 2246 * If the file has a v_count > 1 then there may be more than one 2247 * entry in the name cache due multiple links or an open file, 2248 * but we don't have the real reference count so flush all 2249 * possible entries. 2250 */ 2251 if (vp->v_count > 1) 2252 dnlc_purge_vp(vp); 2253 2254 /* 2255 * Now we have the real reference count on the vnode 2256 */ 2257 rp = VTOR(vp); 2258 mutex_enter(&rp->r_statelock); 2259 if (vp->v_count > 1 && 2260 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2261 mutex_exit(&rp->r_statelock); 2262 tmpname = newname(); 2263 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2264 if (error) 2265 kmem_free(tmpname, MAXNAMELEN); 2266 else { 2267 mutex_enter(&rp->r_statelock); 2268 if (rp->r_unldvp == NULL) { 2269 VN_HOLD(dvp); 2270 rp->r_unldvp = dvp; 2271 if (rp->r_unlcred != NULL) 2272 crfree(rp->r_unlcred); 2273 crhold(cr); 2274 rp->r_unlcred = cr; 2275 rp->r_unlname = tmpname; 2276 } else { 2277 kmem_free(rp->r_unlname, MAXNAMELEN); 2278 rp->r_unlname = tmpname; 2279 } 2280 mutex_exit(&rp->r_statelock); 2281 } 2282 } else { 2283 mutex_exit(&rp->r_statelock); 2284 /* 2285 * We need to flush any dirty pages which happen to 2286 * be hanging around before removing the file. This 2287 * shouldn't happen very often and mostly on file 2288 * systems mounted "nocto". 2289 */ 2290 if (vn_has_cached_data(vp) && 2291 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2292 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2293 if (error && (error == ENOSPC || error == EDQUOT)) { 2294 mutex_enter(&rp->r_statelock); 2295 if (!rp->r_error) 2296 rp->r_error = error; 2297 mutex_exit(&rp->r_statelock); 2298 } 2299 } 2300 2301 setdiropargs(&da, nm, dvp); 2302 2303 douprintf = 1; 2304 2305 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2306 xdr_diropargs, (caddr_t)&da, 2307 xdr_enum, (caddr_t)&status, cr, 2308 &douprintf, &status, 0, NULL); 2309 2310 /* 2311 * The xattr dir may be gone after last attr is removed, 2312 * so flush it from dnlc. 2313 */ 2314 if (dvp->v_flag & V_XATTRDIR) 2315 dnlc_purge_vp(dvp); 2316 2317 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2318 PURGE_ATTRCACHE(vp); /* link count changed */ 2319 2320 if (!error) { 2321 error = geterrno(status); 2322 if (!error) { 2323 if (HAVE_RDDIR_CACHE(drp)) 2324 nfs_purge_rddir_cache(dvp); 2325 } else { 2326 PURGE_STALE_FH(error, dvp, cr); 2327 } 2328 } 2329 } 2330 2331 if (error == 0) { 2332 vnevent_remove(vp, dvp, nm, ct); 2333 } 2334 VN_RELE(vp); 2335 2336 nfs_rw_exit(&drp->r_rwlock); 2337 2338 return (error); 2339 } 2340 2341 /* ARGSUSED */ 2342 static int 2343 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2344 caller_context_t *ct, int flags) 2345 { 2346 int error; 2347 struct nfslinkargs args; 2348 enum nfsstat status; 2349 vnode_t *realvp; 2350 int douprintf; 2351 rnode_t *tdrp; 2352 2353 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2354 return (EPERM); 2355 if (VOP_REALVP(svp, &realvp, ct) == 0) 2356 svp = realvp; 2357 2358 args.la_from = VTOFH(svp); 2359 setdiropargs(&args.la_to, tnm, tdvp); 2360 2361 tdrp = VTOR(tdvp); 2362 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2363 return (EINTR); 2364 2365 dnlc_remove(tdvp, tnm); 2366 2367 douprintf = 1; 2368 2369 error = rfs2call(VTOMI(svp), RFS_LINK, 2370 xdr_linkargs, (caddr_t)&args, 2371 xdr_enum, (caddr_t)&status, cr, 2372 &douprintf, &status, 0, NULL); 2373 2374 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2375 PURGE_ATTRCACHE(svp); /* link count changed */ 2376 2377 if (!error) { 2378 error = geterrno(status); 2379 if (!error) { 2380 if (HAVE_RDDIR_CACHE(tdrp)) 2381 nfs_purge_rddir_cache(tdvp); 2382 } 2383 } 2384 2385 nfs_rw_exit(&tdrp->r_rwlock); 2386 2387 if (!error) { 2388 /* 2389 * Notify the source file of this link operation. 2390 */ 2391 vnevent_link(svp, ct); 2392 } 2393 return (error); 2394 } 2395 2396 /* ARGSUSED */ 2397 static int 2398 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2399 caller_context_t *ct, int flags) 2400 { 2401 vnode_t *realvp; 2402 2403 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2404 return (EPERM); 2405 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2406 ndvp = realvp; 2407 2408 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2409 } 2410 2411 /* 2412 * nfsrename does the real work of renaming in NFS Version 2. 2413 */ 2414 static int 2415 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2416 caller_context_t *ct) 2417 { 2418 int error; 2419 enum nfsstat status; 2420 struct nfsrnmargs args; 2421 int douprintf; 2422 vnode_t *nvp = NULL; 2423 vnode_t *ovp = NULL; 2424 char *tmpname; 2425 rnode_t *rp; 2426 rnode_t *odrp; 2427 rnode_t *ndrp; 2428 2429 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2430 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2431 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2432 return (EINVAL); 2433 2434 odrp = VTOR(odvp); 2435 ndrp = VTOR(ndvp); 2436 if ((intptr_t)odrp < (intptr_t)ndrp) { 2437 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2438 return (EINTR); 2439 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2440 nfs_rw_exit(&odrp->r_rwlock); 2441 return (EINTR); 2442 } 2443 } else { 2444 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2445 return (EINTR); 2446 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2447 nfs_rw_exit(&ndrp->r_rwlock); 2448 return (EINTR); 2449 } 2450 } 2451 2452 /* 2453 * Lookup the target file. If it exists, it needs to be 2454 * checked to see whether it is a mount point and whether 2455 * it is active (open). 2456 */ 2457 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2458 if (!error) { 2459 /* 2460 * If this file has been mounted on, then just 2461 * return busy because renaming to it would remove 2462 * the mounted file system from the name space. 2463 */ 2464 if (vn_mountedvfs(nvp) != NULL) { 2465 VN_RELE(nvp); 2466 nfs_rw_exit(&odrp->r_rwlock); 2467 nfs_rw_exit(&ndrp->r_rwlock); 2468 return (EBUSY); 2469 } 2470 2471 /* 2472 * Purge the name cache of all references to this vnode 2473 * so that we can check the reference count to infer 2474 * whether it is active or not. 2475 */ 2476 /* 2477 * First just remove the entry from the name cache, as it 2478 * is most likely the only entry for this vp. 2479 */ 2480 dnlc_remove(ndvp, nnm); 2481 /* 2482 * If the file has a v_count > 1 then there may be more 2483 * than one entry in the name cache due multiple links 2484 * or an open file, but we don't have the real reference 2485 * count so flush all possible entries. 2486 */ 2487 if (nvp->v_count > 1) 2488 dnlc_purge_vp(nvp); 2489 2490 /* 2491 * If the vnode is active and is not a directory, 2492 * arrange to rename it to a 2493 * temporary file so that it will continue to be 2494 * accessible. This implements the "unlink-open-file" 2495 * semantics for the target of a rename operation. 2496 * Before doing this though, make sure that the 2497 * source and target files are not already the same. 2498 */ 2499 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2500 /* 2501 * Lookup the source name. 2502 */ 2503 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2504 cr, 0); 2505 2506 /* 2507 * The source name *should* already exist. 2508 */ 2509 if (error) { 2510 VN_RELE(nvp); 2511 nfs_rw_exit(&odrp->r_rwlock); 2512 nfs_rw_exit(&ndrp->r_rwlock); 2513 return (error); 2514 } 2515 2516 /* 2517 * Compare the two vnodes. If they are the same, 2518 * just release all held vnodes and return success. 2519 */ 2520 if (ovp == nvp) { 2521 VN_RELE(ovp); 2522 VN_RELE(nvp); 2523 nfs_rw_exit(&odrp->r_rwlock); 2524 nfs_rw_exit(&ndrp->r_rwlock); 2525 return (0); 2526 } 2527 2528 /* 2529 * Can't mix and match directories and non- 2530 * directories in rename operations. We already 2531 * know that the target is not a directory. If 2532 * the source is a directory, return an error. 2533 */ 2534 if (ovp->v_type == VDIR) { 2535 VN_RELE(ovp); 2536 VN_RELE(nvp); 2537 nfs_rw_exit(&odrp->r_rwlock); 2538 nfs_rw_exit(&ndrp->r_rwlock); 2539 return (ENOTDIR); 2540 } 2541 2542 /* 2543 * The target file exists, is not the same as 2544 * the source file, and is active. Link it 2545 * to a temporary filename to avoid having 2546 * the server removing the file completely. 2547 */ 2548 tmpname = newname(); 2549 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2550 if (error == EOPNOTSUPP) { 2551 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2552 cr, NULL, 0); 2553 } 2554 if (error) { 2555 kmem_free(tmpname, MAXNAMELEN); 2556 VN_RELE(ovp); 2557 VN_RELE(nvp); 2558 nfs_rw_exit(&odrp->r_rwlock); 2559 nfs_rw_exit(&ndrp->r_rwlock); 2560 return (error); 2561 } 2562 rp = VTOR(nvp); 2563 mutex_enter(&rp->r_statelock); 2564 if (rp->r_unldvp == NULL) { 2565 VN_HOLD(ndvp); 2566 rp->r_unldvp = ndvp; 2567 if (rp->r_unlcred != NULL) 2568 crfree(rp->r_unlcred); 2569 crhold(cr); 2570 rp->r_unlcred = cr; 2571 rp->r_unlname = tmpname; 2572 } else { 2573 kmem_free(rp->r_unlname, MAXNAMELEN); 2574 rp->r_unlname = tmpname; 2575 } 2576 mutex_exit(&rp->r_statelock); 2577 } 2578 } 2579 2580 if (ovp == NULL) { 2581 /* 2582 * When renaming directories to be a subdirectory of a 2583 * different parent, the dnlc entry for ".." will no 2584 * longer be valid, so it must be removed. 2585 * 2586 * We do a lookup here to determine whether we are renaming 2587 * a directory and we need to check if we are renaming 2588 * an unlinked file. This might have already been done 2589 * in previous code, so we check ovp == NULL to avoid 2590 * doing it twice. 2591 */ 2592 2593 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2594 2595 /* 2596 * The source name *should* already exist. 2597 */ 2598 if (error) { 2599 nfs_rw_exit(&odrp->r_rwlock); 2600 nfs_rw_exit(&ndrp->r_rwlock); 2601 if (nvp) { 2602 VN_RELE(nvp); 2603 } 2604 return (error); 2605 } 2606 ASSERT(ovp != NULL); 2607 } 2608 2609 dnlc_remove(odvp, onm); 2610 dnlc_remove(ndvp, nnm); 2611 2612 setdiropargs(&args.rna_from, onm, odvp); 2613 setdiropargs(&args.rna_to, nnm, ndvp); 2614 2615 douprintf = 1; 2616 2617 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2618 xdr_rnmargs, (caddr_t)&args, 2619 xdr_enum, (caddr_t)&status, cr, 2620 &douprintf, &status, 0, NULL); 2621 2622 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2623 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2624 2625 if (!error) { 2626 error = geterrno(status); 2627 if (!error) { 2628 if (HAVE_RDDIR_CACHE(odrp)) 2629 nfs_purge_rddir_cache(odvp); 2630 if (HAVE_RDDIR_CACHE(ndrp)) 2631 nfs_purge_rddir_cache(ndvp); 2632 /* 2633 * when renaming directories to be a subdirectory of a 2634 * different parent, the dnlc entry for ".." will no 2635 * longer be valid, so it must be removed 2636 */ 2637 rp = VTOR(ovp); 2638 if (ndvp != odvp) { 2639 if (ovp->v_type == VDIR) { 2640 dnlc_remove(ovp, ".."); 2641 if (HAVE_RDDIR_CACHE(rp)) 2642 nfs_purge_rddir_cache(ovp); 2643 } 2644 } 2645 2646 /* 2647 * If we are renaming the unlinked file, update the 2648 * r_unldvp and r_unlname as needed. 2649 */ 2650 mutex_enter(&rp->r_statelock); 2651 if (rp->r_unldvp != NULL) { 2652 if (strcmp(rp->r_unlname, onm) == 0) { 2653 (void) strncpy(rp->r_unlname, 2654 nnm, MAXNAMELEN); 2655 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2656 2657 if (ndvp != rp->r_unldvp) { 2658 VN_RELE(rp->r_unldvp); 2659 rp->r_unldvp = ndvp; 2660 VN_HOLD(ndvp); 2661 } 2662 } 2663 } 2664 mutex_exit(&rp->r_statelock); 2665 } else { 2666 /* 2667 * System V defines rename to return EEXIST, not 2668 * ENOTEMPTY if the target directory is not empty. 2669 * Over the wire, the error is NFSERR_ENOTEMPTY 2670 * which geterrno maps to ENOTEMPTY. 2671 */ 2672 if (error == ENOTEMPTY) 2673 error = EEXIST; 2674 } 2675 } 2676 2677 if (error == 0) { 2678 if (nvp) 2679 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2680 2681 if (odvp != ndvp) 2682 vnevent_rename_dest_dir(ndvp, ct); 2683 2684 ASSERT(ovp != NULL); 2685 vnevent_rename_src(ovp, odvp, onm, ct); 2686 } 2687 2688 if (nvp) { 2689 VN_RELE(nvp); 2690 } 2691 VN_RELE(ovp); 2692 2693 nfs_rw_exit(&odrp->r_rwlock); 2694 nfs_rw_exit(&ndrp->r_rwlock); 2695 2696 return (error); 2697 } 2698 2699 /* ARGSUSED */ 2700 static int 2701 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2702 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2703 { 2704 int error; 2705 struct nfscreatargs args; 2706 struct nfsdiropres dr; 2707 int douprintf; 2708 rnode_t *drp; 2709 hrtime_t t; 2710 2711 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2712 return (EPERM); 2713 2714 setdiropargs(&args.ca_da, nm, dvp); 2715 2716 /* 2717 * Decide what the group-id and set-gid bit of the created directory 2718 * should be. May have to do a setattr to get the gid right. 2719 */ 2720 error = setdirgid(dvp, &va->va_gid, cr); 2721 if (error) 2722 return (error); 2723 error = setdirmode(dvp, &va->va_mode, cr); 2724 if (error) 2725 return (error); 2726 va->va_mask |= AT_MODE|AT_GID; 2727 2728 args.ca_sa = &args.ca_sa_buf; 2729 error = vattr_to_sattr(va, args.ca_sa); 2730 if (error) { 2731 /* req time field(s) overflow - return immediately */ 2732 return (error); 2733 } 2734 2735 drp = VTOR(dvp); 2736 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2737 return (EINTR); 2738 2739 dnlc_remove(dvp, nm); 2740 2741 douprintf = 1; 2742 2743 t = gethrtime(); 2744 2745 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2746 xdr_creatargs, (caddr_t)&args, 2747 xdr_diropres, (caddr_t)&dr, cr, 2748 &douprintf, &dr.dr_status, 0, NULL); 2749 2750 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2751 2752 if (!error) { 2753 error = geterrno(dr.dr_status); 2754 if (!error) { 2755 if (HAVE_RDDIR_CACHE(drp)) 2756 nfs_purge_rddir_cache(dvp); 2757 /* 2758 * The attributes returned by RFS_MKDIR can not 2759 * be depended upon, so mark the attribute cache 2760 * as purged. A subsequent GETATTR will get the 2761 * correct attributes from the server. 2762 */ 2763 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2764 dvp->v_vfsp, t, cr, NULL, NULL); 2765 PURGE_ATTRCACHE(*vpp); 2766 dnlc_update(dvp, nm, *vpp); 2767 2768 /* 2769 * Make sure the gid was set correctly. 2770 * If not, try to set it (but don't lose 2771 * any sleep over it). 2772 */ 2773 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2774 va->va_mask = AT_GID; 2775 (void) nfssetattr(*vpp, va, 0, cr); 2776 } 2777 } else { 2778 PURGE_STALE_FH(error, dvp, cr); 2779 } 2780 } 2781 2782 nfs_rw_exit(&drp->r_rwlock); 2783 2784 return (error); 2785 } 2786 2787 /* ARGSUSED */ 2788 static int 2789 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2790 caller_context_t *ct, int flags) 2791 { 2792 int error; 2793 enum nfsstat status; 2794 struct nfsdiropargs da; 2795 vnode_t *vp; 2796 int douprintf; 2797 rnode_t *drp; 2798 2799 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2800 return (EPERM); 2801 drp = VTOR(dvp); 2802 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2803 return (EINTR); 2804 2805 /* 2806 * Attempt to prevent a rmdir(".") from succeeding. 2807 */ 2808 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2809 if (error) { 2810 nfs_rw_exit(&drp->r_rwlock); 2811 return (error); 2812 } 2813 2814 if (vp == cdir) { 2815 VN_RELE(vp); 2816 nfs_rw_exit(&drp->r_rwlock); 2817 return (EINVAL); 2818 } 2819 2820 setdiropargs(&da, nm, dvp); 2821 2822 /* 2823 * First just remove the entry from the name cache, as it 2824 * is most likely an entry for this vp. 2825 */ 2826 dnlc_remove(dvp, nm); 2827 2828 /* 2829 * If there vnode reference count is greater than one, then 2830 * there may be additional references in the DNLC which will 2831 * need to be purged. First, trying removing the entry for 2832 * the parent directory and see if that removes the additional 2833 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2834 * to completely remove any references to the directory which 2835 * might still exist in the DNLC. 2836 */ 2837 if (vp->v_count > 1) { 2838 dnlc_remove(vp, ".."); 2839 if (vp->v_count > 1) 2840 dnlc_purge_vp(vp); 2841 } 2842 2843 douprintf = 1; 2844 2845 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2846 xdr_diropargs, (caddr_t)&da, 2847 xdr_enum, (caddr_t)&status, cr, 2848 &douprintf, &status, 0, NULL); 2849 2850 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2851 2852 if (error) { 2853 VN_RELE(vp); 2854 nfs_rw_exit(&drp->r_rwlock); 2855 return (error); 2856 } 2857 2858 error = geterrno(status); 2859 if (!error) { 2860 if (HAVE_RDDIR_CACHE(drp)) 2861 nfs_purge_rddir_cache(dvp); 2862 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2863 nfs_purge_rddir_cache(vp); 2864 } else { 2865 PURGE_STALE_FH(error, dvp, cr); 2866 /* 2867 * System V defines rmdir to return EEXIST, not 2868 * ENOTEMPTY if the directory is not empty. Over 2869 * the wire, the error is NFSERR_ENOTEMPTY which 2870 * geterrno maps to ENOTEMPTY. 2871 */ 2872 if (error == ENOTEMPTY) 2873 error = EEXIST; 2874 } 2875 2876 if (error == 0) { 2877 vnevent_rmdir(vp, dvp, nm, ct); 2878 } 2879 VN_RELE(vp); 2880 2881 nfs_rw_exit(&drp->r_rwlock); 2882 2883 return (error); 2884 } 2885 2886 /* ARGSUSED */ 2887 static int 2888 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2889 caller_context_t *ct, int flags) 2890 { 2891 int error; 2892 struct nfsslargs args; 2893 enum nfsstat status; 2894 int douprintf; 2895 rnode_t *drp; 2896 2897 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2898 return (EPERM); 2899 setdiropargs(&args.sla_from, lnm, dvp); 2900 args.sla_sa = &args.sla_sa_buf; 2901 error = vattr_to_sattr(tva, args.sla_sa); 2902 if (error) { 2903 /* req time field(s) overflow - return immediately */ 2904 return (error); 2905 } 2906 args.sla_tnm = tnm; 2907 2908 drp = VTOR(dvp); 2909 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2910 return (EINTR); 2911 2912 dnlc_remove(dvp, lnm); 2913 2914 douprintf = 1; 2915 2916 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2917 xdr_slargs, (caddr_t)&args, 2918 xdr_enum, (caddr_t)&status, cr, 2919 &douprintf, &status, 0, NULL); 2920 2921 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2922 2923 if (!error) { 2924 error = geterrno(status); 2925 if (!error) { 2926 if (HAVE_RDDIR_CACHE(drp)) 2927 nfs_purge_rddir_cache(dvp); 2928 } else { 2929 PURGE_STALE_FH(error, dvp, cr); 2930 } 2931 } 2932 2933 nfs_rw_exit(&drp->r_rwlock); 2934 2935 return (error); 2936 } 2937 2938 #ifdef DEBUG 2939 static int nfs_readdir_cache_hits = 0; 2940 static int nfs_readdir_cache_shorts = 0; 2941 static int nfs_readdir_cache_waits = 0; 2942 static int nfs_readdir_cache_misses = 0; 2943 static int nfs_readdir_readahead = 0; 2944 #endif 2945 2946 static int nfs_shrinkreaddir = 0; 2947 2948 /* 2949 * Read directory entries. 2950 * There are some weird things to look out for here. The uio_offset 2951 * field is either 0 or it is the offset returned from a previous 2952 * readdir. It is an opaque value used by the server to find the 2953 * correct directory block to read. The count field is the number 2954 * of blocks to read on the server. This is advisory only, the server 2955 * may return only one block's worth of entries. Entries may be compressed 2956 * on the server. 2957 */ 2958 /* ARGSUSED */ 2959 static int 2960 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2961 caller_context_t *ct, int flags) 2962 { 2963 int error; 2964 size_t count; 2965 rnode_t *rp; 2966 rddir_cache *rdc; 2967 rddir_cache *nrdc; 2968 rddir_cache *rrdc; 2969 #ifdef DEBUG 2970 int missed; 2971 #endif 2972 rddir_cache srdc; 2973 avl_index_t where; 2974 2975 rp = VTOR(vp); 2976 2977 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2978 if (nfs_zone() != VTOMI(vp)->mi_zone) 2979 return (EIO); 2980 /* 2981 * Make sure that the directory cache is valid. 2982 */ 2983 if (HAVE_RDDIR_CACHE(rp)) { 2984 if (nfs_disable_rddir_cache) { 2985 /* 2986 * Setting nfs_disable_rddir_cache in /etc/system 2987 * allows interoperability with servers that do not 2988 * properly update the attributes of directories. 2989 * Any cached information gets purged before an 2990 * access is made to it. 2991 */ 2992 nfs_purge_rddir_cache(vp); 2993 } else { 2994 error = nfs_validate_caches(vp, cr); 2995 if (error) 2996 return (error); 2997 } 2998 } 2999 3000 /* 3001 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 3002 * RFS_READDIR request with rda_count set to more than 0x400. So 3003 * we reduce the request size here purely for compatibility. 3004 * 3005 * In general, this is no longer required. However, if a server 3006 * is discovered which can not handle requests larger than 1024, 3007 * nfs_shrinkreaddir can be set to 1 to enable this backwards 3008 * compatibility. 3009 * 3010 * In any case, the request size is limited to NFS_MAXDATA bytes. 3011 */ 3012 count = MIN(uiop->uio_iov->iov_len, 3013 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 3014 3015 nrdc = NULL; 3016 #ifdef DEBUG 3017 missed = 0; 3018 #endif 3019 top: 3020 /* 3021 * Short circuit last readdir which always returns 0 bytes. 3022 * This can be done after the directory has been read through 3023 * completely at least once. This will set r_direof which 3024 * can be used to find the value of the last cookie. 3025 */ 3026 mutex_enter(&rp->r_statelock); 3027 if (rp->r_direof != NULL && 3028 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 3029 mutex_exit(&rp->r_statelock); 3030 #ifdef DEBUG 3031 nfs_readdir_cache_shorts++; 3032 #endif 3033 if (eofp) 3034 *eofp = 1; 3035 if (nrdc != NULL) 3036 rddir_cache_rele(nrdc); 3037 return (0); 3038 } 3039 /* 3040 * Look for a cache entry. Cache entries are identified 3041 * by the NFS cookie value and the byte count requested. 3042 */ 3043 srdc.nfs_cookie = uiop->uio_offset; 3044 srdc.buflen = count; 3045 rdc = avl_find(&rp->r_dir, &srdc, &where); 3046 if (rdc != NULL) { 3047 rddir_cache_hold(rdc); 3048 /* 3049 * If the cache entry is in the process of being 3050 * filled in, wait until this completes. The 3051 * RDDIRWAIT bit is set to indicate that someone 3052 * is waiting and then the thread currently 3053 * filling the entry is done, it should do a 3054 * cv_broadcast to wakeup all of the threads 3055 * waiting for it to finish. 3056 */ 3057 if (rdc->flags & RDDIR) { 3058 nfs_rw_exit(&rp->r_rwlock); 3059 rdc->flags |= RDDIRWAIT; 3060 #ifdef DEBUG 3061 nfs_readdir_cache_waits++; 3062 #endif 3063 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3064 /* 3065 * We got interrupted, probably 3066 * the user typed ^C or an alarm 3067 * fired. We free the new entry 3068 * if we allocated one. 3069 */ 3070 mutex_exit(&rp->r_statelock); 3071 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3072 RW_READER, FALSE); 3073 rddir_cache_rele(rdc); 3074 if (nrdc != NULL) 3075 rddir_cache_rele(nrdc); 3076 return (EINTR); 3077 } 3078 mutex_exit(&rp->r_statelock); 3079 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3080 RW_READER, FALSE); 3081 rddir_cache_rele(rdc); 3082 goto top; 3083 } 3084 /* 3085 * Check to see if a readdir is required to 3086 * fill the entry. If so, mark this entry 3087 * as being filled, remove our reference, 3088 * and branch to the code to fill the entry. 3089 */ 3090 if (rdc->flags & RDDIRREQ) { 3091 rdc->flags &= ~RDDIRREQ; 3092 rdc->flags |= RDDIR; 3093 if (nrdc != NULL) 3094 rddir_cache_rele(nrdc); 3095 nrdc = rdc; 3096 mutex_exit(&rp->r_statelock); 3097 goto bottom; 3098 } 3099 #ifdef DEBUG 3100 if (!missed) 3101 nfs_readdir_cache_hits++; 3102 #endif 3103 /* 3104 * If an error occurred while attempting 3105 * to fill the cache entry, just return it. 3106 */ 3107 if (rdc->error) { 3108 error = rdc->error; 3109 mutex_exit(&rp->r_statelock); 3110 rddir_cache_rele(rdc); 3111 if (nrdc != NULL) 3112 rddir_cache_rele(nrdc); 3113 return (error); 3114 } 3115 3116 /* 3117 * The cache entry is complete and good, 3118 * copyout the dirent structs to the calling 3119 * thread. 3120 */ 3121 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3122 3123 /* 3124 * If no error occurred during the copyout, 3125 * update the offset in the uio struct to 3126 * contain the value of the next cookie 3127 * and set the eof value appropriately. 3128 */ 3129 if (!error) { 3130 uiop->uio_offset = rdc->nfs_ncookie; 3131 if (eofp) 3132 *eofp = rdc->eof; 3133 } 3134 3135 /* 3136 * Decide whether to do readahead. Don't if 3137 * have already read to the end of directory. 3138 */ 3139 if (rdc->eof) { 3140 rp->r_direof = rdc; 3141 mutex_exit(&rp->r_statelock); 3142 rddir_cache_rele(rdc); 3143 if (nrdc != NULL) 3144 rddir_cache_rele(nrdc); 3145 return (error); 3146 } 3147 3148 /* 3149 * Check to see whether we found an entry 3150 * for the readahead. If so, we don't need 3151 * to do anything further, so free the new 3152 * entry if one was allocated. Otherwise, 3153 * allocate a new entry, add it to the cache, 3154 * and then initiate an asynchronous readdir 3155 * operation to fill it. 3156 */ 3157 srdc.nfs_cookie = rdc->nfs_ncookie; 3158 srdc.buflen = count; 3159 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3160 if (rrdc != NULL) { 3161 if (nrdc != NULL) 3162 rddir_cache_rele(nrdc); 3163 } else { 3164 if (nrdc != NULL) 3165 rrdc = nrdc; 3166 else { 3167 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3168 } 3169 if (rrdc != NULL) { 3170 rrdc->nfs_cookie = rdc->nfs_ncookie; 3171 rrdc->buflen = count; 3172 avl_insert(&rp->r_dir, rrdc, where); 3173 rddir_cache_hold(rrdc); 3174 mutex_exit(&rp->r_statelock); 3175 rddir_cache_rele(rdc); 3176 #ifdef DEBUG 3177 nfs_readdir_readahead++; 3178 #endif 3179 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3180 return (error); 3181 } 3182 } 3183 3184 mutex_exit(&rp->r_statelock); 3185 rddir_cache_rele(rdc); 3186 return (error); 3187 } 3188 3189 /* 3190 * Didn't find an entry in the cache. Construct a new empty 3191 * entry and link it into the cache. Other processes attempting 3192 * to access this entry will need to wait until it is filled in. 3193 * 3194 * Since kmem_alloc may block, another pass through the cache 3195 * will need to be taken to make sure that another process 3196 * hasn't already added an entry to the cache for this request. 3197 */ 3198 if (nrdc == NULL) { 3199 mutex_exit(&rp->r_statelock); 3200 nrdc = rddir_cache_alloc(KM_SLEEP); 3201 nrdc->nfs_cookie = uiop->uio_offset; 3202 nrdc->buflen = count; 3203 goto top; 3204 } 3205 3206 /* 3207 * Add this entry to the cache. 3208 */ 3209 avl_insert(&rp->r_dir, nrdc, where); 3210 rddir_cache_hold(nrdc); 3211 mutex_exit(&rp->r_statelock); 3212 3213 bottom: 3214 #ifdef DEBUG 3215 missed = 1; 3216 nfs_readdir_cache_misses++; 3217 #endif 3218 /* 3219 * Do the readdir. 3220 */ 3221 error = nfsreaddir(vp, nrdc, cr); 3222 3223 /* 3224 * If this operation failed, just return the error which occurred. 3225 */ 3226 if (error != 0) 3227 return (error); 3228 3229 /* 3230 * Since the RPC operation will have taken sometime and blocked 3231 * this process, another pass through the cache will need to be 3232 * taken to find the correct cache entry. It is possible that 3233 * the correct cache entry will not be there (although one was 3234 * added) because the directory changed during the RPC operation 3235 * and the readdir cache was flushed. In this case, just start 3236 * over. It is hoped that this will not happen too often... :-) 3237 */ 3238 nrdc = NULL; 3239 goto top; 3240 /* NOTREACHED */ 3241 } 3242 3243 static int 3244 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3245 { 3246 int error; 3247 struct nfsrddirargs rda; 3248 struct nfsrddirres rd; 3249 rnode_t *rp; 3250 mntinfo_t *mi; 3251 uint_t count; 3252 int douprintf; 3253 failinfo_t fi, *fip; 3254 3255 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3256 count = rdc->buflen; 3257 3258 rp = VTOR(vp); 3259 mi = VTOMI(vp); 3260 3261 rda.rda_fh = *VTOFH(vp); 3262 rda.rda_offset = rdc->nfs_cookie; 3263 3264 /* 3265 * NFS client failover support 3266 * suppress failover unless we have a zero cookie 3267 */ 3268 if (rdc->nfs_cookie == (off_t)0) { 3269 fi.vp = vp; 3270 fi.fhp = (caddr_t)&rda.rda_fh; 3271 fi.copyproc = nfscopyfh; 3272 fi.lookupproc = nfslookup; 3273 fi.xattrdirproc = acl_getxattrdir2; 3274 fip = &fi; 3275 } else { 3276 fip = NULL; 3277 } 3278 3279 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3280 rd.rd_size = count; 3281 rd.rd_offset = rda.rda_offset; 3282 3283 douprintf = 1; 3284 3285 if (mi->mi_io_kstats) { 3286 mutex_enter(&mi->mi_lock); 3287 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3288 mutex_exit(&mi->mi_lock); 3289 } 3290 3291 do { 3292 rda.rda_count = MIN(count, mi->mi_curread); 3293 error = rfs2call(mi, RFS_READDIR, 3294 xdr_rddirargs, (caddr_t)&rda, 3295 xdr_getrddirres, (caddr_t)&rd, cr, 3296 &douprintf, &rd.rd_status, 0, fip); 3297 } while (error == ENFS_TRYAGAIN); 3298 3299 if (mi->mi_io_kstats) { 3300 mutex_enter(&mi->mi_lock); 3301 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3302 mutex_exit(&mi->mi_lock); 3303 } 3304 3305 /* 3306 * Since we are actually doing a READDIR RPC, we must have 3307 * exclusive access to the cache entry being filled. Thus, 3308 * it is safe to update all fields except for the flags 3309 * field. The r_statelock in the rnode must be held to 3310 * prevent two different threads from simultaneously 3311 * attempting to update the flags field. This can happen 3312 * if we are turning off RDDIR and the other thread is 3313 * trying to set RDDIRWAIT. 3314 */ 3315 ASSERT(rdc->flags & RDDIR); 3316 if (!error) { 3317 error = geterrno(rd.rd_status); 3318 if (!error) { 3319 rdc->nfs_ncookie = rd.rd_offset; 3320 rdc->eof = rd.rd_eof ? 1 : 0; 3321 rdc->entlen = rd.rd_size; 3322 ASSERT(rdc->entlen <= rdc->buflen); 3323 #ifdef DEBUG 3324 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3325 KM_SLEEP); 3326 #else 3327 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3328 #endif 3329 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3330 rdc->error = 0; 3331 if (mi->mi_io_kstats) { 3332 mutex_enter(&mi->mi_lock); 3333 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3334 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3335 rd.rd_size; 3336 mutex_exit(&mi->mi_lock); 3337 } 3338 } else { 3339 PURGE_STALE_FH(error, vp, cr); 3340 } 3341 } 3342 if (error) { 3343 rdc->entries = NULL; 3344 rdc->error = error; 3345 } 3346 kmem_free(rd.rd_entries, rdc->buflen); 3347 3348 mutex_enter(&rp->r_statelock); 3349 rdc->flags &= ~RDDIR; 3350 if (rdc->flags & RDDIRWAIT) { 3351 rdc->flags &= ~RDDIRWAIT; 3352 cv_broadcast(&rdc->cv); 3353 } 3354 if (error) 3355 rdc->flags |= RDDIRREQ; 3356 mutex_exit(&rp->r_statelock); 3357 3358 rddir_cache_rele(rdc); 3359 3360 return (error); 3361 } 3362 3363 #ifdef DEBUG 3364 static int nfs_bio_do_stop = 0; 3365 #endif 3366 3367 static int 3368 nfs_bio(struct buf *bp, cred_t *cr) 3369 { 3370 rnode_t *rp = VTOR(bp->b_vp); 3371 int count; 3372 int error; 3373 cred_t *cred; 3374 uint_t offset; 3375 3376 DTRACE_IO1(start, struct buf *, bp); 3377 3378 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3379 offset = dbtob(bp->b_blkno); 3380 3381 if (bp->b_flags & B_READ) { 3382 mutex_enter(&rp->r_statelock); 3383 if (rp->r_cred != NULL) { 3384 cred = rp->r_cred; 3385 crhold(cred); 3386 } else { 3387 rp->r_cred = cr; 3388 crhold(cr); 3389 cred = cr; 3390 crhold(cred); 3391 } 3392 mutex_exit(&rp->r_statelock); 3393 read_again: 3394 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3395 offset, bp->b_bcount, &bp->b_resid, cred); 3396 3397 crfree(cred); 3398 if (!error) { 3399 if (bp->b_resid) { 3400 /* 3401 * Didn't get it all because we hit EOF, 3402 * zero all the memory beyond the EOF. 3403 */ 3404 /* bzero(rdaddr + */ 3405 bzero(bp->b_un.b_addr + 3406 bp->b_bcount - bp->b_resid, bp->b_resid); 3407 } 3408 mutex_enter(&rp->r_statelock); 3409 if (bp->b_resid == bp->b_bcount && 3410 offset >= rp->r_size) { 3411 /* 3412 * We didn't read anything at all as we are 3413 * past EOF. Return an error indicator back 3414 * but don't destroy the pages (yet). 3415 */ 3416 error = NFS_EOF; 3417 } 3418 mutex_exit(&rp->r_statelock); 3419 } else if (error == EACCES) { 3420 mutex_enter(&rp->r_statelock); 3421 if (cred != cr) { 3422 if (rp->r_cred != NULL) 3423 crfree(rp->r_cred); 3424 rp->r_cred = cr; 3425 crhold(cr); 3426 cred = cr; 3427 crhold(cred); 3428 mutex_exit(&rp->r_statelock); 3429 goto read_again; 3430 } 3431 mutex_exit(&rp->r_statelock); 3432 } 3433 } else { 3434 if (!(rp->r_flags & RSTALE)) { 3435 mutex_enter(&rp->r_statelock); 3436 if (rp->r_cred != NULL) { 3437 cred = rp->r_cred; 3438 crhold(cred); 3439 } else { 3440 rp->r_cred = cr; 3441 crhold(cr); 3442 cred = cr; 3443 crhold(cred); 3444 } 3445 mutex_exit(&rp->r_statelock); 3446 write_again: 3447 mutex_enter(&rp->r_statelock); 3448 count = MIN(bp->b_bcount, rp->r_size - offset); 3449 mutex_exit(&rp->r_statelock); 3450 if (count < 0) 3451 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3452 #ifdef DEBUG 3453 if (count == 0) { 3454 zcmn_err(getzoneid(), CE_WARN, 3455 "nfs_bio: zero length write at %d", 3456 offset); 3457 nfs_printfhandle(&rp->r_fh); 3458 if (nfs_bio_do_stop) 3459 debug_enter("nfs_bio"); 3460 } 3461 #endif 3462 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3463 count, cred); 3464 if (error == EACCES) { 3465 mutex_enter(&rp->r_statelock); 3466 if (cred != cr) { 3467 if (rp->r_cred != NULL) 3468 crfree(rp->r_cred); 3469 rp->r_cred = cr; 3470 crhold(cr); 3471 crfree(cred); 3472 cred = cr; 3473 crhold(cred); 3474 mutex_exit(&rp->r_statelock); 3475 goto write_again; 3476 } 3477 mutex_exit(&rp->r_statelock); 3478 } 3479 bp->b_error = error; 3480 if (error && error != EINTR) { 3481 /* 3482 * Don't print EDQUOT errors on the console. 3483 * Don't print asynchronous EACCES errors. 3484 * Don't print EFBIG errors. 3485 * Print all other write errors. 3486 */ 3487 if (error != EDQUOT && error != EFBIG && 3488 (error != EACCES || 3489 !(bp->b_flags & B_ASYNC))) 3490 nfs_write_error(bp->b_vp, error, cred); 3491 /* 3492 * Update r_error and r_flags as appropriate. 3493 * If the error was ESTALE, then mark the 3494 * rnode as not being writeable and save 3495 * the error status. Otherwise, save any 3496 * errors which occur from asynchronous 3497 * page invalidations. Any errors occurring 3498 * from other operations should be saved 3499 * by the caller. 3500 */ 3501 mutex_enter(&rp->r_statelock); 3502 if (error == ESTALE) { 3503 rp->r_flags |= RSTALE; 3504 if (!rp->r_error) 3505 rp->r_error = error; 3506 } else if (!rp->r_error && 3507 (bp->b_flags & 3508 (B_INVAL|B_FORCE|B_ASYNC)) == 3509 (B_INVAL|B_FORCE|B_ASYNC)) { 3510 rp->r_error = error; 3511 } 3512 mutex_exit(&rp->r_statelock); 3513 } 3514 crfree(cred); 3515 } else { 3516 error = rp->r_error; 3517 /* 3518 * A close may have cleared r_error, if so, 3519 * propagate ESTALE error return properly 3520 */ 3521 if (error == 0) 3522 error = ESTALE; 3523 } 3524 } 3525 3526 if (error != 0 && error != NFS_EOF) 3527 bp->b_flags |= B_ERROR; 3528 3529 DTRACE_IO1(done, struct buf *, bp); 3530 3531 return (error); 3532 } 3533 3534 /* ARGSUSED */ 3535 static int 3536 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3537 { 3538 struct nfs_fid *fp; 3539 rnode_t *rp; 3540 3541 rp = VTOR(vp); 3542 3543 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3544 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3545 return (ENOSPC); 3546 } 3547 fp = (struct nfs_fid *)fidp; 3548 fp->nf_pad = 0; 3549 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3550 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3551 return (0); 3552 } 3553 3554 /* ARGSUSED2 */ 3555 static int 3556 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3557 { 3558 rnode_t *rp = VTOR(vp); 3559 3560 if (!write_lock) { 3561 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3562 return (V_WRITELOCK_FALSE); 3563 } 3564 3565 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3566 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3567 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3568 return (V_WRITELOCK_FALSE); 3569 nfs_rw_exit(&rp->r_rwlock); 3570 } 3571 3572 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3573 return (V_WRITELOCK_TRUE); 3574 } 3575 3576 /* ARGSUSED */ 3577 static void 3578 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3579 { 3580 rnode_t *rp = VTOR(vp); 3581 3582 nfs_rw_exit(&rp->r_rwlock); 3583 } 3584 3585 /* ARGSUSED */ 3586 static int 3587 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3588 { 3589 3590 /* 3591 * Because we stuff the readdir cookie into the offset field 3592 * someone may attempt to do an lseek with the cookie which 3593 * we want to succeed. 3594 */ 3595 if (vp->v_type == VDIR) 3596 return (0); 3597 if (*noffp < 0 || *noffp > MAXOFF32_T) 3598 return (EINVAL); 3599 return (0); 3600 } 3601 3602 /* 3603 * number of NFS_MAXDATA blocks to read ahead 3604 * optimized for 100 base-T. 3605 */ 3606 static int nfs_nra = 4; 3607 3608 #ifdef DEBUG 3609 static int nfs_lostpage = 0; /* number of times we lost original page */ 3610 #endif 3611 3612 /* 3613 * Return all the pages from [off..off+len) in file 3614 */ 3615 /* ARGSUSED */ 3616 static int 3617 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3618 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3619 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3620 { 3621 rnode_t *rp; 3622 int error; 3623 mntinfo_t *mi; 3624 3625 if (vp->v_flag & VNOMAP) 3626 return (ENOSYS); 3627 3628 ASSERT(off <= MAXOFF32_T); 3629 if (nfs_zone() != VTOMI(vp)->mi_zone) 3630 return (EIO); 3631 if (protp != NULL) 3632 *protp = PROT_ALL; 3633 3634 /* 3635 * Now valididate that the caches are up to date. 3636 */ 3637 error = nfs_validate_caches(vp, cr); 3638 if (error) 3639 return (error); 3640 3641 rp = VTOR(vp); 3642 mi = VTOMI(vp); 3643 retry: 3644 mutex_enter(&rp->r_statelock); 3645 3646 /* 3647 * Don't create dirty pages faster than they 3648 * can be cleaned so that the system doesn't 3649 * get imbalanced. If the async queue is 3650 * maxed out, then wait for it to drain before 3651 * creating more dirty pages. Also, wait for 3652 * any threads doing pagewalks in the vop_getattr 3653 * entry points so that they don't block for 3654 * long periods. 3655 */ 3656 if (rw == S_CREATE) { 3657 while ((mi->mi_max_threads != 0 && 3658 rp->r_awcount > 2 * mi->mi_max_threads) || 3659 rp->r_gcount > 0) 3660 cv_wait(&rp->r_cv, &rp->r_statelock); 3661 } 3662 3663 /* 3664 * If we are getting called as a side effect of an nfs_write() 3665 * operation the local file size might not be extended yet. 3666 * In this case we want to be able to return pages of zeroes. 3667 */ 3668 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3669 mutex_exit(&rp->r_statelock); 3670 return (EFAULT); /* beyond EOF */ 3671 } 3672 3673 mutex_exit(&rp->r_statelock); 3674 3675 if (len <= PAGESIZE) { 3676 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3677 seg, addr, rw, cr); 3678 } else { 3679 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3680 pl, plsz, seg, addr, rw, cr); 3681 } 3682 3683 switch (error) { 3684 case NFS_EOF: 3685 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3686 goto retry; 3687 case ESTALE: 3688 PURGE_STALE_FH(error, vp, cr); 3689 } 3690 3691 return (error); 3692 } 3693 3694 /* 3695 * Called from pvn_getpages or nfs_getpage to get a particular page. 3696 */ 3697 /* ARGSUSED */ 3698 static int 3699 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3700 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3701 enum seg_rw rw, cred_t *cr) 3702 { 3703 rnode_t *rp; 3704 uint_t bsize; 3705 struct buf *bp; 3706 page_t *pp; 3707 u_offset_t lbn; 3708 u_offset_t io_off; 3709 u_offset_t blkoff; 3710 u_offset_t rablkoff; 3711 size_t io_len; 3712 uint_t blksize; 3713 int error; 3714 int readahead; 3715 int readahead_issued = 0; 3716 int ra_window; /* readahead window */ 3717 page_t *pagefound; 3718 3719 if (nfs_zone() != VTOMI(vp)->mi_zone) 3720 return (EIO); 3721 rp = VTOR(vp); 3722 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3723 3724 reread: 3725 bp = NULL; 3726 pp = NULL; 3727 pagefound = NULL; 3728 3729 if (pl != NULL) 3730 pl[0] = NULL; 3731 3732 error = 0; 3733 lbn = off / bsize; 3734 blkoff = lbn * bsize; 3735 3736 /* 3737 * Queueing up the readahead before doing the synchronous read 3738 * results in a significant increase in read throughput because 3739 * of the increased parallelism between the async threads and 3740 * the process context. 3741 */ 3742 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3743 rw != S_CREATE && 3744 !(vp->v_flag & VNOCACHE)) { 3745 mutex_enter(&rp->r_statelock); 3746 3747 /* 3748 * Calculate the number of readaheads to do. 3749 * a) No readaheads at offset = 0. 3750 * b) Do maximum(nfs_nra) readaheads when the readahead 3751 * window is closed. 3752 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3753 * upon how far the readahead window is open or close. 3754 * d) No readaheads if rp->r_nextr is not within the scope 3755 * of the readahead window (random i/o). 3756 */ 3757 3758 if (off == 0) 3759 readahead = 0; 3760 else if (blkoff == rp->r_nextr) 3761 readahead = nfs_nra; 3762 else if (rp->r_nextr > blkoff && 3763 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3764 <= (nfs_nra - 1))) 3765 readahead = nfs_nra - ra_window; 3766 else 3767 readahead = 0; 3768 3769 rablkoff = rp->r_nextr; 3770 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3771 mutex_exit(&rp->r_statelock); 3772 if (nfs_async_readahead(vp, rablkoff + bsize, 3773 addr + (rablkoff + bsize - off), seg, cr, 3774 nfs_readahead) < 0) { 3775 mutex_enter(&rp->r_statelock); 3776 break; 3777 } 3778 readahead--; 3779 rablkoff += bsize; 3780 /* 3781 * Indicate that we did a readahead so 3782 * readahead offset is not updated 3783 * by the synchronous read below. 3784 */ 3785 readahead_issued = 1; 3786 mutex_enter(&rp->r_statelock); 3787 /* 3788 * set readahead offset to 3789 * offset of last async readahead 3790 * request. 3791 */ 3792 rp->r_nextr = rablkoff; 3793 } 3794 mutex_exit(&rp->r_statelock); 3795 } 3796 3797 again: 3798 if ((pagefound = page_exists(vp, off)) == NULL) { 3799 if (pl == NULL) { 3800 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3801 nfs_readahead); 3802 } else if (rw == S_CREATE) { 3803 /* 3804 * Block for this page is not allocated, or the offset 3805 * is beyond the current allocation size, or we're 3806 * allocating a swap slot and the page was not found, 3807 * so allocate it and return a zero page. 3808 */ 3809 if ((pp = page_create_va(vp, off, 3810 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3811 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3812 io_len = PAGESIZE; 3813 mutex_enter(&rp->r_statelock); 3814 rp->r_nextr = off + PAGESIZE; 3815 mutex_exit(&rp->r_statelock); 3816 } else { 3817 /* 3818 * Need to go to server to get a BLOCK, exception to 3819 * that being while reading at offset = 0 or doing 3820 * random i/o, in that case read only a PAGE. 3821 */ 3822 mutex_enter(&rp->r_statelock); 3823 if (blkoff < rp->r_size && 3824 blkoff + bsize >= rp->r_size) { 3825 /* 3826 * If only a block or less is left in 3827 * the file, read all that is remaining. 3828 */ 3829 if (rp->r_size <= off) { 3830 /* 3831 * Trying to access beyond EOF, 3832 * set up to get at least one page. 3833 */ 3834 blksize = off + PAGESIZE - blkoff; 3835 } else 3836 blksize = rp->r_size - blkoff; 3837 } else if ((off == 0) || 3838 (off != rp->r_nextr && !readahead_issued)) { 3839 blksize = PAGESIZE; 3840 blkoff = off; /* block = page here */ 3841 } else 3842 blksize = bsize; 3843 mutex_exit(&rp->r_statelock); 3844 3845 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3846 &io_len, blkoff, blksize, 0); 3847 3848 /* 3849 * Some other thread has entered the page, 3850 * so just use it. 3851 */ 3852 if (pp == NULL) 3853 goto again; 3854 3855 /* 3856 * Now round the request size up to page boundaries. 3857 * This ensures that the entire page will be 3858 * initialized to zeroes if EOF is encountered. 3859 */ 3860 io_len = ptob(btopr(io_len)); 3861 3862 bp = pageio_setup(pp, io_len, vp, B_READ); 3863 ASSERT(bp != NULL); 3864 3865 /* 3866 * pageio_setup should have set b_addr to 0. This 3867 * is correct since we want to do I/O on a page 3868 * boundary. bp_mapin will use this addr to calculate 3869 * an offset, and then set b_addr to the kernel virtual 3870 * address it allocated for us. 3871 */ 3872 ASSERT(bp->b_un.b_addr == 0); 3873 3874 bp->b_edev = 0; 3875 bp->b_dev = 0; 3876 bp->b_lblkno = lbtodb(io_off); 3877 bp->b_file = vp; 3878 bp->b_offset = (offset_t)off; 3879 bp_mapin(bp); 3880 3881 /* 3882 * If doing a write beyond what we believe is EOF, 3883 * don't bother trying to read the pages from the 3884 * server, we'll just zero the pages here. We 3885 * don't check that the rw flag is S_WRITE here 3886 * because some implementations may attempt a 3887 * read access to the buffer before copying data. 3888 */ 3889 mutex_enter(&rp->r_statelock); 3890 if (io_off >= rp->r_size && seg == segkmap) { 3891 mutex_exit(&rp->r_statelock); 3892 bzero(bp->b_un.b_addr, io_len); 3893 } else { 3894 mutex_exit(&rp->r_statelock); 3895 error = nfs_bio(bp, cr); 3896 } 3897 3898 /* 3899 * Unmap the buffer before freeing it. 3900 */ 3901 bp_mapout(bp); 3902 pageio_done(bp); 3903 3904 if (error == NFS_EOF) { 3905 /* 3906 * If doing a write system call just return 3907 * zeroed pages, else user tried to get pages 3908 * beyond EOF, return error. We don't check 3909 * that the rw flag is S_WRITE here because 3910 * some implementations may attempt a read 3911 * access to the buffer before copying data. 3912 */ 3913 if (seg == segkmap) 3914 error = 0; 3915 else 3916 error = EFAULT; 3917 } 3918 3919 if (!readahead_issued && !error) { 3920 mutex_enter(&rp->r_statelock); 3921 rp->r_nextr = io_off + io_len; 3922 mutex_exit(&rp->r_statelock); 3923 } 3924 } 3925 } 3926 3927 out: 3928 if (pl == NULL) 3929 return (error); 3930 3931 if (error) { 3932 if (pp != NULL) 3933 pvn_read_done(pp, B_ERROR); 3934 return (error); 3935 } 3936 3937 if (pagefound) { 3938 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3939 3940 /* 3941 * Page exists in the cache, acquire the appropriate lock. 3942 * If this fails, start all over again. 3943 */ 3944 if ((pp = page_lookup(vp, off, se)) == NULL) { 3945 #ifdef DEBUG 3946 nfs_lostpage++; 3947 #endif 3948 goto reread; 3949 } 3950 pl[0] = pp; 3951 pl[1] = NULL; 3952 return (0); 3953 } 3954 3955 if (pp != NULL) 3956 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3957 3958 return (error); 3959 } 3960 3961 static void 3962 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3963 cred_t *cr) 3964 { 3965 int error; 3966 page_t *pp; 3967 u_offset_t io_off; 3968 size_t io_len; 3969 struct buf *bp; 3970 uint_t bsize, blksize; 3971 rnode_t *rp = VTOR(vp); 3972 3973 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3974 3975 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3976 3977 mutex_enter(&rp->r_statelock); 3978 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3979 /* 3980 * If less than a block left in file read less 3981 * than a block. 3982 */ 3983 blksize = rp->r_size - blkoff; 3984 } else 3985 blksize = bsize; 3986 mutex_exit(&rp->r_statelock); 3987 3988 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3989 &io_off, &io_len, blkoff, blksize, 1); 3990 /* 3991 * The isra flag passed to the kluster function is 1, we may have 3992 * gotten a return value of NULL for a variety of reasons (# of free 3993 * pages < minfree, someone entered the page on the vnode etc). In all 3994 * cases, we want to punt on the readahead. 3995 */ 3996 if (pp == NULL) 3997 return; 3998 3999 /* 4000 * Now round the request size up to page boundaries. 4001 * This ensures that the entire page will be 4002 * initialized to zeroes if EOF is encountered. 4003 */ 4004 io_len = ptob(btopr(io_len)); 4005 4006 bp = pageio_setup(pp, io_len, vp, B_READ); 4007 ASSERT(bp != NULL); 4008 4009 /* 4010 * pageio_setup should have set b_addr to 0. This is correct since 4011 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4012 * to calculate an offset, and then set b_addr to the kernel virtual 4013 * address it allocated for us. 4014 */ 4015 ASSERT(bp->b_un.b_addr == 0); 4016 4017 bp->b_edev = 0; 4018 bp->b_dev = 0; 4019 bp->b_lblkno = lbtodb(io_off); 4020 bp->b_file = vp; 4021 bp->b_offset = (offset_t)blkoff; 4022 bp_mapin(bp); 4023 4024 /* 4025 * If doing a write beyond what we believe is EOF, don't bother trying 4026 * to read the pages from the server, we'll just zero the pages here. 4027 * We don't check that the rw flag is S_WRITE here because some 4028 * implementations may attempt a read access to the buffer before 4029 * copying data. 4030 */ 4031 mutex_enter(&rp->r_statelock); 4032 if (io_off >= rp->r_size && seg == segkmap) { 4033 mutex_exit(&rp->r_statelock); 4034 bzero(bp->b_un.b_addr, io_len); 4035 error = 0; 4036 } else { 4037 mutex_exit(&rp->r_statelock); 4038 error = nfs_bio(bp, cr); 4039 if (error == NFS_EOF) 4040 error = 0; 4041 } 4042 4043 /* 4044 * Unmap the buffer before freeing it. 4045 */ 4046 bp_mapout(bp); 4047 pageio_done(bp); 4048 4049 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4050 4051 /* 4052 * In case of error set readahead offset 4053 * to the lowest offset. 4054 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4055 */ 4056 if (error && rp->r_nextr > io_off) { 4057 mutex_enter(&rp->r_statelock); 4058 if (rp->r_nextr > io_off) 4059 rp->r_nextr = io_off; 4060 mutex_exit(&rp->r_statelock); 4061 } 4062 } 4063 4064 /* 4065 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4066 * If len == 0, do from off to EOF. 4067 * 4068 * The normal cases should be len == 0 && off == 0 (entire vp list), 4069 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4070 * (from pageout). 4071 */ 4072 /* ARGSUSED */ 4073 static int 4074 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4075 caller_context_t *ct) 4076 { 4077 int error; 4078 rnode_t *rp; 4079 4080 ASSERT(cr != NULL); 4081 4082 /* 4083 * XXX - Why should this check be made here? 4084 */ 4085 if (vp->v_flag & VNOMAP) 4086 return (ENOSYS); 4087 4088 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4089 return (0); 4090 4091 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4092 return (EIO); 4093 ASSERT(off <= MAXOFF32_T); 4094 4095 rp = VTOR(vp); 4096 mutex_enter(&rp->r_statelock); 4097 rp->r_count++; 4098 mutex_exit(&rp->r_statelock); 4099 error = nfs_putpages(vp, off, len, flags, cr); 4100 mutex_enter(&rp->r_statelock); 4101 rp->r_count--; 4102 cv_broadcast(&rp->r_cv); 4103 mutex_exit(&rp->r_statelock); 4104 4105 return (error); 4106 } 4107 4108 /* 4109 * Write out a single page, possibly klustering adjacent dirty pages. 4110 */ 4111 int 4112 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4113 int flags, cred_t *cr) 4114 { 4115 u_offset_t io_off; 4116 u_offset_t lbn_off; 4117 u_offset_t lbn; 4118 size_t io_len; 4119 uint_t bsize; 4120 int error; 4121 rnode_t *rp; 4122 4123 ASSERT(!vn_is_readonly(vp)); 4124 ASSERT(pp != NULL); 4125 ASSERT(cr != NULL); 4126 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4127 4128 rp = VTOR(vp); 4129 ASSERT(rp->r_count > 0); 4130 4131 ASSERT(pp->p_offset <= MAXOFF32_T); 4132 4133 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4134 lbn = pp->p_offset / bsize; 4135 lbn_off = lbn * bsize; 4136 4137 /* 4138 * Find a kluster that fits in one block, or in 4139 * one page if pages are bigger than blocks. If 4140 * there is less file space allocated than a whole 4141 * page, we'll shorten the i/o request below. 4142 */ 4143 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4144 roundup(bsize, PAGESIZE), flags); 4145 4146 /* 4147 * pvn_write_kluster shouldn't have returned a page with offset 4148 * behind the original page we were given. Verify that. 4149 */ 4150 ASSERT((pp->p_offset / bsize) >= lbn); 4151 4152 /* 4153 * Now pp will have the list of kept dirty pages marked for 4154 * write back. It will also handle invalidation and freeing 4155 * of pages that are not dirty. Check for page length rounding 4156 * problems. 4157 */ 4158 if (io_off + io_len > lbn_off + bsize) { 4159 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4160 io_len = lbn_off + bsize - io_off; 4161 } 4162 /* 4163 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4164 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4165 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4166 * progress and the r_size has not been made consistent with the 4167 * new size of the file. When the uiomove() completes the r_size is 4168 * updated and the RMODINPROGRESS flag is cleared. 4169 * 4170 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4171 * consistent value of r_size. Without this handshaking, it is 4172 * possible that nfs(3)_bio() picks up the old value of r_size 4173 * before the uiomove() in writerp() completes. This will result 4174 * in the write through nfs(3)_bio() being dropped. 4175 * 4176 * More precisely, there is a window between the time the uiomove() 4177 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4178 * operation intervenes in this window, the page will be picked up, 4179 * because it is dirty (it will be unlocked, unless it was 4180 * pagecreate'd). When the page is picked up as dirty, the dirty 4181 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4182 * checked. This will still be the old size. Therefore the page will 4183 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4184 * the page will be found to be clean and the write will be dropped. 4185 */ 4186 if (rp->r_flags & RMODINPROGRESS) { 4187 mutex_enter(&rp->r_statelock); 4188 if ((rp->r_flags & RMODINPROGRESS) && 4189 rp->r_modaddr + MAXBSIZE > io_off && 4190 rp->r_modaddr < io_off + io_len) { 4191 page_t *plist; 4192 /* 4193 * A write is in progress for this region of the file. 4194 * If we did not detect RMODINPROGRESS here then this 4195 * path through nfs_putapage() would eventually go to 4196 * nfs(3)_bio() and may not write out all of the data 4197 * in the pages. We end up losing data. So we decide 4198 * to set the modified bit on each page in the page 4199 * list and mark the rnode with RDIRTY. This write 4200 * will be restarted at some later time. 4201 */ 4202 plist = pp; 4203 while (plist != NULL) { 4204 pp = plist; 4205 page_sub(&plist, pp); 4206 hat_setmod(pp); 4207 page_io_unlock(pp); 4208 page_unlock(pp); 4209 } 4210 rp->r_flags |= RDIRTY; 4211 mutex_exit(&rp->r_statelock); 4212 if (offp) 4213 *offp = io_off; 4214 if (lenp) 4215 *lenp = io_len; 4216 return (0); 4217 } 4218 mutex_exit(&rp->r_statelock); 4219 } 4220 4221 if (flags & B_ASYNC) { 4222 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4223 nfs_sync_putapage); 4224 } else 4225 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4226 4227 if (offp) 4228 *offp = io_off; 4229 if (lenp) 4230 *lenp = io_len; 4231 return (error); 4232 } 4233 4234 static int 4235 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4236 int flags, cred_t *cr) 4237 { 4238 int error; 4239 rnode_t *rp; 4240 4241 flags |= B_WRITE; 4242 4243 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4244 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4245 4246 rp = VTOR(vp); 4247 4248 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4249 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4250 if (!(rp->r_flags & ROUTOFSPACE)) { 4251 mutex_enter(&rp->r_statelock); 4252 rp->r_flags |= ROUTOFSPACE; 4253 mutex_exit(&rp->r_statelock); 4254 } 4255 flags |= B_ERROR; 4256 pvn_write_done(pp, flags); 4257 /* 4258 * If this was not an async thread, then try again to 4259 * write out the pages, but this time, also destroy 4260 * them whether or not the write is successful. This 4261 * will prevent memory from filling up with these 4262 * pages and destroying them is the only alternative 4263 * if they can't be written out. 4264 * 4265 * Don't do this if this is an async thread because 4266 * when the pages are unlocked in pvn_write_done, 4267 * some other thread could have come along, locked 4268 * them, and queued for an async thread. It would be 4269 * possible for all of the async threads to be tied 4270 * up waiting to lock the pages again and they would 4271 * all already be locked and waiting for an async 4272 * thread to handle them. Deadlock. 4273 */ 4274 if (!(flags & B_ASYNC)) { 4275 error = nfs_putpage(vp, io_off, io_len, 4276 B_INVAL | B_FORCE, cr, NULL); 4277 } 4278 } else { 4279 if (error) 4280 flags |= B_ERROR; 4281 else if (rp->r_flags & ROUTOFSPACE) { 4282 mutex_enter(&rp->r_statelock); 4283 rp->r_flags &= ~ROUTOFSPACE; 4284 mutex_exit(&rp->r_statelock); 4285 } 4286 pvn_write_done(pp, flags); 4287 } 4288 4289 return (error); 4290 } 4291 4292 /* ARGSUSED */ 4293 static int 4294 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4295 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4296 caller_context_t *ct) 4297 { 4298 struct segvn_crargs vn_a; 4299 int error; 4300 rnode_t *rp; 4301 struct vattr va; 4302 4303 if (nfs_zone() != VTOMI(vp)->mi_zone) 4304 return (EIO); 4305 4306 if (vp->v_flag & VNOMAP) 4307 return (ENOSYS); 4308 4309 if (off > MAXOFF32_T) 4310 return (EFBIG); 4311 4312 if (off < 0 || off + len < 0) 4313 return (ENXIO); 4314 4315 if (vp->v_type != VREG) 4316 return (ENODEV); 4317 4318 /* 4319 * If there is cached data and if close-to-open consistency 4320 * checking is not turned off and if the file system is not 4321 * mounted readonly, then force an over the wire getattr. 4322 * Otherwise, just invoke nfsgetattr to get a copy of the 4323 * attributes. The attribute cache will be used unless it 4324 * is timed out and if it is, then an over the wire getattr 4325 * will be issued. 4326 */ 4327 va.va_mask = AT_ALL; 4328 if (vn_has_cached_data(vp) && 4329 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4330 error = nfs_getattr_otw(vp, &va, cr); 4331 else 4332 error = nfsgetattr(vp, &va, cr); 4333 if (error) 4334 return (error); 4335 4336 /* 4337 * Check to see if the vnode is currently marked as not cachable. 4338 * This means portions of the file are locked (through VOP_FRLOCK). 4339 * In this case the map request must be refused. We use 4340 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4341 */ 4342 rp = VTOR(vp); 4343 4344 /* 4345 * Atomically increment r_inmap after acquiring r_rwlock. The 4346 * idea here is to acquire r_rwlock to block read/write and 4347 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4348 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4349 * and we can prevent the deadlock that would have occurred 4350 * when nfs_addmap() would have acquired it out of order. 4351 * 4352 * Since we are not protecting r_inmap by any lock, we do not 4353 * hold any lock when we decrement it. We atomically decrement 4354 * r_inmap after we release r_lkserlock. 4355 */ 4356 4357 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4358 return (EINTR); 4359 atomic_add_int(&rp->r_inmap, 1); 4360 nfs_rw_exit(&rp->r_rwlock); 4361 4362 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4363 atomic_add_int(&rp->r_inmap, -1); 4364 return (EINTR); 4365 } 4366 if (vp->v_flag & VNOCACHE) { 4367 error = EAGAIN; 4368 goto done; 4369 } 4370 4371 /* 4372 * Don't allow concurrent locks and mapping if mandatory locking is 4373 * enabled. 4374 */ 4375 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4376 MANDLOCK(vp, va.va_mode)) { 4377 error = EAGAIN; 4378 goto done; 4379 } 4380 4381 as_rangelock(as); 4382 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4383 if (error != 0) { 4384 as_rangeunlock(as); 4385 goto done; 4386 } 4387 4388 vn_a.vp = vp; 4389 vn_a.offset = off; 4390 vn_a.type = (flags & MAP_TYPE); 4391 vn_a.prot = (uchar_t)prot; 4392 vn_a.maxprot = (uchar_t)maxprot; 4393 vn_a.flags = (flags & ~MAP_TYPE); 4394 vn_a.cred = cr; 4395 vn_a.amp = NULL; 4396 vn_a.szc = 0; 4397 vn_a.lgrp_mem_policy_flags = 0; 4398 4399 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4400 as_rangeunlock(as); 4401 4402 done: 4403 nfs_rw_exit(&rp->r_lkserlock); 4404 atomic_add_int(&rp->r_inmap, -1); 4405 return (error); 4406 } 4407 4408 /* ARGSUSED */ 4409 static int 4410 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4411 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4412 caller_context_t *ct) 4413 { 4414 rnode_t *rp; 4415 4416 if (vp->v_flag & VNOMAP) 4417 return (ENOSYS); 4418 if (nfs_zone() != VTOMI(vp)->mi_zone) 4419 return (EIO); 4420 4421 rp = VTOR(vp); 4422 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4423 4424 return (0); 4425 } 4426 4427 /* ARGSUSED */ 4428 static int 4429 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4430 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4431 { 4432 netobj lm_fh; 4433 int rc; 4434 u_offset_t start, end; 4435 rnode_t *rp; 4436 int error = 0, intr = INTR(vp); 4437 4438 /* check for valid cmd parameter */ 4439 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4440 return (EINVAL); 4441 if (nfs_zone() != VTOMI(vp)->mi_zone) 4442 return (EIO); 4443 4444 /* Verify l_type. */ 4445 switch (bfp->l_type) { 4446 case F_RDLCK: 4447 if (cmd != F_GETLK && !(flag & FREAD)) 4448 return (EBADF); 4449 break; 4450 case F_WRLCK: 4451 if (cmd != F_GETLK && !(flag & FWRITE)) 4452 return (EBADF); 4453 break; 4454 case F_UNLCK: 4455 intr = 0; 4456 break; 4457 4458 default: 4459 return (EINVAL); 4460 } 4461 4462 /* check the validity of the lock range */ 4463 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4464 return (rc); 4465 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4466 return (rc); 4467 4468 /* 4469 * If the filesystem is mounted using local locking, pass the 4470 * request off to the local locking code. 4471 */ 4472 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4473 if (offset > MAXOFF32_T) 4474 return (EFBIG); 4475 if (cmd == F_SETLK || cmd == F_SETLKW) { 4476 /* 4477 * For complete safety, we should be holding 4478 * r_lkserlock. However, we can't call 4479 * lm_safelock and then fs_frlock while 4480 * holding r_lkserlock, so just invoke 4481 * lm_safelock and expect that this will 4482 * catch enough of the cases. 4483 */ 4484 if (!lm_safelock(vp, bfp, cr)) 4485 return (EAGAIN); 4486 } 4487 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4488 } 4489 4490 rp = VTOR(vp); 4491 4492 /* 4493 * Check whether the given lock request can proceed, given the 4494 * current file mappings. 4495 */ 4496 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4497 return (EINTR); 4498 if (cmd == F_SETLK || cmd == F_SETLKW) { 4499 if (!lm_safelock(vp, bfp, cr)) { 4500 rc = EAGAIN; 4501 goto done; 4502 } 4503 } 4504 4505 /* 4506 * Flush the cache after waiting for async I/O to finish. For new 4507 * locks, this is so that the process gets the latest bits from the 4508 * server. For unlocks, this is so that other clients see the 4509 * latest bits once the file has been unlocked. If currently dirty 4510 * pages can't be flushed, then don't allow a lock to be set. But 4511 * allow unlocks to succeed, to avoid having orphan locks on the 4512 * server. 4513 */ 4514 if (cmd != F_GETLK) { 4515 mutex_enter(&rp->r_statelock); 4516 while (rp->r_count > 0) { 4517 if (intr) { 4518 klwp_t *lwp = ttolwp(curthread); 4519 4520 if (lwp != NULL) 4521 lwp->lwp_nostop++; 4522 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4523 == 0) { 4524 if (lwp != NULL) 4525 lwp->lwp_nostop--; 4526 rc = EINTR; 4527 break; 4528 } 4529 if (lwp != NULL) 4530 lwp->lwp_nostop--; 4531 } else 4532 cv_wait(&rp->r_cv, &rp->r_statelock); 4533 } 4534 mutex_exit(&rp->r_statelock); 4535 if (rc != 0) 4536 goto done; 4537 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4538 if (error) { 4539 if (error == ENOSPC || error == EDQUOT) { 4540 mutex_enter(&rp->r_statelock); 4541 if (!rp->r_error) 4542 rp->r_error = error; 4543 mutex_exit(&rp->r_statelock); 4544 } 4545 if (bfp->l_type != F_UNLCK) { 4546 rc = ENOLCK; 4547 goto done; 4548 } 4549 } 4550 } 4551 4552 lm_fh.n_len = sizeof (fhandle_t); 4553 lm_fh.n_bytes = (char *)VTOFH(vp); 4554 4555 /* 4556 * Call the lock manager to do the real work of contacting 4557 * the server and obtaining the lock. 4558 */ 4559 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4560 4561 if (rc == 0) 4562 nfs_lockcompletion(vp, cmd); 4563 4564 done: 4565 nfs_rw_exit(&rp->r_lkserlock); 4566 return (rc); 4567 } 4568 4569 /* 4570 * Free storage space associated with the specified vnode. The portion 4571 * to be freed is specified by bfp->l_start and bfp->l_len (already 4572 * normalized to a "whence" of 0). 4573 * 4574 * This is an experimental facility whose continued existence is not 4575 * guaranteed. Currently, we only support the special case 4576 * of l_len == 0, meaning free to end of file. 4577 */ 4578 /* ARGSUSED */ 4579 static int 4580 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4581 offset_t offset, cred_t *cr, caller_context_t *ct) 4582 { 4583 int error; 4584 4585 ASSERT(vp->v_type == VREG); 4586 if (cmd != F_FREESP) 4587 return (EINVAL); 4588 4589 if (offset > MAXOFF32_T) 4590 return (EFBIG); 4591 4592 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4593 (bfp->l_len > MAXOFF32_T)) 4594 return (EFBIG); 4595 4596 if (nfs_zone() != VTOMI(vp)->mi_zone) 4597 return (EIO); 4598 4599 error = convoff(vp, bfp, 0, offset); 4600 if (!error) { 4601 ASSERT(bfp->l_start >= 0); 4602 if (bfp->l_len == 0) { 4603 struct vattr va; 4604 4605 /* 4606 * ftruncate should not change the ctime and 4607 * mtime if we truncate the file to its 4608 * previous size. 4609 */ 4610 va.va_mask = AT_SIZE; 4611 error = nfsgetattr(vp, &va, cr); 4612 if (error || va.va_size == bfp->l_start) 4613 return (error); 4614 va.va_mask = AT_SIZE; 4615 va.va_size = bfp->l_start; 4616 error = nfssetattr(vp, &va, 0, cr); 4617 } else 4618 error = EINVAL; 4619 } 4620 4621 return (error); 4622 } 4623 4624 /* ARGSUSED */ 4625 static int 4626 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4627 { 4628 4629 return (EINVAL); 4630 } 4631 4632 /* 4633 * Setup and add an address space callback to do the work of the delmap call. 4634 * The callback will (and must be) deleted in the actual callback function. 4635 * 4636 * This is done in order to take care of the problem that we have with holding 4637 * the address space's a_lock for a long period of time (e.g. if the NFS server 4638 * is down). Callbacks will be executed in the address space code while the 4639 * a_lock is not held. Holding the address space's a_lock causes things such 4640 * as ps and fork to hang because they are trying to acquire this lock as well. 4641 */ 4642 /* ARGSUSED */ 4643 static int 4644 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4645 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4646 caller_context_t *ct) 4647 { 4648 int caller_found; 4649 int error; 4650 rnode_t *rp; 4651 nfs_delmap_args_t *dmapp; 4652 nfs_delmapcall_t *delmap_call; 4653 4654 if (vp->v_flag & VNOMAP) 4655 return (ENOSYS); 4656 /* 4657 * A process may not change zones if it has NFS pages mmap'ed 4658 * in, so we can't legitimately get here from the wrong zone. 4659 */ 4660 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4661 4662 rp = VTOR(vp); 4663 4664 /* 4665 * The way that the address space of this process deletes its mapping 4666 * of this file is via the following call chains: 4667 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4668 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4669 * 4670 * With the use of address space callbacks we are allowed to drop the 4671 * address space lock, a_lock, while executing the NFS operations that 4672 * need to go over the wire. Returning EAGAIN to the caller of this 4673 * function is what drives the execution of the callback that we add 4674 * below. The callback will be executed by the address space code 4675 * after dropping the a_lock. When the callback is finished, since 4676 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4677 * is called again on the same segment to finish the rest of the work 4678 * that needs to happen during unmapping. 4679 * 4680 * This action of calling back into the segment driver causes 4681 * nfs_delmap() to get called again, but since the callback was 4682 * already executed at this point, it already did the work and there 4683 * is nothing left for us to do. 4684 * 4685 * To Summarize: 4686 * - The first time nfs_delmap is called by the current thread is when 4687 * we add the caller associated with this delmap to the delmap caller 4688 * list, add the callback, and return EAGAIN. 4689 * - The second time in this call chain when nfs_delmap is called we 4690 * will find this caller in the delmap caller list and realize there 4691 * is no more work to do thus removing this caller from the list and 4692 * returning the error that was set in the callback execution. 4693 */ 4694 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4695 if (caller_found) { 4696 /* 4697 * 'error' is from the actual delmap operations. To avoid 4698 * hangs, we need to handle the return of EAGAIN differently 4699 * since this is what drives the callback execution. 4700 * In this case, we don't want to return EAGAIN and do the 4701 * callback execution because there are none to execute. 4702 */ 4703 if (error == EAGAIN) 4704 return (0); 4705 else 4706 return (error); 4707 } 4708 4709 /* current caller was not in the list */ 4710 delmap_call = nfs_init_delmapcall(); 4711 4712 mutex_enter(&rp->r_statelock); 4713 list_insert_tail(&rp->r_indelmap, delmap_call); 4714 mutex_exit(&rp->r_statelock); 4715 4716 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4717 4718 dmapp->vp = vp; 4719 dmapp->off = off; 4720 dmapp->addr = addr; 4721 dmapp->len = len; 4722 dmapp->prot = prot; 4723 dmapp->maxprot = maxprot; 4724 dmapp->flags = flags; 4725 dmapp->cr = cr; 4726 dmapp->caller = delmap_call; 4727 4728 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4729 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4730 4731 return (error ? error : EAGAIN); 4732 } 4733 4734 /* 4735 * Remove some pages from an mmap'd vnode. Just update the 4736 * count of pages. If doing close-to-open, then flush all 4737 * of the pages associated with this file. Otherwise, start 4738 * an asynchronous page flush to write out any dirty pages. 4739 * This will also associate a credential with the rnode which 4740 * can be used to write the pages. 4741 */ 4742 /* ARGSUSED */ 4743 static void 4744 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4745 { 4746 int error; 4747 rnode_t *rp; 4748 mntinfo_t *mi; 4749 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4750 4751 rp = VTOR(dmapp->vp); 4752 mi = VTOMI(dmapp->vp); 4753 4754 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4755 ASSERT(rp->r_mapcnt >= 0); 4756 4757 /* 4758 * Initiate a page flush if there are pages, the file system 4759 * was not mounted readonly, the segment was mapped shared, and 4760 * the pages themselves were writeable. 4761 */ 4762 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4763 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4764 mutex_enter(&rp->r_statelock); 4765 rp->r_flags |= RDIRTY; 4766 mutex_exit(&rp->r_statelock); 4767 /* 4768 * If this is a cross-zone access a sync putpage won't work, so 4769 * the best we can do is try an async putpage. That seems 4770 * better than something more draconian such as discarding the 4771 * dirty pages. 4772 */ 4773 if ((mi->mi_flags & MI_NOCTO) || 4774 nfs_zone() != mi->mi_zone) 4775 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4776 B_ASYNC, dmapp->cr, NULL); 4777 else 4778 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4779 0, dmapp->cr, NULL); 4780 if (!error) { 4781 mutex_enter(&rp->r_statelock); 4782 error = rp->r_error; 4783 rp->r_error = 0; 4784 mutex_exit(&rp->r_statelock); 4785 } 4786 } else 4787 error = 0; 4788 4789 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4790 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4791 B_INVAL, dmapp->cr, NULL); 4792 4793 dmapp->caller->error = error; 4794 (void) as_delete_callback(as, arg); 4795 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4796 } 4797 4798 /* ARGSUSED */ 4799 static int 4800 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4801 caller_context_t *ct) 4802 { 4803 int error = 0; 4804 4805 if (nfs_zone() != VTOMI(vp)->mi_zone) 4806 return (EIO); 4807 /* 4808 * This looks a little weird because it's written in a general 4809 * manner but we make little use of cases. If cntl() ever gets 4810 * widely used, the outer switch will make more sense. 4811 */ 4812 4813 switch (cmd) { 4814 4815 /* 4816 * Large file spec - need to base answer new query with 4817 * hardcoded constant based on the protocol. 4818 */ 4819 case _PC_FILESIZEBITS: 4820 *valp = 32; 4821 return (0); 4822 4823 case _PC_LINK_MAX: 4824 case _PC_NAME_MAX: 4825 case _PC_PATH_MAX: 4826 case _PC_SYMLINK_MAX: 4827 case _PC_CHOWN_RESTRICTED: 4828 case _PC_NO_TRUNC: { 4829 mntinfo_t *mi; 4830 struct pathcnf *pc; 4831 4832 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4833 return (EINVAL); 4834 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4835 switch (cmd) { 4836 case _PC_LINK_MAX: 4837 *valp = pc->pc_link_max; 4838 break; 4839 case _PC_NAME_MAX: 4840 *valp = pc->pc_name_max; 4841 break; 4842 case _PC_PATH_MAX: 4843 case _PC_SYMLINK_MAX: 4844 *valp = pc->pc_path_max; 4845 break; 4846 case _PC_CHOWN_RESTRICTED: 4847 /* 4848 * if we got here, error is really a boolean which 4849 * indicates whether cmd is set or not. 4850 */ 4851 *valp = error ? 1 : 0; /* see above */ 4852 error = 0; 4853 break; 4854 case _PC_NO_TRUNC: 4855 /* 4856 * if we got here, error is really a boolean which 4857 * indicates whether cmd is set or not. 4858 */ 4859 *valp = error ? 1 : 0; /* see above */ 4860 error = 0; 4861 break; 4862 } 4863 return (error ? EINVAL : 0); 4864 } 4865 4866 case _PC_XATTR_EXISTS: 4867 *valp = 0; 4868 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4869 vnode_t *avp; 4870 rnode_t *rp; 4871 mntinfo_t *mi = VTOMI(vp); 4872 4873 if (!(mi->mi_flags & MI_EXTATTR)) 4874 return (0); 4875 4876 rp = VTOR(vp); 4877 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4878 INTR(vp))) 4879 return (EINTR); 4880 4881 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4882 if (error || avp == NULL) 4883 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4884 4885 nfs_rw_exit(&rp->r_rwlock); 4886 4887 if (error == 0 && avp != NULL) { 4888 error = do_xattr_exists_check(avp, valp, cr); 4889 VN_RELE(avp); 4890 } 4891 } 4892 return (error ? EINVAL : 0); 4893 4894 case _PC_ACL_ENABLED: 4895 *valp = _ACL_ACLENT_ENABLED; 4896 return (0); 4897 4898 default: 4899 return (EINVAL); 4900 } 4901 } 4902 4903 /* 4904 * Called by async thread to do synchronous pageio. Do the i/o, wait 4905 * for it to complete, and cleanup the page list when done. 4906 */ 4907 static int 4908 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4909 int flags, cred_t *cr) 4910 { 4911 int error; 4912 4913 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4914 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4915 if (flags & B_READ) 4916 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4917 else 4918 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4919 return (error); 4920 } 4921 4922 /* ARGSUSED */ 4923 static int 4924 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4925 int flags, cred_t *cr, caller_context_t *ct) 4926 { 4927 int error; 4928 rnode_t *rp; 4929 4930 if (pp == NULL) 4931 return (EINVAL); 4932 4933 if (io_off > MAXOFF32_T) 4934 return (EFBIG); 4935 if (nfs_zone() != VTOMI(vp)->mi_zone) 4936 return (EIO); 4937 rp = VTOR(vp); 4938 mutex_enter(&rp->r_statelock); 4939 rp->r_count++; 4940 mutex_exit(&rp->r_statelock); 4941 4942 if (flags & B_ASYNC) { 4943 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4944 nfs_sync_pageio); 4945 } else 4946 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4947 mutex_enter(&rp->r_statelock); 4948 rp->r_count--; 4949 cv_broadcast(&rp->r_cv); 4950 mutex_exit(&rp->r_statelock); 4951 return (error); 4952 } 4953 4954 /* ARGSUSED */ 4955 static int 4956 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4957 caller_context_t *ct) 4958 { 4959 int error; 4960 mntinfo_t *mi; 4961 4962 mi = VTOMI(vp); 4963 4964 if (nfs_zone() != mi->mi_zone) 4965 return (EIO); 4966 if (mi->mi_flags & MI_ACL) { 4967 error = acl_setacl2(vp, vsecattr, flag, cr); 4968 if (mi->mi_flags & MI_ACL) 4969 return (error); 4970 } 4971 4972 return (ENOSYS); 4973 } 4974 4975 /* ARGSUSED */ 4976 static int 4977 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4978 caller_context_t *ct) 4979 { 4980 int error; 4981 mntinfo_t *mi; 4982 4983 mi = VTOMI(vp); 4984 4985 if (nfs_zone() != mi->mi_zone) 4986 return (EIO); 4987 if (mi->mi_flags & MI_ACL) { 4988 error = acl_getacl2(vp, vsecattr, flag, cr); 4989 if (mi->mi_flags & MI_ACL) 4990 return (error); 4991 } 4992 4993 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4994 } 4995 4996 /* ARGSUSED */ 4997 static int 4998 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4999 caller_context_t *ct) 5000 { 5001 int error; 5002 struct shrlock nshr; 5003 struct nfs_owner nfs_owner; 5004 netobj lm_fh; 5005 5006 if (nfs_zone() != VTOMI(vp)->mi_zone) 5007 return (EIO); 5008 5009 /* 5010 * check for valid cmd parameter 5011 */ 5012 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 5013 return (EINVAL); 5014 5015 /* 5016 * Check access permissions 5017 */ 5018 if (cmd == F_SHARE && 5019 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 5020 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 5021 return (EBADF); 5022 5023 /* 5024 * If the filesystem is mounted using local locking, pass the 5025 * request off to the local share code. 5026 */ 5027 if (VTOMI(vp)->mi_flags & MI_LLOCK) 5028 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 5029 5030 switch (cmd) { 5031 case F_SHARE: 5032 case F_UNSHARE: 5033 lm_fh.n_len = sizeof (fhandle_t); 5034 lm_fh.n_bytes = (char *)VTOFH(vp); 5035 5036 /* 5037 * If passed an owner that is too large to fit in an 5038 * nfs_owner it is likely a recursive call from the 5039 * lock manager client and pass it straight through. If 5040 * it is not a nfs_owner then simply return an error. 5041 */ 5042 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5043 if (((struct nfs_owner *)shr->s_owner)->magic != 5044 NFS_OWNER_MAGIC) 5045 return (EINVAL); 5046 5047 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5048 error = set_errno(error); 5049 } 5050 return (error); 5051 } 5052 /* 5053 * Remote share reservations owner is a combination of 5054 * a magic number, hostname, and the local owner 5055 */ 5056 bzero(&nfs_owner, sizeof (nfs_owner)); 5057 nfs_owner.magic = NFS_OWNER_MAGIC; 5058 (void) strncpy(nfs_owner.hname, uts_nodename(), 5059 sizeof (nfs_owner.hname)); 5060 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5061 nshr.s_access = shr->s_access; 5062 nshr.s_deny = shr->s_deny; 5063 nshr.s_sysid = 0; 5064 nshr.s_pid = ttoproc(curthread)->p_pid; 5065 nshr.s_own_len = sizeof (nfs_owner); 5066 nshr.s_owner = (caddr_t)&nfs_owner; 5067 5068 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5069 error = set_errno(error); 5070 } 5071 5072 break; 5073 5074 case F_HASREMOTELOCKS: 5075 /* 5076 * NFS client can't store remote locks itself 5077 */ 5078 shr->s_access = 0; 5079 error = 0; 5080 break; 5081 5082 default: 5083 error = EINVAL; 5084 break; 5085 } 5086 5087 return (error); 5088 } 5089