1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 25 * All rights reserved. 26 */ 27 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/time.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/file.h> 41 #include <sys/filio.h> 42 #include <sys/uio.h> 43 #include <sys/buf.h> 44 #include <sys/mman.h> 45 #include <sys/pathname.h> 46 #include <sys/dirent.h> 47 #include <sys/debug.h> 48 #include <sys/vmsystm.h> 49 #include <sys/fcntl.h> 50 #include <sys/flock.h> 51 #include <sys/swap.h> 52 #include <sys/errno.h> 53 #include <sys/strsubr.h> 54 #include <sys/sysmacros.h> 55 #include <sys/kmem.h> 56 #include <sys/cmn_err.h> 57 #include <sys/pathconf.h> 58 #include <sys/utsname.h> 59 #include <sys/dnlc.h> 60 #include <sys/acl.h> 61 #include <sys/atomic.h> 62 #include <sys/policy.h> 63 #include <sys/sdt.h> 64 65 #include <rpc/types.h> 66 #include <rpc/auth.h> 67 #include <rpc/clnt.h> 68 69 #include <nfs/nfs.h> 70 #include <nfs/nfs_clnt.h> 71 #include <nfs/rnode.h> 72 #include <nfs/nfs_acl.h> 73 #include <nfs/lm.h> 74 75 #include <vm/hat.h> 76 #include <vm/as.h> 77 #include <vm/page.h> 78 #include <vm/pvn.h> 79 #include <vm/seg.h> 80 #include <vm/seg_map.h> 81 #include <vm/seg_kpm.h> 82 #include <vm/seg_vn.h> 83 84 #include <fs/fs_subr.h> 85 86 #include <sys/ddi.h> 87 88 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 89 cred_t *); 90 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 91 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 92 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 93 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 94 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 95 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 96 caller_context_t *); 97 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 98 static int nfs_bio(struct buf *, cred_t *); 99 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 100 page_t *[], size_t, struct seg *, caddr_t, 101 enum seg_rw, cred_t *); 102 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 103 cred_t *); 104 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 105 int, cred_t *); 106 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 107 int, cred_t *); 108 static void nfs_delmap_callback(struct as *, void *, uint_t); 109 110 /* 111 * Error flags used to pass information about certain special errors 112 * which need to be handled specially. 113 */ 114 #define NFS_EOF -98 115 116 /* 117 * These are the vnode ops routines which implement the vnode interface to 118 * the networked file system. These routines just take their parameters, 119 * make them look networkish by putting the right info into interface structs, 120 * and then calling the appropriate remote routine(s) to do the work. 121 * 122 * Note on directory name lookup cacheing: If we detect a stale fhandle, 123 * we purge the directory cache relative to that vnode. This way, the 124 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 125 * more details on rnode locking. 126 */ 127 128 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 129 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 130 caller_context_t *); 131 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 132 caller_context_t *); 133 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 134 caller_context_t *); 135 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 136 caller_context_t *); 137 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 138 caller_context_t *); 139 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 140 caller_context_t *); 141 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 142 static int nfs_accessx(void *, int, cred_t *); 143 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 144 caller_context_t *); 145 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 146 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 147 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 148 int, vnode_t *, cred_t *, caller_context_t *, 149 int *, pathname_t *); 150 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 151 int, vnode_t **, cred_t *, int, caller_context_t *, 152 vsecattr_t *); 153 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 154 int); 155 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 156 caller_context_t *, int); 157 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 158 caller_context_t *, int); 159 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 160 cred_t *, caller_context_t *, int, vsecattr_t *); 161 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 162 caller_context_t *, int); 163 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 164 cred_t *, caller_context_t *, int); 165 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 166 caller_context_t *, int); 167 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 168 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 169 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 170 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 171 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 172 page_t *[], size_t, struct seg *, caddr_t, 173 enum seg_rw, cred_t *, caller_context_t *); 174 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 175 caller_context_t *); 176 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 177 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 178 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 179 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 180 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 181 struct flk_callback *, cred_t *, caller_context_t *); 182 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 183 cred_t *, caller_context_t *); 184 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 185 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 186 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 187 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 188 caller_context_t *); 189 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 190 cred_t *, caller_context_t *); 191 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 192 caller_context_t *); 193 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 194 caller_context_t *); 195 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 196 caller_context_t *); 197 198 struct vnodeops *nfs_vnodeops; 199 200 const fs_operation_def_t nfs_vnodeops_template[] = { 201 VOPNAME_OPEN, { .vop_open = nfs_open }, 202 VOPNAME_CLOSE, { .vop_close = nfs_close }, 203 VOPNAME_READ, { .vop_read = nfs_read }, 204 VOPNAME_WRITE, { .vop_write = nfs_write }, 205 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 206 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 207 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 208 VOPNAME_ACCESS, { .vop_access = nfs_access }, 209 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 210 VOPNAME_CREATE, { .vop_create = nfs_create }, 211 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 212 VOPNAME_LINK, { .vop_link = nfs_link }, 213 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 214 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 215 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 216 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 217 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 218 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 219 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 220 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 221 VOPNAME_FID, { .vop_fid = nfs_fid }, 222 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 223 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 224 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 225 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 226 VOPNAME_SPACE, { .vop_space = nfs_space }, 227 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 228 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 229 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 230 VOPNAME_MAP, { .vop_map = nfs_map }, 231 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 232 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 233 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 234 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 235 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 236 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 237 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 238 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 239 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 240 NULL, NULL 241 }; 242 243 /* 244 * XXX: This is referenced in modstubs.s 245 */ 246 struct vnodeops * 247 nfs_getvnodeops(void) 248 { 249 return (nfs_vnodeops); 250 } 251 252 /* ARGSUSED */ 253 static int 254 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 255 { 256 int error; 257 struct vattr va; 258 rnode_t *rp; 259 vnode_t *vp; 260 261 vp = *vpp; 262 rp = VTOR(vp); 263 if (nfs_zone() != VTOMI(vp)->mi_zone) 264 return (EIO); 265 mutex_enter(&rp->r_statelock); 266 if (rp->r_cred == NULL) { 267 crhold(cr); 268 rp->r_cred = cr; 269 } 270 mutex_exit(&rp->r_statelock); 271 272 /* 273 * If there is no cached data or if close-to-open 274 * consistency checking is turned off, we can avoid 275 * the over the wire getattr. Otherwise, if the 276 * file system is mounted readonly, then just verify 277 * the caches are up to date using the normal mechanism. 278 * Else, if the file is not mmap'd, then just mark 279 * the attributes as timed out. They will be refreshed 280 * and the caches validated prior to being used. 281 * Else, the file system is mounted writeable so 282 * force an over the wire GETATTR in order to ensure 283 * that all cached data is valid. 284 */ 285 if (vp->v_count > 1 || 286 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 287 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 288 if (vn_is_readonly(vp)) 289 error = nfs_validate_caches(vp, cr); 290 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 291 PURGE_ATTRCACHE(vp); 292 error = 0; 293 } else { 294 va.va_mask = AT_ALL; 295 error = nfs_getattr_otw(vp, &va, cr); 296 } 297 } else 298 error = 0; 299 300 return (error); 301 } 302 303 /* ARGSUSED */ 304 static int 305 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 306 caller_context_t *ct) 307 { 308 rnode_t *rp; 309 int error; 310 struct vattr va; 311 312 /* 313 * zone_enter(2) prevents processes from changing zones with NFS files 314 * open; if we happen to get here from the wrong zone we can't do 315 * anything over the wire. 316 */ 317 if (VTOMI(vp)->mi_zone != nfs_zone()) { 318 /* 319 * We could attempt to clean up locks, except we're sure 320 * that the current process didn't acquire any locks on 321 * the file: any attempt to lock a file belong to another zone 322 * will fail, and one can't lock an NFS file and then change 323 * zones, as that fails too. 324 * 325 * Returning an error here is the sane thing to do. A 326 * subsequent call to VN_RELE() which translates to a 327 * nfs_inactive() will clean up state: if the zone of the 328 * vnode's origin is still alive and kicking, an async worker 329 * thread will handle the request (from the correct zone), and 330 * everything (minus the final nfs_getattr_otw() call) should 331 * be OK. If the zone is going away nfs_async_inactive() will 332 * throw away cached pages inline. 333 */ 334 return (EIO); 335 } 336 337 /* 338 * If we are using local locking for this filesystem, then 339 * release all of the SYSV style record locks. Otherwise, 340 * we are doing network locking and we need to release all 341 * of the network locks. All of the locks held by this 342 * process on this file are released no matter what the 343 * incoming reference count is. 344 */ 345 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 346 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 347 cleanshares(vp, ttoproc(curthread)->p_pid); 348 } else 349 nfs_lockrelease(vp, flag, offset, cr); 350 351 if (count > 1) 352 return (0); 353 354 /* 355 * If the file has been `unlinked', then purge the 356 * DNLC so that this vnode will get reycled quicker 357 * and the .nfs* file on the server will get removed. 358 */ 359 rp = VTOR(vp); 360 if (rp->r_unldvp != NULL) 361 dnlc_purge_vp(vp); 362 363 /* 364 * If the file was open for write and there are pages, 365 * then if the file system was mounted using the "no-close- 366 * to-open" semantics, then start an asynchronous flush 367 * of the all of the pages in the file. 368 * else the file system was not mounted using the "no-close- 369 * to-open" semantics, then do a synchronous flush and 370 * commit of all of the dirty and uncommitted pages. 371 * 372 * The asynchronous flush of the pages in the "nocto" path 373 * mostly just associates a cred pointer with the rnode so 374 * writes which happen later will have a better chance of 375 * working. It also starts the data being written to the 376 * server, but without unnecessarily delaying the application. 377 */ 378 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 379 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 380 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 381 cr, ct); 382 if (error == EAGAIN) 383 error = 0; 384 } else 385 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 386 if (!error) { 387 mutex_enter(&rp->r_statelock); 388 error = rp->r_error; 389 rp->r_error = 0; 390 mutex_exit(&rp->r_statelock); 391 } 392 } else { 393 mutex_enter(&rp->r_statelock); 394 error = rp->r_error; 395 rp->r_error = 0; 396 mutex_exit(&rp->r_statelock); 397 } 398 399 /* 400 * If RWRITEATTR is set, then issue an over the wire GETATTR to 401 * refresh the attribute cache with a set of attributes which 402 * weren't returned from a WRITE. This will enable the close- 403 * to-open processing to work. 404 */ 405 if (rp->r_flags & RWRITEATTR) 406 (void) nfs_getattr_otw(vp, &va, cr); 407 408 return (error); 409 } 410 411 /* ARGSUSED */ 412 static int 413 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 414 caller_context_t *ct) 415 { 416 rnode_t *rp; 417 u_offset_t off; 418 offset_t diff; 419 int on; 420 size_t n; 421 caddr_t base; 422 uint_t flags; 423 int error; 424 mntinfo_t *mi; 425 426 rp = VTOR(vp); 427 mi = VTOMI(vp); 428 429 if (nfs_zone() != mi->mi_zone) 430 return (EIO); 431 432 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 433 434 if (vp->v_type != VREG) 435 return (EISDIR); 436 437 if (uiop->uio_resid == 0) 438 return (0); 439 440 if (uiop->uio_loffset > MAXOFF32_T) 441 return (EFBIG); 442 443 if (uiop->uio_loffset < 0 || 444 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 445 return (EINVAL); 446 447 /* 448 * Bypass VM if caching has been disabled (e.g., locking) or if 449 * using client-side direct I/O and the file is not mmap'd and 450 * there are no cached pages. 451 */ 452 if ((vp->v_flag & VNOCACHE) || 453 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 454 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 455 !vn_has_cached_data(vp))) { 456 size_t bufsize; 457 size_t resid = 0; 458 459 /* 460 * Let's try to do read in as large a chunk as we can 461 * (Filesystem (NFS client) bsize if possible/needed). 462 * For V3, this is 32K and for V2, this is 8K. 463 */ 464 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 465 base = kmem_alloc(bufsize, KM_SLEEP); 466 do { 467 n = MIN(uiop->uio_resid, bufsize); 468 error = nfsread(vp, base, uiop->uio_offset, n, 469 &resid, cr); 470 if (!error) { 471 n -= resid; 472 error = uiomove(base, n, UIO_READ, uiop); 473 } 474 } while (!error && uiop->uio_resid > 0 && n > 0); 475 kmem_free(base, bufsize); 476 return (error); 477 } 478 479 error = 0; 480 481 do { 482 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 483 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 484 n = MIN(MAXBSIZE - on, uiop->uio_resid); 485 486 error = nfs_validate_caches(vp, cr); 487 if (error) 488 break; 489 490 mutex_enter(&rp->r_statelock); 491 while (rp->r_flags & RINCACHEPURGE) { 492 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 493 mutex_exit(&rp->r_statelock); 494 return (EINTR); 495 } 496 } 497 diff = rp->r_size - uiop->uio_loffset; 498 mutex_exit(&rp->r_statelock); 499 if (diff <= 0) 500 break; 501 if (diff < n) 502 n = (size_t)diff; 503 504 if (vpm_enable) { 505 /* 506 * Copy data. 507 */ 508 error = vpm_data_copy(vp, off + on, n, uiop, 509 1, NULL, 0, S_READ); 510 } else { 511 base = segmap_getmapflt(segkmap, vp, off + on, n, 512 1, S_READ); 513 error = uiomove(base + on, n, UIO_READ, uiop); 514 } 515 516 if (!error) { 517 /* 518 * If read a whole block or read to eof, 519 * won't need this buffer again soon. 520 */ 521 mutex_enter(&rp->r_statelock); 522 if (n + on == MAXBSIZE || 523 uiop->uio_loffset == rp->r_size) 524 flags = SM_DONTNEED; 525 else 526 flags = 0; 527 mutex_exit(&rp->r_statelock); 528 if (vpm_enable) { 529 error = vpm_sync_pages(vp, off, n, flags); 530 } else { 531 error = segmap_release(segkmap, base, flags); 532 } 533 } else { 534 if (vpm_enable) { 535 (void) vpm_sync_pages(vp, off, n, 0); 536 } else { 537 (void) segmap_release(segkmap, base, 0); 538 } 539 } 540 } while (!error && uiop->uio_resid > 0); 541 542 return (error); 543 } 544 545 /* ARGSUSED */ 546 static int 547 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 548 caller_context_t *ct) 549 { 550 rnode_t *rp; 551 u_offset_t off; 552 caddr_t base; 553 uint_t flags; 554 int remainder; 555 size_t n; 556 int on; 557 int error; 558 int resid; 559 offset_t offset; 560 rlim_t limit; 561 mntinfo_t *mi; 562 563 rp = VTOR(vp); 564 565 mi = VTOMI(vp); 566 if (nfs_zone() != mi->mi_zone) 567 return (EIO); 568 if (vp->v_type != VREG) 569 return (EISDIR); 570 571 if (uiop->uio_resid == 0) 572 return (0); 573 574 if (ioflag & FAPPEND) { 575 struct vattr va; 576 577 /* 578 * Must serialize if appending. 579 */ 580 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 581 nfs_rw_exit(&rp->r_rwlock); 582 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 583 INTR(vp))) 584 return (EINTR); 585 } 586 587 va.va_mask = AT_SIZE; 588 error = nfsgetattr(vp, &va, cr); 589 if (error) 590 return (error); 591 uiop->uio_loffset = va.va_size; 592 } 593 594 if (uiop->uio_loffset > MAXOFF32_T) 595 return (EFBIG); 596 597 offset = uiop->uio_loffset + uiop->uio_resid; 598 599 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 600 return (EINVAL); 601 602 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 603 limit = MAXOFF32_T; 604 } else { 605 limit = (rlim_t)uiop->uio_llimit; 606 } 607 608 /* 609 * Check to make sure that the process will not exceed 610 * its limit on file size. It is okay to write up to 611 * the limit, but not beyond. Thus, the write which 612 * reaches the limit will be short and the next write 613 * will return an error. 614 */ 615 remainder = 0; 616 if (offset > limit) { 617 remainder = offset - limit; 618 uiop->uio_resid = limit - uiop->uio_offset; 619 if (uiop->uio_resid <= 0) { 620 proc_t *p = ttoproc(curthread); 621 622 uiop->uio_resid += remainder; 623 mutex_enter(&p->p_lock); 624 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 625 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 626 mutex_exit(&p->p_lock); 627 return (EFBIG); 628 } 629 } 630 631 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 632 return (EINTR); 633 634 /* 635 * Bypass VM if caching has been disabled (e.g., locking) or if 636 * using client-side direct I/O and the file is not mmap'd and 637 * there are no cached pages. 638 */ 639 if ((vp->v_flag & VNOCACHE) || 640 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 641 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 642 !vn_has_cached_data(vp))) { 643 size_t bufsize; 644 int count; 645 uint_t org_offset; 646 647 nfs_fwrite: 648 if (rp->r_flags & RSTALE) { 649 resid = uiop->uio_resid; 650 offset = uiop->uio_loffset; 651 error = rp->r_error; 652 /* 653 * A close may have cleared r_error, if so, 654 * propagate ESTALE error return properly 655 */ 656 if (error == 0) 657 error = ESTALE; 658 goto bottom; 659 } 660 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 661 base = kmem_alloc(bufsize, KM_SLEEP); 662 do { 663 resid = uiop->uio_resid; 664 offset = uiop->uio_loffset; 665 count = MIN(uiop->uio_resid, bufsize); 666 org_offset = uiop->uio_offset; 667 error = uiomove(base, count, UIO_WRITE, uiop); 668 if (!error) { 669 error = nfswrite(vp, base, org_offset, 670 count, cr); 671 } 672 } while (!error && uiop->uio_resid > 0); 673 kmem_free(base, bufsize); 674 goto bottom; 675 } 676 677 do { 678 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 679 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 680 n = MIN(MAXBSIZE - on, uiop->uio_resid); 681 682 resid = uiop->uio_resid; 683 offset = uiop->uio_loffset; 684 685 if (rp->r_flags & RSTALE) { 686 error = rp->r_error; 687 /* 688 * A close may have cleared r_error, if so, 689 * propagate ESTALE error return properly 690 */ 691 if (error == 0) 692 error = ESTALE; 693 break; 694 } 695 696 /* 697 * Don't create dirty pages faster than they 698 * can be cleaned so that the system doesn't 699 * get imbalanced. If the async queue is 700 * maxed out, then wait for it to drain before 701 * creating more dirty pages. Also, wait for 702 * any threads doing pagewalks in the vop_getattr 703 * entry points so that they don't block for 704 * long periods. 705 */ 706 mutex_enter(&rp->r_statelock); 707 while ((mi->mi_max_threads != 0 && 708 rp->r_awcount > 2 * mi->mi_max_threads) || 709 rp->r_gcount > 0) { 710 if (INTR(vp)) { 711 klwp_t *lwp = ttolwp(curthread); 712 713 if (lwp != NULL) 714 lwp->lwp_nostop++; 715 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 716 mutex_exit(&rp->r_statelock); 717 if (lwp != NULL) 718 lwp->lwp_nostop--; 719 error = EINTR; 720 goto bottom; 721 } 722 if (lwp != NULL) 723 lwp->lwp_nostop--; 724 } else 725 cv_wait(&rp->r_cv, &rp->r_statelock); 726 } 727 mutex_exit(&rp->r_statelock); 728 729 /* 730 * Touch the page and fault it in if it is not in core 731 * before segmap_getmapflt or vpm_data_copy can lock it. 732 * This is to avoid the deadlock if the buffer is mapped 733 * to the same file through mmap which we want to write. 734 */ 735 uio_prefaultpages((long)n, uiop); 736 737 if (vpm_enable) { 738 /* 739 * It will use kpm mappings, so no need to 740 * pass an address. 741 */ 742 error = writerp(rp, NULL, n, uiop, 0); 743 } else { 744 if (segmap_kpm) { 745 int pon = uiop->uio_loffset & PAGEOFFSET; 746 size_t pn = MIN(PAGESIZE - pon, 747 uiop->uio_resid); 748 int pagecreate; 749 750 mutex_enter(&rp->r_statelock); 751 pagecreate = (pon == 0) && (pn == PAGESIZE || 752 uiop->uio_loffset + pn >= rp->r_size); 753 mutex_exit(&rp->r_statelock); 754 755 base = segmap_getmapflt(segkmap, vp, off + on, 756 pn, !pagecreate, S_WRITE); 757 758 error = writerp(rp, base + pon, n, uiop, 759 pagecreate); 760 761 } else { 762 base = segmap_getmapflt(segkmap, vp, off + on, 763 n, 0, S_READ); 764 error = writerp(rp, base + on, n, uiop, 0); 765 } 766 } 767 768 if (!error) { 769 if (mi->mi_flags & MI_NOAC) 770 flags = SM_WRITE; 771 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 772 /* 773 * Have written a whole block. 774 * Start an asynchronous write 775 * and mark the buffer to 776 * indicate that it won't be 777 * needed again soon. 778 */ 779 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 780 } else 781 flags = 0; 782 if ((ioflag & (FSYNC|FDSYNC)) || 783 (rp->r_flags & ROUTOFSPACE)) { 784 flags &= ~SM_ASYNC; 785 flags |= SM_WRITE; 786 } 787 if (vpm_enable) { 788 error = vpm_sync_pages(vp, off, n, flags); 789 } else { 790 error = segmap_release(segkmap, base, flags); 791 } 792 } else { 793 if (vpm_enable) { 794 (void) vpm_sync_pages(vp, off, n, 0); 795 } else { 796 (void) segmap_release(segkmap, base, 0); 797 } 798 /* 799 * In the event that we got an access error while 800 * faulting in a page for a write-only file just 801 * force a write. 802 */ 803 if (error == EACCES) 804 goto nfs_fwrite; 805 } 806 } while (!error && uiop->uio_resid > 0); 807 808 bottom: 809 if (error) { 810 uiop->uio_resid = resid + remainder; 811 uiop->uio_loffset = offset; 812 } else 813 uiop->uio_resid += remainder; 814 815 nfs_rw_exit(&rp->r_lkserlock); 816 817 return (error); 818 } 819 820 /* 821 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 822 */ 823 static int 824 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 825 int flags, cred_t *cr) 826 { 827 struct buf *bp; 828 int error; 829 830 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 831 bp = pageio_setup(pp, len, vp, flags); 832 ASSERT(bp != NULL); 833 834 /* 835 * pageio_setup should have set b_addr to 0. This 836 * is correct since we want to do I/O on a page 837 * boundary. bp_mapin will use this addr to calculate 838 * an offset, and then set b_addr to the kernel virtual 839 * address it allocated for us. 840 */ 841 ASSERT(bp->b_un.b_addr == 0); 842 843 bp->b_edev = 0; 844 bp->b_dev = 0; 845 bp->b_lblkno = lbtodb(off); 846 bp->b_file = vp; 847 bp->b_offset = (offset_t)off; 848 bp_mapin(bp); 849 850 error = nfs_bio(bp, cr); 851 852 bp_mapout(bp); 853 pageio_done(bp); 854 855 return (error); 856 } 857 858 /* 859 * Write to file. Writes to remote server in largest size 860 * chunks that the server can handle. Write is synchronous. 861 */ 862 static int 863 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 864 { 865 rnode_t *rp; 866 mntinfo_t *mi; 867 struct nfswriteargs wa; 868 struct nfsattrstat ns; 869 int error; 870 int tsize; 871 int douprintf; 872 873 douprintf = 1; 874 875 rp = VTOR(vp); 876 mi = VTOMI(vp); 877 878 ASSERT(nfs_zone() == mi->mi_zone); 879 880 wa.wa_args = &wa.wa_args_buf; 881 wa.wa_fhandle = *VTOFH(vp); 882 883 do { 884 tsize = MIN(mi->mi_curwrite, count); 885 wa.wa_data = base; 886 wa.wa_begoff = offset; 887 wa.wa_totcount = tsize; 888 wa.wa_count = tsize; 889 wa.wa_offset = offset; 890 891 if (mi->mi_io_kstats) { 892 mutex_enter(&mi->mi_lock); 893 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 894 mutex_exit(&mi->mi_lock); 895 } 896 wa.wa_mblk = NULL; 897 do { 898 error = rfs2call(mi, RFS_WRITE, 899 xdr_writeargs, (caddr_t)&wa, 900 xdr_attrstat, (caddr_t)&ns, cr, 901 &douprintf, &ns.ns_status, 0, NULL); 902 } while (error == ENFS_TRYAGAIN); 903 if (mi->mi_io_kstats) { 904 mutex_enter(&mi->mi_lock); 905 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 906 mutex_exit(&mi->mi_lock); 907 } 908 909 if (!error) { 910 error = geterrno(ns.ns_status); 911 /* 912 * Can't check for stale fhandle and purge caches 913 * here because pages are held by nfs_getpage. 914 * Just mark the attribute cache as timed out 915 * and set RWRITEATTR to indicate that the file 916 * was modified with a WRITE operation. 917 */ 918 if (!error) { 919 count -= tsize; 920 base += tsize; 921 offset += tsize; 922 if (mi->mi_io_kstats) { 923 mutex_enter(&mi->mi_lock); 924 KSTAT_IO_PTR(mi->mi_io_kstats)-> 925 writes++; 926 KSTAT_IO_PTR(mi->mi_io_kstats)-> 927 nwritten += tsize; 928 mutex_exit(&mi->mi_lock); 929 } 930 lwp_stat_update(LWP_STAT_OUBLK, 1); 931 mutex_enter(&rp->r_statelock); 932 PURGE_ATTRCACHE_LOCKED(rp); 933 rp->r_flags |= RWRITEATTR; 934 mutex_exit(&rp->r_statelock); 935 } 936 } 937 } while (!error && count); 938 939 return (error); 940 } 941 942 /* 943 * Read from a file. Reads data in largest chunks our interface can handle. 944 */ 945 static int 946 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 947 int count, size_t *residp, cred_t *cr) 948 { 949 mntinfo_t *mi; 950 struct nfsreadargs ra; 951 struct nfsrdresult rr; 952 int tsize; 953 int error; 954 int douprintf; 955 failinfo_t fi; 956 rnode_t *rp; 957 struct vattr va; 958 hrtime_t t; 959 960 rp = VTOR(vp); 961 mi = VTOMI(vp); 962 963 ASSERT(nfs_zone() == mi->mi_zone); 964 965 douprintf = 1; 966 967 ra.ra_fhandle = *VTOFH(vp); 968 969 fi.vp = vp; 970 fi.fhp = (caddr_t)&ra.ra_fhandle; 971 fi.copyproc = nfscopyfh; 972 fi.lookupproc = nfslookup; 973 fi.xattrdirproc = acl_getxattrdir2; 974 975 do { 976 if (mi->mi_io_kstats) { 977 mutex_enter(&mi->mi_lock); 978 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 979 mutex_exit(&mi->mi_lock); 980 } 981 982 do { 983 tsize = MIN(mi->mi_curread, count); 984 rr.rr_data = base; 985 ra.ra_offset = offset; 986 ra.ra_totcount = tsize; 987 ra.ra_count = tsize; 988 ra.ra_data = base; 989 t = gethrtime(); 990 error = rfs2call(mi, RFS_READ, 991 xdr_readargs, (caddr_t)&ra, 992 xdr_rdresult, (caddr_t)&rr, cr, 993 &douprintf, &rr.rr_status, 0, &fi); 994 } while (error == ENFS_TRYAGAIN); 995 996 if (mi->mi_io_kstats) { 997 mutex_enter(&mi->mi_lock); 998 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 999 mutex_exit(&mi->mi_lock); 1000 } 1001 1002 if (!error) { 1003 error = geterrno(rr.rr_status); 1004 if (!error) { 1005 count -= rr.rr_count; 1006 base += rr.rr_count; 1007 offset += rr.rr_count; 1008 if (mi->mi_io_kstats) { 1009 mutex_enter(&mi->mi_lock); 1010 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1011 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 1012 rr.rr_count; 1013 mutex_exit(&mi->mi_lock); 1014 } 1015 lwp_stat_update(LWP_STAT_INBLK, 1); 1016 } 1017 } 1018 } while (!error && count && rr.rr_count == tsize); 1019 1020 *residp = count; 1021 1022 if (!error) { 1023 /* 1024 * Since no error occurred, we have the current 1025 * attributes and we need to do a cache check and then 1026 * potentially update the cached attributes. We can't 1027 * use the normal attribute check and cache mechanisms 1028 * because they might cause a cache flush which would 1029 * deadlock. Instead, we just check the cache to see 1030 * if the attributes have changed. If it is, then we 1031 * just mark the attributes as out of date. The next 1032 * time that the attributes are checked, they will be 1033 * out of date, new attributes will be fetched, and 1034 * the page cache will be flushed. If the attributes 1035 * weren't changed, then we just update the cached 1036 * attributes with these attributes. 1037 */ 1038 /* 1039 * If NFS_ACL is supported on the server, then the 1040 * attributes returned by server may have minimal 1041 * permissions sometimes denying access to users having 1042 * proper access. To get the proper attributes, mark 1043 * the attributes as expired so that they will be 1044 * regotten via the NFS_ACL GETATTR2 procedure. 1045 */ 1046 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1047 mutex_enter(&rp->r_statelock); 1048 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1049 (mi->mi_flags & MI_ACL)) { 1050 mutex_exit(&rp->r_statelock); 1051 PURGE_ATTRCACHE(vp); 1052 } else { 1053 if (rp->r_mtime <= t) { 1054 nfs_attrcache_va(vp, &va); 1055 } 1056 mutex_exit(&rp->r_statelock); 1057 } 1058 } 1059 1060 return (error); 1061 } 1062 1063 /* ARGSUSED */ 1064 static int 1065 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1066 caller_context_t *ct) 1067 { 1068 1069 if (nfs_zone() != VTOMI(vp)->mi_zone) 1070 return (EIO); 1071 switch (cmd) { 1072 case _FIODIRECTIO: 1073 return (nfs_directio(vp, (int)arg, cr)); 1074 default: 1075 return (ENOTTY); 1076 } 1077 } 1078 1079 /* ARGSUSED */ 1080 static int 1081 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1082 caller_context_t *ct) 1083 { 1084 int error; 1085 rnode_t *rp; 1086 1087 if (nfs_zone() != VTOMI(vp)->mi_zone) 1088 return (EIO); 1089 /* 1090 * If it has been specified that the return value will 1091 * just be used as a hint, and we are only being asked 1092 * for size, fsid or rdevid, then return the client's 1093 * notion of these values without checking to make sure 1094 * that the attribute cache is up to date. 1095 * The whole point is to avoid an over the wire GETATTR 1096 * call. 1097 */ 1098 rp = VTOR(vp); 1099 if (flags & ATTR_HINT) { 1100 if (vap->va_mask == 1101 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1102 mutex_enter(&rp->r_statelock); 1103 if (vap->va_mask | AT_SIZE) 1104 vap->va_size = rp->r_size; 1105 if (vap->va_mask | AT_FSID) 1106 vap->va_fsid = rp->r_attr.va_fsid; 1107 if (vap->va_mask | AT_RDEV) 1108 vap->va_rdev = rp->r_attr.va_rdev; 1109 mutex_exit(&rp->r_statelock); 1110 return (0); 1111 } 1112 } 1113 1114 /* 1115 * Only need to flush pages if asking for the mtime 1116 * and if there any dirty pages or any outstanding 1117 * asynchronous (write) requests for this file. 1118 */ 1119 if (vap->va_mask & AT_MTIME) { 1120 if (vn_has_cached_data(vp) && 1121 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1122 mutex_enter(&rp->r_statelock); 1123 rp->r_gcount++; 1124 mutex_exit(&rp->r_statelock); 1125 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1126 mutex_enter(&rp->r_statelock); 1127 if (error && (error == ENOSPC || error == EDQUOT)) { 1128 if (!rp->r_error) 1129 rp->r_error = error; 1130 } 1131 if (--rp->r_gcount == 0) 1132 cv_broadcast(&rp->r_cv); 1133 mutex_exit(&rp->r_statelock); 1134 } 1135 } 1136 1137 return (nfsgetattr(vp, vap, cr)); 1138 } 1139 1140 /*ARGSUSED4*/ 1141 static int 1142 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1143 caller_context_t *ct) 1144 { 1145 int error; 1146 uint_t mask; 1147 struct vattr va; 1148 1149 mask = vap->va_mask; 1150 1151 if (mask & AT_NOSET) 1152 return (EINVAL); 1153 1154 if ((mask & AT_SIZE) && 1155 vap->va_type == VREG && 1156 vap->va_size > MAXOFF32_T) 1157 return (EFBIG); 1158 1159 if (nfs_zone() != VTOMI(vp)->mi_zone) 1160 return (EIO); 1161 1162 va.va_mask = AT_UID | AT_MODE; 1163 1164 error = nfsgetattr(vp, &va, cr); 1165 if (error) 1166 return (error); 1167 1168 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1169 vp); 1170 1171 if (error) 1172 return (error); 1173 1174 error = nfssetattr(vp, vap, flags, cr); 1175 1176 if (error == 0 && (mask & AT_SIZE) && vap->va_size == 0) 1177 vnevent_truncate(vp, ct); 1178 1179 return (error); 1180 } 1181 1182 static int 1183 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1184 { 1185 int error; 1186 uint_t mask; 1187 struct nfssaargs args; 1188 struct nfsattrstat ns; 1189 int douprintf; 1190 rnode_t *rp; 1191 struct vattr va; 1192 mode_t omode; 1193 mntinfo_t *mi; 1194 vsecattr_t *vsp; 1195 hrtime_t t; 1196 1197 mask = vap->va_mask; 1198 1199 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1200 1201 rp = VTOR(vp); 1202 1203 /* 1204 * Only need to flush pages if there are any pages and 1205 * if the file is marked as dirty in some fashion. The 1206 * file must be flushed so that we can accurately 1207 * determine the size of the file and the cached data 1208 * after the SETATTR returns. A file is considered to 1209 * be dirty if it is either marked with RDIRTY, has 1210 * outstanding i/o's active, or is mmap'd. In this 1211 * last case, we can't tell whether there are dirty 1212 * pages, so we flush just to be sure. 1213 */ 1214 if (vn_has_cached_data(vp) && 1215 ((rp->r_flags & RDIRTY) || 1216 rp->r_count > 0 || 1217 rp->r_mapcnt > 0)) { 1218 ASSERT(vp->v_type != VCHR); 1219 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1220 if (error && (error == ENOSPC || error == EDQUOT)) { 1221 mutex_enter(&rp->r_statelock); 1222 if (!rp->r_error) 1223 rp->r_error = error; 1224 mutex_exit(&rp->r_statelock); 1225 } 1226 } 1227 1228 /* 1229 * If the system call was utime(2) or utimes(2) and the 1230 * application did not specify the times, then set the 1231 * mtime nanosecond field to 1 billion. This will get 1232 * translated from 1 billion nanoseconds to 1 million 1233 * microseconds in the over the wire request. The 1234 * server will use 1 million in the microsecond field 1235 * to tell whether both the mtime and atime should be 1236 * set to the server's current time. 1237 * 1238 * This is an overload of the protocol and should be 1239 * documented in the NFS Version 2 protocol specification. 1240 */ 1241 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1242 vap->va_mtime.tv_nsec = 1000000000; 1243 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1244 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1245 error = vattr_to_sattr(vap, &args.saa_sa); 1246 } else { 1247 /* 1248 * Use server times. vap time values will not be used. 1249 * To ensure no time overflow, make sure vap has 1250 * valid values, but retain the original values. 1251 */ 1252 timestruc_t mtime = vap->va_mtime; 1253 timestruc_t atime = vap->va_atime; 1254 time_t now; 1255 1256 now = gethrestime_sec(); 1257 if (NFS_TIME_T_OK(now)) { 1258 /* Just in case server does not know of this */ 1259 vap->va_mtime.tv_sec = now; 1260 vap->va_atime.tv_sec = now; 1261 } else { 1262 vap->va_mtime.tv_sec = 0; 1263 vap->va_atime.tv_sec = 0; 1264 } 1265 error = vattr_to_sattr(vap, &args.saa_sa); 1266 /* set vap times back on */ 1267 vap->va_mtime = mtime; 1268 vap->va_atime = atime; 1269 } 1270 } else { 1271 /* Either do not set times or use the client specified times */ 1272 error = vattr_to_sattr(vap, &args.saa_sa); 1273 } 1274 if (error) { 1275 /* req time field(s) overflow - return immediately */ 1276 return (error); 1277 } 1278 args.saa_fh = *VTOFH(vp); 1279 1280 va.va_mask = AT_MODE; 1281 error = nfsgetattr(vp, &va, cr); 1282 if (error) 1283 return (error); 1284 omode = va.va_mode; 1285 1286 mi = VTOMI(vp); 1287 1288 douprintf = 1; 1289 1290 t = gethrtime(); 1291 1292 error = rfs2call(mi, RFS_SETATTR, 1293 xdr_saargs, (caddr_t)&args, 1294 xdr_attrstat, (caddr_t)&ns, cr, 1295 &douprintf, &ns.ns_status, 0, NULL); 1296 1297 /* 1298 * Purge the access cache and ACL cache if changing either the 1299 * owner of the file, the group owner, or the mode. These may 1300 * change the access permissions of the file, so purge old 1301 * information and start over again. 1302 */ 1303 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1304 (void) nfs_access_purge_rp(rp); 1305 if (rp->r_secattr != NULL) { 1306 mutex_enter(&rp->r_statelock); 1307 vsp = rp->r_secattr; 1308 rp->r_secattr = NULL; 1309 mutex_exit(&rp->r_statelock); 1310 if (vsp != NULL) 1311 nfs_acl_free(vsp); 1312 } 1313 } 1314 1315 if (!error) { 1316 error = geterrno(ns.ns_status); 1317 if (!error) { 1318 /* 1319 * If changing the size of the file, invalidate 1320 * any local cached data which is no longer part 1321 * of the file. We also possibly invalidate the 1322 * last page in the file. We could use 1323 * pvn_vpzero(), but this would mark the page as 1324 * modified and require it to be written back to 1325 * the server for no particularly good reason. 1326 * This way, if we access it, then we bring it 1327 * back in. A read should be cheaper than a 1328 * write. 1329 */ 1330 if (mask & AT_SIZE) { 1331 nfs_invalidate_pages(vp, 1332 (vap->va_size & PAGEMASK), cr); 1333 } 1334 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1335 /* 1336 * If NFS_ACL is supported on the server, then the 1337 * attributes returned by server may have minimal 1338 * permissions sometimes denying access to users having 1339 * proper access. To get the proper attributes, mark 1340 * the attributes as expired so that they will be 1341 * regotten via the NFS_ACL GETATTR2 procedure. 1342 */ 1343 if (mi->mi_flags & MI_ACL) { 1344 PURGE_ATTRCACHE(vp); 1345 } 1346 /* 1347 * This next check attempts to deal with NFS 1348 * servers which can not handle increasing 1349 * the size of the file via setattr. Most 1350 * of these servers do not return an error, 1351 * but do not change the size of the file. 1352 * Hence, this check and then attempt to set 1353 * the file size by writing 1 byte at the 1354 * offset of the end of the file that we need. 1355 */ 1356 if ((mask & AT_SIZE) && 1357 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1358 char zb = '\0'; 1359 1360 error = nfswrite(vp, &zb, 1361 vap->va_size - sizeof (zb), 1362 sizeof (zb), cr); 1363 } 1364 /* 1365 * Some servers will change the mode to clear the setuid 1366 * and setgid bits when changing the uid or gid. The 1367 * client needs to compensate appropriately. 1368 */ 1369 if (mask & (AT_UID | AT_GID)) { 1370 int terror; 1371 1372 va.va_mask = AT_MODE; 1373 terror = nfsgetattr(vp, &va, cr); 1374 if (!terror && 1375 (((mask & AT_MODE) && 1376 va.va_mode != vap->va_mode) || 1377 (!(mask & AT_MODE) && 1378 va.va_mode != omode))) { 1379 va.va_mask = AT_MODE; 1380 if (mask & AT_MODE) 1381 va.va_mode = vap->va_mode; 1382 else 1383 va.va_mode = omode; 1384 (void) nfssetattr(vp, &va, 0, cr); 1385 } 1386 } 1387 } else { 1388 PURGE_ATTRCACHE(vp); 1389 PURGE_STALE_FH(error, vp, cr); 1390 } 1391 } else { 1392 PURGE_ATTRCACHE(vp); 1393 } 1394 1395 return (error); 1396 } 1397 1398 static int 1399 nfs_accessx(void *vp, int mode, cred_t *cr) 1400 { 1401 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1402 return (nfs_access(vp, mode, 0, cr, NULL)); 1403 } 1404 1405 /* ARGSUSED */ 1406 static int 1407 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1408 { 1409 struct vattr va; 1410 int error; 1411 mntinfo_t *mi; 1412 int shift = 0; 1413 1414 mi = VTOMI(vp); 1415 1416 if (nfs_zone() != mi->mi_zone) 1417 return (EIO); 1418 if (mi->mi_flags & MI_ACL) { 1419 error = acl_access2(vp, mode, flags, cr); 1420 if (mi->mi_flags & MI_ACL) 1421 return (error); 1422 } 1423 1424 va.va_mask = AT_MODE | AT_UID | AT_GID; 1425 error = nfsgetattr(vp, &va, cr); 1426 if (error) 1427 return (error); 1428 1429 /* 1430 * Disallow write attempts on read-only 1431 * file systems, unless the file is a 1432 * device node. 1433 */ 1434 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1435 return (EROFS); 1436 1437 /* 1438 * Disallow attempts to access mandatory lock files. 1439 */ 1440 if ((mode & (VWRITE | VREAD | VEXEC)) && 1441 MANDLOCK(vp, va.va_mode)) 1442 return (EACCES); 1443 1444 /* 1445 * Access check is based on only 1446 * one of owner, group, public. 1447 * If not owner, then check group. 1448 * If not a member of the group, 1449 * then check public access. 1450 */ 1451 if (crgetuid(cr) != va.va_uid) { 1452 shift += 3; 1453 if (!groupmember(va.va_gid, cr)) 1454 shift += 3; 1455 } 1456 1457 return (secpolicy_vnode_access2(cr, vp, va.va_uid, 1458 va.va_mode << shift, mode)); 1459 } 1460 1461 static int nfs_do_symlink_cache = 1; 1462 1463 /* ARGSUSED */ 1464 static int 1465 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1466 { 1467 int error; 1468 struct nfsrdlnres rl; 1469 rnode_t *rp; 1470 int douprintf; 1471 failinfo_t fi; 1472 1473 /* 1474 * We want to be consistent with UFS semantics so we will return 1475 * EINVAL instead of ENXIO. This violates the XNFS spec and 1476 * the RFC 1094, which are wrong any way. BUGID 1138002. 1477 */ 1478 if (vp->v_type != VLNK) 1479 return (EINVAL); 1480 1481 if (nfs_zone() != VTOMI(vp)->mi_zone) 1482 return (EIO); 1483 1484 rp = VTOR(vp); 1485 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1486 error = nfs_validate_caches(vp, cr); 1487 if (error) 1488 return (error); 1489 mutex_enter(&rp->r_statelock); 1490 if (rp->r_symlink.contents != NULL) { 1491 error = uiomove(rp->r_symlink.contents, 1492 rp->r_symlink.len, UIO_READ, uiop); 1493 mutex_exit(&rp->r_statelock); 1494 return (error); 1495 } 1496 mutex_exit(&rp->r_statelock); 1497 } 1498 1499 1500 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1501 1502 fi.vp = vp; 1503 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1504 fi.copyproc = nfscopyfh; 1505 fi.lookupproc = nfslookup; 1506 fi.xattrdirproc = acl_getxattrdir2; 1507 1508 douprintf = 1; 1509 1510 error = rfs2call(VTOMI(vp), RFS_READLINK, 1511 xdr_readlink, (caddr_t)VTOFH(vp), 1512 xdr_rdlnres, (caddr_t)&rl, cr, 1513 &douprintf, &rl.rl_status, 0, &fi); 1514 1515 if (error) { 1516 1517 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1518 return (error); 1519 } 1520 1521 error = geterrno(rl.rl_status); 1522 if (!error) { 1523 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1524 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1525 mutex_enter(&rp->r_statelock); 1526 if (rp->r_symlink.contents == NULL) { 1527 rp->r_symlink.contents = rl.rl_data; 1528 rp->r_symlink.len = (int)rl.rl_count; 1529 rp->r_symlink.size = NFS_MAXPATHLEN; 1530 mutex_exit(&rp->r_statelock); 1531 } else { 1532 mutex_exit(&rp->r_statelock); 1533 1534 kmem_free((void *)rl.rl_data, 1535 NFS_MAXPATHLEN); 1536 } 1537 } else { 1538 1539 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1540 } 1541 } else { 1542 PURGE_STALE_FH(error, vp, cr); 1543 1544 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1545 } 1546 1547 /* 1548 * Conform to UFS semantics (see comment above) 1549 */ 1550 return (error == ENXIO ? EINVAL : error); 1551 } 1552 1553 /* 1554 * Flush local dirty pages to stable storage on the server. 1555 * 1556 * If FNODSYNC is specified, then there is nothing to do because 1557 * metadata changes are not cached on the client before being 1558 * sent to the server. 1559 */ 1560 /* ARGSUSED */ 1561 static int 1562 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1563 { 1564 int error; 1565 1566 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1567 return (0); 1568 1569 if (nfs_zone() != VTOMI(vp)->mi_zone) 1570 return (EIO); 1571 1572 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1573 if (!error) 1574 error = VTOR(vp)->r_error; 1575 return (error); 1576 } 1577 1578 1579 /* 1580 * Weirdness: if the file was removed or the target of a rename 1581 * operation while it was open, it got renamed instead. Here we 1582 * remove the renamed file. 1583 */ 1584 /* ARGSUSED */ 1585 static void 1586 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1587 { 1588 rnode_t *rp; 1589 1590 ASSERT(vp != DNLC_NO_VNODE); 1591 1592 /* 1593 * If this is coming from the wrong zone, we let someone in the right 1594 * zone take care of it asynchronously. We can get here due to 1595 * VN_RELE() being called from pageout() or fsflush(). This call may 1596 * potentially turn into an expensive no-op if, for instance, v_count 1597 * gets incremented in the meantime, but it's still correct. 1598 */ 1599 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1600 nfs_async_inactive(vp, cr, nfs_inactive); 1601 return; 1602 } 1603 1604 rp = VTOR(vp); 1605 redo: 1606 if (rp->r_unldvp != NULL) { 1607 /* 1608 * Save the vnode pointer for the directory where the 1609 * unlinked-open file got renamed, then set it to NULL 1610 * to prevent another thread from getting here before 1611 * we're done with the remove. While we have the 1612 * statelock, make local copies of the pertinent rnode 1613 * fields. If we weren't to do this in an atomic way, the 1614 * the unl* fields could become inconsistent with respect 1615 * to each other due to a race condition between this 1616 * code and nfs_remove(). See bug report 1034328. 1617 */ 1618 mutex_enter(&rp->r_statelock); 1619 if (rp->r_unldvp != NULL) { 1620 vnode_t *unldvp; 1621 char *unlname; 1622 cred_t *unlcred; 1623 struct nfsdiropargs da; 1624 enum nfsstat status; 1625 int douprintf; 1626 int error; 1627 1628 unldvp = rp->r_unldvp; 1629 rp->r_unldvp = NULL; 1630 unlname = rp->r_unlname; 1631 rp->r_unlname = NULL; 1632 unlcred = rp->r_unlcred; 1633 rp->r_unlcred = NULL; 1634 mutex_exit(&rp->r_statelock); 1635 1636 /* 1637 * If there are any dirty pages left, then flush 1638 * them. This is unfortunate because they just 1639 * may get thrown away during the remove operation, 1640 * but we have to do this for correctness. 1641 */ 1642 if (vn_has_cached_data(vp) && 1643 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1644 ASSERT(vp->v_type != VCHR); 1645 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1646 cr, ct); 1647 if (error) { 1648 mutex_enter(&rp->r_statelock); 1649 if (!rp->r_error) 1650 rp->r_error = error; 1651 mutex_exit(&rp->r_statelock); 1652 } 1653 } 1654 1655 /* 1656 * Do the remove operation on the renamed file 1657 */ 1658 setdiropargs(&da, unlname, unldvp); 1659 1660 douprintf = 1; 1661 1662 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1663 xdr_diropargs, (caddr_t)&da, 1664 xdr_enum, (caddr_t)&status, unlcred, 1665 &douprintf, &status, 0, NULL); 1666 1667 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1668 nfs_purge_rddir_cache(unldvp); 1669 PURGE_ATTRCACHE(unldvp); 1670 1671 /* 1672 * Release stuff held for the remove 1673 */ 1674 VN_RELE(unldvp); 1675 kmem_free(unlname, MAXNAMELEN); 1676 crfree(unlcred); 1677 goto redo; 1678 } 1679 mutex_exit(&rp->r_statelock); 1680 } 1681 1682 rp_addfree(rp, cr); 1683 } 1684 1685 /* 1686 * Remote file system operations having to do with directory manipulation. 1687 */ 1688 1689 /* ARGSUSED */ 1690 static int 1691 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1692 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1693 int *direntflags, pathname_t *realpnp) 1694 { 1695 int error; 1696 vnode_t *vp; 1697 vnode_t *avp = NULL; 1698 rnode_t *drp; 1699 1700 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1701 return (EPERM); 1702 1703 drp = VTOR(dvp); 1704 1705 /* 1706 * Are we looking up extended attributes? If so, "dvp" is 1707 * the file or directory for which we want attributes, and 1708 * we need a lookup of the hidden attribute directory 1709 * before we lookup the rest of the path. 1710 */ 1711 if (flags & LOOKUP_XATTR) { 1712 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1713 mntinfo_t *mi; 1714 1715 mi = VTOMI(dvp); 1716 if (!(mi->mi_flags & MI_EXTATTR)) 1717 return (EINVAL); 1718 1719 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1720 return (EINTR); 1721 1722 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1723 if (avp == NULL) 1724 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1725 else 1726 error = 0; 1727 1728 nfs_rw_exit(&drp->r_rwlock); 1729 1730 if (error) { 1731 if (mi->mi_flags & MI_EXTATTR) 1732 return (error); 1733 return (EINVAL); 1734 } 1735 dvp = avp; 1736 drp = VTOR(dvp); 1737 } 1738 1739 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1740 error = EINTR; 1741 goto out; 1742 } 1743 1744 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1745 1746 nfs_rw_exit(&drp->r_rwlock); 1747 1748 /* 1749 * If vnode is a device, create special vnode. 1750 */ 1751 if (!error && IS_DEVVP(*vpp)) { 1752 vp = *vpp; 1753 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1754 VN_RELE(vp); 1755 } 1756 1757 out: 1758 if (avp != NULL) 1759 VN_RELE(avp); 1760 1761 return (error); 1762 } 1763 1764 static int nfs_lookup_neg_cache = 1; 1765 1766 #ifdef DEBUG 1767 static int nfs_lookup_dnlc_hits = 0; 1768 static int nfs_lookup_dnlc_misses = 0; 1769 static int nfs_lookup_dnlc_neg_hits = 0; 1770 static int nfs_lookup_dnlc_disappears = 0; 1771 static int nfs_lookup_dnlc_lookups = 0; 1772 #endif 1773 1774 /* ARGSUSED */ 1775 int 1776 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1777 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1778 { 1779 int error; 1780 1781 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1782 1783 /* 1784 * If lookup is for "", just return dvp. Don't need 1785 * to send it over the wire, look it up in the dnlc, 1786 * or perform any access checks. 1787 */ 1788 if (*nm == '\0') { 1789 VN_HOLD(dvp); 1790 *vpp = dvp; 1791 return (0); 1792 } 1793 1794 /* 1795 * Can't do lookups in non-directories. 1796 */ 1797 if (dvp->v_type != VDIR) 1798 return (ENOTDIR); 1799 1800 /* 1801 * If we're called with RFSCALL_SOFT, it's important that 1802 * the only rfscall is one we make directly; if we permit 1803 * an access call because we're looking up "." or validating 1804 * a dnlc hit, we'll deadlock because that rfscall will not 1805 * have the RFSCALL_SOFT set. 1806 */ 1807 if (rfscall_flags & RFSCALL_SOFT) 1808 goto callit; 1809 1810 /* 1811 * If lookup is for ".", just return dvp. Don't need 1812 * to send it over the wire or look it up in the dnlc, 1813 * just need to check access. 1814 */ 1815 if (strcmp(nm, ".") == 0) { 1816 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1817 if (error) 1818 return (error); 1819 VN_HOLD(dvp); 1820 *vpp = dvp; 1821 return (0); 1822 } 1823 1824 /* 1825 * Lookup this name in the DNLC. If there was a valid entry, 1826 * then return the results of the lookup. 1827 */ 1828 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1829 if (error || *vpp != NULL) 1830 return (error); 1831 1832 callit: 1833 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1834 1835 return (error); 1836 } 1837 1838 static int 1839 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1840 { 1841 int error; 1842 vnode_t *vp; 1843 1844 ASSERT(*nm != '\0'); 1845 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1846 1847 /* 1848 * Lookup this name in the DNLC. If successful, then validate 1849 * the caches and then recheck the DNLC. The DNLC is rechecked 1850 * just in case this entry got invalidated during the call 1851 * to nfs_validate_caches. 1852 * 1853 * An assumption is being made that it is safe to say that a 1854 * file exists which may not on the server. Any operations to 1855 * the server will fail with ESTALE. 1856 */ 1857 #ifdef DEBUG 1858 nfs_lookup_dnlc_lookups++; 1859 #endif 1860 vp = dnlc_lookup(dvp, nm); 1861 if (vp != NULL) { 1862 VN_RELE(vp); 1863 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1864 PURGE_ATTRCACHE(dvp); 1865 } 1866 error = nfs_validate_caches(dvp, cr); 1867 if (error) 1868 return (error); 1869 vp = dnlc_lookup(dvp, nm); 1870 if (vp != NULL) { 1871 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1872 if (error) { 1873 VN_RELE(vp); 1874 return (error); 1875 } 1876 if (vp == DNLC_NO_VNODE) { 1877 VN_RELE(vp); 1878 #ifdef DEBUG 1879 nfs_lookup_dnlc_neg_hits++; 1880 #endif 1881 return (ENOENT); 1882 } 1883 *vpp = vp; 1884 #ifdef DEBUG 1885 nfs_lookup_dnlc_hits++; 1886 #endif 1887 return (0); 1888 } 1889 #ifdef DEBUG 1890 nfs_lookup_dnlc_disappears++; 1891 #endif 1892 } 1893 #ifdef DEBUG 1894 else 1895 nfs_lookup_dnlc_misses++; 1896 #endif 1897 1898 *vpp = NULL; 1899 1900 return (0); 1901 } 1902 1903 static int 1904 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1905 int rfscall_flags) 1906 { 1907 int error; 1908 struct nfsdiropargs da; 1909 struct nfsdiropres dr; 1910 int douprintf; 1911 failinfo_t fi; 1912 hrtime_t t; 1913 1914 ASSERT(*nm != '\0'); 1915 ASSERT(dvp->v_type == VDIR); 1916 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1917 1918 setdiropargs(&da, nm, dvp); 1919 1920 fi.vp = dvp; 1921 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1922 fi.copyproc = nfscopyfh; 1923 fi.lookupproc = nfslookup; 1924 fi.xattrdirproc = acl_getxattrdir2; 1925 1926 douprintf = 1; 1927 1928 t = gethrtime(); 1929 1930 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1931 xdr_diropargs, (caddr_t)&da, 1932 xdr_diropres, (caddr_t)&dr, cr, 1933 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1934 1935 if (!error) { 1936 error = geterrno(dr.dr_status); 1937 if (!error) { 1938 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1939 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1940 /* 1941 * If NFS_ACL is supported on the server, then the 1942 * attributes returned by server may have minimal 1943 * permissions sometimes denying access to users having 1944 * proper access. To get the proper attributes, mark 1945 * the attributes as expired so that they will be 1946 * regotten via the NFS_ACL GETATTR2 procedure. 1947 */ 1948 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1949 PURGE_ATTRCACHE(*vpp); 1950 } 1951 if (!(rfscall_flags & RFSCALL_SOFT)) 1952 dnlc_update(dvp, nm, *vpp); 1953 } else { 1954 PURGE_STALE_FH(error, dvp, cr); 1955 if (error == ENOENT && nfs_lookup_neg_cache) 1956 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1957 } 1958 } 1959 1960 return (error); 1961 } 1962 1963 /* ARGSUSED */ 1964 static int 1965 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1966 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1967 vsecattr_t *vsecp) 1968 { 1969 int error; 1970 struct nfscreatargs args; 1971 struct nfsdiropres dr; 1972 int douprintf; 1973 vnode_t *vp; 1974 rnode_t *rp; 1975 struct vattr vattr; 1976 rnode_t *drp; 1977 vnode_t *tempvp; 1978 hrtime_t t; 1979 1980 drp = VTOR(dvp); 1981 1982 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1983 return (EPERM); 1984 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1985 return (EINTR); 1986 1987 /* 1988 * We make a copy of the attributes because the caller does not 1989 * expect us to change what va points to. 1990 */ 1991 vattr = *va; 1992 1993 /* 1994 * If the pathname is "", just use dvp. Don't need 1995 * to send it over the wire, look it up in the dnlc, 1996 * or perform any access checks. 1997 */ 1998 if (*nm == '\0') { 1999 error = 0; 2000 VN_HOLD(dvp); 2001 vp = dvp; 2002 /* 2003 * If the pathname is ".", just use dvp. Don't need 2004 * to send it over the wire or look it up in the dnlc, 2005 * just need to check access. 2006 */ 2007 } else if (strcmp(nm, ".") == 0) { 2008 error = nfs_access(dvp, VEXEC, 0, cr, ct); 2009 if (error) { 2010 nfs_rw_exit(&drp->r_rwlock); 2011 return (error); 2012 } 2013 VN_HOLD(dvp); 2014 vp = dvp; 2015 /* 2016 * We need to go over the wire, just to be sure whether the 2017 * file exists or not. Using the DNLC can be dangerous in 2018 * this case when making a decision regarding existence. 2019 */ 2020 } else { 2021 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 2022 } 2023 if (!error) { 2024 if (exclusive == EXCL) 2025 error = EEXIST; 2026 else if (vp->v_type == VDIR && (mode & VWRITE)) 2027 error = EISDIR; 2028 else { 2029 /* 2030 * If vnode is a device, create special vnode. 2031 */ 2032 if (IS_DEVVP(vp)) { 2033 tempvp = vp; 2034 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2035 VN_RELE(tempvp); 2036 } 2037 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2038 if ((vattr.va_mask & AT_SIZE) && 2039 vp->v_type == VREG) { 2040 vattr.va_mask = AT_SIZE; 2041 error = nfssetattr(vp, &vattr, 0, cr); 2042 2043 if (!error) { 2044 /* 2045 * Existing file was truncated; 2046 * emit a create event. 2047 */ 2048 vnevent_create(vp, ct); 2049 } 2050 } 2051 } 2052 } 2053 nfs_rw_exit(&drp->r_rwlock); 2054 if (error) { 2055 VN_RELE(vp); 2056 } else { 2057 *vpp = vp; 2058 } 2059 return (error); 2060 } 2061 2062 ASSERT(vattr.va_mask & AT_TYPE); 2063 if (vattr.va_type == VREG) { 2064 ASSERT(vattr.va_mask & AT_MODE); 2065 if (MANDMODE(vattr.va_mode)) { 2066 nfs_rw_exit(&drp->r_rwlock); 2067 return (EACCES); 2068 } 2069 } 2070 2071 dnlc_remove(dvp, nm); 2072 2073 setdiropargs(&args.ca_da, nm, dvp); 2074 2075 /* 2076 * Decide what the group-id of the created file should be. 2077 * Set it in attribute list as advisory...then do a setattr 2078 * if the server didn't get it right the first time. 2079 */ 2080 error = setdirgid(dvp, &vattr.va_gid, cr); 2081 if (error) { 2082 nfs_rw_exit(&drp->r_rwlock); 2083 return (error); 2084 } 2085 vattr.va_mask |= AT_GID; 2086 2087 /* 2088 * This is a completely gross hack to make mknod 2089 * work over the wire until we can wack the protocol 2090 */ 2091 #define IFCHR 0020000 /* character special */ 2092 #define IFBLK 0060000 /* block special */ 2093 #define IFSOCK 0140000 /* socket */ 2094 2095 /* 2096 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2097 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2098 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2099 * minor/major numbers <= 8 bits long, compress the device 2100 * number before sending it. Otherwise, the 4.x server will not 2101 * create the device with the correct device number and nothing can be 2102 * done about this. 2103 */ 2104 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2105 dev_t d = vattr.va_rdev; 2106 dev32_t dev32; 2107 2108 if (vattr.va_type == VCHR) 2109 vattr.va_mode |= IFCHR; 2110 else 2111 vattr.va_mode |= IFBLK; 2112 2113 (void) cmpldev(&dev32, d); 2114 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2115 vattr.va_size = (u_offset_t)dev32; 2116 else 2117 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2118 2119 vattr.va_mask |= AT_MODE|AT_SIZE; 2120 } else if (vattr.va_type == VFIFO) { 2121 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2122 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2123 vattr.va_mask |= AT_MODE|AT_SIZE; 2124 } else if (vattr.va_type == VSOCK) { 2125 vattr.va_mode |= IFSOCK; 2126 /* 2127 * To avoid triggering bugs in the servers set AT_SIZE 2128 * (all other RFS_CREATE calls set this). 2129 */ 2130 vattr.va_size = 0; 2131 vattr.va_mask |= AT_MODE|AT_SIZE; 2132 } 2133 2134 args.ca_sa = &args.ca_sa_buf; 2135 error = vattr_to_sattr(&vattr, args.ca_sa); 2136 if (error) { 2137 /* req time field(s) overflow - return immediately */ 2138 nfs_rw_exit(&drp->r_rwlock); 2139 return (error); 2140 } 2141 2142 douprintf = 1; 2143 2144 t = gethrtime(); 2145 2146 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2147 xdr_creatargs, (caddr_t)&args, 2148 xdr_diropres, (caddr_t)&dr, cr, 2149 &douprintf, &dr.dr_status, 0, NULL); 2150 2151 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2152 2153 if (!error) { 2154 error = geterrno(dr.dr_status); 2155 if (!error) { 2156 if (HAVE_RDDIR_CACHE(drp)) 2157 nfs_purge_rddir_cache(dvp); 2158 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2159 dvp->v_vfsp, t, cr, NULL, NULL); 2160 /* 2161 * If NFS_ACL is supported on the server, then the 2162 * attributes returned by server may have minimal 2163 * permissions sometimes denying access to users having 2164 * proper access. To get the proper attributes, mark 2165 * the attributes as expired so that they will be 2166 * regotten via the NFS_ACL GETATTR2 procedure. 2167 */ 2168 if (VTOMI(vp)->mi_flags & MI_ACL) { 2169 PURGE_ATTRCACHE(vp); 2170 } 2171 dnlc_update(dvp, nm, vp); 2172 rp = VTOR(vp); 2173 if (vattr.va_size == 0) { 2174 mutex_enter(&rp->r_statelock); 2175 rp->r_size = 0; 2176 mutex_exit(&rp->r_statelock); 2177 if (vn_has_cached_data(vp)) { 2178 ASSERT(vp->v_type != VCHR); 2179 nfs_invalidate_pages(vp, 2180 (u_offset_t)0, cr); 2181 } 2182 } 2183 2184 /* 2185 * Make sure the gid was set correctly. 2186 * If not, try to set it (but don't lose 2187 * any sleep over it). 2188 */ 2189 if (vattr.va_gid != rp->r_attr.va_gid) { 2190 vattr.va_mask = AT_GID; 2191 (void) nfssetattr(vp, &vattr, 0, cr); 2192 } 2193 2194 /* 2195 * If vnode is a device create special vnode 2196 */ 2197 if (IS_DEVVP(vp)) { 2198 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2199 VN_RELE(vp); 2200 } else 2201 *vpp = vp; 2202 } else { 2203 PURGE_STALE_FH(error, dvp, cr); 2204 } 2205 } 2206 2207 nfs_rw_exit(&drp->r_rwlock); 2208 2209 return (error); 2210 } 2211 2212 /* 2213 * Weirdness: if the vnode to be removed is open 2214 * we rename it instead of removing it and nfs_inactive 2215 * will remove the new name. 2216 */ 2217 /* ARGSUSED */ 2218 static int 2219 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2220 { 2221 int error; 2222 struct nfsdiropargs da; 2223 enum nfsstat status; 2224 vnode_t *vp; 2225 char *tmpname; 2226 int douprintf; 2227 rnode_t *rp; 2228 rnode_t *drp; 2229 2230 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2231 return (EPERM); 2232 drp = VTOR(dvp); 2233 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2234 return (EINTR); 2235 2236 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2237 if (error) { 2238 nfs_rw_exit(&drp->r_rwlock); 2239 return (error); 2240 } 2241 2242 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2243 VN_RELE(vp); 2244 nfs_rw_exit(&drp->r_rwlock); 2245 return (EPERM); 2246 } 2247 2248 /* 2249 * First just remove the entry from the name cache, as it 2250 * is most likely the only entry for this vp. 2251 */ 2252 dnlc_remove(dvp, nm); 2253 2254 /* 2255 * If the file has a v_count > 1 then there may be more than one 2256 * entry in the name cache due multiple links or an open file, 2257 * but we don't have the real reference count so flush all 2258 * possible entries. 2259 */ 2260 if (vp->v_count > 1) 2261 dnlc_purge_vp(vp); 2262 2263 /* 2264 * Now we have the real reference count on the vnode 2265 */ 2266 rp = VTOR(vp); 2267 mutex_enter(&rp->r_statelock); 2268 if (vp->v_count > 1 && 2269 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2270 mutex_exit(&rp->r_statelock); 2271 tmpname = newname(); 2272 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2273 if (error) 2274 kmem_free(tmpname, MAXNAMELEN); 2275 else { 2276 mutex_enter(&rp->r_statelock); 2277 if (rp->r_unldvp == NULL) { 2278 VN_HOLD(dvp); 2279 rp->r_unldvp = dvp; 2280 if (rp->r_unlcred != NULL) 2281 crfree(rp->r_unlcred); 2282 crhold(cr); 2283 rp->r_unlcred = cr; 2284 rp->r_unlname = tmpname; 2285 } else { 2286 kmem_free(rp->r_unlname, MAXNAMELEN); 2287 rp->r_unlname = tmpname; 2288 } 2289 mutex_exit(&rp->r_statelock); 2290 } 2291 } else { 2292 mutex_exit(&rp->r_statelock); 2293 /* 2294 * We need to flush any dirty pages which happen to 2295 * be hanging around before removing the file. This 2296 * shouldn't happen very often and mostly on file 2297 * systems mounted "nocto". 2298 */ 2299 if (vn_has_cached_data(vp) && 2300 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2301 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2302 if (error && (error == ENOSPC || error == EDQUOT)) { 2303 mutex_enter(&rp->r_statelock); 2304 if (!rp->r_error) 2305 rp->r_error = error; 2306 mutex_exit(&rp->r_statelock); 2307 } 2308 } 2309 2310 setdiropargs(&da, nm, dvp); 2311 2312 douprintf = 1; 2313 2314 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2315 xdr_diropargs, (caddr_t)&da, 2316 xdr_enum, (caddr_t)&status, cr, 2317 &douprintf, &status, 0, NULL); 2318 2319 /* 2320 * The xattr dir may be gone after last attr is removed, 2321 * so flush it from dnlc. 2322 */ 2323 if (dvp->v_flag & V_XATTRDIR) 2324 dnlc_purge_vp(dvp); 2325 2326 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2327 PURGE_ATTRCACHE(vp); /* link count changed */ 2328 2329 if (!error) { 2330 error = geterrno(status); 2331 if (!error) { 2332 if (HAVE_RDDIR_CACHE(drp)) 2333 nfs_purge_rddir_cache(dvp); 2334 } else { 2335 PURGE_STALE_FH(error, dvp, cr); 2336 } 2337 } 2338 } 2339 2340 if (error == 0) { 2341 vnevent_remove(vp, dvp, nm, ct); 2342 } 2343 VN_RELE(vp); 2344 2345 nfs_rw_exit(&drp->r_rwlock); 2346 2347 return (error); 2348 } 2349 2350 /* ARGSUSED */ 2351 static int 2352 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2353 caller_context_t *ct, int flags) 2354 { 2355 int error; 2356 struct nfslinkargs args; 2357 enum nfsstat status; 2358 vnode_t *realvp; 2359 int douprintf; 2360 rnode_t *tdrp; 2361 2362 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2363 return (EPERM); 2364 if (VOP_REALVP(svp, &realvp, ct) == 0) 2365 svp = realvp; 2366 2367 args.la_from = VTOFH(svp); 2368 setdiropargs(&args.la_to, tnm, tdvp); 2369 2370 tdrp = VTOR(tdvp); 2371 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2372 return (EINTR); 2373 2374 dnlc_remove(tdvp, tnm); 2375 2376 douprintf = 1; 2377 2378 error = rfs2call(VTOMI(svp), RFS_LINK, 2379 xdr_linkargs, (caddr_t)&args, 2380 xdr_enum, (caddr_t)&status, cr, 2381 &douprintf, &status, 0, NULL); 2382 2383 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2384 PURGE_ATTRCACHE(svp); /* link count changed */ 2385 2386 if (!error) { 2387 error = geterrno(status); 2388 if (!error) { 2389 if (HAVE_RDDIR_CACHE(tdrp)) 2390 nfs_purge_rddir_cache(tdvp); 2391 } 2392 } 2393 2394 nfs_rw_exit(&tdrp->r_rwlock); 2395 2396 if (!error) { 2397 /* 2398 * Notify the source file of this link operation. 2399 */ 2400 vnevent_link(svp, ct); 2401 } 2402 return (error); 2403 } 2404 2405 /* ARGSUSED */ 2406 static int 2407 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2408 caller_context_t *ct, int flags) 2409 { 2410 vnode_t *realvp; 2411 2412 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2413 return (EPERM); 2414 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2415 ndvp = realvp; 2416 2417 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2418 } 2419 2420 /* 2421 * nfsrename does the real work of renaming in NFS Version 2. 2422 */ 2423 static int 2424 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2425 caller_context_t *ct) 2426 { 2427 int error; 2428 enum nfsstat status; 2429 struct nfsrnmargs args; 2430 int douprintf; 2431 vnode_t *nvp = NULL; 2432 vnode_t *ovp = NULL; 2433 char *tmpname; 2434 rnode_t *rp; 2435 rnode_t *odrp; 2436 rnode_t *ndrp; 2437 2438 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2439 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2440 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2441 return (EINVAL); 2442 2443 odrp = VTOR(odvp); 2444 ndrp = VTOR(ndvp); 2445 if ((intptr_t)odrp < (intptr_t)ndrp) { 2446 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2447 return (EINTR); 2448 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2449 nfs_rw_exit(&odrp->r_rwlock); 2450 return (EINTR); 2451 } 2452 } else { 2453 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2454 return (EINTR); 2455 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2456 nfs_rw_exit(&ndrp->r_rwlock); 2457 return (EINTR); 2458 } 2459 } 2460 2461 /* 2462 * Lookup the target file. If it exists, it needs to be 2463 * checked to see whether it is a mount point and whether 2464 * it is active (open). 2465 */ 2466 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2467 if (!error) { 2468 /* 2469 * If this file has been mounted on, then just 2470 * return busy because renaming to it would remove 2471 * the mounted file system from the name space. 2472 */ 2473 if (vn_mountedvfs(nvp) != NULL) { 2474 VN_RELE(nvp); 2475 nfs_rw_exit(&odrp->r_rwlock); 2476 nfs_rw_exit(&ndrp->r_rwlock); 2477 return (EBUSY); 2478 } 2479 2480 /* 2481 * Purge the name cache of all references to this vnode 2482 * so that we can check the reference count to infer 2483 * whether it is active or not. 2484 */ 2485 /* 2486 * First just remove the entry from the name cache, as it 2487 * is most likely the only entry for this vp. 2488 */ 2489 dnlc_remove(ndvp, nnm); 2490 /* 2491 * If the file has a v_count > 1 then there may be more 2492 * than one entry in the name cache due multiple links 2493 * or an open file, but we don't have the real reference 2494 * count so flush all possible entries. 2495 */ 2496 if (nvp->v_count > 1) 2497 dnlc_purge_vp(nvp); 2498 2499 /* 2500 * If the vnode is active and is not a directory, 2501 * arrange to rename it to a 2502 * temporary file so that it will continue to be 2503 * accessible. This implements the "unlink-open-file" 2504 * semantics for the target of a rename operation. 2505 * Before doing this though, make sure that the 2506 * source and target files are not already the same. 2507 */ 2508 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2509 /* 2510 * Lookup the source name. 2511 */ 2512 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2513 cr, 0); 2514 2515 /* 2516 * The source name *should* already exist. 2517 */ 2518 if (error) { 2519 VN_RELE(nvp); 2520 nfs_rw_exit(&odrp->r_rwlock); 2521 nfs_rw_exit(&ndrp->r_rwlock); 2522 return (error); 2523 } 2524 2525 /* 2526 * Compare the two vnodes. If they are the same, 2527 * just release all held vnodes and return success. 2528 */ 2529 if (ovp == nvp) { 2530 VN_RELE(ovp); 2531 VN_RELE(nvp); 2532 nfs_rw_exit(&odrp->r_rwlock); 2533 nfs_rw_exit(&ndrp->r_rwlock); 2534 return (0); 2535 } 2536 2537 /* 2538 * Can't mix and match directories and non- 2539 * directories in rename operations. We already 2540 * know that the target is not a directory. If 2541 * the source is a directory, return an error. 2542 */ 2543 if (ovp->v_type == VDIR) { 2544 VN_RELE(ovp); 2545 VN_RELE(nvp); 2546 nfs_rw_exit(&odrp->r_rwlock); 2547 nfs_rw_exit(&ndrp->r_rwlock); 2548 return (ENOTDIR); 2549 } 2550 2551 /* 2552 * The target file exists, is not the same as 2553 * the source file, and is active. Link it 2554 * to a temporary filename to avoid having 2555 * the server removing the file completely. 2556 */ 2557 tmpname = newname(); 2558 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2559 if (error == EOPNOTSUPP) { 2560 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2561 cr, NULL, 0); 2562 } 2563 if (error) { 2564 kmem_free(tmpname, MAXNAMELEN); 2565 VN_RELE(ovp); 2566 VN_RELE(nvp); 2567 nfs_rw_exit(&odrp->r_rwlock); 2568 nfs_rw_exit(&ndrp->r_rwlock); 2569 return (error); 2570 } 2571 rp = VTOR(nvp); 2572 mutex_enter(&rp->r_statelock); 2573 if (rp->r_unldvp == NULL) { 2574 VN_HOLD(ndvp); 2575 rp->r_unldvp = ndvp; 2576 if (rp->r_unlcred != NULL) 2577 crfree(rp->r_unlcred); 2578 crhold(cr); 2579 rp->r_unlcred = cr; 2580 rp->r_unlname = tmpname; 2581 } else { 2582 kmem_free(rp->r_unlname, MAXNAMELEN); 2583 rp->r_unlname = tmpname; 2584 } 2585 mutex_exit(&rp->r_statelock); 2586 } 2587 } 2588 2589 if (ovp == NULL) { 2590 /* 2591 * When renaming directories to be a subdirectory of a 2592 * different parent, the dnlc entry for ".." will no 2593 * longer be valid, so it must be removed. 2594 * 2595 * We do a lookup here to determine whether we are renaming 2596 * a directory and we need to check if we are renaming 2597 * an unlinked file. This might have already been done 2598 * in previous code, so we check ovp == NULL to avoid 2599 * doing it twice. 2600 */ 2601 2602 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2603 2604 /* 2605 * The source name *should* already exist. 2606 */ 2607 if (error) { 2608 nfs_rw_exit(&odrp->r_rwlock); 2609 nfs_rw_exit(&ndrp->r_rwlock); 2610 if (nvp) { 2611 VN_RELE(nvp); 2612 } 2613 return (error); 2614 } 2615 ASSERT(ovp != NULL); 2616 } 2617 2618 dnlc_remove(odvp, onm); 2619 dnlc_remove(ndvp, nnm); 2620 2621 setdiropargs(&args.rna_from, onm, odvp); 2622 setdiropargs(&args.rna_to, nnm, ndvp); 2623 2624 douprintf = 1; 2625 2626 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2627 xdr_rnmargs, (caddr_t)&args, 2628 xdr_enum, (caddr_t)&status, cr, 2629 &douprintf, &status, 0, NULL); 2630 2631 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2632 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2633 2634 if (!error) { 2635 error = geterrno(status); 2636 if (!error) { 2637 if (HAVE_RDDIR_CACHE(odrp)) 2638 nfs_purge_rddir_cache(odvp); 2639 if (HAVE_RDDIR_CACHE(ndrp)) 2640 nfs_purge_rddir_cache(ndvp); 2641 /* 2642 * when renaming directories to be a subdirectory of a 2643 * different parent, the dnlc entry for ".." will no 2644 * longer be valid, so it must be removed 2645 */ 2646 rp = VTOR(ovp); 2647 if (ndvp != odvp) { 2648 if (ovp->v_type == VDIR) { 2649 dnlc_remove(ovp, ".."); 2650 if (HAVE_RDDIR_CACHE(rp)) 2651 nfs_purge_rddir_cache(ovp); 2652 } 2653 } 2654 2655 /* 2656 * If we are renaming the unlinked file, update the 2657 * r_unldvp and r_unlname as needed. 2658 */ 2659 mutex_enter(&rp->r_statelock); 2660 if (rp->r_unldvp != NULL) { 2661 if (strcmp(rp->r_unlname, onm) == 0) { 2662 (void) strncpy(rp->r_unlname, 2663 nnm, MAXNAMELEN); 2664 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2665 2666 if (ndvp != rp->r_unldvp) { 2667 VN_RELE(rp->r_unldvp); 2668 rp->r_unldvp = ndvp; 2669 VN_HOLD(ndvp); 2670 } 2671 } 2672 } 2673 mutex_exit(&rp->r_statelock); 2674 } else { 2675 /* 2676 * System V defines rename to return EEXIST, not 2677 * ENOTEMPTY if the target directory is not empty. 2678 * Over the wire, the error is NFSERR_ENOTEMPTY 2679 * which geterrno maps to ENOTEMPTY. 2680 */ 2681 if (error == ENOTEMPTY) 2682 error = EEXIST; 2683 } 2684 } 2685 2686 if (error == 0) { 2687 if (nvp) 2688 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2689 2690 if (odvp != ndvp) 2691 vnevent_rename_dest_dir(ndvp, ct); 2692 2693 ASSERT(ovp != NULL); 2694 vnevent_rename_src(ovp, odvp, onm, ct); 2695 } 2696 2697 if (nvp) { 2698 VN_RELE(nvp); 2699 } 2700 VN_RELE(ovp); 2701 2702 nfs_rw_exit(&odrp->r_rwlock); 2703 nfs_rw_exit(&ndrp->r_rwlock); 2704 2705 return (error); 2706 } 2707 2708 /* ARGSUSED */ 2709 static int 2710 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2711 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2712 { 2713 int error; 2714 struct nfscreatargs args; 2715 struct nfsdiropres dr; 2716 int douprintf; 2717 rnode_t *drp; 2718 hrtime_t t; 2719 2720 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2721 return (EPERM); 2722 2723 setdiropargs(&args.ca_da, nm, dvp); 2724 2725 /* 2726 * Decide what the group-id and set-gid bit of the created directory 2727 * should be. May have to do a setattr to get the gid right. 2728 */ 2729 error = setdirgid(dvp, &va->va_gid, cr); 2730 if (error) 2731 return (error); 2732 error = setdirmode(dvp, &va->va_mode, cr); 2733 if (error) 2734 return (error); 2735 va->va_mask |= AT_MODE|AT_GID; 2736 2737 args.ca_sa = &args.ca_sa_buf; 2738 error = vattr_to_sattr(va, args.ca_sa); 2739 if (error) { 2740 /* req time field(s) overflow - return immediately */ 2741 return (error); 2742 } 2743 2744 drp = VTOR(dvp); 2745 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2746 return (EINTR); 2747 2748 dnlc_remove(dvp, nm); 2749 2750 douprintf = 1; 2751 2752 t = gethrtime(); 2753 2754 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2755 xdr_creatargs, (caddr_t)&args, 2756 xdr_diropres, (caddr_t)&dr, cr, 2757 &douprintf, &dr.dr_status, 0, NULL); 2758 2759 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2760 2761 if (!error) { 2762 error = geterrno(dr.dr_status); 2763 if (!error) { 2764 if (HAVE_RDDIR_CACHE(drp)) 2765 nfs_purge_rddir_cache(dvp); 2766 /* 2767 * The attributes returned by RFS_MKDIR can not 2768 * be depended upon, so mark the attribute cache 2769 * as purged. A subsequent GETATTR will get the 2770 * correct attributes from the server. 2771 */ 2772 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2773 dvp->v_vfsp, t, cr, NULL, NULL); 2774 PURGE_ATTRCACHE(*vpp); 2775 dnlc_update(dvp, nm, *vpp); 2776 2777 /* 2778 * Make sure the gid was set correctly. 2779 * If not, try to set it (but don't lose 2780 * any sleep over it). 2781 */ 2782 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2783 va->va_mask = AT_GID; 2784 (void) nfssetattr(*vpp, va, 0, cr); 2785 } 2786 } else { 2787 PURGE_STALE_FH(error, dvp, cr); 2788 } 2789 } 2790 2791 nfs_rw_exit(&drp->r_rwlock); 2792 2793 return (error); 2794 } 2795 2796 /* ARGSUSED */ 2797 static int 2798 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2799 caller_context_t *ct, int flags) 2800 { 2801 int error; 2802 enum nfsstat status; 2803 struct nfsdiropargs da; 2804 vnode_t *vp; 2805 int douprintf; 2806 rnode_t *drp; 2807 2808 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2809 return (EPERM); 2810 drp = VTOR(dvp); 2811 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2812 return (EINTR); 2813 2814 /* 2815 * Attempt to prevent a rmdir(".") from succeeding. 2816 */ 2817 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2818 if (error) { 2819 nfs_rw_exit(&drp->r_rwlock); 2820 return (error); 2821 } 2822 2823 if (vp == cdir) { 2824 VN_RELE(vp); 2825 nfs_rw_exit(&drp->r_rwlock); 2826 return (EINVAL); 2827 } 2828 2829 setdiropargs(&da, nm, dvp); 2830 2831 /* 2832 * First just remove the entry from the name cache, as it 2833 * is most likely an entry for this vp. 2834 */ 2835 dnlc_remove(dvp, nm); 2836 2837 /* 2838 * If there vnode reference count is greater than one, then 2839 * there may be additional references in the DNLC which will 2840 * need to be purged. First, trying removing the entry for 2841 * the parent directory and see if that removes the additional 2842 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2843 * to completely remove any references to the directory which 2844 * might still exist in the DNLC. 2845 */ 2846 if (vp->v_count > 1) { 2847 dnlc_remove(vp, ".."); 2848 if (vp->v_count > 1) 2849 dnlc_purge_vp(vp); 2850 } 2851 2852 douprintf = 1; 2853 2854 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2855 xdr_diropargs, (caddr_t)&da, 2856 xdr_enum, (caddr_t)&status, cr, 2857 &douprintf, &status, 0, NULL); 2858 2859 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2860 2861 if (error) { 2862 VN_RELE(vp); 2863 nfs_rw_exit(&drp->r_rwlock); 2864 return (error); 2865 } 2866 2867 error = geterrno(status); 2868 if (!error) { 2869 if (HAVE_RDDIR_CACHE(drp)) 2870 nfs_purge_rddir_cache(dvp); 2871 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2872 nfs_purge_rddir_cache(vp); 2873 } else { 2874 PURGE_STALE_FH(error, dvp, cr); 2875 /* 2876 * System V defines rmdir to return EEXIST, not 2877 * ENOTEMPTY if the directory is not empty. Over 2878 * the wire, the error is NFSERR_ENOTEMPTY which 2879 * geterrno maps to ENOTEMPTY. 2880 */ 2881 if (error == ENOTEMPTY) 2882 error = EEXIST; 2883 } 2884 2885 if (error == 0) { 2886 vnevent_rmdir(vp, dvp, nm, ct); 2887 } 2888 VN_RELE(vp); 2889 2890 nfs_rw_exit(&drp->r_rwlock); 2891 2892 return (error); 2893 } 2894 2895 /* ARGSUSED */ 2896 static int 2897 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2898 caller_context_t *ct, int flags) 2899 { 2900 int error; 2901 struct nfsslargs args; 2902 enum nfsstat status; 2903 int douprintf; 2904 rnode_t *drp; 2905 2906 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2907 return (EPERM); 2908 setdiropargs(&args.sla_from, lnm, dvp); 2909 args.sla_sa = &args.sla_sa_buf; 2910 error = vattr_to_sattr(tva, args.sla_sa); 2911 if (error) { 2912 /* req time field(s) overflow - return immediately */ 2913 return (error); 2914 } 2915 args.sla_tnm = tnm; 2916 2917 drp = VTOR(dvp); 2918 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2919 return (EINTR); 2920 2921 dnlc_remove(dvp, lnm); 2922 2923 douprintf = 1; 2924 2925 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2926 xdr_slargs, (caddr_t)&args, 2927 xdr_enum, (caddr_t)&status, cr, 2928 &douprintf, &status, 0, NULL); 2929 2930 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2931 2932 if (!error) { 2933 error = geterrno(status); 2934 if (!error) { 2935 if (HAVE_RDDIR_CACHE(drp)) 2936 nfs_purge_rddir_cache(dvp); 2937 } else { 2938 PURGE_STALE_FH(error, dvp, cr); 2939 } 2940 } 2941 2942 nfs_rw_exit(&drp->r_rwlock); 2943 2944 return (error); 2945 } 2946 2947 #ifdef DEBUG 2948 static int nfs_readdir_cache_hits = 0; 2949 static int nfs_readdir_cache_shorts = 0; 2950 static int nfs_readdir_cache_waits = 0; 2951 static int nfs_readdir_cache_misses = 0; 2952 static int nfs_readdir_readahead = 0; 2953 #endif 2954 2955 static int nfs_shrinkreaddir = 0; 2956 2957 /* 2958 * Read directory entries. 2959 * There are some weird things to look out for here. The uio_offset 2960 * field is either 0 or it is the offset returned from a previous 2961 * readdir. It is an opaque value used by the server to find the 2962 * correct directory block to read. The count field is the number 2963 * of blocks to read on the server. This is advisory only, the server 2964 * may return only one block's worth of entries. Entries may be compressed 2965 * on the server. 2966 */ 2967 /* ARGSUSED */ 2968 static int 2969 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2970 caller_context_t *ct, int flags) 2971 { 2972 int error; 2973 size_t count; 2974 rnode_t *rp; 2975 rddir_cache *rdc; 2976 rddir_cache *nrdc; 2977 rddir_cache *rrdc; 2978 #ifdef DEBUG 2979 int missed; 2980 #endif 2981 rddir_cache srdc; 2982 avl_index_t where; 2983 2984 rp = VTOR(vp); 2985 2986 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2987 if (nfs_zone() != VTOMI(vp)->mi_zone) 2988 return (EIO); 2989 /* 2990 * Make sure that the directory cache is valid. 2991 */ 2992 if (HAVE_RDDIR_CACHE(rp)) { 2993 if (nfs_disable_rddir_cache) { 2994 /* 2995 * Setting nfs_disable_rddir_cache in /etc/system 2996 * allows interoperability with servers that do not 2997 * properly update the attributes of directories. 2998 * Any cached information gets purged before an 2999 * access is made to it. 3000 */ 3001 nfs_purge_rddir_cache(vp); 3002 } else { 3003 error = nfs_validate_caches(vp, cr); 3004 if (error) 3005 return (error); 3006 } 3007 } 3008 3009 /* 3010 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 3011 * RFS_READDIR request with rda_count set to more than 0x400. So 3012 * we reduce the request size here purely for compatibility. 3013 * 3014 * In general, this is no longer required. However, if a server 3015 * is discovered which can not handle requests larger than 1024, 3016 * nfs_shrinkreaddir can be set to 1 to enable this backwards 3017 * compatibility. 3018 * 3019 * In any case, the request size is limited to NFS_MAXDATA bytes. 3020 */ 3021 count = MIN(uiop->uio_iov->iov_len, 3022 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 3023 3024 nrdc = NULL; 3025 #ifdef DEBUG 3026 missed = 0; 3027 #endif 3028 top: 3029 /* 3030 * Short circuit last readdir which always returns 0 bytes. 3031 * This can be done after the directory has been read through 3032 * completely at least once. This will set r_direof which 3033 * can be used to find the value of the last cookie. 3034 */ 3035 mutex_enter(&rp->r_statelock); 3036 if (rp->r_direof != NULL && 3037 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 3038 mutex_exit(&rp->r_statelock); 3039 #ifdef DEBUG 3040 nfs_readdir_cache_shorts++; 3041 #endif 3042 if (eofp) 3043 *eofp = 1; 3044 if (nrdc != NULL) 3045 rddir_cache_rele(nrdc); 3046 return (0); 3047 } 3048 /* 3049 * Look for a cache entry. Cache entries are identified 3050 * by the NFS cookie value and the byte count requested. 3051 */ 3052 srdc.nfs_cookie = uiop->uio_offset; 3053 srdc.buflen = count; 3054 rdc = avl_find(&rp->r_dir, &srdc, &where); 3055 if (rdc != NULL) { 3056 rddir_cache_hold(rdc); 3057 /* 3058 * If the cache entry is in the process of being 3059 * filled in, wait until this completes. The 3060 * RDDIRWAIT bit is set to indicate that someone 3061 * is waiting and then the thread currently 3062 * filling the entry is done, it should do a 3063 * cv_broadcast to wakeup all of the threads 3064 * waiting for it to finish. 3065 */ 3066 if (rdc->flags & RDDIR) { 3067 nfs_rw_exit(&rp->r_rwlock); 3068 rdc->flags |= RDDIRWAIT; 3069 #ifdef DEBUG 3070 nfs_readdir_cache_waits++; 3071 #endif 3072 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3073 /* 3074 * We got interrupted, probably 3075 * the user typed ^C or an alarm 3076 * fired. We free the new entry 3077 * if we allocated one. 3078 */ 3079 mutex_exit(&rp->r_statelock); 3080 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3081 RW_READER, FALSE); 3082 rddir_cache_rele(rdc); 3083 if (nrdc != NULL) 3084 rddir_cache_rele(nrdc); 3085 return (EINTR); 3086 } 3087 mutex_exit(&rp->r_statelock); 3088 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3089 RW_READER, FALSE); 3090 rddir_cache_rele(rdc); 3091 goto top; 3092 } 3093 /* 3094 * Check to see if a readdir is required to 3095 * fill the entry. If so, mark this entry 3096 * as being filled, remove our reference, 3097 * and branch to the code to fill the entry. 3098 */ 3099 if (rdc->flags & RDDIRREQ) { 3100 rdc->flags &= ~RDDIRREQ; 3101 rdc->flags |= RDDIR; 3102 if (nrdc != NULL) 3103 rddir_cache_rele(nrdc); 3104 nrdc = rdc; 3105 mutex_exit(&rp->r_statelock); 3106 goto bottom; 3107 } 3108 #ifdef DEBUG 3109 if (!missed) 3110 nfs_readdir_cache_hits++; 3111 #endif 3112 /* 3113 * If an error occurred while attempting 3114 * to fill the cache entry, just return it. 3115 */ 3116 if (rdc->error) { 3117 error = rdc->error; 3118 mutex_exit(&rp->r_statelock); 3119 rddir_cache_rele(rdc); 3120 if (nrdc != NULL) 3121 rddir_cache_rele(nrdc); 3122 return (error); 3123 } 3124 3125 /* 3126 * The cache entry is complete and good, 3127 * copyout the dirent structs to the calling 3128 * thread. 3129 */ 3130 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3131 3132 /* 3133 * If no error occurred during the copyout, 3134 * update the offset in the uio struct to 3135 * contain the value of the next cookie 3136 * and set the eof value appropriately. 3137 */ 3138 if (!error) { 3139 uiop->uio_offset = rdc->nfs_ncookie; 3140 if (eofp) 3141 *eofp = rdc->eof; 3142 } 3143 3144 /* 3145 * Decide whether to do readahead. Don't if 3146 * have already read to the end of directory. 3147 */ 3148 if (rdc->eof) { 3149 rp->r_direof = rdc; 3150 mutex_exit(&rp->r_statelock); 3151 rddir_cache_rele(rdc); 3152 if (nrdc != NULL) 3153 rddir_cache_rele(nrdc); 3154 return (error); 3155 } 3156 3157 /* 3158 * Check to see whether we found an entry 3159 * for the readahead. If so, we don't need 3160 * to do anything further, so free the new 3161 * entry if one was allocated. Otherwise, 3162 * allocate a new entry, add it to the cache, 3163 * and then initiate an asynchronous readdir 3164 * operation to fill it. 3165 */ 3166 srdc.nfs_cookie = rdc->nfs_ncookie; 3167 srdc.buflen = count; 3168 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3169 if (rrdc != NULL) { 3170 if (nrdc != NULL) 3171 rddir_cache_rele(nrdc); 3172 } else { 3173 if (nrdc != NULL) 3174 rrdc = nrdc; 3175 else { 3176 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3177 } 3178 if (rrdc != NULL) { 3179 rrdc->nfs_cookie = rdc->nfs_ncookie; 3180 rrdc->buflen = count; 3181 avl_insert(&rp->r_dir, rrdc, where); 3182 rddir_cache_hold(rrdc); 3183 mutex_exit(&rp->r_statelock); 3184 rddir_cache_rele(rdc); 3185 #ifdef DEBUG 3186 nfs_readdir_readahead++; 3187 #endif 3188 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3189 return (error); 3190 } 3191 } 3192 3193 mutex_exit(&rp->r_statelock); 3194 rddir_cache_rele(rdc); 3195 return (error); 3196 } 3197 3198 /* 3199 * Didn't find an entry in the cache. Construct a new empty 3200 * entry and link it into the cache. Other processes attempting 3201 * to access this entry will need to wait until it is filled in. 3202 * 3203 * Since kmem_alloc may block, another pass through the cache 3204 * will need to be taken to make sure that another process 3205 * hasn't already added an entry to the cache for this request. 3206 */ 3207 if (nrdc == NULL) { 3208 mutex_exit(&rp->r_statelock); 3209 nrdc = rddir_cache_alloc(KM_SLEEP); 3210 nrdc->nfs_cookie = uiop->uio_offset; 3211 nrdc->buflen = count; 3212 goto top; 3213 } 3214 3215 /* 3216 * Add this entry to the cache. 3217 */ 3218 avl_insert(&rp->r_dir, nrdc, where); 3219 rddir_cache_hold(nrdc); 3220 mutex_exit(&rp->r_statelock); 3221 3222 bottom: 3223 #ifdef DEBUG 3224 missed = 1; 3225 nfs_readdir_cache_misses++; 3226 #endif 3227 /* 3228 * Do the readdir. 3229 */ 3230 error = nfsreaddir(vp, nrdc, cr); 3231 3232 /* 3233 * If this operation failed, just return the error which occurred. 3234 */ 3235 if (error != 0) 3236 return (error); 3237 3238 /* 3239 * Since the RPC operation will have taken sometime and blocked 3240 * this process, another pass through the cache will need to be 3241 * taken to find the correct cache entry. It is possible that 3242 * the correct cache entry will not be there (although one was 3243 * added) because the directory changed during the RPC operation 3244 * and the readdir cache was flushed. In this case, just start 3245 * over. It is hoped that this will not happen too often... :-) 3246 */ 3247 nrdc = NULL; 3248 goto top; 3249 /* NOTREACHED */ 3250 } 3251 3252 static int 3253 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3254 { 3255 int error; 3256 struct nfsrddirargs rda; 3257 struct nfsrddirres rd; 3258 rnode_t *rp; 3259 mntinfo_t *mi; 3260 uint_t count; 3261 int douprintf; 3262 failinfo_t fi, *fip; 3263 3264 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3265 count = rdc->buflen; 3266 3267 rp = VTOR(vp); 3268 mi = VTOMI(vp); 3269 3270 rda.rda_fh = *VTOFH(vp); 3271 rda.rda_offset = rdc->nfs_cookie; 3272 3273 /* 3274 * NFS client failover support 3275 * suppress failover unless we have a zero cookie 3276 */ 3277 if (rdc->nfs_cookie == (off_t)0) { 3278 fi.vp = vp; 3279 fi.fhp = (caddr_t)&rda.rda_fh; 3280 fi.copyproc = nfscopyfh; 3281 fi.lookupproc = nfslookup; 3282 fi.xattrdirproc = acl_getxattrdir2; 3283 fip = &fi; 3284 } else { 3285 fip = NULL; 3286 } 3287 3288 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3289 rd.rd_size = count; 3290 rd.rd_offset = rda.rda_offset; 3291 3292 douprintf = 1; 3293 3294 if (mi->mi_io_kstats) { 3295 mutex_enter(&mi->mi_lock); 3296 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3297 mutex_exit(&mi->mi_lock); 3298 } 3299 3300 do { 3301 rda.rda_count = MIN(count, mi->mi_curread); 3302 error = rfs2call(mi, RFS_READDIR, 3303 xdr_rddirargs, (caddr_t)&rda, 3304 xdr_getrddirres, (caddr_t)&rd, cr, 3305 &douprintf, &rd.rd_status, 0, fip); 3306 } while (error == ENFS_TRYAGAIN); 3307 3308 if (mi->mi_io_kstats) { 3309 mutex_enter(&mi->mi_lock); 3310 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3311 mutex_exit(&mi->mi_lock); 3312 } 3313 3314 /* 3315 * Since we are actually doing a READDIR RPC, we must have 3316 * exclusive access to the cache entry being filled. Thus, 3317 * it is safe to update all fields except for the flags 3318 * field. The r_statelock in the rnode must be held to 3319 * prevent two different threads from simultaneously 3320 * attempting to update the flags field. This can happen 3321 * if we are turning off RDDIR and the other thread is 3322 * trying to set RDDIRWAIT. 3323 */ 3324 ASSERT(rdc->flags & RDDIR); 3325 if (!error) { 3326 error = geterrno(rd.rd_status); 3327 if (!error) { 3328 rdc->nfs_ncookie = rd.rd_offset; 3329 rdc->eof = rd.rd_eof ? 1 : 0; 3330 rdc->entlen = rd.rd_size; 3331 ASSERT(rdc->entlen <= rdc->buflen); 3332 #ifdef DEBUG 3333 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3334 KM_SLEEP); 3335 #else 3336 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3337 #endif 3338 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3339 rdc->error = 0; 3340 if (mi->mi_io_kstats) { 3341 mutex_enter(&mi->mi_lock); 3342 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3343 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3344 rd.rd_size; 3345 mutex_exit(&mi->mi_lock); 3346 } 3347 } else { 3348 PURGE_STALE_FH(error, vp, cr); 3349 } 3350 } 3351 if (error) { 3352 rdc->entries = NULL; 3353 rdc->error = error; 3354 } 3355 kmem_free(rd.rd_entries, rdc->buflen); 3356 3357 mutex_enter(&rp->r_statelock); 3358 rdc->flags &= ~RDDIR; 3359 if (rdc->flags & RDDIRWAIT) { 3360 rdc->flags &= ~RDDIRWAIT; 3361 cv_broadcast(&rdc->cv); 3362 } 3363 if (error) 3364 rdc->flags |= RDDIRREQ; 3365 mutex_exit(&rp->r_statelock); 3366 3367 rddir_cache_rele(rdc); 3368 3369 return (error); 3370 } 3371 3372 #ifdef DEBUG 3373 static int nfs_bio_do_stop = 0; 3374 #endif 3375 3376 static int 3377 nfs_bio(struct buf *bp, cred_t *cr) 3378 { 3379 rnode_t *rp = VTOR(bp->b_vp); 3380 int count; 3381 int error; 3382 cred_t *cred; 3383 uint_t offset; 3384 3385 DTRACE_IO1(start, struct buf *, bp); 3386 3387 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3388 offset = dbtob(bp->b_blkno); 3389 3390 if (bp->b_flags & B_READ) { 3391 mutex_enter(&rp->r_statelock); 3392 if (rp->r_cred != NULL) { 3393 cred = rp->r_cred; 3394 crhold(cred); 3395 } else { 3396 rp->r_cred = cr; 3397 crhold(cr); 3398 cred = cr; 3399 crhold(cred); 3400 } 3401 mutex_exit(&rp->r_statelock); 3402 read_again: 3403 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3404 offset, bp->b_bcount, &bp->b_resid, cred); 3405 3406 crfree(cred); 3407 if (!error) { 3408 if (bp->b_resid) { 3409 /* 3410 * Didn't get it all because we hit EOF, 3411 * zero all the memory beyond the EOF. 3412 */ 3413 /* bzero(rdaddr + */ 3414 bzero(bp->b_un.b_addr + 3415 bp->b_bcount - bp->b_resid, bp->b_resid); 3416 } 3417 mutex_enter(&rp->r_statelock); 3418 if (bp->b_resid == bp->b_bcount && 3419 offset >= rp->r_size) { 3420 /* 3421 * We didn't read anything at all as we are 3422 * past EOF. Return an error indicator back 3423 * but don't destroy the pages (yet). 3424 */ 3425 error = NFS_EOF; 3426 } 3427 mutex_exit(&rp->r_statelock); 3428 } else if (error == EACCES) { 3429 mutex_enter(&rp->r_statelock); 3430 if (cred != cr) { 3431 if (rp->r_cred != NULL) 3432 crfree(rp->r_cred); 3433 rp->r_cred = cr; 3434 crhold(cr); 3435 cred = cr; 3436 crhold(cred); 3437 mutex_exit(&rp->r_statelock); 3438 goto read_again; 3439 } 3440 mutex_exit(&rp->r_statelock); 3441 } 3442 } else { 3443 if (!(rp->r_flags & RSTALE)) { 3444 mutex_enter(&rp->r_statelock); 3445 if (rp->r_cred != NULL) { 3446 cred = rp->r_cred; 3447 crhold(cred); 3448 } else { 3449 rp->r_cred = cr; 3450 crhold(cr); 3451 cred = cr; 3452 crhold(cred); 3453 } 3454 mutex_exit(&rp->r_statelock); 3455 write_again: 3456 mutex_enter(&rp->r_statelock); 3457 count = MIN(bp->b_bcount, rp->r_size - offset); 3458 mutex_exit(&rp->r_statelock); 3459 if (count < 0) 3460 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3461 #ifdef DEBUG 3462 if (count == 0) { 3463 zcmn_err(getzoneid(), CE_WARN, 3464 "nfs_bio: zero length write at %d", 3465 offset); 3466 nfs_printfhandle(&rp->r_fh); 3467 if (nfs_bio_do_stop) 3468 debug_enter("nfs_bio"); 3469 } 3470 #endif 3471 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3472 count, cred); 3473 if (error == EACCES) { 3474 mutex_enter(&rp->r_statelock); 3475 if (cred != cr) { 3476 if (rp->r_cred != NULL) 3477 crfree(rp->r_cred); 3478 rp->r_cred = cr; 3479 crhold(cr); 3480 crfree(cred); 3481 cred = cr; 3482 crhold(cred); 3483 mutex_exit(&rp->r_statelock); 3484 goto write_again; 3485 } 3486 mutex_exit(&rp->r_statelock); 3487 } 3488 bp->b_error = error; 3489 if (error && error != EINTR) { 3490 /* 3491 * Don't print EDQUOT errors on the console. 3492 * Don't print asynchronous EACCES errors. 3493 * Don't print EFBIG errors. 3494 * Print all other write errors. 3495 */ 3496 if (error != EDQUOT && error != EFBIG && 3497 (error != EACCES || 3498 !(bp->b_flags & B_ASYNC))) 3499 nfs_write_error(bp->b_vp, error, cred); 3500 /* 3501 * Update r_error and r_flags as appropriate. 3502 * If the error was ESTALE, then mark the 3503 * rnode as not being writeable and save 3504 * the error status. Otherwise, save any 3505 * errors which occur from asynchronous 3506 * page invalidations. Any errors occurring 3507 * from other operations should be saved 3508 * by the caller. 3509 */ 3510 mutex_enter(&rp->r_statelock); 3511 if (error == ESTALE) { 3512 rp->r_flags |= RSTALE; 3513 if (!rp->r_error) 3514 rp->r_error = error; 3515 } else if (!rp->r_error && 3516 (bp->b_flags & 3517 (B_INVAL|B_FORCE|B_ASYNC)) == 3518 (B_INVAL|B_FORCE|B_ASYNC)) { 3519 rp->r_error = error; 3520 } 3521 mutex_exit(&rp->r_statelock); 3522 } 3523 crfree(cred); 3524 } else { 3525 error = rp->r_error; 3526 /* 3527 * A close may have cleared r_error, if so, 3528 * propagate ESTALE error return properly 3529 */ 3530 if (error == 0) 3531 error = ESTALE; 3532 } 3533 } 3534 3535 if (error != 0 && error != NFS_EOF) 3536 bp->b_flags |= B_ERROR; 3537 3538 DTRACE_IO1(done, struct buf *, bp); 3539 3540 return (error); 3541 } 3542 3543 /* ARGSUSED */ 3544 static int 3545 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3546 { 3547 struct nfs_fid *fp; 3548 rnode_t *rp; 3549 3550 rp = VTOR(vp); 3551 3552 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3553 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3554 return (ENOSPC); 3555 } 3556 fp = (struct nfs_fid *)fidp; 3557 fp->nf_pad = 0; 3558 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3559 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3560 return (0); 3561 } 3562 3563 /* ARGSUSED2 */ 3564 static int 3565 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3566 { 3567 rnode_t *rp = VTOR(vp); 3568 3569 if (!write_lock) { 3570 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3571 return (V_WRITELOCK_FALSE); 3572 } 3573 3574 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3575 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3576 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3577 return (V_WRITELOCK_FALSE); 3578 nfs_rw_exit(&rp->r_rwlock); 3579 } 3580 3581 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3582 return (V_WRITELOCK_TRUE); 3583 } 3584 3585 /* ARGSUSED */ 3586 static void 3587 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3588 { 3589 rnode_t *rp = VTOR(vp); 3590 3591 nfs_rw_exit(&rp->r_rwlock); 3592 } 3593 3594 /* ARGSUSED */ 3595 static int 3596 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3597 { 3598 3599 /* 3600 * Because we stuff the readdir cookie into the offset field 3601 * someone may attempt to do an lseek with the cookie which 3602 * we want to succeed. 3603 */ 3604 if (vp->v_type == VDIR) 3605 return (0); 3606 if (*noffp < 0 || *noffp > MAXOFF32_T) 3607 return (EINVAL); 3608 return (0); 3609 } 3610 3611 /* 3612 * number of NFS_MAXDATA blocks to read ahead 3613 * optimized for 100 base-T. 3614 */ 3615 static int nfs_nra = 4; 3616 3617 #ifdef DEBUG 3618 static int nfs_lostpage = 0; /* number of times we lost original page */ 3619 #endif 3620 3621 /* 3622 * Return all the pages from [off..off+len) in file 3623 */ 3624 /* ARGSUSED */ 3625 static int 3626 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3627 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3628 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3629 { 3630 rnode_t *rp; 3631 int error; 3632 mntinfo_t *mi; 3633 3634 if (vp->v_flag & VNOMAP) 3635 return (ENOSYS); 3636 3637 ASSERT(off <= MAXOFF32_T); 3638 if (nfs_zone() != VTOMI(vp)->mi_zone) 3639 return (EIO); 3640 if (protp != NULL) 3641 *protp = PROT_ALL; 3642 3643 /* 3644 * Now valididate that the caches are up to date. 3645 */ 3646 error = nfs_validate_caches(vp, cr); 3647 if (error) 3648 return (error); 3649 3650 rp = VTOR(vp); 3651 mi = VTOMI(vp); 3652 retry: 3653 mutex_enter(&rp->r_statelock); 3654 3655 /* 3656 * Don't create dirty pages faster than they 3657 * can be cleaned so that the system doesn't 3658 * get imbalanced. If the async queue is 3659 * maxed out, then wait for it to drain before 3660 * creating more dirty pages. Also, wait for 3661 * any threads doing pagewalks in the vop_getattr 3662 * entry points so that they don't block for 3663 * long periods. 3664 */ 3665 if (rw == S_CREATE) { 3666 while ((mi->mi_max_threads != 0 && 3667 rp->r_awcount > 2 * mi->mi_max_threads) || 3668 rp->r_gcount > 0) 3669 cv_wait(&rp->r_cv, &rp->r_statelock); 3670 } 3671 3672 /* 3673 * If we are getting called as a side effect of an nfs_write() 3674 * operation the local file size might not be extended yet. 3675 * In this case we want to be able to return pages of zeroes. 3676 */ 3677 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3678 mutex_exit(&rp->r_statelock); 3679 return (EFAULT); /* beyond EOF */ 3680 } 3681 3682 mutex_exit(&rp->r_statelock); 3683 3684 if (len <= PAGESIZE) { 3685 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3686 seg, addr, rw, cr); 3687 } else { 3688 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3689 pl, plsz, seg, addr, rw, cr); 3690 } 3691 3692 switch (error) { 3693 case NFS_EOF: 3694 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3695 goto retry; 3696 case ESTALE: 3697 PURGE_STALE_FH(error, vp, cr); 3698 } 3699 3700 return (error); 3701 } 3702 3703 /* 3704 * Called from pvn_getpages or nfs_getpage to get a particular page. 3705 */ 3706 /* ARGSUSED */ 3707 static int 3708 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3709 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3710 enum seg_rw rw, cred_t *cr) 3711 { 3712 rnode_t *rp; 3713 uint_t bsize; 3714 struct buf *bp; 3715 page_t *pp; 3716 u_offset_t lbn; 3717 u_offset_t io_off; 3718 u_offset_t blkoff; 3719 u_offset_t rablkoff; 3720 size_t io_len; 3721 uint_t blksize; 3722 int error; 3723 int readahead; 3724 int readahead_issued = 0; 3725 int ra_window; /* readahead window */ 3726 page_t *pagefound; 3727 3728 if (nfs_zone() != VTOMI(vp)->mi_zone) 3729 return (EIO); 3730 rp = VTOR(vp); 3731 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3732 3733 reread: 3734 bp = NULL; 3735 pp = NULL; 3736 pagefound = NULL; 3737 3738 if (pl != NULL) 3739 pl[0] = NULL; 3740 3741 error = 0; 3742 lbn = off / bsize; 3743 blkoff = lbn * bsize; 3744 3745 /* 3746 * Queueing up the readahead before doing the synchronous read 3747 * results in a significant increase in read throughput because 3748 * of the increased parallelism between the async threads and 3749 * the process context. 3750 */ 3751 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3752 rw != S_CREATE && 3753 !(vp->v_flag & VNOCACHE)) { 3754 mutex_enter(&rp->r_statelock); 3755 3756 /* 3757 * Calculate the number of readaheads to do. 3758 * a) No readaheads at offset = 0. 3759 * b) Do maximum(nfs_nra) readaheads when the readahead 3760 * window is closed. 3761 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3762 * upon how far the readahead window is open or close. 3763 * d) No readaheads if rp->r_nextr is not within the scope 3764 * of the readahead window (random i/o). 3765 */ 3766 3767 if (off == 0) 3768 readahead = 0; 3769 else if (blkoff == rp->r_nextr) 3770 readahead = nfs_nra; 3771 else if (rp->r_nextr > blkoff && 3772 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3773 <= (nfs_nra - 1))) 3774 readahead = nfs_nra - ra_window; 3775 else 3776 readahead = 0; 3777 3778 rablkoff = rp->r_nextr; 3779 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3780 mutex_exit(&rp->r_statelock); 3781 if (nfs_async_readahead(vp, rablkoff + bsize, 3782 addr + (rablkoff + bsize - off), seg, cr, 3783 nfs_readahead) < 0) { 3784 mutex_enter(&rp->r_statelock); 3785 break; 3786 } 3787 readahead--; 3788 rablkoff += bsize; 3789 /* 3790 * Indicate that we did a readahead so 3791 * readahead offset is not updated 3792 * by the synchronous read below. 3793 */ 3794 readahead_issued = 1; 3795 mutex_enter(&rp->r_statelock); 3796 /* 3797 * set readahead offset to 3798 * offset of last async readahead 3799 * request. 3800 */ 3801 rp->r_nextr = rablkoff; 3802 } 3803 mutex_exit(&rp->r_statelock); 3804 } 3805 3806 again: 3807 if ((pagefound = page_exists(vp, off)) == NULL) { 3808 if (pl == NULL) { 3809 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3810 nfs_readahead); 3811 } else if (rw == S_CREATE) { 3812 /* 3813 * Block for this page is not allocated, or the offset 3814 * is beyond the current allocation size, or we're 3815 * allocating a swap slot and the page was not found, 3816 * so allocate it and return a zero page. 3817 */ 3818 if ((pp = page_create_va(vp, off, 3819 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3820 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3821 io_len = PAGESIZE; 3822 mutex_enter(&rp->r_statelock); 3823 rp->r_nextr = off + PAGESIZE; 3824 mutex_exit(&rp->r_statelock); 3825 } else { 3826 /* 3827 * Need to go to server to get a BLOCK, exception to 3828 * that being while reading at offset = 0 or doing 3829 * random i/o, in that case read only a PAGE. 3830 */ 3831 mutex_enter(&rp->r_statelock); 3832 if (blkoff < rp->r_size && 3833 blkoff + bsize >= rp->r_size) { 3834 /* 3835 * If only a block or less is left in 3836 * the file, read all that is remaining. 3837 */ 3838 if (rp->r_size <= off) { 3839 /* 3840 * Trying to access beyond EOF, 3841 * set up to get at least one page. 3842 */ 3843 blksize = off + PAGESIZE - blkoff; 3844 } else 3845 blksize = rp->r_size - blkoff; 3846 } else if ((off == 0) || 3847 (off != rp->r_nextr && !readahead_issued)) { 3848 blksize = PAGESIZE; 3849 blkoff = off; /* block = page here */ 3850 } else 3851 blksize = bsize; 3852 mutex_exit(&rp->r_statelock); 3853 3854 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3855 &io_len, blkoff, blksize, 0); 3856 3857 /* 3858 * Some other thread has entered the page, 3859 * so just use it. 3860 */ 3861 if (pp == NULL) 3862 goto again; 3863 3864 /* 3865 * Now round the request size up to page boundaries. 3866 * This ensures that the entire page will be 3867 * initialized to zeroes if EOF is encountered. 3868 */ 3869 io_len = ptob(btopr(io_len)); 3870 3871 bp = pageio_setup(pp, io_len, vp, B_READ); 3872 ASSERT(bp != NULL); 3873 3874 /* 3875 * pageio_setup should have set b_addr to 0. This 3876 * is correct since we want to do I/O on a page 3877 * boundary. bp_mapin will use this addr to calculate 3878 * an offset, and then set b_addr to the kernel virtual 3879 * address it allocated for us. 3880 */ 3881 ASSERT(bp->b_un.b_addr == 0); 3882 3883 bp->b_edev = 0; 3884 bp->b_dev = 0; 3885 bp->b_lblkno = lbtodb(io_off); 3886 bp->b_file = vp; 3887 bp->b_offset = (offset_t)off; 3888 bp_mapin(bp); 3889 3890 /* 3891 * If doing a write beyond what we believe is EOF, 3892 * don't bother trying to read the pages from the 3893 * server, we'll just zero the pages here. We 3894 * don't check that the rw flag is S_WRITE here 3895 * because some implementations may attempt a 3896 * read access to the buffer before copying data. 3897 */ 3898 mutex_enter(&rp->r_statelock); 3899 if (io_off >= rp->r_size && seg == segkmap) { 3900 mutex_exit(&rp->r_statelock); 3901 bzero(bp->b_un.b_addr, io_len); 3902 } else { 3903 mutex_exit(&rp->r_statelock); 3904 error = nfs_bio(bp, cr); 3905 } 3906 3907 /* 3908 * Unmap the buffer before freeing it. 3909 */ 3910 bp_mapout(bp); 3911 pageio_done(bp); 3912 3913 if (error == NFS_EOF) { 3914 /* 3915 * If doing a write system call just return 3916 * zeroed pages, else user tried to get pages 3917 * beyond EOF, return error. We don't check 3918 * that the rw flag is S_WRITE here because 3919 * some implementations may attempt a read 3920 * access to the buffer before copying data. 3921 */ 3922 if (seg == segkmap) 3923 error = 0; 3924 else 3925 error = EFAULT; 3926 } 3927 3928 if (!readahead_issued && !error) { 3929 mutex_enter(&rp->r_statelock); 3930 rp->r_nextr = io_off + io_len; 3931 mutex_exit(&rp->r_statelock); 3932 } 3933 } 3934 } 3935 3936 out: 3937 if (pl == NULL) 3938 return (error); 3939 3940 if (error) { 3941 if (pp != NULL) 3942 pvn_read_done(pp, B_ERROR); 3943 return (error); 3944 } 3945 3946 if (pagefound) { 3947 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3948 3949 /* 3950 * Page exists in the cache, acquire the appropriate lock. 3951 * If this fails, start all over again. 3952 */ 3953 if ((pp = page_lookup(vp, off, se)) == NULL) { 3954 #ifdef DEBUG 3955 nfs_lostpage++; 3956 #endif 3957 goto reread; 3958 } 3959 pl[0] = pp; 3960 pl[1] = NULL; 3961 return (0); 3962 } 3963 3964 if (pp != NULL) 3965 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3966 3967 return (error); 3968 } 3969 3970 static void 3971 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3972 cred_t *cr) 3973 { 3974 int error; 3975 page_t *pp; 3976 u_offset_t io_off; 3977 size_t io_len; 3978 struct buf *bp; 3979 uint_t bsize, blksize; 3980 rnode_t *rp = VTOR(vp); 3981 3982 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3983 3984 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3985 3986 mutex_enter(&rp->r_statelock); 3987 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3988 /* 3989 * If less than a block left in file read less 3990 * than a block. 3991 */ 3992 blksize = rp->r_size - blkoff; 3993 } else 3994 blksize = bsize; 3995 mutex_exit(&rp->r_statelock); 3996 3997 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3998 &io_off, &io_len, blkoff, blksize, 1); 3999 /* 4000 * The isra flag passed to the kluster function is 1, we may have 4001 * gotten a return value of NULL for a variety of reasons (# of free 4002 * pages < minfree, someone entered the page on the vnode etc). In all 4003 * cases, we want to punt on the readahead. 4004 */ 4005 if (pp == NULL) 4006 return; 4007 4008 /* 4009 * Now round the request size up to page boundaries. 4010 * This ensures that the entire page will be 4011 * initialized to zeroes if EOF is encountered. 4012 */ 4013 io_len = ptob(btopr(io_len)); 4014 4015 bp = pageio_setup(pp, io_len, vp, B_READ); 4016 ASSERT(bp != NULL); 4017 4018 /* 4019 * pageio_setup should have set b_addr to 0. This is correct since 4020 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4021 * to calculate an offset, and then set b_addr to the kernel virtual 4022 * address it allocated for us. 4023 */ 4024 ASSERT(bp->b_un.b_addr == 0); 4025 4026 bp->b_edev = 0; 4027 bp->b_dev = 0; 4028 bp->b_lblkno = lbtodb(io_off); 4029 bp->b_file = vp; 4030 bp->b_offset = (offset_t)blkoff; 4031 bp_mapin(bp); 4032 4033 /* 4034 * If doing a write beyond what we believe is EOF, don't bother trying 4035 * to read the pages from the server, we'll just zero the pages here. 4036 * We don't check that the rw flag is S_WRITE here because some 4037 * implementations may attempt a read access to the buffer before 4038 * copying data. 4039 */ 4040 mutex_enter(&rp->r_statelock); 4041 if (io_off >= rp->r_size && seg == segkmap) { 4042 mutex_exit(&rp->r_statelock); 4043 bzero(bp->b_un.b_addr, io_len); 4044 error = 0; 4045 } else { 4046 mutex_exit(&rp->r_statelock); 4047 error = nfs_bio(bp, cr); 4048 if (error == NFS_EOF) 4049 error = 0; 4050 } 4051 4052 /* 4053 * Unmap the buffer before freeing it. 4054 */ 4055 bp_mapout(bp); 4056 pageio_done(bp); 4057 4058 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4059 4060 /* 4061 * In case of error set readahead offset 4062 * to the lowest offset. 4063 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4064 */ 4065 if (error && rp->r_nextr > io_off) { 4066 mutex_enter(&rp->r_statelock); 4067 if (rp->r_nextr > io_off) 4068 rp->r_nextr = io_off; 4069 mutex_exit(&rp->r_statelock); 4070 } 4071 } 4072 4073 /* 4074 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4075 * If len == 0, do from off to EOF. 4076 * 4077 * The normal cases should be len == 0 && off == 0 (entire vp list), 4078 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4079 * (from pageout). 4080 */ 4081 /* ARGSUSED */ 4082 static int 4083 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4084 caller_context_t *ct) 4085 { 4086 int error; 4087 rnode_t *rp; 4088 4089 ASSERT(cr != NULL); 4090 4091 /* 4092 * XXX - Why should this check be made here? 4093 */ 4094 if (vp->v_flag & VNOMAP) 4095 return (ENOSYS); 4096 4097 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4098 return (0); 4099 4100 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4101 return (EIO); 4102 ASSERT(off <= MAXOFF32_T); 4103 4104 rp = VTOR(vp); 4105 mutex_enter(&rp->r_statelock); 4106 rp->r_count++; 4107 mutex_exit(&rp->r_statelock); 4108 error = nfs_putpages(vp, off, len, flags, cr); 4109 mutex_enter(&rp->r_statelock); 4110 rp->r_count--; 4111 cv_broadcast(&rp->r_cv); 4112 mutex_exit(&rp->r_statelock); 4113 4114 return (error); 4115 } 4116 4117 /* 4118 * Write out a single page, possibly klustering adjacent dirty pages. 4119 */ 4120 int 4121 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4122 int flags, cred_t *cr) 4123 { 4124 u_offset_t io_off; 4125 u_offset_t lbn_off; 4126 u_offset_t lbn; 4127 size_t io_len; 4128 uint_t bsize; 4129 int error; 4130 rnode_t *rp; 4131 4132 ASSERT(!vn_is_readonly(vp)); 4133 ASSERT(pp != NULL); 4134 ASSERT(cr != NULL); 4135 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4136 4137 rp = VTOR(vp); 4138 ASSERT(rp->r_count > 0); 4139 4140 ASSERT(pp->p_offset <= MAXOFF32_T); 4141 4142 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4143 lbn = pp->p_offset / bsize; 4144 lbn_off = lbn * bsize; 4145 4146 /* 4147 * Find a kluster that fits in one block, or in 4148 * one page if pages are bigger than blocks. If 4149 * there is less file space allocated than a whole 4150 * page, we'll shorten the i/o request below. 4151 */ 4152 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4153 roundup(bsize, PAGESIZE), flags); 4154 4155 /* 4156 * pvn_write_kluster shouldn't have returned a page with offset 4157 * behind the original page we were given. Verify that. 4158 */ 4159 ASSERT((pp->p_offset / bsize) >= lbn); 4160 4161 /* 4162 * Now pp will have the list of kept dirty pages marked for 4163 * write back. It will also handle invalidation and freeing 4164 * of pages that are not dirty. Check for page length rounding 4165 * problems. 4166 */ 4167 if (io_off + io_len > lbn_off + bsize) { 4168 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4169 io_len = lbn_off + bsize - io_off; 4170 } 4171 /* 4172 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4173 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4174 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4175 * progress and the r_size has not been made consistent with the 4176 * new size of the file. When the uiomove() completes the r_size is 4177 * updated and the RMODINPROGRESS flag is cleared. 4178 * 4179 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4180 * consistent value of r_size. Without this handshaking, it is 4181 * possible that nfs(3)_bio() picks up the old value of r_size 4182 * before the uiomove() in writerp() completes. This will result 4183 * in the write through nfs(3)_bio() being dropped. 4184 * 4185 * More precisely, there is a window between the time the uiomove() 4186 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4187 * operation intervenes in this window, the page will be picked up, 4188 * because it is dirty (it will be unlocked, unless it was 4189 * pagecreate'd). When the page is picked up as dirty, the dirty 4190 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4191 * checked. This will still be the old size. Therefore the page will 4192 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4193 * the page will be found to be clean and the write will be dropped. 4194 */ 4195 if (rp->r_flags & RMODINPROGRESS) { 4196 mutex_enter(&rp->r_statelock); 4197 if ((rp->r_flags & RMODINPROGRESS) && 4198 rp->r_modaddr + MAXBSIZE > io_off && 4199 rp->r_modaddr < io_off + io_len) { 4200 page_t *plist; 4201 /* 4202 * A write is in progress for this region of the file. 4203 * If we did not detect RMODINPROGRESS here then this 4204 * path through nfs_putapage() would eventually go to 4205 * nfs(3)_bio() and may not write out all of the data 4206 * in the pages. We end up losing data. So we decide 4207 * to set the modified bit on each page in the page 4208 * list and mark the rnode with RDIRTY. This write 4209 * will be restarted at some later time. 4210 */ 4211 plist = pp; 4212 while (plist != NULL) { 4213 pp = plist; 4214 page_sub(&plist, pp); 4215 hat_setmod(pp); 4216 page_io_unlock(pp); 4217 page_unlock(pp); 4218 } 4219 rp->r_flags |= RDIRTY; 4220 mutex_exit(&rp->r_statelock); 4221 if (offp) 4222 *offp = io_off; 4223 if (lenp) 4224 *lenp = io_len; 4225 return (0); 4226 } 4227 mutex_exit(&rp->r_statelock); 4228 } 4229 4230 if (flags & B_ASYNC) { 4231 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4232 nfs_sync_putapage); 4233 } else 4234 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4235 4236 if (offp) 4237 *offp = io_off; 4238 if (lenp) 4239 *lenp = io_len; 4240 return (error); 4241 } 4242 4243 static int 4244 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4245 int flags, cred_t *cr) 4246 { 4247 int error; 4248 rnode_t *rp; 4249 4250 flags |= B_WRITE; 4251 4252 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4253 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4254 4255 rp = VTOR(vp); 4256 4257 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4258 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4259 if (!(rp->r_flags & ROUTOFSPACE)) { 4260 mutex_enter(&rp->r_statelock); 4261 rp->r_flags |= ROUTOFSPACE; 4262 mutex_exit(&rp->r_statelock); 4263 } 4264 flags |= B_ERROR; 4265 pvn_write_done(pp, flags); 4266 /* 4267 * If this was not an async thread, then try again to 4268 * write out the pages, but this time, also destroy 4269 * them whether or not the write is successful. This 4270 * will prevent memory from filling up with these 4271 * pages and destroying them is the only alternative 4272 * if they can't be written out. 4273 * 4274 * Don't do this if this is an async thread because 4275 * when the pages are unlocked in pvn_write_done, 4276 * some other thread could have come along, locked 4277 * them, and queued for an async thread. It would be 4278 * possible for all of the async threads to be tied 4279 * up waiting to lock the pages again and they would 4280 * all already be locked and waiting for an async 4281 * thread to handle them. Deadlock. 4282 */ 4283 if (!(flags & B_ASYNC)) { 4284 error = nfs_putpage(vp, io_off, io_len, 4285 B_INVAL | B_FORCE, cr, NULL); 4286 } 4287 } else { 4288 if (error) 4289 flags |= B_ERROR; 4290 else if (rp->r_flags & ROUTOFSPACE) { 4291 mutex_enter(&rp->r_statelock); 4292 rp->r_flags &= ~ROUTOFSPACE; 4293 mutex_exit(&rp->r_statelock); 4294 } 4295 pvn_write_done(pp, flags); 4296 } 4297 4298 return (error); 4299 } 4300 4301 /* ARGSUSED */ 4302 static int 4303 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4304 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4305 caller_context_t *ct) 4306 { 4307 struct segvn_crargs vn_a; 4308 int error; 4309 rnode_t *rp; 4310 struct vattr va; 4311 4312 if (nfs_zone() != VTOMI(vp)->mi_zone) 4313 return (EIO); 4314 4315 if (vp->v_flag & VNOMAP) 4316 return (ENOSYS); 4317 4318 if (off > MAXOFF32_T) 4319 return (EFBIG); 4320 4321 if (off < 0 || off + len < 0) 4322 return (ENXIO); 4323 4324 if (vp->v_type != VREG) 4325 return (ENODEV); 4326 4327 /* 4328 * If there is cached data and if close-to-open consistency 4329 * checking is not turned off and if the file system is not 4330 * mounted readonly, then force an over the wire getattr. 4331 * Otherwise, just invoke nfsgetattr to get a copy of the 4332 * attributes. The attribute cache will be used unless it 4333 * is timed out and if it is, then an over the wire getattr 4334 * will be issued. 4335 */ 4336 va.va_mask = AT_ALL; 4337 if (vn_has_cached_data(vp) && 4338 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4339 error = nfs_getattr_otw(vp, &va, cr); 4340 else 4341 error = nfsgetattr(vp, &va, cr); 4342 if (error) 4343 return (error); 4344 4345 /* 4346 * Check to see if the vnode is currently marked as not cachable. 4347 * This means portions of the file are locked (through VOP_FRLOCK). 4348 * In this case the map request must be refused. We use 4349 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4350 */ 4351 rp = VTOR(vp); 4352 4353 /* 4354 * Atomically increment r_inmap after acquiring r_rwlock. The 4355 * idea here is to acquire r_rwlock to block read/write and 4356 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4357 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4358 * and we can prevent the deadlock that would have occurred 4359 * when nfs_addmap() would have acquired it out of order. 4360 * 4361 * Since we are not protecting r_inmap by any lock, we do not 4362 * hold any lock when we decrement it. We atomically decrement 4363 * r_inmap after we release r_lkserlock. 4364 */ 4365 4366 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4367 return (EINTR); 4368 atomic_add_int(&rp->r_inmap, 1); 4369 nfs_rw_exit(&rp->r_rwlock); 4370 4371 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4372 atomic_add_int(&rp->r_inmap, -1); 4373 return (EINTR); 4374 } 4375 if (vp->v_flag & VNOCACHE) { 4376 error = EAGAIN; 4377 goto done; 4378 } 4379 4380 /* 4381 * Don't allow concurrent locks and mapping if mandatory locking is 4382 * enabled. 4383 */ 4384 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4385 MANDLOCK(vp, va.va_mode)) { 4386 error = EAGAIN; 4387 goto done; 4388 } 4389 4390 as_rangelock(as); 4391 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4392 if (error != 0) { 4393 as_rangeunlock(as); 4394 goto done; 4395 } 4396 4397 vn_a.vp = vp; 4398 vn_a.offset = off; 4399 vn_a.type = (flags & MAP_TYPE); 4400 vn_a.prot = (uchar_t)prot; 4401 vn_a.maxprot = (uchar_t)maxprot; 4402 vn_a.flags = (flags & ~MAP_TYPE); 4403 vn_a.cred = cr; 4404 vn_a.amp = NULL; 4405 vn_a.szc = 0; 4406 vn_a.lgrp_mem_policy_flags = 0; 4407 4408 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4409 as_rangeunlock(as); 4410 4411 done: 4412 nfs_rw_exit(&rp->r_lkserlock); 4413 atomic_add_int(&rp->r_inmap, -1); 4414 return (error); 4415 } 4416 4417 /* ARGSUSED */ 4418 static int 4419 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4420 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4421 caller_context_t *ct) 4422 { 4423 rnode_t *rp; 4424 4425 if (vp->v_flag & VNOMAP) 4426 return (ENOSYS); 4427 if (nfs_zone() != VTOMI(vp)->mi_zone) 4428 return (EIO); 4429 4430 rp = VTOR(vp); 4431 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4432 4433 return (0); 4434 } 4435 4436 /* ARGSUSED */ 4437 static int 4438 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4439 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4440 { 4441 netobj lm_fh; 4442 int rc; 4443 u_offset_t start, end; 4444 rnode_t *rp; 4445 int error = 0, intr = INTR(vp); 4446 4447 /* check for valid cmd parameter */ 4448 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4449 return (EINVAL); 4450 if (nfs_zone() != VTOMI(vp)->mi_zone) 4451 return (EIO); 4452 4453 /* Verify l_type. */ 4454 switch (bfp->l_type) { 4455 case F_RDLCK: 4456 if (cmd != F_GETLK && !(flag & FREAD)) 4457 return (EBADF); 4458 break; 4459 case F_WRLCK: 4460 if (cmd != F_GETLK && !(flag & FWRITE)) 4461 return (EBADF); 4462 break; 4463 case F_UNLCK: 4464 intr = 0; 4465 break; 4466 4467 default: 4468 return (EINVAL); 4469 } 4470 4471 /* check the validity of the lock range */ 4472 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4473 return (rc); 4474 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4475 return (rc); 4476 4477 /* 4478 * If the filesystem is mounted using local locking, pass the 4479 * request off to the local locking code. 4480 */ 4481 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4482 if (offset > MAXOFF32_T) 4483 return (EFBIG); 4484 if (cmd == F_SETLK || cmd == F_SETLKW) { 4485 /* 4486 * For complete safety, we should be holding 4487 * r_lkserlock. However, we can't call 4488 * lm_safelock and then fs_frlock while 4489 * holding r_lkserlock, so just invoke 4490 * lm_safelock and expect that this will 4491 * catch enough of the cases. 4492 */ 4493 if (!lm_safelock(vp, bfp, cr)) 4494 return (EAGAIN); 4495 } 4496 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4497 } 4498 4499 rp = VTOR(vp); 4500 4501 /* 4502 * Check whether the given lock request can proceed, given the 4503 * current file mappings. 4504 */ 4505 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4506 return (EINTR); 4507 if (cmd == F_SETLK || cmd == F_SETLKW) { 4508 if (!lm_safelock(vp, bfp, cr)) { 4509 rc = EAGAIN; 4510 goto done; 4511 } 4512 } 4513 4514 /* 4515 * Flush the cache after waiting for async I/O to finish. For new 4516 * locks, this is so that the process gets the latest bits from the 4517 * server. For unlocks, this is so that other clients see the 4518 * latest bits once the file has been unlocked. If currently dirty 4519 * pages can't be flushed, then don't allow a lock to be set. But 4520 * allow unlocks to succeed, to avoid having orphan locks on the 4521 * server. 4522 */ 4523 if (cmd != F_GETLK) { 4524 mutex_enter(&rp->r_statelock); 4525 while (rp->r_count > 0) { 4526 if (intr) { 4527 klwp_t *lwp = ttolwp(curthread); 4528 4529 if (lwp != NULL) 4530 lwp->lwp_nostop++; 4531 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4532 == 0) { 4533 if (lwp != NULL) 4534 lwp->lwp_nostop--; 4535 rc = EINTR; 4536 break; 4537 } 4538 if (lwp != NULL) 4539 lwp->lwp_nostop--; 4540 } else 4541 cv_wait(&rp->r_cv, &rp->r_statelock); 4542 } 4543 mutex_exit(&rp->r_statelock); 4544 if (rc != 0) 4545 goto done; 4546 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4547 if (error) { 4548 if (error == ENOSPC || error == EDQUOT) { 4549 mutex_enter(&rp->r_statelock); 4550 if (!rp->r_error) 4551 rp->r_error = error; 4552 mutex_exit(&rp->r_statelock); 4553 } 4554 if (bfp->l_type != F_UNLCK) { 4555 rc = ENOLCK; 4556 goto done; 4557 } 4558 } 4559 } 4560 4561 lm_fh.n_len = sizeof (fhandle_t); 4562 lm_fh.n_bytes = (char *)VTOFH(vp); 4563 4564 /* 4565 * Call the lock manager to do the real work of contacting 4566 * the server and obtaining the lock. 4567 */ 4568 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4569 4570 if (rc == 0) 4571 nfs_lockcompletion(vp, cmd); 4572 4573 done: 4574 nfs_rw_exit(&rp->r_lkserlock); 4575 return (rc); 4576 } 4577 4578 /* 4579 * Free storage space associated with the specified vnode. The portion 4580 * to be freed is specified by bfp->l_start and bfp->l_len (already 4581 * normalized to a "whence" of 0). 4582 * 4583 * This is an experimental facility whose continued existence is not 4584 * guaranteed. Currently, we only support the special case 4585 * of l_len == 0, meaning free to end of file. 4586 */ 4587 /* ARGSUSED */ 4588 static int 4589 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4590 offset_t offset, cred_t *cr, caller_context_t *ct) 4591 { 4592 int error; 4593 4594 ASSERT(vp->v_type == VREG); 4595 if (cmd != F_FREESP) 4596 return (EINVAL); 4597 4598 if (offset > MAXOFF32_T) 4599 return (EFBIG); 4600 4601 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4602 (bfp->l_len > MAXOFF32_T)) 4603 return (EFBIG); 4604 4605 if (nfs_zone() != VTOMI(vp)->mi_zone) 4606 return (EIO); 4607 4608 error = convoff(vp, bfp, 0, offset); 4609 if (!error) { 4610 ASSERT(bfp->l_start >= 0); 4611 if (bfp->l_len == 0) { 4612 struct vattr va; 4613 4614 /* 4615 * ftruncate should not change the ctime and 4616 * mtime if we truncate the file to its 4617 * previous size. 4618 */ 4619 va.va_mask = AT_SIZE; 4620 error = nfsgetattr(vp, &va, cr); 4621 if (error || va.va_size == bfp->l_start) 4622 return (error); 4623 va.va_mask = AT_SIZE; 4624 va.va_size = bfp->l_start; 4625 error = nfssetattr(vp, &va, 0, cr); 4626 4627 if (error == 0 && bfp->l_start == 0) 4628 vnevent_truncate(vp, ct); 4629 } else 4630 error = EINVAL; 4631 } 4632 4633 return (error); 4634 } 4635 4636 /* ARGSUSED */ 4637 static int 4638 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4639 { 4640 4641 return (EINVAL); 4642 } 4643 4644 /* 4645 * Setup and add an address space callback to do the work of the delmap call. 4646 * The callback will (and must be) deleted in the actual callback function. 4647 * 4648 * This is done in order to take care of the problem that we have with holding 4649 * the address space's a_lock for a long period of time (e.g. if the NFS server 4650 * is down). Callbacks will be executed in the address space code while the 4651 * a_lock is not held. Holding the address space's a_lock causes things such 4652 * as ps and fork to hang because they are trying to acquire this lock as well. 4653 */ 4654 /* ARGSUSED */ 4655 static int 4656 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4657 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4658 caller_context_t *ct) 4659 { 4660 int caller_found; 4661 int error; 4662 rnode_t *rp; 4663 nfs_delmap_args_t *dmapp; 4664 nfs_delmapcall_t *delmap_call; 4665 4666 if (vp->v_flag & VNOMAP) 4667 return (ENOSYS); 4668 /* 4669 * A process may not change zones if it has NFS pages mmap'ed 4670 * in, so we can't legitimately get here from the wrong zone. 4671 */ 4672 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4673 4674 rp = VTOR(vp); 4675 4676 /* 4677 * The way that the address space of this process deletes its mapping 4678 * of this file is via the following call chains: 4679 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4680 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4681 * 4682 * With the use of address space callbacks we are allowed to drop the 4683 * address space lock, a_lock, while executing the NFS operations that 4684 * need to go over the wire. Returning EAGAIN to the caller of this 4685 * function is what drives the execution of the callback that we add 4686 * below. The callback will be executed by the address space code 4687 * after dropping the a_lock. When the callback is finished, since 4688 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4689 * is called again on the same segment to finish the rest of the work 4690 * that needs to happen during unmapping. 4691 * 4692 * This action of calling back into the segment driver causes 4693 * nfs_delmap() to get called again, but since the callback was 4694 * already executed at this point, it already did the work and there 4695 * is nothing left for us to do. 4696 * 4697 * To Summarize: 4698 * - The first time nfs_delmap is called by the current thread is when 4699 * we add the caller associated with this delmap to the delmap caller 4700 * list, add the callback, and return EAGAIN. 4701 * - The second time in this call chain when nfs_delmap is called we 4702 * will find this caller in the delmap caller list and realize there 4703 * is no more work to do thus removing this caller from the list and 4704 * returning the error that was set in the callback execution. 4705 */ 4706 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4707 if (caller_found) { 4708 /* 4709 * 'error' is from the actual delmap operations. To avoid 4710 * hangs, we need to handle the return of EAGAIN differently 4711 * since this is what drives the callback execution. 4712 * In this case, we don't want to return EAGAIN and do the 4713 * callback execution because there are none to execute. 4714 */ 4715 if (error == EAGAIN) 4716 return (0); 4717 else 4718 return (error); 4719 } 4720 4721 /* current caller was not in the list */ 4722 delmap_call = nfs_init_delmapcall(); 4723 4724 mutex_enter(&rp->r_statelock); 4725 list_insert_tail(&rp->r_indelmap, delmap_call); 4726 mutex_exit(&rp->r_statelock); 4727 4728 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4729 4730 dmapp->vp = vp; 4731 dmapp->off = off; 4732 dmapp->addr = addr; 4733 dmapp->len = len; 4734 dmapp->prot = prot; 4735 dmapp->maxprot = maxprot; 4736 dmapp->flags = flags; 4737 dmapp->cr = cr; 4738 dmapp->caller = delmap_call; 4739 4740 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4741 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4742 4743 return (error ? error : EAGAIN); 4744 } 4745 4746 /* 4747 * Remove some pages from an mmap'd vnode. Just update the 4748 * count of pages. If doing close-to-open, then flush all 4749 * of the pages associated with this file. Otherwise, start 4750 * an asynchronous page flush to write out any dirty pages. 4751 * This will also associate a credential with the rnode which 4752 * can be used to write the pages. 4753 */ 4754 /* ARGSUSED */ 4755 static void 4756 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4757 { 4758 int error; 4759 rnode_t *rp; 4760 mntinfo_t *mi; 4761 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4762 4763 rp = VTOR(dmapp->vp); 4764 mi = VTOMI(dmapp->vp); 4765 4766 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4767 ASSERT(rp->r_mapcnt >= 0); 4768 4769 /* 4770 * Initiate a page flush if there are pages, the file system 4771 * was not mounted readonly, the segment was mapped shared, and 4772 * the pages themselves were writeable. 4773 */ 4774 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4775 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4776 mutex_enter(&rp->r_statelock); 4777 rp->r_flags |= RDIRTY; 4778 mutex_exit(&rp->r_statelock); 4779 /* 4780 * If this is a cross-zone access a sync putpage won't work, so 4781 * the best we can do is try an async putpage. That seems 4782 * better than something more draconian such as discarding the 4783 * dirty pages. 4784 */ 4785 if ((mi->mi_flags & MI_NOCTO) || 4786 nfs_zone() != mi->mi_zone) 4787 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4788 B_ASYNC, dmapp->cr, NULL); 4789 else 4790 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4791 0, dmapp->cr, NULL); 4792 if (!error) { 4793 mutex_enter(&rp->r_statelock); 4794 error = rp->r_error; 4795 rp->r_error = 0; 4796 mutex_exit(&rp->r_statelock); 4797 } 4798 } else 4799 error = 0; 4800 4801 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4802 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4803 B_INVAL, dmapp->cr, NULL); 4804 4805 dmapp->caller->error = error; 4806 (void) as_delete_callback(as, arg); 4807 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4808 } 4809 4810 /* ARGSUSED */ 4811 static int 4812 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4813 caller_context_t *ct) 4814 { 4815 int error = 0; 4816 4817 if (nfs_zone() != VTOMI(vp)->mi_zone) 4818 return (EIO); 4819 /* 4820 * This looks a little weird because it's written in a general 4821 * manner but we make little use of cases. If cntl() ever gets 4822 * widely used, the outer switch will make more sense. 4823 */ 4824 4825 switch (cmd) { 4826 4827 /* 4828 * Large file spec - need to base answer new query with 4829 * hardcoded constant based on the protocol. 4830 */ 4831 case _PC_FILESIZEBITS: 4832 *valp = 32; 4833 return (0); 4834 4835 case _PC_LINK_MAX: 4836 case _PC_NAME_MAX: 4837 case _PC_PATH_MAX: 4838 case _PC_SYMLINK_MAX: 4839 case _PC_CHOWN_RESTRICTED: 4840 case _PC_NO_TRUNC: { 4841 mntinfo_t *mi; 4842 struct pathcnf *pc; 4843 4844 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4845 return (EINVAL); 4846 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4847 switch (cmd) { 4848 case _PC_LINK_MAX: 4849 *valp = pc->pc_link_max; 4850 break; 4851 case _PC_NAME_MAX: 4852 *valp = pc->pc_name_max; 4853 break; 4854 case _PC_PATH_MAX: 4855 case _PC_SYMLINK_MAX: 4856 *valp = pc->pc_path_max; 4857 break; 4858 case _PC_CHOWN_RESTRICTED: 4859 /* 4860 * if we got here, error is really a boolean which 4861 * indicates whether cmd is set or not. 4862 */ 4863 *valp = error ? 1 : 0; /* see above */ 4864 error = 0; 4865 break; 4866 case _PC_NO_TRUNC: 4867 /* 4868 * if we got here, error is really a boolean which 4869 * indicates whether cmd is set or not. 4870 */ 4871 *valp = error ? 1 : 0; /* see above */ 4872 error = 0; 4873 break; 4874 } 4875 return (error ? EINVAL : 0); 4876 } 4877 4878 case _PC_XATTR_EXISTS: 4879 *valp = 0; 4880 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4881 vnode_t *avp; 4882 rnode_t *rp; 4883 mntinfo_t *mi = VTOMI(vp); 4884 4885 if (!(mi->mi_flags & MI_EXTATTR)) 4886 return (0); 4887 4888 rp = VTOR(vp); 4889 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4890 INTR(vp))) 4891 return (EINTR); 4892 4893 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4894 if (error || avp == NULL) 4895 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4896 4897 nfs_rw_exit(&rp->r_rwlock); 4898 4899 if (error == 0 && avp != NULL) { 4900 error = do_xattr_exists_check(avp, valp, cr); 4901 VN_RELE(avp); 4902 } 4903 } 4904 return (error ? EINVAL : 0); 4905 4906 case _PC_ACL_ENABLED: 4907 *valp = _ACL_ACLENT_ENABLED; 4908 return (0); 4909 4910 default: 4911 return (EINVAL); 4912 } 4913 } 4914 4915 /* 4916 * Called by async thread to do synchronous pageio. Do the i/o, wait 4917 * for it to complete, and cleanup the page list when done. 4918 */ 4919 static int 4920 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4921 int flags, cred_t *cr) 4922 { 4923 int error; 4924 4925 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4926 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4927 if (flags & B_READ) 4928 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4929 else 4930 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4931 return (error); 4932 } 4933 4934 /* ARGSUSED */ 4935 static int 4936 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4937 int flags, cred_t *cr, caller_context_t *ct) 4938 { 4939 int error; 4940 rnode_t *rp; 4941 4942 if (pp == NULL) 4943 return (EINVAL); 4944 4945 if (io_off > MAXOFF32_T) 4946 return (EFBIG); 4947 if (nfs_zone() != VTOMI(vp)->mi_zone) 4948 return (EIO); 4949 rp = VTOR(vp); 4950 mutex_enter(&rp->r_statelock); 4951 rp->r_count++; 4952 mutex_exit(&rp->r_statelock); 4953 4954 if (flags & B_ASYNC) { 4955 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4956 nfs_sync_pageio); 4957 } else 4958 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4959 mutex_enter(&rp->r_statelock); 4960 rp->r_count--; 4961 cv_broadcast(&rp->r_cv); 4962 mutex_exit(&rp->r_statelock); 4963 return (error); 4964 } 4965 4966 /* ARGSUSED */ 4967 static int 4968 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4969 caller_context_t *ct) 4970 { 4971 int error; 4972 mntinfo_t *mi; 4973 4974 mi = VTOMI(vp); 4975 4976 if (nfs_zone() != mi->mi_zone) 4977 return (EIO); 4978 if (mi->mi_flags & MI_ACL) { 4979 error = acl_setacl2(vp, vsecattr, flag, cr); 4980 if (mi->mi_flags & MI_ACL) 4981 return (error); 4982 } 4983 4984 return (ENOSYS); 4985 } 4986 4987 /* ARGSUSED */ 4988 static int 4989 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4990 caller_context_t *ct) 4991 { 4992 int error; 4993 mntinfo_t *mi; 4994 4995 mi = VTOMI(vp); 4996 4997 if (nfs_zone() != mi->mi_zone) 4998 return (EIO); 4999 if (mi->mi_flags & MI_ACL) { 5000 error = acl_getacl2(vp, vsecattr, flag, cr); 5001 if (mi->mi_flags & MI_ACL) 5002 return (error); 5003 } 5004 5005 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 5006 } 5007 5008 /* ARGSUSED */ 5009 static int 5010 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 5011 caller_context_t *ct) 5012 { 5013 int error; 5014 struct shrlock nshr; 5015 struct nfs_owner nfs_owner; 5016 netobj lm_fh; 5017 5018 if (nfs_zone() != VTOMI(vp)->mi_zone) 5019 return (EIO); 5020 5021 /* 5022 * check for valid cmd parameter 5023 */ 5024 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 5025 return (EINVAL); 5026 5027 /* 5028 * Check access permissions 5029 */ 5030 if (cmd == F_SHARE && 5031 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 5032 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 5033 return (EBADF); 5034 5035 /* 5036 * If the filesystem is mounted using local locking, pass the 5037 * request off to the local share code. 5038 */ 5039 if (VTOMI(vp)->mi_flags & MI_LLOCK) 5040 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 5041 5042 switch (cmd) { 5043 case F_SHARE: 5044 case F_UNSHARE: 5045 lm_fh.n_len = sizeof (fhandle_t); 5046 lm_fh.n_bytes = (char *)VTOFH(vp); 5047 5048 /* 5049 * If passed an owner that is too large to fit in an 5050 * nfs_owner it is likely a recursive call from the 5051 * lock manager client and pass it straight through. If 5052 * it is not a nfs_owner then simply return an error. 5053 */ 5054 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5055 if (((struct nfs_owner *)shr->s_owner)->magic != 5056 NFS_OWNER_MAGIC) 5057 return (EINVAL); 5058 5059 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5060 error = set_errno(error); 5061 } 5062 return (error); 5063 } 5064 /* 5065 * Remote share reservations owner is a combination of 5066 * a magic number, hostname, and the local owner 5067 */ 5068 bzero(&nfs_owner, sizeof (nfs_owner)); 5069 nfs_owner.magic = NFS_OWNER_MAGIC; 5070 (void) strncpy(nfs_owner.hname, uts_nodename(), 5071 sizeof (nfs_owner.hname)); 5072 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5073 nshr.s_access = shr->s_access; 5074 nshr.s_deny = shr->s_deny; 5075 nshr.s_sysid = 0; 5076 nshr.s_pid = ttoproc(curthread)->p_pid; 5077 nshr.s_own_len = sizeof (nfs_owner); 5078 nshr.s_owner = (caddr_t)&nfs_owner; 5079 5080 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5081 error = set_errno(error); 5082 } 5083 5084 break; 5085 5086 case F_HASREMOTELOCKS: 5087 /* 5088 * NFS client can't store remote locks itself 5089 */ 5090 shr->s_access = 0; 5091 error = 0; 5092 break; 5093 5094 default: 5095 error = EINVAL; 5096 break; 5097 } 5098 5099 return (error); 5100 } 5101