1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/atomic.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 64 #include <rpc/types.h> 65 #include <rpc/auth.h> 66 #include <rpc/clnt.h> 67 68 #include <nfs/nfs.h> 69 #include <nfs/nfs_clnt.h> 70 #include <nfs/rnode.h> 71 #include <nfs/nfs_acl.h> 72 #include <nfs/lm.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_kpm.h> 81 #include <vm/seg_vn.h> 82 83 #include <fs/fs_subr.h> 84 85 #include <sys/ddi.h> 86 87 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 88 cred_t *); 89 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 90 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 91 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 92 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 93 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 94 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 95 caller_context_t *); 96 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 97 static int nfs_bio(struct buf *, cred_t *); 98 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 99 page_t *[], size_t, struct seg *, caddr_t, 100 enum seg_rw, cred_t *); 101 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 102 cred_t *); 103 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 104 int, cred_t *); 105 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 106 int, cred_t *); 107 static void nfs_delmap_callback(struct as *, void *, uint_t); 108 109 /* 110 * Error flags used to pass information about certain special errors 111 * which need to be handled specially. 112 */ 113 #define NFS_EOF -98 114 115 /* 116 * These are the vnode ops routines which implement the vnode interface to 117 * the networked file system. These routines just take their parameters, 118 * make them look networkish by putting the right info into interface structs, 119 * and then calling the appropriate remote routine(s) to do the work. 120 * 121 * Note on directory name lookup cacheing: If we detect a stale fhandle, 122 * we purge the directory cache relative to that vnode. This way, the 123 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 124 * more details on rnode locking. 125 */ 126 127 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 128 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 129 caller_context_t *); 130 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 133 caller_context_t *); 134 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 135 caller_context_t *); 136 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 137 caller_context_t *); 138 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 139 caller_context_t *); 140 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 141 static int nfs_accessx(void *, int, cred_t *); 142 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 143 caller_context_t *); 144 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 145 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 146 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 147 int, vnode_t *, cred_t *, caller_context_t *, 148 int *, pathname_t *); 149 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 150 int, vnode_t **, cred_t *, int, caller_context_t *, 151 vsecattr_t *); 152 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 153 int); 154 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 155 caller_context_t *, int); 156 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 157 caller_context_t *, int); 158 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 159 cred_t *, caller_context_t *, int, vsecattr_t *); 160 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 161 caller_context_t *, int); 162 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 163 cred_t *, caller_context_t *, int); 164 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 165 caller_context_t *, int); 166 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 167 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 168 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 169 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 170 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 171 page_t *[], size_t, struct seg *, caddr_t, 172 enum seg_rw, cred_t *, caller_context_t *); 173 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 174 caller_context_t *); 175 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 176 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 177 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 178 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 179 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 180 struct flk_callback *, cred_t *, caller_context_t *); 181 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 182 cred_t *, caller_context_t *); 183 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 184 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 185 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 186 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 187 caller_context_t *); 188 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 189 cred_t *, caller_context_t *); 190 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 191 caller_context_t *); 192 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 193 caller_context_t *); 194 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 195 caller_context_t *); 196 197 struct vnodeops *nfs_vnodeops; 198 199 const fs_operation_def_t nfs_vnodeops_template[] = { 200 VOPNAME_OPEN, { .vop_open = nfs_open }, 201 VOPNAME_CLOSE, { .vop_close = nfs_close }, 202 VOPNAME_READ, { .vop_read = nfs_read }, 203 VOPNAME_WRITE, { .vop_write = nfs_write }, 204 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 205 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 206 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 207 VOPNAME_ACCESS, { .vop_access = nfs_access }, 208 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 209 VOPNAME_CREATE, { .vop_create = nfs_create }, 210 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 211 VOPNAME_LINK, { .vop_link = nfs_link }, 212 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 213 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 214 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 215 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 216 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 217 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 218 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 219 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 220 VOPNAME_FID, { .vop_fid = nfs_fid }, 221 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 222 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 223 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 224 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 225 VOPNAME_SPACE, { .vop_space = nfs_space }, 226 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 227 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 228 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 229 VOPNAME_MAP, { .vop_map = nfs_map }, 230 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 231 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 232 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 233 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 234 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 235 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 236 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 237 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 238 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 239 NULL, NULL 240 }; 241 242 /* 243 * XXX: This is referenced in modstubs.s 244 */ 245 struct vnodeops * 246 nfs_getvnodeops(void) 247 { 248 return (nfs_vnodeops); 249 } 250 251 /* ARGSUSED */ 252 static int 253 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 254 { 255 int error; 256 struct vattr va; 257 rnode_t *rp; 258 vnode_t *vp; 259 260 vp = *vpp; 261 rp = VTOR(vp); 262 if (nfs_zone() != VTOMI(vp)->mi_zone) 263 return (EIO); 264 mutex_enter(&rp->r_statelock); 265 if (rp->r_cred == NULL) { 266 crhold(cr); 267 rp->r_cred = cr; 268 } 269 mutex_exit(&rp->r_statelock); 270 271 /* 272 * If there is no cached data or if close-to-open 273 * consistency checking is turned off, we can avoid 274 * the over the wire getattr. Otherwise, if the 275 * file system is mounted readonly, then just verify 276 * the caches are up to date using the normal mechanism. 277 * Else, if the file is not mmap'd, then just mark 278 * the attributes as timed out. They will be refreshed 279 * and the caches validated prior to being used. 280 * Else, the file system is mounted writeable so 281 * force an over the wire GETATTR in order to ensure 282 * that all cached data is valid. 283 */ 284 if (vp->v_count > 1 || 285 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 286 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 287 if (vn_is_readonly(vp)) 288 error = nfs_validate_caches(vp, cr); 289 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 290 PURGE_ATTRCACHE(vp); 291 error = 0; 292 } else { 293 va.va_mask = AT_ALL; 294 error = nfs_getattr_otw(vp, &va, cr); 295 } 296 } else 297 error = 0; 298 299 return (error); 300 } 301 302 /* ARGSUSED */ 303 static int 304 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 305 caller_context_t *ct) 306 { 307 rnode_t *rp; 308 int error; 309 struct vattr va; 310 311 /* 312 * zone_enter(2) prevents processes from changing zones with NFS files 313 * open; if we happen to get here from the wrong zone we can't do 314 * anything over the wire. 315 */ 316 if (VTOMI(vp)->mi_zone != nfs_zone()) { 317 /* 318 * We could attempt to clean up locks, except we're sure 319 * that the current process didn't acquire any locks on 320 * the file: any attempt to lock a file belong to another zone 321 * will fail, and one can't lock an NFS file and then change 322 * zones, as that fails too. 323 * 324 * Returning an error here is the sane thing to do. A 325 * subsequent call to VN_RELE() which translates to a 326 * nfs_inactive() will clean up state: if the zone of the 327 * vnode's origin is still alive and kicking, an async worker 328 * thread will handle the request (from the correct zone), and 329 * everything (minus the final nfs_getattr_otw() call) should 330 * be OK. If the zone is going away nfs_async_inactive() will 331 * throw away cached pages inline. 332 */ 333 return (EIO); 334 } 335 336 /* 337 * If we are using local locking for this filesystem, then 338 * release all of the SYSV style record locks. Otherwise, 339 * we are doing network locking and we need to release all 340 * of the network locks. All of the locks held by this 341 * process on this file are released no matter what the 342 * incoming reference count is. 343 */ 344 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 345 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 346 cleanshares(vp, ttoproc(curthread)->p_pid); 347 } else 348 nfs_lockrelease(vp, flag, offset, cr); 349 350 if (count > 1) 351 return (0); 352 353 /* 354 * If the file has been `unlinked', then purge the 355 * DNLC so that this vnode will get reycled quicker 356 * and the .nfs* file on the server will get removed. 357 */ 358 rp = VTOR(vp); 359 if (rp->r_unldvp != NULL) 360 dnlc_purge_vp(vp); 361 362 /* 363 * If the file was open for write and there are pages, 364 * then if the file system was mounted using the "no-close- 365 * to-open" semantics, then start an asynchronous flush 366 * of the all of the pages in the file. 367 * else the file system was not mounted using the "no-close- 368 * to-open" semantics, then do a synchronous flush and 369 * commit of all of the dirty and uncommitted pages. 370 * 371 * The asynchronous flush of the pages in the "nocto" path 372 * mostly just associates a cred pointer with the rnode so 373 * writes which happen later will have a better chance of 374 * working. It also starts the data being written to the 375 * server, but without unnecessarily delaying the application. 376 */ 377 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 378 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 379 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 380 cr, ct); 381 if (error == EAGAIN) 382 error = 0; 383 } else 384 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 385 if (!error) { 386 mutex_enter(&rp->r_statelock); 387 error = rp->r_error; 388 rp->r_error = 0; 389 mutex_exit(&rp->r_statelock); 390 } 391 } else { 392 mutex_enter(&rp->r_statelock); 393 error = rp->r_error; 394 rp->r_error = 0; 395 mutex_exit(&rp->r_statelock); 396 } 397 398 /* 399 * If RWRITEATTR is set, then issue an over the wire GETATTR to 400 * refresh the attribute cache with a set of attributes which 401 * weren't returned from a WRITE. This will enable the close- 402 * to-open processing to work. 403 */ 404 if (rp->r_flags & RWRITEATTR) 405 (void) nfs_getattr_otw(vp, &va, cr); 406 407 return (error); 408 } 409 410 /* ARGSUSED */ 411 static int 412 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 413 caller_context_t *ct) 414 { 415 rnode_t *rp; 416 u_offset_t off; 417 offset_t diff; 418 int on; 419 size_t n; 420 caddr_t base; 421 uint_t flags; 422 int error; 423 mntinfo_t *mi; 424 425 rp = VTOR(vp); 426 mi = VTOMI(vp); 427 428 if (nfs_zone() != mi->mi_zone) 429 return (EIO); 430 431 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 432 433 if (vp->v_type != VREG) 434 return (EISDIR); 435 436 if (uiop->uio_resid == 0) 437 return (0); 438 439 if (uiop->uio_loffset > MAXOFF32_T) 440 return (EFBIG); 441 442 if (uiop->uio_loffset < 0 || 443 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 444 return (EINVAL); 445 446 /* 447 * Bypass VM if caching has been disabled (e.g., locking) or if 448 * using client-side direct I/O and the file is not mmap'd and 449 * there are no cached pages. 450 */ 451 if ((vp->v_flag & VNOCACHE) || 452 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 453 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 454 size_t bufsize; 455 size_t resid = 0; 456 457 /* 458 * Let's try to do read in as large a chunk as we can 459 * (Filesystem (NFS client) bsize if possible/needed). 460 * For V3, this is 32K and for V2, this is 8K. 461 */ 462 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 463 base = kmem_alloc(bufsize, KM_SLEEP); 464 do { 465 n = MIN(uiop->uio_resid, bufsize); 466 error = nfsread(vp, base, uiop->uio_offset, n, 467 &resid, cr); 468 if (!error) { 469 n -= resid; 470 error = uiomove(base, n, UIO_READ, uiop); 471 } 472 } while (!error && uiop->uio_resid > 0 && n > 0); 473 kmem_free(base, bufsize); 474 return (error); 475 } 476 477 error = 0; 478 479 do { 480 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 481 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 482 n = MIN(MAXBSIZE - on, uiop->uio_resid); 483 484 error = nfs_validate_caches(vp, cr); 485 if (error) 486 break; 487 488 mutex_enter(&rp->r_statelock); 489 diff = rp->r_size - uiop->uio_loffset; 490 mutex_exit(&rp->r_statelock); 491 if (diff <= 0) 492 break; 493 if (diff < n) 494 n = (size_t)diff; 495 496 if (vpm_enable) { 497 /* 498 * Copy data. 499 */ 500 error = vpm_data_copy(vp, off + on, n, uiop, 501 1, NULL, 0, S_READ); 502 } else { 503 base = segmap_getmapflt(segkmap, vp, off + on, n, 504 1, S_READ); 505 error = uiomove(base + on, n, UIO_READ, uiop); 506 } 507 508 if (!error) { 509 /* 510 * If read a whole block or read to eof, 511 * won't need this buffer again soon. 512 */ 513 mutex_enter(&rp->r_statelock); 514 if (n + on == MAXBSIZE || 515 uiop->uio_loffset == rp->r_size) 516 flags = SM_DONTNEED; 517 else 518 flags = 0; 519 mutex_exit(&rp->r_statelock); 520 if (vpm_enable) { 521 error = vpm_sync_pages(vp, off, n, flags); 522 } else { 523 error = segmap_release(segkmap, base, flags); 524 } 525 } else { 526 if (vpm_enable) { 527 (void) vpm_sync_pages(vp, off, n, 0); 528 } else { 529 (void) segmap_release(segkmap, base, 0); 530 } 531 } 532 } while (!error && uiop->uio_resid > 0); 533 534 return (error); 535 } 536 537 /* ARGSUSED */ 538 static int 539 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 540 caller_context_t *ct) 541 { 542 rnode_t *rp; 543 u_offset_t off; 544 caddr_t base; 545 uint_t flags; 546 int remainder; 547 size_t n; 548 int on; 549 int error; 550 int resid; 551 offset_t offset; 552 rlim_t limit; 553 mntinfo_t *mi; 554 555 rp = VTOR(vp); 556 557 mi = VTOMI(vp); 558 if (nfs_zone() != mi->mi_zone) 559 return (EIO); 560 if (vp->v_type != VREG) 561 return (EISDIR); 562 563 if (uiop->uio_resid == 0) 564 return (0); 565 566 if (ioflag & FAPPEND) { 567 struct vattr va; 568 569 /* 570 * Must serialize if appending. 571 */ 572 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 573 nfs_rw_exit(&rp->r_rwlock); 574 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 575 INTR(vp))) 576 return (EINTR); 577 } 578 579 va.va_mask = AT_SIZE; 580 error = nfsgetattr(vp, &va, cr); 581 if (error) 582 return (error); 583 uiop->uio_loffset = va.va_size; 584 } 585 586 if (uiop->uio_loffset > MAXOFF32_T) 587 return (EFBIG); 588 589 offset = uiop->uio_loffset + uiop->uio_resid; 590 591 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 592 return (EINVAL); 593 594 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 595 limit = MAXOFF32_T; 596 } else { 597 limit = (rlim_t)uiop->uio_llimit; 598 } 599 600 /* 601 * Check to make sure that the process will not exceed 602 * its limit on file size. It is okay to write up to 603 * the limit, but not beyond. Thus, the write which 604 * reaches the limit will be short and the next write 605 * will return an error. 606 */ 607 remainder = 0; 608 if (offset > limit) { 609 remainder = offset - limit; 610 uiop->uio_resid = limit - uiop->uio_offset; 611 if (uiop->uio_resid <= 0) { 612 proc_t *p = ttoproc(curthread); 613 614 uiop->uio_resid += remainder; 615 mutex_enter(&p->p_lock); 616 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 617 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 618 mutex_exit(&p->p_lock); 619 return (EFBIG); 620 } 621 } 622 623 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 624 return (EINTR); 625 626 /* 627 * Bypass VM if caching has been disabled (e.g., locking) or if 628 * using client-side direct I/O and the file is not mmap'd and 629 * there are no cached pages. 630 */ 631 if ((vp->v_flag & VNOCACHE) || 632 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 633 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 634 size_t bufsize; 635 int count; 636 uint_t org_offset; 637 638 nfs_fwrite: 639 if (rp->r_flags & RSTALE) { 640 resid = uiop->uio_resid; 641 offset = uiop->uio_loffset; 642 error = rp->r_error; 643 goto bottom; 644 } 645 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 646 base = kmem_alloc(bufsize, KM_SLEEP); 647 do { 648 resid = uiop->uio_resid; 649 offset = uiop->uio_loffset; 650 count = MIN(uiop->uio_resid, bufsize); 651 org_offset = uiop->uio_offset; 652 error = uiomove(base, count, UIO_WRITE, uiop); 653 if (!error) { 654 error = nfswrite(vp, base, org_offset, 655 count, cr); 656 } 657 } while (!error && uiop->uio_resid > 0); 658 kmem_free(base, bufsize); 659 goto bottom; 660 } 661 662 do { 663 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 664 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 665 n = MIN(MAXBSIZE - on, uiop->uio_resid); 666 667 resid = uiop->uio_resid; 668 offset = uiop->uio_loffset; 669 670 if (rp->r_flags & RSTALE) { 671 error = rp->r_error; 672 break; 673 } 674 675 /* 676 * Don't create dirty pages faster than they 677 * can be cleaned so that the system doesn't 678 * get imbalanced. If the async queue is 679 * maxed out, then wait for it to drain before 680 * creating more dirty pages. Also, wait for 681 * any threads doing pagewalks in the vop_getattr 682 * entry points so that they don't block for 683 * long periods. 684 */ 685 mutex_enter(&rp->r_statelock); 686 while ((mi->mi_max_threads != 0 && 687 rp->r_awcount > 2 * mi->mi_max_threads) || 688 rp->r_gcount > 0) 689 cv_wait(&rp->r_cv, &rp->r_statelock); 690 mutex_exit(&rp->r_statelock); 691 692 if (vpm_enable) { 693 /* 694 * It will use kpm mappings, so no need to 695 * pass an address. 696 */ 697 error = writerp(rp, NULL, n, uiop, 0); 698 } else { 699 if (segmap_kpm) { 700 int pon = uiop->uio_loffset & PAGEOFFSET; 701 size_t pn = MIN(PAGESIZE - pon, 702 uiop->uio_resid); 703 int pagecreate; 704 705 mutex_enter(&rp->r_statelock); 706 pagecreate = (pon == 0) && (pn == PAGESIZE || 707 uiop->uio_loffset + pn >= rp->r_size); 708 mutex_exit(&rp->r_statelock); 709 710 base = segmap_getmapflt(segkmap, vp, off + on, 711 pn, !pagecreate, S_WRITE); 712 713 error = writerp(rp, base + pon, n, uiop, 714 pagecreate); 715 716 } else { 717 base = segmap_getmapflt(segkmap, vp, off + on, 718 n, 0, S_READ); 719 error = writerp(rp, base + on, n, uiop, 0); 720 } 721 } 722 723 if (!error) { 724 if (mi->mi_flags & MI_NOAC) 725 flags = SM_WRITE; 726 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 727 /* 728 * Have written a whole block. 729 * Start an asynchronous write 730 * and mark the buffer to 731 * indicate that it won't be 732 * needed again soon. 733 */ 734 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 735 } else 736 flags = 0; 737 if ((ioflag & (FSYNC|FDSYNC)) || 738 (rp->r_flags & ROUTOFSPACE)) { 739 flags &= ~SM_ASYNC; 740 flags |= SM_WRITE; 741 } 742 if (vpm_enable) { 743 error = vpm_sync_pages(vp, off, n, flags); 744 } else { 745 error = segmap_release(segkmap, base, flags); 746 } 747 } else { 748 if (vpm_enable) { 749 (void) vpm_sync_pages(vp, off, n, 0); 750 } else { 751 (void) segmap_release(segkmap, base, 0); 752 } 753 /* 754 * In the event that we got an access error while 755 * faulting in a page for a write-only file just 756 * force a write. 757 */ 758 if (error == EACCES) 759 goto nfs_fwrite; 760 } 761 } while (!error && uiop->uio_resid > 0); 762 763 bottom: 764 if (error) { 765 uiop->uio_resid = resid + remainder; 766 uiop->uio_loffset = offset; 767 } else 768 uiop->uio_resid += remainder; 769 770 nfs_rw_exit(&rp->r_lkserlock); 771 772 return (error); 773 } 774 775 /* 776 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 777 */ 778 static int 779 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 780 int flags, cred_t *cr) 781 { 782 struct buf *bp; 783 int error; 784 785 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 786 bp = pageio_setup(pp, len, vp, flags); 787 ASSERT(bp != NULL); 788 789 /* 790 * pageio_setup should have set b_addr to 0. This 791 * is correct since we want to do I/O on a page 792 * boundary. bp_mapin will use this addr to calculate 793 * an offset, and then set b_addr to the kernel virtual 794 * address it allocated for us. 795 */ 796 ASSERT(bp->b_un.b_addr == 0); 797 798 bp->b_edev = 0; 799 bp->b_dev = 0; 800 bp->b_lblkno = lbtodb(off); 801 bp->b_file = vp; 802 bp->b_offset = (offset_t)off; 803 bp_mapin(bp); 804 805 error = nfs_bio(bp, cr); 806 807 bp_mapout(bp); 808 pageio_done(bp); 809 810 return (error); 811 } 812 813 /* 814 * Write to file. Writes to remote server in largest size 815 * chunks that the server can handle. Write is synchronous. 816 */ 817 static int 818 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 819 { 820 rnode_t *rp; 821 mntinfo_t *mi; 822 struct nfswriteargs wa; 823 struct nfsattrstat ns; 824 int error; 825 int tsize; 826 int douprintf; 827 828 douprintf = 1; 829 830 rp = VTOR(vp); 831 mi = VTOMI(vp); 832 833 ASSERT(nfs_zone() == mi->mi_zone); 834 835 wa.wa_args = &wa.wa_args_buf; 836 wa.wa_fhandle = *VTOFH(vp); 837 838 do { 839 tsize = MIN(mi->mi_curwrite, count); 840 wa.wa_data = base; 841 wa.wa_begoff = offset; 842 wa.wa_totcount = tsize; 843 wa.wa_count = tsize; 844 wa.wa_offset = offset; 845 846 if (mi->mi_io_kstats) { 847 mutex_enter(&mi->mi_lock); 848 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 849 mutex_exit(&mi->mi_lock); 850 } 851 wa.wa_mblk = NULL; 852 do { 853 error = rfs2call(mi, RFS_WRITE, 854 xdr_writeargs, (caddr_t)&wa, 855 xdr_attrstat, (caddr_t)&ns, cr, 856 &douprintf, &ns.ns_status, 0, NULL); 857 } while (error == ENFS_TRYAGAIN); 858 if (mi->mi_io_kstats) { 859 mutex_enter(&mi->mi_lock); 860 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 861 mutex_exit(&mi->mi_lock); 862 } 863 864 if (!error) { 865 error = geterrno(ns.ns_status); 866 /* 867 * Can't check for stale fhandle and purge caches 868 * here because pages are held by nfs_getpage. 869 * Just mark the attribute cache as timed out 870 * and set RWRITEATTR to indicate that the file 871 * was modified with a WRITE operation. 872 */ 873 if (!error) { 874 count -= tsize; 875 base += tsize; 876 offset += tsize; 877 if (mi->mi_io_kstats) { 878 mutex_enter(&mi->mi_lock); 879 KSTAT_IO_PTR(mi->mi_io_kstats)-> 880 writes++; 881 KSTAT_IO_PTR(mi->mi_io_kstats)-> 882 nwritten += tsize; 883 mutex_exit(&mi->mi_lock); 884 } 885 lwp_stat_update(LWP_STAT_OUBLK, 1); 886 mutex_enter(&rp->r_statelock); 887 PURGE_ATTRCACHE_LOCKED(rp); 888 rp->r_flags |= RWRITEATTR; 889 mutex_exit(&rp->r_statelock); 890 } 891 } 892 } while (!error && count); 893 894 return (error); 895 } 896 897 /* 898 * Read from a file. Reads data in largest chunks our interface can handle. 899 */ 900 static int 901 nfsread(vnode_t *vp, caddr_t base, uint_t offset, int count, size_t *residp, 902 cred_t *cr) 903 { 904 mntinfo_t *mi; 905 struct nfsreadargs ra; 906 struct nfsrdresult rr; 907 int tsize; 908 int error; 909 int douprintf; 910 failinfo_t fi; 911 rnode_t *rp; 912 struct vattr va; 913 hrtime_t t; 914 915 rp = VTOR(vp); 916 mi = VTOMI(vp); 917 918 ASSERT(nfs_zone() == mi->mi_zone); 919 920 douprintf = 1; 921 922 ra.ra_fhandle = *VTOFH(vp); 923 924 fi.vp = vp; 925 fi.fhp = (caddr_t)&ra.ra_fhandle; 926 fi.copyproc = nfscopyfh; 927 fi.lookupproc = nfslookup; 928 fi.xattrdirproc = acl_getxattrdir2; 929 930 do { 931 if (mi->mi_io_kstats) { 932 mutex_enter(&mi->mi_lock); 933 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 934 mutex_exit(&mi->mi_lock); 935 } 936 937 do { 938 tsize = MIN(mi->mi_curread, count); 939 rr.rr_data = base; 940 ra.ra_offset = offset; 941 ra.ra_totcount = tsize; 942 ra.ra_count = tsize; 943 t = gethrtime(); 944 error = rfs2call(mi, RFS_READ, 945 xdr_readargs, (caddr_t)&ra, 946 xdr_rdresult, (caddr_t)&rr, cr, 947 &douprintf, &rr.rr_status, 0, &fi); 948 } while (error == ENFS_TRYAGAIN); 949 950 if (mi->mi_io_kstats) { 951 mutex_enter(&mi->mi_lock); 952 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 953 mutex_exit(&mi->mi_lock); 954 } 955 956 if (!error) { 957 error = geterrno(rr.rr_status); 958 if (!error) { 959 count -= rr.rr_count; 960 base += rr.rr_count; 961 offset += rr.rr_count; 962 if (mi->mi_io_kstats) { 963 mutex_enter(&mi->mi_lock); 964 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 965 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 966 rr.rr_count; 967 mutex_exit(&mi->mi_lock); 968 } 969 lwp_stat_update(LWP_STAT_INBLK, 1); 970 } 971 } 972 } while (!error && count && rr.rr_count == tsize); 973 974 *residp = count; 975 976 if (!error) { 977 /* 978 * Since no error occurred, we have the current 979 * attributes and we need to do a cache check and then 980 * potentially update the cached attributes. We can't 981 * use the normal attribute check and cache mechanisms 982 * because they might cause a cache flush which would 983 * deadlock. Instead, we just check the cache to see 984 * if the attributes have changed. If it is, then we 985 * just mark the attributes as out of date. The next 986 * time that the attributes are checked, they will be 987 * out of date, new attributes will be fetched, and 988 * the page cache will be flushed. If the attributes 989 * weren't changed, then we just update the cached 990 * attributes with these attributes. 991 */ 992 /* 993 * If NFS_ACL is supported on the server, then the 994 * attributes returned by server may have minimal 995 * permissions sometimes denying access to users having 996 * proper access. To get the proper attributes, mark 997 * the attributes as expired so that they will be 998 * regotten via the NFS_ACL GETATTR2 procedure. 999 */ 1000 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1001 mutex_enter(&rp->r_statelock); 1002 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1003 (mi->mi_flags & MI_ACL)) { 1004 mutex_exit(&rp->r_statelock); 1005 PURGE_ATTRCACHE(vp); 1006 } else { 1007 if (rp->r_mtime <= t) { 1008 nfs_attrcache_va(vp, &va); 1009 } 1010 mutex_exit(&rp->r_statelock); 1011 } 1012 } 1013 1014 return (error); 1015 } 1016 1017 /* ARGSUSED */ 1018 static int 1019 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1020 caller_context_t *ct) 1021 { 1022 1023 if (nfs_zone() != VTOMI(vp)->mi_zone) 1024 return (EIO); 1025 switch (cmd) { 1026 case _FIODIRECTIO: 1027 return (nfs_directio(vp, (int)arg, cr)); 1028 default: 1029 return (ENOTTY); 1030 } 1031 } 1032 1033 /* ARGSUSED */ 1034 static int 1035 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1036 caller_context_t *ct) 1037 { 1038 int error; 1039 rnode_t *rp; 1040 1041 if (nfs_zone() != VTOMI(vp)->mi_zone) 1042 return (EIO); 1043 /* 1044 * If it has been specified that the return value will 1045 * just be used as a hint, and we are only being asked 1046 * for size, fsid or rdevid, then return the client's 1047 * notion of these values without checking to make sure 1048 * that the attribute cache is up to date. 1049 * The whole point is to avoid an over the wire GETATTR 1050 * call. 1051 */ 1052 rp = VTOR(vp); 1053 if (flags & ATTR_HINT) { 1054 if (vap->va_mask == 1055 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1056 mutex_enter(&rp->r_statelock); 1057 if (vap->va_mask | AT_SIZE) 1058 vap->va_size = rp->r_size; 1059 if (vap->va_mask | AT_FSID) 1060 vap->va_fsid = rp->r_attr.va_fsid; 1061 if (vap->va_mask | AT_RDEV) 1062 vap->va_rdev = rp->r_attr.va_rdev; 1063 mutex_exit(&rp->r_statelock); 1064 return (0); 1065 } 1066 } 1067 1068 /* 1069 * Only need to flush pages if asking for the mtime 1070 * and if there any dirty pages or any outstanding 1071 * asynchronous (write) requests for this file. 1072 */ 1073 if (vap->va_mask & AT_MTIME) { 1074 if (vn_has_cached_data(vp) && 1075 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1076 mutex_enter(&rp->r_statelock); 1077 rp->r_gcount++; 1078 mutex_exit(&rp->r_statelock); 1079 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1080 mutex_enter(&rp->r_statelock); 1081 if (error && (error == ENOSPC || error == EDQUOT)) { 1082 if (!rp->r_error) 1083 rp->r_error = error; 1084 } 1085 if (--rp->r_gcount == 0) 1086 cv_broadcast(&rp->r_cv); 1087 mutex_exit(&rp->r_statelock); 1088 } 1089 } 1090 1091 return (nfsgetattr(vp, vap, cr)); 1092 } 1093 1094 /*ARGSUSED4*/ 1095 static int 1096 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1097 caller_context_t *ct) 1098 { 1099 int error; 1100 uint_t mask; 1101 struct vattr va; 1102 1103 mask = vap->va_mask; 1104 1105 if (mask & AT_NOSET) 1106 return (EINVAL); 1107 1108 if ((mask & AT_SIZE) && 1109 vap->va_type == VREG && 1110 vap->va_size > MAXOFF32_T) 1111 return (EFBIG); 1112 1113 if (nfs_zone() != VTOMI(vp)->mi_zone) 1114 return (EIO); 1115 1116 va.va_mask = AT_UID | AT_MODE; 1117 1118 error = nfsgetattr(vp, &va, cr); 1119 if (error) 1120 return (error); 1121 1122 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1123 vp); 1124 1125 if (error) 1126 return (error); 1127 1128 return (nfssetattr(vp, vap, flags, cr)); 1129 } 1130 1131 static int 1132 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1133 { 1134 int error; 1135 uint_t mask; 1136 struct nfssaargs args; 1137 struct nfsattrstat ns; 1138 int douprintf; 1139 rnode_t *rp; 1140 struct vattr va; 1141 mode_t omode; 1142 mntinfo_t *mi; 1143 vsecattr_t *vsp; 1144 hrtime_t t; 1145 1146 mask = vap->va_mask; 1147 1148 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1149 1150 rp = VTOR(vp); 1151 1152 /* 1153 * Only need to flush pages if there are any pages and 1154 * if the file is marked as dirty in some fashion. The 1155 * file must be flushed so that we can accurately 1156 * determine the size of the file and the cached data 1157 * after the SETATTR returns. A file is considered to 1158 * be dirty if it is either marked with RDIRTY, has 1159 * outstanding i/o's active, or is mmap'd. In this 1160 * last case, we can't tell whether there are dirty 1161 * pages, so we flush just to be sure. 1162 */ 1163 if (vn_has_cached_data(vp) && 1164 ((rp->r_flags & RDIRTY) || 1165 rp->r_count > 0 || 1166 rp->r_mapcnt > 0)) { 1167 ASSERT(vp->v_type != VCHR); 1168 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1169 if (error && (error == ENOSPC || error == EDQUOT)) { 1170 mutex_enter(&rp->r_statelock); 1171 if (!rp->r_error) 1172 rp->r_error = error; 1173 mutex_exit(&rp->r_statelock); 1174 } 1175 } 1176 1177 /* 1178 * If the system call was utime(2) or utimes(2) and the 1179 * application did not specify the times, then set the 1180 * mtime nanosecond field to 1 billion. This will get 1181 * translated from 1 billion nanoseconds to 1 million 1182 * microseconds in the over the wire request. The 1183 * server will use 1 million in the microsecond field 1184 * to tell whether both the mtime and atime should be 1185 * set to the server's current time. 1186 * 1187 * This is an overload of the protocol and should be 1188 * documented in the NFS Version 2 protocol specification. 1189 */ 1190 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1191 vap->va_mtime.tv_nsec = 1000000000; 1192 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1193 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1194 error = vattr_to_sattr(vap, &args.saa_sa); 1195 } else { 1196 /* 1197 * Use server times. vap time values will not be used. 1198 * To ensure no time overflow, make sure vap has 1199 * valid values, but retain the original values. 1200 */ 1201 timestruc_t mtime = vap->va_mtime; 1202 timestruc_t atime = vap->va_atime; 1203 time_t now; 1204 1205 now = gethrestime_sec(); 1206 if (NFS_TIME_T_OK(now)) { 1207 /* Just in case server does not know of this */ 1208 vap->va_mtime.tv_sec = now; 1209 vap->va_atime.tv_sec = now; 1210 } else { 1211 vap->va_mtime.tv_sec = 0; 1212 vap->va_atime.tv_sec = 0; 1213 } 1214 error = vattr_to_sattr(vap, &args.saa_sa); 1215 /* set vap times back on */ 1216 vap->va_mtime = mtime; 1217 vap->va_atime = atime; 1218 } 1219 } else { 1220 /* Either do not set times or use the client specified times */ 1221 error = vattr_to_sattr(vap, &args.saa_sa); 1222 } 1223 if (error) { 1224 /* req time field(s) overflow - return immediately */ 1225 return (error); 1226 } 1227 args.saa_fh = *VTOFH(vp); 1228 1229 va.va_mask = AT_MODE; 1230 error = nfsgetattr(vp, &va, cr); 1231 if (error) 1232 return (error); 1233 omode = va.va_mode; 1234 1235 mi = VTOMI(vp); 1236 1237 douprintf = 1; 1238 1239 t = gethrtime(); 1240 1241 error = rfs2call(mi, RFS_SETATTR, 1242 xdr_saargs, (caddr_t)&args, 1243 xdr_attrstat, (caddr_t)&ns, cr, 1244 &douprintf, &ns.ns_status, 0, NULL); 1245 1246 /* 1247 * Purge the access cache and ACL cache if changing either the 1248 * owner of the file, the group owner, or the mode. These may 1249 * change the access permissions of the file, so purge old 1250 * information and start over again. 1251 */ 1252 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1253 (void) nfs_access_purge_rp(rp); 1254 if (rp->r_secattr != NULL) { 1255 mutex_enter(&rp->r_statelock); 1256 vsp = rp->r_secattr; 1257 rp->r_secattr = NULL; 1258 mutex_exit(&rp->r_statelock); 1259 if (vsp != NULL) 1260 nfs_acl_free(vsp); 1261 } 1262 } 1263 1264 if (!error) { 1265 error = geterrno(ns.ns_status); 1266 if (!error) { 1267 /* 1268 * If changing the size of the file, invalidate 1269 * any local cached data which is no longer part 1270 * of the file. We also possibly invalidate the 1271 * last page in the file. We could use 1272 * pvn_vpzero(), but this would mark the page as 1273 * modified and require it to be written back to 1274 * the server for no particularly good reason. 1275 * This way, if we access it, then we bring it 1276 * back in. A read should be cheaper than a 1277 * write. 1278 */ 1279 if (mask & AT_SIZE) { 1280 nfs_invalidate_pages(vp, 1281 (vap->va_size & PAGEMASK), cr); 1282 } 1283 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1284 /* 1285 * If NFS_ACL is supported on the server, then the 1286 * attributes returned by server may have minimal 1287 * permissions sometimes denying access to users having 1288 * proper access. To get the proper attributes, mark 1289 * the attributes as expired so that they will be 1290 * regotten via the NFS_ACL GETATTR2 procedure. 1291 */ 1292 if (mi->mi_flags & MI_ACL) { 1293 PURGE_ATTRCACHE(vp); 1294 } 1295 /* 1296 * This next check attempts to deal with NFS 1297 * servers which can not handle increasing 1298 * the size of the file via setattr. Most 1299 * of these servers do not return an error, 1300 * but do not change the size of the file. 1301 * Hence, this check and then attempt to set 1302 * the file size by writing 1 byte at the 1303 * offset of the end of the file that we need. 1304 */ 1305 if ((mask & AT_SIZE) && 1306 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1307 char zb = '\0'; 1308 1309 error = nfswrite(vp, &zb, 1310 vap->va_size - sizeof (zb), 1311 sizeof (zb), cr); 1312 } 1313 /* 1314 * Some servers will change the mode to clear the setuid 1315 * and setgid bits when changing the uid or gid. The 1316 * client needs to compensate appropriately. 1317 */ 1318 if (mask & (AT_UID | AT_GID)) { 1319 int terror; 1320 1321 va.va_mask = AT_MODE; 1322 terror = nfsgetattr(vp, &va, cr); 1323 if (!terror && 1324 (((mask & AT_MODE) && 1325 va.va_mode != vap->va_mode) || 1326 (!(mask & AT_MODE) && 1327 va.va_mode != omode))) { 1328 va.va_mask = AT_MODE; 1329 if (mask & AT_MODE) 1330 va.va_mode = vap->va_mode; 1331 else 1332 va.va_mode = omode; 1333 (void) nfssetattr(vp, &va, 0, cr); 1334 } 1335 } 1336 } else { 1337 PURGE_ATTRCACHE(vp); 1338 PURGE_STALE_FH(error, vp, cr); 1339 } 1340 } else { 1341 PURGE_ATTRCACHE(vp); 1342 } 1343 1344 return (error); 1345 } 1346 1347 static int 1348 nfs_accessx(void *vp, int mode, cred_t *cr) 1349 { 1350 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1351 return (nfs_access(vp, mode, 0, cr, NULL)); 1352 } 1353 1354 /* ARGSUSED */ 1355 static int 1356 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1357 { 1358 struct vattr va; 1359 int error; 1360 mntinfo_t *mi; 1361 int shift = 0; 1362 1363 mi = VTOMI(vp); 1364 1365 if (nfs_zone() != mi->mi_zone) 1366 return (EIO); 1367 if (mi->mi_flags & MI_ACL) { 1368 error = acl_access2(vp, mode, flags, cr); 1369 if (mi->mi_flags & MI_ACL) 1370 return (error); 1371 } 1372 1373 va.va_mask = AT_MODE | AT_UID | AT_GID; 1374 error = nfsgetattr(vp, &va, cr); 1375 if (error) 1376 return (error); 1377 1378 /* 1379 * Disallow write attempts on read-only 1380 * file systems, unless the file is a 1381 * device node. 1382 */ 1383 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1384 return (EROFS); 1385 1386 /* 1387 * Disallow attempts to access mandatory lock files. 1388 */ 1389 if ((mode & (VWRITE | VREAD | VEXEC)) && 1390 MANDLOCK(vp, va.va_mode)) 1391 return (EACCES); 1392 1393 /* 1394 * Access check is based on only 1395 * one of owner, group, public. 1396 * If not owner, then check group. 1397 * If not a member of the group, 1398 * then check public access. 1399 */ 1400 if (crgetuid(cr) != va.va_uid) { 1401 shift += 3; 1402 if (!groupmember(va.va_gid, cr)) 1403 shift += 3; 1404 } 1405 found: 1406 mode &= ~(va.va_mode << shift); 1407 if (mode == 0) 1408 return (0); 1409 1410 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1411 } 1412 1413 static int nfs_do_symlink_cache = 1; 1414 1415 /* ARGSUSED */ 1416 static int 1417 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1418 { 1419 int error; 1420 struct nfsrdlnres rl; 1421 rnode_t *rp; 1422 int douprintf; 1423 failinfo_t fi; 1424 1425 /* 1426 * We want to be consistent with UFS semantics so we will return 1427 * EINVAL instead of ENXIO. This violates the XNFS spec and 1428 * the RFC 1094, which are wrong any way. BUGID 1138002. 1429 */ 1430 if (vp->v_type != VLNK) 1431 return (EINVAL); 1432 1433 if (nfs_zone() != VTOMI(vp)->mi_zone) 1434 return (EIO); 1435 1436 rp = VTOR(vp); 1437 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1438 error = nfs_validate_caches(vp, cr); 1439 if (error) 1440 return (error); 1441 mutex_enter(&rp->r_statelock); 1442 if (rp->r_symlink.contents != NULL) { 1443 error = uiomove(rp->r_symlink.contents, 1444 rp->r_symlink.len, UIO_READ, uiop); 1445 mutex_exit(&rp->r_statelock); 1446 return (error); 1447 } 1448 mutex_exit(&rp->r_statelock); 1449 } 1450 1451 1452 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1453 1454 fi.vp = vp; 1455 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1456 fi.copyproc = nfscopyfh; 1457 fi.lookupproc = nfslookup; 1458 fi.xattrdirproc = acl_getxattrdir2; 1459 1460 douprintf = 1; 1461 1462 error = rfs2call(VTOMI(vp), RFS_READLINK, 1463 xdr_fhandle, (caddr_t)VTOFH(vp), 1464 xdr_rdlnres, (caddr_t)&rl, cr, 1465 &douprintf, &rl.rl_status, 0, &fi); 1466 1467 if (error) { 1468 1469 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1470 return (error); 1471 } 1472 1473 error = geterrno(rl.rl_status); 1474 if (!error) { 1475 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1476 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1477 mutex_enter(&rp->r_statelock); 1478 if (rp->r_symlink.contents == NULL) { 1479 rp->r_symlink.contents = rl.rl_data; 1480 rp->r_symlink.len = (int)rl.rl_count; 1481 rp->r_symlink.size = NFS_MAXPATHLEN; 1482 mutex_exit(&rp->r_statelock); 1483 } else { 1484 mutex_exit(&rp->r_statelock); 1485 1486 kmem_free((void *)rl.rl_data, 1487 NFS_MAXPATHLEN); 1488 } 1489 } else { 1490 1491 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1492 } 1493 } else { 1494 PURGE_STALE_FH(error, vp, cr); 1495 1496 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1497 } 1498 1499 /* 1500 * Conform to UFS semantics (see comment above) 1501 */ 1502 return (error == ENXIO ? EINVAL : error); 1503 } 1504 1505 /* 1506 * Flush local dirty pages to stable storage on the server. 1507 * 1508 * If FNODSYNC is specified, then there is nothing to do because 1509 * metadata changes are not cached on the client before being 1510 * sent to the server. 1511 */ 1512 /* ARGSUSED */ 1513 static int 1514 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1515 { 1516 int error; 1517 1518 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1519 return (0); 1520 1521 if (nfs_zone() != VTOMI(vp)->mi_zone) 1522 return (EIO); 1523 1524 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1525 if (!error) 1526 error = VTOR(vp)->r_error; 1527 return (error); 1528 } 1529 1530 1531 /* 1532 * Weirdness: if the file was removed or the target of a rename 1533 * operation while it was open, it got renamed instead. Here we 1534 * remove the renamed file. 1535 */ 1536 /* ARGSUSED */ 1537 static void 1538 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1539 { 1540 rnode_t *rp; 1541 1542 ASSERT(vp != DNLC_NO_VNODE); 1543 1544 /* 1545 * If this is coming from the wrong zone, we let someone in the right 1546 * zone take care of it asynchronously. We can get here due to 1547 * VN_RELE() being called from pageout() or fsflush(). This call may 1548 * potentially turn into an expensive no-op if, for instance, v_count 1549 * gets incremented in the meantime, but it's still correct. 1550 */ 1551 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1552 nfs_async_inactive(vp, cr, nfs_inactive); 1553 return; 1554 } 1555 1556 rp = VTOR(vp); 1557 redo: 1558 if (rp->r_unldvp != NULL) { 1559 /* 1560 * Save the vnode pointer for the directory where the 1561 * unlinked-open file got renamed, then set it to NULL 1562 * to prevent another thread from getting here before 1563 * we're done with the remove. While we have the 1564 * statelock, make local copies of the pertinent rnode 1565 * fields. If we weren't to do this in an atomic way, the 1566 * the unl* fields could become inconsistent with respect 1567 * to each other due to a race condition between this 1568 * code and nfs_remove(). See bug report 1034328. 1569 */ 1570 mutex_enter(&rp->r_statelock); 1571 if (rp->r_unldvp != NULL) { 1572 vnode_t *unldvp; 1573 char *unlname; 1574 cred_t *unlcred; 1575 struct nfsdiropargs da; 1576 enum nfsstat status; 1577 int douprintf; 1578 int error; 1579 1580 unldvp = rp->r_unldvp; 1581 rp->r_unldvp = NULL; 1582 unlname = rp->r_unlname; 1583 rp->r_unlname = NULL; 1584 unlcred = rp->r_unlcred; 1585 rp->r_unlcred = NULL; 1586 mutex_exit(&rp->r_statelock); 1587 1588 /* 1589 * If there are any dirty pages left, then flush 1590 * them. This is unfortunate because they just 1591 * may get thrown away during the remove operation, 1592 * but we have to do this for correctness. 1593 */ 1594 if (vn_has_cached_data(vp) && 1595 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1596 ASSERT(vp->v_type != VCHR); 1597 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1598 cr, ct); 1599 if (error) { 1600 mutex_enter(&rp->r_statelock); 1601 if (!rp->r_error) 1602 rp->r_error = error; 1603 mutex_exit(&rp->r_statelock); 1604 } 1605 } 1606 1607 /* 1608 * Do the remove operation on the renamed file 1609 */ 1610 setdiropargs(&da, unlname, unldvp); 1611 1612 douprintf = 1; 1613 1614 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1615 xdr_diropargs, (caddr_t)&da, 1616 xdr_enum, (caddr_t)&status, unlcred, 1617 &douprintf, &status, 0, NULL); 1618 1619 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1620 nfs_purge_rddir_cache(unldvp); 1621 PURGE_ATTRCACHE(unldvp); 1622 1623 /* 1624 * Release stuff held for the remove 1625 */ 1626 VN_RELE(unldvp); 1627 kmem_free(unlname, MAXNAMELEN); 1628 crfree(unlcred); 1629 goto redo; 1630 } 1631 mutex_exit(&rp->r_statelock); 1632 } 1633 1634 rp_addfree(rp, cr); 1635 } 1636 1637 /* 1638 * Remote file system operations having to do with directory manipulation. 1639 */ 1640 1641 /* ARGSUSED */ 1642 static int 1643 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1644 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1645 int *direntflags, pathname_t *realpnp) 1646 { 1647 int error; 1648 vnode_t *vp; 1649 vnode_t *avp = NULL; 1650 rnode_t *drp; 1651 1652 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1653 return (EPERM); 1654 1655 drp = VTOR(dvp); 1656 1657 /* 1658 * Are we looking up extended attributes? If so, "dvp" is 1659 * the file or directory for which we want attributes, and 1660 * we need a lookup of the hidden attribute directory 1661 * before we lookup the rest of the path. 1662 */ 1663 if (flags & LOOKUP_XATTR) { 1664 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1665 mntinfo_t *mi; 1666 1667 mi = VTOMI(dvp); 1668 if (!(mi->mi_flags & MI_EXTATTR)) 1669 return (EINVAL); 1670 1671 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1672 return (EINTR); 1673 1674 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1675 if (avp == NULL) 1676 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1677 else 1678 error = 0; 1679 1680 nfs_rw_exit(&drp->r_rwlock); 1681 1682 if (error) { 1683 if (mi->mi_flags & MI_EXTATTR) 1684 return (error); 1685 return (EINVAL); 1686 } 1687 dvp = avp; 1688 drp = VTOR(dvp); 1689 } 1690 1691 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1692 error = EINTR; 1693 goto out; 1694 } 1695 1696 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1697 1698 nfs_rw_exit(&drp->r_rwlock); 1699 1700 /* 1701 * If vnode is a device, create special vnode. 1702 */ 1703 if (!error && IS_DEVVP(*vpp)) { 1704 vp = *vpp; 1705 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1706 VN_RELE(vp); 1707 } 1708 1709 out: 1710 if (avp != NULL) 1711 VN_RELE(avp); 1712 1713 return (error); 1714 } 1715 1716 static int nfs_lookup_neg_cache = 1; 1717 1718 #ifdef DEBUG 1719 static int nfs_lookup_dnlc_hits = 0; 1720 static int nfs_lookup_dnlc_misses = 0; 1721 static int nfs_lookup_dnlc_neg_hits = 0; 1722 static int nfs_lookup_dnlc_disappears = 0; 1723 static int nfs_lookup_dnlc_lookups = 0; 1724 #endif 1725 1726 /* ARGSUSED */ 1727 int 1728 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1729 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1730 { 1731 int error; 1732 1733 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1734 1735 /* 1736 * If lookup is for "", just return dvp. Don't need 1737 * to send it over the wire, look it up in the dnlc, 1738 * or perform any access checks. 1739 */ 1740 if (*nm == '\0') { 1741 VN_HOLD(dvp); 1742 *vpp = dvp; 1743 return (0); 1744 } 1745 1746 /* 1747 * Can't do lookups in non-directories. 1748 */ 1749 if (dvp->v_type != VDIR) 1750 return (ENOTDIR); 1751 1752 /* 1753 * If we're called with RFSCALL_SOFT, it's important that 1754 * the only rfscall is one we make directly; if we permit 1755 * an access call because we're looking up "." or validating 1756 * a dnlc hit, we'll deadlock because that rfscall will not 1757 * have the RFSCALL_SOFT set. 1758 */ 1759 if (rfscall_flags & RFSCALL_SOFT) 1760 goto callit; 1761 1762 /* 1763 * If lookup is for ".", just return dvp. Don't need 1764 * to send it over the wire or look it up in the dnlc, 1765 * just need to check access. 1766 */ 1767 if (strcmp(nm, ".") == 0) { 1768 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1769 if (error) 1770 return (error); 1771 VN_HOLD(dvp); 1772 *vpp = dvp; 1773 return (0); 1774 } 1775 1776 /* 1777 * Lookup this name in the DNLC. If there was a valid entry, 1778 * then return the results of the lookup. 1779 */ 1780 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1781 if (error || *vpp != NULL) 1782 return (error); 1783 1784 callit: 1785 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1786 1787 return (error); 1788 } 1789 1790 static int 1791 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1792 { 1793 int error; 1794 vnode_t *vp; 1795 1796 ASSERT(*nm != '\0'); 1797 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1798 1799 /* 1800 * Lookup this name in the DNLC. If successful, then validate 1801 * the caches and then recheck the DNLC. The DNLC is rechecked 1802 * just in case this entry got invalidated during the call 1803 * to nfs_validate_caches. 1804 * 1805 * An assumption is being made that it is safe to say that a 1806 * file exists which may not on the server. Any operations to 1807 * the server will fail with ESTALE. 1808 */ 1809 #ifdef DEBUG 1810 nfs_lookup_dnlc_lookups++; 1811 #endif 1812 vp = dnlc_lookup(dvp, nm); 1813 if (vp != NULL) { 1814 VN_RELE(vp); 1815 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1816 PURGE_ATTRCACHE(dvp); 1817 } 1818 error = nfs_validate_caches(dvp, cr); 1819 if (error) 1820 return (error); 1821 vp = dnlc_lookup(dvp, nm); 1822 if (vp != NULL) { 1823 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1824 if (error) { 1825 VN_RELE(vp); 1826 return (error); 1827 } 1828 if (vp == DNLC_NO_VNODE) { 1829 VN_RELE(vp); 1830 #ifdef DEBUG 1831 nfs_lookup_dnlc_neg_hits++; 1832 #endif 1833 return (ENOENT); 1834 } 1835 *vpp = vp; 1836 #ifdef DEBUG 1837 nfs_lookup_dnlc_hits++; 1838 #endif 1839 return (0); 1840 } 1841 #ifdef DEBUG 1842 nfs_lookup_dnlc_disappears++; 1843 #endif 1844 } 1845 #ifdef DEBUG 1846 else 1847 nfs_lookup_dnlc_misses++; 1848 #endif 1849 1850 *vpp = NULL; 1851 1852 return (0); 1853 } 1854 1855 static int 1856 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1857 int rfscall_flags) 1858 { 1859 int error; 1860 struct nfsdiropargs da; 1861 struct nfsdiropres dr; 1862 int douprintf; 1863 failinfo_t fi; 1864 hrtime_t t; 1865 1866 ASSERT(*nm != '\0'); 1867 ASSERT(dvp->v_type == VDIR); 1868 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1869 1870 setdiropargs(&da, nm, dvp); 1871 1872 fi.vp = dvp; 1873 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1874 fi.copyproc = nfscopyfh; 1875 fi.lookupproc = nfslookup; 1876 fi.xattrdirproc = acl_getxattrdir2; 1877 1878 douprintf = 1; 1879 1880 t = gethrtime(); 1881 1882 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1883 xdr_diropargs, (caddr_t)&da, 1884 xdr_diropres, (caddr_t)&dr, cr, 1885 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1886 1887 if (!error) { 1888 error = geterrno(dr.dr_status); 1889 if (!error) { 1890 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1891 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1892 /* 1893 * If NFS_ACL is supported on the server, then the 1894 * attributes returned by server may have minimal 1895 * permissions sometimes denying access to users having 1896 * proper access. To get the proper attributes, mark 1897 * the attributes as expired so that they will be 1898 * regotten via the NFS_ACL GETATTR2 procedure. 1899 */ 1900 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1901 PURGE_ATTRCACHE(*vpp); 1902 } 1903 if (!(rfscall_flags & RFSCALL_SOFT)) 1904 dnlc_update(dvp, nm, *vpp); 1905 } else { 1906 PURGE_STALE_FH(error, dvp, cr); 1907 if (error == ENOENT && nfs_lookup_neg_cache) 1908 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1909 } 1910 } 1911 1912 return (error); 1913 } 1914 1915 /* ARGSUSED */ 1916 static int 1917 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1918 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1919 vsecattr_t *vsecp) 1920 { 1921 int error; 1922 struct nfscreatargs args; 1923 struct nfsdiropres dr; 1924 int douprintf; 1925 vnode_t *vp; 1926 rnode_t *rp; 1927 struct vattr vattr; 1928 rnode_t *drp; 1929 vnode_t *tempvp; 1930 hrtime_t t; 1931 1932 drp = VTOR(dvp); 1933 1934 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1935 return (EPERM); 1936 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1937 return (EINTR); 1938 1939 /* 1940 * We make a copy of the attributes because the caller does not 1941 * expect us to change what va points to. 1942 */ 1943 vattr = *va; 1944 1945 /* 1946 * If the pathname is "", just use dvp. Don't need 1947 * to send it over the wire, look it up in the dnlc, 1948 * or perform any access checks. 1949 */ 1950 if (*nm == '\0') { 1951 error = 0; 1952 VN_HOLD(dvp); 1953 vp = dvp; 1954 /* 1955 * If the pathname is ".", just use dvp. Don't need 1956 * to send it over the wire or look it up in the dnlc, 1957 * just need to check access. 1958 */ 1959 } else if (strcmp(nm, ".") == 0) { 1960 error = nfs_access(dvp, VEXEC, 0, cr, ct); 1961 if (error) { 1962 nfs_rw_exit(&drp->r_rwlock); 1963 return (error); 1964 } 1965 VN_HOLD(dvp); 1966 vp = dvp; 1967 /* 1968 * We need to go over the wire, just to be sure whether the 1969 * file exists or not. Using the DNLC can be dangerous in 1970 * this case when making a decision regarding existence. 1971 */ 1972 } else { 1973 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1974 } 1975 if (!error) { 1976 if (exclusive == EXCL) 1977 error = EEXIST; 1978 else if (vp->v_type == VDIR && (mode & VWRITE)) 1979 error = EISDIR; 1980 else { 1981 /* 1982 * If vnode is a device, create special vnode. 1983 */ 1984 if (IS_DEVVP(vp)) { 1985 tempvp = vp; 1986 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1987 VN_RELE(tempvp); 1988 } 1989 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 1990 if ((vattr.va_mask & AT_SIZE) && 1991 vp->v_type == VREG) { 1992 vattr.va_mask = AT_SIZE; 1993 error = nfssetattr(vp, &vattr, 0, cr); 1994 } 1995 } 1996 } 1997 nfs_rw_exit(&drp->r_rwlock); 1998 if (error) { 1999 VN_RELE(vp); 2000 } else { 2001 /* 2002 * existing file got truncated, notify. 2003 */ 2004 vnevent_create(vp, ct); 2005 *vpp = vp; 2006 } 2007 return (error); 2008 } 2009 2010 ASSERT(vattr.va_mask & AT_TYPE); 2011 if (vattr.va_type == VREG) { 2012 ASSERT(vattr.va_mask & AT_MODE); 2013 if (MANDMODE(vattr.va_mode)) { 2014 nfs_rw_exit(&drp->r_rwlock); 2015 return (EACCES); 2016 } 2017 } 2018 2019 dnlc_remove(dvp, nm); 2020 2021 setdiropargs(&args.ca_da, nm, dvp); 2022 2023 /* 2024 * Decide what the group-id of the created file should be. 2025 * Set it in attribute list as advisory...then do a setattr 2026 * if the server didn't get it right the first time. 2027 */ 2028 error = setdirgid(dvp, &vattr.va_gid, cr); 2029 if (error) { 2030 nfs_rw_exit(&drp->r_rwlock); 2031 return (error); 2032 } 2033 vattr.va_mask |= AT_GID; 2034 2035 /* 2036 * This is a completely gross hack to make mknod 2037 * work over the wire until we can wack the protocol 2038 */ 2039 #define IFCHR 0020000 /* character special */ 2040 #define IFBLK 0060000 /* block special */ 2041 #define IFSOCK 0140000 /* socket */ 2042 2043 /* 2044 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2045 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2046 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2047 * minor/major numbers <= 8 bits long, compress the device 2048 * number before sending it. Otherwise, the 4.x server will not 2049 * create the device with the correct device number and nothing can be 2050 * done about this. 2051 */ 2052 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2053 dev_t d = vattr.va_rdev; 2054 dev32_t dev32; 2055 2056 if (vattr.va_type == VCHR) 2057 vattr.va_mode |= IFCHR; 2058 else 2059 vattr.va_mode |= IFBLK; 2060 2061 (void) cmpldev(&dev32, d); 2062 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2063 vattr.va_size = (u_offset_t)dev32; 2064 else 2065 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2066 2067 vattr.va_mask |= AT_MODE|AT_SIZE; 2068 } else if (vattr.va_type == VFIFO) { 2069 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2070 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2071 vattr.va_mask |= AT_MODE|AT_SIZE; 2072 } else if (vattr.va_type == VSOCK) { 2073 vattr.va_mode |= IFSOCK; 2074 /* 2075 * To avoid triggering bugs in the servers set AT_SIZE 2076 * (all other RFS_CREATE calls set this). 2077 */ 2078 vattr.va_size = 0; 2079 vattr.va_mask |= AT_MODE|AT_SIZE; 2080 } 2081 2082 args.ca_sa = &args.ca_sa_buf; 2083 error = vattr_to_sattr(&vattr, args.ca_sa); 2084 if (error) { 2085 /* req time field(s) overflow - return immediately */ 2086 nfs_rw_exit(&drp->r_rwlock); 2087 return (error); 2088 } 2089 2090 douprintf = 1; 2091 2092 t = gethrtime(); 2093 2094 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2095 xdr_creatargs, (caddr_t)&args, 2096 xdr_diropres, (caddr_t)&dr, cr, 2097 &douprintf, &dr.dr_status, 0, NULL); 2098 2099 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2100 2101 if (!error) { 2102 error = geterrno(dr.dr_status); 2103 if (!error) { 2104 if (HAVE_RDDIR_CACHE(drp)) 2105 nfs_purge_rddir_cache(dvp); 2106 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2107 dvp->v_vfsp, t, cr, NULL, NULL); 2108 /* 2109 * If NFS_ACL is supported on the server, then the 2110 * attributes returned by server may have minimal 2111 * permissions sometimes denying access to users having 2112 * proper access. To get the proper attributes, mark 2113 * the attributes as expired so that they will be 2114 * regotten via the NFS_ACL GETATTR2 procedure. 2115 */ 2116 if (VTOMI(vp)->mi_flags & MI_ACL) { 2117 PURGE_ATTRCACHE(vp); 2118 } 2119 dnlc_update(dvp, nm, vp); 2120 rp = VTOR(vp); 2121 if (vattr.va_size == 0) { 2122 mutex_enter(&rp->r_statelock); 2123 rp->r_size = 0; 2124 mutex_exit(&rp->r_statelock); 2125 if (vn_has_cached_data(vp)) { 2126 ASSERT(vp->v_type != VCHR); 2127 nfs_invalidate_pages(vp, 2128 (u_offset_t)0, cr); 2129 } 2130 } 2131 2132 /* 2133 * Make sure the gid was set correctly. 2134 * If not, try to set it (but don't lose 2135 * any sleep over it). 2136 */ 2137 if (vattr.va_gid != rp->r_attr.va_gid) { 2138 vattr.va_mask = AT_GID; 2139 (void) nfssetattr(vp, &vattr, 0, cr); 2140 } 2141 2142 /* 2143 * If vnode is a device create special vnode 2144 */ 2145 if (IS_DEVVP(vp)) { 2146 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2147 VN_RELE(vp); 2148 } else 2149 *vpp = vp; 2150 } else { 2151 PURGE_STALE_FH(error, dvp, cr); 2152 } 2153 } 2154 2155 nfs_rw_exit(&drp->r_rwlock); 2156 2157 return (error); 2158 } 2159 2160 /* 2161 * Weirdness: if the vnode to be removed is open 2162 * we rename it instead of removing it and nfs_inactive 2163 * will remove the new name. 2164 */ 2165 /* ARGSUSED */ 2166 static int 2167 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2168 { 2169 int error; 2170 struct nfsdiropargs da; 2171 enum nfsstat status; 2172 vnode_t *vp; 2173 char *tmpname; 2174 int douprintf; 2175 rnode_t *rp; 2176 rnode_t *drp; 2177 2178 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2179 return (EPERM); 2180 drp = VTOR(dvp); 2181 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2182 return (EINTR); 2183 2184 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2185 if (error) { 2186 nfs_rw_exit(&drp->r_rwlock); 2187 return (error); 2188 } 2189 2190 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2191 VN_RELE(vp); 2192 nfs_rw_exit(&drp->r_rwlock); 2193 return (EPERM); 2194 } 2195 2196 /* 2197 * First just remove the entry from the name cache, as it 2198 * is most likely the only entry for this vp. 2199 */ 2200 dnlc_remove(dvp, nm); 2201 2202 /* 2203 * If the file has a v_count > 1 then there may be more than one 2204 * entry in the name cache due multiple links or an open file, 2205 * but we don't have the real reference count so flush all 2206 * possible entries. 2207 */ 2208 if (vp->v_count > 1) 2209 dnlc_purge_vp(vp); 2210 2211 /* 2212 * Now we have the real reference count on the vnode 2213 */ 2214 rp = VTOR(vp); 2215 mutex_enter(&rp->r_statelock); 2216 if (vp->v_count > 1 && 2217 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2218 mutex_exit(&rp->r_statelock); 2219 tmpname = newname(); 2220 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2221 if (error) 2222 kmem_free(tmpname, MAXNAMELEN); 2223 else { 2224 mutex_enter(&rp->r_statelock); 2225 if (rp->r_unldvp == NULL) { 2226 VN_HOLD(dvp); 2227 rp->r_unldvp = dvp; 2228 if (rp->r_unlcred != NULL) 2229 crfree(rp->r_unlcred); 2230 crhold(cr); 2231 rp->r_unlcred = cr; 2232 rp->r_unlname = tmpname; 2233 } else { 2234 kmem_free(rp->r_unlname, MAXNAMELEN); 2235 rp->r_unlname = tmpname; 2236 } 2237 mutex_exit(&rp->r_statelock); 2238 } 2239 } else { 2240 mutex_exit(&rp->r_statelock); 2241 /* 2242 * We need to flush any dirty pages which happen to 2243 * be hanging around before removing the file. This 2244 * shouldn't happen very often and mostly on file 2245 * systems mounted "nocto". 2246 */ 2247 if (vn_has_cached_data(vp) && 2248 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2249 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2250 if (error && (error == ENOSPC || error == EDQUOT)) { 2251 mutex_enter(&rp->r_statelock); 2252 if (!rp->r_error) 2253 rp->r_error = error; 2254 mutex_exit(&rp->r_statelock); 2255 } 2256 } 2257 2258 setdiropargs(&da, nm, dvp); 2259 2260 douprintf = 1; 2261 2262 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2263 xdr_diropargs, (caddr_t)&da, 2264 xdr_enum, (caddr_t)&status, cr, 2265 &douprintf, &status, 0, NULL); 2266 2267 /* 2268 * The xattr dir may be gone after last attr is removed, 2269 * so flush it from dnlc. 2270 */ 2271 if (dvp->v_flag & V_XATTRDIR) 2272 dnlc_purge_vp(dvp); 2273 2274 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2275 PURGE_ATTRCACHE(vp); /* link count changed */ 2276 2277 if (!error) { 2278 error = geterrno(status); 2279 if (!error) { 2280 if (HAVE_RDDIR_CACHE(drp)) 2281 nfs_purge_rddir_cache(dvp); 2282 } else { 2283 PURGE_STALE_FH(error, dvp, cr); 2284 } 2285 } 2286 } 2287 2288 if (error == 0) { 2289 vnevent_remove(vp, dvp, nm, ct); 2290 } 2291 VN_RELE(vp); 2292 2293 nfs_rw_exit(&drp->r_rwlock); 2294 2295 return (error); 2296 } 2297 2298 /* ARGSUSED */ 2299 static int 2300 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2301 caller_context_t *ct, int flags) 2302 { 2303 int error; 2304 struct nfslinkargs args; 2305 enum nfsstat status; 2306 vnode_t *realvp; 2307 int douprintf; 2308 rnode_t *tdrp; 2309 2310 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2311 return (EPERM); 2312 if (VOP_REALVP(svp, &realvp, ct) == 0) 2313 svp = realvp; 2314 2315 args.la_from = VTOFH(svp); 2316 setdiropargs(&args.la_to, tnm, tdvp); 2317 2318 tdrp = VTOR(tdvp); 2319 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2320 return (EINTR); 2321 2322 dnlc_remove(tdvp, tnm); 2323 2324 douprintf = 1; 2325 2326 error = rfs2call(VTOMI(svp), RFS_LINK, 2327 xdr_linkargs, (caddr_t)&args, 2328 xdr_enum, (caddr_t)&status, cr, 2329 &douprintf, &status, 0, NULL); 2330 2331 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2332 PURGE_ATTRCACHE(svp); /* link count changed */ 2333 2334 if (!error) { 2335 error = geterrno(status); 2336 if (!error) { 2337 if (HAVE_RDDIR_CACHE(tdrp)) 2338 nfs_purge_rddir_cache(tdvp); 2339 } 2340 } 2341 2342 nfs_rw_exit(&tdrp->r_rwlock); 2343 2344 if (!error) { 2345 /* 2346 * Notify the source file of this link operation. 2347 */ 2348 vnevent_link(svp, ct); 2349 } 2350 return (error); 2351 } 2352 2353 /* ARGSUSED */ 2354 static int 2355 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2356 caller_context_t *ct, int flags) 2357 { 2358 vnode_t *realvp; 2359 2360 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2361 return (EPERM); 2362 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2363 ndvp = realvp; 2364 2365 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2366 } 2367 2368 /* 2369 * nfsrename does the real work of renaming in NFS Version 2. 2370 */ 2371 static int 2372 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2373 caller_context_t *ct) 2374 { 2375 int error; 2376 enum nfsstat status; 2377 struct nfsrnmargs args; 2378 int douprintf; 2379 vnode_t *nvp = NULL; 2380 vnode_t *ovp = NULL; 2381 char *tmpname; 2382 rnode_t *rp; 2383 rnode_t *odrp; 2384 rnode_t *ndrp; 2385 2386 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2387 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2388 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2389 return (EINVAL); 2390 2391 odrp = VTOR(odvp); 2392 ndrp = VTOR(ndvp); 2393 if ((intptr_t)odrp < (intptr_t)ndrp) { 2394 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2395 return (EINTR); 2396 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2397 nfs_rw_exit(&odrp->r_rwlock); 2398 return (EINTR); 2399 } 2400 } else { 2401 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2402 return (EINTR); 2403 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2404 nfs_rw_exit(&ndrp->r_rwlock); 2405 return (EINTR); 2406 } 2407 } 2408 2409 /* 2410 * Lookup the target file. If it exists, it needs to be 2411 * checked to see whether it is a mount point and whether 2412 * it is active (open). 2413 */ 2414 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2415 if (!error) { 2416 /* 2417 * If this file has been mounted on, then just 2418 * return busy because renaming to it would remove 2419 * the mounted file system from the name space. 2420 */ 2421 if (vn_mountedvfs(nvp) != NULL) { 2422 VN_RELE(nvp); 2423 nfs_rw_exit(&odrp->r_rwlock); 2424 nfs_rw_exit(&ndrp->r_rwlock); 2425 return (EBUSY); 2426 } 2427 2428 /* 2429 * Purge the name cache of all references to this vnode 2430 * so that we can check the reference count to infer 2431 * whether it is active or not. 2432 */ 2433 /* 2434 * First just remove the entry from the name cache, as it 2435 * is most likely the only entry for this vp. 2436 */ 2437 dnlc_remove(ndvp, nnm); 2438 /* 2439 * If the file has a v_count > 1 then there may be more 2440 * than one entry in the name cache due multiple links 2441 * or an open file, but we don't have the real reference 2442 * count so flush all possible entries. 2443 */ 2444 if (nvp->v_count > 1) 2445 dnlc_purge_vp(nvp); 2446 2447 /* 2448 * If the vnode is active and is not a directory, 2449 * arrange to rename it to a 2450 * temporary file so that it will continue to be 2451 * accessible. This implements the "unlink-open-file" 2452 * semantics for the target of a rename operation. 2453 * Before doing this though, make sure that the 2454 * source and target files are not already the same. 2455 */ 2456 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2457 /* 2458 * Lookup the source name. 2459 */ 2460 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2461 cr, 0); 2462 2463 /* 2464 * The source name *should* already exist. 2465 */ 2466 if (error) { 2467 VN_RELE(nvp); 2468 nfs_rw_exit(&odrp->r_rwlock); 2469 nfs_rw_exit(&ndrp->r_rwlock); 2470 return (error); 2471 } 2472 2473 /* 2474 * Compare the two vnodes. If they are the same, 2475 * just release all held vnodes and return success. 2476 */ 2477 if (ovp == nvp) { 2478 VN_RELE(ovp); 2479 VN_RELE(nvp); 2480 nfs_rw_exit(&odrp->r_rwlock); 2481 nfs_rw_exit(&ndrp->r_rwlock); 2482 return (0); 2483 } 2484 2485 /* 2486 * Can't mix and match directories and non- 2487 * directories in rename operations. We already 2488 * know that the target is not a directory. If 2489 * the source is a directory, return an error. 2490 */ 2491 if (ovp->v_type == VDIR) { 2492 VN_RELE(ovp); 2493 VN_RELE(nvp); 2494 nfs_rw_exit(&odrp->r_rwlock); 2495 nfs_rw_exit(&ndrp->r_rwlock); 2496 return (ENOTDIR); 2497 } 2498 2499 /* 2500 * The target file exists, is not the same as 2501 * the source file, and is active. Link it 2502 * to a temporary filename to avoid having 2503 * the server removing the file completely. 2504 */ 2505 tmpname = newname(); 2506 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2507 if (error == EOPNOTSUPP) { 2508 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2509 cr, NULL, 0); 2510 } 2511 if (error) { 2512 kmem_free(tmpname, MAXNAMELEN); 2513 VN_RELE(ovp); 2514 VN_RELE(nvp); 2515 nfs_rw_exit(&odrp->r_rwlock); 2516 nfs_rw_exit(&ndrp->r_rwlock); 2517 return (error); 2518 } 2519 rp = VTOR(nvp); 2520 mutex_enter(&rp->r_statelock); 2521 if (rp->r_unldvp == NULL) { 2522 VN_HOLD(ndvp); 2523 rp->r_unldvp = ndvp; 2524 if (rp->r_unlcred != NULL) 2525 crfree(rp->r_unlcred); 2526 crhold(cr); 2527 rp->r_unlcred = cr; 2528 rp->r_unlname = tmpname; 2529 } else { 2530 kmem_free(rp->r_unlname, MAXNAMELEN); 2531 rp->r_unlname = tmpname; 2532 } 2533 mutex_exit(&rp->r_statelock); 2534 } 2535 } 2536 2537 if (ovp == NULL) { 2538 /* 2539 * When renaming directories to be a subdirectory of a 2540 * different parent, the dnlc entry for ".." will no 2541 * longer be valid, so it must be removed. 2542 * 2543 * We do a lookup here to determine whether we are renaming 2544 * a directory and we need to check if we are renaming 2545 * an unlinked file. This might have already been done 2546 * in previous code, so we check ovp == NULL to avoid 2547 * doing it twice. 2548 */ 2549 2550 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2551 2552 /* 2553 * The source name *should* already exist. 2554 */ 2555 if (error) { 2556 nfs_rw_exit(&odrp->r_rwlock); 2557 nfs_rw_exit(&ndrp->r_rwlock); 2558 if (nvp) { 2559 VN_RELE(nvp); 2560 } 2561 return (error); 2562 } 2563 ASSERT(ovp != NULL); 2564 } 2565 2566 dnlc_remove(odvp, onm); 2567 dnlc_remove(ndvp, nnm); 2568 2569 setdiropargs(&args.rna_from, onm, odvp); 2570 setdiropargs(&args.rna_to, nnm, ndvp); 2571 2572 douprintf = 1; 2573 2574 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2575 xdr_rnmargs, (caddr_t)&args, 2576 xdr_enum, (caddr_t)&status, cr, 2577 &douprintf, &status, 0, NULL); 2578 2579 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2580 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2581 2582 if (!error) { 2583 error = geterrno(status); 2584 if (!error) { 2585 if (HAVE_RDDIR_CACHE(odrp)) 2586 nfs_purge_rddir_cache(odvp); 2587 if (HAVE_RDDIR_CACHE(ndrp)) 2588 nfs_purge_rddir_cache(ndvp); 2589 /* 2590 * when renaming directories to be a subdirectory of a 2591 * different parent, the dnlc entry for ".." will no 2592 * longer be valid, so it must be removed 2593 */ 2594 rp = VTOR(ovp); 2595 if (ndvp != odvp) { 2596 if (ovp->v_type == VDIR) { 2597 dnlc_remove(ovp, ".."); 2598 if (HAVE_RDDIR_CACHE(rp)) 2599 nfs_purge_rddir_cache(ovp); 2600 } 2601 } 2602 2603 /* 2604 * If we are renaming the unlinked file, update the 2605 * r_unldvp and r_unlname as needed. 2606 */ 2607 mutex_enter(&rp->r_statelock); 2608 if (rp->r_unldvp != NULL) { 2609 if (strcmp(rp->r_unlname, onm) == 0) { 2610 (void) strncpy(rp->r_unlname, 2611 nnm, MAXNAMELEN); 2612 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2613 2614 if (ndvp != rp->r_unldvp) { 2615 VN_RELE(rp->r_unldvp); 2616 rp->r_unldvp = ndvp; 2617 VN_HOLD(ndvp); 2618 } 2619 } 2620 } 2621 mutex_exit(&rp->r_statelock); 2622 } else { 2623 /* 2624 * System V defines rename to return EEXIST, not 2625 * ENOTEMPTY if the target directory is not empty. 2626 * Over the wire, the error is NFSERR_ENOTEMPTY 2627 * which geterrno maps to ENOTEMPTY. 2628 */ 2629 if (error == ENOTEMPTY) 2630 error = EEXIST; 2631 } 2632 } 2633 2634 if (error == 0) { 2635 if (nvp) 2636 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2637 2638 if (odvp != ndvp) 2639 vnevent_rename_dest_dir(ndvp, ct); 2640 2641 ASSERT(ovp != NULL); 2642 vnevent_rename_src(ovp, odvp, onm, ct); 2643 } 2644 2645 if (nvp) { 2646 VN_RELE(nvp); 2647 } 2648 VN_RELE(ovp); 2649 2650 nfs_rw_exit(&odrp->r_rwlock); 2651 nfs_rw_exit(&ndrp->r_rwlock); 2652 2653 return (error); 2654 } 2655 2656 /* ARGSUSED */ 2657 static int 2658 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2659 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2660 { 2661 int error; 2662 struct nfscreatargs args; 2663 struct nfsdiropres dr; 2664 int douprintf; 2665 rnode_t *drp; 2666 hrtime_t t; 2667 2668 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2669 return (EPERM); 2670 2671 setdiropargs(&args.ca_da, nm, dvp); 2672 2673 /* 2674 * Decide what the group-id and set-gid bit of the created directory 2675 * should be. May have to do a setattr to get the gid right. 2676 */ 2677 error = setdirgid(dvp, &va->va_gid, cr); 2678 if (error) 2679 return (error); 2680 error = setdirmode(dvp, &va->va_mode, cr); 2681 if (error) 2682 return (error); 2683 va->va_mask |= AT_MODE|AT_GID; 2684 2685 args.ca_sa = &args.ca_sa_buf; 2686 error = vattr_to_sattr(va, args.ca_sa); 2687 if (error) { 2688 /* req time field(s) overflow - return immediately */ 2689 return (error); 2690 } 2691 2692 drp = VTOR(dvp); 2693 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2694 return (EINTR); 2695 2696 dnlc_remove(dvp, nm); 2697 2698 douprintf = 1; 2699 2700 t = gethrtime(); 2701 2702 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2703 xdr_creatargs, (caddr_t)&args, 2704 xdr_diropres, (caddr_t)&dr, cr, 2705 &douprintf, &dr.dr_status, 0, NULL); 2706 2707 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2708 2709 if (!error) { 2710 error = geterrno(dr.dr_status); 2711 if (!error) { 2712 if (HAVE_RDDIR_CACHE(drp)) 2713 nfs_purge_rddir_cache(dvp); 2714 /* 2715 * The attributes returned by RFS_MKDIR can not 2716 * be depended upon, so mark the attribute cache 2717 * as purged. A subsequent GETATTR will get the 2718 * correct attributes from the server. 2719 */ 2720 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2721 dvp->v_vfsp, t, cr, NULL, NULL); 2722 PURGE_ATTRCACHE(*vpp); 2723 dnlc_update(dvp, nm, *vpp); 2724 2725 /* 2726 * Make sure the gid was set correctly. 2727 * If not, try to set it (but don't lose 2728 * any sleep over it). 2729 */ 2730 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2731 va->va_mask = AT_GID; 2732 (void) nfssetattr(*vpp, va, 0, cr); 2733 } 2734 } else { 2735 PURGE_STALE_FH(error, dvp, cr); 2736 } 2737 } 2738 2739 nfs_rw_exit(&drp->r_rwlock); 2740 2741 return (error); 2742 } 2743 2744 /* ARGSUSED */ 2745 static int 2746 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2747 caller_context_t *ct, int flags) 2748 { 2749 int error; 2750 enum nfsstat status; 2751 struct nfsdiropargs da; 2752 vnode_t *vp; 2753 int douprintf; 2754 rnode_t *drp; 2755 2756 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2757 return (EPERM); 2758 drp = VTOR(dvp); 2759 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2760 return (EINTR); 2761 2762 /* 2763 * Attempt to prevent a rmdir(".") from succeeding. 2764 */ 2765 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2766 if (error) { 2767 nfs_rw_exit(&drp->r_rwlock); 2768 return (error); 2769 } 2770 2771 if (vp == cdir) { 2772 VN_RELE(vp); 2773 nfs_rw_exit(&drp->r_rwlock); 2774 return (EINVAL); 2775 } 2776 2777 setdiropargs(&da, nm, dvp); 2778 2779 /* 2780 * First just remove the entry from the name cache, as it 2781 * is most likely an entry for this vp. 2782 */ 2783 dnlc_remove(dvp, nm); 2784 2785 /* 2786 * If there vnode reference count is greater than one, then 2787 * there may be additional references in the DNLC which will 2788 * need to be purged. First, trying removing the entry for 2789 * the parent directory and see if that removes the additional 2790 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2791 * to completely remove any references to the directory which 2792 * might still exist in the DNLC. 2793 */ 2794 if (vp->v_count > 1) { 2795 dnlc_remove(vp, ".."); 2796 if (vp->v_count > 1) 2797 dnlc_purge_vp(vp); 2798 } 2799 2800 douprintf = 1; 2801 2802 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2803 xdr_diropargs, (caddr_t)&da, 2804 xdr_enum, (caddr_t)&status, cr, 2805 &douprintf, &status, 0, NULL); 2806 2807 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2808 2809 if (error) { 2810 VN_RELE(vp); 2811 nfs_rw_exit(&drp->r_rwlock); 2812 return (error); 2813 } 2814 2815 error = geterrno(status); 2816 if (!error) { 2817 if (HAVE_RDDIR_CACHE(drp)) 2818 nfs_purge_rddir_cache(dvp); 2819 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2820 nfs_purge_rddir_cache(vp); 2821 } else { 2822 PURGE_STALE_FH(error, dvp, cr); 2823 /* 2824 * System V defines rmdir to return EEXIST, not 2825 * ENOTEMPTY if the directory is not empty. Over 2826 * the wire, the error is NFSERR_ENOTEMPTY which 2827 * geterrno maps to ENOTEMPTY. 2828 */ 2829 if (error == ENOTEMPTY) 2830 error = EEXIST; 2831 } 2832 2833 if (error == 0) { 2834 vnevent_rmdir(vp, dvp, nm, ct); 2835 } 2836 VN_RELE(vp); 2837 2838 nfs_rw_exit(&drp->r_rwlock); 2839 2840 return (error); 2841 } 2842 2843 /* ARGSUSED */ 2844 static int 2845 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2846 caller_context_t *ct, int flags) 2847 { 2848 int error; 2849 struct nfsslargs args; 2850 enum nfsstat status; 2851 int douprintf; 2852 rnode_t *drp; 2853 2854 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2855 return (EPERM); 2856 setdiropargs(&args.sla_from, lnm, dvp); 2857 args.sla_sa = &args.sla_sa_buf; 2858 error = vattr_to_sattr(tva, args.sla_sa); 2859 if (error) { 2860 /* req time field(s) overflow - return immediately */ 2861 return (error); 2862 } 2863 args.sla_tnm = tnm; 2864 2865 drp = VTOR(dvp); 2866 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2867 return (EINTR); 2868 2869 dnlc_remove(dvp, lnm); 2870 2871 douprintf = 1; 2872 2873 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2874 xdr_slargs, (caddr_t)&args, 2875 xdr_enum, (caddr_t)&status, cr, 2876 &douprintf, &status, 0, NULL); 2877 2878 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2879 2880 if (!error) { 2881 error = geterrno(status); 2882 if (!error) { 2883 if (HAVE_RDDIR_CACHE(drp)) 2884 nfs_purge_rddir_cache(dvp); 2885 } else { 2886 PURGE_STALE_FH(error, dvp, cr); 2887 } 2888 } 2889 2890 nfs_rw_exit(&drp->r_rwlock); 2891 2892 return (error); 2893 } 2894 2895 #ifdef DEBUG 2896 static int nfs_readdir_cache_hits = 0; 2897 static int nfs_readdir_cache_shorts = 0; 2898 static int nfs_readdir_cache_waits = 0; 2899 static int nfs_readdir_cache_misses = 0; 2900 static int nfs_readdir_readahead = 0; 2901 #endif 2902 2903 static int nfs_shrinkreaddir = 0; 2904 2905 /* 2906 * Read directory entries. 2907 * There are some weird things to look out for here. The uio_offset 2908 * field is either 0 or it is the offset returned from a previous 2909 * readdir. It is an opaque value used by the server to find the 2910 * correct directory block to read. The count field is the number 2911 * of blocks to read on the server. This is advisory only, the server 2912 * may return only one block's worth of entries. Entries may be compressed 2913 * on the server. 2914 */ 2915 /* ARGSUSED */ 2916 static int 2917 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2918 caller_context_t *ct, int flags) 2919 { 2920 int error; 2921 size_t count; 2922 rnode_t *rp; 2923 rddir_cache *rdc; 2924 rddir_cache *nrdc; 2925 rddir_cache *rrdc; 2926 #ifdef DEBUG 2927 int missed; 2928 #endif 2929 rddir_cache srdc; 2930 avl_index_t where; 2931 2932 rp = VTOR(vp); 2933 2934 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2935 if (nfs_zone() != VTOMI(vp)->mi_zone) 2936 return (EIO); 2937 /* 2938 * Make sure that the directory cache is valid. 2939 */ 2940 if (HAVE_RDDIR_CACHE(rp)) { 2941 if (nfs_disable_rddir_cache) { 2942 /* 2943 * Setting nfs_disable_rddir_cache in /etc/system 2944 * allows interoperability with servers that do not 2945 * properly update the attributes of directories. 2946 * Any cached information gets purged before an 2947 * access is made to it. 2948 */ 2949 nfs_purge_rddir_cache(vp); 2950 } else { 2951 error = nfs_validate_caches(vp, cr); 2952 if (error) 2953 return (error); 2954 } 2955 } 2956 2957 /* 2958 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2959 * RFS_READDIR request with rda_count set to more than 0x400. So 2960 * we reduce the request size here purely for compatibility. 2961 * 2962 * In general, this is no longer required. However, if a server 2963 * is discovered which can not handle requests larger than 1024, 2964 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2965 * compatibility. 2966 * 2967 * In any case, the request size is limited to NFS_MAXDATA bytes. 2968 */ 2969 count = MIN(uiop->uio_iov->iov_len, 2970 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2971 2972 nrdc = NULL; 2973 #ifdef DEBUG 2974 missed = 0; 2975 #endif 2976 top: 2977 /* 2978 * Short circuit last readdir which always returns 0 bytes. 2979 * This can be done after the directory has been read through 2980 * completely at least once. This will set r_direof which 2981 * can be used to find the value of the last cookie. 2982 */ 2983 mutex_enter(&rp->r_statelock); 2984 if (rp->r_direof != NULL && 2985 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2986 mutex_exit(&rp->r_statelock); 2987 #ifdef DEBUG 2988 nfs_readdir_cache_shorts++; 2989 #endif 2990 if (eofp) 2991 *eofp = 1; 2992 if (nrdc != NULL) 2993 rddir_cache_rele(nrdc); 2994 return (0); 2995 } 2996 /* 2997 * Look for a cache entry. Cache entries are identified 2998 * by the NFS cookie value and the byte count requested. 2999 */ 3000 srdc.nfs_cookie = uiop->uio_offset; 3001 srdc.buflen = count; 3002 rdc = avl_find(&rp->r_dir, &srdc, &where); 3003 if (rdc != NULL) { 3004 rddir_cache_hold(rdc); 3005 /* 3006 * If the cache entry is in the process of being 3007 * filled in, wait until this completes. The 3008 * RDDIRWAIT bit is set to indicate that someone 3009 * is waiting and then the thread currently 3010 * filling the entry is done, it should do a 3011 * cv_broadcast to wakeup all of the threads 3012 * waiting for it to finish. 3013 */ 3014 if (rdc->flags & RDDIR) { 3015 nfs_rw_exit(&rp->r_rwlock); 3016 rdc->flags |= RDDIRWAIT; 3017 #ifdef DEBUG 3018 nfs_readdir_cache_waits++; 3019 #endif 3020 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3021 /* 3022 * We got interrupted, probably 3023 * the user typed ^C or an alarm 3024 * fired. We free the new entry 3025 * if we allocated one. 3026 */ 3027 mutex_exit(&rp->r_statelock); 3028 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3029 RW_READER, FALSE); 3030 rddir_cache_rele(rdc); 3031 if (nrdc != NULL) 3032 rddir_cache_rele(nrdc); 3033 return (EINTR); 3034 } 3035 mutex_exit(&rp->r_statelock); 3036 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3037 RW_READER, FALSE); 3038 rddir_cache_rele(rdc); 3039 goto top; 3040 } 3041 /* 3042 * Check to see if a readdir is required to 3043 * fill the entry. If so, mark this entry 3044 * as being filled, remove our reference, 3045 * and branch to the code to fill the entry. 3046 */ 3047 if (rdc->flags & RDDIRREQ) { 3048 rdc->flags &= ~RDDIRREQ; 3049 rdc->flags |= RDDIR; 3050 if (nrdc != NULL) 3051 rddir_cache_rele(nrdc); 3052 nrdc = rdc; 3053 mutex_exit(&rp->r_statelock); 3054 goto bottom; 3055 } 3056 #ifdef DEBUG 3057 if (!missed) 3058 nfs_readdir_cache_hits++; 3059 #endif 3060 /* 3061 * If an error occurred while attempting 3062 * to fill the cache entry, just return it. 3063 */ 3064 if (rdc->error) { 3065 error = rdc->error; 3066 mutex_exit(&rp->r_statelock); 3067 rddir_cache_rele(rdc); 3068 if (nrdc != NULL) 3069 rddir_cache_rele(nrdc); 3070 return (error); 3071 } 3072 3073 /* 3074 * The cache entry is complete and good, 3075 * copyout the dirent structs to the calling 3076 * thread. 3077 */ 3078 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3079 3080 /* 3081 * If no error occurred during the copyout, 3082 * update the offset in the uio struct to 3083 * contain the value of the next cookie 3084 * and set the eof value appropriately. 3085 */ 3086 if (!error) { 3087 uiop->uio_offset = rdc->nfs_ncookie; 3088 if (eofp) 3089 *eofp = rdc->eof; 3090 } 3091 3092 /* 3093 * Decide whether to do readahead. Don't if 3094 * have already read to the end of directory. 3095 */ 3096 if (rdc->eof) { 3097 rp->r_direof = rdc; 3098 mutex_exit(&rp->r_statelock); 3099 rddir_cache_rele(rdc); 3100 if (nrdc != NULL) 3101 rddir_cache_rele(nrdc); 3102 return (error); 3103 } 3104 3105 /* 3106 * Check to see whether we found an entry 3107 * for the readahead. If so, we don't need 3108 * to do anything further, so free the new 3109 * entry if one was allocated. Otherwise, 3110 * allocate a new entry, add it to the cache, 3111 * and then initiate an asynchronous readdir 3112 * operation to fill it. 3113 */ 3114 srdc.nfs_cookie = rdc->nfs_ncookie; 3115 srdc.buflen = count; 3116 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3117 if (rrdc != NULL) { 3118 if (nrdc != NULL) 3119 rddir_cache_rele(nrdc); 3120 } else { 3121 if (nrdc != NULL) 3122 rrdc = nrdc; 3123 else { 3124 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3125 } 3126 if (rrdc != NULL) { 3127 rrdc->nfs_cookie = rdc->nfs_ncookie; 3128 rrdc->buflen = count; 3129 avl_insert(&rp->r_dir, rrdc, where); 3130 rddir_cache_hold(rrdc); 3131 mutex_exit(&rp->r_statelock); 3132 rddir_cache_rele(rdc); 3133 #ifdef DEBUG 3134 nfs_readdir_readahead++; 3135 #endif 3136 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3137 return (error); 3138 } 3139 } 3140 3141 mutex_exit(&rp->r_statelock); 3142 rddir_cache_rele(rdc); 3143 return (error); 3144 } 3145 3146 /* 3147 * Didn't find an entry in the cache. Construct a new empty 3148 * entry and link it into the cache. Other processes attempting 3149 * to access this entry will need to wait until it is filled in. 3150 * 3151 * Since kmem_alloc may block, another pass through the cache 3152 * will need to be taken to make sure that another process 3153 * hasn't already added an entry to the cache for this request. 3154 */ 3155 if (nrdc == NULL) { 3156 mutex_exit(&rp->r_statelock); 3157 nrdc = rddir_cache_alloc(KM_SLEEP); 3158 nrdc->nfs_cookie = uiop->uio_offset; 3159 nrdc->buflen = count; 3160 goto top; 3161 } 3162 3163 /* 3164 * Add this entry to the cache. 3165 */ 3166 avl_insert(&rp->r_dir, nrdc, where); 3167 rddir_cache_hold(nrdc); 3168 mutex_exit(&rp->r_statelock); 3169 3170 bottom: 3171 #ifdef DEBUG 3172 missed = 1; 3173 nfs_readdir_cache_misses++; 3174 #endif 3175 /* 3176 * Do the readdir. 3177 */ 3178 error = nfsreaddir(vp, nrdc, cr); 3179 3180 /* 3181 * If this operation failed, just return the error which occurred. 3182 */ 3183 if (error != 0) 3184 return (error); 3185 3186 /* 3187 * Since the RPC operation will have taken sometime and blocked 3188 * this process, another pass through the cache will need to be 3189 * taken to find the correct cache entry. It is possible that 3190 * the correct cache entry will not be there (although one was 3191 * added) because the directory changed during the RPC operation 3192 * and the readdir cache was flushed. In this case, just start 3193 * over. It is hoped that this will not happen too often... :-) 3194 */ 3195 nrdc = NULL; 3196 goto top; 3197 /* NOTREACHED */ 3198 } 3199 3200 static int 3201 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3202 { 3203 int error; 3204 struct nfsrddirargs rda; 3205 struct nfsrddirres rd; 3206 rnode_t *rp; 3207 mntinfo_t *mi; 3208 uint_t count; 3209 int douprintf; 3210 failinfo_t fi, *fip; 3211 3212 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3213 count = rdc->buflen; 3214 3215 rp = VTOR(vp); 3216 mi = VTOMI(vp); 3217 3218 rda.rda_fh = *VTOFH(vp); 3219 rda.rda_offset = rdc->nfs_cookie; 3220 3221 /* 3222 * NFS client failover support 3223 * suppress failover unless we have a zero cookie 3224 */ 3225 if (rdc->nfs_cookie == (off_t)0) { 3226 fi.vp = vp; 3227 fi.fhp = (caddr_t)&rda.rda_fh; 3228 fi.copyproc = nfscopyfh; 3229 fi.lookupproc = nfslookup; 3230 fi.xattrdirproc = acl_getxattrdir2; 3231 fip = &fi; 3232 } else { 3233 fip = NULL; 3234 } 3235 3236 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3237 rd.rd_size = count; 3238 rd.rd_offset = rda.rda_offset; 3239 3240 douprintf = 1; 3241 3242 if (mi->mi_io_kstats) { 3243 mutex_enter(&mi->mi_lock); 3244 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3245 mutex_exit(&mi->mi_lock); 3246 } 3247 3248 do { 3249 rda.rda_count = MIN(count, mi->mi_curread); 3250 error = rfs2call(mi, RFS_READDIR, 3251 xdr_rddirargs, (caddr_t)&rda, 3252 xdr_getrddirres, (caddr_t)&rd, cr, 3253 &douprintf, &rd.rd_status, 0, fip); 3254 } while (error == ENFS_TRYAGAIN); 3255 3256 if (mi->mi_io_kstats) { 3257 mutex_enter(&mi->mi_lock); 3258 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3259 mutex_exit(&mi->mi_lock); 3260 } 3261 3262 /* 3263 * Since we are actually doing a READDIR RPC, we must have 3264 * exclusive access to the cache entry being filled. Thus, 3265 * it is safe to update all fields except for the flags 3266 * field. The r_statelock in the rnode must be held to 3267 * prevent two different threads from simultaneously 3268 * attempting to update the flags field. This can happen 3269 * if we are turning off RDDIR and the other thread is 3270 * trying to set RDDIRWAIT. 3271 */ 3272 ASSERT(rdc->flags & RDDIR); 3273 if (!error) { 3274 error = geterrno(rd.rd_status); 3275 if (!error) { 3276 rdc->nfs_ncookie = rd.rd_offset; 3277 rdc->eof = rd.rd_eof ? 1 : 0; 3278 rdc->entlen = rd.rd_size; 3279 ASSERT(rdc->entlen <= rdc->buflen); 3280 #ifdef DEBUG 3281 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3282 KM_SLEEP); 3283 #else 3284 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3285 #endif 3286 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3287 rdc->error = 0; 3288 if (mi->mi_io_kstats) { 3289 mutex_enter(&mi->mi_lock); 3290 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3291 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3292 rd.rd_size; 3293 mutex_exit(&mi->mi_lock); 3294 } 3295 } else { 3296 PURGE_STALE_FH(error, vp, cr); 3297 } 3298 } 3299 if (error) { 3300 rdc->entries = NULL; 3301 rdc->error = error; 3302 } 3303 kmem_free(rd.rd_entries, rdc->buflen); 3304 3305 mutex_enter(&rp->r_statelock); 3306 rdc->flags &= ~RDDIR; 3307 if (rdc->flags & RDDIRWAIT) { 3308 rdc->flags &= ~RDDIRWAIT; 3309 cv_broadcast(&rdc->cv); 3310 } 3311 if (error) 3312 rdc->flags |= RDDIRREQ; 3313 mutex_exit(&rp->r_statelock); 3314 3315 rddir_cache_rele(rdc); 3316 3317 return (error); 3318 } 3319 3320 #ifdef DEBUG 3321 static int nfs_bio_do_stop = 0; 3322 #endif 3323 3324 static int 3325 nfs_bio(struct buf *bp, cred_t *cr) 3326 { 3327 rnode_t *rp = VTOR(bp->b_vp); 3328 int count; 3329 int error; 3330 cred_t *cred; 3331 uint_t offset; 3332 3333 DTRACE_IO1(start, struct buf *, bp); 3334 3335 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3336 offset = dbtob(bp->b_blkno); 3337 3338 if (bp->b_flags & B_READ) { 3339 mutex_enter(&rp->r_statelock); 3340 if (rp->r_cred != NULL) { 3341 cred = rp->r_cred; 3342 crhold(cred); 3343 } else { 3344 rp->r_cred = cr; 3345 crhold(cr); 3346 cred = cr; 3347 crhold(cred); 3348 } 3349 mutex_exit(&rp->r_statelock); 3350 read_again: 3351 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3352 offset, bp->b_bcount, &bp->b_resid, cred); 3353 crfree(cred); 3354 if (!error) { 3355 if (bp->b_resid) { 3356 /* 3357 * Didn't get it all because we hit EOF, 3358 * zero all the memory beyond the EOF. 3359 */ 3360 /* bzero(rdaddr + */ 3361 bzero(bp->b_un.b_addr + 3362 bp->b_bcount - bp->b_resid, bp->b_resid); 3363 } 3364 mutex_enter(&rp->r_statelock); 3365 if (bp->b_resid == bp->b_bcount && 3366 offset >= rp->r_size) { 3367 /* 3368 * We didn't read anything at all as we are 3369 * past EOF. Return an error indicator back 3370 * but don't destroy the pages (yet). 3371 */ 3372 error = NFS_EOF; 3373 } 3374 mutex_exit(&rp->r_statelock); 3375 } else if (error == EACCES) { 3376 mutex_enter(&rp->r_statelock); 3377 if (cred != cr) { 3378 if (rp->r_cred != NULL) 3379 crfree(rp->r_cred); 3380 rp->r_cred = cr; 3381 crhold(cr); 3382 cred = cr; 3383 crhold(cred); 3384 mutex_exit(&rp->r_statelock); 3385 goto read_again; 3386 } 3387 mutex_exit(&rp->r_statelock); 3388 } 3389 } else { 3390 if (!(rp->r_flags & RSTALE)) { 3391 mutex_enter(&rp->r_statelock); 3392 if (rp->r_cred != NULL) { 3393 cred = rp->r_cred; 3394 crhold(cred); 3395 } else { 3396 rp->r_cred = cr; 3397 crhold(cr); 3398 cred = cr; 3399 crhold(cred); 3400 } 3401 mutex_exit(&rp->r_statelock); 3402 write_again: 3403 mutex_enter(&rp->r_statelock); 3404 count = MIN(bp->b_bcount, rp->r_size - offset); 3405 mutex_exit(&rp->r_statelock); 3406 if (count < 0) 3407 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3408 #ifdef DEBUG 3409 if (count == 0) { 3410 zcmn_err(getzoneid(), CE_WARN, 3411 "nfs_bio: zero length write at %d", 3412 offset); 3413 nfs_printfhandle(&rp->r_fh); 3414 if (nfs_bio_do_stop) 3415 debug_enter("nfs_bio"); 3416 } 3417 #endif 3418 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3419 count, cred); 3420 if (error == EACCES) { 3421 mutex_enter(&rp->r_statelock); 3422 if (cred != cr) { 3423 if (rp->r_cred != NULL) 3424 crfree(rp->r_cred); 3425 rp->r_cred = cr; 3426 crhold(cr); 3427 crfree(cred); 3428 cred = cr; 3429 crhold(cred); 3430 mutex_exit(&rp->r_statelock); 3431 goto write_again; 3432 } 3433 mutex_exit(&rp->r_statelock); 3434 } 3435 bp->b_error = error; 3436 if (error && error != EINTR) { 3437 /* 3438 * Don't print EDQUOT errors on the console. 3439 * Don't print asynchronous EACCES errors. 3440 * Don't print EFBIG errors. 3441 * Print all other write errors. 3442 */ 3443 if (error != EDQUOT && error != EFBIG && 3444 (error != EACCES || 3445 !(bp->b_flags & B_ASYNC))) 3446 nfs_write_error(bp->b_vp, error, cred); 3447 /* 3448 * Update r_error and r_flags as appropriate. 3449 * If the error was ESTALE, then mark the 3450 * rnode as not being writeable and save 3451 * the error status. Otherwise, save any 3452 * errors which occur from asynchronous 3453 * page invalidations. Any errors occurring 3454 * from other operations should be saved 3455 * by the caller. 3456 */ 3457 mutex_enter(&rp->r_statelock); 3458 if (error == ESTALE) { 3459 rp->r_flags |= RSTALE; 3460 if (!rp->r_error) 3461 rp->r_error = error; 3462 } else if (!rp->r_error && 3463 (bp->b_flags & 3464 (B_INVAL|B_FORCE|B_ASYNC)) == 3465 (B_INVAL|B_FORCE|B_ASYNC)) { 3466 rp->r_error = error; 3467 } 3468 mutex_exit(&rp->r_statelock); 3469 } 3470 crfree(cred); 3471 } else 3472 error = rp->r_error; 3473 } 3474 3475 if (error != 0 && error != NFS_EOF) 3476 bp->b_flags |= B_ERROR; 3477 3478 DTRACE_IO1(done, struct buf *, bp); 3479 3480 return (error); 3481 } 3482 3483 /* ARGSUSED */ 3484 static int 3485 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3486 { 3487 struct nfs_fid *fp; 3488 rnode_t *rp; 3489 3490 rp = VTOR(vp); 3491 3492 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3493 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3494 return (ENOSPC); 3495 } 3496 fp = (struct nfs_fid *)fidp; 3497 fp->nf_pad = 0; 3498 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3499 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3500 return (0); 3501 } 3502 3503 /* ARGSUSED2 */ 3504 static int 3505 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3506 { 3507 rnode_t *rp = VTOR(vp); 3508 3509 if (!write_lock) { 3510 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3511 return (V_WRITELOCK_FALSE); 3512 } 3513 3514 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3515 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3516 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3517 return (V_WRITELOCK_FALSE); 3518 nfs_rw_exit(&rp->r_rwlock); 3519 } 3520 3521 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3522 return (V_WRITELOCK_TRUE); 3523 } 3524 3525 /* ARGSUSED */ 3526 static void 3527 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3528 { 3529 rnode_t *rp = VTOR(vp); 3530 3531 nfs_rw_exit(&rp->r_rwlock); 3532 } 3533 3534 /* ARGSUSED */ 3535 static int 3536 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3537 { 3538 3539 /* 3540 * Because we stuff the readdir cookie into the offset field 3541 * someone may attempt to do an lseek with the cookie which 3542 * we want to succeed. 3543 */ 3544 if (vp->v_type == VDIR) 3545 return (0); 3546 if (*noffp < 0 || *noffp > MAXOFF32_T) 3547 return (EINVAL); 3548 return (0); 3549 } 3550 3551 /* 3552 * number of NFS_MAXDATA blocks to read ahead 3553 * optimized for 100 base-T. 3554 */ 3555 static int nfs_nra = 4; 3556 3557 #ifdef DEBUG 3558 static int nfs_lostpage = 0; /* number of times we lost original page */ 3559 #endif 3560 3561 /* 3562 * Return all the pages from [off..off+len) in file 3563 */ 3564 /* ARGSUSED */ 3565 static int 3566 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3567 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3568 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3569 { 3570 rnode_t *rp; 3571 int error; 3572 mntinfo_t *mi; 3573 3574 if (vp->v_flag & VNOMAP) 3575 return (ENOSYS); 3576 3577 ASSERT(off <= MAXOFF32_T); 3578 if (nfs_zone() != VTOMI(vp)->mi_zone) 3579 return (EIO); 3580 if (protp != NULL) 3581 *protp = PROT_ALL; 3582 3583 /* 3584 * Now valididate that the caches are up to date. 3585 */ 3586 error = nfs_validate_caches(vp, cr); 3587 if (error) 3588 return (error); 3589 3590 rp = VTOR(vp); 3591 mi = VTOMI(vp); 3592 retry: 3593 mutex_enter(&rp->r_statelock); 3594 3595 /* 3596 * Don't create dirty pages faster than they 3597 * can be cleaned so that the system doesn't 3598 * get imbalanced. If the async queue is 3599 * maxed out, then wait for it to drain before 3600 * creating more dirty pages. Also, wait for 3601 * any threads doing pagewalks in the vop_getattr 3602 * entry points so that they don't block for 3603 * long periods. 3604 */ 3605 if (rw == S_CREATE) { 3606 while ((mi->mi_max_threads != 0 && 3607 rp->r_awcount > 2 * mi->mi_max_threads) || 3608 rp->r_gcount > 0) 3609 cv_wait(&rp->r_cv, &rp->r_statelock); 3610 } 3611 3612 /* 3613 * If we are getting called as a side effect of an nfs_write() 3614 * operation the local file size might not be extended yet. 3615 * In this case we want to be able to return pages of zeroes. 3616 */ 3617 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3618 mutex_exit(&rp->r_statelock); 3619 return (EFAULT); /* beyond EOF */ 3620 } 3621 3622 mutex_exit(&rp->r_statelock); 3623 3624 if (len <= PAGESIZE) { 3625 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3626 seg, addr, rw, cr); 3627 } else { 3628 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3629 pl, plsz, seg, addr, rw, cr); 3630 } 3631 3632 switch (error) { 3633 case NFS_EOF: 3634 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3635 goto retry; 3636 case ESTALE: 3637 PURGE_STALE_FH(error, vp, cr); 3638 } 3639 3640 return (error); 3641 } 3642 3643 /* 3644 * Called from pvn_getpages or nfs_getpage to get a particular page. 3645 */ 3646 /* ARGSUSED */ 3647 static int 3648 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3649 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3650 enum seg_rw rw, cred_t *cr) 3651 { 3652 rnode_t *rp; 3653 uint_t bsize; 3654 struct buf *bp; 3655 page_t *pp; 3656 u_offset_t lbn; 3657 u_offset_t io_off; 3658 u_offset_t blkoff; 3659 u_offset_t rablkoff; 3660 size_t io_len; 3661 uint_t blksize; 3662 int error; 3663 int readahead; 3664 int readahead_issued = 0; 3665 int ra_window; /* readahead window */ 3666 page_t *pagefound; 3667 3668 if (nfs_zone() != VTOMI(vp)->mi_zone) 3669 return (EIO); 3670 rp = VTOR(vp); 3671 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3672 3673 reread: 3674 bp = NULL; 3675 pp = NULL; 3676 pagefound = NULL; 3677 3678 if (pl != NULL) 3679 pl[0] = NULL; 3680 3681 error = 0; 3682 lbn = off / bsize; 3683 blkoff = lbn * bsize; 3684 3685 /* 3686 * Queueing up the readahead before doing the synchronous read 3687 * results in a significant increase in read throughput because 3688 * of the increased parallelism between the async threads and 3689 * the process context. 3690 */ 3691 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3692 rw != S_CREATE && 3693 !(vp->v_flag & VNOCACHE)) { 3694 mutex_enter(&rp->r_statelock); 3695 3696 /* 3697 * Calculate the number of readaheads to do. 3698 * a) No readaheads at offset = 0. 3699 * b) Do maximum(nfs_nra) readaheads when the readahead 3700 * window is closed. 3701 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3702 * upon how far the readahead window is open or close. 3703 * d) No readaheads if rp->r_nextr is not within the scope 3704 * of the readahead window (random i/o). 3705 */ 3706 3707 if (off == 0) 3708 readahead = 0; 3709 else if (blkoff == rp->r_nextr) 3710 readahead = nfs_nra; 3711 else if (rp->r_nextr > blkoff && 3712 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3713 <= (nfs_nra - 1))) 3714 readahead = nfs_nra - ra_window; 3715 else 3716 readahead = 0; 3717 3718 rablkoff = rp->r_nextr; 3719 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3720 mutex_exit(&rp->r_statelock); 3721 if (nfs_async_readahead(vp, rablkoff + bsize, 3722 addr + (rablkoff + bsize - off), seg, cr, 3723 nfs_readahead) < 0) { 3724 mutex_enter(&rp->r_statelock); 3725 break; 3726 } 3727 readahead--; 3728 rablkoff += bsize; 3729 /* 3730 * Indicate that we did a readahead so 3731 * readahead offset is not updated 3732 * by the synchronous read below. 3733 */ 3734 readahead_issued = 1; 3735 mutex_enter(&rp->r_statelock); 3736 /* 3737 * set readahead offset to 3738 * offset of last async readahead 3739 * request. 3740 */ 3741 rp->r_nextr = rablkoff; 3742 } 3743 mutex_exit(&rp->r_statelock); 3744 } 3745 3746 again: 3747 if ((pagefound = page_exists(vp, off)) == NULL) { 3748 if (pl == NULL) { 3749 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3750 nfs_readahead); 3751 } else if (rw == S_CREATE) { 3752 /* 3753 * Block for this page is not allocated, or the offset 3754 * is beyond the current allocation size, or we're 3755 * allocating a swap slot and the page was not found, 3756 * so allocate it and return a zero page. 3757 */ 3758 if ((pp = page_create_va(vp, off, 3759 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3760 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3761 io_len = PAGESIZE; 3762 mutex_enter(&rp->r_statelock); 3763 rp->r_nextr = off + PAGESIZE; 3764 mutex_exit(&rp->r_statelock); 3765 } else { 3766 /* 3767 * Need to go to server to get a BLOCK, exception to 3768 * that being while reading at offset = 0 or doing 3769 * random i/o, in that case read only a PAGE. 3770 */ 3771 mutex_enter(&rp->r_statelock); 3772 if (blkoff < rp->r_size && 3773 blkoff + bsize >= rp->r_size) { 3774 /* 3775 * If only a block or less is left in 3776 * the file, read all that is remaining. 3777 */ 3778 if (rp->r_size <= off) { 3779 /* 3780 * Trying to access beyond EOF, 3781 * set up to get at least one page. 3782 */ 3783 blksize = off + PAGESIZE - blkoff; 3784 } else 3785 blksize = rp->r_size - blkoff; 3786 } else if ((off == 0) || 3787 (off != rp->r_nextr && !readahead_issued)) { 3788 blksize = PAGESIZE; 3789 blkoff = off; /* block = page here */ 3790 } else 3791 blksize = bsize; 3792 mutex_exit(&rp->r_statelock); 3793 3794 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3795 &io_len, blkoff, blksize, 0); 3796 3797 /* 3798 * Some other thread has entered the page, 3799 * so just use it. 3800 */ 3801 if (pp == NULL) 3802 goto again; 3803 3804 /* 3805 * Now round the request size up to page boundaries. 3806 * This ensures that the entire page will be 3807 * initialized to zeroes if EOF is encountered. 3808 */ 3809 io_len = ptob(btopr(io_len)); 3810 3811 bp = pageio_setup(pp, io_len, vp, B_READ); 3812 ASSERT(bp != NULL); 3813 3814 /* 3815 * pageio_setup should have set b_addr to 0. This 3816 * is correct since we want to do I/O on a page 3817 * boundary. bp_mapin will use this addr to calculate 3818 * an offset, and then set b_addr to the kernel virtual 3819 * address it allocated for us. 3820 */ 3821 ASSERT(bp->b_un.b_addr == 0); 3822 3823 bp->b_edev = 0; 3824 bp->b_dev = 0; 3825 bp->b_lblkno = lbtodb(io_off); 3826 bp->b_file = vp; 3827 bp->b_offset = (offset_t)off; 3828 bp_mapin(bp); 3829 3830 /* 3831 * If doing a write beyond what we believe is EOF, 3832 * don't bother trying to read the pages from the 3833 * server, we'll just zero the pages here. We 3834 * don't check that the rw flag is S_WRITE here 3835 * because some implementations may attempt a 3836 * read access to the buffer before copying data. 3837 */ 3838 mutex_enter(&rp->r_statelock); 3839 if (io_off >= rp->r_size && seg == segkmap) { 3840 mutex_exit(&rp->r_statelock); 3841 bzero(bp->b_un.b_addr, io_len); 3842 } else { 3843 mutex_exit(&rp->r_statelock); 3844 error = nfs_bio(bp, cr); 3845 } 3846 3847 /* 3848 * Unmap the buffer before freeing it. 3849 */ 3850 bp_mapout(bp); 3851 pageio_done(bp); 3852 3853 if (error == NFS_EOF) { 3854 /* 3855 * If doing a write system call just return 3856 * zeroed pages, else user tried to get pages 3857 * beyond EOF, return error. We don't check 3858 * that the rw flag is S_WRITE here because 3859 * some implementations may attempt a read 3860 * access to the buffer before copying data. 3861 */ 3862 if (seg == segkmap) 3863 error = 0; 3864 else 3865 error = EFAULT; 3866 } 3867 3868 if (!readahead_issued && !error) { 3869 mutex_enter(&rp->r_statelock); 3870 rp->r_nextr = io_off + io_len; 3871 mutex_exit(&rp->r_statelock); 3872 } 3873 } 3874 } 3875 3876 out: 3877 if (pl == NULL) 3878 return (error); 3879 3880 if (error) { 3881 if (pp != NULL) 3882 pvn_read_done(pp, B_ERROR); 3883 return (error); 3884 } 3885 3886 if (pagefound) { 3887 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3888 3889 /* 3890 * Page exists in the cache, acquire the appropriate lock. 3891 * If this fails, start all over again. 3892 */ 3893 if ((pp = page_lookup(vp, off, se)) == NULL) { 3894 #ifdef DEBUG 3895 nfs_lostpage++; 3896 #endif 3897 goto reread; 3898 } 3899 pl[0] = pp; 3900 pl[1] = NULL; 3901 return (0); 3902 } 3903 3904 if (pp != NULL) 3905 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3906 3907 return (error); 3908 } 3909 3910 static void 3911 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3912 cred_t *cr) 3913 { 3914 int error; 3915 page_t *pp; 3916 u_offset_t io_off; 3917 size_t io_len; 3918 struct buf *bp; 3919 uint_t bsize, blksize; 3920 rnode_t *rp = VTOR(vp); 3921 3922 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3923 3924 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3925 3926 mutex_enter(&rp->r_statelock); 3927 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3928 /* 3929 * If less than a block left in file read less 3930 * than a block. 3931 */ 3932 blksize = rp->r_size - blkoff; 3933 } else 3934 blksize = bsize; 3935 mutex_exit(&rp->r_statelock); 3936 3937 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3938 &io_off, &io_len, blkoff, blksize, 1); 3939 /* 3940 * The isra flag passed to the kluster function is 1, we may have 3941 * gotten a return value of NULL for a variety of reasons (# of free 3942 * pages < minfree, someone entered the page on the vnode etc). In all 3943 * cases, we want to punt on the readahead. 3944 */ 3945 if (pp == NULL) 3946 return; 3947 3948 /* 3949 * Now round the request size up to page boundaries. 3950 * This ensures that the entire page will be 3951 * initialized to zeroes if EOF is encountered. 3952 */ 3953 io_len = ptob(btopr(io_len)); 3954 3955 bp = pageio_setup(pp, io_len, vp, B_READ); 3956 ASSERT(bp != NULL); 3957 3958 /* 3959 * pageio_setup should have set b_addr to 0. This is correct since 3960 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3961 * to calculate an offset, and then set b_addr to the kernel virtual 3962 * address it allocated for us. 3963 */ 3964 ASSERT(bp->b_un.b_addr == 0); 3965 3966 bp->b_edev = 0; 3967 bp->b_dev = 0; 3968 bp->b_lblkno = lbtodb(io_off); 3969 bp->b_file = vp; 3970 bp->b_offset = (offset_t)blkoff; 3971 bp_mapin(bp); 3972 3973 /* 3974 * If doing a write beyond what we believe is EOF, don't bother trying 3975 * to read the pages from the server, we'll just zero the pages here. 3976 * We don't check that the rw flag is S_WRITE here because some 3977 * implementations may attempt a read access to the buffer before 3978 * copying data. 3979 */ 3980 mutex_enter(&rp->r_statelock); 3981 if (io_off >= rp->r_size && seg == segkmap) { 3982 mutex_exit(&rp->r_statelock); 3983 bzero(bp->b_un.b_addr, io_len); 3984 error = 0; 3985 } else { 3986 mutex_exit(&rp->r_statelock); 3987 error = nfs_bio(bp, cr); 3988 if (error == NFS_EOF) 3989 error = 0; 3990 } 3991 3992 /* 3993 * Unmap the buffer before freeing it. 3994 */ 3995 bp_mapout(bp); 3996 pageio_done(bp); 3997 3998 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 3999 4000 /* 4001 * In case of error set readahead offset 4002 * to the lowest offset. 4003 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4004 */ 4005 if (error && rp->r_nextr > io_off) { 4006 mutex_enter(&rp->r_statelock); 4007 if (rp->r_nextr > io_off) 4008 rp->r_nextr = io_off; 4009 mutex_exit(&rp->r_statelock); 4010 } 4011 } 4012 4013 /* 4014 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4015 * If len == 0, do from off to EOF. 4016 * 4017 * The normal cases should be len == 0 && off == 0 (entire vp list), 4018 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4019 * (from pageout). 4020 */ 4021 /* ARGSUSED */ 4022 static int 4023 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4024 caller_context_t *ct) 4025 { 4026 int error; 4027 rnode_t *rp; 4028 4029 ASSERT(cr != NULL); 4030 4031 /* 4032 * XXX - Why should this check be made here? 4033 */ 4034 if (vp->v_flag & VNOMAP) 4035 return (ENOSYS); 4036 4037 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4038 return (0); 4039 4040 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4041 return (EIO); 4042 ASSERT(off <= MAXOFF32_T); 4043 4044 rp = VTOR(vp); 4045 mutex_enter(&rp->r_statelock); 4046 rp->r_count++; 4047 mutex_exit(&rp->r_statelock); 4048 error = nfs_putpages(vp, off, len, flags, cr); 4049 mutex_enter(&rp->r_statelock); 4050 rp->r_count--; 4051 cv_broadcast(&rp->r_cv); 4052 mutex_exit(&rp->r_statelock); 4053 4054 return (error); 4055 } 4056 4057 /* 4058 * Write out a single page, possibly klustering adjacent dirty pages. 4059 */ 4060 int 4061 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4062 int flags, cred_t *cr) 4063 { 4064 u_offset_t io_off; 4065 u_offset_t lbn_off; 4066 u_offset_t lbn; 4067 size_t io_len; 4068 uint_t bsize; 4069 int error; 4070 rnode_t *rp; 4071 4072 ASSERT(!vn_is_readonly(vp)); 4073 ASSERT(pp != NULL); 4074 ASSERT(cr != NULL); 4075 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4076 4077 rp = VTOR(vp); 4078 ASSERT(rp->r_count > 0); 4079 4080 ASSERT(pp->p_offset <= MAXOFF32_T); 4081 4082 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4083 lbn = pp->p_offset / bsize; 4084 lbn_off = lbn * bsize; 4085 4086 /* 4087 * Find a kluster that fits in one block, or in 4088 * one page if pages are bigger than blocks. If 4089 * there is less file space allocated than a whole 4090 * page, we'll shorten the i/o request below. 4091 */ 4092 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4093 roundup(bsize, PAGESIZE), flags); 4094 4095 /* 4096 * pvn_write_kluster shouldn't have returned a page with offset 4097 * behind the original page we were given. Verify that. 4098 */ 4099 ASSERT((pp->p_offset / bsize) >= lbn); 4100 4101 /* 4102 * Now pp will have the list of kept dirty pages marked for 4103 * write back. It will also handle invalidation and freeing 4104 * of pages that are not dirty. Check for page length rounding 4105 * problems. 4106 */ 4107 if (io_off + io_len > lbn_off + bsize) { 4108 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4109 io_len = lbn_off + bsize - io_off; 4110 } 4111 /* 4112 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4113 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4114 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4115 * progress and the r_size has not been made consistent with the 4116 * new size of the file. When the uiomove() completes the r_size is 4117 * updated and the RMODINPROGRESS flag is cleared. 4118 * 4119 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4120 * consistent value of r_size. Without this handshaking, it is 4121 * possible that nfs(3)_bio() picks up the old value of r_size 4122 * before the uiomove() in writerp() completes. This will result 4123 * in the write through nfs(3)_bio() being dropped. 4124 * 4125 * More precisely, there is a window between the time the uiomove() 4126 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4127 * operation intervenes in this window, the page will be picked up, 4128 * because it is dirty (it will be unlocked, unless it was 4129 * pagecreate'd). When the page is picked up as dirty, the dirty 4130 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4131 * checked. This will still be the old size. Therefore the page will 4132 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4133 * the page will be found to be clean and the write will be dropped. 4134 */ 4135 if (rp->r_flags & RMODINPROGRESS) { 4136 mutex_enter(&rp->r_statelock); 4137 if ((rp->r_flags & RMODINPROGRESS) && 4138 rp->r_modaddr + MAXBSIZE > io_off && 4139 rp->r_modaddr < io_off + io_len) { 4140 page_t *plist; 4141 /* 4142 * A write is in progress for this region of the file. 4143 * If we did not detect RMODINPROGRESS here then this 4144 * path through nfs_putapage() would eventually go to 4145 * nfs(3)_bio() and may not write out all of the data 4146 * in the pages. We end up losing data. So we decide 4147 * to set the modified bit on each page in the page 4148 * list and mark the rnode with RDIRTY. This write 4149 * will be restarted at some later time. 4150 */ 4151 plist = pp; 4152 while (plist != NULL) { 4153 pp = plist; 4154 page_sub(&plist, pp); 4155 hat_setmod(pp); 4156 page_io_unlock(pp); 4157 page_unlock(pp); 4158 } 4159 rp->r_flags |= RDIRTY; 4160 mutex_exit(&rp->r_statelock); 4161 if (offp) 4162 *offp = io_off; 4163 if (lenp) 4164 *lenp = io_len; 4165 return (0); 4166 } 4167 mutex_exit(&rp->r_statelock); 4168 } 4169 4170 if (flags & B_ASYNC) { 4171 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4172 nfs_sync_putapage); 4173 } else 4174 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4175 4176 if (offp) 4177 *offp = io_off; 4178 if (lenp) 4179 *lenp = io_len; 4180 return (error); 4181 } 4182 4183 static int 4184 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4185 int flags, cred_t *cr) 4186 { 4187 int error; 4188 rnode_t *rp; 4189 4190 flags |= B_WRITE; 4191 4192 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4193 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4194 4195 rp = VTOR(vp); 4196 4197 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4198 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4199 if (!(rp->r_flags & ROUTOFSPACE)) { 4200 mutex_enter(&rp->r_statelock); 4201 rp->r_flags |= ROUTOFSPACE; 4202 mutex_exit(&rp->r_statelock); 4203 } 4204 flags |= B_ERROR; 4205 pvn_write_done(pp, flags); 4206 /* 4207 * If this was not an async thread, then try again to 4208 * write out the pages, but this time, also destroy 4209 * them whether or not the write is successful. This 4210 * will prevent memory from filling up with these 4211 * pages and destroying them is the only alternative 4212 * if they can't be written out. 4213 * 4214 * Don't do this if this is an async thread because 4215 * when the pages are unlocked in pvn_write_done, 4216 * some other thread could have come along, locked 4217 * them, and queued for an async thread. It would be 4218 * possible for all of the async threads to be tied 4219 * up waiting to lock the pages again and they would 4220 * all already be locked and waiting for an async 4221 * thread to handle them. Deadlock. 4222 */ 4223 if (!(flags & B_ASYNC)) { 4224 error = nfs_putpage(vp, io_off, io_len, 4225 B_INVAL | B_FORCE, cr, NULL); 4226 } 4227 } else { 4228 if (error) 4229 flags |= B_ERROR; 4230 else if (rp->r_flags & ROUTOFSPACE) { 4231 mutex_enter(&rp->r_statelock); 4232 rp->r_flags &= ~ROUTOFSPACE; 4233 mutex_exit(&rp->r_statelock); 4234 } 4235 pvn_write_done(pp, flags); 4236 } 4237 4238 return (error); 4239 } 4240 4241 /* ARGSUSED */ 4242 static int 4243 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4244 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4245 caller_context_t *ct) 4246 { 4247 struct segvn_crargs vn_a; 4248 int error; 4249 rnode_t *rp; 4250 struct vattr va; 4251 4252 if (nfs_zone() != VTOMI(vp)->mi_zone) 4253 return (EIO); 4254 4255 if (vp->v_flag & VNOMAP) 4256 return (ENOSYS); 4257 4258 if (off > MAXOFF32_T) 4259 return (EFBIG); 4260 4261 if (off < 0 || off + len < 0) 4262 return (ENXIO); 4263 4264 if (vp->v_type != VREG) 4265 return (ENODEV); 4266 4267 /* 4268 * If there is cached data and if close-to-open consistency 4269 * checking is not turned off and if the file system is not 4270 * mounted readonly, then force an over the wire getattr. 4271 * Otherwise, just invoke nfsgetattr to get a copy of the 4272 * attributes. The attribute cache will be used unless it 4273 * is timed out and if it is, then an over the wire getattr 4274 * will be issued. 4275 */ 4276 va.va_mask = AT_ALL; 4277 if (vn_has_cached_data(vp) && 4278 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4279 error = nfs_getattr_otw(vp, &va, cr); 4280 else 4281 error = nfsgetattr(vp, &va, cr); 4282 if (error) 4283 return (error); 4284 4285 /* 4286 * Check to see if the vnode is currently marked as not cachable. 4287 * This means portions of the file are locked (through VOP_FRLOCK). 4288 * In this case the map request must be refused. We use 4289 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4290 */ 4291 rp = VTOR(vp); 4292 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 4293 return (EINTR); 4294 4295 if (vp->v_flag & VNOCACHE) { 4296 error = EAGAIN; 4297 goto done; 4298 } 4299 4300 /* 4301 * Don't allow concurrent locks and mapping if mandatory locking is 4302 * enabled. 4303 */ 4304 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4305 MANDLOCK(vp, va.va_mode)) { 4306 error = EAGAIN; 4307 goto done; 4308 } 4309 4310 as_rangelock(as); 4311 if (!(flags & MAP_FIXED)) { 4312 map_addr(addrp, len, off, 1, flags); 4313 if (*addrp == NULL) { 4314 as_rangeunlock(as); 4315 error = ENOMEM; 4316 goto done; 4317 } 4318 } else { 4319 /* 4320 * User specified address - blow away any previous mappings 4321 */ 4322 (void) as_unmap(as, *addrp, len); 4323 } 4324 4325 vn_a.vp = vp; 4326 vn_a.offset = off; 4327 vn_a.type = (flags & MAP_TYPE); 4328 vn_a.prot = (uchar_t)prot; 4329 vn_a.maxprot = (uchar_t)maxprot; 4330 vn_a.flags = (flags & ~MAP_TYPE); 4331 vn_a.cred = cr; 4332 vn_a.amp = NULL; 4333 vn_a.szc = 0; 4334 vn_a.lgrp_mem_policy_flags = 0; 4335 4336 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4337 as_rangeunlock(as); 4338 4339 done: 4340 nfs_rw_exit(&rp->r_lkserlock); 4341 return (error); 4342 } 4343 4344 /* ARGSUSED */ 4345 static int 4346 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4347 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4348 caller_context_t *ct) 4349 { 4350 rnode_t *rp; 4351 4352 if (vp->v_flag & VNOMAP) 4353 return (ENOSYS); 4354 if (nfs_zone() != VTOMI(vp)->mi_zone) 4355 return (EIO); 4356 4357 /* 4358 * Need to hold rwlock while incrementing the mapcnt so that 4359 * mmap'ing can be serialized with writes so that the caching 4360 * can be handled correctly. 4361 */ 4362 rp = VTOR(vp); 4363 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4364 return (EINTR); 4365 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4366 nfs_rw_exit(&rp->r_rwlock); 4367 4368 return (0); 4369 } 4370 4371 /* ARGSUSED */ 4372 static int 4373 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4374 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4375 { 4376 netobj lm_fh; 4377 int rc; 4378 u_offset_t start, end; 4379 rnode_t *rp; 4380 int error = 0, intr = INTR(vp); 4381 4382 /* check for valid cmd parameter */ 4383 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4384 return (EINVAL); 4385 if (nfs_zone() != VTOMI(vp)->mi_zone) 4386 return (EIO); 4387 4388 /* Verify l_type. */ 4389 switch (bfp->l_type) { 4390 case F_RDLCK: 4391 if (cmd != F_GETLK && !(flag & FREAD)) 4392 return (EBADF); 4393 break; 4394 case F_WRLCK: 4395 if (cmd != F_GETLK && !(flag & FWRITE)) 4396 return (EBADF); 4397 break; 4398 case F_UNLCK: 4399 intr = 0; 4400 break; 4401 4402 default: 4403 return (EINVAL); 4404 } 4405 4406 /* check the validity of the lock range */ 4407 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4408 return (rc); 4409 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4410 return (rc); 4411 4412 /* 4413 * If the filesystem is mounted using local locking, pass the 4414 * request off to the local locking code. 4415 */ 4416 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4417 if (offset > MAXOFF32_T) 4418 return (EFBIG); 4419 if (cmd == F_SETLK || cmd == F_SETLKW) { 4420 /* 4421 * For complete safety, we should be holding 4422 * r_lkserlock. However, we can't call 4423 * lm_safelock and then fs_frlock while 4424 * holding r_lkserlock, so just invoke 4425 * lm_safelock and expect that this will 4426 * catch enough of the cases. 4427 */ 4428 if (!lm_safelock(vp, bfp, cr)) 4429 return (EAGAIN); 4430 } 4431 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4432 } 4433 4434 rp = VTOR(vp); 4435 4436 /* 4437 * Check whether the given lock request can proceed, given the 4438 * current file mappings. 4439 */ 4440 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4441 return (EINTR); 4442 if (cmd == F_SETLK || cmd == F_SETLKW) { 4443 if (!lm_safelock(vp, bfp, cr)) { 4444 rc = EAGAIN; 4445 goto done; 4446 } 4447 } 4448 4449 /* 4450 * Flush the cache after waiting for async I/O to finish. For new 4451 * locks, this is so that the process gets the latest bits from the 4452 * server. For unlocks, this is so that other clients see the 4453 * latest bits once the file has been unlocked. If currently dirty 4454 * pages can't be flushed, then don't allow a lock to be set. But 4455 * allow unlocks to succeed, to avoid having orphan locks on the 4456 * server. 4457 */ 4458 if (cmd != F_GETLK) { 4459 mutex_enter(&rp->r_statelock); 4460 while (rp->r_count > 0) { 4461 if (intr) { 4462 klwp_t *lwp = ttolwp(curthread); 4463 4464 if (lwp != NULL) 4465 lwp->lwp_nostop++; 4466 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4467 == 0) { 4468 if (lwp != NULL) 4469 lwp->lwp_nostop--; 4470 rc = EINTR; 4471 break; 4472 } 4473 if (lwp != NULL) 4474 lwp->lwp_nostop--; 4475 } else 4476 cv_wait(&rp->r_cv, &rp->r_statelock); 4477 } 4478 mutex_exit(&rp->r_statelock); 4479 if (rc != 0) 4480 goto done; 4481 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4482 if (error) { 4483 if (error == ENOSPC || error == EDQUOT) { 4484 mutex_enter(&rp->r_statelock); 4485 if (!rp->r_error) 4486 rp->r_error = error; 4487 mutex_exit(&rp->r_statelock); 4488 } 4489 if (bfp->l_type != F_UNLCK) { 4490 rc = ENOLCK; 4491 goto done; 4492 } 4493 } 4494 } 4495 4496 lm_fh.n_len = sizeof (fhandle_t); 4497 lm_fh.n_bytes = (char *)VTOFH(vp); 4498 4499 /* 4500 * Call the lock manager to do the real work of contacting 4501 * the server and obtaining the lock. 4502 */ 4503 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4504 4505 if (rc == 0) 4506 nfs_lockcompletion(vp, cmd); 4507 4508 done: 4509 nfs_rw_exit(&rp->r_lkserlock); 4510 return (rc); 4511 } 4512 4513 /* 4514 * Free storage space associated with the specified vnode. The portion 4515 * to be freed is specified by bfp->l_start and bfp->l_len (already 4516 * normalized to a "whence" of 0). 4517 * 4518 * This is an experimental facility whose continued existence is not 4519 * guaranteed. Currently, we only support the special case 4520 * of l_len == 0, meaning free to end of file. 4521 */ 4522 /* ARGSUSED */ 4523 static int 4524 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4525 offset_t offset, cred_t *cr, caller_context_t *ct) 4526 { 4527 int error; 4528 4529 ASSERT(vp->v_type == VREG); 4530 if (cmd != F_FREESP) 4531 return (EINVAL); 4532 4533 if (offset > MAXOFF32_T) 4534 return (EFBIG); 4535 4536 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4537 (bfp->l_len > MAXOFF32_T)) 4538 return (EFBIG); 4539 4540 if (nfs_zone() != VTOMI(vp)->mi_zone) 4541 return (EIO); 4542 4543 error = convoff(vp, bfp, 0, offset); 4544 if (!error) { 4545 ASSERT(bfp->l_start >= 0); 4546 if (bfp->l_len == 0) { 4547 struct vattr va; 4548 4549 /* 4550 * ftruncate should not change the ctime and 4551 * mtime if we truncate the file to its 4552 * previous size. 4553 */ 4554 va.va_mask = AT_SIZE; 4555 error = nfsgetattr(vp, &va, cr); 4556 if (error || va.va_size == bfp->l_start) 4557 return (error); 4558 va.va_mask = AT_SIZE; 4559 va.va_size = bfp->l_start; 4560 error = nfssetattr(vp, &va, 0, cr); 4561 } else 4562 error = EINVAL; 4563 } 4564 4565 return (error); 4566 } 4567 4568 /* ARGSUSED */ 4569 static int 4570 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4571 { 4572 4573 return (EINVAL); 4574 } 4575 4576 /* 4577 * Setup and add an address space callback to do the work of the delmap call. 4578 * The callback will (and must be) deleted in the actual callback function. 4579 * 4580 * This is done in order to take care of the problem that we have with holding 4581 * the address space's a_lock for a long period of time (e.g. if the NFS server 4582 * is down). Callbacks will be executed in the address space code while the 4583 * a_lock is not held. Holding the address space's a_lock causes things such 4584 * as ps and fork to hang because they are trying to acquire this lock as well. 4585 */ 4586 /* ARGSUSED */ 4587 static int 4588 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4589 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4590 caller_context_t *ct) 4591 { 4592 int caller_found; 4593 int error; 4594 rnode_t *rp; 4595 nfs_delmap_args_t *dmapp; 4596 nfs_delmapcall_t *delmap_call; 4597 4598 if (vp->v_flag & VNOMAP) 4599 return (ENOSYS); 4600 /* 4601 * A process may not change zones if it has NFS pages mmap'ed 4602 * in, so we can't legitimately get here from the wrong zone. 4603 */ 4604 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4605 4606 rp = VTOR(vp); 4607 4608 /* 4609 * The way that the address space of this process deletes its mapping 4610 * of this file is via the following call chains: 4611 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4612 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4613 * 4614 * With the use of address space callbacks we are allowed to drop the 4615 * address space lock, a_lock, while executing the NFS operations that 4616 * need to go over the wire. Returning EAGAIN to the caller of this 4617 * function is what drives the execution of the callback that we add 4618 * below. The callback will be executed by the address space code 4619 * after dropping the a_lock. When the callback is finished, since 4620 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4621 * is called again on the same segment to finish the rest of the work 4622 * that needs to happen during unmapping. 4623 * 4624 * This action of calling back into the segment driver causes 4625 * nfs_delmap() to get called again, but since the callback was 4626 * already executed at this point, it already did the work and there 4627 * is nothing left for us to do. 4628 * 4629 * To Summarize: 4630 * - The first time nfs_delmap is called by the current thread is when 4631 * we add the caller associated with this delmap to the delmap caller 4632 * list, add the callback, and return EAGAIN. 4633 * - The second time in this call chain when nfs_delmap is called we 4634 * will find this caller in the delmap caller list and realize there 4635 * is no more work to do thus removing this caller from the list and 4636 * returning the error that was set in the callback execution. 4637 */ 4638 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4639 if (caller_found) { 4640 /* 4641 * 'error' is from the actual delmap operations. To avoid 4642 * hangs, we need to handle the return of EAGAIN differently 4643 * since this is what drives the callback execution. 4644 * In this case, we don't want to return EAGAIN and do the 4645 * callback execution because there are none to execute. 4646 */ 4647 if (error == EAGAIN) 4648 return (0); 4649 else 4650 return (error); 4651 } 4652 4653 /* current caller was not in the list */ 4654 delmap_call = nfs_init_delmapcall(); 4655 4656 mutex_enter(&rp->r_statelock); 4657 list_insert_tail(&rp->r_indelmap, delmap_call); 4658 mutex_exit(&rp->r_statelock); 4659 4660 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4661 4662 dmapp->vp = vp; 4663 dmapp->off = off; 4664 dmapp->addr = addr; 4665 dmapp->len = len; 4666 dmapp->prot = prot; 4667 dmapp->maxprot = maxprot; 4668 dmapp->flags = flags; 4669 dmapp->cr = cr; 4670 dmapp->caller = delmap_call; 4671 4672 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4673 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4674 4675 return (error ? error : EAGAIN); 4676 } 4677 4678 /* 4679 * Remove some pages from an mmap'd vnode. Just update the 4680 * count of pages. If doing close-to-open, then flush all 4681 * of the pages associated with this file. Otherwise, start 4682 * an asynchronous page flush to write out any dirty pages. 4683 * This will also associate a credential with the rnode which 4684 * can be used to write the pages. 4685 */ 4686 /* ARGSUSED */ 4687 static void 4688 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4689 { 4690 int error; 4691 rnode_t *rp; 4692 mntinfo_t *mi; 4693 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4694 4695 rp = VTOR(dmapp->vp); 4696 mi = VTOMI(dmapp->vp); 4697 4698 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4699 ASSERT(rp->r_mapcnt >= 0); 4700 4701 /* 4702 * Initiate a page flush if there are pages, the file system 4703 * was not mounted readonly, the segment was mapped shared, and 4704 * the pages themselves were writeable. 4705 */ 4706 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4707 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4708 mutex_enter(&rp->r_statelock); 4709 rp->r_flags |= RDIRTY; 4710 mutex_exit(&rp->r_statelock); 4711 /* 4712 * If this is a cross-zone access a sync putpage won't work, so 4713 * the best we can do is try an async putpage. That seems 4714 * better than something more draconian such as discarding the 4715 * dirty pages. 4716 */ 4717 if ((mi->mi_flags & MI_NOCTO) || 4718 nfs_zone() != mi->mi_zone) 4719 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4720 B_ASYNC, dmapp->cr, NULL); 4721 else 4722 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4723 0, dmapp->cr, NULL); 4724 if (!error) { 4725 mutex_enter(&rp->r_statelock); 4726 error = rp->r_error; 4727 rp->r_error = 0; 4728 mutex_exit(&rp->r_statelock); 4729 } 4730 } else 4731 error = 0; 4732 4733 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4734 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4735 B_INVAL, dmapp->cr, NULL); 4736 4737 dmapp->caller->error = error; 4738 (void) as_delete_callback(as, arg); 4739 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4740 } 4741 4742 /* ARGSUSED */ 4743 static int 4744 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4745 caller_context_t *ct) 4746 { 4747 int error = 0; 4748 4749 if (nfs_zone() != VTOMI(vp)->mi_zone) 4750 return (EIO); 4751 /* 4752 * This looks a little weird because it's written in a general 4753 * manner but we make little use of cases. If cntl() ever gets 4754 * widely used, the outer switch will make more sense. 4755 */ 4756 4757 switch (cmd) { 4758 4759 /* 4760 * Large file spec - need to base answer new query with 4761 * hardcoded constant based on the protocol. 4762 */ 4763 case _PC_FILESIZEBITS: 4764 *valp = 32; 4765 return (0); 4766 4767 case _PC_LINK_MAX: 4768 case _PC_NAME_MAX: 4769 case _PC_PATH_MAX: 4770 case _PC_SYMLINK_MAX: 4771 case _PC_CHOWN_RESTRICTED: 4772 case _PC_NO_TRUNC: { 4773 mntinfo_t *mi; 4774 struct pathcnf *pc; 4775 4776 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4777 return (EINVAL); 4778 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4779 switch (cmd) { 4780 case _PC_LINK_MAX: 4781 *valp = pc->pc_link_max; 4782 break; 4783 case _PC_NAME_MAX: 4784 *valp = pc->pc_name_max; 4785 break; 4786 case _PC_PATH_MAX: 4787 case _PC_SYMLINK_MAX: 4788 *valp = pc->pc_path_max; 4789 break; 4790 case _PC_CHOWN_RESTRICTED: 4791 /* 4792 * if we got here, error is really a boolean which 4793 * indicates whether cmd is set or not. 4794 */ 4795 *valp = error ? 1 : 0; /* see above */ 4796 error = 0; 4797 break; 4798 case _PC_NO_TRUNC: 4799 /* 4800 * if we got here, error is really a boolean which 4801 * indicates whether cmd is set or not. 4802 */ 4803 *valp = error ? 1 : 0; /* see above */ 4804 error = 0; 4805 break; 4806 } 4807 return (error ? EINVAL : 0); 4808 } 4809 4810 case _PC_XATTR_EXISTS: 4811 *valp = 0; 4812 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4813 vnode_t *avp; 4814 rnode_t *rp; 4815 mntinfo_t *mi = VTOMI(vp); 4816 4817 if (!(mi->mi_flags & MI_EXTATTR)) 4818 return (0); 4819 4820 rp = VTOR(vp); 4821 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4822 INTR(vp))) 4823 return (EINTR); 4824 4825 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4826 if (error || avp == NULL) 4827 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4828 4829 nfs_rw_exit(&rp->r_rwlock); 4830 4831 if (error == 0 && avp != NULL) { 4832 VN_RELE(avp); 4833 *valp = 1; 4834 } 4835 } 4836 return (error ? EINVAL : 0); 4837 4838 case _PC_ACL_ENABLED: 4839 *valp = _ACL_ACLENT_ENABLED; 4840 return (0); 4841 4842 default: 4843 return (EINVAL); 4844 } 4845 } 4846 4847 /* 4848 * Called by async thread to do synchronous pageio. Do the i/o, wait 4849 * for it to complete, and cleanup the page list when done. 4850 */ 4851 static int 4852 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4853 int flags, cred_t *cr) 4854 { 4855 int error; 4856 4857 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4858 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4859 if (flags & B_READ) 4860 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4861 else 4862 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4863 return (error); 4864 } 4865 4866 /* ARGSUSED */ 4867 static int 4868 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4869 int flags, cred_t *cr, caller_context_t *ct) 4870 { 4871 int error; 4872 rnode_t *rp; 4873 4874 if (pp == NULL) 4875 return (EINVAL); 4876 4877 if (io_off > MAXOFF32_T) 4878 return (EFBIG); 4879 if (nfs_zone() != VTOMI(vp)->mi_zone) 4880 return (EIO); 4881 rp = VTOR(vp); 4882 mutex_enter(&rp->r_statelock); 4883 rp->r_count++; 4884 mutex_exit(&rp->r_statelock); 4885 4886 if (flags & B_ASYNC) { 4887 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4888 nfs_sync_pageio); 4889 } else 4890 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4891 mutex_enter(&rp->r_statelock); 4892 rp->r_count--; 4893 cv_broadcast(&rp->r_cv); 4894 mutex_exit(&rp->r_statelock); 4895 return (error); 4896 } 4897 4898 /* ARGSUSED */ 4899 static int 4900 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4901 caller_context_t *ct) 4902 { 4903 int error; 4904 mntinfo_t *mi; 4905 4906 mi = VTOMI(vp); 4907 4908 if (nfs_zone() != mi->mi_zone) 4909 return (EIO); 4910 if (mi->mi_flags & MI_ACL) { 4911 error = acl_setacl2(vp, vsecattr, flag, cr); 4912 if (mi->mi_flags & MI_ACL) 4913 return (error); 4914 } 4915 4916 return (ENOSYS); 4917 } 4918 4919 /* ARGSUSED */ 4920 static int 4921 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4922 caller_context_t *ct) 4923 { 4924 int error; 4925 mntinfo_t *mi; 4926 4927 mi = VTOMI(vp); 4928 4929 if (nfs_zone() != mi->mi_zone) 4930 return (EIO); 4931 if (mi->mi_flags & MI_ACL) { 4932 error = acl_getacl2(vp, vsecattr, flag, cr); 4933 if (mi->mi_flags & MI_ACL) 4934 return (error); 4935 } 4936 4937 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4938 } 4939 4940 /* ARGSUSED */ 4941 static int 4942 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4943 caller_context_t *ct) 4944 { 4945 int error; 4946 struct shrlock nshr; 4947 struct nfs_owner nfs_owner; 4948 netobj lm_fh; 4949 4950 if (nfs_zone() != VTOMI(vp)->mi_zone) 4951 return (EIO); 4952 4953 /* 4954 * check for valid cmd parameter 4955 */ 4956 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4957 return (EINVAL); 4958 4959 /* 4960 * Check access permissions 4961 */ 4962 if (cmd == F_SHARE && 4963 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4964 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4965 return (EBADF); 4966 4967 /* 4968 * If the filesystem is mounted using local locking, pass the 4969 * request off to the local share code. 4970 */ 4971 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4972 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 4973 4974 switch (cmd) { 4975 case F_SHARE: 4976 case F_UNSHARE: 4977 lm_fh.n_len = sizeof (fhandle_t); 4978 lm_fh.n_bytes = (char *)VTOFH(vp); 4979 4980 /* 4981 * If passed an owner that is too large to fit in an 4982 * nfs_owner it is likely a recursive call from the 4983 * lock manager client and pass it straight through. If 4984 * it is not a nfs_owner then simply return an error. 4985 */ 4986 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 4987 if (((struct nfs_owner *)shr->s_owner)->magic != 4988 NFS_OWNER_MAGIC) 4989 return (EINVAL); 4990 4991 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 4992 error = set_errno(error); 4993 } 4994 return (error); 4995 } 4996 /* 4997 * Remote share reservations owner is a combination of 4998 * a magic number, hostname, and the local owner 4999 */ 5000 bzero(&nfs_owner, sizeof (nfs_owner)); 5001 nfs_owner.magic = NFS_OWNER_MAGIC; 5002 (void) strncpy(nfs_owner.hname, uts_nodename(), 5003 sizeof (nfs_owner.hname)); 5004 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5005 nshr.s_access = shr->s_access; 5006 nshr.s_deny = shr->s_deny; 5007 nshr.s_sysid = 0; 5008 nshr.s_pid = ttoproc(curthread)->p_pid; 5009 nshr.s_own_len = sizeof (nfs_owner); 5010 nshr.s_owner = (caddr_t)&nfs_owner; 5011 5012 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5013 error = set_errno(error); 5014 } 5015 5016 break; 5017 5018 case F_HASREMOTELOCKS: 5019 /* 5020 * NFS client can't store remote locks itself 5021 */ 5022 shr->s_access = 0; 5023 error = 0; 5024 break; 5025 5026 default: 5027 error = EINVAL; 5028 break; 5029 } 5030 5031 return (error); 5032 } 5033