1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 27 * All rights reserved. 28 */ 29 30 #pragma ident "%Z%%M% %I% %E% SMI" 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/time.h> 37 #include <sys/vnode.h> 38 #include <sys/vfs.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/atomic.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 64 #include <rpc/types.h> 65 #include <rpc/auth.h> 66 #include <rpc/clnt.h> 67 68 #include <nfs/nfs.h> 69 #include <nfs/nfs_clnt.h> 70 #include <nfs/rnode.h> 71 #include <nfs/nfs_acl.h> 72 #include <nfs/lm.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_kpm.h> 81 #include <vm/seg_vn.h> 82 83 #include <fs/fs_subr.h> 84 85 #include <sys/ddi.h> 86 87 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 88 cred_t *); 89 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 90 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 91 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 92 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 93 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 94 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *); 95 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 96 static int nfs_bio(struct buf *, cred_t *); 97 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 98 page_t *[], size_t, struct seg *, caddr_t, 99 enum seg_rw, cred_t *); 100 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 101 cred_t *); 102 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 103 int, cred_t *); 104 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 105 int, cred_t *); 106 static void nfs_delmap_callback(struct as *, void *, uint_t); 107 108 /* 109 * Error flags used to pass information about certain special errors 110 * which need to be handled specially. 111 */ 112 #define NFS_EOF -98 113 114 /* 115 * These are the vnode ops routines which implement the vnode interface to 116 * the networked file system. These routines just take their parameters, 117 * make them look networkish by putting the right info into interface structs, 118 * and then calling the appropriate remote routine(s) to do the work. 119 * 120 * Note on directory name lookup cacheing: If we detect a stale fhandle, 121 * we purge the directory cache relative to that vnode. This way, the 122 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 123 * more details on rnode locking. 124 */ 125 126 static int nfs_open(vnode_t **, int, cred_t *); 127 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *); 128 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 129 caller_context_t *); 130 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 133 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *); 134 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_access(vnode_t *, int, int, cred_t *); 137 static int nfs_accessx(void *, int, cred_t *); 138 static int nfs_readlink(vnode_t *, struct uio *, cred_t *); 139 static int nfs_fsync(vnode_t *, int, cred_t *); 140 static void nfs_inactive(vnode_t *, cred_t *); 141 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 142 int, vnode_t *, cred_t *); 143 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 144 int, vnode_t **, cred_t *, int); 145 static int nfs_remove(vnode_t *, char *, cred_t *); 146 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *); 147 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 148 static int nfs_mkdir(vnode_t *, char *, struct vattr *, 149 vnode_t **, cred_t *); 150 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 151 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 152 cred_t *); 153 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *); 154 static int nfs_fid(vnode_t *, fid_t *); 155 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 156 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 157 static int nfs_seek(vnode_t *, offset_t, offset_t *); 158 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 159 page_t *[], size_t, struct seg *, caddr_t, 160 enum seg_rw, cred_t *); 161 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 162 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, 163 size_t, uchar_t, uchar_t, uint_t, cred_t *); 164 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, 165 size_t, uchar_t, uchar_t, uint_t, cred_t *); 166 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 167 struct flk_callback *, cred_t *); 168 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 169 cred_t *, caller_context_t *); 170 static int nfs_realvp(vnode_t *, vnode_t **); 171 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, 172 size_t, uint_t, uint_t, uint_t, cred_t *); 173 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *); 174 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 175 cred_t *); 176 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 177 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 178 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 179 180 struct vnodeops *nfs_vnodeops; 181 182 const fs_operation_def_t nfs_vnodeops_template[] = { 183 VOPNAME_OPEN, nfs_open, 184 VOPNAME_CLOSE, nfs_close, 185 VOPNAME_READ, nfs_read, 186 VOPNAME_WRITE, nfs_write, 187 VOPNAME_IOCTL, nfs_ioctl, 188 VOPNAME_GETATTR, nfs_getattr, 189 VOPNAME_SETATTR, nfs_setattr, 190 VOPNAME_ACCESS, nfs_access, 191 VOPNAME_LOOKUP, nfs_lookup, 192 VOPNAME_CREATE, nfs_create, 193 VOPNAME_REMOVE, nfs_remove, 194 VOPNAME_LINK, nfs_link, 195 VOPNAME_RENAME, nfs_rename, 196 VOPNAME_MKDIR, nfs_mkdir, 197 VOPNAME_RMDIR, nfs_rmdir, 198 VOPNAME_READDIR, nfs_readdir, 199 VOPNAME_SYMLINK, nfs_symlink, 200 VOPNAME_READLINK, nfs_readlink, 201 VOPNAME_FSYNC, nfs_fsync, 202 VOPNAME_INACTIVE, (fs_generic_func_p) nfs_inactive, 203 VOPNAME_FID, nfs_fid, 204 VOPNAME_RWLOCK, nfs_rwlock, 205 VOPNAME_RWUNLOCK, (fs_generic_func_p) nfs_rwunlock, 206 VOPNAME_SEEK, nfs_seek, 207 VOPNAME_FRLOCK, nfs_frlock, 208 VOPNAME_SPACE, nfs_space, 209 VOPNAME_REALVP, nfs_realvp, 210 VOPNAME_GETPAGE, nfs_getpage, 211 VOPNAME_PUTPAGE, nfs_putpage, 212 VOPNAME_MAP, (fs_generic_func_p) nfs_map, 213 VOPNAME_ADDMAP, (fs_generic_func_p) nfs_addmap, 214 VOPNAME_DELMAP, nfs_delmap, 215 VOPNAME_DUMP, nfs_dump, 216 VOPNAME_PATHCONF, nfs_pathconf, 217 VOPNAME_PAGEIO, nfs_pageio, 218 VOPNAME_SETSECATTR, nfs_setsecattr, 219 VOPNAME_GETSECATTR, nfs_getsecattr, 220 VOPNAME_SHRLOCK, nfs_shrlock, 221 NULL, NULL 222 }; 223 224 /* 225 * XXX: This is referenced in modstubs.s 226 */ 227 struct vnodeops * 228 nfs_getvnodeops(void) 229 { 230 return (nfs_vnodeops); 231 } 232 233 /* ARGSUSED */ 234 static int 235 nfs_open(vnode_t **vpp, int flag, cred_t *cr) 236 { 237 int error; 238 struct vattr va; 239 rnode_t *rp; 240 vnode_t *vp; 241 242 vp = *vpp; 243 rp = VTOR(vp); 244 if (nfs_zone() != VTOMI(vp)->mi_zone) 245 return (EIO); 246 mutex_enter(&rp->r_statelock); 247 if (rp->r_cred == NULL) { 248 crhold(cr); 249 rp->r_cred = cr; 250 } 251 mutex_exit(&rp->r_statelock); 252 253 /* 254 * If there is no cached data or if close-to-open 255 * consistency checking is turned off, we can avoid 256 * the over the wire getattr. Otherwise, if the 257 * file system is mounted readonly, then just verify 258 * the caches are up to date using the normal mechanism. 259 * Else, if the file is not mmap'd, then just mark 260 * the attributes as timed out. They will be refreshed 261 * and the caches validated prior to being used. 262 * Else, the file system is mounted writeable so 263 * force an over the wire GETATTR in order to ensure 264 * that all cached data is valid. 265 */ 266 if (vp->v_count > 1 || 267 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 268 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 269 if (vn_is_readonly(vp)) 270 error = nfs_validate_caches(vp, cr); 271 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 272 PURGE_ATTRCACHE(vp); 273 error = 0; 274 } else { 275 va.va_mask = AT_ALL; 276 error = nfs_getattr_otw(vp, &va, cr); 277 } 278 } else 279 error = 0; 280 281 return (error); 282 } 283 284 static int 285 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 286 { 287 rnode_t *rp; 288 int error; 289 struct vattr va; 290 291 /* 292 * zone_enter(2) prevents processes from changing zones with NFS files 293 * open; if we happen to get here from the wrong zone we can't do 294 * anything over the wire. 295 */ 296 if (VTOMI(vp)->mi_zone != nfs_zone()) { 297 /* 298 * We could attempt to clean up locks, except we're sure 299 * that the current process didn't acquire any locks on 300 * the file: any attempt to lock a file belong to another zone 301 * will fail, and one can't lock an NFS file and then change 302 * zones, as that fails too. 303 * 304 * Returning an error here is the sane thing to do. A 305 * subsequent call to VN_RELE() which translates to a 306 * nfs_inactive() will clean up state: if the zone of the 307 * vnode's origin is still alive and kicking, an async worker 308 * thread will handle the request (from the correct zone), and 309 * everything (minus the final nfs_getattr_otw() call) should 310 * be OK. If the zone is going away nfs_async_inactive() will 311 * throw away cached pages inline. 312 */ 313 return (EIO); 314 } 315 316 /* 317 * If we are using local locking for this filesystem, then 318 * release all of the SYSV style record locks. Otherwise, 319 * we are doing network locking and we need to release all 320 * of the network locks. All of the locks held by this 321 * process on this file are released no matter what the 322 * incoming reference count is. 323 */ 324 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 325 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 326 cleanshares(vp, ttoproc(curthread)->p_pid); 327 } else 328 nfs_lockrelease(vp, flag, offset, cr); 329 330 if (count > 1) 331 return (0); 332 333 /* 334 * If the file has been `unlinked', then purge the 335 * DNLC so that this vnode will get reycled quicker 336 * and the .nfs* file on the server will get removed. 337 */ 338 rp = VTOR(vp); 339 if (rp->r_unldvp != NULL) 340 dnlc_purge_vp(vp); 341 342 /* 343 * If the file was open for write and there are pages, 344 * then if the file system was mounted using the "no-close- 345 * to-open" semantics, then start an asynchronous flush 346 * of the all of the pages in the file. 347 * else the file system was not mounted using the "no-close- 348 * to-open" semantics, then do a synchronous flush and 349 * commit of all of the dirty and uncommitted pages. 350 * 351 * The asynchronous flush of the pages in the "nocto" path 352 * mostly just associates a cred pointer with the rnode so 353 * writes which happen later will have a better chance of 354 * working. It also starts the data being written to the 355 * server, but without unnecessarily delaying the application. 356 */ 357 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 358 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 359 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, cr); 360 if (error == EAGAIN) 361 error = 0; 362 } else 363 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 364 if (!error) { 365 mutex_enter(&rp->r_statelock); 366 error = rp->r_error; 367 rp->r_error = 0; 368 mutex_exit(&rp->r_statelock); 369 } 370 } else { 371 mutex_enter(&rp->r_statelock); 372 error = rp->r_error; 373 rp->r_error = 0; 374 mutex_exit(&rp->r_statelock); 375 } 376 377 /* 378 * If RWRITEATTR is set, then issue an over the wire GETATTR to 379 * refresh the attribute cache with a set of attributes which 380 * weren't returned from a WRITE. This will enable the close- 381 * to-open processing to work. 382 */ 383 if (rp->r_flags & RWRITEATTR) 384 (void) nfs_getattr_otw(vp, &va, cr); 385 386 return (error); 387 } 388 389 /* ARGSUSED */ 390 static int 391 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 392 caller_context_t *ct) 393 { 394 rnode_t *rp; 395 u_offset_t off; 396 offset_t diff; 397 int on; 398 size_t n; 399 caddr_t base; 400 uint_t flags; 401 int error; 402 mntinfo_t *mi; 403 404 rp = VTOR(vp); 405 mi = VTOMI(vp); 406 407 if (nfs_zone() != mi->mi_zone) 408 return (EIO); 409 410 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 411 412 if (vp->v_type != VREG) 413 return (EISDIR); 414 415 if (uiop->uio_resid == 0) 416 return (0); 417 418 if (uiop->uio_loffset > MAXOFF32_T) 419 return (EFBIG); 420 421 if (uiop->uio_loffset < 0 || 422 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 423 return (EINVAL); 424 425 /* 426 * Bypass VM if caching has been disabled (e.g., locking) or if 427 * using client-side direct I/O and the file is not mmap'd and 428 * there are no cached pages. 429 */ 430 if ((vp->v_flag & VNOCACHE) || 431 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 432 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 433 size_t bufsize; 434 size_t resid = 0; 435 436 /* 437 * Let's try to do read in as large a chunk as we can 438 * (Filesystem (NFS client) bsize if possible/needed). 439 * For V3, this is 32K and for V2, this is 8K. 440 */ 441 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 442 base = kmem_alloc(bufsize, KM_SLEEP); 443 do { 444 n = MIN(uiop->uio_resid, bufsize); 445 error = nfsread(vp, base, uiop->uio_offset, n, 446 &resid, cr); 447 if (!error) { 448 n -= resid; 449 error = uiomove(base, n, UIO_READ, uiop); 450 } 451 } while (!error && uiop->uio_resid > 0 && n > 0); 452 kmem_free(base, bufsize); 453 return (error); 454 } 455 456 error = 0; 457 458 do { 459 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 460 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 461 n = MIN(MAXBSIZE - on, uiop->uio_resid); 462 463 error = nfs_validate_caches(vp, cr); 464 if (error) 465 break; 466 467 mutex_enter(&rp->r_statelock); 468 diff = rp->r_size - uiop->uio_loffset; 469 mutex_exit(&rp->r_statelock); 470 if (diff <= 0) 471 break; 472 if (diff < n) 473 n = (size_t)diff; 474 475 base = segmap_getmapflt(segkmap, vp, off + on, n, 1, S_READ); 476 477 error = uiomove(base + on, n, UIO_READ, uiop); 478 479 if (!error) { 480 /* 481 * If read a whole block or read to eof, 482 * won't need this buffer again soon. 483 */ 484 mutex_enter(&rp->r_statelock); 485 if (n + on == MAXBSIZE || 486 uiop->uio_loffset == rp->r_size) 487 flags = SM_DONTNEED; 488 else 489 flags = 0; 490 mutex_exit(&rp->r_statelock); 491 error = segmap_release(segkmap, base, flags); 492 } else 493 (void) segmap_release(segkmap, base, 0); 494 } while (!error && uiop->uio_resid > 0); 495 496 return (error); 497 } 498 499 /* ARGSUSED */ 500 static int 501 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 502 caller_context_t *ct) 503 { 504 rnode_t *rp; 505 u_offset_t off; 506 caddr_t base; 507 uint_t flags; 508 int remainder; 509 size_t n; 510 int on; 511 int error; 512 int resid; 513 offset_t offset; 514 rlim_t limit; 515 mntinfo_t *mi; 516 517 rp = VTOR(vp); 518 519 mi = VTOMI(vp); 520 if (nfs_zone() != mi->mi_zone) 521 return (EIO); 522 if (vp->v_type != VREG) 523 return (EISDIR); 524 525 if (uiop->uio_resid == 0) 526 return (0); 527 528 if (ioflag & FAPPEND) { 529 struct vattr va; 530 531 /* 532 * Must serialize if appending. 533 */ 534 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 535 nfs_rw_exit(&rp->r_rwlock); 536 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 537 INTR(vp))) 538 return (EINTR); 539 } 540 541 va.va_mask = AT_SIZE; 542 error = nfsgetattr(vp, &va, cr); 543 if (error) 544 return (error); 545 uiop->uio_loffset = va.va_size; 546 } 547 548 if (uiop->uio_loffset > MAXOFF32_T) 549 return (EFBIG); 550 551 offset = uiop->uio_loffset + uiop->uio_resid; 552 553 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 554 return (EINVAL); 555 556 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 557 limit = MAXOFF32_T; 558 } else { 559 limit = (rlim_t)uiop->uio_llimit; 560 } 561 562 /* 563 * Check to make sure that the process will not exceed 564 * its limit on file size. It is okay to write up to 565 * the limit, but not beyond. Thus, the write which 566 * reaches the limit will be short and the next write 567 * will return an error. 568 */ 569 remainder = 0; 570 if (offset > limit) { 571 remainder = offset - limit; 572 uiop->uio_resid = limit - uiop->uio_offset; 573 if (uiop->uio_resid <= 0) { 574 proc_t *p = ttoproc(curthread); 575 576 uiop->uio_resid += remainder; 577 mutex_enter(&p->p_lock); 578 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 579 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 580 mutex_exit(&p->p_lock); 581 return (EFBIG); 582 } 583 } 584 585 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 586 return (EINTR); 587 588 /* 589 * Bypass VM if caching has been disabled (e.g., locking) or if 590 * using client-side direct I/O and the file is not mmap'd and 591 * there are no cached pages. 592 */ 593 if ((vp->v_flag & VNOCACHE) || 594 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 595 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 596 size_t bufsize; 597 int count; 598 uint_t org_offset; 599 600 nfs_fwrite: 601 if (rp->r_flags & RSTALE) { 602 resid = uiop->uio_resid; 603 offset = uiop->uio_loffset; 604 error = rp->r_error; 605 goto bottom; 606 } 607 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 608 base = kmem_alloc(bufsize, KM_SLEEP); 609 do { 610 resid = uiop->uio_resid; 611 offset = uiop->uio_loffset; 612 count = MIN(uiop->uio_resid, bufsize); 613 org_offset = uiop->uio_offset; 614 error = uiomove(base, count, UIO_WRITE, uiop); 615 if (!error) { 616 error = nfswrite(vp, base, org_offset, 617 count, cr); 618 } 619 } while (!error && uiop->uio_resid > 0); 620 kmem_free(base, bufsize); 621 goto bottom; 622 } 623 624 do { 625 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 626 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 627 n = MIN(MAXBSIZE - on, uiop->uio_resid); 628 629 resid = uiop->uio_resid; 630 offset = uiop->uio_loffset; 631 632 if (rp->r_flags & RSTALE) { 633 error = rp->r_error; 634 break; 635 } 636 637 /* 638 * Don't create dirty pages faster than they 639 * can be cleaned so that the system doesn't 640 * get imbalanced. If the async queue is 641 * maxed out, then wait for it to drain before 642 * creating more dirty pages. Also, wait for 643 * any threads doing pagewalks in the vop_getattr 644 * entry points so that they don't block for 645 * long periods. 646 */ 647 mutex_enter(&rp->r_statelock); 648 while ((mi->mi_max_threads != 0 && 649 rp->r_awcount > 2 * mi->mi_max_threads) || 650 rp->r_gcount > 0) 651 cv_wait(&rp->r_cv, &rp->r_statelock); 652 mutex_exit(&rp->r_statelock); 653 654 if (segmap_kpm) { 655 int pon = uiop->uio_loffset & PAGEOFFSET; 656 size_t pn = MIN(PAGESIZE - pon, uiop->uio_resid); 657 int pagecreate; 658 659 mutex_enter(&rp->r_statelock); 660 pagecreate = (pon == 0) && (pn == PAGESIZE || 661 uiop->uio_loffset + pn >= rp->r_size); 662 mutex_exit(&rp->r_statelock); 663 664 base = segmap_getmapflt(segkmap, vp, off + on, 665 pn, !pagecreate, S_WRITE); 666 667 error = writerp(rp, base + pon, n, uiop, pagecreate); 668 669 } else { 670 base = segmap_getmapflt(segkmap, vp, off + on, 671 n, 0, S_READ); 672 error = writerp(rp, base + on, n, uiop, 0); 673 } 674 675 if (!error) { 676 if (mi->mi_flags & MI_NOAC) 677 flags = SM_WRITE; 678 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 679 /* 680 * Have written a whole block. 681 * Start an asynchronous write 682 * and mark the buffer to 683 * indicate that it won't be 684 * needed again soon. 685 */ 686 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 687 } else 688 flags = 0; 689 if ((ioflag & (FSYNC|FDSYNC)) || 690 (rp->r_flags & ROUTOFSPACE)) { 691 flags &= ~SM_ASYNC; 692 flags |= SM_WRITE; 693 } 694 error = segmap_release(segkmap, base, flags); 695 } else { 696 (void) segmap_release(segkmap, base, 0); 697 /* 698 * In the event that we got an access error while 699 * faulting in a page for a write-only file just 700 * force a write. 701 */ 702 if (error == EACCES) 703 goto nfs_fwrite; 704 } 705 } while (!error && uiop->uio_resid > 0); 706 707 bottom: 708 if (error) { 709 uiop->uio_resid = resid + remainder; 710 uiop->uio_loffset = offset; 711 } else 712 uiop->uio_resid += remainder; 713 714 nfs_rw_exit(&rp->r_lkserlock); 715 716 return (error); 717 } 718 719 /* 720 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 721 */ 722 static int 723 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 724 int flags, cred_t *cr) 725 { 726 struct buf *bp; 727 int error; 728 729 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 730 bp = pageio_setup(pp, len, vp, flags); 731 ASSERT(bp != NULL); 732 733 /* 734 * pageio_setup should have set b_addr to 0. This 735 * is correct since we want to do I/O on a page 736 * boundary. bp_mapin will use this addr to calculate 737 * an offset, and then set b_addr to the kernel virtual 738 * address it allocated for us. 739 */ 740 ASSERT(bp->b_un.b_addr == 0); 741 742 bp->b_edev = 0; 743 bp->b_dev = 0; 744 bp->b_lblkno = lbtodb(off); 745 bp->b_file = vp; 746 bp->b_offset = (offset_t)off; 747 bp_mapin(bp); 748 749 error = nfs_bio(bp, cr); 750 751 bp_mapout(bp); 752 pageio_done(bp); 753 754 return (error); 755 } 756 757 /* 758 * Write to file. Writes to remote server in largest size 759 * chunks that the server can handle. Write is synchronous. 760 */ 761 static int 762 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 763 { 764 rnode_t *rp; 765 mntinfo_t *mi; 766 struct nfswriteargs wa; 767 struct nfsattrstat ns; 768 int error; 769 int tsize; 770 int douprintf; 771 772 douprintf = 1; 773 774 rp = VTOR(vp); 775 mi = VTOMI(vp); 776 777 ASSERT(nfs_zone() == mi->mi_zone); 778 779 wa.wa_args = &wa.wa_args_buf; 780 wa.wa_fhandle = *VTOFH(vp); 781 782 do { 783 tsize = MIN(mi->mi_curwrite, count); 784 wa.wa_data = base; 785 wa.wa_begoff = offset; 786 wa.wa_totcount = tsize; 787 wa.wa_count = tsize; 788 wa.wa_offset = offset; 789 790 if (mi->mi_io_kstats) { 791 mutex_enter(&mi->mi_lock); 792 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 793 mutex_exit(&mi->mi_lock); 794 } 795 wa.wa_mblk = NULL; 796 do { 797 error = rfs2call(mi, RFS_WRITE, 798 xdr_writeargs, (caddr_t)&wa, 799 xdr_attrstat, (caddr_t)&ns, cr, 800 &douprintf, &ns.ns_status, 0, NULL); 801 } while (error == ENFS_TRYAGAIN); 802 if (mi->mi_io_kstats) { 803 mutex_enter(&mi->mi_lock); 804 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 805 mutex_exit(&mi->mi_lock); 806 } 807 808 if (!error) { 809 error = geterrno(ns.ns_status); 810 /* 811 * Can't check for stale fhandle and purge caches 812 * here because pages are held by nfs_getpage. 813 * Just mark the attribute cache as timed out 814 * and set RWRITEATTR to indicate that the file 815 * was modified with a WRITE operation. 816 */ 817 if (!error) { 818 count -= tsize; 819 base += tsize; 820 offset += tsize; 821 if (mi->mi_io_kstats) { 822 mutex_enter(&mi->mi_lock); 823 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 824 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 825 tsize; 826 mutex_exit(&mi->mi_lock); 827 } 828 lwp_stat_update(LWP_STAT_OUBLK, 1); 829 mutex_enter(&rp->r_statelock); 830 PURGE_ATTRCACHE_LOCKED(rp); 831 rp->r_flags |= RWRITEATTR; 832 mutex_exit(&rp->r_statelock); 833 } 834 } 835 } while (!error && count); 836 837 return (error); 838 } 839 840 /* 841 * Read from a file. Reads data in largest chunks our interface can handle. 842 */ 843 static int 844 nfsread(vnode_t *vp, caddr_t base, uint_t offset, int count, size_t *residp, 845 cred_t *cr) 846 { 847 mntinfo_t *mi; 848 struct nfsreadargs ra; 849 struct nfsrdresult rr; 850 int tsize; 851 int error; 852 int douprintf; 853 failinfo_t fi; 854 rnode_t *rp; 855 struct vattr va; 856 hrtime_t t; 857 858 rp = VTOR(vp); 859 mi = VTOMI(vp); 860 861 ASSERT(nfs_zone() == mi->mi_zone); 862 863 douprintf = 1; 864 865 ra.ra_fhandle = *VTOFH(vp); 866 867 fi.vp = vp; 868 fi.fhp = (caddr_t)&ra.ra_fhandle; 869 fi.copyproc = nfscopyfh; 870 fi.lookupproc = nfslookup; 871 fi.xattrdirproc = acl_getxattrdir2; 872 873 do { 874 if (mi->mi_io_kstats) { 875 mutex_enter(&mi->mi_lock); 876 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 877 mutex_exit(&mi->mi_lock); 878 } 879 880 do { 881 tsize = MIN(mi->mi_curread, count); 882 rr.rr_data = base; 883 ra.ra_offset = offset; 884 ra.ra_totcount = tsize; 885 ra.ra_count = tsize; 886 t = gethrtime(); 887 error = rfs2call(mi, RFS_READ, 888 xdr_readargs, (caddr_t)&ra, 889 xdr_rdresult, (caddr_t)&rr, cr, 890 &douprintf, &rr.rr_status, 0, &fi); 891 } while (error == ENFS_TRYAGAIN); 892 893 if (mi->mi_io_kstats) { 894 mutex_enter(&mi->mi_lock); 895 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 896 mutex_exit(&mi->mi_lock); 897 } 898 899 if (!error) { 900 error = geterrno(rr.rr_status); 901 if (!error) { 902 count -= rr.rr_count; 903 base += rr.rr_count; 904 offset += rr.rr_count; 905 if (mi->mi_io_kstats) { 906 mutex_enter(&mi->mi_lock); 907 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 908 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 909 rr.rr_count; 910 mutex_exit(&mi->mi_lock); 911 } 912 lwp_stat_update(LWP_STAT_INBLK, 1); 913 } 914 } 915 } while (!error && count && rr.rr_count == tsize); 916 917 *residp = count; 918 919 if (!error) { 920 /* 921 * Since no error occurred, we have the current 922 * attributes and we need to do a cache check and then 923 * potentially update the cached attributes. We can't 924 * use the normal attribute check and cache mechanisms 925 * because they might cause a cache flush which would 926 * deadlock. Instead, we just check the cache to see 927 * if the attributes have changed. If it is, then we 928 * just mark the attributes as out of date. The next 929 * time that the attributes are checked, they will be 930 * out of date, new attributes will be fetched, and 931 * the page cache will be flushed. If the attributes 932 * weren't changed, then we just update the cached 933 * attributes with these attributes. 934 */ 935 /* 936 * If NFS_ACL is supported on the server, then the 937 * attributes returned by server may have minimal 938 * permissions sometimes denying access to users having 939 * proper access. To get the proper attributes, mark 940 * the attributes as expired so that they will be 941 * regotten via the NFS_ACL GETATTR2 procedure. 942 */ 943 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 944 mutex_enter(&rp->r_statelock); 945 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 946 (mi->mi_flags & MI_ACL)) { 947 mutex_exit(&rp->r_statelock); 948 PURGE_ATTRCACHE(vp); 949 } else { 950 if (rp->r_mtime <= t) { 951 nfs_attrcache_va(vp, &va); 952 } 953 mutex_exit(&rp->r_statelock); 954 } 955 } 956 957 return (error); 958 } 959 960 /* ARGSUSED */ 961 static int 962 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 963 { 964 965 if (nfs_zone() != VTOMI(vp)->mi_zone) 966 return (EIO); 967 switch (cmd) { 968 case _FIODIRECTIO: 969 return (nfs_directio(vp, (int)arg, cr)); 970 default: 971 return (ENOTTY); 972 } 973 } 974 975 static int 976 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 977 { 978 int error; 979 rnode_t *rp; 980 981 if (nfs_zone() != VTOMI(vp)->mi_zone) 982 return (EIO); 983 /* 984 * If it has been specified that the return value will 985 * just be used as a hint, and we are only being asked 986 * for size, fsid or rdevid, then return the client's 987 * notion of these values without checking to make sure 988 * that the attribute cache is up to date. 989 * The whole point is to avoid an over the wire GETATTR 990 * call. 991 */ 992 rp = VTOR(vp); 993 if (flags & ATTR_HINT) { 994 if (vap->va_mask == 995 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 996 mutex_enter(&rp->r_statelock); 997 if (vap->va_mask | AT_SIZE) 998 vap->va_size = rp->r_size; 999 if (vap->va_mask | AT_FSID) 1000 vap->va_fsid = rp->r_attr.va_fsid; 1001 if (vap->va_mask | AT_RDEV) 1002 vap->va_rdev = rp->r_attr.va_rdev; 1003 mutex_exit(&rp->r_statelock); 1004 return (0); 1005 } 1006 } 1007 1008 /* 1009 * Only need to flush pages if asking for the mtime 1010 * and if there any dirty pages or any outstanding 1011 * asynchronous (write) requests for this file. 1012 */ 1013 if (vap->va_mask & AT_MTIME) { 1014 if (vn_has_cached_data(vp) && 1015 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1016 mutex_enter(&rp->r_statelock); 1017 rp->r_gcount++; 1018 mutex_exit(&rp->r_statelock); 1019 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1020 mutex_enter(&rp->r_statelock); 1021 if (error && (error == ENOSPC || error == EDQUOT)) { 1022 if (!rp->r_error) 1023 rp->r_error = error; 1024 } 1025 if (--rp->r_gcount == 0) 1026 cv_broadcast(&rp->r_cv); 1027 mutex_exit(&rp->r_statelock); 1028 } 1029 } 1030 1031 return (nfsgetattr(vp, vap, cr)); 1032 } 1033 1034 /*ARGSUSED4*/ 1035 static int 1036 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1037 caller_context_t *ct) 1038 { 1039 int error; 1040 uint_t mask; 1041 struct vattr va; 1042 1043 mask = vap->va_mask; 1044 1045 if (mask & AT_NOSET) 1046 return (EINVAL); 1047 1048 if ((mask & AT_SIZE) && 1049 vap->va_type == VREG && 1050 vap->va_size > MAXOFF32_T) 1051 return (EFBIG); 1052 1053 if (nfs_zone() != VTOMI(vp)->mi_zone) 1054 return (EIO); 1055 1056 va.va_mask = AT_UID | AT_MODE; 1057 1058 error = nfsgetattr(vp, &va, cr); 1059 if (error) 1060 return (error); 1061 1062 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1063 vp); 1064 1065 if (error) 1066 return (error); 1067 1068 return (nfssetattr(vp, vap, flags, cr)); 1069 } 1070 1071 static int 1072 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1073 { 1074 int error; 1075 uint_t mask; 1076 struct nfssaargs args; 1077 struct nfsattrstat ns; 1078 int douprintf; 1079 rnode_t *rp; 1080 struct vattr va; 1081 mode_t omode; 1082 mntinfo_t *mi; 1083 vsecattr_t *vsp; 1084 hrtime_t t; 1085 1086 mask = vap->va_mask; 1087 1088 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1089 1090 rp = VTOR(vp); 1091 1092 /* 1093 * Only need to flush pages if there are any pages and 1094 * if the file is marked as dirty in some fashion. The 1095 * file must be flushed so that we can accurately 1096 * determine the size of the file and the cached data 1097 * after the SETATTR returns. A file is considered to 1098 * be dirty if it is either marked with RDIRTY, has 1099 * outstanding i/o's active, or is mmap'd. In this 1100 * last case, we can't tell whether there are dirty 1101 * pages, so we flush just to be sure. 1102 */ 1103 if (vn_has_cached_data(vp) && 1104 ((rp->r_flags & RDIRTY) || 1105 rp->r_count > 0 || 1106 rp->r_mapcnt > 0)) { 1107 ASSERT(vp->v_type != VCHR); 1108 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1109 if (error && (error == ENOSPC || error == EDQUOT)) { 1110 mutex_enter(&rp->r_statelock); 1111 if (!rp->r_error) 1112 rp->r_error = error; 1113 mutex_exit(&rp->r_statelock); 1114 } 1115 } 1116 1117 /* 1118 * If the system call was utime(2) or utimes(2) and the 1119 * application did not specify the times, then set the 1120 * mtime nanosecond field to 1 billion. This will get 1121 * translated from 1 billion nanoseconds to 1 million 1122 * microseconds in the over the wire request. The 1123 * server will use 1 million in the microsecond field 1124 * to tell whether both the mtime and atime should be 1125 * set to the server's current time. 1126 * 1127 * This is an overload of the protocol and should be 1128 * documented in the NFS Version 2 protocol specification. 1129 */ 1130 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1131 vap->va_mtime.tv_nsec = 1000000000; 1132 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1133 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1134 error = vattr_to_sattr(vap, &args.saa_sa); 1135 } else { 1136 /* 1137 * Use server times. vap time values will not be used. 1138 * To ensure no time overflow, make sure vap has 1139 * valid values, but retain the original values. 1140 */ 1141 timestruc_t mtime = vap->va_mtime; 1142 timestruc_t atime = vap->va_atime; 1143 time_t now; 1144 1145 now = gethrestime_sec(); 1146 if (NFS_TIME_T_OK(now)) { 1147 /* Just in case server does not know of this */ 1148 vap->va_mtime.tv_sec = now; 1149 vap->va_atime.tv_sec = now; 1150 } else { 1151 vap->va_mtime.tv_sec = 0; 1152 vap->va_atime.tv_sec = 0; 1153 } 1154 error = vattr_to_sattr(vap, &args.saa_sa); 1155 /* set vap times back on */ 1156 vap->va_mtime = mtime; 1157 vap->va_atime = atime; 1158 } 1159 } else { 1160 /* Either do not set times or use the client specified times */ 1161 error = vattr_to_sattr(vap, &args.saa_sa); 1162 } 1163 if (error) { 1164 /* req time field(s) overflow - return immediately */ 1165 return (error); 1166 } 1167 args.saa_fh = *VTOFH(vp); 1168 1169 va.va_mask = AT_MODE; 1170 error = nfsgetattr(vp, &va, cr); 1171 if (error) 1172 return (error); 1173 omode = va.va_mode; 1174 1175 mi = VTOMI(vp); 1176 1177 douprintf = 1; 1178 1179 t = gethrtime(); 1180 1181 error = rfs2call(mi, RFS_SETATTR, 1182 xdr_saargs, (caddr_t)&args, 1183 xdr_attrstat, (caddr_t)&ns, cr, 1184 &douprintf, &ns.ns_status, 0, NULL); 1185 1186 /* 1187 * Purge the access cache and ACL cache if changing either the 1188 * owner of the file, the group owner, or the mode. These may 1189 * change the access permissions of the file, so purge old 1190 * information and start over again. 1191 */ 1192 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1193 (void) nfs_access_purge_rp(rp); 1194 if (rp->r_secattr != NULL) { 1195 mutex_enter(&rp->r_statelock); 1196 vsp = rp->r_secattr; 1197 rp->r_secattr = NULL; 1198 mutex_exit(&rp->r_statelock); 1199 if (vsp != NULL) 1200 nfs_acl_free(vsp); 1201 } 1202 } 1203 1204 if (!error) { 1205 error = geterrno(ns.ns_status); 1206 if (!error) { 1207 /* 1208 * If changing the size of the file, invalidate 1209 * any local cached data which is no longer part 1210 * of the file. We also possibly invalidate the 1211 * last page in the file. We could use 1212 * pvn_vpzero(), but this would mark the page as 1213 * modified and require it to be written back to 1214 * the server for no particularly good reason. 1215 * This way, if we access it, then we bring it 1216 * back in. A read should be cheaper than a 1217 * write. 1218 */ 1219 if (mask & AT_SIZE) { 1220 nfs_invalidate_pages(vp, 1221 (vap->va_size & PAGEMASK), cr); 1222 } 1223 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1224 /* 1225 * If NFS_ACL is supported on the server, then the 1226 * attributes returned by server may have minimal 1227 * permissions sometimes denying access to users having 1228 * proper access. To get the proper attributes, mark 1229 * the attributes as expired so that they will be 1230 * regotten via the NFS_ACL GETATTR2 procedure. 1231 */ 1232 if (mi->mi_flags & MI_ACL) { 1233 PURGE_ATTRCACHE(vp); 1234 } 1235 /* 1236 * This next check attempts to deal with NFS 1237 * servers which can not handle increasing 1238 * the size of the file via setattr. Most 1239 * of these servers do not return an error, 1240 * but do not change the size of the file. 1241 * Hence, this check and then attempt to set 1242 * the file size by writing 1 byte at the 1243 * offset of the end of the file that we need. 1244 */ 1245 if ((mask & AT_SIZE) && 1246 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1247 char zb = '\0'; 1248 1249 error = nfswrite(vp, &zb, 1250 vap->va_size - sizeof (zb), 1251 sizeof (zb), cr); 1252 } 1253 /* 1254 * Some servers will change the mode to clear the setuid 1255 * and setgid bits when changing the uid or gid. The 1256 * client needs to compensate appropriately. 1257 */ 1258 if (mask & (AT_UID | AT_GID)) { 1259 int terror; 1260 1261 va.va_mask = AT_MODE; 1262 terror = nfsgetattr(vp, &va, cr); 1263 if (!terror && 1264 (((mask & AT_MODE) && 1265 va.va_mode != vap->va_mode) || 1266 (!(mask & AT_MODE) && 1267 va.va_mode != omode))) { 1268 va.va_mask = AT_MODE; 1269 if (mask & AT_MODE) 1270 va.va_mode = vap->va_mode; 1271 else 1272 va.va_mode = omode; 1273 (void) nfssetattr(vp, &va, 0, cr); 1274 } 1275 } 1276 } else { 1277 PURGE_ATTRCACHE(vp); 1278 PURGE_STALE_FH(error, vp, cr); 1279 } 1280 } else { 1281 PURGE_ATTRCACHE(vp); 1282 } 1283 1284 return (error); 1285 } 1286 1287 static int 1288 nfs_accessx(void *vp, int mode, cred_t *cr) 1289 { 1290 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1291 return (nfs_access(vp, mode, 0, cr)); 1292 } 1293 1294 static int 1295 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 1296 { 1297 struct vattr va; 1298 int error; 1299 mntinfo_t *mi; 1300 int shift = 0; 1301 1302 mi = VTOMI(vp); 1303 1304 if (nfs_zone() != mi->mi_zone) 1305 return (EIO); 1306 if (mi->mi_flags & MI_ACL) { 1307 error = acl_access2(vp, mode, flags, cr); 1308 if (mi->mi_flags & MI_ACL) 1309 return (error); 1310 } 1311 1312 va.va_mask = AT_MODE | AT_UID | AT_GID; 1313 error = nfsgetattr(vp, &va, cr); 1314 if (error) 1315 return (error); 1316 1317 /* 1318 * Disallow write attempts on read-only 1319 * file systems, unless the file is a 1320 * device node. 1321 */ 1322 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1323 return (EROFS); 1324 1325 /* 1326 * Disallow attempts to access mandatory lock files. 1327 */ 1328 if ((mode & (VWRITE | VREAD | VEXEC)) && 1329 MANDLOCK(vp, va.va_mode)) 1330 return (EACCES); 1331 1332 /* 1333 * Access check is based on only 1334 * one of owner, group, public. 1335 * If not owner, then check group. 1336 * If not a member of the group, 1337 * then check public access. 1338 */ 1339 if (crgetuid(cr) != va.va_uid) { 1340 shift += 3; 1341 if (!groupmember(va.va_gid, cr)) 1342 shift += 3; 1343 } 1344 found: 1345 mode &= ~(va.va_mode << shift); 1346 if (mode == 0) 1347 return (0); 1348 1349 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1350 } 1351 1352 static int nfs_do_symlink_cache = 1; 1353 1354 static int 1355 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 1356 { 1357 int error; 1358 struct nfsrdlnres rl; 1359 rnode_t *rp; 1360 int douprintf; 1361 failinfo_t fi; 1362 1363 /* 1364 * We want to be consistent with UFS semantics so we will return 1365 * EINVAL instead of ENXIO. This violates the XNFS spec and 1366 * the RFC 1094, which are wrong any way. BUGID 1138002. 1367 */ 1368 if (vp->v_type != VLNK) 1369 return (EINVAL); 1370 1371 if (nfs_zone() != VTOMI(vp)->mi_zone) 1372 return (EIO); 1373 1374 rp = VTOR(vp); 1375 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1376 error = nfs_validate_caches(vp, cr); 1377 if (error) 1378 return (error); 1379 mutex_enter(&rp->r_statelock); 1380 if (rp->r_symlink.contents != NULL) { 1381 error = uiomove(rp->r_symlink.contents, 1382 rp->r_symlink.len, UIO_READ, uiop); 1383 mutex_exit(&rp->r_statelock); 1384 return (error); 1385 } 1386 mutex_exit(&rp->r_statelock); 1387 } 1388 1389 1390 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1391 1392 fi.vp = vp; 1393 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1394 fi.copyproc = nfscopyfh; 1395 fi.lookupproc = nfslookup; 1396 fi.xattrdirproc = acl_getxattrdir2; 1397 1398 douprintf = 1; 1399 1400 error = rfs2call(VTOMI(vp), RFS_READLINK, 1401 xdr_fhandle, (caddr_t)VTOFH(vp), 1402 xdr_rdlnres, (caddr_t)&rl, cr, 1403 &douprintf, &rl.rl_status, 0, &fi); 1404 1405 if (error) { 1406 1407 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1408 return (error); 1409 } 1410 1411 error = geterrno(rl.rl_status); 1412 if (!error) { 1413 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1414 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1415 mutex_enter(&rp->r_statelock); 1416 if (rp->r_symlink.contents == NULL) { 1417 rp->r_symlink.contents = rl.rl_data; 1418 rp->r_symlink.len = (int)rl.rl_count; 1419 rp->r_symlink.size = NFS_MAXPATHLEN; 1420 mutex_exit(&rp->r_statelock); 1421 } else { 1422 mutex_exit(&rp->r_statelock); 1423 1424 kmem_free((void *)rl.rl_data, 1425 NFS_MAXPATHLEN); 1426 } 1427 } else { 1428 1429 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1430 } 1431 } else { 1432 PURGE_STALE_FH(error, vp, cr); 1433 1434 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1435 } 1436 1437 /* 1438 * Conform to UFS semantics (see comment above) 1439 */ 1440 return (error == ENXIO ? EINVAL : error); 1441 } 1442 1443 /* 1444 * Flush local dirty pages to stable storage on the server. 1445 * 1446 * If FNODSYNC is specified, then there is nothing to do because 1447 * metadata changes are not cached on the client before being 1448 * sent to the server. 1449 */ 1450 static int 1451 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1452 { 1453 int error; 1454 1455 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1456 return (0); 1457 1458 if (nfs_zone() != VTOMI(vp)->mi_zone) 1459 return (EIO); 1460 1461 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1462 if (!error) 1463 error = VTOR(vp)->r_error; 1464 return (error); 1465 } 1466 1467 1468 /* 1469 * Weirdness: if the file was removed or the target of a rename 1470 * operation while it was open, it got renamed instead. Here we 1471 * remove the renamed file. 1472 */ 1473 static void 1474 nfs_inactive(vnode_t *vp, cred_t *cr) 1475 { 1476 rnode_t *rp; 1477 1478 ASSERT(vp != DNLC_NO_VNODE); 1479 1480 /* 1481 * If this is coming from the wrong zone, we let someone in the right 1482 * zone take care of it asynchronously. We can get here due to 1483 * VN_RELE() being called from pageout() or fsflush(). This call may 1484 * potentially turn into an expensive no-op if, for instance, v_count 1485 * gets incremented in the meantime, but it's still correct. 1486 */ 1487 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1488 nfs_async_inactive(vp, cr, nfs_inactive); 1489 return; 1490 } 1491 1492 rp = VTOR(vp); 1493 redo: 1494 if (rp->r_unldvp != NULL) { 1495 /* 1496 * Save the vnode pointer for the directory where the 1497 * unlinked-open file got renamed, then set it to NULL 1498 * to prevent another thread from getting here before 1499 * we're done with the remove. While we have the 1500 * statelock, make local copies of the pertinent rnode 1501 * fields. If we weren't to do this in an atomic way, the 1502 * the unl* fields could become inconsistent with respect 1503 * to each other due to a race condition between this 1504 * code and nfs_remove(). See bug report 1034328. 1505 */ 1506 mutex_enter(&rp->r_statelock); 1507 if (rp->r_unldvp != NULL) { 1508 vnode_t *unldvp; 1509 char *unlname; 1510 cred_t *unlcred; 1511 struct nfsdiropargs da; 1512 enum nfsstat status; 1513 int douprintf; 1514 int error; 1515 1516 unldvp = rp->r_unldvp; 1517 rp->r_unldvp = NULL; 1518 unlname = rp->r_unlname; 1519 rp->r_unlname = NULL; 1520 unlcred = rp->r_unlcred; 1521 rp->r_unlcred = NULL; 1522 mutex_exit(&rp->r_statelock); 1523 1524 /* 1525 * If there are any dirty pages left, then flush 1526 * them. This is unfortunate because they just 1527 * may get thrown away during the remove operation, 1528 * but we have to do this for correctness. 1529 */ 1530 if (vn_has_cached_data(vp) && 1531 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1532 ASSERT(vp->v_type != VCHR); 1533 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1534 if (error) { 1535 mutex_enter(&rp->r_statelock); 1536 if (!rp->r_error) 1537 rp->r_error = error; 1538 mutex_exit(&rp->r_statelock); 1539 } 1540 } 1541 1542 /* 1543 * Do the remove operation on the renamed file 1544 */ 1545 setdiropargs(&da, unlname, unldvp); 1546 1547 douprintf = 1; 1548 1549 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1550 xdr_diropargs, (caddr_t)&da, 1551 xdr_enum, (caddr_t)&status, unlcred, 1552 &douprintf, &status, 0, NULL); 1553 1554 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1555 nfs_purge_rddir_cache(unldvp); 1556 PURGE_ATTRCACHE(unldvp); 1557 1558 /* 1559 * Release stuff held for the remove 1560 */ 1561 VN_RELE(unldvp); 1562 kmem_free(unlname, MAXNAMELEN); 1563 crfree(unlcred); 1564 goto redo; 1565 } 1566 mutex_exit(&rp->r_statelock); 1567 } 1568 1569 rp_addfree(rp, cr); 1570 } 1571 1572 /* 1573 * Remote file system operations having to do with directory manipulation. 1574 */ 1575 1576 static int 1577 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1578 int flags, vnode_t *rdir, cred_t *cr) 1579 { 1580 int error; 1581 vnode_t *vp; 1582 vnode_t *avp = NULL; 1583 rnode_t *drp; 1584 1585 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1586 return (EPERM); 1587 1588 drp = VTOR(dvp); 1589 1590 /* 1591 * Are we looking up extended attributes? If so, "dvp" is 1592 * the file or directory for which we want attributes, and 1593 * we need a lookup of the hidden attribute directory 1594 * before we lookup the rest of the path. 1595 */ 1596 if (flags & LOOKUP_XATTR) { 1597 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1598 mntinfo_t *mi; 1599 1600 mi = VTOMI(dvp); 1601 if (!(mi->mi_flags & MI_EXTATTR)) 1602 return (EINVAL); 1603 1604 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1605 return (EINTR); 1606 1607 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1608 if (avp == NULL) 1609 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1610 else 1611 error = 0; 1612 1613 nfs_rw_exit(&drp->r_rwlock); 1614 1615 if (error) { 1616 if (mi->mi_flags & MI_EXTATTR) 1617 return (error); 1618 return (EINVAL); 1619 } 1620 dvp = avp; 1621 drp = VTOR(dvp); 1622 } 1623 1624 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1625 error = EINTR; 1626 goto out; 1627 } 1628 1629 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1630 1631 nfs_rw_exit(&drp->r_rwlock); 1632 1633 /* 1634 * If vnode is a device, create special vnode. 1635 */ 1636 if (!error && IS_DEVVP(*vpp)) { 1637 vp = *vpp; 1638 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1639 VN_RELE(vp); 1640 } 1641 1642 out: 1643 if (avp != NULL) 1644 VN_RELE(avp); 1645 1646 return (error); 1647 } 1648 1649 static int nfs_lookup_neg_cache = 1; 1650 1651 #ifdef DEBUG 1652 static int nfs_lookup_dnlc_hits = 0; 1653 static int nfs_lookup_dnlc_misses = 0; 1654 static int nfs_lookup_dnlc_neg_hits = 0; 1655 static int nfs_lookup_dnlc_disappears = 0; 1656 static int nfs_lookup_dnlc_lookups = 0; 1657 #endif 1658 1659 /* ARGSUSED */ 1660 int 1661 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1662 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1663 { 1664 int error; 1665 1666 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1667 1668 /* 1669 * If lookup is for "", just return dvp. Don't need 1670 * to send it over the wire, look it up in the dnlc, 1671 * or perform any access checks. 1672 */ 1673 if (*nm == '\0') { 1674 VN_HOLD(dvp); 1675 *vpp = dvp; 1676 return (0); 1677 } 1678 1679 /* 1680 * Can't do lookups in non-directories. 1681 */ 1682 if (dvp->v_type != VDIR) 1683 return (ENOTDIR); 1684 1685 /* 1686 * If we're called with RFSCALL_SOFT, it's important that 1687 * the only rfscall is one we make directly; if we permit 1688 * an access call because we're looking up "." or validating 1689 * a dnlc hit, we'll deadlock because that rfscall will not 1690 * have the RFSCALL_SOFT set. 1691 */ 1692 if (rfscall_flags & RFSCALL_SOFT) 1693 goto callit; 1694 1695 /* 1696 * If lookup is for ".", just return dvp. Don't need 1697 * to send it over the wire or look it up in the dnlc, 1698 * just need to check access. 1699 */ 1700 if (strcmp(nm, ".") == 0) { 1701 error = nfs_access(dvp, VEXEC, 0, cr); 1702 if (error) 1703 return (error); 1704 VN_HOLD(dvp); 1705 *vpp = dvp; 1706 return (0); 1707 } 1708 1709 /* 1710 * Lookup this name in the DNLC. If there was a valid entry, 1711 * then return the results of the lookup. 1712 */ 1713 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1714 if (error || *vpp != NULL) 1715 return (error); 1716 1717 callit: 1718 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1719 1720 return (error); 1721 } 1722 1723 static int 1724 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1725 { 1726 int error; 1727 vnode_t *vp; 1728 1729 ASSERT(*nm != '\0'); 1730 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1731 1732 /* 1733 * Lookup this name in the DNLC. If successful, then validate 1734 * the caches and then recheck the DNLC. The DNLC is rechecked 1735 * just in case this entry got invalidated during the call 1736 * to nfs_validate_caches. 1737 * 1738 * An assumption is being made that it is safe to say that a 1739 * file exists which may not on the server. Any operations to 1740 * the server will fail with ESTALE. 1741 */ 1742 #ifdef DEBUG 1743 nfs_lookup_dnlc_lookups++; 1744 #endif 1745 vp = dnlc_lookup(dvp, nm); 1746 if (vp != NULL) { 1747 VN_RELE(vp); 1748 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1749 PURGE_ATTRCACHE(dvp); 1750 } 1751 error = nfs_validate_caches(dvp, cr); 1752 if (error) 1753 return (error); 1754 vp = dnlc_lookup(dvp, nm); 1755 if (vp != NULL) { 1756 error = nfs_access(dvp, VEXEC, 0, cr); 1757 if (error) { 1758 VN_RELE(vp); 1759 return (error); 1760 } 1761 if (vp == DNLC_NO_VNODE) { 1762 VN_RELE(vp); 1763 #ifdef DEBUG 1764 nfs_lookup_dnlc_neg_hits++; 1765 #endif 1766 return (ENOENT); 1767 } 1768 *vpp = vp; 1769 #ifdef DEBUG 1770 nfs_lookup_dnlc_hits++; 1771 #endif 1772 return (0); 1773 } 1774 #ifdef DEBUG 1775 nfs_lookup_dnlc_disappears++; 1776 #endif 1777 } 1778 #ifdef DEBUG 1779 else 1780 nfs_lookup_dnlc_misses++; 1781 #endif 1782 1783 *vpp = NULL; 1784 1785 return (0); 1786 } 1787 1788 static int 1789 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1790 int rfscall_flags) 1791 { 1792 int error; 1793 struct nfsdiropargs da; 1794 struct nfsdiropres dr; 1795 int douprintf; 1796 failinfo_t fi; 1797 hrtime_t t; 1798 1799 ASSERT(*nm != '\0'); 1800 ASSERT(dvp->v_type == VDIR); 1801 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1802 1803 setdiropargs(&da, nm, dvp); 1804 1805 fi.vp = dvp; 1806 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1807 fi.copyproc = nfscopyfh; 1808 fi.lookupproc = nfslookup; 1809 fi.xattrdirproc = acl_getxattrdir2; 1810 1811 douprintf = 1; 1812 1813 t = gethrtime(); 1814 1815 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1816 xdr_diropargs, (caddr_t)&da, 1817 xdr_diropres, (caddr_t)&dr, cr, 1818 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1819 1820 if (!error) { 1821 error = geterrno(dr.dr_status); 1822 if (!error) { 1823 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1824 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1825 /* 1826 * If NFS_ACL is supported on the server, then the 1827 * attributes returned by server may have minimal 1828 * permissions sometimes denying access to users having 1829 * proper access. To get the proper attributes, mark 1830 * the attributes as expired so that they will be 1831 * regotten via the NFS_ACL GETATTR2 procedure. 1832 */ 1833 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1834 PURGE_ATTRCACHE(*vpp); 1835 } 1836 if (!(rfscall_flags & RFSCALL_SOFT)) 1837 dnlc_update(dvp, nm, *vpp); 1838 } else { 1839 PURGE_STALE_FH(error, dvp, cr); 1840 if (error == ENOENT && nfs_lookup_neg_cache) 1841 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1842 } 1843 } 1844 1845 return (error); 1846 } 1847 1848 /* ARGSUSED */ 1849 static int 1850 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1851 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 1852 { 1853 int error; 1854 struct nfscreatargs args; 1855 struct nfsdiropres dr; 1856 int douprintf; 1857 vnode_t *vp; 1858 rnode_t *rp; 1859 struct vattr vattr; 1860 rnode_t *drp; 1861 vnode_t *tempvp; 1862 hrtime_t t; 1863 1864 drp = VTOR(dvp); 1865 1866 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1867 return (EPERM); 1868 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1869 return (EINTR); 1870 1871 /* 1872 * We make a copy of the attributes because the caller does not 1873 * expect us to change what va points to. 1874 */ 1875 vattr = *va; 1876 1877 /* 1878 * If the pathname is "", just use dvp. Don't need 1879 * to send it over the wire, look it up in the dnlc, 1880 * or perform any access checks. 1881 */ 1882 if (*nm == '\0') { 1883 error = 0; 1884 VN_HOLD(dvp); 1885 vp = dvp; 1886 /* 1887 * If the pathname is ".", just use dvp. Don't need 1888 * to send it over the wire or look it up in the dnlc, 1889 * just need to check access. 1890 */ 1891 } else if (strcmp(nm, ".") == 0) { 1892 error = nfs_access(dvp, VEXEC, 0, cr); 1893 if (error) { 1894 nfs_rw_exit(&drp->r_rwlock); 1895 return (error); 1896 } 1897 VN_HOLD(dvp); 1898 vp = dvp; 1899 /* 1900 * We need to go over the wire, just to be sure whether the 1901 * file exists or not. Using the DNLC can be dangerous in 1902 * this case when making a decision regarding existence. 1903 */ 1904 } else { 1905 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1906 } 1907 if (!error) { 1908 if (exclusive == EXCL) 1909 error = EEXIST; 1910 else if (vp->v_type == VDIR && (mode & VWRITE)) 1911 error = EISDIR; 1912 else { 1913 /* 1914 * If vnode is a device, create special vnode. 1915 */ 1916 if (IS_DEVVP(vp)) { 1917 tempvp = vp; 1918 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1919 VN_RELE(tempvp); 1920 } 1921 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 1922 if ((vattr.va_mask & AT_SIZE) && 1923 vp->v_type == VREG) { 1924 vattr.va_mask = AT_SIZE; 1925 error = nfssetattr(vp, &vattr, 0, cr); 1926 } 1927 } 1928 } 1929 nfs_rw_exit(&drp->r_rwlock); 1930 if (error) { 1931 VN_RELE(vp); 1932 } else 1933 *vpp = vp; 1934 return (error); 1935 } 1936 1937 ASSERT(vattr.va_mask & AT_TYPE); 1938 if (vattr.va_type == VREG) { 1939 ASSERT(vattr.va_mask & AT_MODE); 1940 if (MANDMODE(vattr.va_mode)) { 1941 nfs_rw_exit(&drp->r_rwlock); 1942 return (EACCES); 1943 } 1944 } 1945 1946 dnlc_remove(dvp, nm); 1947 1948 setdiropargs(&args.ca_da, nm, dvp); 1949 1950 /* 1951 * Decide what the group-id of the created file should be. 1952 * Set it in attribute list as advisory...then do a setattr 1953 * if the server didn't get it right the first time. 1954 */ 1955 error = setdirgid(dvp, &vattr.va_gid, cr); 1956 if (error) { 1957 nfs_rw_exit(&drp->r_rwlock); 1958 return (error); 1959 } 1960 vattr.va_mask |= AT_GID; 1961 1962 /* 1963 * This is a completely gross hack to make mknod 1964 * work over the wire until we can wack the protocol 1965 */ 1966 #define IFCHR 0020000 /* character special */ 1967 #define IFBLK 0060000 /* block special */ 1968 #define IFSOCK 0140000 /* socket */ 1969 1970 /* 1971 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 1972 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 1973 * bits in the minor number where 4.x supports 8 bits. If the 5.x 1974 * minor/major numbers <= 8 bits long, compress the device 1975 * number before sending it. Otherwise, the 4.x server will not 1976 * create the device with the correct device number and nothing can be 1977 * done about this. 1978 */ 1979 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 1980 dev_t d = vattr.va_rdev; 1981 dev32_t dev32; 1982 1983 if (vattr.va_type == VCHR) 1984 vattr.va_mode |= IFCHR; 1985 else 1986 vattr.va_mode |= IFBLK; 1987 1988 (void) cmpldev(&dev32, d); 1989 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 1990 vattr.va_size = (u_offset_t)dev32; 1991 else 1992 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 1993 1994 vattr.va_mask |= AT_MODE|AT_SIZE; 1995 } else if (vattr.va_type == VFIFO) { 1996 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 1997 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 1998 vattr.va_mask |= AT_MODE|AT_SIZE; 1999 } else if (vattr.va_type == VSOCK) { 2000 vattr.va_mode |= IFSOCK; 2001 /* 2002 * To avoid triggering bugs in the servers set AT_SIZE 2003 * (all other RFS_CREATE calls set this). 2004 */ 2005 vattr.va_size = 0; 2006 vattr.va_mask |= AT_MODE|AT_SIZE; 2007 } 2008 2009 args.ca_sa = &args.ca_sa_buf; 2010 error = vattr_to_sattr(&vattr, args.ca_sa); 2011 if (error) { 2012 /* req time field(s) overflow - return immediately */ 2013 nfs_rw_exit(&drp->r_rwlock); 2014 return (error); 2015 } 2016 2017 douprintf = 1; 2018 2019 t = gethrtime(); 2020 2021 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2022 xdr_creatargs, (caddr_t)&args, 2023 xdr_diropres, (caddr_t)&dr, cr, 2024 &douprintf, &dr.dr_status, 0, NULL); 2025 2026 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2027 2028 if (!error) { 2029 error = geterrno(dr.dr_status); 2030 if (!error) { 2031 if (HAVE_RDDIR_CACHE(drp)) 2032 nfs_purge_rddir_cache(dvp); 2033 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2034 dvp->v_vfsp, t, cr, NULL, NULL); 2035 /* 2036 * If NFS_ACL is supported on the server, then the 2037 * attributes returned by server may have minimal 2038 * permissions sometimes denying access to users having 2039 * proper access. To get the proper attributes, mark 2040 * the attributes as expired so that they will be 2041 * regotten via the NFS_ACL GETATTR2 procedure. 2042 */ 2043 if (VTOMI(vp)->mi_flags & MI_ACL) { 2044 PURGE_ATTRCACHE(vp); 2045 } 2046 dnlc_update(dvp, nm, vp); 2047 rp = VTOR(vp); 2048 if (vattr.va_size == 0) { 2049 mutex_enter(&rp->r_statelock); 2050 rp->r_size = 0; 2051 mutex_exit(&rp->r_statelock); 2052 if (vn_has_cached_data(vp)) { 2053 ASSERT(vp->v_type != VCHR); 2054 nfs_invalidate_pages(vp, 2055 (u_offset_t)0, cr); 2056 } 2057 } 2058 2059 /* 2060 * Make sure the gid was set correctly. 2061 * If not, try to set it (but don't lose 2062 * any sleep over it). 2063 */ 2064 if (vattr.va_gid != rp->r_attr.va_gid) { 2065 vattr.va_mask = AT_GID; 2066 (void) nfssetattr(vp, &vattr, 0, cr); 2067 } 2068 2069 /* 2070 * If vnode is a device create special vnode 2071 */ 2072 if (IS_DEVVP(vp)) { 2073 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2074 VN_RELE(vp); 2075 } else 2076 *vpp = vp; 2077 } else { 2078 PURGE_STALE_FH(error, dvp, cr); 2079 } 2080 } 2081 2082 nfs_rw_exit(&drp->r_rwlock); 2083 2084 return (error); 2085 } 2086 2087 /* 2088 * Weirdness: if the vnode to be removed is open 2089 * we rename it instead of removing it and nfs_inactive 2090 * will remove the new name. 2091 */ 2092 static int 2093 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr) 2094 { 2095 int error; 2096 struct nfsdiropargs da; 2097 enum nfsstat status; 2098 vnode_t *vp; 2099 char *tmpname; 2100 int douprintf; 2101 rnode_t *rp; 2102 rnode_t *drp; 2103 2104 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2105 return (EPERM); 2106 drp = VTOR(dvp); 2107 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2108 return (EINTR); 2109 2110 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2111 if (error) { 2112 nfs_rw_exit(&drp->r_rwlock); 2113 return (error); 2114 } 2115 2116 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2117 VN_RELE(vp); 2118 nfs_rw_exit(&drp->r_rwlock); 2119 return (EPERM); 2120 } 2121 2122 /* 2123 * First just remove the entry from the name cache, as it 2124 * is most likely the only entry for this vp. 2125 */ 2126 dnlc_remove(dvp, nm); 2127 2128 /* 2129 * If the file has a v_count > 1 then there may be more than one 2130 * entry in the name cache due multiple links or an open file, 2131 * but we don't have the real reference count so flush all 2132 * possible entries. 2133 */ 2134 if (vp->v_count > 1) 2135 dnlc_purge_vp(vp); 2136 2137 /* 2138 * Now we have the real reference count on the vnode 2139 */ 2140 rp = VTOR(vp); 2141 mutex_enter(&rp->r_statelock); 2142 if (vp->v_count > 1 && 2143 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2144 mutex_exit(&rp->r_statelock); 2145 tmpname = newname(); 2146 error = nfsrename(dvp, nm, dvp, tmpname, cr); 2147 if (error) 2148 kmem_free(tmpname, MAXNAMELEN); 2149 else { 2150 mutex_enter(&rp->r_statelock); 2151 if (rp->r_unldvp == NULL) { 2152 VN_HOLD(dvp); 2153 rp->r_unldvp = dvp; 2154 if (rp->r_unlcred != NULL) 2155 crfree(rp->r_unlcred); 2156 crhold(cr); 2157 rp->r_unlcred = cr; 2158 rp->r_unlname = tmpname; 2159 } else { 2160 kmem_free(rp->r_unlname, MAXNAMELEN); 2161 rp->r_unlname = tmpname; 2162 } 2163 mutex_exit(&rp->r_statelock); 2164 } 2165 } else { 2166 mutex_exit(&rp->r_statelock); 2167 /* 2168 * We need to flush any dirty pages which happen to 2169 * be hanging around before removing the file. This 2170 * shouldn't happen very often and mostly on file 2171 * systems mounted "nocto". 2172 */ 2173 if (vn_has_cached_data(vp) && 2174 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2175 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 2176 if (error && (error == ENOSPC || error == EDQUOT)) { 2177 mutex_enter(&rp->r_statelock); 2178 if (!rp->r_error) 2179 rp->r_error = error; 2180 mutex_exit(&rp->r_statelock); 2181 } 2182 } 2183 2184 setdiropargs(&da, nm, dvp); 2185 2186 douprintf = 1; 2187 2188 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2189 xdr_diropargs, (caddr_t)&da, 2190 xdr_enum, (caddr_t)&status, cr, 2191 &douprintf, &status, 0, NULL); 2192 2193 /* 2194 * The xattr dir may be gone after last attr is removed, 2195 * so flush it from dnlc. 2196 */ 2197 if (dvp->v_flag & V_XATTRDIR) 2198 dnlc_purge_vp(dvp); 2199 2200 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2201 PURGE_ATTRCACHE(vp); /* link count changed */ 2202 2203 if (!error) { 2204 error = geterrno(status); 2205 if (!error) { 2206 if (HAVE_RDDIR_CACHE(drp)) 2207 nfs_purge_rddir_cache(dvp); 2208 } else { 2209 PURGE_STALE_FH(error, dvp, cr); 2210 } 2211 } 2212 } 2213 2214 VN_RELE(vp); 2215 2216 nfs_rw_exit(&drp->r_rwlock); 2217 2218 return (error); 2219 } 2220 2221 static int 2222 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 2223 { 2224 int error; 2225 struct nfslinkargs args; 2226 enum nfsstat status; 2227 vnode_t *realvp; 2228 int douprintf; 2229 rnode_t *tdrp; 2230 2231 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2232 return (EPERM); 2233 if (VOP_REALVP(svp, &realvp) == 0) 2234 svp = realvp; 2235 2236 args.la_from = VTOFH(svp); 2237 setdiropargs(&args.la_to, tnm, tdvp); 2238 2239 tdrp = VTOR(tdvp); 2240 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2241 return (EINTR); 2242 2243 dnlc_remove(tdvp, tnm); 2244 2245 douprintf = 1; 2246 2247 error = rfs2call(VTOMI(svp), RFS_LINK, 2248 xdr_linkargs, (caddr_t)&args, 2249 xdr_enum, (caddr_t)&status, cr, 2250 &douprintf, &status, 0, NULL); 2251 2252 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2253 PURGE_ATTRCACHE(svp); /* link count changed */ 2254 2255 if (!error) { 2256 error = geterrno(status); 2257 if (!error) { 2258 if (HAVE_RDDIR_CACHE(tdrp)) 2259 nfs_purge_rddir_cache(tdvp); 2260 } 2261 } 2262 2263 nfs_rw_exit(&tdrp->r_rwlock); 2264 2265 return (error); 2266 } 2267 2268 static int 2269 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2270 { 2271 vnode_t *realvp; 2272 2273 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2274 return (EPERM); 2275 if (VOP_REALVP(ndvp, &realvp) == 0) 2276 ndvp = realvp; 2277 2278 return (nfsrename(odvp, onm, ndvp, nnm, cr)); 2279 } 2280 2281 /* 2282 * nfsrename does the real work of renaming in NFS Version 2. 2283 */ 2284 static int 2285 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2286 { 2287 int error; 2288 enum nfsstat status; 2289 struct nfsrnmargs args; 2290 int douprintf; 2291 vnode_t *nvp; 2292 vnode_t *ovp = NULL; 2293 char *tmpname; 2294 rnode_t *rp; 2295 rnode_t *odrp; 2296 rnode_t *ndrp; 2297 2298 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2299 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2300 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2301 return (EINVAL); 2302 2303 odrp = VTOR(odvp); 2304 ndrp = VTOR(ndvp); 2305 if ((intptr_t)odrp < (intptr_t)ndrp) { 2306 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2307 return (EINTR); 2308 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2309 nfs_rw_exit(&odrp->r_rwlock); 2310 return (EINTR); 2311 } 2312 } else { 2313 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2314 return (EINTR); 2315 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2316 nfs_rw_exit(&ndrp->r_rwlock); 2317 return (EINTR); 2318 } 2319 } 2320 2321 /* 2322 * Lookup the target file. If it exists, it needs to be 2323 * checked to see whether it is a mount point and whether 2324 * it is active (open). 2325 */ 2326 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2327 if (!error) { 2328 /* 2329 * If this file has been mounted on, then just 2330 * return busy because renaming to it would remove 2331 * the mounted file system from the name space. 2332 */ 2333 if (vn_mountedvfs(nvp) != NULL) { 2334 VN_RELE(nvp); 2335 nfs_rw_exit(&odrp->r_rwlock); 2336 nfs_rw_exit(&ndrp->r_rwlock); 2337 return (EBUSY); 2338 } 2339 2340 /* 2341 * Purge the name cache of all references to this vnode 2342 * so that we can check the reference count to infer 2343 * whether it is active or not. 2344 */ 2345 /* 2346 * First just remove the entry from the name cache, as it 2347 * is most likely the only entry for this vp. 2348 */ 2349 dnlc_remove(ndvp, nnm); 2350 /* 2351 * If the file has a v_count > 1 then there may be more 2352 * than one entry in the name cache due multiple links 2353 * or an open file, but we don't have the real reference 2354 * count so flush all possible entries. 2355 */ 2356 if (nvp->v_count > 1) 2357 dnlc_purge_vp(nvp); 2358 2359 /* 2360 * If the vnode is active and is not a directory, 2361 * arrange to rename it to a 2362 * temporary file so that it will continue to be 2363 * accessible. This implements the "unlink-open-file" 2364 * semantics for the target of a rename operation. 2365 * Before doing this though, make sure that the 2366 * source and target files are not already the same. 2367 */ 2368 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2369 /* 2370 * Lookup the source name. 2371 */ 2372 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2373 cr, 0); 2374 2375 /* 2376 * The source name *should* already exist. 2377 */ 2378 if (error) { 2379 VN_RELE(nvp); 2380 nfs_rw_exit(&odrp->r_rwlock); 2381 nfs_rw_exit(&ndrp->r_rwlock); 2382 return (error); 2383 } 2384 2385 /* 2386 * Compare the two vnodes. If they are the same, 2387 * just release all held vnodes and return success. 2388 */ 2389 if (ovp == nvp) { 2390 VN_RELE(ovp); 2391 VN_RELE(nvp); 2392 nfs_rw_exit(&odrp->r_rwlock); 2393 nfs_rw_exit(&ndrp->r_rwlock); 2394 return (0); 2395 } 2396 2397 /* 2398 * Can't mix and match directories and non- 2399 * directories in rename operations. We already 2400 * know that the target is not a directory. If 2401 * the source is a directory, return an error. 2402 */ 2403 if (ovp->v_type == VDIR) { 2404 VN_RELE(ovp); 2405 VN_RELE(nvp); 2406 nfs_rw_exit(&odrp->r_rwlock); 2407 nfs_rw_exit(&ndrp->r_rwlock); 2408 return (ENOTDIR); 2409 } 2410 2411 /* 2412 * The target file exists, is not the same as 2413 * the source file, and is active. Link it 2414 * to a temporary filename to avoid having 2415 * the server removing the file completely. 2416 */ 2417 tmpname = newname(); 2418 error = nfs_link(ndvp, nvp, tmpname, cr); 2419 if (error == EOPNOTSUPP) { 2420 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2421 cr); 2422 } 2423 if (error) { 2424 kmem_free(tmpname, MAXNAMELEN); 2425 VN_RELE(ovp); 2426 VN_RELE(nvp); 2427 nfs_rw_exit(&odrp->r_rwlock); 2428 nfs_rw_exit(&ndrp->r_rwlock); 2429 return (error); 2430 } 2431 rp = VTOR(nvp); 2432 mutex_enter(&rp->r_statelock); 2433 if (rp->r_unldvp == NULL) { 2434 VN_HOLD(ndvp); 2435 rp->r_unldvp = ndvp; 2436 if (rp->r_unlcred != NULL) 2437 crfree(rp->r_unlcred); 2438 crhold(cr); 2439 rp->r_unlcred = cr; 2440 rp->r_unlname = tmpname; 2441 } else { 2442 kmem_free(rp->r_unlname, MAXNAMELEN); 2443 rp->r_unlname = tmpname; 2444 } 2445 mutex_exit(&rp->r_statelock); 2446 } 2447 2448 VN_RELE(nvp); 2449 } 2450 2451 if (ovp == NULL) { 2452 /* 2453 * When renaming directories to be a subdirectory of a 2454 * different parent, the dnlc entry for ".." will no 2455 * longer be valid, so it must be removed. 2456 * 2457 * We do a lookup here to determine whether we are renaming 2458 * a directory and we need to check if we are renaming 2459 * an unlinked file. This might have already been done 2460 * in previous code, so we check ovp == NULL to avoid 2461 * doing it twice. 2462 */ 2463 2464 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2465 2466 /* 2467 * The source name *should* already exist. 2468 */ 2469 if (error) { 2470 nfs_rw_exit(&odrp->r_rwlock); 2471 nfs_rw_exit(&ndrp->r_rwlock); 2472 return (error); 2473 } 2474 ASSERT(ovp != NULL); 2475 } 2476 2477 dnlc_remove(odvp, onm); 2478 dnlc_remove(ndvp, nnm); 2479 2480 setdiropargs(&args.rna_from, onm, odvp); 2481 setdiropargs(&args.rna_to, nnm, ndvp); 2482 2483 douprintf = 1; 2484 2485 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2486 xdr_rnmargs, (caddr_t)&args, 2487 xdr_enum, (caddr_t)&status, cr, 2488 &douprintf, &status, 0, NULL); 2489 2490 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2491 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2492 2493 if (!error) { 2494 error = geterrno(status); 2495 if (!error) { 2496 if (HAVE_RDDIR_CACHE(odrp)) 2497 nfs_purge_rddir_cache(odvp); 2498 if (HAVE_RDDIR_CACHE(ndrp)) 2499 nfs_purge_rddir_cache(ndvp); 2500 /* 2501 * when renaming directories to be a subdirectory of a 2502 * different parent, the dnlc entry for ".." will no 2503 * longer be valid, so it must be removed 2504 */ 2505 rp = VTOR(ovp); 2506 if (ndvp != odvp) { 2507 if (ovp->v_type == VDIR) { 2508 dnlc_remove(ovp, ".."); 2509 if (HAVE_RDDIR_CACHE(rp)) 2510 nfs_purge_rddir_cache(ovp); 2511 } 2512 } 2513 2514 /* 2515 * If we are renaming the unlinked file, update the 2516 * r_unldvp and r_unlname as needed. 2517 */ 2518 mutex_enter(&rp->r_statelock); 2519 if (rp->r_unldvp != NULL) { 2520 if (strcmp(rp->r_unlname, onm) == 0) { 2521 (void) strncpy(rp->r_unlname, 2522 nnm, MAXNAMELEN); 2523 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2524 2525 if (ndvp != rp->r_unldvp) { 2526 VN_RELE(rp->r_unldvp); 2527 rp->r_unldvp = ndvp; 2528 VN_HOLD(ndvp); 2529 } 2530 } 2531 } 2532 mutex_exit(&rp->r_statelock); 2533 } else { 2534 /* 2535 * System V defines rename to return EEXIST, not 2536 * ENOTEMPTY if the target directory is not empty. 2537 * Over the wire, the error is NFSERR_ENOTEMPTY 2538 * which geterrno maps to ENOTEMPTY. 2539 */ 2540 if (error == ENOTEMPTY) 2541 error = EEXIST; 2542 } 2543 } 2544 2545 VN_RELE(ovp); 2546 2547 nfs_rw_exit(&odrp->r_rwlock); 2548 nfs_rw_exit(&ndrp->r_rwlock); 2549 2550 return (error); 2551 } 2552 2553 static int 2554 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 2555 { 2556 int error; 2557 struct nfscreatargs args; 2558 struct nfsdiropres dr; 2559 int douprintf; 2560 rnode_t *drp; 2561 hrtime_t t; 2562 2563 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2564 return (EPERM); 2565 2566 setdiropargs(&args.ca_da, nm, dvp); 2567 2568 /* 2569 * Decide what the group-id and set-gid bit of the created directory 2570 * should be. May have to do a setattr to get the gid right. 2571 */ 2572 error = setdirgid(dvp, &va->va_gid, cr); 2573 if (error) 2574 return (error); 2575 error = setdirmode(dvp, &va->va_mode, cr); 2576 if (error) 2577 return (error); 2578 va->va_mask |= AT_MODE|AT_GID; 2579 2580 args.ca_sa = &args.ca_sa_buf; 2581 error = vattr_to_sattr(va, args.ca_sa); 2582 if (error) { 2583 /* req time field(s) overflow - return immediately */ 2584 return (error); 2585 } 2586 2587 drp = VTOR(dvp); 2588 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2589 return (EINTR); 2590 2591 dnlc_remove(dvp, nm); 2592 2593 douprintf = 1; 2594 2595 t = gethrtime(); 2596 2597 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2598 xdr_creatargs, (caddr_t)&args, 2599 xdr_diropres, (caddr_t)&dr, cr, 2600 &douprintf, &dr.dr_status, 0, NULL); 2601 2602 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2603 2604 if (!error) { 2605 error = geterrno(dr.dr_status); 2606 if (!error) { 2607 if (HAVE_RDDIR_CACHE(drp)) 2608 nfs_purge_rddir_cache(dvp); 2609 /* 2610 * The attributes returned by RFS_MKDIR can not 2611 * be depended upon, so mark the attribute cache 2612 * as purged. A subsequent GETATTR will get the 2613 * correct attributes from the server. 2614 */ 2615 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2616 dvp->v_vfsp, t, cr, NULL, NULL); 2617 PURGE_ATTRCACHE(*vpp); 2618 dnlc_update(dvp, nm, *vpp); 2619 2620 /* 2621 * Make sure the gid was set correctly. 2622 * If not, try to set it (but don't lose 2623 * any sleep over it). 2624 */ 2625 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2626 va->va_mask = AT_GID; 2627 (void) nfssetattr(*vpp, va, 0, cr); 2628 } 2629 } else { 2630 PURGE_STALE_FH(error, dvp, cr); 2631 } 2632 } 2633 2634 nfs_rw_exit(&drp->r_rwlock); 2635 2636 return (error); 2637 } 2638 2639 static int 2640 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 2641 { 2642 int error; 2643 enum nfsstat status; 2644 struct nfsdiropargs da; 2645 vnode_t *vp; 2646 int douprintf; 2647 rnode_t *drp; 2648 2649 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2650 return (EPERM); 2651 drp = VTOR(dvp); 2652 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2653 return (EINTR); 2654 2655 /* 2656 * Attempt to prevent a rmdir(".") from succeeding. 2657 */ 2658 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2659 if (error) { 2660 nfs_rw_exit(&drp->r_rwlock); 2661 return (error); 2662 } 2663 2664 if (vp == cdir) { 2665 VN_RELE(vp); 2666 nfs_rw_exit(&drp->r_rwlock); 2667 return (EINVAL); 2668 } 2669 2670 setdiropargs(&da, nm, dvp); 2671 2672 /* 2673 * First just remove the entry from the name cache, as it 2674 * is most likely an entry for this vp. 2675 */ 2676 dnlc_remove(dvp, nm); 2677 2678 /* 2679 * If there vnode reference count is greater than one, then 2680 * there may be additional references in the DNLC which will 2681 * need to be purged. First, trying removing the entry for 2682 * the parent directory and see if that removes the additional 2683 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2684 * to completely remove any references to the directory which 2685 * might still exist in the DNLC. 2686 */ 2687 if (vp->v_count > 1) { 2688 dnlc_remove(vp, ".."); 2689 if (vp->v_count > 1) 2690 dnlc_purge_vp(vp); 2691 } 2692 2693 douprintf = 1; 2694 2695 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2696 xdr_diropargs, (caddr_t)&da, 2697 xdr_enum, (caddr_t)&status, cr, 2698 &douprintf, &status, 0, NULL); 2699 2700 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2701 2702 if (error) { 2703 VN_RELE(vp); 2704 nfs_rw_exit(&drp->r_rwlock); 2705 return (error); 2706 } 2707 2708 error = geterrno(status); 2709 if (!error) { 2710 if (HAVE_RDDIR_CACHE(drp)) 2711 nfs_purge_rddir_cache(dvp); 2712 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2713 nfs_purge_rddir_cache(vp); 2714 } else { 2715 PURGE_STALE_FH(error, dvp, cr); 2716 /* 2717 * System V defines rmdir to return EEXIST, not 2718 * ENOTEMPTY if the directory is not empty. Over 2719 * the wire, the error is NFSERR_ENOTEMPTY which 2720 * geterrno maps to ENOTEMPTY. 2721 */ 2722 if (error == ENOTEMPTY) 2723 error = EEXIST; 2724 } 2725 2726 VN_RELE(vp); 2727 2728 nfs_rw_exit(&drp->r_rwlock); 2729 2730 return (error); 2731 } 2732 2733 static int 2734 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 2735 { 2736 int error; 2737 struct nfsslargs args; 2738 enum nfsstat status; 2739 int douprintf; 2740 rnode_t *drp; 2741 2742 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2743 return (EPERM); 2744 setdiropargs(&args.sla_from, lnm, dvp); 2745 args.sla_sa = &args.sla_sa_buf; 2746 error = vattr_to_sattr(tva, args.sla_sa); 2747 if (error) { 2748 /* req time field(s) overflow - return immediately */ 2749 return (error); 2750 } 2751 args.sla_tnm = tnm; 2752 2753 drp = VTOR(dvp); 2754 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2755 return (EINTR); 2756 2757 dnlc_remove(dvp, lnm); 2758 2759 douprintf = 1; 2760 2761 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2762 xdr_slargs, (caddr_t)&args, 2763 xdr_enum, (caddr_t)&status, cr, 2764 &douprintf, &status, 0, NULL); 2765 2766 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2767 2768 if (!error) { 2769 error = geterrno(status); 2770 if (!error) { 2771 if (HAVE_RDDIR_CACHE(drp)) 2772 nfs_purge_rddir_cache(dvp); 2773 } else { 2774 PURGE_STALE_FH(error, dvp, cr); 2775 } 2776 } 2777 2778 nfs_rw_exit(&drp->r_rwlock); 2779 2780 return (error); 2781 } 2782 2783 #ifdef DEBUG 2784 static int nfs_readdir_cache_hits = 0; 2785 static int nfs_readdir_cache_shorts = 0; 2786 static int nfs_readdir_cache_waits = 0; 2787 static int nfs_readdir_cache_misses = 0; 2788 static int nfs_readdir_readahead = 0; 2789 #endif 2790 2791 static int nfs_shrinkreaddir = 0; 2792 2793 /* 2794 * Read directory entries. 2795 * There are some weird things to look out for here. The uio_offset 2796 * field is either 0 or it is the offset returned from a previous 2797 * readdir. It is an opaque value used by the server to find the 2798 * correct directory block to read. The count field is the number 2799 * of blocks to read on the server. This is advisory only, the server 2800 * may return only one block's worth of entries. Entries may be compressed 2801 * on the server. 2802 */ 2803 static int 2804 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 2805 { 2806 int error; 2807 size_t count; 2808 rnode_t *rp; 2809 rddir_cache *rdc; 2810 rddir_cache *nrdc; 2811 rddir_cache *rrdc; 2812 #ifdef DEBUG 2813 int missed; 2814 #endif 2815 rddir_cache srdc; 2816 avl_index_t where; 2817 2818 rp = VTOR(vp); 2819 2820 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2821 if (nfs_zone() != VTOMI(vp)->mi_zone) 2822 return (EIO); 2823 /* 2824 * Make sure that the directory cache is valid. 2825 */ 2826 if (HAVE_RDDIR_CACHE(rp)) { 2827 if (nfs_disable_rddir_cache) { 2828 /* 2829 * Setting nfs_disable_rddir_cache in /etc/system 2830 * allows interoperability with servers that do not 2831 * properly update the attributes of directories. 2832 * Any cached information gets purged before an 2833 * access is made to it. 2834 */ 2835 nfs_purge_rddir_cache(vp); 2836 } else { 2837 error = nfs_validate_caches(vp, cr); 2838 if (error) 2839 return (error); 2840 } 2841 } 2842 2843 /* 2844 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2845 * RFS_READDIR request with rda_count set to more than 0x400. So 2846 * we reduce the request size here purely for compatibility. 2847 * 2848 * In general, this is no longer required. However, if a server 2849 * is discovered which can not handle requests larger than 1024, 2850 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2851 * compatibility. 2852 * 2853 * In any case, the request size is limited to NFS_MAXDATA bytes. 2854 */ 2855 count = MIN(uiop->uio_iov->iov_len, 2856 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2857 2858 nrdc = NULL; 2859 #ifdef DEBUG 2860 missed = 0; 2861 #endif 2862 top: 2863 /* 2864 * Short circuit last readdir which always returns 0 bytes. 2865 * This can be done after the directory has been read through 2866 * completely at least once. This will set r_direof which 2867 * can be used to find the value of the last cookie. 2868 */ 2869 mutex_enter(&rp->r_statelock); 2870 if (rp->r_direof != NULL && 2871 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2872 mutex_exit(&rp->r_statelock); 2873 #ifdef DEBUG 2874 nfs_readdir_cache_shorts++; 2875 #endif 2876 if (eofp) 2877 *eofp = 1; 2878 if (nrdc != NULL) 2879 rddir_cache_rele(nrdc); 2880 return (0); 2881 } 2882 /* 2883 * Look for a cache entry. Cache entries are identified 2884 * by the NFS cookie value and the byte count requested. 2885 */ 2886 srdc.nfs_cookie = uiop->uio_offset; 2887 srdc.buflen = count; 2888 rdc = avl_find(&rp->r_dir, &srdc, &where); 2889 if (rdc != NULL) { 2890 rddir_cache_hold(rdc); 2891 /* 2892 * If the cache entry is in the process of being 2893 * filled in, wait until this completes. The 2894 * RDDIRWAIT bit is set to indicate that someone 2895 * is waiting and then the thread currently 2896 * filling the entry is done, it should do a 2897 * cv_broadcast to wakeup all of the threads 2898 * waiting for it to finish. 2899 */ 2900 if (rdc->flags & RDDIR) { 2901 nfs_rw_exit(&rp->r_rwlock); 2902 rdc->flags |= RDDIRWAIT; 2903 #ifdef DEBUG 2904 nfs_readdir_cache_waits++; 2905 #endif 2906 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 2907 /* 2908 * We got interrupted, probably 2909 * the user typed ^C or an alarm 2910 * fired. We free the new entry 2911 * if we allocated one. 2912 */ 2913 mutex_exit(&rp->r_statelock); 2914 (void) nfs_rw_enter_sig(&rp->r_rwlock, 2915 RW_READER, FALSE); 2916 rddir_cache_rele(rdc); 2917 if (nrdc != NULL) 2918 rddir_cache_rele(nrdc); 2919 return (EINTR); 2920 } 2921 mutex_exit(&rp->r_statelock); 2922 (void) nfs_rw_enter_sig(&rp->r_rwlock, 2923 RW_READER, FALSE); 2924 rddir_cache_rele(rdc); 2925 goto top; 2926 } 2927 /* 2928 * Check to see if a readdir is required to 2929 * fill the entry. If so, mark this entry 2930 * as being filled, remove our reference, 2931 * and branch to the code to fill the entry. 2932 */ 2933 if (rdc->flags & RDDIRREQ) { 2934 rdc->flags &= ~RDDIRREQ; 2935 rdc->flags |= RDDIR; 2936 if (nrdc != NULL) 2937 rddir_cache_rele(nrdc); 2938 nrdc = rdc; 2939 mutex_exit(&rp->r_statelock); 2940 goto bottom; 2941 } 2942 #ifdef DEBUG 2943 if (!missed) 2944 nfs_readdir_cache_hits++; 2945 #endif 2946 /* 2947 * If an error occurred while attempting 2948 * to fill the cache entry, just return it. 2949 */ 2950 if (rdc->error) { 2951 error = rdc->error; 2952 mutex_exit(&rp->r_statelock); 2953 rddir_cache_rele(rdc); 2954 if (nrdc != NULL) 2955 rddir_cache_rele(nrdc); 2956 return (error); 2957 } 2958 2959 /* 2960 * The cache entry is complete and good, 2961 * copyout the dirent structs to the calling 2962 * thread. 2963 */ 2964 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 2965 2966 /* 2967 * If no error occurred during the copyout, 2968 * update the offset in the uio struct to 2969 * contain the value of the next cookie 2970 * and set the eof value appropriately. 2971 */ 2972 if (!error) { 2973 uiop->uio_offset = rdc->nfs_ncookie; 2974 if (eofp) 2975 *eofp = rdc->eof; 2976 } 2977 2978 /* 2979 * Decide whether to do readahead. Don't if 2980 * have already read to the end of directory. 2981 */ 2982 if (rdc->eof) { 2983 rp->r_direof = rdc; 2984 mutex_exit(&rp->r_statelock); 2985 rddir_cache_rele(rdc); 2986 if (nrdc != NULL) 2987 rddir_cache_rele(nrdc); 2988 return (error); 2989 } 2990 2991 /* 2992 * Check to see whether we found an entry 2993 * for the readahead. If so, we don't need 2994 * to do anything further, so free the new 2995 * entry if one was allocated. Otherwise, 2996 * allocate a new entry, add it to the cache, 2997 * and then initiate an asynchronous readdir 2998 * operation to fill it. 2999 */ 3000 srdc.nfs_cookie = rdc->nfs_ncookie; 3001 srdc.buflen = count; 3002 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3003 if (rrdc != NULL) { 3004 if (nrdc != NULL) 3005 rddir_cache_rele(nrdc); 3006 } else { 3007 if (nrdc != NULL) 3008 rrdc = nrdc; 3009 else { 3010 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3011 } 3012 if (rrdc != NULL) { 3013 rrdc->nfs_cookie = rdc->nfs_ncookie; 3014 rrdc->buflen = count; 3015 avl_insert(&rp->r_dir, rrdc, where); 3016 rddir_cache_hold(rrdc); 3017 mutex_exit(&rp->r_statelock); 3018 rddir_cache_rele(rdc); 3019 #ifdef DEBUG 3020 nfs_readdir_readahead++; 3021 #endif 3022 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3023 return (error); 3024 } 3025 } 3026 3027 mutex_exit(&rp->r_statelock); 3028 rddir_cache_rele(rdc); 3029 return (error); 3030 } 3031 3032 /* 3033 * Didn't find an entry in the cache. Construct a new empty 3034 * entry and link it into the cache. Other processes attempting 3035 * to access this entry will need to wait until it is filled in. 3036 * 3037 * Since kmem_alloc may block, another pass through the cache 3038 * will need to be taken to make sure that another process 3039 * hasn't already added an entry to the cache for this request. 3040 */ 3041 if (nrdc == NULL) { 3042 mutex_exit(&rp->r_statelock); 3043 nrdc = rddir_cache_alloc(KM_SLEEP); 3044 nrdc->nfs_cookie = uiop->uio_offset; 3045 nrdc->buflen = count; 3046 goto top; 3047 } 3048 3049 /* 3050 * Add this entry to the cache. 3051 */ 3052 avl_insert(&rp->r_dir, nrdc, where); 3053 rddir_cache_hold(nrdc); 3054 mutex_exit(&rp->r_statelock); 3055 3056 bottom: 3057 #ifdef DEBUG 3058 missed = 1; 3059 nfs_readdir_cache_misses++; 3060 #endif 3061 /* 3062 * Do the readdir. 3063 */ 3064 error = nfsreaddir(vp, nrdc, cr); 3065 3066 /* 3067 * If this operation failed, just return the error which occurred. 3068 */ 3069 if (error != 0) 3070 return (error); 3071 3072 /* 3073 * Since the RPC operation will have taken sometime and blocked 3074 * this process, another pass through the cache will need to be 3075 * taken to find the correct cache entry. It is possible that 3076 * the correct cache entry will not be there (although one was 3077 * added) because the directory changed during the RPC operation 3078 * and the readdir cache was flushed. In this case, just start 3079 * over. It is hoped that this will not happen too often... :-) 3080 */ 3081 nrdc = NULL; 3082 goto top; 3083 /* NOTREACHED */ 3084 } 3085 3086 static int 3087 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3088 { 3089 int error; 3090 struct nfsrddirargs rda; 3091 struct nfsrddirres rd; 3092 rnode_t *rp; 3093 mntinfo_t *mi; 3094 uint_t count; 3095 int douprintf; 3096 failinfo_t fi, *fip; 3097 3098 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3099 count = rdc->buflen; 3100 3101 rp = VTOR(vp); 3102 mi = VTOMI(vp); 3103 3104 rda.rda_fh = *VTOFH(vp); 3105 rda.rda_offset = rdc->nfs_cookie; 3106 3107 /* 3108 * NFS client failover support 3109 * suppress failover unless we have a zero cookie 3110 */ 3111 if (rdc->nfs_cookie == (off_t)0) { 3112 fi.vp = vp; 3113 fi.fhp = (caddr_t)&rda.rda_fh; 3114 fi.copyproc = nfscopyfh; 3115 fi.lookupproc = nfslookup; 3116 fi.xattrdirproc = acl_getxattrdir2; 3117 fip = &fi; 3118 } else { 3119 fip = NULL; 3120 } 3121 3122 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3123 rd.rd_size = count; 3124 rd.rd_offset = rda.rda_offset; 3125 3126 douprintf = 1; 3127 3128 if (mi->mi_io_kstats) { 3129 mutex_enter(&mi->mi_lock); 3130 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3131 mutex_exit(&mi->mi_lock); 3132 } 3133 3134 do { 3135 rda.rda_count = MIN(count, mi->mi_curread); 3136 error = rfs2call(mi, RFS_READDIR, 3137 xdr_rddirargs, (caddr_t)&rda, 3138 xdr_getrddirres, (caddr_t)&rd, cr, 3139 &douprintf, &rd.rd_status, 0, fip); 3140 } while (error == ENFS_TRYAGAIN); 3141 3142 if (mi->mi_io_kstats) { 3143 mutex_enter(&mi->mi_lock); 3144 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3145 mutex_exit(&mi->mi_lock); 3146 } 3147 3148 /* 3149 * Since we are actually doing a READDIR RPC, we must have 3150 * exclusive access to the cache entry being filled. Thus, 3151 * it is safe to update all fields except for the flags 3152 * field. The r_statelock in the rnode must be held to 3153 * prevent two different threads from simultaneously 3154 * attempting to update the flags field. This can happen 3155 * if we are turning off RDDIR and the other thread is 3156 * trying to set RDDIRWAIT. 3157 */ 3158 ASSERT(rdc->flags & RDDIR); 3159 if (!error) { 3160 error = geterrno(rd.rd_status); 3161 if (!error) { 3162 rdc->nfs_ncookie = rd.rd_offset; 3163 rdc->eof = rd.rd_eof ? 1 : 0; 3164 rdc->entlen = rd.rd_size; 3165 ASSERT(rdc->entlen <= rdc->buflen); 3166 #ifdef DEBUG 3167 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3168 KM_SLEEP); 3169 #else 3170 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3171 #endif 3172 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3173 rdc->error = 0; 3174 if (mi->mi_io_kstats) { 3175 mutex_enter(&mi->mi_lock); 3176 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3177 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3178 rd.rd_size; 3179 mutex_exit(&mi->mi_lock); 3180 } 3181 } else { 3182 PURGE_STALE_FH(error, vp, cr); 3183 } 3184 } 3185 if (error) { 3186 rdc->entries = NULL; 3187 rdc->error = error; 3188 } 3189 kmem_free(rd.rd_entries, rdc->buflen); 3190 3191 mutex_enter(&rp->r_statelock); 3192 rdc->flags &= ~RDDIR; 3193 if (rdc->flags & RDDIRWAIT) { 3194 rdc->flags &= ~RDDIRWAIT; 3195 cv_broadcast(&rdc->cv); 3196 } 3197 if (error) 3198 rdc->flags |= RDDIRREQ; 3199 mutex_exit(&rp->r_statelock); 3200 3201 rddir_cache_rele(rdc); 3202 3203 return (error); 3204 } 3205 3206 #ifdef DEBUG 3207 static int nfs_bio_do_stop = 0; 3208 #endif 3209 3210 static int 3211 nfs_bio(struct buf *bp, cred_t *cr) 3212 { 3213 rnode_t *rp = VTOR(bp->b_vp); 3214 int count; 3215 int error; 3216 cred_t *cred; 3217 uint_t offset; 3218 3219 DTRACE_IO1(start, struct buf *, bp); 3220 3221 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3222 offset = dbtob(bp->b_blkno); 3223 3224 if (bp->b_flags & B_READ) { 3225 mutex_enter(&rp->r_statelock); 3226 if (rp->r_cred != NULL) { 3227 cred = rp->r_cred; 3228 crhold(cred); 3229 } else { 3230 rp->r_cred = cr; 3231 crhold(cr); 3232 cred = cr; 3233 crhold(cred); 3234 } 3235 mutex_exit(&rp->r_statelock); 3236 read_again: 3237 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3238 offset, bp->b_bcount, &bp->b_resid, cred); 3239 crfree(cred); 3240 if (!error) { 3241 if (bp->b_resid) { 3242 /* 3243 * Didn't get it all because we hit EOF, 3244 * zero all the memory beyond the EOF. 3245 */ 3246 /* bzero(rdaddr + */ 3247 bzero(bp->b_un.b_addr + 3248 bp->b_bcount - bp->b_resid, bp->b_resid); 3249 } 3250 mutex_enter(&rp->r_statelock); 3251 if (bp->b_resid == bp->b_bcount && 3252 offset >= rp->r_size) { 3253 /* 3254 * We didn't read anything at all as we are 3255 * past EOF. Return an error indicator back 3256 * but don't destroy the pages (yet). 3257 */ 3258 error = NFS_EOF; 3259 } 3260 mutex_exit(&rp->r_statelock); 3261 } else if (error == EACCES) { 3262 mutex_enter(&rp->r_statelock); 3263 if (cred != cr) { 3264 if (rp->r_cred != NULL) 3265 crfree(rp->r_cred); 3266 rp->r_cred = cr; 3267 crhold(cr); 3268 cred = cr; 3269 crhold(cred); 3270 mutex_exit(&rp->r_statelock); 3271 goto read_again; 3272 } 3273 mutex_exit(&rp->r_statelock); 3274 } 3275 } else { 3276 if (!(rp->r_flags & RSTALE)) { 3277 mutex_enter(&rp->r_statelock); 3278 if (rp->r_cred != NULL) { 3279 cred = rp->r_cred; 3280 crhold(cred); 3281 } else { 3282 rp->r_cred = cr; 3283 crhold(cr); 3284 cred = cr; 3285 crhold(cred); 3286 } 3287 mutex_exit(&rp->r_statelock); 3288 write_again: 3289 mutex_enter(&rp->r_statelock); 3290 count = MIN(bp->b_bcount, rp->r_size - offset); 3291 mutex_exit(&rp->r_statelock); 3292 if (count < 0) 3293 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3294 #ifdef DEBUG 3295 if (count == 0) { 3296 zcmn_err(getzoneid(), CE_WARN, 3297 "nfs_bio: zero length write at %d", 3298 offset); 3299 nfs_printfhandle(&rp->r_fh); 3300 if (nfs_bio_do_stop) 3301 debug_enter("nfs_bio"); 3302 } 3303 #endif 3304 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3305 count, cred); 3306 if (error == EACCES) { 3307 mutex_enter(&rp->r_statelock); 3308 if (cred != cr) { 3309 if (rp->r_cred != NULL) 3310 crfree(rp->r_cred); 3311 rp->r_cred = cr; 3312 crhold(cr); 3313 crfree(cred); 3314 cred = cr; 3315 crhold(cred); 3316 mutex_exit(&rp->r_statelock); 3317 goto write_again; 3318 } 3319 mutex_exit(&rp->r_statelock); 3320 } 3321 bp->b_error = error; 3322 if (error && error != EINTR) { 3323 /* 3324 * Don't print EDQUOT errors on the console. 3325 * Don't print asynchronous EACCES errors. 3326 * Don't print EFBIG errors. 3327 * Print all other write errors. 3328 */ 3329 if (error != EDQUOT && error != EFBIG && 3330 (error != EACCES || 3331 !(bp->b_flags & B_ASYNC))) 3332 nfs_write_error(bp->b_vp, error, cred); 3333 /* 3334 * Update r_error and r_flags as appropriate. 3335 * If the error was ESTALE, then mark the 3336 * rnode as not being writeable and save 3337 * the error status. Otherwise, save any 3338 * errors which occur from asynchronous 3339 * page invalidations. Any errors occurring 3340 * from other operations should be saved 3341 * by the caller. 3342 */ 3343 mutex_enter(&rp->r_statelock); 3344 if (error == ESTALE) { 3345 rp->r_flags |= RSTALE; 3346 if (!rp->r_error) 3347 rp->r_error = error; 3348 } else if (!rp->r_error && 3349 (bp->b_flags & 3350 (B_INVAL|B_FORCE|B_ASYNC)) == 3351 (B_INVAL|B_FORCE|B_ASYNC)) { 3352 rp->r_error = error; 3353 } 3354 mutex_exit(&rp->r_statelock); 3355 } 3356 crfree(cred); 3357 } else 3358 error = rp->r_error; 3359 } 3360 3361 if (error != 0 && error != NFS_EOF) 3362 bp->b_flags |= B_ERROR; 3363 3364 DTRACE_IO1(done, struct buf *, bp); 3365 3366 return (error); 3367 } 3368 3369 static int 3370 nfs_fid(vnode_t *vp, fid_t *fidp) 3371 { 3372 struct nfs_fid *fp; 3373 rnode_t *rp; 3374 3375 rp = VTOR(vp); 3376 3377 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3378 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3379 return (ENOSPC); 3380 } 3381 fp = (struct nfs_fid *)fidp; 3382 fp->nf_pad = 0; 3383 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3384 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3385 return (0); 3386 } 3387 3388 /* ARGSUSED2 */ 3389 static int 3390 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3391 { 3392 rnode_t *rp = VTOR(vp); 3393 3394 if (!write_lock) { 3395 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3396 return (V_WRITELOCK_FALSE); 3397 } 3398 3399 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3400 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3401 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3402 return (V_WRITELOCK_FALSE); 3403 nfs_rw_exit(&rp->r_rwlock); 3404 } 3405 3406 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3407 return (V_WRITELOCK_TRUE); 3408 } 3409 3410 /* ARGSUSED */ 3411 static void 3412 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3413 { 3414 rnode_t *rp = VTOR(vp); 3415 3416 nfs_rw_exit(&rp->r_rwlock); 3417 } 3418 3419 /* ARGSUSED */ 3420 static int 3421 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3422 { 3423 3424 /* 3425 * Because we stuff the readdir cookie into the offset field 3426 * someone may attempt to do an lseek with the cookie which 3427 * we want to succeed. 3428 */ 3429 if (vp->v_type == VDIR) 3430 return (0); 3431 if (*noffp < 0 || *noffp > MAXOFF32_T) 3432 return (EINVAL); 3433 return (0); 3434 } 3435 3436 /* 3437 * number of NFS_MAXDATA blocks to read ahead 3438 * optimized for 100 base-T. 3439 */ 3440 static int nfs_nra = 4; 3441 3442 #ifdef DEBUG 3443 static int nfs_lostpage = 0; /* number of times we lost original page */ 3444 #endif 3445 3446 /* 3447 * Return all the pages from [off..off+len) in file 3448 */ 3449 static int 3450 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3451 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3452 enum seg_rw rw, cred_t *cr) 3453 { 3454 rnode_t *rp; 3455 int error; 3456 mntinfo_t *mi; 3457 3458 if (vp->v_flag & VNOMAP) 3459 return (ENOSYS); 3460 3461 ASSERT(off <= MAXOFF32_T); 3462 if (nfs_zone() != VTOMI(vp)->mi_zone) 3463 return (EIO); 3464 if (protp != NULL) 3465 *protp = PROT_ALL; 3466 3467 /* 3468 * Now valididate that the caches are up to date. 3469 */ 3470 error = nfs_validate_caches(vp, cr); 3471 if (error) 3472 return (error); 3473 3474 rp = VTOR(vp); 3475 mi = VTOMI(vp); 3476 retry: 3477 mutex_enter(&rp->r_statelock); 3478 3479 /* 3480 * Don't create dirty pages faster than they 3481 * can be cleaned so that the system doesn't 3482 * get imbalanced. If the async queue is 3483 * maxed out, then wait for it to drain before 3484 * creating more dirty pages. Also, wait for 3485 * any threads doing pagewalks in the vop_getattr 3486 * entry points so that they don't block for 3487 * long periods. 3488 */ 3489 if (rw == S_CREATE) { 3490 while ((mi->mi_max_threads != 0 && 3491 rp->r_awcount > 2 * mi->mi_max_threads) || 3492 rp->r_gcount > 0) 3493 cv_wait(&rp->r_cv, &rp->r_statelock); 3494 } 3495 3496 /* 3497 * If we are getting called as a side effect of an nfs_write() 3498 * operation the local file size might not be extended yet. 3499 * In this case we want to be able to return pages of zeroes. 3500 */ 3501 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3502 mutex_exit(&rp->r_statelock); 3503 return (EFAULT); /* beyond EOF */ 3504 } 3505 3506 mutex_exit(&rp->r_statelock); 3507 3508 if (len <= PAGESIZE) { 3509 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3510 seg, addr, rw, cr); 3511 } else { 3512 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3513 pl, plsz, seg, addr, rw, cr); 3514 } 3515 3516 switch (error) { 3517 case NFS_EOF: 3518 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3519 goto retry; 3520 case ESTALE: 3521 PURGE_STALE_FH(error, vp, cr); 3522 } 3523 3524 return (error); 3525 } 3526 3527 /* 3528 * Called from pvn_getpages or nfs_getpage to get a particular page. 3529 */ 3530 /* ARGSUSED */ 3531 static int 3532 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3533 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3534 enum seg_rw rw, cred_t *cr) 3535 { 3536 rnode_t *rp; 3537 uint_t bsize; 3538 struct buf *bp; 3539 page_t *pp; 3540 u_offset_t lbn; 3541 u_offset_t io_off; 3542 u_offset_t blkoff; 3543 u_offset_t rablkoff; 3544 size_t io_len; 3545 uint_t blksize; 3546 int error; 3547 int readahead; 3548 int readahead_issued = 0; 3549 int ra_window; /* readahead window */ 3550 page_t *pagefound; 3551 3552 if (nfs_zone() != VTOMI(vp)->mi_zone) 3553 return (EIO); 3554 rp = VTOR(vp); 3555 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3556 3557 reread: 3558 bp = NULL; 3559 pp = NULL; 3560 pagefound = NULL; 3561 3562 if (pl != NULL) 3563 pl[0] = NULL; 3564 3565 error = 0; 3566 lbn = off / bsize; 3567 blkoff = lbn * bsize; 3568 3569 /* 3570 * Queueing up the readahead before doing the synchronous read 3571 * results in a significant increase in read throughput because 3572 * of the increased parallelism between the async threads and 3573 * the process context. 3574 */ 3575 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3576 rw != S_CREATE && 3577 !(vp->v_flag & VNOCACHE)) { 3578 mutex_enter(&rp->r_statelock); 3579 3580 /* 3581 * Calculate the number of readaheads to do. 3582 * a) No readaheads at offset = 0. 3583 * b) Do maximum(nfs_nra) readaheads when the readahead 3584 * window is closed. 3585 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3586 * upon how far the readahead window is open or close. 3587 * d) No readaheads if rp->r_nextr is not within the scope 3588 * of the readahead window (random i/o). 3589 */ 3590 3591 if (off == 0) 3592 readahead = 0; 3593 else if (blkoff == rp->r_nextr) 3594 readahead = nfs_nra; 3595 else if (rp->r_nextr > blkoff && 3596 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3597 <= (nfs_nra - 1))) 3598 readahead = nfs_nra - ra_window; 3599 else 3600 readahead = 0; 3601 3602 rablkoff = rp->r_nextr; 3603 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3604 mutex_exit(&rp->r_statelock); 3605 if (nfs_async_readahead(vp, rablkoff + bsize, 3606 addr + (rablkoff + bsize - off), seg, cr, 3607 nfs_readahead) < 0) { 3608 mutex_enter(&rp->r_statelock); 3609 break; 3610 } 3611 readahead--; 3612 rablkoff += bsize; 3613 /* 3614 * Indicate that we did a readahead so 3615 * readahead offset is not updated 3616 * by the synchronous read below. 3617 */ 3618 readahead_issued = 1; 3619 mutex_enter(&rp->r_statelock); 3620 /* 3621 * set readahead offset to 3622 * offset of last async readahead 3623 * request. 3624 */ 3625 rp->r_nextr = rablkoff; 3626 } 3627 mutex_exit(&rp->r_statelock); 3628 } 3629 3630 again: 3631 if ((pagefound = page_exists(vp, off)) == NULL) { 3632 if (pl == NULL) { 3633 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3634 nfs_readahead); 3635 } else if (rw == S_CREATE) { 3636 /* 3637 * Block for this page is not allocated, or the offset 3638 * is beyond the current allocation size, or we're 3639 * allocating a swap slot and the page was not found, 3640 * so allocate it and return a zero page. 3641 */ 3642 if ((pp = page_create_va(vp, off, 3643 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3644 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3645 io_len = PAGESIZE; 3646 mutex_enter(&rp->r_statelock); 3647 rp->r_nextr = off + PAGESIZE; 3648 mutex_exit(&rp->r_statelock); 3649 } else { 3650 /* 3651 * Need to go to server to get a BLOCK, exception to 3652 * that being while reading at offset = 0 or doing 3653 * random i/o, in that case read only a PAGE. 3654 */ 3655 mutex_enter(&rp->r_statelock); 3656 if (blkoff < rp->r_size && 3657 blkoff + bsize >= rp->r_size) { 3658 /* 3659 * If only a block or less is left in 3660 * the file, read all that is remaining. 3661 */ 3662 if (rp->r_size <= off) { 3663 /* 3664 * Trying to access beyond EOF, 3665 * set up to get at least one page. 3666 */ 3667 blksize = off + PAGESIZE - blkoff; 3668 } else 3669 blksize = rp->r_size - blkoff; 3670 } else if ((off == 0) || 3671 (off != rp->r_nextr && !readahead_issued)) { 3672 blksize = PAGESIZE; 3673 blkoff = off; /* block = page here */ 3674 } else 3675 blksize = bsize; 3676 mutex_exit(&rp->r_statelock); 3677 3678 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3679 &io_len, blkoff, blksize, 0); 3680 3681 /* 3682 * Some other thread has entered the page, 3683 * so just use it. 3684 */ 3685 if (pp == NULL) 3686 goto again; 3687 3688 /* 3689 * Now round the request size up to page boundaries. 3690 * This ensures that the entire page will be 3691 * initialized to zeroes if EOF is encountered. 3692 */ 3693 io_len = ptob(btopr(io_len)); 3694 3695 bp = pageio_setup(pp, io_len, vp, B_READ); 3696 ASSERT(bp != NULL); 3697 3698 /* 3699 * pageio_setup should have set b_addr to 0. This 3700 * is correct since we want to do I/O on a page 3701 * boundary. bp_mapin will use this addr to calculate 3702 * an offset, and then set b_addr to the kernel virtual 3703 * address it allocated for us. 3704 */ 3705 ASSERT(bp->b_un.b_addr == 0); 3706 3707 bp->b_edev = 0; 3708 bp->b_dev = 0; 3709 bp->b_lblkno = lbtodb(io_off); 3710 bp->b_file = vp; 3711 bp->b_offset = (offset_t)off; 3712 bp_mapin(bp); 3713 3714 /* 3715 * If doing a write beyond what we believe is EOF, 3716 * don't bother trying to read the pages from the 3717 * server, we'll just zero the pages here. We 3718 * don't check that the rw flag is S_WRITE here 3719 * because some implementations may attempt a 3720 * read access to the buffer before copying data. 3721 */ 3722 mutex_enter(&rp->r_statelock); 3723 if (io_off >= rp->r_size && seg == segkmap) { 3724 mutex_exit(&rp->r_statelock); 3725 bzero(bp->b_un.b_addr, io_len); 3726 } else { 3727 mutex_exit(&rp->r_statelock); 3728 error = nfs_bio(bp, cr); 3729 } 3730 3731 /* 3732 * Unmap the buffer before freeing it. 3733 */ 3734 bp_mapout(bp); 3735 pageio_done(bp); 3736 3737 if (error == NFS_EOF) { 3738 /* 3739 * If doing a write system call just return 3740 * zeroed pages, else user tried to get pages 3741 * beyond EOF, return error. We don't check 3742 * that the rw flag is S_WRITE here because 3743 * some implementations may attempt a read 3744 * access to the buffer before copying data. 3745 */ 3746 if (seg == segkmap) 3747 error = 0; 3748 else 3749 error = EFAULT; 3750 } 3751 3752 if (!readahead_issued && !error) { 3753 mutex_enter(&rp->r_statelock); 3754 rp->r_nextr = io_off + io_len; 3755 mutex_exit(&rp->r_statelock); 3756 } 3757 } 3758 } 3759 3760 out: 3761 if (pl == NULL) 3762 return (error); 3763 3764 if (error) { 3765 if (pp != NULL) 3766 pvn_read_done(pp, B_ERROR); 3767 return (error); 3768 } 3769 3770 if (pagefound) { 3771 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3772 3773 /* 3774 * Page exists in the cache, acquire the appropriate lock. 3775 * If this fails, start all over again. 3776 */ 3777 if ((pp = page_lookup(vp, off, se)) == NULL) { 3778 #ifdef DEBUG 3779 nfs_lostpage++; 3780 #endif 3781 goto reread; 3782 } 3783 pl[0] = pp; 3784 pl[1] = NULL; 3785 return (0); 3786 } 3787 3788 if (pp != NULL) 3789 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3790 3791 return (error); 3792 } 3793 3794 static void 3795 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3796 cred_t *cr) 3797 { 3798 int error; 3799 page_t *pp; 3800 u_offset_t io_off; 3801 size_t io_len; 3802 struct buf *bp; 3803 uint_t bsize, blksize; 3804 rnode_t *rp = VTOR(vp); 3805 3806 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3807 3808 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3809 3810 mutex_enter(&rp->r_statelock); 3811 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3812 /* 3813 * If less than a block left in file read less 3814 * than a block. 3815 */ 3816 blksize = rp->r_size - blkoff; 3817 } else 3818 blksize = bsize; 3819 mutex_exit(&rp->r_statelock); 3820 3821 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3822 &io_off, &io_len, blkoff, blksize, 1); 3823 /* 3824 * The isra flag passed to the kluster function is 1, we may have 3825 * gotten a return value of NULL for a variety of reasons (# of free 3826 * pages < minfree, someone entered the page on the vnode etc). In all 3827 * cases, we want to punt on the readahead. 3828 */ 3829 if (pp == NULL) 3830 return; 3831 3832 /* 3833 * Now round the request size up to page boundaries. 3834 * This ensures that the entire page will be 3835 * initialized to zeroes if EOF is encountered. 3836 */ 3837 io_len = ptob(btopr(io_len)); 3838 3839 bp = pageio_setup(pp, io_len, vp, B_READ); 3840 ASSERT(bp != NULL); 3841 3842 /* 3843 * pageio_setup should have set b_addr to 0. This is correct since 3844 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3845 * to calculate an offset, and then set b_addr to the kernel virtual 3846 * address it allocated for us. 3847 */ 3848 ASSERT(bp->b_un.b_addr == 0); 3849 3850 bp->b_edev = 0; 3851 bp->b_dev = 0; 3852 bp->b_lblkno = lbtodb(io_off); 3853 bp->b_file = vp; 3854 bp->b_offset = (offset_t)blkoff; 3855 bp_mapin(bp); 3856 3857 /* 3858 * If doing a write beyond what we believe is EOF, don't bother trying 3859 * to read the pages from the server, we'll just zero the pages here. 3860 * We don't check that the rw flag is S_WRITE here because some 3861 * implementations may attempt a read access to the buffer before 3862 * copying data. 3863 */ 3864 mutex_enter(&rp->r_statelock); 3865 if (io_off >= rp->r_size && seg == segkmap) { 3866 mutex_exit(&rp->r_statelock); 3867 bzero(bp->b_un.b_addr, io_len); 3868 error = 0; 3869 } else { 3870 mutex_exit(&rp->r_statelock); 3871 error = nfs_bio(bp, cr); 3872 if (error == NFS_EOF) 3873 error = 0; 3874 } 3875 3876 /* 3877 * Unmap the buffer before freeing it. 3878 */ 3879 bp_mapout(bp); 3880 pageio_done(bp); 3881 3882 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 3883 3884 /* 3885 * In case of error set readahead offset 3886 * to the lowest offset. 3887 * pvn_read_done() calls VN_DISPOSE to destroy the pages 3888 */ 3889 if (error && rp->r_nextr > io_off) { 3890 mutex_enter(&rp->r_statelock); 3891 if (rp->r_nextr > io_off) 3892 rp->r_nextr = io_off; 3893 mutex_exit(&rp->r_statelock); 3894 } 3895 } 3896 3897 /* 3898 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 3899 * If len == 0, do from off to EOF. 3900 * 3901 * The normal cases should be len == 0 && off == 0 (entire vp list), 3902 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 3903 * (from pageout). 3904 */ 3905 static int 3906 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 3907 { 3908 int error; 3909 rnode_t *rp; 3910 3911 ASSERT(cr != NULL); 3912 3913 /* 3914 * XXX - Why should this check be made here? 3915 */ 3916 if (vp->v_flag & VNOMAP) 3917 return (ENOSYS); 3918 3919 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 3920 return (0); 3921 3922 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 3923 return (EIO); 3924 ASSERT(off <= MAXOFF32_T); 3925 3926 rp = VTOR(vp); 3927 mutex_enter(&rp->r_statelock); 3928 rp->r_count++; 3929 mutex_exit(&rp->r_statelock); 3930 error = nfs_putpages(vp, off, len, flags, cr); 3931 mutex_enter(&rp->r_statelock); 3932 rp->r_count--; 3933 cv_broadcast(&rp->r_cv); 3934 mutex_exit(&rp->r_statelock); 3935 3936 return (error); 3937 } 3938 3939 /* 3940 * Write out a single page, possibly klustering adjacent dirty pages. 3941 */ 3942 int 3943 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 3944 int flags, cred_t *cr) 3945 { 3946 u_offset_t io_off; 3947 u_offset_t lbn_off; 3948 u_offset_t lbn; 3949 size_t io_len; 3950 uint_t bsize; 3951 int error; 3952 rnode_t *rp; 3953 3954 ASSERT(!vn_is_readonly(vp)); 3955 ASSERT(pp != NULL); 3956 ASSERT(cr != NULL); 3957 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 3958 3959 rp = VTOR(vp); 3960 ASSERT(rp->r_count > 0); 3961 3962 ASSERT(pp->p_offset <= MAXOFF32_T); 3963 3964 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3965 lbn = pp->p_offset / bsize; 3966 lbn_off = lbn * bsize; 3967 3968 /* 3969 * Find a kluster that fits in one block, or in 3970 * one page if pages are bigger than blocks. If 3971 * there is less file space allocated than a whole 3972 * page, we'll shorten the i/o request below. 3973 */ 3974 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 3975 roundup(bsize, PAGESIZE), flags); 3976 3977 /* 3978 * pvn_write_kluster shouldn't have returned a page with offset 3979 * behind the original page we were given. Verify that. 3980 */ 3981 ASSERT((pp->p_offset / bsize) >= lbn); 3982 3983 /* 3984 * Now pp will have the list of kept dirty pages marked for 3985 * write back. It will also handle invalidation and freeing 3986 * of pages that are not dirty. Check for page length rounding 3987 * problems. 3988 */ 3989 if (io_off + io_len > lbn_off + bsize) { 3990 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 3991 io_len = lbn_off + bsize - io_off; 3992 } 3993 /* 3994 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 3995 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 3996 * When RMODINPROGRESS is set it indicates that a uiomove() is in 3997 * progress and the r_size has not been made consistent with the 3998 * new size of the file. When the uiomove() completes the r_size is 3999 * updated and the RMODINPROGRESS flag is cleared. 4000 * 4001 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4002 * consistent value of r_size. Without this handshaking, it is 4003 * possible that nfs(3)_bio() picks up the old value of r_size 4004 * before the uiomove() in writerp() completes. This will result 4005 * in the write through nfs(3)_bio() being dropped. 4006 * 4007 * More precisely, there is a window between the time the uiomove() 4008 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4009 * operation intervenes in this window, the page will be picked up, 4010 * because it is dirty (it will be unlocked, unless it was 4011 * pagecreate'd). When the page is picked up as dirty, the dirty 4012 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4013 * checked. This will still be the old size. Therefore the page will 4014 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4015 * the page will be found to be clean and the write will be dropped. 4016 */ 4017 if (rp->r_flags & RMODINPROGRESS) { 4018 mutex_enter(&rp->r_statelock); 4019 if ((rp->r_flags & RMODINPROGRESS) && 4020 rp->r_modaddr + MAXBSIZE > io_off && 4021 rp->r_modaddr < io_off + io_len) { 4022 page_t *plist; 4023 /* 4024 * A write is in progress for this region of the file. 4025 * If we did not detect RMODINPROGRESS here then this 4026 * path through nfs_putapage() would eventually go to 4027 * nfs(3)_bio() and may not write out all of the data 4028 * in the pages. We end up losing data. So we decide 4029 * to set the modified bit on each page in the page 4030 * list and mark the rnode with RDIRTY. This write 4031 * will be restarted at some later time. 4032 */ 4033 plist = pp; 4034 while (plist != NULL) { 4035 pp = plist; 4036 page_sub(&plist, pp); 4037 hat_setmod(pp); 4038 page_io_unlock(pp); 4039 page_unlock(pp); 4040 } 4041 rp->r_flags |= RDIRTY; 4042 mutex_exit(&rp->r_statelock); 4043 if (offp) 4044 *offp = io_off; 4045 if (lenp) 4046 *lenp = io_len; 4047 return (0); 4048 } 4049 mutex_exit(&rp->r_statelock); 4050 } 4051 4052 if (flags & B_ASYNC) { 4053 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4054 nfs_sync_putapage); 4055 } else 4056 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4057 4058 if (offp) 4059 *offp = io_off; 4060 if (lenp) 4061 *lenp = io_len; 4062 return (error); 4063 } 4064 4065 static int 4066 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4067 int flags, cred_t *cr) 4068 { 4069 int error; 4070 rnode_t *rp; 4071 4072 flags |= B_WRITE; 4073 4074 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4075 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4076 4077 rp = VTOR(vp); 4078 4079 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4080 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4081 if (!(rp->r_flags & ROUTOFSPACE)) { 4082 mutex_enter(&rp->r_statelock); 4083 rp->r_flags |= ROUTOFSPACE; 4084 mutex_exit(&rp->r_statelock); 4085 } 4086 flags |= B_ERROR; 4087 pvn_write_done(pp, flags); 4088 /* 4089 * If this was not an async thread, then try again to 4090 * write out the pages, but this time, also destroy 4091 * them whether or not the write is successful. This 4092 * will prevent memory from filling up with these 4093 * pages and destroying them is the only alternative 4094 * if they can't be written out. 4095 * 4096 * Don't do this if this is an async thread because 4097 * when the pages are unlocked in pvn_write_done, 4098 * some other thread could have come along, locked 4099 * them, and queued for an async thread. It would be 4100 * possible for all of the async threads to be tied 4101 * up waiting to lock the pages again and they would 4102 * all already be locked and waiting for an async 4103 * thread to handle them. Deadlock. 4104 */ 4105 if (!(flags & B_ASYNC)) { 4106 error = nfs_putpage(vp, io_off, io_len, 4107 B_INVAL | B_FORCE, cr); 4108 } 4109 } else { 4110 if (error) 4111 flags |= B_ERROR; 4112 else if (rp->r_flags & ROUTOFSPACE) { 4113 mutex_enter(&rp->r_statelock); 4114 rp->r_flags &= ~ROUTOFSPACE; 4115 mutex_exit(&rp->r_statelock); 4116 } 4117 pvn_write_done(pp, flags); 4118 } 4119 4120 return (error); 4121 } 4122 4123 static int 4124 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4125 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 4126 { 4127 struct segvn_crargs vn_a; 4128 int error; 4129 rnode_t *rp; 4130 struct vattr va; 4131 4132 if (nfs_zone() != VTOMI(vp)->mi_zone) 4133 return (EIO); 4134 4135 if (vp->v_flag & VNOMAP) 4136 return (ENOSYS); 4137 4138 if (off > MAXOFF32_T) 4139 return (EFBIG); 4140 4141 if (off < 0 || off + len < 0) 4142 return (ENXIO); 4143 4144 if (vp->v_type != VREG) 4145 return (ENODEV); 4146 4147 /* 4148 * If there is cached data and if close-to-open consistency 4149 * checking is not turned off and if the file system is not 4150 * mounted readonly, then force an over the wire getattr. 4151 * Otherwise, just invoke nfsgetattr to get a copy of the 4152 * attributes. The attribute cache will be used unless it 4153 * is timed out and if it is, then an over the wire getattr 4154 * will be issued. 4155 */ 4156 va.va_mask = AT_ALL; 4157 if (vn_has_cached_data(vp) && 4158 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4159 error = nfs_getattr_otw(vp, &va, cr); 4160 else 4161 error = nfsgetattr(vp, &va, cr); 4162 if (error) 4163 return (error); 4164 4165 /* 4166 * Check to see if the vnode is currently marked as not cachable. 4167 * This means portions of the file are locked (through VOP_FRLOCK). 4168 * In this case the map request must be refused. We use 4169 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4170 */ 4171 rp = VTOR(vp); 4172 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 4173 return (EINTR); 4174 4175 if (vp->v_flag & VNOCACHE) { 4176 error = EAGAIN; 4177 goto done; 4178 } 4179 4180 /* 4181 * Don't allow concurrent locks and mapping if mandatory locking is 4182 * enabled. 4183 */ 4184 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4185 MANDLOCK(vp, va.va_mode)) { 4186 error = EAGAIN; 4187 goto done; 4188 } 4189 4190 as_rangelock(as); 4191 if (!(flags & MAP_FIXED)) { 4192 map_addr(addrp, len, off, 1, flags); 4193 if (*addrp == NULL) { 4194 as_rangeunlock(as); 4195 error = ENOMEM; 4196 goto done; 4197 } 4198 } else { 4199 /* 4200 * User specified address - blow away any previous mappings 4201 */ 4202 (void) as_unmap(as, *addrp, len); 4203 } 4204 4205 vn_a.vp = vp; 4206 vn_a.offset = off; 4207 vn_a.type = (flags & MAP_TYPE); 4208 vn_a.prot = (uchar_t)prot; 4209 vn_a.maxprot = (uchar_t)maxprot; 4210 vn_a.flags = (flags & ~MAP_TYPE); 4211 vn_a.cred = cr; 4212 vn_a.amp = NULL; 4213 vn_a.szc = 0; 4214 vn_a.lgrp_mem_policy_flags = 0; 4215 4216 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4217 as_rangeunlock(as); 4218 4219 done: 4220 nfs_rw_exit(&rp->r_lkserlock); 4221 return (error); 4222 } 4223 4224 /* ARGSUSED */ 4225 static int 4226 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4227 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 4228 { 4229 rnode_t *rp; 4230 4231 if (vp->v_flag & VNOMAP) 4232 return (ENOSYS); 4233 if (nfs_zone() != VTOMI(vp)->mi_zone) 4234 return (EIO); 4235 4236 /* 4237 * Need to hold rwlock while incrementing the mapcnt so that 4238 * mmap'ing can be serialized with writes so that the caching 4239 * can be handled correctly. 4240 */ 4241 rp = VTOR(vp); 4242 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4243 return (EINTR); 4244 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4245 nfs_rw_exit(&rp->r_rwlock); 4246 4247 return (0); 4248 } 4249 4250 static int 4251 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4252 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 4253 { 4254 netobj lm_fh; 4255 int rc; 4256 u_offset_t start, end; 4257 rnode_t *rp; 4258 int error = 0, intr = INTR(vp); 4259 4260 /* check for valid cmd parameter */ 4261 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4262 return (EINVAL); 4263 if (nfs_zone() != VTOMI(vp)->mi_zone) 4264 return (EIO); 4265 4266 /* Verify l_type. */ 4267 switch (bfp->l_type) { 4268 case F_RDLCK: 4269 if (cmd != F_GETLK && !(flag & FREAD)) 4270 return (EBADF); 4271 break; 4272 case F_WRLCK: 4273 if (cmd != F_GETLK && !(flag & FWRITE)) 4274 return (EBADF); 4275 break; 4276 case F_UNLCK: 4277 intr = 0; 4278 break; 4279 4280 default: 4281 return (EINVAL); 4282 } 4283 4284 /* check the validity of the lock range */ 4285 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4286 return (rc); 4287 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4288 return (rc); 4289 4290 /* 4291 * If the filesystem is mounted using local locking, pass the 4292 * request off to the local locking code. 4293 */ 4294 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4295 if (offset > MAXOFF32_T) 4296 return (EFBIG); 4297 if (cmd == F_SETLK || cmd == F_SETLKW) { 4298 /* 4299 * For complete safety, we should be holding 4300 * r_lkserlock. However, we can't call 4301 * lm_safelock and then fs_frlock while 4302 * holding r_lkserlock, so just invoke 4303 * lm_safelock and expect that this will 4304 * catch enough of the cases. 4305 */ 4306 if (!lm_safelock(vp, bfp, cr)) 4307 return (EAGAIN); 4308 } 4309 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 4310 } 4311 4312 rp = VTOR(vp); 4313 4314 /* 4315 * Check whether the given lock request can proceed, given the 4316 * current file mappings. 4317 */ 4318 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4319 return (EINTR); 4320 if (cmd == F_SETLK || cmd == F_SETLKW) { 4321 if (!lm_safelock(vp, bfp, cr)) { 4322 rc = EAGAIN; 4323 goto done; 4324 } 4325 } 4326 4327 /* 4328 * Flush the cache after waiting for async I/O to finish. For new 4329 * locks, this is so that the process gets the latest bits from the 4330 * server. For unlocks, this is so that other clients see the 4331 * latest bits once the file has been unlocked. If currently dirty 4332 * pages can't be flushed, then don't allow a lock to be set. But 4333 * allow unlocks to succeed, to avoid having orphan locks on the 4334 * server. 4335 */ 4336 if (cmd != F_GETLK) { 4337 mutex_enter(&rp->r_statelock); 4338 while (rp->r_count > 0) { 4339 if (intr) { 4340 klwp_t *lwp = ttolwp(curthread); 4341 4342 if (lwp != NULL) 4343 lwp->lwp_nostop++; 4344 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 4345 if (lwp != NULL) 4346 lwp->lwp_nostop--; 4347 rc = EINTR; 4348 break; 4349 } 4350 if (lwp != NULL) 4351 lwp->lwp_nostop--; 4352 } else 4353 cv_wait(&rp->r_cv, &rp->r_statelock); 4354 } 4355 mutex_exit(&rp->r_statelock); 4356 if (rc != 0) 4357 goto done; 4358 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 4359 if (error) { 4360 if (error == ENOSPC || error == EDQUOT) { 4361 mutex_enter(&rp->r_statelock); 4362 if (!rp->r_error) 4363 rp->r_error = error; 4364 mutex_exit(&rp->r_statelock); 4365 } 4366 if (bfp->l_type != F_UNLCK) { 4367 rc = ENOLCK; 4368 goto done; 4369 } 4370 } 4371 } 4372 4373 lm_fh.n_len = sizeof (fhandle_t); 4374 lm_fh.n_bytes = (char *)VTOFH(vp); 4375 4376 /* 4377 * Call the lock manager to do the real work of contacting 4378 * the server and obtaining the lock. 4379 */ 4380 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4381 4382 if (rc == 0) 4383 nfs_lockcompletion(vp, cmd); 4384 4385 done: 4386 nfs_rw_exit(&rp->r_lkserlock); 4387 return (rc); 4388 } 4389 4390 /* 4391 * Free storage space associated with the specified vnode. The portion 4392 * to be freed is specified by bfp->l_start and bfp->l_len (already 4393 * normalized to a "whence" of 0). 4394 * 4395 * This is an experimental facility whose continued existence is not 4396 * guaranteed. Currently, we only support the special case 4397 * of l_len == 0, meaning free to end of file. 4398 */ 4399 /* ARGSUSED */ 4400 static int 4401 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4402 offset_t offset, cred_t *cr, caller_context_t *ct) 4403 { 4404 int error; 4405 4406 ASSERT(vp->v_type == VREG); 4407 if (cmd != F_FREESP) 4408 return (EINVAL); 4409 4410 if (offset > MAXOFF32_T) 4411 return (EFBIG); 4412 4413 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4414 (bfp->l_len > MAXOFF32_T)) 4415 return (EFBIG); 4416 4417 if (nfs_zone() != VTOMI(vp)->mi_zone) 4418 return (EIO); 4419 4420 error = convoff(vp, bfp, 0, offset); 4421 if (!error) { 4422 ASSERT(bfp->l_start >= 0); 4423 if (bfp->l_len == 0) { 4424 struct vattr va; 4425 4426 /* 4427 * ftruncate should not change the ctime and 4428 * mtime if we truncate the file to its 4429 * previous size. 4430 */ 4431 va.va_mask = AT_SIZE; 4432 error = nfsgetattr(vp, &va, cr); 4433 if (error || va.va_size == bfp->l_start) 4434 return (error); 4435 va.va_mask = AT_SIZE; 4436 va.va_size = bfp->l_start; 4437 error = nfssetattr(vp, &va, 0, cr); 4438 } else 4439 error = EINVAL; 4440 } 4441 4442 return (error); 4443 } 4444 4445 /* ARGSUSED */ 4446 static int 4447 nfs_realvp(vnode_t *vp, vnode_t **vpp) 4448 { 4449 4450 return (EINVAL); 4451 } 4452 4453 /* 4454 * Setup and add an address space callback to do the work of the delmap call. 4455 * The callback will (and must be) deleted in the actual callback function. 4456 * 4457 * This is done in order to take care of the problem that we have with holding 4458 * the address space's a_lock for a long period of time (e.g. if the NFS server 4459 * is down). Callbacks will be executed in the address space code while the 4460 * a_lock is not held. Holding the address space's a_lock causes things such 4461 * as ps and fork to hang because they are trying to acquire this lock as well. 4462 */ 4463 /* ARGSUSED */ 4464 static int 4465 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4466 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 4467 { 4468 int caller_found; 4469 int error; 4470 rnode_t *rp; 4471 nfs_delmap_args_t *dmapp; 4472 nfs_delmapcall_t *delmap_call; 4473 4474 if (vp->v_flag & VNOMAP) 4475 return (ENOSYS); 4476 /* 4477 * A process may not change zones if it has NFS pages mmap'ed 4478 * in, so we can't legitimately get here from the wrong zone. 4479 */ 4480 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4481 4482 rp = VTOR(vp); 4483 4484 /* 4485 * The way that the address space of this process deletes its mapping 4486 * of this file is via the following call chains: 4487 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4488 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4489 * 4490 * With the use of address space callbacks we are allowed to drop the 4491 * address space lock, a_lock, while executing the NFS operations that 4492 * need to go over the wire. Returning EAGAIN to the caller of this 4493 * function is what drives the execution of the callback that we add 4494 * below. The callback will be executed by the address space code 4495 * after dropping the a_lock. When the callback is finished, since 4496 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4497 * is called again on the same segment to finish the rest of the work 4498 * that needs to happen during unmapping. 4499 * 4500 * This action of calling back into the segment driver causes 4501 * nfs_delmap() to get called again, but since the callback was 4502 * already executed at this point, it already did the work and there 4503 * is nothing left for us to do. 4504 * 4505 * To Summarize: 4506 * - The first time nfs_delmap is called by the current thread is when 4507 * we add the caller associated with this delmap to the delmap caller 4508 * list, add the callback, and return EAGAIN. 4509 * - The second time in this call chain when nfs_delmap is called we 4510 * will find this caller in the delmap caller list and realize there 4511 * is no more work to do thus removing this caller from the list and 4512 * returning the error that was set in the callback execution. 4513 */ 4514 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4515 if (caller_found) { 4516 /* 4517 * 'error' is from the actual delmap operations. To avoid 4518 * hangs, we need to handle the return of EAGAIN differently 4519 * since this is what drives the callback execution. 4520 * In this case, we don't want to return EAGAIN and do the 4521 * callback execution because there are none to execute. 4522 */ 4523 if (error == EAGAIN) 4524 return (0); 4525 else 4526 return (error); 4527 } 4528 4529 /* current caller was not in the list */ 4530 delmap_call = nfs_init_delmapcall(); 4531 4532 mutex_enter(&rp->r_statelock); 4533 list_insert_tail(&rp->r_indelmap, delmap_call); 4534 mutex_exit(&rp->r_statelock); 4535 4536 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4537 4538 dmapp->vp = vp; 4539 dmapp->off = off; 4540 dmapp->addr = addr; 4541 dmapp->len = len; 4542 dmapp->prot = prot; 4543 dmapp->maxprot = maxprot; 4544 dmapp->flags = flags; 4545 dmapp->cr = cr; 4546 dmapp->caller = delmap_call; 4547 4548 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4549 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4550 4551 return (error ? error : EAGAIN); 4552 } 4553 4554 /* 4555 * Remove some pages from an mmap'd vnode. Just update the 4556 * count of pages. If doing close-to-open, then flush all 4557 * of the pages associated with this file. Otherwise, start 4558 * an asynchronous page flush to write out any dirty pages. 4559 * This will also associate a credential with the rnode which 4560 * can be used to write the pages. 4561 */ 4562 /* ARGSUSED */ 4563 static void 4564 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4565 { 4566 int error; 4567 rnode_t *rp; 4568 mntinfo_t *mi; 4569 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4570 4571 rp = VTOR(dmapp->vp); 4572 mi = VTOMI(dmapp->vp); 4573 4574 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4575 ASSERT(rp->r_mapcnt >= 0); 4576 4577 /* 4578 * Initiate a page flush if there are pages, the file system 4579 * was not mounted readonly, the segment was mapped shared, and 4580 * the pages themselves were writeable. 4581 */ 4582 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4583 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4584 mutex_enter(&rp->r_statelock); 4585 rp->r_flags |= RDIRTY; 4586 mutex_exit(&rp->r_statelock); 4587 /* 4588 * If this is a cross-zone access a sync putpage won't work, so 4589 * the best we can do is try an async putpage. That seems 4590 * better than something more draconian such as discarding the 4591 * dirty pages. 4592 */ 4593 if ((mi->mi_flags & MI_NOCTO) || 4594 nfs_zone() != mi->mi_zone) 4595 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4596 B_ASYNC, dmapp->cr); 4597 else 4598 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4599 0, dmapp->cr); 4600 if (!error) { 4601 mutex_enter(&rp->r_statelock); 4602 error = rp->r_error; 4603 rp->r_error = 0; 4604 mutex_exit(&rp->r_statelock); 4605 } 4606 } else 4607 error = 0; 4608 4609 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4610 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4611 B_INVAL, dmapp->cr); 4612 4613 dmapp->caller->error = error; 4614 (void) as_delete_callback(as, arg); 4615 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4616 } 4617 4618 /* ARGSUSED */ 4619 static int 4620 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 4621 { 4622 int error = 0; 4623 4624 if (nfs_zone() != VTOMI(vp)->mi_zone) 4625 return (EIO); 4626 /* 4627 * This looks a little weird because it's written in a general 4628 * manner but we make little use of cases. If cntl() ever gets 4629 * widely used, the outer switch will make more sense. 4630 */ 4631 4632 switch (cmd) { 4633 4634 /* 4635 * Large file spec - need to base answer new query with 4636 * hardcoded constant based on the protocol. 4637 */ 4638 case _PC_FILESIZEBITS: 4639 *valp = 32; 4640 return (0); 4641 4642 case _PC_LINK_MAX: 4643 case _PC_NAME_MAX: 4644 case _PC_PATH_MAX: 4645 case _PC_SYMLINK_MAX: 4646 case _PC_CHOWN_RESTRICTED: 4647 case _PC_NO_TRUNC: { 4648 mntinfo_t *mi; 4649 struct pathcnf *pc; 4650 4651 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4652 return (EINVAL); 4653 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4654 switch (cmd) { 4655 case _PC_LINK_MAX: 4656 *valp = pc->pc_link_max; 4657 break; 4658 case _PC_NAME_MAX: 4659 *valp = pc->pc_name_max; 4660 break; 4661 case _PC_PATH_MAX: 4662 case _PC_SYMLINK_MAX: 4663 *valp = pc->pc_path_max; 4664 break; 4665 case _PC_CHOWN_RESTRICTED: 4666 /* 4667 * if we got here, error is really a boolean which 4668 * indicates whether cmd is set or not. 4669 */ 4670 *valp = error ? 1 : 0; /* see above */ 4671 error = 0; 4672 break; 4673 case _PC_NO_TRUNC: 4674 /* 4675 * if we got here, error is really a boolean which 4676 * indicates whether cmd is set or not. 4677 */ 4678 *valp = error ? 1 : 0; /* see above */ 4679 error = 0; 4680 break; 4681 } 4682 return (error ? EINVAL : 0); 4683 } 4684 4685 case _PC_XATTR_EXISTS: 4686 *valp = 0; 4687 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4688 vnode_t *avp; 4689 rnode_t *rp; 4690 mntinfo_t *mi = VTOMI(vp); 4691 4692 if (!(mi->mi_flags & MI_EXTATTR)) 4693 return (0); 4694 4695 rp = VTOR(vp); 4696 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4697 INTR(vp))) 4698 return (EINTR); 4699 4700 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4701 if (error || avp == NULL) 4702 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4703 4704 nfs_rw_exit(&rp->r_rwlock); 4705 4706 if (error == 0 && avp != NULL) { 4707 VN_RELE(avp); 4708 *valp = 1; 4709 } 4710 } 4711 return (error ? EINVAL : 0); 4712 4713 case _PC_ACL_ENABLED: 4714 *valp = _ACL_ACLENT_ENABLED; 4715 return (0); 4716 4717 default: 4718 return (EINVAL); 4719 } 4720 } 4721 4722 /* 4723 * Called by async thread to do synchronous pageio. Do the i/o, wait 4724 * for it to complete, and cleanup the page list when done. 4725 */ 4726 static int 4727 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4728 int flags, cred_t *cr) 4729 { 4730 int error; 4731 4732 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4733 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4734 if (flags & B_READ) 4735 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4736 else 4737 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4738 return (error); 4739 } 4740 4741 static int 4742 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4743 int flags, cred_t *cr) 4744 { 4745 int error; 4746 rnode_t *rp; 4747 4748 if (pp == NULL) 4749 return (EINVAL); 4750 4751 if (io_off > MAXOFF32_T) 4752 return (EFBIG); 4753 if (nfs_zone() != VTOMI(vp)->mi_zone) 4754 return (EIO); 4755 rp = VTOR(vp); 4756 mutex_enter(&rp->r_statelock); 4757 rp->r_count++; 4758 mutex_exit(&rp->r_statelock); 4759 4760 if (flags & B_ASYNC) { 4761 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4762 nfs_sync_pageio); 4763 } else 4764 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4765 mutex_enter(&rp->r_statelock); 4766 rp->r_count--; 4767 cv_broadcast(&rp->r_cv); 4768 mutex_exit(&rp->r_statelock); 4769 return (error); 4770 } 4771 4772 static int 4773 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 4774 { 4775 int error; 4776 mntinfo_t *mi; 4777 4778 mi = VTOMI(vp); 4779 4780 if (nfs_zone() != mi->mi_zone) 4781 return (EIO); 4782 if (mi->mi_flags & MI_ACL) { 4783 error = acl_setacl2(vp, vsecattr, flag, cr); 4784 if (mi->mi_flags & MI_ACL) 4785 return (error); 4786 } 4787 4788 return (ENOSYS); 4789 } 4790 4791 static int 4792 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 4793 { 4794 int error; 4795 mntinfo_t *mi; 4796 4797 mi = VTOMI(vp); 4798 4799 if (nfs_zone() != mi->mi_zone) 4800 return (EIO); 4801 if (mi->mi_flags & MI_ACL) { 4802 error = acl_getacl2(vp, vsecattr, flag, cr); 4803 if (mi->mi_flags & MI_ACL) 4804 return (error); 4805 } 4806 4807 return (fs_fab_acl(vp, vsecattr, flag, cr)); 4808 } 4809 4810 static int 4811 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 4812 { 4813 int error; 4814 struct shrlock nshr; 4815 struct nfs_owner nfs_owner; 4816 netobj lm_fh; 4817 4818 if (nfs_zone() != VTOMI(vp)->mi_zone) 4819 return (EIO); 4820 4821 /* 4822 * check for valid cmd parameter 4823 */ 4824 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4825 return (EINVAL); 4826 4827 /* 4828 * Check access permissions 4829 */ 4830 if (cmd == F_SHARE && 4831 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4832 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4833 return (EBADF); 4834 4835 /* 4836 * If the filesystem is mounted using local locking, pass the 4837 * request off to the local share code. 4838 */ 4839 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4840 return (fs_shrlock(vp, cmd, shr, flag, cr)); 4841 4842 switch (cmd) { 4843 case F_SHARE: 4844 case F_UNSHARE: 4845 lm_fh.n_len = sizeof (fhandle_t); 4846 lm_fh.n_bytes = (char *)VTOFH(vp); 4847 4848 /* 4849 * If passed an owner that is too large to fit in an 4850 * nfs_owner it is likely a recursive call from the 4851 * lock manager client and pass it straight through. If 4852 * it is not a nfs_owner then simply return an error. 4853 */ 4854 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 4855 if (((struct nfs_owner *)shr->s_owner)->magic != 4856 NFS_OWNER_MAGIC) 4857 return (EINVAL); 4858 4859 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 4860 error = set_errno(error); 4861 } 4862 return (error); 4863 } 4864 /* 4865 * Remote share reservations owner is a combination of 4866 * a magic number, hostname, and the local owner 4867 */ 4868 bzero(&nfs_owner, sizeof (nfs_owner)); 4869 nfs_owner.magic = NFS_OWNER_MAGIC; 4870 (void) strncpy(nfs_owner.hname, uts_nodename(), 4871 sizeof (nfs_owner.hname)); 4872 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 4873 nshr.s_access = shr->s_access; 4874 nshr.s_deny = shr->s_deny; 4875 nshr.s_sysid = 0; 4876 nshr.s_pid = ttoproc(curthread)->p_pid; 4877 nshr.s_own_len = sizeof (nfs_owner); 4878 nshr.s_owner = (caddr_t)&nfs_owner; 4879 4880 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 4881 error = set_errno(error); 4882 } 4883 4884 break; 4885 4886 case F_HASREMOTELOCKS: 4887 /* 4888 * NFS client can't store remote locks itself 4889 */ 4890 shr->s_access = 0; 4891 error = 0; 4892 break; 4893 4894 default: 4895 error = EINVAL; 4896 break; 4897 } 4898 4899 return (error); 4900 } 4901