1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 26 * All rights reserved. 27 */ 28 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 #include <sys/param.h> 32 #include <sys/types.h> 33 #include <sys/systm.h> 34 #include <sys/cred.h> 35 #include <sys/time.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/vfs_opreg.h> 39 #include <sys/file.h> 40 #include <sys/filio.h> 41 #include <sys/uio.h> 42 #include <sys/buf.h> 43 #include <sys/mman.h> 44 #include <sys/pathname.h> 45 #include <sys/dirent.h> 46 #include <sys/debug.h> 47 #include <sys/vmsystm.h> 48 #include <sys/fcntl.h> 49 #include <sys/flock.h> 50 #include <sys/swap.h> 51 #include <sys/errno.h> 52 #include <sys/strsubr.h> 53 #include <sys/sysmacros.h> 54 #include <sys/kmem.h> 55 #include <sys/cmn_err.h> 56 #include <sys/pathconf.h> 57 #include <sys/utsname.h> 58 #include <sys/dnlc.h> 59 #include <sys/acl.h> 60 #include <sys/atomic.h> 61 #include <sys/policy.h> 62 #include <sys/sdt.h> 63 64 #include <rpc/types.h> 65 #include <rpc/auth.h> 66 #include <rpc/clnt.h> 67 68 #include <nfs/nfs.h> 69 #include <nfs/nfs_clnt.h> 70 #include <nfs/rnode.h> 71 #include <nfs/nfs_acl.h> 72 #include <nfs/lm.h> 73 74 #include <vm/hat.h> 75 #include <vm/as.h> 76 #include <vm/page.h> 77 #include <vm/pvn.h> 78 #include <vm/seg.h> 79 #include <vm/seg_map.h> 80 #include <vm/seg_kpm.h> 81 #include <vm/seg_vn.h> 82 83 #include <fs/fs_subr.h> 84 85 #include <sys/ddi.h> 86 87 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 88 cred_t *); 89 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 90 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 91 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 92 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 93 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 94 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *); 95 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 96 static int nfs_bio(struct buf *, cred_t *); 97 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 98 page_t *[], size_t, struct seg *, caddr_t, 99 enum seg_rw, cred_t *); 100 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 101 cred_t *); 102 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 103 int, cred_t *); 104 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 105 int, cred_t *); 106 static void nfs_delmap_callback(struct as *, void *, uint_t); 107 108 /* 109 * Error flags used to pass information about certain special errors 110 * which need to be handled specially. 111 */ 112 #define NFS_EOF -98 113 114 /* 115 * These are the vnode ops routines which implement the vnode interface to 116 * the networked file system. These routines just take their parameters, 117 * make them look networkish by putting the right info into interface structs, 118 * and then calling the appropriate remote routine(s) to do the work. 119 * 120 * Note on directory name lookup cacheing: If we detect a stale fhandle, 121 * we purge the directory cache relative to that vnode. This way, the 122 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 123 * more details on rnode locking. 124 */ 125 126 static int nfs_open(vnode_t **, int, cred_t *); 127 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *); 128 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 129 caller_context_t *); 130 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 131 caller_context_t *); 132 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *); 133 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *); 134 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 135 caller_context_t *); 136 static int nfs_access(vnode_t *, int, int, cred_t *); 137 static int nfs_accessx(void *, int, cred_t *); 138 static int nfs_readlink(vnode_t *, struct uio *, cred_t *); 139 static int nfs_fsync(vnode_t *, int, cred_t *); 140 static void nfs_inactive(vnode_t *, cred_t *); 141 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 142 int, vnode_t *, cred_t *); 143 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 144 int, vnode_t **, cred_t *, int); 145 static int nfs_remove(vnode_t *, char *, cred_t *); 146 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *); 147 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *); 148 static int nfs_mkdir(vnode_t *, char *, struct vattr *, 149 vnode_t **, cred_t *); 150 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *); 151 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 152 cred_t *); 153 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *); 154 static int nfs_fid(vnode_t *, fid_t *); 155 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 156 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 157 static int nfs_seek(vnode_t *, offset_t, offset_t *); 158 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 159 page_t *[], size_t, struct seg *, caddr_t, 160 enum seg_rw, cred_t *); 161 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *); 162 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, 163 size_t, uchar_t, uchar_t, uint_t, cred_t *); 164 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, 165 size_t, uchar_t, uchar_t, uint_t, cred_t *); 166 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 167 struct flk_callback *, cred_t *); 168 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 169 cred_t *, caller_context_t *); 170 static int nfs_realvp(vnode_t *, vnode_t **); 171 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, 172 size_t, uint_t, uint_t, uint_t, cred_t *); 173 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *); 174 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 175 cred_t *); 176 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 177 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *); 178 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *); 179 180 struct vnodeops *nfs_vnodeops; 181 182 const fs_operation_def_t nfs_vnodeops_template[] = { 183 VOPNAME_OPEN, { .vop_open = nfs_open }, 184 VOPNAME_CLOSE, { .vop_close = nfs_close }, 185 VOPNAME_READ, { .vop_read = nfs_read }, 186 VOPNAME_WRITE, { .vop_write = nfs_write }, 187 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 188 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 189 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 190 VOPNAME_ACCESS, { .vop_access = nfs_access }, 191 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 192 VOPNAME_CREATE, { .vop_create = nfs_create }, 193 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 194 VOPNAME_LINK, { .vop_link = nfs_link }, 195 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 196 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 197 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 198 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 199 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 200 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 201 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 202 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 203 VOPNAME_FID, { .vop_fid = nfs_fid }, 204 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 205 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 206 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 207 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 208 VOPNAME_SPACE, { .vop_space = nfs_space }, 209 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 210 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 211 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 212 VOPNAME_MAP, { .vop_map = nfs_map }, 213 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 214 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 215 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 216 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 217 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 218 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 219 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 220 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 221 NULL, NULL 222 }; 223 224 /* 225 * XXX: This is referenced in modstubs.s 226 */ 227 struct vnodeops * 228 nfs_getvnodeops(void) 229 { 230 return (nfs_vnodeops); 231 } 232 233 /* ARGSUSED */ 234 static int 235 nfs_open(vnode_t **vpp, int flag, cred_t *cr) 236 { 237 int error; 238 struct vattr va; 239 rnode_t *rp; 240 vnode_t *vp; 241 242 vp = *vpp; 243 rp = VTOR(vp); 244 if (nfs_zone() != VTOMI(vp)->mi_zone) 245 return (EIO); 246 mutex_enter(&rp->r_statelock); 247 if (rp->r_cred == NULL) { 248 crhold(cr); 249 rp->r_cred = cr; 250 } 251 mutex_exit(&rp->r_statelock); 252 253 /* 254 * If there is no cached data or if close-to-open 255 * consistency checking is turned off, we can avoid 256 * the over the wire getattr. Otherwise, if the 257 * file system is mounted readonly, then just verify 258 * the caches are up to date using the normal mechanism. 259 * Else, if the file is not mmap'd, then just mark 260 * the attributes as timed out. They will be refreshed 261 * and the caches validated prior to being used. 262 * Else, the file system is mounted writeable so 263 * force an over the wire GETATTR in order to ensure 264 * that all cached data is valid. 265 */ 266 if (vp->v_count > 1 || 267 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 268 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 269 if (vn_is_readonly(vp)) 270 error = nfs_validate_caches(vp, cr); 271 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 272 PURGE_ATTRCACHE(vp); 273 error = 0; 274 } else { 275 va.va_mask = AT_ALL; 276 error = nfs_getattr_otw(vp, &va, cr); 277 } 278 } else 279 error = 0; 280 281 return (error); 282 } 283 284 static int 285 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 286 { 287 rnode_t *rp; 288 int error; 289 struct vattr va; 290 291 /* 292 * zone_enter(2) prevents processes from changing zones with NFS files 293 * open; if we happen to get here from the wrong zone we can't do 294 * anything over the wire. 295 */ 296 if (VTOMI(vp)->mi_zone != nfs_zone()) { 297 /* 298 * We could attempt to clean up locks, except we're sure 299 * that the current process didn't acquire any locks on 300 * the file: any attempt to lock a file belong to another zone 301 * will fail, and one can't lock an NFS file and then change 302 * zones, as that fails too. 303 * 304 * Returning an error here is the sane thing to do. A 305 * subsequent call to VN_RELE() which translates to a 306 * nfs_inactive() will clean up state: if the zone of the 307 * vnode's origin is still alive and kicking, an async worker 308 * thread will handle the request (from the correct zone), and 309 * everything (minus the final nfs_getattr_otw() call) should 310 * be OK. If the zone is going away nfs_async_inactive() will 311 * throw away cached pages inline. 312 */ 313 return (EIO); 314 } 315 316 /* 317 * If we are using local locking for this filesystem, then 318 * release all of the SYSV style record locks. Otherwise, 319 * we are doing network locking and we need to release all 320 * of the network locks. All of the locks held by this 321 * process on this file are released no matter what the 322 * incoming reference count is. 323 */ 324 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 325 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 326 cleanshares(vp, ttoproc(curthread)->p_pid); 327 } else 328 nfs_lockrelease(vp, flag, offset, cr); 329 330 if (count > 1) 331 return (0); 332 333 /* 334 * If the file has been `unlinked', then purge the 335 * DNLC so that this vnode will get reycled quicker 336 * and the .nfs* file on the server will get removed. 337 */ 338 rp = VTOR(vp); 339 if (rp->r_unldvp != NULL) 340 dnlc_purge_vp(vp); 341 342 /* 343 * If the file was open for write and there are pages, 344 * then if the file system was mounted using the "no-close- 345 * to-open" semantics, then start an asynchronous flush 346 * of the all of the pages in the file. 347 * else the file system was not mounted using the "no-close- 348 * to-open" semantics, then do a synchronous flush and 349 * commit of all of the dirty and uncommitted pages. 350 * 351 * The asynchronous flush of the pages in the "nocto" path 352 * mostly just associates a cred pointer with the rnode so 353 * writes which happen later will have a better chance of 354 * working. It also starts the data being written to the 355 * server, but without unnecessarily delaying the application. 356 */ 357 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 358 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 359 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, cr); 360 if (error == EAGAIN) 361 error = 0; 362 } else 363 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 364 if (!error) { 365 mutex_enter(&rp->r_statelock); 366 error = rp->r_error; 367 rp->r_error = 0; 368 mutex_exit(&rp->r_statelock); 369 } 370 } else { 371 mutex_enter(&rp->r_statelock); 372 error = rp->r_error; 373 rp->r_error = 0; 374 mutex_exit(&rp->r_statelock); 375 } 376 377 /* 378 * If RWRITEATTR is set, then issue an over the wire GETATTR to 379 * refresh the attribute cache with a set of attributes which 380 * weren't returned from a WRITE. This will enable the close- 381 * to-open processing to work. 382 */ 383 if (rp->r_flags & RWRITEATTR) 384 (void) nfs_getattr_otw(vp, &va, cr); 385 386 return (error); 387 } 388 389 /* ARGSUSED */ 390 static int 391 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 392 caller_context_t *ct) 393 { 394 rnode_t *rp; 395 u_offset_t off; 396 offset_t diff; 397 int on; 398 size_t n; 399 caddr_t base; 400 uint_t flags; 401 int error; 402 mntinfo_t *mi; 403 404 rp = VTOR(vp); 405 mi = VTOMI(vp); 406 407 if (nfs_zone() != mi->mi_zone) 408 return (EIO); 409 410 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 411 412 if (vp->v_type != VREG) 413 return (EISDIR); 414 415 if (uiop->uio_resid == 0) 416 return (0); 417 418 if (uiop->uio_loffset > MAXOFF32_T) 419 return (EFBIG); 420 421 if (uiop->uio_loffset < 0 || 422 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 423 return (EINVAL); 424 425 /* 426 * Bypass VM if caching has been disabled (e.g., locking) or if 427 * using client-side direct I/O and the file is not mmap'd and 428 * there are no cached pages. 429 */ 430 if ((vp->v_flag & VNOCACHE) || 431 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 432 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 433 size_t bufsize; 434 size_t resid = 0; 435 436 /* 437 * Let's try to do read in as large a chunk as we can 438 * (Filesystem (NFS client) bsize if possible/needed). 439 * For V3, this is 32K and for V2, this is 8K. 440 */ 441 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 442 base = kmem_alloc(bufsize, KM_SLEEP); 443 do { 444 n = MIN(uiop->uio_resid, bufsize); 445 error = nfsread(vp, base, uiop->uio_offset, n, 446 &resid, cr); 447 if (!error) { 448 n -= resid; 449 error = uiomove(base, n, UIO_READ, uiop); 450 } 451 } while (!error && uiop->uio_resid > 0 && n > 0); 452 kmem_free(base, bufsize); 453 return (error); 454 } 455 456 error = 0; 457 458 do { 459 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 460 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 461 n = MIN(MAXBSIZE - on, uiop->uio_resid); 462 463 error = nfs_validate_caches(vp, cr); 464 if (error) 465 break; 466 467 mutex_enter(&rp->r_statelock); 468 diff = rp->r_size - uiop->uio_loffset; 469 mutex_exit(&rp->r_statelock); 470 if (diff <= 0) 471 break; 472 if (diff < n) 473 n = (size_t)diff; 474 475 if (vpm_enable) { 476 /* 477 * Copy data. 478 */ 479 error = vpm_data_copy(vp, off + on, n, uiop, 480 1, NULL, 0, S_READ); 481 } else { 482 base = segmap_getmapflt(segkmap, vp, off + on, n, 483 1, S_READ); 484 error = uiomove(base + on, n, UIO_READ, uiop); 485 } 486 487 if (!error) { 488 /* 489 * If read a whole block or read to eof, 490 * won't need this buffer again soon. 491 */ 492 mutex_enter(&rp->r_statelock); 493 if (n + on == MAXBSIZE || 494 uiop->uio_loffset == rp->r_size) 495 flags = SM_DONTNEED; 496 else 497 flags = 0; 498 mutex_exit(&rp->r_statelock); 499 if (vpm_enable) { 500 error = vpm_sync_pages(vp, off, n, flags); 501 } else { 502 error = segmap_release(segkmap, base, flags); 503 } 504 } else { 505 if (vpm_enable) { 506 (void) vpm_sync_pages(vp, off, n, 0); 507 } else { 508 (void) segmap_release(segkmap, base, 0); 509 } 510 } 511 } while (!error && uiop->uio_resid > 0); 512 513 return (error); 514 } 515 516 /* ARGSUSED */ 517 static int 518 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 519 caller_context_t *ct) 520 { 521 rnode_t *rp; 522 u_offset_t off; 523 caddr_t base; 524 uint_t flags; 525 int remainder; 526 size_t n; 527 int on; 528 int error; 529 int resid; 530 offset_t offset; 531 rlim_t limit; 532 mntinfo_t *mi; 533 534 rp = VTOR(vp); 535 536 mi = VTOMI(vp); 537 if (nfs_zone() != mi->mi_zone) 538 return (EIO); 539 if (vp->v_type != VREG) 540 return (EISDIR); 541 542 if (uiop->uio_resid == 0) 543 return (0); 544 545 if (ioflag & FAPPEND) { 546 struct vattr va; 547 548 /* 549 * Must serialize if appending. 550 */ 551 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 552 nfs_rw_exit(&rp->r_rwlock); 553 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 554 INTR(vp))) 555 return (EINTR); 556 } 557 558 va.va_mask = AT_SIZE; 559 error = nfsgetattr(vp, &va, cr); 560 if (error) 561 return (error); 562 uiop->uio_loffset = va.va_size; 563 } 564 565 if (uiop->uio_loffset > MAXOFF32_T) 566 return (EFBIG); 567 568 offset = uiop->uio_loffset + uiop->uio_resid; 569 570 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 571 return (EINVAL); 572 573 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 574 limit = MAXOFF32_T; 575 } else { 576 limit = (rlim_t)uiop->uio_llimit; 577 } 578 579 /* 580 * Check to make sure that the process will not exceed 581 * its limit on file size. It is okay to write up to 582 * the limit, but not beyond. Thus, the write which 583 * reaches the limit will be short and the next write 584 * will return an error. 585 */ 586 remainder = 0; 587 if (offset > limit) { 588 remainder = offset - limit; 589 uiop->uio_resid = limit - uiop->uio_offset; 590 if (uiop->uio_resid <= 0) { 591 proc_t *p = ttoproc(curthread); 592 593 uiop->uio_resid += remainder; 594 mutex_enter(&p->p_lock); 595 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 596 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 597 mutex_exit(&p->p_lock); 598 return (EFBIG); 599 } 600 } 601 602 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 603 return (EINTR); 604 605 /* 606 * Bypass VM if caching has been disabled (e.g., locking) or if 607 * using client-side direct I/O and the file is not mmap'd and 608 * there are no cached pages. 609 */ 610 if ((vp->v_flag & VNOCACHE) || 611 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 612 rp->r_mapcnt == 0 && !vn_has_cached_data(vp))) { 613 size_t bufsize; 614 int count; 615 uint_t org_offset; 616 617 nfs_fwrite: 618 if (rp->r_flags & RSTALE) { 619 resid = uiop->uio_resid; 620 offset = uiop->uio_loffset; 621 error = rp->r_error; 622 goto bottom; 623 } 624 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 625 base = kmem_alloc(bufsize, KM_SLEEP); 626 do { 627 resid = uiop->uio_resid; 628 offset = uiop->uio_loffset; 629 count = MIN(uiop->uio_resid, bufsize); 630 org_offset = uiop->uio_offset; 631 error = uiomove(base, count, UIO_WRITE, uiop); 632 if (!error) { 633 error = nfswrite(vp, base, org_offset, 634 count, cr); 635 } 636 } while (!error && uiop->uio_resid > 0); 637 kmem_free(base, bufsize); 638 goto bottom; 639 } 640 641 do { 642 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 643 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 644 n = MIN(MAXBSIZE - on, uiop->uio_resid); 645 646 resid = uiop->uio_resid; 647 offset = uiop->uio_loffset; 648 649 if (rp->r_flags & RSTALE) { 650 error = rp->r_error; 651 break; 652 } 653 654 /* 655 * Don't create dirty pages faster than they 656 * can be cleaned so that the system doesn't 657 * get imbalanced. If the async queue is 658 * maxed out, then wait for it to drain before 659 * creating more dirty pages. Also, wait for 660 * any threads doing pagewalks in the vop_getattr 661 * entry points so that they don't block for 662 * long periods. 663 */ 664 mutex_enter(&rp->r_statelock); 665 while ((mi->mi_max_threads != 0 && 666 rp->r_awcount > 2 * mi->mi_max_threads) || 667 rp->r_gcount > 0) 668 cv_wait(&rp->r_cv, &rp->r_statelock); 669 mutex_exit(&rp->r_statelock); 670 671 if (vpm_enable) { 672 /* 673 * It will use kpm mappings, so no need to 674 * pass an address. 675 */ 676 error = writerp(rp, NULL, n, uiop, 0); 677 } else { 678 if (segmap_kpm) { 679 int pon = uiop->uio_loffset & PAGEOFFSET; 680 size_t pn = MIN(PAGESIZE - pon, 681 uiop->uio_resid); 682 int pagecreate; 683 684 mutex_enter(&rp->r_statelock); 685 pagecreate = (pon == 0) && (pn == PAGESIZE || 686 uiop->uio_loffset + pn >= rp->r_size); 687 mutex_exit(&rp->r_statelock); 688 689 base = segmap_getmapflt(segkmap, vp, off + on, 690 pn, !pagecreate, S_WRITE); 691 692 error = writerp(rp, base + pon, n, uiop, 693 pagecreate); 694 695 } else { 696 base = segmap_getmapflt(segkmap, vp, off + on, 697 n, 0, S_READ); 698 error = writerp(rp, base + on, n, uiop, 0); 699 } 700 } 701 702 if (!error) { 703 if (mi->mi_flags & MI_NOAC) 704 flags = SM_WRITE; 705 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 706 /* 707 * Have written a whole block. 708 * Start an asynchronous write 709 * and mark the buffer to 710 * indicate that it won't be 711 * needed again soon. 712 */ 713 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 714 } else 715 flags = 0; 716 if ((ioflag & (FSYNC|FDSYNC)) || 717 (rp->r_flags & ROUTOFSPACE)) { 718 flags &= ~SM_ASYNC; 719 flags |= SM_WRITE; 720 } 721 if (vpm_enable) { 722 error = vpm_sync_pages(vp, off, n, flags); 723 } else { 724 error = segmap_release(segkmap, base, flags); 725 } 726 } else { 727 if (vpm_enable) { 728 (void) vpm_sync_pages(vp, off, n, 0); 729 } else { 730 (void) segmap_release(segkmap, base, 0); 731 } 732 /* 733 * In the event that we got an access error while 734 * faulting in a page for a write-only file just 735 * force a write. 736 */ 737 if (error == EACCES) 738 goto nfs_fwrite; 739 } 740 } while (!error && uiop->uio_resid > 0); 741 742 bottom: 743 if (error) { 744 uiop->uio_resid = resid + remainder; 745 uiop->uio_loffset = offset; 746 } else 747 uiop->uio_resid += remainder; 748 749 nfs_rw_exit(&rp->r_lkserlock); 750 751 return (error); 752 } 753 754 /* 755 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 756 */ 757 static int 758 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 759 int flags, cred_t *cr) 760 { 761 struct buf *bp; 762 int error; 763 764 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 765 bp = pageio_setup(pp, len, vp, flags); 766 ASSERT(bp != NULL); 767 768 /* 769 * pageio_setup should have set b_addr to 0. This 770 * is correct since we want to do I/O on a page 771 * boundary. bp_mapin will use this addr to calculate 772 * an offset, and then set b_addr to the kernel virtual 773 * address it allocated for us. 774 */ 775 ASSERT(bp->b_un.b_addr == 0); 776 777 bp->b_edev = 0; 778 bp->b_dev = 0; 779 bp->b_lblkno = lbtodb(off); 780 bp->b_file = vp; 781 bp->b_offset = (offset_t)off; 782 bp_mapin(bp); 783 784 error = nfs_bio(bp, cr); 785 786 bp_mapout(bp); 787 pageio_done(bp); 788 789 return (error); 790 } 791 792 /* 793 * Write to file. Writes to remote server in largest size 794 * chunks that the server can handle. Write is synchronous. 795 */ 796 static int 797 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 798 { 799 rnode_t *rp; 800 mntinfo_t *mi; 801 struct nfswriteargs wa; 802 struct nfsattrstat ns; 803 int error; 804 int tsize; 805 int douprintf; 806 807 douprintf = 1; 808 809 rp = VTOR(vp); 810 mi = VTOMI(vp); 811 812 ASSERT(nfs_zone() == mi->mi_zone); 813 814 wa.wa_args = &wa.wa_args_buf; 815 wa.wa_fhandle = *VTOFH(vp); 816 817 do { 818 tsize = MIN(mi->mi_curwrite, count); 819 wa.wa_data = base; 820 wa.wa_begoff = offset; 821 wa.wa_totcount = tsize; 822 wa.wa_count = tsize; 823 wa.wa_offset = offset; 824 825 if (mi->mi_io_kstats) { 826 mutex_enter(&mi->mi_lock); 827 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 828 mutex_exit(&mi->mi_lock); 829 } 830 wa.wa_mblk = NULL; 831 do { 832 error = rfs2call(mi, RFS_WRITE, 833 xdr_writeargs, (caddr_t)&wa, 834 xdr_attrstat, (caddr_t)&ns, cr, 835 &douprintf, &ns.ns_status, 0, NULL); 836 } while (error == ENFS_TRYAGAIN); 837 if (mi->mi_io_kstats) { 838 mutex_enter(&mi->mi_lock); 839 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 840 mutex_exit(&mi->mi_lock); 841 } 842 843 if (!error) { 844 error = geterrno(ns.ns_status); 845 /* 846 * Can't check for stale fhandle and purge caches 847 * here because pages are held by nfs_getpage. 848 * Just mark the attribute cache as timed out 849 * and set RWRITEATTR to indicate that the file 850 * was modified with a WRITE operation. 851 */ 852 if (!error) { 853 count -= tsize; 854 base += tsize; 855 offset += tsize; 856 if (mi->mi_io_kstats) { 857 mutex_enter(&mi->mi_lock); 858 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++; 859 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten += 860 tsize; 861 mutex_exit(&mi->mi_lock); 862 } 863 lwp_stat_update(LWP_STAT_OUBLK, 1); 864 mutex_enter(&rp->r_statelock); 865 PURGE_ATTRCACHE_LOCKED(rp); 866 rp->r_flags |= RWRITEATTR; 867 mutex_exit(&rp->r_statelock); 868 } 869 } 870 } while (!error && count); 871 872 return (error); 873 } 874 875 /* 876 * Read from a file. Reads data in largest chunks our interface can handle. 877 */ 878 static int 879 nfsread(vnode_t *vp, caddr_t base, uint_t offset, int count, size_t *residp, 880 cred_t *cr) 881 { 882 mntinfo_t *mi; 883 struct nfsreadargs ra; 884 struct nfsrdresult rr; 885 int tsize; 886 int error; 887 int douprintf; 888 failinfo_t fi; 889 rnode_t *rp; 890 struct vattr va; 891 hrtime_t t; 892 893 rp = VTOR(vp); 894 mi = VTOMI(vp); 895 896 ASSERT(nfs_zone() == mi->mi_zone); 897 898 douprintf = 1; 899 900 ra.ra_fhandle = *VTOFH(vp); 901 902 fi.vp = vp; 903 fi.fhp = (caddr_t)&ra.ra_fhandle; 904 fi.copyproc = nfscopyfh; 905 fi.lookupproc = nfslookup; 906 fi.xattrdirproc = acl_getxattrdir2; 907 908 do { 909 if (mi->mi_io_kstats) { 910 mutex_enter(&mi->mi_lock); 911 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 912 mutex_exit(&mi->mi_lock); 913 } 914 915 do { 916 tsize = MIN(mi->mi_curread, count); 917 rr.rr_data = base; 918 ra.ra_offset = offset; 919 ra.ra_totcount = tsize; 920 ra.ra_count = tsize; 921 t = gethrtime(); 922 error = rfs2call(mi, RFS_READ, 923 xdr_readargs, (caddr_t)&ra, 924 xdr_rdresult, (caddr_t)&rr, cr, 925 &douprintf, &rr.rr_status, 0, &fi); 926 } while (error == ENFS_TRYAGAIN); 927 928 if (mi->mi_io_kstats) { 929 mutex_enter(&mi->mi_lock); 930 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 931 mutex_exit(&mi->mi_lock); 932 } 933 934 if (!error) { 935 error = geterrno(rr.rr_status); 936 if (!error) { 937 count -= rr.rr_count; 938 base += rr.rr_count; 939 offset += rr.rr_count; 940 if (mi->mi_io_kstats) { 941 mutex_enter(&mi->mi_lock); 942 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 943 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 944 rr.rr_count; 945 mutex_exit(&mi->mi_lock); 946 } 947 lwp_stat_update(LWP_STAT_INBLK, 1); 948 } 949 } 950 } while (!error && count && rr.rr_count == tsize); 951 952 *residp = count; 953 954 if (!error) { 955 /* 956 * Since no error occurred, we have the current 957 * attributes and we need to do a cache check and then 958 * potentially update the cached attributes. We can't 959 * use the normal attribute check and cache mechanisms 960 * because they might cause a cache flush which would 961 * deadlock. Instead, we just check the cache to see 962 * if the attributes have changed. If it is, then we 963 * just mark the attributes as out of date. The next 964 * time that the attributes are checked, they will be 965 * out of date, new attributes will be fetched, and 966 * the page cache will be flushed. If the attributes 967 * weren't changed, then we just update the cached 968 * attributes with these attributes. 969 */ 970 /* 971 * If NFS_ACL is supported on the server, then the 972 * attributes returned by server may have minimal 973 * permissions sometimes denying access to users having 974 * proper access. To get the proper attributes, mark 975 * the attributes as expired so that they will be 976 * regotten via the NFS_ACL GETATTR2 procedure. 977 */ 978 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 979 mutex_enter(&rp->r_statelock); 980 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 981 (mi->mi_flags & MI_ACL)) { 982 mutex_exit(&rp->r_statelock); 983 PURGE_ATTRCACHE(vp); 984 } else { 985 if (rp->r_mtime <= t) { 986 nfs_attrcache_va(vp, &va); 987 } 988 mutex_exit(&rp->r_statelock); 989 } 990 } 991 992 return (error); 993 } 994 995 /* ARGSUSED */ 996 static int 997 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) 998 { 999 1000 if (nfs_zone() != VTOMI(vp)->mi_zone) 1001 return (EIO); 1002 switch (cmd) { 1003 case _FIODIRECTIO: 1004 return (nfs_directio(vp, (int)arg, cr)); 1005 default: 1006 return (ENOTTY); 1007 } 1008 } 1009 1010 static int 1011 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1012 { 1013 int error; 1014 rnode_t *rp; 1015 1016 if (nfs_zone() != VTOMI(vp)->mi_zone) 1017 return (EIO); 1018 /* 1019 * If it has been specified that the return value will 1020 * just be used as a hint, and we are only being asked 1021 * for size, fsid or rdevid, then return the client's 1022 * notion of these values without checking to make sure 1023 * that the attribute cache is up to date. 1024 * The whole point is to avoid an over the wire GETATTR 1025 * call. 1026 */ 1027 rp = VTOR(vp); 1028 if (flags & ATTR_HINT) { 1029 if (vap->va_mask == 1030 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1031 mutex_enter(&rp->r_statelock); 1032 if (vap->va_mask | AT_SIZE) 1033 vap->va_size = rp->r_size; 1034 if (vap->va_mask | AT_FSID) 1035 vap->va_fsid = rp->r_attr.va_fsid; 1036 if (vap->va_mask | AT_RDEV) 1037 vap->va_rdev = rp->r_attr.va_rdev; 1038 mutex_exit(&rp->r_statelock); 1039 return (0); 1040 } 1041 } 1042 1043 /* 1044 * Only need to flush pages if asking for the mtime 1045 * and if there any dirty pages or any outstanding 1046 * asynchronous (write) requests for this file. 1047 */ 1048 if (vap->va_mask & AT_MTIME) { 1049 if (vn_has_cached_data(vp) && 1050 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1051 mutex_enter(&rp->r_statelock); 1052 rp->r_gcount++; 1053 mutex_exit(&rp->r_statelock); 1054 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1055 mutex_enter(&rp->r_statelock); 1056 if (error && (error == ENOSPC || error == EDQUOT)) { 1057 if (!rp->r_error) 1058 rp->r_error = error; 1059 } 1060 if (--rp->r_gcount == 0) 1061 cv_broadcast(&rp->r_cv); 1062 mutex_exit(&rp->r_statelock); 1063 } 1064 } 1065 1066 return (nfsgetattr(vp, vap, cr)); 1067 } 1068 1069 /*ARGSUSED4*/ 1070 static int 1071 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1072 caller_context_t *ct) 1073 { 1074 int error; 1075 uint_t mask; 1076 struct vattr va; 1077 1078 mask = vap->va_mask; 1079 1080 if (mask & AT_NOSET) 1081 return (EINVAL); 1082 1083 if ((mask & AT_SIZE) && 1084 vap->va_type == VREG && 1085 vap->va_size > MAXOFF32_T) 1086 return (EFBIG); 1087 1088 if (nfs_zone() != VTOMI(vp)->mi_zone) 1089 return (EIO); 1090 1091 va.va_mask = AT_UID | AT_MODE; 1092 1093 error = nfsgetattr(vp, &va, cr); 1094 if (error) 1095 return (error); 1096 1097 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1098 vp); 1099 1100 if (error) 1101 return (error); 1102 1103 return (nfssetattr(vp, vap, flags, cr)); 1104 } 1105 1106 static int 1107 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1108 { 1109 int error; 1110 uint_t mask; 1111 struct nfssaargs args; 1112 struct nfsattrstat ns; 1113 int douprintf; 1114 rnode_t *rp; 1115 struct vattr va; 1116 mode_t omode; 1117 mntinfo_t *mi; 1118 vsecattr_t *vsp; 1119 hrtime_t t; 1120 1121 mask = vap->va_mask; 1122 1123 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1124 1125 rp = VTOR(vp); 1126 1127 /* 1128 * Only need to flush pages if there are any pages and 1129 * if the file is marked as dirty in some fashion. The 1130 * file must be flushed so that we can accurately 1131 * determine the size of the file and the cached data 1132 * after the SETATTR returns. A file is considered to 1133 * be dirty if it is either marked with RDIRTY, has 1134 * outstanding i/o's active, or is mmap'd. In this 1135 * last case, we can't tell whether there are dirty 1136 * pages, so we flush just to be sure. 1137 */ 1138 if (vn_has_cached_data(vp) && 1139 ((rp->r_flags & RDIRTY) || 1140 rp->r_count > 0 || 1141 rp->r_mapcnt > 0)) { 1142 ASSERT(vp->v_type != VCHR); 1143 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1144 if (error && (error == ENOSPC || error == EDQUOT)) { 1145 mutex_enter(&rp->r_statelock); 1146 if (!rp->r_error) 1147 rp->r_error = error; 1148 mutex_exit(&rp->r_statelock); 1149 } 1150 } 1151 1152 /* 1153 * If the system call was utime(2) or utimes(2) and the 1154 * application did not specify the times, then set the 1155 * mtime nanosecond field to 1 billion. This will get 1156 * translated from 1 billion nanoseconds to 1 million 1157 * microseconds in the over the wire request. The 1158 * server will use 1 million in the microsecond field 1159 * to tell whether both the mtime and atime should be 1160 * set to the server's current time. 1161 * 1162 * This is an overload of the protocol and should be 1163 * documented in the NFS Version 2 protocol specification. 1164 */ 1165 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1166 vap->va_mtime.tv_nsec = 1000000000; 1167 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1168 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1169 error = vattr_to_sattr(vap, &args.saa_sa); 1170 } else { 1171 /* 1172 * Use server times. vap time values will not be used. 1173 * To ensure no time overflow, make sure vap has 1174 * valid values, but retain the original values. 1175 */ 1176 timestruc_t mtime = vap->va_mtime; 1177 timestruc_t atime = vap->va_atime; 1178 time_t now; 1179 1180 now = gethrestime_sec(); 1181 if (NFS_TIME_T_OK(now)) { 1182 /* Just in case server does not know of this */ 1183 vap->va_mtime.tv_sec = now; 1184 vap->va_atime.tv_sec = now; 1185 } else { 1186 vap->va_mtime.tv_sec = 0; 1187 vap->va_atime.tv_sec = 0; 1188 } 1189 error = vattr_to_sattr(vap, &args.saa_sa); 1190 /* set vap times back on */ 1191 vap->va_mtime = mtime; 1192 vap->va_atime = atime; 1193 } 1194 } else { 1195 /* Either do not set times or use the client specified times */ 1196 error = vattr_to_sattr(vap, &args.saa_sa); 1197 } 1198 if (error) { 1199 /* req time field(s) overflow - return immediately */ 1200 return (error); 1201 } 1202 args.saa_fh = *VTOFH(vp); 1203 1204 va.va_mask = AT_MODE; 1205 error = nfsgetattr(vp, &va, cr); 1206 if (error) 1207 return (error); 1208 omode = va.va_mode; 1209 1210 mi = VTOMI(vp); 1211 1212 douprintf = 1; 1213 1214 t = gethrtime(); 1215 1216 error = rfs2call(mi, RFS_SETATTR, 1217 xdr_saargs, (caddr_t)&args, 1218 xdr_attrstat, (caddr_t)&ns, cr, 1219 &douprintf, &ns.ns_status, 0, NULL); 1220 1221 /* 1222 * Purge the access cache and ACL cache if changing either the 1223 * owner of the file, the group owner, or the mode. These may 1224 * change the access permissions of the file, so purge old 1225 * information and start over again. 1226 */ 1227 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1228 (void) nfs_access_purge_rp(rp); 1229 if (rp->r_secattr != NULL) { 1230 mutex_enter(&rp->r_statelock); 1231 vsp = rp->r_secattr; 1232 rp->r_secattr = NULL; 1233 mutex_exit(&rp->r_statelock); 1234 if (vsp != NULL) 1235 nfs_acl_free(vsp); 1236 } 1237 } 1238 1239 if (!error) { 1240 error = geterrno(ns.ns_status); 1241 if (!error) { 1242 /* 1243 * If changing the size of the file, invalidate 1244 * any local cached data which is no longer part 1245 * of the file. We also possibly invalidate the 1246 * last page in the file. We could use 1247 * pvn_vpzero(), but this would mark the page as 1248 * modified and require it to be written back to 1249 * the server for no particularly good reason. 1250 * This way, if we access it, then we bring it 1251 * back in. A read should be cheaper than a 1252 * write. 1253 */ 1254 if (mask & AT_SIZE) { 1255 nfs_invalidate_pages(vp, 1256 (vap->va_size & PAGEMASK), cr); 1257 } 1258 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1259 /* 1260 * If NFS_ACL is supported on the server, then the 1261 * attributes returned by server may have minimal 1262 * permissions sometimes denying access to users having 1263 * proper access. To get the proper attributes, mark 1264 * the attributes as expired so that they will be 1265 * regotten via the NFS_ACL GETATTR2 procedure. 1266 */ 1267 if (mi->mi_flags & MI_ACL) { 1268 PURGE_ATTRCACHE(vp); 1269 } 1270 /* 1271 * This next check attempts to deal with NFS 1272 * servers which can not handle increasing 1273 * the size of the file via setattr. Most 1274 * of these servers do not return an error, 1275 * but do not change the size of the file. 1276 * Hence, this check and then attempt to set 1277 * the file size by writing 1 byte at the 1278 * offset of the end of the file that we need. 1279 */ 1280 if ((mask & AT_SIZE) && 1281 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1282 char zb = '\0'; 1283 1284 error = nfswrite(vp, &zb, 1285 vap->va_size - sizeof (zb), 1286 sizeof (zb), cr); 1287 } 1288 /* 1289 * Some servers will change the mode to clear the setuid 1290 * and setgid bits when changing the uid or gid. The 1291 * client needs to compensate appropriately. 1292 */ 1293 if (mask & (AT_UID | AT_GID)) { 1294 int terror; 1295 1296 va.va_mask = AT_MODE; 1297 terror = nfsgetattr(vp, &va, cr); 1298 if (!terror && 1299 (((mask & AT_MODE) && 1300 va.va_mode != vap->va_mode) || 1301 (!(mask & AT_MODE) && 1302 va.va_mode != omode))) { 1303 va.va_mask = AT_MODE; 1304 if (mask & AT_MODE) 1305 va.va_mode = vap->va_mode; 1306 else 1307 va.va_mode = omode; 1308 (void) nfssetattr(vp, &va, 0, cr); 1309 } 1310 } 1311 } else { 1312 PURGE_ATTRCACHE(vp); 1313 PURGE_STALE_FH(error, vp, cr); 1314 } 1315 } else { 1316 PURGE_ATTRCACHE(vp); 1317 } 1318 1319 return (error); 1320 } 1321 1322 static int 1323 nfs_accessx(void *vp, int mode, cred_t *cr) 1324 { 1325 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1326 return (nfs_access(vp, mode, 0, cr)); 1327 } 1328 1329 static int 1330 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 1331 { 1332 struct vattr va; 1333 int error; 1334 mntinfo_t *mi; 1335 int shift = 0; 1336 1337 mi = VTOMI(vp); 1338 1339 if (nfs_zone() != mi->mi_zone) 1340 return (EIO); 1341 if (mi->mi_flags & MI_ACL) { 1342 error = acl_access2(vp, mode, flags, cr); 1343 if (mi->mi_flags & MI_ACL) 1344 return (error); 1345 } 1346 1347 va.va_mask = AT_MODE | AT_UID | AT_GID; 1348 error = nfsgetattr(vp, &va, cr); 1349 if (error) 1350 return (error); 1351 1352 /* 1353 * Disallow write attempts on read-only 1354 * file systems, unless the file is a 1355 * device node. 1356 */ 1357 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1358 return (EROFS); 1359 1360 /* 1361 * Disallow attempts to access mandatory lock files. 1362 */ 1363 if ((mode & (VWRITE | VREAD | VEXEC)) && 1364 MANDLOCK(vp, va.va_mode)) 1365 return (EACCES); 1366 1367 /* 1368 * Access check is based on only 1369 * one of owner, group, public. 1370 * If not owner, then check group. 1371 * If not a member of the group, 1372 * then check public access. 1373 */ 1374 if (crgetuid(cr) != va.va_uid) { 1375 shift += 3; 1376 if (!groupmember(va.va_gid, cr)) 1377 shift += 3; 1378 } 1379 found: 1380 mode &= ~(va.va_mode << shift); 1381 if (mode == 0) 1382 return (0); 1383 1384 return (secpolicy_vnode_access(cr, vp, va.va_uid, mode)); 1385 } 1386 1387 static int nfs_do_symlink_cache = 1; 1388 1389 static int 1390 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr) 1391 { 1392 int error; 1393 struct nfsrdlnres rl; 1394 rnode_t *rp; 1395 int douprintf; 1396 failinfo_t fi; 1397 1398 /* 1399 * We want to be consistent with UFS semantics so we will return 1400 * EINVAL instead of ENXIO. This violates the XNFS spec and 1401 * the RFC 1094, which are wrong any way. BUGID 1138002. 1402 */ 1403 if (vp->v_type != VLNK) 1404 return (EINVAL); 1405 1406 if (nfs_zone() != VTOMI(vp)->mi_zone) 1407 return (EIO); 1408 1409 rp = VTOR(vp); 1410 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1411 error = nfs_validate_caches(vp, cr); 1412 if (error) 1413 return (error); 1414 mutex_enter(&rp->r_statelock); 1415 if (rp->r_symlink.contents != NULL) { 1416 error = uiomove(rp->r_symlink.contents, 1417 rp->r_symlink.len, UIO_READ, uiop); 1418 mutex_exit(&rp->r_statelock); 1419 return (error); 1420 } 1421 mutex_exit(&rp->r_statelock); 1422 } 1423 1424 1425 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1426 1427 fi.vp = vp; 1428 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1429 fi.copyproc = nfscopyfh; 1430 fi.lookupproc = nfslookup; 1431 fi.xattrdirproc = acl_getxattrdir2; 1432 1433 douprintf = 1; 1434 1435 error = rfs2call(VTOMI(vp), RFS_READLINK, 1436 xdr_fhandle, (caddr_t)VTOFH(vp), 1437 xdr_rdlnres, (caddr_t)&rl, cr, 1438 &douprintf, &rl.rl_status, 0, &fi); 1439 1440 if (error) { 1441 1442 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1443 return (error); 1444 } 1445 1446 error = geterrno(rl.rl_status); 1447 if (!error) { 1448 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1449 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1450 mutex_enter(&rp->r_statelock); 1451 if (rp->r_symlink.contents == NULL) { 1452 rp->r_symlink.contents = rl.rl_data; 1453 rp->r_symlink.len = (int)rl.rl_count; 1454 rp->r_symlink.size = NFS_MAXPATHLEN; 1455 mutex_exit(&rp->r_statelock); 1456 } else { 1457 mutex_exit(&rp->r_statelock); 1458 1459 kmem_free((void *)rl.rl_data, 1460 NFS_MAXPATHLEN); 1461 } 1462 } else { 1463 1464 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1465 } 1466 } else { 1467 PURGE_STALE_FH(error, vp, cr); 1468 1469 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1470 } 1471 1472 /* 1473 * Conform to UFS semantics (see comment above) 1474 */ 1475 return (error == ENXIO ? EINVAL : error); 1476 } 1477 1478 /* 1479 * Flush local dirty pages to stable storage on the server. 1480 * 1481 * If FNODSYNC is specified, then there is nothing to do because 1482 * metadata changes are not cached on the client before being 1483 * sent to the server. 1484 */ 1485 static int 1486 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1487 { 1488 int error; 1489 1490 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1491 return (0); 1492 1493 if (nfs_zone() != VTOMI(vp)->mi_zone) 1494 return (EIO); 1495 1496 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1497 if (!error) 1498 error = VTOR(vp)->r_error; 1499 return (error); 1500 } 1501 1502 1503 /* 1504 * Weirdness: if the file was removed or the target of a rename 1505 * operation while it was open, it got renamed instead. Here we 1506 * remove the renamed file. 1507 */ 1508 static void 1509 nfs_inactive(vnode_t *vp, cred_t *cr) 1510 { 1511 rnode_t *rp; 1512 1513 ASSERT(vp != DNLC_NO_VNODE); 1514 1515 /* 1516 * If this is coming from the wrong zone, we let someone in the right 1517 * zone take care of it asynchronously. We can get here due to 1518 * VN_RELE() being called from pageout() or fsflush(). This call may 1519 * potentially turn into an expensive no-op if, for instance, v_count 1520 * gets incremented in the meantime, but it's still correct. 1521 */ 1522 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1523 nfs_async_inactive(vp, cr, nfs_inactive); 1524 return; 1525 } 1526 1527 rp = VTOR(vp); 1528 redo: 1529 if (rp->r_unldvp != NULL) { 1530 /* 1531 * Save the vnode pointer for the directory where the 1532 * unlinked-open file got renamed, then set it to NULL 1533 * to prevent another thread from getting here before 1534 * we're done with the remove. While we have the 1535 * statelock, make local copies of the pertinent rnode 1536 * fields. If we weren't to do this in an atomic way, the 1537 * the unl* fields could become inconsistent with respect 1538 * to each other due to a race condition between this 1539 * code and nfs_remove(). See bug report 1034328. 1540 */ 1541 mutex_enter(&rp->r_statelock); 1542 if (rp->r_unldvp != NULL) { 1543 vnode_t *unldvp; 1544 char *unlname; 1545 cred_t *unlcred; 1546 struct nfsdiropargs da; 1547 enum nfsstat status; 1548 int douprintf; 1549 int error; 1550 1551 unldvp = rp->r_unldvp; 1552 rp->r_unldvp = NULL; 1553 unlname = rp->r_unlname; 1554 rp->r_unlname = NULL; 1555 unlcred = rp->r_unlcred; 1556 rp->r_unlcred = NULL; 1557 mutex_exit(&rp->r_statelock); 1558 1559 /* 1560 * If there are any dirty pages left, then flush 1561 * them. This is unfortunate because they just 1562 * may get thrown away during the remove operation, 1563 * but we have to do this for correctness. 1564 */ 1565 if (vn_has_cached_data(vp) && 1566 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1567 ASSERT(vp->v_type != VCHR); 1568 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 1569 if (error) { 1570 mutex_enter(&rp->r_statelock); 1571 if (!rp->r_error) 1572 rp->r_error = error; 1573 mutex_exit(&rp->r_statelock); 1574 } 1575 } 1576 1577 /* 1578 * Do the remove operation on the renamed file 1579 */ 1580 setdiropargs(&da, unlname, unldvp); 1581 1582 douprintf = 1; 1583 1584 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1585 xdr_diropargs, (caddr_t)&da, 1586 xdr_enum, (caddr_t)&status, unlcred, 1587 &douprintf, &status, 0, NULL); 1588 1589 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1590 nfs_purge_rddir_cache(unldvp); 1591 PURGE_ATTRCACHE(unldvp); 1592 1593 /* 1594 * Release stuff held for the remove 1595 */ 1596 VN_RELE(unldvp); 1597 kmem_free(unlname, MAXNAMELEN); 1598 crfree(unlcred); 1599 goto redo; 1600 } 1601 mutex_exit(&rp->r_statelock); 1602 } 1603 1604 rp_addfree(rp, cr); 1605 } 1606 1607 /* 1608 * Remote file system operations having to do with directory manipulation. 1609 */ 1610 1611 static int 1612 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1613 int flags, vnode_t *rdir, cred_t *cr) 1614 { 1615 int error; 1616 vnode_t *vp; 1617 vnode_t *avp = NULL; 1618 rnode_t *drp; 1619 1620 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1621 return (EPERM); 1622 1623 drp = VTOR(dvp); 1624 1625 /* 1626 * Are we looking up extended attributes? If so, "dvp" is 1627 * the file or directory for which we want attributes, and 1628 * we need a lookup of the hidden attribute directory 1629 * before we lookup the rest of the path. 1630 */ 1631 if (flags & LOOKUP_XATTR) { 1632 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1633 mntinfo_t *mi; 1634 1635 mi = VTOMI(dvp); 1636 if (!(mi->mi_flags & MI_EXTATTR)) 1637 return (EINVAL); 1638 1639 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1640 return (EINTR); 1641 1642 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1643 if (avp == NULL) 1644 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1645 else 1646 error = 0; 1647 1648 nfs_rw_exit(&drp->r_rwlock); 1649 1650 if (error) { 1651 if (mi->mi_flags & MI_EXTATTR) 1652 return (error); 1653 return (EINVAL); 1654 } 1655 dvp = avp; 1656 drp = VTOR(dvp); 1657 } 1658 1659 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1660 error = EINTR; 1661 goto out; 1662 } 1663 1664 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1665 1666 nfs_rw_exit(&drp->r_rwlock); 1667 1668 /* 1669 * If vnode is a device, create special vnode. 1670 */ 1671 if (!error && IS_DEVVP(*vpp)) { 1672 vp = *vpp; 1673 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1674 VN_RELE(vp); 1675 } 1676 1677 out: 1678 if (avp != NULL) 1679 VN_RELE(avp); 1680 1681 return (error); 1682 } 1683 1684 static int nfs_lookup_neg_cache = 1; 1685 1686 #ifdef DEBUG 1687 static int nfs_lookup_dnlc_hits = 0; 1688 static int nfs_lookup_dnlc_misses = 0; 1689 static int nfs_lookup_dnlc_neg_hits = 0; 1690 static int nfs_lookup_dnlc_disappears = 0; 1691 static int nfs_lookup_dnlc_lookups = 0; 1692 #endif 1693 1694 /* ARGSUSED */ 1695 int 1696 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1697 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1698 { 1699 int error; 1700 1701 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1702 1703 /* 1704 * If lookup is for "", just return dvp. Don't need 1705 * to send it over the wire, look it up in the dnlc, 1706 * or perform any access checks. 1707 */ 1708 if (*nm == '\0') { 1709 VN_HOLD(dvp); 1710 *vpp = dvp; 1711 return (0); 1712 } 1713 1714 /* 1715 * Can't do lookups in non-directories. 1716 */ 1717 if (dvp->v_type != VDIR) 1718 return (ENOTDIR); 1719 1720 /* 1721 * If we're called with RFSCALL_SOFT, it's important that 1722 * the only rfscall is one we make directly; if we permit 1723 * an access call because we're looking up "." or validating 1724 * a dnlc hit, we'll deadlock because that rfscall will not 1725 * have the RFSCALL_SOFT set. 1726 */ 1727 if (rfscall_flags & RFSCALL_SOFT) 1728 goto callit; 1729 1730 /* 1731 * If lookup is for ".", just return dvp. Don't need 1732 * to send it over the wire or look it up in the dnlc, 1733 * just need to check access. 1734 */ 1735 if (strcmp(nm, ".") == 0) { 1736 error = nfs_access(dvp, VEXEC, 0, cr); 1737 if (error) 1738 return (error); 1739 VN_HOLD(dvp); 1740 *vpp = dvp; 1741 return (0); 1742 } 1743 1744 /* 1745 * Lookup this name in the DNLC. If there was a valid entry, 1746 * then return the results of the lookup. 1747 */ 1748 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1749 if (error || *vpp != NULL) 1750 return (error); 1751 1752 callit: 1753 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1754 1755 return (error); 1756 } 1757 1758 static int 1759 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1760 { 1761 int error; 1762 vnode_t *vp; 1763 1764 ASSERT(*nm != '\0'); 1765 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1766 1767 /* 1768 * Lookup this name in the DNLC. If successful, then validate 1769 * the caches and then recheck the DNLC. The DNLC is rechecked 1770 * just in case this entry got invalidated during the call 1771 * to nfs_validate_caches. 1772 * 1773 * An assumption is being made that it is safe to say that a 1774 * file exists which may not on the server. Any operations to 1775 * the server will fail with ESTALE. 1776 */ 1777 #ifdef DEBUG 1778 nfs_lookup_dnlc_lookups++; 1779 #endif 1780 vp = dnlc_lookup(dvp, nm); 1781 if (vp != NULL) { 1782 VN_RELE(vp); 1783 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1784 PURGE_ATTRCACHE(dvp); 1785 } 1786 error = nfs_validate_caches(dvp, cr); 1787 if (error) 1788 return (error); 1789 vp = dnlc_lookup(dvp, nm); 1790 if (vp != NULL) { 1791 error = nfs_access(dvp, VEXEC, 0, cr); 1792 if (error) { 1793 VN_RELE(vp); 1794 return (error); 1795 } 1796 if (vp == DNLC_NO_VNODE) { 1797 VN_RELE(vp); 1798 #ifdef DEBUG 1799 nfs_lookup_dnlc_neg_hits++; 1800 #endif 1801 return (ENOENT); 1802 } 1803 *vpp = vp; 1804 #ifdef DEBUG 1805 nfs_lookup_dnlc_hits++; 1806 #endif 1807 return (0); 1808 } 1809 #ifdef DEBUG 1810 nfs_lookup_dnlc_disappears++; 1811 #endif 1812 } 1813 #ifdef DEBUG 1814 else 1815 nfs_lookup_dnlc_misses++; 1816 #endif 1817 1818 *vpp = NULL; 1819 1820 return (0); 1821 } 1822 1823 static int 1824 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1825 int rfscall_flags) 1826 { 1827 int error; 1828 struct nfsdiropargs da; 1829 struct nfsdiropres dr; 1830 int douprintf; 1831 failinfo_t fi; 1832 hrtime_t t; 1833 1834 ASSERT(*nm != '\0'); 1835 ASSERT(dvp->v_type == VDIR); 1836 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1837 1838 setdiropargs(&da, nm, dvp); 1839 1840 fi.vp = dvp; 1841 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1842 fi.copyproc = nfscopyfh; 1843 fi.lookupproc = nfslookup; 1844 fi.xattrdirproc = acl_getxattrdir2; 1845 1846 douprintf = 1; 1847 1848 t = gethrtime(); 1849 1850 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1851 xdr_diropargs, (caddr_t)&da, 1852 xdr_diropres, (caddr_t)&dr, cr, 1853 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1854 1855 if (!error) { 1856 error = geterrno(dr.dr_status); 1857 if (!error) { 1858 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1859 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1860 /* 1861 * If NFS_ACL is supported on the server, then the 1862 * attributes returned by server may have minimal 1863 * permissions sometimes denying access to users having 1864 * proper access. To get the proper attributes, mark 1865 * the attributes as expired so that they will be 1866 * regotten via the NFS_ACL GETATTR2 procedure. 1867 */ 1868 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1869 PURGE_ATTRCACHE(*vpp); 1870 } 1871 if (!(rfscall_flags & RFSCALL_SOFT)) 1872 dnlc_update(dvp, nm, *vpp); 1873 } else { 1874 PURGE_STALE_FH(error, dvp, cr); 1875 if (error == ENOENT && nfs_lookup_neg_cache) 1876 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1877 } 1878 } 1879 1880 return (error); 1881 } 1882 1883 /* ARGSUSED */ 1884 static int 1885 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1886 int mode, vnode_t **vpp, cred_t *cr, int lfaware) 1887 { 1888 int error; 1889 struct nfscreatargs args; 1890 struct nfsdiropres dr; 1891 int douprintf; 1892 vnode_t *vp; 1893 rnode_t *rp; 1894 struct vattr vattr; 1895 rnode_t *drp; 1896 vnode_t *tempvp; 1897 hrtime_t t; 1898 1899 drp = VTOR(dvp); 1900 1901 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1902 return (EPERM); 1903 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1904 return (EINTR); 1905 1906 /* 1907 * We make a copy of the attributes because the caller does not 1908 * expect us to change what va points to. 1909 */ 1910 vattr = *va; 1911 1912 /* 1913 * If the pathname is "", just use dvp. Don't need 1914 * to send it over the wire, look it up in the dnlc, 1915 * or perform any access checks. 1916 */ 1917 if (*nm == '\0') { 1918 error = 0; 1919 VN_HOLD(dvp); 1920 vp = dvp; 1921 /* 1922 * If the pathname is ".", just use dvp. Don't need 1923 * to send it over the wire or look it up in the dnlc, 1924 * just need to check access. 1925 */ 1926 } else if (strcmp(nm, ".") == 0) { 1927 error = nfs_access(dvp, VEXEC, 0, cr); 1928 if (error) { 1929 nfs_rw_exit(&drp->r_rwlock); 1930 return (error); 1931 } 1932 VN_HOLD(dvp); 1933 vp = dvp; 1934 /* 1935 * We need to go over the wire, just to be sure whether the 1936 * file exists or not. Using the DNLC can be dangerous in 1937 * this case when making a decision regarding existence. 1938 */ 1939 } else { 1940 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 1941 } 1942 if (!error) { 1943 if (exclusive == EXCL) 1944 error = EEXIST; 1945 else if (vp->v_type == VDIR && (mode & VWRITE)) 1946 error = EISDIR; 1947 else { 1948 /* 1949 * If vnode is a device, create special vnode. 1950 */ 1951 if (IS_DEVVP(vp)) { 1952 tempvp = vp; 1953 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1954 VN_RELE(tempvp); 1955 } 1956 if (!(error = VOP_ACCESS(vp, mode, 0, cr))) { 1957 if ((vattr.va_mask & AT_SIZE) && 1958 vp->v_type == VREG) { 1959 vattr.va_mask = AT_SIZE; 1960 error = nfssetattr(vp, &vattr, 0, cr); 1961 } 1962 } 1963 } 1964 nfs_rw_exit(&drp->r_rwlock); 1965 if (error) { 1966 VN_RELE(vp); 1967 } else 1968 *vpp = vp; 1969 return (error); 1970 } 1971 1972 ASSERT(vattr.va_mask & AT_TYPE); 1973 if (vattr.va_type == VREG) { 1974 ASSERT(vattr.va_mask & AT_MODE); 1975 if (MANDMODE(vattr.va_mode)) { 1976 nfs_rw_exit(&drp->r_rwlock); 1977 return (EACCES); 1978 } 1979 } 1980 1981 dnlc_remove(dvp, nm); 1982 1983 setdiropargs(&args.ca_da, nm, dvp); 1984 1985 /* 1986 * Decide what the group-id of the created file should be. 1987 * Set it in attribute list as advisory...then do a setattr 1988 * if the server didn't get it right the first time. 1989 */ 1990 error = setdirgid(dvp, &vattr.va_gid, cr); 1991 if (error) { 1992 nfs_rw_exit(&drp->r_rwlock); 1993 return (error); 1994 } 1995 vattr.va_mask |= AT_GID; 1996 1997 /* 1998 * This is a completely gross hack to make mknod 1999 * work over the wire until we can wack the protocol 2000 */ 2001 #define IFCHR 0020000 /* character special */ 2002 #define IFBLK 0060000 /* block special */ 2003 #define IFSOCK 0140000 /* socket */ 2004 2005 /* 2006 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2007 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2008 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2009 * minor/major numbers <= 8 bits long, compress the device 2010 * number before sending it. Otherwise, the 4.x server will not 2011 * create the device with the correct device number and nothing can be 2012 * done about this. 2013 */ 2014 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2015 dev_t d = vattr.va_rdev; 2016 dev32_t dev32; 2017 2018 if (vattr.va_type == VCHR) 2019 vattr.va_mode |= IFCHR; 2020 else 2021 vattr.va_mode |= IFBLK; 2022 2023 (void) cmpldev(&dev32, d); 2024 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2025 vattr.va_size = (u_offset_t)dev32; 2026 else 2027 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2028 2029 vattr.va_mask |= AT_MODE|AT_SIZE; 2030 } else if (vattr.va_type == VFIFO) { 2031 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2032 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2033 vattr.va_mask |= AT_MODE|AT_SIZE; 2034 } else if (vattr.va_type == VSOCK) { 2035 vattr.va_mode |= IFSOCK; 2036 /* 2037 * To avoid triggering bugs in the servers set AT_SIZE 2038 * (all other RFS_CREATE calls set this). 2039 */ 2040 vattr.va_size = 0; 2041 vattr.va_mask |= AT_MODE|AT_SIZE; 2042 } 2043 2044 args.ca_sa = &args.ca_sa_buf; 2045 error = vattr_to_sattr(&vattr, args.ca_sa); 2046 if (error) { 2047 /* req time field(s) overflow - return immediately */ 2048 nfs_rw_exit(&drp->r_rwlock); 2049 return (error); 2050 } 2051 2052 douprintf = 1; 2053 2054 t = gethrtime(); 2055 2056 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2057 xdr_creatargs, (caddr_t)&args, 2058 xdr_diropres, (caddr_t)&dr, cr, 2059 &douprintf, &dr.dr_status, 0, NULL); 2060 2061 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2062 2063 if (!error) { 2064 error = geterrno(dr.dr_status); 2065 if (!error) { 2066 if (HAVE_RDDIR_CACHE(drp)) 2067 nfs_purge_rddir_cache(dvp); 2068 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2069 dvp->v_vfsp, t, cr, NULL, NULL); 2070 /* 2071 * If NFS_ACL is supported on the server, then the 2072 * attributes returned by server may have minimal 2073 * permissions sometimes denying access to users having 2074 * proper access. To get the proper attributes, mark 2075 * the attributes as expired so that they will be 2076 * regotten via the NFS_ACL GETATTR2 procedure. 2077 */ 2078 if (VTOMI(vp)->mi_flags & MI_ACL) { 2079 PURGE_ATTRCACHE(vp); 2080 } 2081 dnlc_update(dvp, nm, vp); 2082 rp = VTOR(vp); 2083 if (vattr.va_size == 0) { 2084 mutex_enter(&rp->r_statelock); 2085 rp->r_size = 0; 2086 mutex_exit(&rp->r_statelock); 2087 if (vn_has_cached_data(vp)) { 2088 ASSERT(vp->v_type != VCHR); 2089 nfs_invalidate_pages(vp, 2090 (u_offset_t)0, cr); 2091 } 2092 } 2093 2094 /* 2095 * Make sure the gid was set correctly. 2096 * If not, try to set it (but don't lose 2097 * any sleep over it). 2098 */ 2099 if (vattr.va_gid != rp->r_attr.va_gid) { 2100 vattr.va_mask = AT_GID; 2101 (void) nfssetattr(vp, &vattr, 0, cr); 2102 } 2103 2104 /* 2105 * If vnode is a device create special vnode 2106 */ 2107 if (IS_DEVVP(vp)) { 2108 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2109 VN_RELE(vp); 2110 } else 2111 *vpp = vp; 2112 } else { 2113 PURGE_STALE_FH(error, dvp, cr); 2114 } 2115 } 2116 2117 nfs_rw_exit(&drp->r_rwlock); 2118 2119 return (error); 2120 } 2121 2122 /* 2123 * Weirdness: if the vnode to be removed is open 2124 * we rename it instead of removing it and nfs_inactive 2125 * will remove the new name. 2126 */ 2127 static int 2128 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr) 2129 { 2130 int error; 2131 struct nfsdiropargs da; 2132 enum nfsstat status; 2133 vnode_t *vp; 2134 char *tmpname; 2135 int douprintf; 2136 rnode_t *rp; 2137 rnode_t *drp; 2138 2139 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2140 return (EPERM); 2141 drp = VTOR(dvp); 2142 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2143 return (EINTR); 2144 2145 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2146 if (error) { 2147 nfs_rw_exit(&drp->r_rwlock); 2148 return (error); 2149 } 2150 2151 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2152 VN_RELE(vp); 2153 nfs_rw_exit(&drp->r_rwlock); 2154 return (EPERM); 2155 } 2156 2157 /* 2158 * First just remove the entry from the name cache, as it 2159 * is most likely the only entry for this vp. 2160 */ 2161 dnlc_remove(dvp, nm); 2162 2163 /* 2164 * If the file has a v_count > 1 then there may be more than one 2165 * entry in the name cache due multiple links or an open file, 2166 * but we don't have the real reference count so flush all 2167 * possible entries. 2168 */ 2169 if (vp->v_count > 1) 2170 dnlc_purge_vp(vp); 2171 2172 /* 2173 * Now we have the real reference count on the vnode 2174 */ 2175 rp = VTOR(vp); 2176 mutex_enter(&rp->r_statelock); 2177 if (vp->v_count > 1 && 2178 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2179 mutex_exit(&rp->r_statelock); 2180 tmpname = newname(); 2181 error = nfsrename(dvp, nm, dvp, tmpname, cr); 2182 if (error) 2183 kmem_free(tmpname, MAXNAMELEN); 2184 else { 2185 mutex_enter(&rp->r_statelock); 2186 if (rp->r_unldvp == NULL) { 2187 VN_HOLD(dvp); 2188 rp->r_unldvp = dvp; 2189 if (rp->r_unlcred != NULL) 2190 crfree(rp->r_unlcred); 2191 crhold(cr); 2192 rp->r_unlcred = cr; 2193 rp->r_unlname = tmpname; 2194 } else { 2195 kmem_free(rp->r_unlname, MAXNAMELEN); 2196 rp->r_unlname = tmpname; 2197 } 2198 mutex_exit(&rp->r_statelock); 2199 } 2200 } else { 2201 mutex_exit(&rp->r_statelock); 2202 /* 2203 * We need to flush any dirty pages which happen to 2204 * be hanging around before removing the file. This 2205 * shouldn't happen very often and mostly on file 2206 * systems mounted "nocto". 2207 */ 2208 if (vn_has_cached_data(vp) && 2209 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2210 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr); 2211 if (error && (error == ENOSPC || error == EDQUOT)) { 2212 mutex_enter(&rp->r_statelock); 2213 if (!rp->r_error) 2214 rp->r_error = error; 2215 mutex_exit(&rp->r_statelock); 2216 } 2217 } 2218 2219 setdiropargs(&da, nm, dvp); 2220 2221 douprintf = 1; 2222 2223 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2224 xdr_diropargs, (caddr_t)&da, 2225 xdr_enum, (caddr_t)&status, cr, 2226 &douprintf, &status, 0, NULL); 2227 2228 /* 2229 * The xattr dir may be gone after last attr is removed, 2230 * so flush it from dnlc. 2231 */ 2232 if (dvp->v_flag & V_XATTRDIR) 2233 dnlc_purge_vp(dvp); 2234 2235 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2236 PURGE_ATTRCACHE(vp); /* link count changed */ 2237 2238 if (!error) { 2239 error = geterrno(status); 2240 if (!error) { 2241 if (HAVE_RDDIR_CACHE(drp)) 2242 nfs_purge_rddir_cache(dvp); 2243 } else { 2244 PURGE_STALE_FH(error, dvp, cr); 2245 } 2246 } 2247 } 2248 2249 VN_RELE(vp); 2250 2251 nfs_rw_exit(&drp->r_rwlock); 2252 2253 return (error); 2254 } 2255 2256 static int 2257 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr) 2258 { 2259 int error; 2260 struct nfslinkargs args; 2261 enum nfsstat status; 2262 vnode_t *realvp; 2263 int douprintf; 2264 rnode_t *tdrp; 2265 2266 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2267 return (EPERM); 2268 if (VOP_REALVP(svp, &realvp) == 0) 2269 svp = realvp; 2270 2271 args.la_from = VTOFH(svp); 2272 setdiropargs(&args.la_to, tnm, tdvp); 2273 2274 tdrp = VTOR(tdvp); 2275 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2276 return (EINTR); 2277 2278 dnlc_remove(tdvp, tnm); 2279 2280 douprintf = 1; 2281 2282 error = rfs2call(VTOMI(svp), RFS_LINK, 2283 xdr_linkargs, (caddr_t)&args, 2284 xdr_enum, (caddr_t)&status, cr, 2285 &douprintf, &status, 0, NULL); 2286 2287 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2288 PURGE_ATTRCACHE(svp); /* link count changed */ 2289 2290 if (!error) { 2291 error = geterrno(status); 2292 if (!error) { 2293 if (HAVE_RDDIR_CACHE(tdrp)) 2294 nfs_purge_rddir_cache(tdvp); 2295 } 2296 } 2297 2298 nfs_rw_exit(&tdrp->r_rwlock); 2299 2300 return (error); 2301 } 2302 2303 static int 2304 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2305 { 2306 vnode_t *realvp; 2307 2308 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2309 return (EPERM); 2310 if (VOP_REALVP(ndvp, &realvp) == 0) 2311 ndvp = realvp; 2312 2313 return (nfsrename(odvp, onm, ndvp, nnm, cr)); 2314 } 2315 2316 /* 2317 * nfsrename does the real work of renaming in NFS Version 2. 2318 */ 2319 static int 2320 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr) 2321 { 2322 int error; 2323 enum nfsstat status; 2324 struct nfsrnmargs args; 2325 int douprintf; 2326 vnode_t *nvp; 2327 vnode_t *ovp = NULL; 2328 char *tmpname; 2329 rnode_t *rp; 2330 rnode_t *odrp; 2331 rnode_t *ndrp; 2332 2333 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2334 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2335 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2336 return (EINVAL); 2337 2338 odrp = VTOR(odvp); 2339 ndrp = VTOR(ndvp); 2340 if ((intptr_t)odrp < (intptr_t)ndrp) { 2341 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2342 return (EINTR); 2343 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2344 nfs_rw_exit(&odrp->r_rwlock); 2345 return (EINTR); 2346 } 2347 } else { 2348 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2349 return (EINTR); 2350 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2351 nfs_rw_exit(&ndrp->r_rwlock); 2352 return (EINTR); 2353 } 2354 } 2355 2356 /* 2357 * Lookup the target file. If it exists, it needs to be 2358 * checked to see whether it is a mount point and whether 2359 * it is active (open). 2360 */ 2361 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2362 if (!error) { 2363 /* 2364 * If this file has been mounted on, then just 2365 * return busy because renaming to it would remove 2366 * the mounted file system from the name space. 2367 */ 2368 if (vn_mountedvfs(nvp) != NULL) { 2369 VN_RELE(nvp); 2370 nfs_rw_exit(&odrp->r_rwlock); 2371 nfs_rw_exit(&ndrp->r_rwlock); 2372 return (EBUSY); 2373 } 2374 2375 /* 2376 * Purge the name cache of all references to this vnode 2377 * so that we can check the reference count to infer 2378 * whether it is active or not. 2379 */ 2380 /* 2381 * First just remove the entry from the name cache, as it 2382 * is most likely the only entry for this vp. 2383 */ 2384 dnlc_remove(ndvp, nnm); 2385 /* 2386 * If the file has a v_count > 1 then there may be more 2387 * than one entry in the name cache due multiple links 2388 * or an open file, but we don't have the real reference 2389 * count so flush all possible entries. 2390 */ 2391 if (nvp->v_count > 1) 2392 dnlc_purge_vp(nvp); 2393 2394 /* 2395 * If the vnode is active and is not a directory, 2396 * arrange to rename it to a 2397 * temporary file so that it will continue to be 2398 * accessible. This implements the "unlink-open-file" 2399 * semantics for the target of a rename operation. 2400 * Before doing this though, make sure that the 2401 * source and target files are not already the same. 2402 */ 2403 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2404 /* 2405 * Lookup the source name. 2406 */ 2407 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2408 cr, 0); 2409 2410 /* 2411 * The source name *should* already exist. 2412 */ 2413 if (error) { 2414 VN_RELE(nvp); 2415 nfs_rw_exit(&odrp->r_rwlock); 2416 nfs_rw_exit(&ndrp->r_rwlock); 2417 return (error); 2418 } 2419 2420 /* 2421 * Compare the two vnodes. If they are the same, 2422 * just release all held vnodes and return success. 2423 */ 2424 if (ovp == nvp) { 2425 VN_RELE(ovp); 2426 VN_RELE(nvp); 2427 nfs_rw_exit(&odrp->r_rwlock); 2428 nfs_rw_exit(&ndrp->r_rwlock); 2429 return (0); 2430 } 2431 2432 /* 2433 * Can't mix and match directories and non- 2434 * directories in rename operations. We already 2435 * know that the target is not a directory. If 2436 * the source is a directory, return an error. 2437 */ 2438 if (ovp->v_type == VDIR) { 2439 VN_RELE(ovp); 2440 VN_RELE(nvp); 2441 nfs_rw_exit(&odrp->r_rwlock); 2442 nfs_rw_exit(&ndrp->r_rwlock); 2443 return (ENOTDIR); 2444 } 2445 2446 /* 2447 * The target file exists, is not the same as 2448 * the source file, and is active. Link it 2449 * to a temporary filename to avoid having 2450 * the server removing the file completely. 2451 */ 2452 tmpname = newname(); 2453 error = nfs_link(ndvp, nvp, tmpname, cr); 2454 if (error == EOPNOTSUPP) { 2455 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2456 cr); 2457 } 2458 if (error) { 2459 kmem_free(tmpname, MAXNAMELEN); 2460 VN_RELE(ovp); 2461 VN_RELE(nvp); 2462 nfs_rw_exit(&odrp->r_rwlock); 2463 nfs_rw_exit(&ndrp->r_rwlock); 2464 return (error); 2465 } 2466 rp = VTOR(nvp); 2467 mutex_enter(&rp->r_statelock); 2468 if (rp->r_unldvp == NULL) { 2469 VN_HOLD(ndvp); 2470 rp->r_unldvp = ndvp; 2471 if (rp->r_unlcred != NULL) 2472 crfree(rp->r_unlcred); 2473 crhold(cr); 2474 rp->r_unlcred = cr; 2475 rp->r_unlname = tmpname; 2476 } else { 2477 kmem_free(rp->r_unlname, MAXNAMELEN); 2478 rp->r_unlname = tmpname; 2479 } 2480 mutex_exit(&rp->r_statelock); 2481 } 2482 2483 VN_RELE(nvp); 2484 } 2485 2486 if (ovp == NULL) { 2487 /* 2488 * When renaming directories to be a subdirectory of a 2489 * different parent, the dnlc entry for ".." will no 2490 * longer be valid, so it must be removed. 2491 * 2492 * We do a lookup here to determine whether we are renaming 2493 * a directory and we need to check if we are renaming 2494 * an unlinked file. This might have already been done 2495 * in previous code, so we check ovp == NULL to avoid 2496 * doing it twice. 2497 */ 2498 2499 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2500 2501 /* 2502 * The source name *should* already exist. 2503 */ 2504 if (error) { 2505 nfs_rw_exit(&odrp->r_rwlock); 2506 nfs_rw_exit(&ndrp->r_rwlock); 2507 return (error); 2508 } 2509 ASSERT(ovp != NULL); 2510 } 2511 2512 dnlc_remove(odvp, onm); 2513 dnlc_remove(ndvp, nnm); 2514 2515 setdiropargs(&args.rna_from, onm, odvp); 2516 setdiropargs(&args.rna_to, nnm, ndvp); 2517 2518 douprintf = 1; 2519 2520 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2521 xdr_rnmargs, (caddr_t)&args, 2522 xdr_enum, (caddr_t)&status, cr, 2523 &douprintf, &status, 0, NULL); 2524 2525 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2526 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2527 2528 if (!error) { 2529 error = geterrno(status); 2530 if (!error) { 2531 if (HAVE_RDDIR_CACHE(odrp)) 2532 nfs_purge_rddir_cache(odvp); 2533 if (HAVE_RDDIR_CACHE(ndrp)) 2534 nfs_purge_rddir_cache(ndvp); 2535 /* 2536 * when renaming directories to be a subdirectory of a 2537 * different parent, the dnlc entry for ".." will no 2538 * longer be valid, so it must be removed 2539 */ 2540 rp = VTOR(ovp); 2541 if (ndvp != odvp) { 2542 if (ovp->v_type == VDIR) { 2543 dnlc_remove(ovp, ".."); 2544 if (HAVE_RDDIR_CACHE(rp)) 2545 nfs_purge_rddir_cache(ovp); 2546 } 2547 } 2548 2549 /* 2550 * If we are renaming the unlinked file, update the 2551 * r_unldvp and r_unlname as needed. 2552 */ 2553 mutex_enter(&rp->r_statelock); 2554 if (rp->r_unldvp != NULL) { 2555 if (strcmp(rp->r_unlname, onm) == 0) { 2556 (void) strncpy(rp->r_unlname, 2557 nnm, MAXNAMELEN); 2558 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2559 2560 if (ndvp != rp->r_unldvp) { 2561 VN_RELE(rp->r_unldvp); 2562 rp->r_unldvp = ndvp; 2563 VN_HOLD(ndvp); 2564 } 2565 } 2566 } 2567 mutex_exit(&rp->r_statelock); 2568 } else { 2569 /* 2570 * System V defines rename to return EEXIST, not 2571 * ENOTEMPTY if the target directory is not empty. 2572 * Over the wire, the error is NFSERR_ENOTEMPTY 2573 * which geterrno maps to ENOTEMPTY. 2574 */ 2575 if (error == ENOTEMPTY) 2576 error = EEXIST; 2577 } 2578 } 2579 2580 VN_RELE(ovp); 2581 2582 nfs_rw_exit(&odrp->r_rwlock); 2583 nfs_rw_exit(&ndrp->r_rwlock); 2584 2585 return (error); 2586 } 2587 2588 static int 2589 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr) 2590 { 2591 int error; 2592 struct nfscreatargs args; 2593 struct nfsdiropres dr; 2594 int douprintf; 2595 rnode_t *drp; 2596 hrtime_t t; 2597 2598 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2599 return (EPERM); 2600 2601 setdiropargs(&args.ca_da, nm, dvp); 2602 2603 /* 2604 * Decide what the group-id and set-gid bit of the created directory 2605 * should be. May have to do a setattr to get the gid right. 2606 */ 2607 error = setdirgid(dvp, &va->va_gid, cr); 2608 if (error) 2609 return (error); 2610 error = setdirmode(dvp, &va->va_mode, cr); 2611 if (error) 2612 return (error); 2613 va->va_mask |= AT_MODE|AT_GID; 2614 2615 args.ca_sa = &args.ca_sa_buf; 2616 error = vattr_to_sattr(va, args.ca_sa); 2617 if (error) { 2618 /* req time field(s) overflow - return immediately */ 2619 return (error); 2620 } 2621 2622 drp = VTOR(dvp); 2623 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2624 return (EINTR); 2625 2626 dnlc_remove(dvp, nm); 2627 2628 douprintf = 1; 2629 2630 t = gethrtime(); 2631 2632 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2633 xdr_creatargs, (caddr_t)&args, 2634 xdr_diropres, (caddr_t)&dr, cr, 2635 &douprintf, &dr.dr_status, 0, NULL); 2636 2637 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2638 2639 if (!error) { 2640 error = geterrno(dr.dr_status); 2641 if (!error) { 2642 if (HAVE_RDDIR_CACHE(drp)) 2643 nfs_purge_rddir_cache(dvp); 2644 /* 2645 * The attributes returned by RFS_MKDIR can not 2646 * be depended upon, so mark the attribute cache 2647 * as purged. A subsequent GETATTR will get the 2648 * correct attributes from the server. 2649 */ 2650 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2651 dvp->v_vfsp, t, cr, NULL, NULL); 2652 PURGE_ATTRCACHE(*vpp); 2653 dnlc_update(dvp, nm, *vpp); 2654 2655 /* 2656 * Make sure the gid was set correctly. 2657 * If not, try to set it (but don't lose 2658 * any sleep over it). 2659 */ 2660 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2661 va->va_mask = AT_GID; 2662 (void) nfssetattr(*vpp, va, 0, cr); 2663 } 2664 } else { 2665 PURGE_STALE_FH(error, dvp, cr); 2666 } 2667 } 2668 2669 nfs_rw_exit(&drp->r_rwlock); 2670 2671 return (error); 2672 } 2673 2674 static int 2675 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr) 2676 { 2677 int error; 2678 enum nfsstat status; 2679 struct nfsdiropargs da; 2680 vnode_t *vp; 2681 int douprintf; 2682 rnode_t *drp; 2683 2684 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2685 return (EPERM); 2686 drp = VTOR(dvp); 2687 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2688 return (EINTR); 2689 2690 /* 2691 * Attempt to prevent a rmdir(".") from succeeding. 2692 */ 2693 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2694 if (error) { 2695 nfs_rw_exit(&drp->r_rwlock); 2696 return (error); 2697 } 2698 2699 if (vp == cdir) { 2700 VN_RELE(vp); 2701 nfs_rw_exit(&drp->r_rwlock); 2702 return (EINVAL); 2703 } 2704 2705 setdiropargs(&da, nm, dvp); 2706 2707 /* 2708 * First just remove the entry from the name cache, as it 2709 * is most likely an entry for this vp. 2710 */ 2711 dnlc_remove(dvp, nm); 2712 2713 /* 2714 * If there vnode reference count is greater than one, then 2715 * there may be additional references in the DNLC which will 2716 * need to be purged. First, trying removing the entry for 2717 * the parent directory and see if that removes the additional 2718 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2719 * to completely remove any references to the directory which 2720 * might still exist in the DNLC. 2721 */ 2722 if (vp->v_count > 1) { 2723 dnlc_remove(vp, ".."); 2724 if (vp->v_count > 1) 2725 dnlc_purge_vp(vp); 2726 } 2727 2728 douprintf = 1; 2729 2730 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2731 xdr_diropargs, (caddr_t)&da, 2732 xdr_enum, (caddr_t)&status, cr, 2733 &douprintf, &status, 0, NULL); 2734 2735 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2736 2737 if (error) { 2738 VN_RELE(vp); 2739 nfs_rw_exit(&drp->r_rwlock); 2740 return (error); 2741 } 2742 2743 error = geterrno(status); 2744 if (!error) { 2745 if (HAVE_RDDIR_CACHE(drp)) 2746 nfs_purge_rddir_cache(dvp); 2747 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2748 nfs_purge_rddir_cache(vp); 2749 } else { 2750 PURGE_STALE_FH(error, dvp, cr); 2751 /* 2752 * System V defines rmdir to return EEXIST, not 2753 * ENOTEMPTY if the directory is not empty. Over 2754 * the wire, the error is NFSERR_ENOTEMPTY which 2755 * geterrno maps to ENOTEMPTY. 2756 */ 2757 if (error == ENOTEMPTY) 2758 error = EEXIST; 2759 } 2760 2761 VN_RELE(vp); 2762 2763 nfs_rw_exit(&drp->r_rwlock); 2764 2765 return (error); 2766 } 2767 2768 static int 2769 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr) 2770 { 2771 int error; 2772 struct nfsslargs args; 2773 enum nfsstat status; 2774 int douprintf; 2775 rnode_t *drp; 2776 2777 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2778 return (EPERM); 2779 setdiropargs(&args.sla_from, lnm, dvp); 2780 args.sla_sa = &args.sla_sa_buf; 2781 error = vattr_to_sattr(tva, args.sla_sa); 2782 if (error) { 2783 /* req time field(s) overflow - return immediately */ 2784 return (error); 2785 } 2786 args.sla_tnm = tnm; 2787 2788 drp = VTOR(dvp); 2789 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2790 return (EINTR); 2791 2792 dnlc_remove(dvp, lnm); 2793 2794 douprintf = 1; 2795 2796 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2797 xdr_slargs, (caddr_t)&args, 2798 xdr_enum, (caddr_t)&status, cr, 2799 &douprintf, &status, 0, NULL); 2800 2801 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2802 2803 if (!error) { 2804 error = geterrno(status); 2805 if (!error) { 2806 if (HAVE_RDDIR_CACHE(drp)) 2807 nfs_purge_rddir_cache(dvp); 2808 } else { 2809 PURGE_STALE_FH(error, dvp, cr); 2810 } 2811 } 2812 2813 nfs_rw_exit(&drp->r_rwlock); 2814 2815 return (error); 2816 } 2817 2818 #ifdef DEBUG 2819 static int nfs_readdir_cache_hits = 0; 2820 static int nfs_readdir_cache_shorts = 0; 2821 static int nfs_readdir_cache_waits = 0; 2822 static int nfs_readdir_cache_misses = 0; 2823 static int nfs_readdir_readahead = 0; 2824 #endif 2825 2826 static int nfs_shrinkreaddir = 0; 2827 2828 /* 2829 * Read directory entries. 2830 * There are some weird things to look out for here. The uio_offset 2831 * field is either 0 or it is the offset returned from a previous 2832 * readdir. It is an opaque value used by the server to find the 2833 * correct directory block to read. The count field is the number 2834 * of blocks to read on the server. This is advisory only, the server 2835 * may return only one block's worth of entries. Entries may be compressed 2836 * on the server. 2837 */ 2838 static int 2839 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp) 2840 { 2841 int error; 2842 size_t count; 2843 rnode_t *rp; 2844 rddir_cache *rdc; 2845 rddir_cache *nrdc; 2846 rddir_cache *rrdc; 2847 #ifdef DEBUG 2848 int missed; 2849 #endif 2850 rddir_cache srdc; 2851 avl_index_t where; 2852 2853 rp = VTOR(vp); 2854 2855 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2856 if (nfs_zone() != VTOMI(vp)->mi_zone) 2857 return (EIO); 2858 /* 2859 * Make sure that the directory cache is valid. 2860 */ 2861 if (HAVE_RDDIR_CACHE(rp)) { 2862 if (nfs_disable_rddir_cache) { 2863 /* 2864 * Setting nfs_disable_rddir_cache in /etc/system 2865 * allows interoperability with servers that do not 2866 * properly update the attributes of directories. 2867 * Any cached information gets purged before an 2868 * access is made to it. 2869 */ 2870 nfs_purge_rddir_cache(vp); 2871 } else { 2872 error = nfs_validate_caches(vp, cr); 2873 if (error) 2874 return (error); 2875 } 2876 } 2877 2878 /* 2879 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2880 * RFS_READDIR request with rda_count set to more than 0x400. So 2881 * we reduce the request size here purely for compatibility. 2882 * 2883 * In general, this is no longer required. However, if a server 2884 * is discovered which can not handle requests larger than 1024, 2885 * nfs_shrinkreaddir can be set to 1 to enable this backwards 2886 * compatibility. 2887 * 2888 * In any case, the request size is limited to NFS_MAXDATA bytes. 2889 */ 2890 count = MIN(uiop->uio_iov->iov_len, 2891 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 2892 2893 nrdc = NULL; 2894 #ifdef DEBUG 2895 missed = 0; 2896 #endif 2897 top: 2898 /* 2899 * Short circuit last readdir which always returns 0 bytes. 2900 * This can be done after the directory has been read through 2901 * completely at least once. This will set r_direof which 2902 * can be used to find the value of the last cookie. 2903 */ 2904 mutex_enter(&rp->r_statelock); 2905 if (rp->r_direof != NULL && 2906 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 2907 mutex_exit(&rp->r_statelock); 2908 #ifdef DEBUG 2909 nfs_readdir_cache_shorts++; 2910 #endif 2911 if (eofp) 2912 *eofp = 1; 2913 if (nrdc != NULL) 2914 rddir_cache_rele(nrdc); 2915 return (0); 2916 } 2917 /* 2918 * Look for a cache entry. Cache entries are identified 2919 * by the NFS cookie value and the byte count requested. 2920 */ 2921 srdc.nfs_cookie = uiop->uio_offset; 2922 srdc.buflen = count; 2923 rdc = avl_find(&rp->r_dir, &srdc, &where); 2924 if (rdc != NULL) { 2925 rddir_cache_hold(rdc); 2926 /* 2927 * If the cache entry is in the process of being 2928 * filled in, wait until this completes. The 2929 * RDDIRWAIT bit is set to indicate that someone 2930 * is waiting and then the thread currently 2931 * filling the entry is done, it should do a 2932 * cv_broadcast to wakeup all of the threads 2933 * waiting for it to finish. 2934 */ 2935 if (rdc->flags & RDDIR) { 2936 nfs_rw_exit(&rp->r_rwlock); 2937 rdc->flags |= RDDIRWAIT; 2938 #ifdef DEBUG 2939 nfs_readdir_cache_waits++; 2940 #endif 2941 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 2942 /* 2943 * We got interrupted, probably 2944 * the user typed ^C or an alarm 2945 * fired. We free the new entry 2946 * if we allocated one. 2947 */ 2948 mutex_exit(&rp->r_statelock); 2949 (void) nfs_rw_enter_sig(&rp->r_rwlock, 2950 RW_READER, FALSE); 2951 rddir_cache_rele(rdc); 2952 if (nrdc != NULL) 2953 rddir_cache_rele(nrdc); 2954 return (EINTR); 2955 } 2956 mutex_exit(&rp->r_statelock); 2957 (void) nfs_rw_enter_sig(&rp->r_rwlock, 2958 RW_READER, FALSE); 2959 rddir_cache_rele(rdc); 2960 goto top; 2961 } 2962 /* 2963 * Check to see if a readdir is required to 2964 * fill the entry. If so, mark this entry 2965 * as being filled, remove our reference, 2966 * and branch to the code to fill the entry. 2967 */ 2968 if (rdc->flags & RDDIRREQ) { 2969 rdc->flags &= ~RDDIRREQ; 2970 rdc->flags |= RDDIR; 2971 if (nrdc != NULL) 2972 rddir_cache_rele(nrdc); 2973 nrdc = rdc; 2974 mutex_exit(&rp->r_statelock); 2975 goto bottom; 2976 } 2977 #ifdef DEBUG 2978 if (!missed) 2979 nfs_readdir_cache_hits++; 2980 #endif 2981 /* 2982 * If an error occurred while attempting 2983 * to fill the cache entry, just return it. 2984 */ 2985 if (rdc->error) { 2986 error = rdc->error; 2987 mutex_exit(&rp->r_statelock); 2988 rddir_cache_rele(rdc); 2989 if (nrdc != NULL) 2990 rddir_cache_rele(nrdc); 2991 return (error); 2992 } 2993 2994 /* 2995 * The cache entry is complete and good, 2996 * copyout the dirent structs to the calling 2997 * thread. 2998 */ 2999 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3000 3001 /* 3002 * If no error occurred during the copyout, 3003 * update the offset in the uio struct to 3004 * contain the value of the next cookie 3005 * and set the eof value appropriately. 3006 */ 3007 if (!error) { 3008 uiop->uio_offset = rdc->nfs_ncookie; 3009 if (eofp) 3010 *eofp = rdc->eof; 3011 } 3012 3013 /* 3014 * Decide whether to do readahead. Don't if 3015 * have already read to the end of directory. 3016 */ 3017 if (rdc->eof) { 3018 rp->r_direof = rdc; 3019 mutex_exit(&rp->r_statelock); 3020 rddir_cache_rele(rdc); 3021 if (nrdc != NULL) 3022 rddir_cache_rele(nrdc); 3023 return (error); 3024 } 3025 3026 /* 3027 * Check to see whether we found an entry 3028 * for the readahead. If so, we don't need 3029 * to do anything further, so free the new 3030 * entry if one was allocated. Otherwise, 3031 * allocate a new entry, add it to the cache, 3032 * and then initiate an asynchronous readdir 3033 * operation to fill it. 3034 */ 3035 srdc.nfs_cookie = rdc->nfs_ncookie; 3036 srdc.buflen = count; 3037 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3038 if (rrdc != NULL) { 3039 if (nrdc != NULL) 3040 rddir_cache_rele(nrdc); 3041 } else { 3042 if (nrdc != NULL) 3043 rrdc = nrdc; 3044 else { 3045 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3046 } 3047 if (rrdc != NULL) { 3048 rrdc->nfs_cookie = rdc->nfs_ncookie; 3049 rrdc->buflen = count; 3050 avl_insert(&rp->r_dir, rrdc, where); 3051 rddir_cache_hold(rrdc); 3052 mutex_exit(&rp->r_statelock); 3053 rddir_cache_rele(rdc); 3054 #ifdef DEBUG 3055 nfs_readdir_readahead++; 3056 #endif 3057 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3058 return (error); 3059 } 3060 } 3061 3062 mutex_exit(&rp->r_statelock); 3063 rddir_cache_rele(rdc); 3064 return (error); 3065 } 3066 3067 /* 3068 * Didn't find an entry in the cache. Construct a new empty 3069 * entry and link it into the cache. Other processes attempting 3070 * to access this entry will need to wait until it is filled in. 3071 * 3072 * Since kmem_alloc may block, another pass through the cache 3073 * will need to be taken to make sure that another process 3074 * hasn't already added an entry to the cache for this request. 3075 */ 3076 if (nrdc == NULL) { 3077 mutex_exit(&rp->r_statelock); 3078 nrdc = rddir_cache_alloc(KM_SLEEP); 3079 nrdc->nfs_cookie = uiop->uio_offset; 3080 nrdc->buflen = count; 3081 goto top; 3082 } 3083 3084 /* 3085 * Add this entry to the cache. 3086 */ 3087 avl_insert(&rp->r_dir, nrdc, where); 3088 rddir_cache_hold(nrdc); 3089 mutex_exit(&rp->r_statelock); 3090 3091 bottom: 3092 #ifdef DEBUG 3093 missed = 1; 3094 nfs_readdir_cache_misses++; 3095 #endif 3096 /* 3097 * Do the readdir. 3098 */ 3099 error = nfsreaddir(vp, nrdc, cr); 3100 3101 /* 3102 * If this operation failed, just return the error which occurred. 3103 */ 3104 if (error != 0) 3105 return (error); 3106 3107 /* 3108 * Since the RPC operation will have taken sometime and blocked 3109 * this process, another pass through the cache will need to be 3110 * taken to find the correct cache entry. It is possible that 3111 * the correct cache entry will not be there (although one was 3112 * added) because the directory changed during the RPC operation 3113 * and the readdir cache was flushed. In this case, just start 3114 * over. It is hoped that this will not happen too often... :-) 3115 */ 3116 nrdc = NULL; 3117 goto top; 3118 /* NOTREACHED */ 3119 } 3120 3121 static int 3122 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3123 { 3124 int error; 3125 struct nfsrddirargs rda; 3126 struct nfsrddirres rd; 3127 rnode_t *rp; 3128 mntinfo_t *mi; 3129 uint_t count; 3130 int douprintf; 3131 failinfo_t fi, *fip; 3132 3133 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3134 count = rdc->buflen; 3135 3136 rp = VTOR(vp); 3137 mi = VTOMI(vp); 3138 3139 rda.rda_fh = *VTOFH(vp); 3140 rda.rda_offset = rdc->nfs_cookie; 3141 3142 /* 3143 * NFS client failover support 3144 * suppress failover unless we have a zero cookie 3145 */ 3146 if (rdc->nfs_cookie == (off_t)0) { 3147 fi.vp = vp; 3148 fi.fhp = (caddr_t)&rda.rda_fh; 3149 fi.copyproc = nfscopyfh; 3150 fi.lookupproc = nfslookup; 3151 fi.xattrdirproc = acl_getxattrdir2; 3152 fip = &fi; 3153 } else { 3154 fip = NULL; 3155 } 3156 3157 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3158 rd.rd_size = count; 3159 rd.rd_offset = rda.rda_offset; 3160 3161 douprintf = 1; 3162 3163 if (mi->mi_io_kstats) { 3164 mutex_enter(&mi->mi_lock); 3165 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3166 mutex_exit(&mi->mi_lock); 3167 } 3168 3169 do { 3170 rda.rda_count = MIN(count, mi->mi_curread); 3171 error = rfs2call(mi, RFS_READDIR, 3172 xdr_rddirargs, (caddr_t)&rda, 3173 xdr_getrddirres, (caddr_t)&rd, cr, 3174 &douprintf, &rd.rd_status, 0, fip); 3175 } while (error == ENFS_TRYAGAIN); 3176 3177 if (mi->mi_io_kstats) { 3178 mutex_enter(&mi->mi_lock); 3179 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3180 mutex_exit(&mi->mi_lock); 3181 } 3182 3183 /* 3184 * Since we are actually doing a READDIR RPC, we must have 3185 * exclusive access to the cache entry being filled. Thus, 3186 * it is safe to update all fields except for the flags 3187 * field. The r_statelock in the rnode must be held to 3188 * prevent two different threads from simultaneously 3189 * attempting to update the flags field. This can happen 3190 * if we are turning off RDDIR and the other thread is 3191 * trying to set RDDIRWAIT. 3192 */ 3193 ASSERT(rdc->flags & RDDIR); 3194 if (!error) { 3195 error = geterrno(rd.rd_status); 3196 if (!error) { 3197 rdc->nfs_ncookie = rd.rd_offset; 3198 rdc->eof = rd.rd_eof ? 1 : 0; 3199 rdc->entlen = rd.rd_size; 3200 ASSERT(rdc->entlen <= rdc->buflen); 3201 #ifdef DEBUG 3202 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3203 KM_SLEEP); 3204 #else 3205 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3206 #endif 3207 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3208 rdc->error = 0; 3209 if (mi->mi_io_kstats) { 3210 mutex_enter(&mi->mi_lock); 3211 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3212 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3213 rd.rd_size; 3214 mutex_exit(&mi->mi_lock); 3215 } 3216 } else { 3217 PURGE_STALE_FH(error, vp, cr); 3218 } 3219 } 3220 if (error) { 3221 rdc->entries = NULL; 3222 rdc->error = error; 3223 } 3224 kmem_free(rd.rd_entries, rdc->buflen); 3225 3226 mutex_enter(&rp->r_statelock); 3227 rdc->flags &= ~RDDIR; 3228 if (rdc->flags & RDDIRWAIT) { 3229 rdc->flags &= ~RDDIRWAIT; 3230 cv_broadcast(&rdc->cv); 3231 } 3232 if (error) 3233 rdc->flags |= RDDIRREQ; 3234 mutex_exit(&rp->r_statelock); 3235 3236 rddir_cache_rele(rdc); 3237 3238 return (error); 3239 } 3240 3241 #ifdef DEBUG 3242 static int nfs_bio_do_stop = 0; 3243 #endif 3244 3245 static int 3246 nfs_bio(struct buf *bp, cred_t *cr) 3247 { 3248 rnode_t *rp = VTOR(bp->b_vp); 3249 int count; 3250 int error; 3251 cred_t *cred; 3252 uint_t offset; 3253 3254 DTRACE_IO1(start, struct buf *, bp); 3255 3256 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3257 offset = dbtob(bp->b_blkno); 3258 3259 if (bp->b_flags & B_READ) { 3260 mutex_enter(&rp->r_statelock); 3261 if (rp->r_cred != NULL) { 3262 cred = rp->r_cred; 3263 crhold(cred); 3264 } else { 3265 rp->r_cred = cr; 3266 crhold(cr); 3267 cred = cr; 3268 crhold(cred); 3269 } 3270 mutex_exit(&rp->r_statelock); 3271 read_again: 3272 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3273 offset, bp->b_bcount, &bp->b_resid, cred); 3274 crfree(cred); 3275 if (!error) { 3276 if (bp->b_resid) { 3277 /* 3278 * Didn't get it all because we hit EOF, 3279 * zero all the memory beyond the EOF. 3280 */ 3281 /* bzero(rdaddr + */ 3282 bzero(bp->b_un.b_addr + 3283 bp->b_bcount - bp->b_resid, bp->b_resid); 3284 } 3285 mutex_enter(&rp->r_statelock); 3286 if (bp->b_resid == bp->b_bcount && 3287 offset >= rp->r_size) { 3288 /* 3289 * We didn't read anything at all as we are 3290 * past EOF. Return an error indicator back 3291 * but don't destroy the pages (yet). 3292 */ 3293 error = NFS_EOF; 3294 } 3295 mutex_exit(&rp->r_statelock); 3296 } else if (error == EACCES) { 3297 mutex_enter(&rp->r_statelock); 3298 if (cred != cr) { 3299 if (rp->r_cred != NULL) 3300 crfree(rp->r_cred); 3301 rp->r_cred = cr; 3302 crhold(cr); 3303 cred = cr; 3304 crhold(cred); 3305 mutex_exit(&rp->r_statelock); 3306 goto read_again; 3307 } 3308 mutex_exit(&rp->r_statelock); 3309 } 3310 } else { 3311 if (!(rp->r_flags & RSTALE)) { 3312 mutex_enter(&rp->r_statelock); 3313 if (rp->r_cred != NULL) { 3314 cred = rp->r_cred; 3315 crhold(cred); 3316 } else { 3317 rp->r_cred = cr; 3318 crhold(cr); 3319 cred = cr; 3320 crhold(cred); 3321 } 3322 mutex_exit(&rp->r_statelock); 3323 write_again: 3324 mutex_enter(&rp->r_statelock); 3325 count = MIN(bp->b_bcount, rp->r_size - offset); 3326 mutex_exit(&rp->r_statelock); 3327 if (count < 0) 3328 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3329 #ifdef DEBUG 3330 if (count == 0) { 3331 zcmn_err(getzoneid(), CE_WARN, 3332 "nfs_bio: zero length write at %d", 3333 offset); 3334 nfs_printfhandle(&rp->r_fh); 3335 if (nfs_bio_do_stop) 3336 debug_enter("nfs_bio"); 3337 } 3338 #endif 3339 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3340 count, cred); 3341 if (error == EACCES) { 3342 mutex_enter(&rp->r_statelock); 3343 if (cred != cr) { 3344 if (rp->r_cred != NULL) 3345 crfree(rp->r_cred); 3346 rp->r_cred = cr; 3347 crhold(cr); 3348 crfree(cred); 3349 cred = cr; 3350 crhold(cred); 3351 mutex_exit(&rp->r_statelock); 3352 goto write_again; 3353 } 3354 mutex_exit(&rp->r_statelock); 3355 } 3356 bp->b_error = error; 3357 if (error && error != EINTR) { 3358 /* 3359 * Don't print EDQUOT errors on the console. 3360 * Don't print asynchronous EACCES errors. 3361 * Don't print EFBIG errors. 3362 * Print all other write errors. 3363 */ 3364 if (error != EDQUOT && error != EFBIG && 3365 (error != EACCES || 3366 !(bp->b_flags & B_ASYNC))) 3367 nfs_write_error(bp->b_vp, error, cred); 3368 /* 3369 * Update r_error and r_flags as appropriate. 3370 * If the error was ESTALE, then mark the 3371 * rnode as not being writeable and save 3372 * the error status. Otherwise, save any 3373 * errors which occur from asynchronous 3374 * page invalidations. Any errors occurring 3375 * from other operations should be saved 3376 * by the caller. 3377 */ 3378 mutex_enter(&rp->r_statelock); 3379 if (error == ESTALE) { 3380 rp->r_flags |= RSTALE; 3381 if (!rp->r_error) 3382 rp->r_error = error; 3383 } else if (!rp->r_error && 3384 (bp->b_flags & 3385 (B_INVAL|B_FORCE|B_ASYNC)) == 3386 (B_INVAL|B_FORCE|B_ASYNC)) { 3387 rp->r_error = error; 3388 } 3389 mutex_exit(&rp->r_statelock); 3390 } 3391 crfree(cred); 3392 } else 3393 error = rp->r_error; 3394 } 3395 3396 if (error != 0 && error != NFS_EOF) 3397 bp->b_flags |= B_ERROR; 3398 3399 DTRACE_IO1(done, struct buf *, bp); 3400 3401 return (error); 3402 } 3403 3404 static int 3405 nfs_fid(vnode_t *vp, fid_t *fidp) 3406 { 3407 struct nfs_fid *fp; 3408 rnode_t *rp; 3409 3410 rp = VTOR(vp); 3411 3412 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3413 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3414 return (ENOSPC); 3415 } 3416 fp = (struct nfs_fid *)fidp; 3417 fp->nf_pad = 0; 3418 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3419 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3420 return (0); 3421 } 3422 3423 /* ARGSUSED2 */ 3424 static int 3425 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3426 { 3427 rnode_t *rp = VTOR(vp); 3428 3429 if (!write_lock) { 3430 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3431 return (V_WRITELOCK_FALSE); 3432 } 3433 3434 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3435 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3436 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3437 return (V_WRITELOCK_FALSE); 3438 nfs_rw_exit(&rp->r_rwlock); 3439 } 3440 3441 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3442 return (V_WRITELOCK_TRUE); 3443 } 3444 3445 /* ARGSUSED */ 3446 static void 3447 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3448 { 3449 rnode_t *rp = VTOR(vp); 3450 3451 nfs_rw_exit(&rp->r_rwlock); 3452 } 3453 3454 /* ARGSUSED */ 3455 static int 3456 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3457 { 3458 3459 /* 3460 * Because we stuff the readdir cookie into the offset field 3461 * someone may attempt to do an lseek with the cookie which 3462 * we want to succeed. 3463 */ 3464 if (vp->v_type == VDIR) 3465 return (0); 3466 if (*noffp < 0 || *noffp > MAXOFF32_T) 3467 return (EINVAL); 3468 return (0); 3469 } 3470 3471 /* 3472 * number of NFS_MAXDATA blocks to read ahead 3473 * optimized for 100 base-T. 3474 */ 3475 static int nfs_nra = 4; 3476 3477 #ifdef DEBUG 3478 static int nfs_lostpage = 0; /* number of times we lost original page */ 3479 #endif 3480 3481 /* 3482 * Return all the pages from [off..off+len) in file 3483 */ 3484 static int 3485 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3486 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3487 enum seg_rw rw, cred_t *cr) 3488 { 3489 rnode_t *rp; 3490 int error; 3491 mntinfo_t *mi; 3492 3493 if (vp->v_flag & VNOMAP) 3494 return (ENOSYS); 3495 3496 ASSERT(off <= MAXOFF32_T); 3497 if (nfs_zone() != VTOMI(vp)->mi_zone) 3498 return (EIO); 3499 if (protp != NULL) 3500 *protp = PROT_ALL; 3501 3502 /* 3503 * Now valididate that the caches are up to date. 3504 */ 3505 error = nfs_validate_caches(vp, cr); 3506 if (error) 3507 return (error); 3508 3509 rp = VTOR(vp); 3510 mi = VTOMI(vp); 3511 retry: 3512 mutex_enter(&rp->r_statelock); 3513 3514 /* 3515 * Don't create dirty pages faster than they 3516 * can be cleaned so that the system doesn't 3517 * get imbalanced. If the async queue is 3518 * maxed out, then wait for it to drain before 3519 * creating more dirty pages. Also, wait for 3520 * any threads doing pagewalks in the vop_getattr 3521 * entry points so that they don't block for 3522 * long periods. 3523 */ 3524 if (rw == S_CREATE) { 3525 while ((mi->mi_max_threads != 0 && 3526 rp->r_awcount > 2 * mi->mi_max_threads) || 3527 rp->r_gcount > 0) 3528 cv_wait(&rp->r_cv, &rp->r_statelock); 3529 } 3530 3531 /* 3532 * If we are getting called as a side effect of an nfs_write() 3533 * operation the local file size might not be extended yet. 3534 * In this case we want to be able to return pages of zeroes. 3535 */ 3536 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3537 mutex_exit(&rp->r_statelock); 3538 return (EFAULT); /* beyond EOF */ 3539 } 3540 3541 mutex_exit(&rp->r_statelock); 3542 3543 if (len <= PAGESIZE) { 3544 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3545 seg, addr, rw, cr); 3546 } else { 3547 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3548 pl, plsz, seg, addr, rw, cr); 3549 } 3550 3551 switch (error) { 3552 case NFS_EOF: 3553 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3554 goto retry; 3555 case ESTALE: 3556 PURGE_STALE_FH(error, vp, cr); 3557 } 3558 3559 return (error); 3560 } 3561 3562 /* 3563 * Called from pvn_getpages or nfs_getpage to get a particular page. 3564 */ 3565 /* ARGSUSED */ 3566 static int 3567 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3568 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3569 enum seg_rw rw, cred_t *cr) 3570 { 3571 rnode_t *rp; 3572 uint_t bsize; 3573 struct buf *bp; 3574 page_t *pp; 3575 u_offset_t lbn; 3576 u_offset_t io_off; 3577 u_offset_t blkoff; 3578 u_offset_t rablkoff; 3579 size_t io_len; 3580 uint_t blksize; 3581 int error; 3582 int readahead; 3583 int readahead_issued = 0; 3584 int ra_window; /* readahead window */ 3585 page_t *pagefound; 3586 3587 if (nfs_zone() != VTOMI(vp)->mi_zone) 3588 return (EIO); 3589 rp = VTOR(vp); 3590 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3591 3592 reread: 3593 bp = NULL; 3594 pp = NULL; 3595 pagefound = NULL; 3596 3597 if (pl != NULL) 3598 pl[0] = NULL; 3599 3600 error = 0; 3601 lbn = off / bsize; 3602 blkoff = lbn * bsize; 3603 3604 /* 3605 * Queueing up the readahead before doing the synchronous read 3606 * results in a significant increase in read throughput because 3607 * of the increased parallelism between the async threads and 3608 * the process context. 3609 */ 3610 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3611 rw != S_CREATE && 3612 !(vp->v_flag & VNOCACHE)) { 3613 mutex_enter(&rp->r_statelock); 3614 3615 /* 3616 * Calculate the number of readaheads to do. 3617 * a) No readaheads at offset = 0. 3618 * b) Do maximum(nfs_nra) readaheads when the readahead 3619 * window is closed. 3620 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3621 * upon how far the readahead window is open or close. 3622 * d) No readaheads if rp->r_nextr is not within the scope 3623 * of the readahead window (random i/o). 3624 */ 3625 3626 if (off == 0) 3627 readahead = 0; 3628 else if (blkoff == rp->r_nextr) 3629 readahead = nfs_nra; 3630 else if (rp->r_nextr > blkoff && 3631 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3632 <= (nfs_nra - 1))) 3633 readahead = nfs_nra - ra_window; 3634 else 3635 readahead = 0; 3636 3637 rablkoff = rp->r_nextr; 3638 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3639 mutex_exit(&rp->r_statelock); 3640 if (nfs_async_readahead(vp, rablkoff + bsize, 3641 addr + (rablkoff + bsize - off), seg, cr, 3642 nfs_readahead) < 0) { 3643 mutex_enter(&rp->r_statelock); 3644 break; 3645 } 3646 readahead--; 3647 rablkoff += bsize; 3648 /* 3649 * Indicate that we did a readahead so 3650 * readahead offset is not updated 3651 * by the synchronous read below. 3652 */ 3653 readahead_issued = 1; 3654 mutex_enter(&rp->r_statelock); 3655 /* 3656 * set readahead offset to 3657 * offset of last async readahead 3658 * request. 3659 */ 3660 rp->r_nextr = rablkoff; 3661 } 3662 mutex_exit(&rp->r_statelock); 3663 } 3664 3665 again: 3666 if ((pagefound = page_exists(vp, off)) == NULL) { 3667 if (pl == NULL) { 3668 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3669 nfs_readahead); 3670 } else if (rw == S_CREATE) { 3671 /* 3672 * Block for this page is not allocated, or the offset 3673 * is beyond the current allocation size, or we're 3674 * allocating a swap slot and the page was not found, 3675 * so allocate it and return a zero page. 3676 */ 3677 if ((pp = page_create_va(vp, off, 3678 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3679 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3680 io_len = PAGESIZE; 3681 mutex_enter(&rp->r_statelock); 3682 rp->r_nextr = off + PAGESIZE; 3683 mutex_exit(&rp->r_statelock); 3684 } else { 3685 /* 3686 * Need to go to server to get a BLOCK, exception to 3687 * that being while reading at offset = 0 or doing 3688 * random i/o, in that case read only a PAGE. 3689 */ 3690 mutex_enter(&rp->r_statelock); 3691 if (blkoff < rp->r_size && 3692 blkoff + bsize >= rp->r_size) { 3693 /* 3694 * If only a block or less is left in 3695 * the file, read all that is remaining. 3696 */ 3697 if (rp->r_size <= off) { 3698 /* 3699 * Trying to access beyond EOF, 3700 * set up to get at least one page. 3701 */ 3702 blksize = off + PAGESIZE - blkoff; 3703 } else 3704 blksize = rp->r_size - blkoff; 3705 } else if ((off == 0) || 3706 (off != rp->r_nextr && !readahead_issued)) { 3707 blksize = PAGESIZE; 3708 blkoff = off; /* block = page here */ 3709 } else 3710 blksize = bsize; 3711 mutex_exit(&rp->r_statelock); 3712 3713 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3714 &io_len, blkoff, blksize, 0); 3715 3716 /* 3717 * Some other thread has entered the page, 3718 * so just use it. 3719 */ 3720 if (pp == NULL) 3721 goto again; 3722 3723 /* 3724 * Now round the request size up to page boundaries. 3725 * This ensures that the entire page will be 3726 * initialized to zeroes if EOF is encountered. 3727 */ 3728 io_len = ptob(btopr(io_len)); 3729 3730 bp = pageio_setup(pp, io_len, vp, B_READ); 3731 ASSERT(bp != NULL); 3732 3733 /* 3734 * pageio_setup should have set b_addr to 0. This 3735 * is correct since we want to do I/O on a page 3736 * boundary. bp_mapin will use this addr to calculate 3737 * an offset, and then set b_addr to the kernel virtual 3738 * address it allocated for us. 3739 */ 3740 ASSERT(bp->b_un.b_addr == 0); 3741 3742 bp->b_edev = 0; 3743 bp->b_dev = 0; 3744 bp->b_lblkno = lbtodb(io_off); 3745 bp->b_file = vp; 3746 bp->b_offset = (offset_t)off; 3747 bp_mapin(bp); 3748 3749 /* 3750 * If doing a write beyond what we believe is EOF, 3751 * don't bother trying to read the pages from the 3752 * server, we'll just zero the pages here. We 3753 * don't check that the rw flag is S_WRITE here 3754 * because some implementations may attempt a 3755 * read access to the buffer before copying data. 3756 */ 3757 mutex_enter(&rp->r_statelock); 3758 if (io_off >= rp->r_size && seg == segkmap) { 3759 mutex_exit(&rp->r_statelock); 3760 bzero(bp->b_un.b_addr, io_len); 3761 } else { 3762 mutex_exit(&rp->r_statelock); 3763 error = nfs_bio(bp, cr); 3764 } 3765 3766 /* 3767 * Unmap the buffer before freeing it. 3768 */ 3769 bp_mapout(bp); 3770 pageio_done(bp); 3771 3772 if (error == NFS_EOF) { 3773 /* 3774 * If doing a write system call just return 3775 * zeroed pages, else user tried to get pages 3776 * beyond EOF, return error. We don't check 3777 * that the rw flag is S_WRITE here because 3778 * some implementations may attempt a read 3779 * access to the buffer before copying data. 3780 */ 3781 if (seg == segkmap) 3782 error = 0; 3783 else 3784 error = EFAULT; 3785 } 3786 3787 if (!readahead_issued && !error) { 3788 mutex_enter(&rp->r_statelock); 3789 rp->r_nextr = io_off + io_len; 3790 mutex_exit(&rp->r_statelock); 3791 } 3792 } 3793 } 3794 3795 out: 3796 if (pl == NULL) 3797 return (error); 3798 3799 if (error) { 3800 if (pp != NULL) 3801 pvn_read_done(pp, B_ERROR); 3802 return (error); 3803 } 3804 3805 if (pagefound) { 3806 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3807 3808 /* 3809 * Page exists in the cache, acquire the appropriate lock. 3810 * If this fails, start all over again. 3811 */ 3812 if ((pp = page_lookup(vp, off, se)) == NULL) { 3813 #ifdef DEBUG 3814 nfs_lostpage++; 3815 #endif 3816 goto reread; 3817 } 3818 pl[0] = pp; 3819 pl[1] = NULL; 3820 return (0); 3821 } 3822 3823 if (pp != NULL) 3824 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3825 3826 return (error); 3827 } 3828 3829 static void 3830 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3831 cred_t *cr) 3832 { 3833 int error; 3834 page_t *pp; 3835 u_offset_t io_off; 3836 size_t io_len; 3837 struct buf *bp; 3838 uint_t bsize, blksize; 3839 rnode_t *rp = VTOR(vp); 3840 3841 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3842 3843 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3844 3845 mutex_enter(&rp->r_statelock); 3846 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3847 /* 3848 * If less than a block left in file read less 3849 * than a block. 3850 */ 3851 blksize = rp->r_size - blkoff; 3852 } else 3853 blksize = bsize; 3854 mutex_exit(&rp->r_statelock); 3855 3856 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3857 &io_off, &io_len, blkoff, blksize, 1); 3858 /* 3859 * The isra flag passed to the kluster function is 1, we may have 3860 * gotten a return value of NULL for a variety of reasons (# of free 3861 * pages < minfree, someone entered the page on the vnode etc). In all 3862 * cases, we want to punt on the readahead. 3863 */ 3864 if (pp == NULL) 3865 return; 3866 3867 /* 3868 * Now round the request size up to page boundaries. 3869 * This ensures that the entire page will be 3870 * initialized to zeroes if EOF is encountered. 3871 */ 3872 io_len = ptob(btopr(io_len)); 3873 3874 bp = pageio_setup(pp, io_len, vp, B_READ); 3875 ASSERT(bp != NULL); 3876 3877 /* 3878 * pageio_setup should have set b_addr to 0. This is correct since 3879 * we want to do I/O on a page boundary. bp_mapin() will use this addr 3880 * to calculate an offset, and then set b_addr to the kernel virtual 3881 * address it allocated for us. 3882 */ 3883 ASSERT(bp->b_un.b_addr == 0); 3884 3885 bp->b_edev = 0; 3886 bp->b_dev = 0; 3887 bp->b_lblkno = lbtodb(io_off); 3888 bp->b_file = vp; 3889 bp->b_offset = (offset_t)blkoff; 3890 bp_mapin(bp); 3891 3892 /* 3893 * If doing a write beyond what we believe is EOF, don't bother trying 3894 * to read the pages from the server, we'll just zero the pages here. 3895 * We don't check that the rw flag is S_WRITE here because some 3896 * implementations may attempt a read access to the buffer before 3897 * copying data. 3898 */ 3899 mutex_enter(&rp->r_statelock); 3900 if (io_off >= rp->r_size && seg == segkmap) { 3901 mutex_exit(&rp->r_statelock); 3902 bzero(bp->b_un.b_addr, io_len); 3903 error = 0; 3904 } else { 3905 mutex_exit(&rp->r_statelock); 3906 error = nfs_bio(bp, cr); 3907 if (error == NFS_EOF) 3908 error = 0; 3909 } 3910 3911 /* 3912 * Unmap the buffer before freeing it. 3913 */ 3914 bp_mapout(bp); 3915 pageio_done(bp); 3916 3917 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 3918 3919 /* 3920 * In case of error set readahead offset 3921 * to the lowest offset. 3922 * pvn_read_done() calls VN_DISPOSE to destroy the pages 3923 */ 3924 if (error && rp->r_nextr > io_off) { 3925 mutex_enter(&rp->r_statelock); 3926 if (rp->r_nextr > io_off) 3927 rp->r_nextr = io_off; 3928 mutex_exit(&rp->r_statelock); 3929 } 3930 } 3931 3932 /* 3933 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 3934 * If len == 0, do from off to EOF. 3935 * 3936 * The normal cases should be len == 0 && off == 0 (entire vp list), 3937 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 3938 * (from pageout). 3939 */ 3940 static int 3941 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 3942 { 3943 int error; 3944 rnode_t *rp; 3945 3946 ASSERT(cr != NULL); 3947 3948 /* 3949 * XXX - Why should this check be made here? 3950 */ 3951 if (vp->v_flag & VNOMAP) 3952 return (ENOSYS); 3953 3954 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 3955 return (0); 3956 3957 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 3958 return (EIO); 3959 ASSERT(off <= MAXOFF32_T); 3960 3961 rp = VTOR(vp); 3962 mutex_enter(&rp->r_statelock); 3963 rp->r_count++; 3964 mutex_exit(&rp->r_statelock); 3965 error = nfs_putpages(vp, off, len, flags, cr); 3966 mutex_enter(&rp->r_statelock); 3967 rp->r_count--; 3968 cv_broadcast(&rp->r_cv); 3969 mutex_exit(&rp->r_statelock); 3970 3971 return (error); 3972 } 3973 3974 /* 3975 * Write out a single page, possibly klustering adjacent dirty pages. 3976 */ 3977 int 3978 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 3979 int flags, cred_t *cr) 3980 { 3981 u_offset_t io_off; 3982 u_offset_t lbn_off; 3983 u_offset_t lbn; 3984 size_t io_len; 3985 uint_t bsize; 3986 int error; 3987 rnode_t *rp; 3988 3989 ASSERT(!vn_is_readonly(vp)); 3990 ASSERT(pp != NULL); 3991 ASSERT(cr != NULL); 3992 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 3993 3994 rp = VTOR(vp); 3995 ASSERT(rp->r_count > 0); 3996 3997 ASSERT(pp->p_offset <= MAXOFF32_T); 3998 3999 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4000 lbn = pp->p_offset / bsize; 4001 lbn_off = lbn * bsize; 4002 4003 /* 4004 * Find a kluster that fits in one block, or in 4005 * one page if pages are bigger than blocks. If 4006 * there is less file space allocated than a whole 4007 * page, we'll shorten the i/o request below. 4008 */ 4009 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4010 roundup(bsize, PAGESIZE), flags); 4011 4012 /* 4013 * pvn_write_kluster shouldn't have returned a page with offset 4014 * behind the original page we were given. Verify that. 4015 */ 4016 ASSERT((pp->p_offset / bsize) >= lbn); 4017 4018 /* 4019 * Now pp will have the list of kept dirty pages marked for 4020 * write back. It will also handle invalidation and freeing 4021 * of pages that are not dirty. Check for page length rounding 4022 * problems. 4023 */ 4024 if (io_off + io_len > lbn_off + bsize) { 4025 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4026 io_len = lbn_off + bsize - io_off; 4027 } 4028 /* 4029 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4030 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4031 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4032 * progress and the r_size has not been made consistent with the 4033 * new size of the file. When the uiomove() completes the r_size is 4034 * updated and the RMODINPROGRESS flag is cleared. 4035 * 4036 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4037 * consistent value of r_size. Without this handshaking, it is 4038 * possible that nfs(3)_bio() picks up the old value of r_size 4039 * before the uiomove() in writerp() completes. This will result 4040 * in the write through nfs(3)_bio() being dropped. 4041 * 4042 * More precisely, there is a window between the time the uiomove() 4043 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4044 * operation intervenes in this window, the page will be picked up, 4045 * because it is dirty (it will be unlocked, unless it was 4046 * pagecreate'd). When the page is picked up as dirty, the dirty 4047 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4048 * checked. This will still be the old size. Therefore the page will 4049 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4050 * the page will be found to be clean and the write will be dropped. 4051 */ 4052 if (rp->r_flags & RMODINPROGRESS) { 4053 mutex_enter(&rp->r_statelock); 4054 if ((rp->r_flags & RMODINPROGRESS) && 4055 rp->r_modaddr + MAXBSIZE > io_off && 4056 rp->r_modaddr < io_off + io_len) { 4057 page_t *plist; 4058 /* 4059 * A write is in progress for this region of the file. 4060 * If we did not detect RMODINPROGRESS here then this 4061 * path through nfs_putapage() would eventually go to 4062 * nfs(3)_bio() and may not write out all of the data 4063 * in the pages. We end up losing data. So we decide 4064 * to set the modified bit on each page in the page 4065 * list and mark the rnode with RDIRTY. This write 4066 * will be restarted at some later time. 4067 */ 4068 plist = pp; 4069 while (plist != NULL) { 4070 pp = plist; 4071 page_sub(&plist, pp); 4072 hat_setmod(pp); 4073 page_io_unlock(pp); 4074 page_unlock(pp); 4075 } 4076 rp->r_flags |= RDIRTY; 4077 mutex_exit(&rp->r_statelock); 4078 if (offp) 4079 *offp = io_off; 4080 if (lenp) 4081 *lenp = io_len; 4082 return (0); 4083 } 4084 mutex_exit(&rp->r_statelock); 4085 } 4086 4087 if (flags & B_ASYNC) { 4088 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4089 nfs_sync_putapage); 4090 } else 4091 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4092 4093 if (offp) 4094 *offp = io_off; 4095 if (lenp) 4096 *lenp = io_len; 4097 return (error); 4098 } 4099 4100 static int 4101 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4102 int flags, cred_t *cr) 4103 { 4104 int error; 4105 rnode_t *rp; 4106 4107 flags |= B_WRITE; 4108 4109 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4110 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4111 4112 rp = VTOR(vp); 4113 4114 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4115 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4116 if (!(rp->r_flags & ROUTOFSPACE)) { 4117 mutex_enter(&rp->r_statelock); 4118 rp->r_flags |= ROUTOFSPACE; 4119 mutex_exit(&rp->r_statelock); 4120 } 4121 flags |= B_ERROR; 4122 pvn_write_done(pp, flags); 4123 /* 4124 * If this was not an async thread, then try again to 4125 * write out the pages, but this time, also destroy 4126 * them whether or not the write is successful. This 4127 * will prevent memory from filling up with these 4128 * pages and destroying them is the only alternative 4129 * if they can't be written out. 4130 * 4131 * Don't do this if this is an async thread because 4132 * when the pages are unlocked in pvn_write_done, 4133 * some other thread could have come along, locked 4134 * them, and queued for an async thread. It would be 4135 * possible for all of the async threads to be tied 4136 * up waiting to lock the pages again and they would 4137 * all already be locked and waiting for an async 4138 * thread to handle them. Deadlock. 4139 */ 4140 if (!(flags & B_ASYNC)) { 4141 error = nfs_putpage(vp, io_off, io_len, 4142 B_INVAL | B_FORCE, cr); 4143 } 4144 } else { 4145 if (error) 4146 flags |= B_ERROR; 4147 else if (rp->r_flags & ROUTOFSPACE) { 4148 mutex_enter(&rp->r_statelock); 4149 rp->r_flags &= ~ROUTOFSPACE; 4150 mutex_exit(&rp->r_statelock); 4151 } 4152 pvn_write_done(pp, flags); 4153 } 4154 4155 return (error); 4156 } 4157 4158 static int 4159 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4160 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 4161 { 4162 struct segvn_crargs vn_a; 4163 int error; 4164 rnode_t *rp; 4165 struct vattr va; 4166 4167 if (nfs_zone() != VTOMI(vp)->mi_zone) 4168 return (EIO); 4169 4170 if (vp->v_flag & VNOMAP) 4171 return (ENOSYS); 4172 4173 if (off > MAXOFF32_T) 4174 return (EFBIG); 4175 4176 if (off < 0 || off + len < 0) 4177 return (ENXIO); 4178 4179 if (vp->v_type != VREG) 4180 return (ENODEV); 4181 4182 /* 4183 * If there is cached data and if close-to-open consistency 4184 * checking is not turned off and if the file system is not 4185 * mounted readonly, then force an over the wire getattr. 4186 * Otherwise, just invoke nfsgetattr to get a copy of the 4187 * attributes. The attribute cache will be used unless it 4188 * is timed out and if it is, then an over the wire getattr 4189 * will be issued. 4190 */ 4191 va.va_mask = AT_ALL; 4192 if (vn_has_cached_data(vp) && 4193 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4194 error = nfs_getattr_otw(vp, &va, cr); 4195 else 4196 error = nfsgetattr(vp, &va, cr); 4197 if (error) 4198 return (error); 4199 4200 /* 4201 * Check to see if the vnode is currently marked as not cachable. 4202 * This means portions of the file are locked (through VOP_FRLOCK). 4203 * In this case the map request must be refused. We use 4204 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4205 */ 4206 rp = VTOR(vp); 4207 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 4208 return (EINTR); 4209 4210 if (vp->v_flag & VNOCACHE) { 4211 error = EAGAIN; 4212 goto done; 4213 } 4214 4215 /* 4216 * Don't allow concurrent locks and mapping if mandatory locking is 4217 * enabled. 4218 */ 4219 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4220 MANDLOCK(vp, va.va_mode)) { 4221 error = EAGAIN; 4222 goto done; 4223 } 4224 4225 as_rangelock(as); 4226 if (!(flags & MAP_FIXED)) { 4227 map_addr(addrp, len, off, 1, flags); 4228 if (*addrp == NULL) { 4229 as_rangeunlock(as); 4230 error = ENOMEM; 4231 goto done; 4232 } 4233 } else { 4234 /* 4235 * User specified address - blow away any previous mappings 4236 */ 4237 (void) as_unmap(as, *addrp, len); 4238 } 4239 4240 vn_a.vp = vp; 4241 vn_a.offset = off; 4242 vn_a.type = (flags & MAP_TYPE); 4243 vn_a.prot = (uchar_t)prot; 4244 vn_a.maxprot = (uchar_t)maxprot; 4245 vn_a.flags = (flags & ~MAP_TYPE); 4246 vn_a.cred = cr; 4247 vn_a.amp = NULL; 4248 vn_a.szc = 0; 4249 vn_a.lgrp_mem_policy_flags = 0; 4250 4251 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4252 as_rangeunlock(as); 4253 4254 done: 4255 nfs_rw_exit(&rp->r_lkserlock); 4256 return (error); 4257 } 4258 4259 /* ARGSUSED */ 4260 static int 4261 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4262 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 4263 { 4264 rnode_t *rp; 4265 4266 if (vp->v_flag & VNOMAP) 4267 return (ENOSYS); 4268 if (nfs_zone() != VTOMI(vp)->mi_zone) 4269 return (EIO); 4270 4271 /* 4272 * Need to hold rwlock while incrementing the mapcnt so that 4273 * mmap'ing can be serialized with writes so that the caching 4274 * can be handled correctly. 4275 */ 4276 rp = VTOR(vp); 4277 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4278 return (EINTR); 4279 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4280 nfs_rw_exit(&rp->r_rwlock); 4281 4282 return (0); 4283 } 4284 4285 static int 4286 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4287 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr) 4288 { 4289 netobj lm_fh; 4290 int rc; 4291 u_offset_t start, end; 4292 rnode_t *rp; 4293 int error = 0, intr = INTR(vp); 4294 4295 /* check for valid cmd parameter */ 4296 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4297 return (EINVAL); 4298 if (nfs_zone() != VTOMI(vp)->mi_zone) 4299 return (EIO); 4300 4301 /* Verify l_type. */ 4302 switch (bfp->l_type) { 4303 case F_RDLCK: 4304 if (cmd != F_GETLK && !(flag & FREAD)) 4305 return (EBADF); 4306 break; 4307 case F_WRLCK: 4308 if (cmd != F_GETLK && !(flag & FWRITE)) 4309 return (EBADF); 4310 break; 4311 case F_UNLCK: 4312 intr = 0; 4313 break; 4314 4315 default: 4316 return (EINVAL); 4317 } 4318 4319 /* check the validity of the lock range */ 4320 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4321 return (rc); 4322 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4323 return (rc); 4324 4325 /* 4326 * If the filesystem is mounted using local locking, pass the 4327 * request off to the local locking code. 4328 */ 4329 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4330 if (offset > MAXOFF32_T) 4331 return (EFBIG); 4332 if (cmd == F_SETLK || cmd == F_SETLKW) { 4333 /* 4334 * For complete safety, we should be holding 4335 * r_lkserlock. However, we can't call 4336 * lm_safelock and then fs_frlock while 4337 * holding r_lkserlock, so just invoke 4338 * lm_safelock and expect that this will 4339 * catch enough of the cases. 4340 */ 4341 if (!lm_safelock(vp, bfp, cr)) 4342 return (EAGAIN); 4343 } 4344 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr)); 4345 } 4346 4347 rp = VTOR(vp); 4348 4349 /* 4350 * Check whether the given lock request can proceed, given the 4351 * current file mappings. 4352 */ 4353 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4354 return (EINTR); 4355 if (cmd == F_SETLK || cmd == F_SETLKW) { 4356 if (!lm_safelock(vp, bfp, cr)) { 4357 rc = EAGAIN; 4358 goto done; 4359 } 4360 } 4361 4362 /* 4363 * Flush the cache after waiting for async I/O to finish. For new 4364 * locks, this is so that the process gets the latest bits from the 4365 * server. For unlocks, this is so that other clients see the 4366 * latest bits once the file has been unlocked. If currently dirty 4367 * pages can't be flushed, then don't allow a lock to be set. But 4368 * allow unlocks to succeed, to avoid having orphan locks on the 4369 * server. 4370 */ 4371 if (cmd != F_GETLK) { 4372 mutex_enter(&rp->r_statelock); 4373 while (rp->r_count > 0) { 4374 if (intr) { 4375 klwp_t *lwp = ttolwp(curthread); 4376 4377 if (lwp != NULL) 4378 lwp->lwp_nostop++; 4379 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) == 0) { 4380 if (lwp != NULL) 4381 lwp->lwp_nostop--; 4382 rc = EINTR; 4383 break; 4384 } 4385 if (lwp != NULL) 4386 lwp->lwp_nostop--; 4387 } else 4388 cv_wait(&rp->r_cv, &rp->r_statelock); 4389 } 4390 mutex_exit(&rp->r_statelock); 4391 if (rc != 0) 4392 goto done; 4393 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr); 4394 if (error) { 4395 if (error == ENOSPC || error == EDQUOT) { 4396 mutex_enter(&rp->r_statelock); 4397 if (!rp->r_error) 4398 rp->r_error = error; 4399 mutex_exit(&rp->r_statelock); 4400 } 4401 if (bfp->l_type != F_UNLCK) { 4402 rc = ENOLCK; 4403 goto done; 4404 } 4405 } 4406 } 4407 4408 lm_fh.n_len = sizeof (fhandle_t); 4409 lm_fh.n_bytes = (char *)VTOFH(vp); 4410 4411 /* 4412 * Call the lock manager to do the real work of contacting 4413 * the server and obtaining the lock. 4414 */ 4415 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4416 4417 if (rc == 0) 4418 nfs_lockcompletion(vp, cmd); 4419 4420 done: 4421 nfs_rw_exit(&rp->r_lkserlock); 4422 return (rc); 4423 } 4424 4425 /* 4426 * Free storage space associated with the specified vnode. The portion 4427 * to be freed is specified by bfp->l_start and bfp->l_len (already 4428 * normalized to a "whence" of 0). 4429 * 4430 * This is an experimental facility whose continued existence is not 4431 * guaranteed. Currently, we only support the special case 4432 * of l_len == 0, meaning free to end of file. 4433 */ 4434 /* ARGSUSED */ 4435 static int 4436 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4437 offset_t offset, cred_t *cr, caller_context_t *ct) 4438 { 4439 int error; 4440 4441 ASSERT(vp->v_type == VREG); 4442 if (cmd != F_FREESP) 4443 return (EINVAL); 4444 4445 if (offset > MAXOFF32_T) 4446 return (EFBIG); 4447 4448 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4449 (bfp->l_len > MAXOFF32_T)) 4450 return (EFBIG); 4451 4452 if (nfs_zone() != VTOMI(vp)->mi_zone) 4453 return (EIO); 4454 4455 error = convoff(vp, bfp, 0, offset); 4456 if (!error) { 4457 ASSERT(bfp->l_start >= 0); 4458 if (bfp->l_len == 0) { 4459 struct vattr va; 4460 4461 /* 4462 * ftruncate should not change the ctime and 4463 * mtime if we truncate the file to its 4464 * previous size. 4465 */ 4466 va.va_mask = AT_SIZE; 4467 error = nfsgetattr(vp, &va, cr); 4468 if (error || va.va_size == bfp->l_start) 4469 return (error); 4470 va.va_mask = AT_SIZE; 4471 va.va_size = bfp->l_start; 4472 error = nfssetattr(vp, &va, 0, cr); 4473 } else 4474 error = EINVAL; 4475 } 4476 4477 return (error); 4478 } 4479 4480 /* ARGSUSED */ 4481 static int 4482 nfs_realvp(vnode_t *vp, vnode_t **vpp) 4483 { 4484 4485 return (EINVAL); 4486 } 4487 4488 /* 4489 * Setup and add an address space callback to do the work of the delmap call. 4490 * The callback will (and must be) deleted in the actual callback function. 4491 * 4492 * This is done in order to take care of the problem that we have with holding 4493 * the address space's a_lock for a long period of time (e.g. if the NFS server 4494 * is down). Callbacks will be executed in the address space code while the 4495 * a_lock is not held. Holding the address space's a_lock causes things such 4496 * as ps and fork to hang because they are trying to acquire this lock as well. 4497 */ 4498 /* ARGSUSED */ 4499 static int 4500 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4501 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 4502 { 4503 int caller_found; 4504 int error; 4505 rnode_t *rp; 4506 nfs_delmap_args_t *dmapp; 4507 nfs_delmapcall_t *delmap_call; 4508 4509 if (vp->v_flag & VNOMAP) 4510 return (ENOSYS); 4511 /* 4512 * A process may not change zones if it has NFS pages mmap'ed 4513 * in, so we can't legitimately get here from the wrong zone. 4514 */ 4515 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4516 4517 rp = VTOR(vp); 4518 4519 /* 4520 * The way that the address space of this process deletes its mapping 4521 * of this file is via the following call chains: 4522 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4523 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4524 * 4525 * With the use of address space callbacks we are allowed to drop the 4526 * address space lock, a_lock, while executing the NFS operations that 4527 * need to go over the wire. Returning EAGAIN to the caller of this 4528 * function is what drives the execution of the callback that we add 4529 * below. The callback will be executed by the address space code 4530 * after dropping the a_lock. When the callback is finished, since 4531 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4532 * is called again on the same segment to finish the rest of the work 4533 * that needs to happen during unmapping. 4534 * 4535 * This action of calling back into the segment driver causes 4536 * nfs_delmap() to get called again, but since the callback was 4537 * already executed at this point, it already did the work and there 4538 * is nothing left for us to do. 4539 * 4540 * To Summarize: 4541 * - The first time nfs_delmap is called by the current thread is when 4542 * we add the caller associated with this delmap to the delmap caller 4543 * list, add the callback, and return EAGAIN. 4544 * - The second time in this call chain when nfs_delmap is called we 4545 * will find this caller in the delmap caller list and realize there 4546 * is no more work to do thus removing this caller from the list and 4547 * returning the error that was set in the callback execution. 4548 */ 4549 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4550 if (caller_found) { 4551 /* 4552 * 'error' is from the actual delmap operations. To avoid 4553 * hangs, we need to handle the return of EAGAIN differently 4554 * since this is what drives the callback execution. 4555 * In this case, we don't want to return EAGAIN and do the 4556 * callback execution because there are none to execute. 4557 */ 4558 if (error == EAGAIN) 4559 return (0); 4560 else 4561 return (error); 4562 } 4563 4564 /* current caller was not in the list */ 4565 delmap_call = nfs_init_delmapcall(); 4566 4567 mutex_enter(&rp->r_statelock); 4568 list_insert_tail(&rp->r_indelmap, delmap_call); 4569 mutex_exit(&rp->r_statelock); 4570 4571 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4572 4573 dmapp->vp = vp; 4574 dmapp->off = off; 4575 dmapp->addr = addr; 4576 dmapp->len = len; 4577 dmapp->prot = prot; 4578 dmapp->maxprot = maxprot; 4579 dmapp->flags = flags; 4580 dmapp->cr = cr; 4581 dmapp->caller = delmap_call; 4582 4583 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4584 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4585 4586 return (error ? error : EAGAIN); 4587 } 4588 4589 /* 4590 * Remove some pages from an mmap'd vnode. Just update the 4591 * count of pages. If doing close-to-open, then flush all 4592 * of the pages associated with this file. Otherwise, start 4593 * an asynchronous page flush to write out any dirty pages. 4594 * This will also associate a credential with the rnode which 4595 * can be used to write the pages. 4596 */ 4597 /* ARGSUSED */ 4598 static void 4599 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4600 { 4601 int error; 4602 rnode_t *rp; 4603 mntinfo_t *mi; 4604 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4605 4606 rp = VTOR(dmapp->vp); 4607 mi = VTOMI(dmapp->vp); 4608 4609 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4610 ASSERT(rp->r_mapcnt >= 0); 4611 4612 /* 4613 * Initiate a page flush if there are pages, the file system 4614 * was not mounted readonly, the segment was mapped shared, and 4615 * the pages themselves were writeable. 4616 */ 4617 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4618 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4619 mutex_enter(&rp->r_statelock); 4620 rp->r_flags |= RDIRTY; 4621 mutex_exit(&rp->r_statelock); 4622 /* 4623 * If this is a cross-zone access a sync putpage won't work, so 4624 * the best we can do is try an async putpage. That seems 4625 * better than something more draconian such as discarding the 4626 * dirty pages. 4627 */ 4628 if ((mi->mi_flags & MI_NOCTO) || 4629 nfs_zone() != mi->mi_zone) 4630 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4631 B_ASYNC, dmapp->cr); 4632 else 4633 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4634 0, dmapp->cr); 4635 if (!error) { 4636 mutex_enter(&rp->r_statelock); 4637 error = rp->r_error; 4638 rp->r_error = 0; 4639 mutex_exit(&rp->r_statelock); 4640 } 4641 } else 4642 error = 0; 4643 4644 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4645 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4646 B_INVAL, dmapp->cr); 4647 4648 dmapp->caller->error = error; 4649 (void) as_delete_callback(as, arg); 4650 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4651 } 4652 4653 /* ARGSUSED */ 4654 static int 4655 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 4656 { 4657 int error = 0; 4658 4659 if (nfs_zone() != VTOMI(vp)->mi_zone) 4660 return (EIO); 4661 /* 4662 * This looks a little weird because it's written in a general 4663 * manner but we make little use of cases. If cntl() ever gets 4664 * widely used, the outer switch will make more sense. 4665 */ 4666 4667 switch (cmd) { 4668 4669 /* 4670 * Large file spec - need to base answer new query with 4671 * hardcoded constant based on the protocol. 4672 */ 4673 case _PC_FILESIZEBITS: 4674 *valp = 32; 4675 return (0); 4676 4677 case _PC_LINK_MAX: 4678 case _PC_NAME_MAX: 4679 case _PC_PATH_MAX: 4680 case _PC_SYMLINK_MAX: 4681 case _PC_CHOWN_RESTRICTED: 4682 case _PC_NO_TRUNC: { 4683 mntinfo_t *mi; 4684 struct pathcnf *pc; 4685 4686 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4687 return (EINVAL); 4688 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4689 switch (cmd) { 4690 case _PC_LINK_MAX: 4691 *valp = pc->pc_link_max; 4692 break; 4693 case _PC_NAME_MAX: 4694 *valp = pc->pc_name_max; 4695 break; 4696 case _PC_PATH_MAX: 4697 case _PC_SYMLINK_MAX: 4698 *valp = pc->pc_path_max; 4699 break; 4700 case _PC_CHOWN_RESTRICTED: 4701 /* 4702 * if we got here, error is really a boolean which 4703 * indicates whether cmd is set or not. 4704 */ 4705 *valp = error ? 1 : 0; /* see above */ 4706 error = 0; 4707 break; 4708 case _PC_NO_TRUNC: 4709 /* 4710 * if we got here, error is really a boolean which 4711 * indicates whether cmd is set or not. 4712 */ 4713 *valp = error ? 1 : 0; /* see above */ 4714 error = 0; 4715 break; 4716 } 4717 return (error ? EINVAL : 0); 4718 } 4719 4720 case _PC_XATTR_EXISTS: 4721 *valp = 0; 4722 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4723 vnode_t *avp; 4724 rnode_t *rp; 4725 mntinfo_t *mi = VTOMI(vp); 4726 4727 if (!(mi->mi_flags & MI_EXTATTR)) 4728 return (0); 4729 4730 rp = VTOR(vp); 4731 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4732 INTR(vp))) 4733 return (EINTR); 4734 4735 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4736 if (error || avp == NULL) 4737 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4738 4739 nfs_rw_exit(&rp->r_rwlock); 4740 4741 if (error == 0 && avp != NULL) { 4742 VN_RELE(avp); 4743 *valp = 1; 4744 } 4745 } 4746 return (error ? EINVAL : 0); 4747 4748 case _PC_ACL_ENABLED: 4749 *valp = _ACL_ACLENT_ENABLED; 4750 return (0); 4751 4752 default: 4753 return (EINVAL); 4754 } 4755 } 4756 4757 /* 4758 * Called by async thread to do synchronous pageio. Do the i/o, wait 4759 * for it to complete, and cleanup the page list when done. 4760 */ 4761 static int 4762 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4763 int flags, cred_t *cr) 4764 { 4765 int error; 4766 4767 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4768 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4769 if (flags & B_READ) 4770 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4771 else 4772 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4773 return (error); 4774 } 4775 4776 static int 4777 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4778 int flags, cred_t *cr) 4779 { 4780 int error; 4781 rnode_t *rp; 4782 4783 if (pp == NULL) 4784 return (EINVAL); 4785 4786 if (io_off > MAXOFF32_T) 4787 return (EFBIG); 4788 if (nfs_zone() != VTOMI(vp)->mi_zone) 4789 return (EIO); 4790 rp = VTOR(vp); 4791 mutex_enter(&rp->r_statelock); 4792 rp->r_count++; 4793 mutex_exit(&rp->r_statelock); 4794 4795 if (flags & B_ASYNC) { 4796 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4797 nfs_sync_pageio); 4798 } else 4799 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4800 mutex_enter(&rp->r_statelock); 4801 rp->r_count--; 4802 cv_broadcast(&rp->r_cv); 4803 mutex_exit(&rp->r_statelock); 4804 return (error); 4805 } 4806 4807 static int 4808 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 4809 { 4810 int error; 4811 mntinfo_t *mi; 4812 4813 mi = VTOMI(vp); 4814 4815 if (nfs_zone() != mi->mi_zone) 4816 return (EIO); 4817 if (mi->mi_flags & MI_ACL) { 4818 error = acl_setacl2(vp, vsecattr, flag, cr); 4819 if (mi->mi_flags & MI_ACL) 4820 return (error); 4821 } 4822 4823 return (ENOSYS); 4824 } 4825 4826 static int 4827 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr) 4828 { 4829 int error; 4830 mntinfo_t *mi; 4831 4832 mi = VTOMI(vp); 4833 4834 if (nfs_zone() != mi->mi_zone) 4835 return (EIO); 4836 if (mi->mi_flags & MI_ACL) { 4837 error = acl_getacl2(vp, vsecattr, flag, cr); 4838 if (mi->mi_flags & MI_ACL) 4839 return (error); 4840 } 4841 4842 return (fs_fab_acl(vp, vsecattr, flag, cr)); 4843 } 4844 4845 static int 4846 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr) 4847 { 4848 int error; 4849 struct shrlock nshr; 4850 struct nfs_owner nfs_owner; 4851 netobj lm_fh; 4852 4853 if (nfs_zone() != VTOMI(vp)->mi_zone) 4854 return (EIO); 4855 4856 /* 4857 * check for valid cmd parameter 4858 */ 4859 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 4860 return (EINVAL); 4861 4862 /* 4863 * Check access permissions 4864 */ 4865 if (cmd == F_SHARE && 4866 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 4867 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 4868 return (EBADF); 4869 4870 /* 4871 * If the filesystem is mounted using local locking, pass the 4872 * request off to the local share code. 4873 */ 4874 if (VTOMI(vp)->mi_flags & MI_LLOCK) 4875 return (fs_shrlock(vp, cmd, shr, flag, cr)); 4876 4877 switch (cmd) { 4878 case F_SHARE: 4879 case F_UNSHARE: 4880 lm_fh.n_len = sizeof (fhandle_t); 4881 lm_fh.n_bytes = (char *)VTOFH(vp); 4882 4883 /* 4884 * If passed an owner that is too large to fit in an 4885 * nfs_owner it is likely a recursive call from the 4886 * lock manager client and pass it straight through. If 4887 * it is not a nfs_owner then simply return an error. 4888 */ 4889 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 4890 if (((struct nfs_owner *)shr->s_owner)->magic != 4891 NFS_OWNER_MAGIC) 4892 return (EINVAL); 4893 4894 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 4895 error = set_errno(error); 4896 } 4897 return (error); 4898 } 4899 /* 4900 * Remote share reservations owner is a combination of 4901 * a magic number, hostname, and the local owner 4902 */ 4903 bzero(&nfs_owner, sizeof (nfs_owner)); 4904 nfs_owner.magic = NFS_OWNER_MAGIC; 4905 (void) strncpy(nfs_owner.hname, uts_nodename(), 4906 sizeof (nfs_owner.hname)); 4907 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 4908 nshr.s_access = shr->s_access; 4909 nshr.s_deny = shr->s_deny; 4910 nshr.s_sysid = 0; 4911 nshr.s_pid = ttoproc(curthread)->p_pid; 4912 nshr.s_own_len = sizeof (nfs_owner); 4913 nshr.s_owner = (caddr_t)&nfs_owner; 4914 4915 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 4916 error = set_errno(error); 4917 } 4918 4919 break; 4920 4921 case F_HASREMOTELOCKS: 4922 /* 4923 * NFS client can't store remote locks itself 4924 */ 4925 shr->s_access = 0; 4926 error = 0; 4927 break; 4928 4929 default: 4930 error = EINVAL; 4931 break; 4932 } 4933 4934 return (error); 4935 } 4936