1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * 24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 25 * All rights reserved. 26 */ 27 28 #include <sys/param.h> 29 #include <sys/types.h> 30 #include <sys/systm.h> 31 #include <sys/cred.h> 32 #include <sys/time.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/file.h> 37 #include <sys/filio.h> 38 #include <sys/uio.h> 39 #include <sys/buf.h> 40 #include <sys/mman.h> 41 #include <sys/pathname.h> 42 #include <sys/dirent.h> 43 #include <sys/debug.h> 44 #include <sys/vmsystm.h> 45 #include <sys/fcntl.h> 46 #include <sys/flock.h> 47 #include <sys/swap.h> 48 #include <sys/errno.h> 49 #include <sys/strsubr.h> 50 #include <sys/sysmacros.h> 51 #include <sys/kmem.h> 52 #include <sys/cmn_err.h> 53 #include <sys/pathconf.h> 54 #include <sys/utsname.h> 55 #include <sys/dnlc.h> 56 #include <sys/acl.h> 57 #include <sys/atomic.h> 58 #include <sys/policy.h> 59 #include <sys/sdt.h> 60 61 #include <rpc/types.h> 62 #include <rpc/auth.h> 63 #include <rpc/clnt.h> 64 65 #include <nfs/nfs.h> 66 #include <nfs/nfs_clnt.h> 67 #include <nfs/rnode.h> 68 #include <nfs/nfs_acl.h> 69 #include <nfs/lm.h> 70 71 #include <vm/hat.h> 72 #include <vm/as.h> 73 #include <vm/page.h> 74 #include <vm/pvn.h> 75 #include <vm/seg.h> 76 #include <vm/seg_map.h> 77 #include <vm/seg_kpm.h> 78 #include <vm/seg_vn.h> 79 80 #include <fs/fs_subr.h> 81 82 #include <sys/ddi.h> 83 84 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int, 85 cred_t *); 86 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *); 87 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *); 88 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *); 89 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *); 90 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int); 91 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *, 92 caller_context_t *); 93 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *); 94 static int nfs_bio(struct buf *, cred_t *); 95 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *, 96 page_t *[], size_t, struct seg *, caddr_t, 97 enum seg_rw, cred_t *); 98 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *, 99 cred_t *); 100 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t, 101 int, cred_t *); 102 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t, 103 int, cred_t *); 104 static void nfs_delmap_callback(struct as *, void *, uint_t); 105 106 /* 107 * Error flags used to pass information about certain special errors 108 * which need to be handled specially. 109 */ 110 #define NFS_EOF -98 111 112 /* 113 * These are the vnode ops routines which implement the vnode interface to 114 * the networked file system. These routines just take their parameters, 115 * make them look networkish by putting the right info into interface structs, 116 * and then calling the appropriate remote routine(s) to do the work. 117 * 118 * Note on directory name lookup cacheing: If we detect a stale fhandle, 119 * we purge the directory cache relative to that vnode. This way, the 120 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for 121 * more details on rnode locking. 122 */ 123 124 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *); 125 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *, 126 caller_context_t *); 127 static int nfs_read(vnode_t *, struct uio *, int, cred_t *, 128 caller_context_t *); 129 static int nfs_write(vnode_t *, struct uio *, int, cred_t *, 130 caller_context_t *); 131 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *, 132 caller_context_t *); 133 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *, 134 caller_context_t *); 135 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *, 136 caller_context_t *); 137 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *); 138 static int nfs_accessx(void *, int, cred_t *); 139 static int nfs_readlink(vnode_t *, struct uio *, cred_t *, 140 caller_context_t *); 141 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *); 142 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *); 143 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *, 144 int, vnode_t *, cred_t *, caller_context_t *, 145 int *, pathname_t *); 146 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl, 147 int, vnode_t **, cred_t *, int, caller_context_t *, 148 vsecattr_t *); 149 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *, 150 int); 151 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *, 152 caller_context_t *, int); 153 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *, 154 caller_context_t *, int); 155 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **, 156 cred_t *, caller_context_t *, int, vsecattr_t *); 157 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *, 158 caller_context_t *, int); 159 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *, 160 cred_t *, caller_context_t *, int); 161 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *, 162 caller_context_t *, int); 163 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *); 164 static int nfs_rwlock(vnode_t *, int, caller_context_t *); 165 static void nfs_rwunlock(vnode_t *, int, caller_context_t *); 166 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *); 167 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *, 168 page_t *[], size_t, struct seg *, caddr_t, 169 enum seg_rw, cred_t *, caller_context_t *); 170 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *, 171 caller_context_t *); 172 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t, 173 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 174 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 175 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *); 176 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t, 177 struct flk_callback *, cred_t *, caller_context_t *); 178 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t, 179 cred_t *, caller_context_t *); 180 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *); 181 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t, 182 uint_t, uint_t, uint_t, cred_t *, caller_context_t *); 183 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *, 184 caller_context_t *); 185 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int, 186 cred_t *, caller_context_t *); 187 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 188 caller_context_t *); 189 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *, 190 caller_context_t *); 191 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *, 192 caller_context_t *); 193 194 struct vnodeops *nfs_vnodeops; 195 196 const fs_operation_def_t nfs_vnodeops_template[] = { 197 VOPNAME_OPEN, { .vop_open = nfs_open }, 198 VOPNAME_CLOSE, { .vop_close = nfs_close }, 199 VOPNAME_READ, { .vop_read = nfs_read }, 200 VOPNAME_WRITE, { .vop_write = nfs_write }, 201 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl }, 202 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr }, 203 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr }, 204 VOPNAME_ACCESS, { .vop_access = nfs_access }, 205 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup }, 206 VOPNAME_CREATE, { .vop_create = nfs_create }, 207 VOPNAME_REMOVE, { .vop_remove = nfs_remove }, 208 VOPNAME_LINK, { .vop_link = nfs_link }, 209 VOPNAME_RENAME, { .vop_rename = nfs_rename }, 210 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir }, 211 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir }, 212 VOPNAME_READDIR, { .vop_readdir = nfs_readdir }, 213 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink }, 214 VOPNAME_READLINK, { .vop_readlink = nfs_readlink }, 215 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync }, 216 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive }, 217 VOPNAME_FID, { .vop_fid = nfs_fid }, 218 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock }, 219 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock }, 220 VOPNAME_SEEK, { .vop_seek = nfs_seek }, 221 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock }, 222 VOPNAME_SPACE, { .vop_space = nfs_space }, 223 VOPNAME_REALVP, { .vop_realvp = nfs_realvp }, 224 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage }, 225 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage }, 226 VOPNAME_MAP, { .vop_map = nfs_map }, 227 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap }, 228 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap }, 229 VOPNAME_DUMP, { .vop_dump = nfs_dump }, 230 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf }, 231 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio }, 232 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr }, 233 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr }, 234 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock }, 235 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 236 NULL, NULL 237 }; 238 239 /* 240 * XXX: This is referenced in modstubs.s 241 */ 242 struct vnodeops * 243 nfs_getvnodeops(void) 244 { 245 return (nfs_vnodeops); 246 } 247 248 /* ARGSUSED */ 249 static int 250 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 251 { 252 int error; 253 struct vattr va; 254 rnode_t *rp; 255 vnode_t *vp; 256 257 vp = *vpp; 258 rp = VTOR(vp); 259 if (nfs_zone() != VTOMI(vp)->mi_zone) 260 return (EIO); 261 mutex_enter(&rp->r_statelock); 262 if (rp->r_cred == NULL) { 263 crhold(cr); 264 rp->r_cred = cr; 265 } 266 mutex_exit(&rp->r_statelock); 267 268 /* 269 * If there is no cached data or if close-to-open 270 * consistency checking is turned off, we can avoid 271 * the over the wire getattr. Otherwise, if the 272 * file system is mounted readonly, then just verify 273 * the caches are up to date using the normal mechanism. 274 * Else, if the file is not mmap'd, then just mark 275 * the attributes as timed out. They will be refreshed 276 * and the caches validated prior to being used. 277 * Else, the file system is mounted writeable so 278 * force an over the wire GETATTR in order to ensure 279 * that all cached data is valid. 280 */ 281 if (vp->v_count > 1 || 282 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) && 283 !(VTOMI(vp)->mi_flags & MI_NOCTO))) { 284 if (vn_is_readonly(vp)) 285 error = nfs_validate_caches(vp, cr); 286 else if (rp->r_mapcnt == 0 && vp->v_count == 1) { 287 PURGE_ATTRCACHE(vp); 288 error = 0; 289 } else { 290 va.va_mask = AT_ALL; 291 error = nfs_getattr_otw(vp, &va, cr); 292 } 293 } else 294 error = 0; 295 296 return (error); 297 } 298 299 /* ARGSUSED */ 300 static int 301 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 302 caller_context_t *ct) 303 { 304 rnode_t *rp; 305 int error; 306 struct vattr va; 307 308 /* 309 * zone_enter(2) prevents processes from changing zones with NFS files 310 * open; if we happen to get here from the wrong zone we can't do 311 * anything over the wire. 312 */ 313 if (VTOMI(vp)->mi_zone != nfs_zone()) { 314 /* 315 * We could attempt to clean up locks, except we're sure 316 * that the current process didn't acquire any locks on 317 * the file: any attempt to lock a file belong to another zone 318 * will fail, and one can't lock an NFS file and then change 319 * zones, as that fails too. 320 * 321 * Returning an error here is the sane thing to do. A 322 * subsequent call to VN_RELE() which translates to a 323 * nfs_inactive() will clean up state: if the zone of the 324 * vnode's origin is still alive and kicking, an async worker 325 * thread will handle the request (from the correct zone), and 326 * everything (minus the final nfs_getattr_otw() call) should 327 * be OK. If the zone is going away nfs_async_inactive() will 328 * throw away cached pages inline. 329 */ 330 return (EIO); 331 } 332 333 /* 334 * If we are using local locking for this filesystem, then 335 * release all of the SYSV style record locks. Otherwise, 336 * we are doing network locking and we need to release all 337 * of the network locks. All of the locks held by this 338 * process on this file are released no matter what the 339 * incoming reference count is. 340 */ 341 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 342 cleanlocks(vp, ttoproc(curthread)->p_pid, 0); 343 cleanshares(vp, ttoproc(curthread)->p_pid); 344 } else 345 nfs_lockrelease(vp, flag, offset, cr); 346 347 if (count > 1) 348 return (0); 349 350 /* 351 * If the file has been `unlinked', then purge the 352 * DNLC so that this vnode will get reycled quicker 353 * and the .nfs* file on the server will get removed. 354 */ 355 rp = VTOR(vp); 356 if (rp->r_unldvp != NULL) 357 dnlc_purge_vp(vp); 358 359 /* 360 * If the file was open for write and there are pages, 361 * then if the file system was mounted using the "no-close- 362 * to-open" semantics, then start an asynchronous flush 363 * of the all of the pages in the file. 364 * else the file system was not mounted using the "no-close- 365 * to-open" semantics, then do a synchronous flush and 366 * commit of all of the dirty and uncommitted pages. 367 * 368 * The asynchronous flush of the pages in the "nocto" path 369 * mostly just associates a cred pointer with the rnode so 370 * writes which happen later will have a better chance of 371 * working. It also starts the data being written to the 372 * server, but without unnecessarily delaying the application. 373 */ 374 if ((flag & FWRITE) && vn_has_cached_data(vp)) { 375 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) { 376 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC, 377 cr, ct); 378 if (error == EAGAIN) 379 error = 0; 380 } else 381 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 382 if (!error) { 383 mutex_enter(&rp->r_statelock); 384 error = rp->r_error; 385 rp->r_error = 0; 386 mutex_exit(&rp->r_statelock); 387 } 388 } else { 389 mutex_enter(&rp->r_statelock); 390 error = rp->r_error; 391 rp->r_error = 0; 392 mutex_exit(&rp->r_statelock); 393 } 394 395 /* 396 * If RWRITEATTR is set, then issue an over the wire GETATTR to 397 * refresh the attribute cache with a set of attributes which 398 * weren't returned from a WRITE. This will enable the close- 399 * to-open processing to work. 400 */ 401 if (rp->r_flags & RWRITEATTR) 402 (void) nfs_getattr_otw(vp, &va, cr); 403 404 return (error); 405 } 406 407 /* ARGSUSED */ 408 static int 409 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 410 caller_context_t *ct) 411 { 412 rnode_t *rp; 413 u_offset_t off; 414 offset_t diff; 415 int on; 416 size_t n; 417 caddr_t base; 418 uint_t flags; 419 int error; 420 mntinfo_t *mi; 421 422 rp = VTOR(vp); 423 mi = VTOMI(vp); 424 425 if (nfs_zone() != mi->mi_zone) 426 return (EIO); 427 428 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 429 430 if (vp->v_type != VREG) 431 return (EISDIR); 432 433 if (uiop->uio_resid == 0) 434 return (0); 435 436 if (uiop->uio_loffset > MAXOFF32_T) 437 return (EFBIG); 438 439 if (uiop->uio_loffset < 0 || 440 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T) 441 return (EINVAL); 442 443 /* 444 * Bypass VM if caching has been disabled (e.g., locking) or if 445 * using client-side direct I/O and the file is not mmap'd and 446 * there are no cached pages. 447 */ 448 if ((vp->v_flag & VNOCACHE) || 449 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 450 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 451 !vn_has_cached_data(vp))) { 452 size_t bufsize; 453 size_t resid = 0; 454 455 /* 456 * Let's try to do read in as large a chunk as we can 457 * (Filesystem (NFS client) bsize if possible/needed). 458 * For V3, this is 32K and for V2, this is 8K. 459 */ 460 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread); 461 base = kmem_alloc(bufsize, KM_SLEEP); 462 do { 463 n = MIN(uiop->uio_resid, bufsize); 464 error = nfsread(vp, base, uiop->uio_offset, n, 465 &resid, cr); 466 if (!error) { 467 n -= resid; 468 error = uiomove(base, n, UIO_READ, uiop); 469 } 470 } while (!error && uiop->uio_resid > 0 && n > 0); 471 kmem_free(base, bufsize); 472 return (error); 473 } 474 475 error = 0; 476 477 do { 478 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 479 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 480 n = MIN(MAXBSIZE - on, uiop->uio_resid); 481 482 error = nfs_validate_caches(vp, cr); 483 if (error) 484 break; 485 486 mutex_enter(&rp->r_statelock); 487 while (rp->r_flags & RINCACHEPURGE) { 488 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 489 mutex_exit(&rp->r_statelock); 490 return (EINTR); 491 } 492 } 493 diff = rp->r_size - uiop->uio_loffset; 494 mutex_exit(&rp->r_statelock); 495 if (diff <= 0) 496 break; 497 if (diff < n) 498 n = (size_t)diff; 499 500 if (vpm_enable) { 501 /* 502 * Copy data. 503 */ 504 error = vpm_data_copy(vp, off + on, n, uiop, 505 1, NULL, 0, S_READ); 506 } else { 507 base = segmap_getmapflt(segkmap, vp, off + on, n, 508 1, S_READ); 509 error = uiomove(base + on, n, UIO_READ, uiop); 510 } 511 512 if (!error) { 513 /* 514 * If read a whole block or read to eof, 515 * won't need this buffer again soon. 516 */ 517 mutex_enter(&rp->r_statelock); 518 if (n + on == MAXBSIZE || 519 uiop->uio_loffset == rp->r_size) 520 flags = SM_DONTNEED; 521 else 522 flags = 0; 523 mutex_exit(&rp->r_statelock); 524 if (vpm_enable) { 525 error = vpm_sync_pages(vp, off, n, flags); 526 } else { 527 error = segmap_release(segkmap, base, flags); 528 } 529 } else { 530 if (vpm_enable) { 531 (void) vpm_sync_pages(vp, off, n, 0); 532 } else { 533 (void) segmap_release(segkmap, base, 0); 534 } 535 } 536 } while (!error && uiop->uio_resid > 0); 537 538 return (error); 539 } 540 541 /* ARGSUSED */ 542 static int 543 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr, 544 caller_context_t *ct) 545 { 546 rnode_t *rp; 547 u_offset_t off; 548 caddr_t base; 549 uint_t flags; 550 int remainder; 551 size_t n; 552 int on; 553 int error; 554 int resid; 555 offset_t offset; 556 rlim_t limit; 557 mntinfo_t *mi; 558 559 rp = VTOR(vp); 560 561 mi = VTOMI(vp); 562 if (nfs_zone() != mi->mi_zone) 563 return (EIO); 564 if (vp->v_type != VREG) 565 return (EISDIR); 566 567 if (uiop->uio_resid == 0) 568 return (0); 569 570 if (ioflag & FAPPEND) { 571 struct vattr va; 572 573 /* 574 * Must serialize if appending. 575 */ 576 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) { 577 nfs_rw_exit(&rp->r_rwlock); 578 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, 579 INTR(vp))) 580 return (EINTR); 581 } 582 583 va.va_mask = AT_SIZE; 584 error = nfsgetattr(vp, &va, cr); 585 if (error) 586 return (error); 587 uiop->uio_loffset = va.va_size; 588 } 589 590 if (uiop->uio_loffset > MAXOFF32_T) 591 return (EFBIG); 592 593 offset = uiop->uio_loffset + uiop->uio_resid; 594 595 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T) 596 return (EINVAL); 597 598 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) { 599 limit = MAXOFF32_T; 600 } else { 601 limit = (rlim_t)uiop->uio_llimit; 602 } 603 604 /* 605 * Check to make sure that the process will not exceed 606 * its limit on file size. It is okay to write up to 607 * the limit, but not beyond. Thus, the write which 608 * reaches the limit will be short and the next write 609 * will return an error. 610 */ 611 remainder = 0; 612 if (offset > limit) { 613 remainder = offset - limit; 614 uiop->uio_resid = limit - uiop->uio_offset; 615 if (uiop->uio_resid <= 0) { 616 proc_t *p = ttoproc(curthread); 617 618 uiop->uio_resid += remainder; 619 mutex_enter(&p->p_lock); 620 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], 621 p->p_rctls, p, RCA_UNSAFE_SIGINFO); 622 mutex_exit(&p->p_lock); 623 return (EFBIG); 624 } 625 } 626 627 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) 628 return (EINTR); 629 630 /* 631 * Bypass VM if caching has been disabled (e.g., locking) or if 632 * using client-side direct I/O and the file is not mmap'd and 633 * there are no cached pages. 634 */ 635 if ((vp->v_flag & VNOCACHE) || 636 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) && 637 rp->r_mapcnt == 0 && rp->r_inmap == 0 && 638 !vn_has_cached_data(vp))) { 639 size_t bufsize; 640 int count; 641 uint_t org_offset; 642 643 nfs_fwrite: 644 if (rp->r_flags & RSTALE) { 645 resid = uiop->uio_resid; 646 offset = uiop->uio_loffset; 647 error = rp->r_error; 648 /* 649 * A close may have cleared r_error, if so, 650 * propagate ESTALE error return properly 651 */ 652 if (error == 0) 653 error = ESTALE; 654 goto bottom; 655 } 656 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite); 657 base = kmem_alloc(bufsize, KM_SLEEP); 658 do { 659 resid = uiop->uio_resid; 660 offset = uiop->uio_loffset; 661 count = MIN(uiop->uio_resid, bufsize); 662 org_offset = uiop->uio_offset; 663 error = uiomove(base, count, UIO_WRITE, uiop); 664 if (!error) { 665 error = nfswrite(vp, base, org_offset, 666 count, cr); 667 } 668 } while (!error && uiop->uio_resid > 0); 669 kmem_free(base, bufsize); 670 goto bottom; 671 } 672 673 do { 674 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */ 675 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */ 676 n = MIN(MAXBSIZE - on, uiop->uio_resid); 677 678 resid = uiop->uio_resid; 679 offset = uiop->uio_loffset; 680 681 if (rp->r_flags & RSTALE) { 682 error = rp->r_error; 683 /* 684 * A close may have cleared r_error, if so, 685 * propagate ESTALE error return properly 686 */ 687 if (error == 0) 688 error = ESTALE; 689 break; 690 } 691 692 /* 693 * Don't create dirty pages faster than they 694 * can be cleaned so that the system doesn't 695 * get imbalanced. If the async queue is 696 * maxed out, then wait for it to drain before 697 * creating more dirty pages. Also, wait for 698 * any threads doing pagewalks in the vop_getattr 699 * entry points so that they don't block for 700 * long periods. 701 */ 702 mutex_enter(&rp->r_statelock); 703 while ((mi->mi_max_threads != 0 && 704 rp->r_awcount > 2 * mi->mi_max_threads) || 705 rp->r_gcount > 0) { 706 if (INTR(vp)) { 707 klwp_t *lwp = ttolwp(curthread); 708 709 if (lwp != NULL) 710 lwp->lwp_nostop++; 711 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) { 712 mutex_exit(&rp->r_statelock); 713 if (lwp != NULL) 714 lwp->lwp_nostop--; 715 error = EINTR; 716 goto bottom; 717 } 718 if (lwp != NULL) 719 lwp->lwp_nostop--; 720 } else 721 cv_wait(&rp->r_cv, &rp->r_statelock); 722 } 723 mutex_exit(&rp->r_statelock); 724 725 /* 726 * Touch the page and fault it in if it is not in core 727 * before segmap_getmapflt or vpm_data_copy can lock it. 728 * This is to avoid the deadlock if the buffer is mapped 729 * to the same file through mmap which we want to write. 730 */ 731 uio_prefaultpages((long)n, uiop); 732 733 if (vpm_enable) { 734 /* 735 * It will use kpm mappings, so no need to 736 * pass an address. 737 */ 738 error = writerp(rp, NULL, n, uiop, 0); 739 } else { 740 if (segmap_kpm) { 741 int pon = uiop->uio_loffset & PAGEOFFSET; 742 size_t pn = MIN(PAGESIZE - pon, 743 uiop->uio_resid); 744 int pagecreate; 745 746 mutex_enter(&rp->r_statelock); 747 pagecreate = (pon == 0) && (pn == PAGESIZE || 748 uiop->uio_loffset + pn >= rp->r_size); 749 mutex_exit(&rp->r_statelock); 750 751 base = segmap_getmapflt(segkmap, vp, off + on, 752 pn, !pagecreate, S_WRITE); 753 754 error = writerp(rp, base + pon, n, uiop, 755 pagecreate); 756 757 } else { 758 base = segmap_getmapflt(segkmap, vp, off + on, 759 n, 0, S_READ); 760 error = writerp(rp, base + on, n, uiop, 0); 761 } 762 } 763 764 if (!error) { 765 if (mi->mi_flags & MI_NOAC) 766 flags = SM_WRITE; 767 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) { 768 /* 769 * Have written a whole block. 770 * Start an asynchronous write 771 * and mark the buffer to 772 * indicate that it won't be 773 * needed again soon. 774 */ 775 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED; 776 } else 777 flags = 0; 778 if ((ioflag & (FSYNC|FDSYNC)) || 779 (rp->r_flags & ROUTOFSPACE)) { 780 flags &= ~SM_ASYNC; 781 flags |= SM_WRITE; 782 } 783 if (vpm_enable) { 784 error = vpm_sync_pages(vp, off, n, flags); 785 } else { 786 error = segmap_release(segkmap, base, flags); 787 } 788 } else { 789 if (vpm_enable) { 790 (void) vpm_sync_pages(vp, off, n, 0); 791 } else { 792 (void) segmap_release(segkmap, base, 0); 793 } 794 /* 795 * In the event that we got an access error while 796 * faulting in a page for a write-only file just 797 * force a write. 798 */ 799 if (error == EACCES) 800 goto nfs_fwrite; 801 } 802 } while (!error && uiop->uio_resid > 0); 803 804 bottom: 805 if (error) { 806 uiop->uio_resid = resid + remainder; 807 uiop->uio_loffset = offset; 808 } else 809 uiop->uio_resid += remainder; 810 811 nfs_rw_exit(&rp->r_lkserlock); 812 813 return (error); 814 } 815 816 /* 817 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED} 818 */ 819 static int 820 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len, 821 int flags, cred_t *cr) 822 { 823 struct buf *bp; 824 int error; 825 826 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 827 bp = pageio_setup(pp, len, vp, flags); 828 ASSERT(bp != NULL); 829 830 /* 831 * pageio_setup should have set b_addr to 0. This 832 * is correct since we want to do I/O on a page 833 * boundary. bp_mapin will use this addr to calculate 834 * an offset, and then set b_addr to the kernel virtual 835 * address it allocated for us. 836 */ 837 ASSERT(bp->b_un.b_addr == 0); 838 839 bp->b_edev = 0; 840 bp->b_dev = 0; 841 bp->b_lblkno = lbtodb(off); 842 bp->b_file = vp; 843 bp->b_offset = (offset_t)off; 844 bp_mapin(bp); 845 846 error = nfs_bio(bp, cr); 847 848 bp_mapout(bp); 849 pageio_done(bp); 850 851 return (error); 852 } 853 854 /* 855 * Write to file. Writes to remote server in largest size 856 * chunks that the server can handle. Write is synchronous. 857 */ 858 static int 859 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr) 860 { 861 rnode_t *rp; 862 mntinfo_t *mi; 863 struct nfswriteargs wa; 864 struct nfsattrstat ns; 865 int error; 866 int tsize; 867 int douprintf; 868 869 douprintf = 1; 870 871 rp = VTOR(vp); 872 mi = VTOMI(vp); 873 874 ASSERT(nfs_zone() == mi->mi_zone); 875 876 wa.wa_args = &wa.wa_args_buf; 877 wa.wa_fhandle = *VTOFH(vp); 878 879 do { 880 tsize = MIN(mi->mi_curwrite, count); 881 wa.wa_data = base; 882 wa.wa_begoff = offset; 883 wa.wa_totcount = tsize; 884 wa.wa_count = tsize; 885 wa.wa_offset = offset; 886 887 if (mi->mi_io_kstats) { 888 mutex_enter(&mi->mi_lock); 889 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 890 mutex_exit(&mi->mi_lock); 891 } 892 wa.wa_mblk = NULL; 893 do { 894 error = rfs2call(mi, RFS_WRITE, 895 xdr_writeargs, (caddr_t)&wa, 896 xdr_attrstat, (caddr_t)&ns, cr, 897 &douprintf, &ns.ns_status, 0, NULL); 898 } while (error == ENFS_TRYAGAIN); 899 if (mi->mi_io_kstats) { 900 mutex_enter(&mi->mi_lock); 901 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 902 mutex_exit(&mi->mi_lock); 903 } 904 905 if (!error) { 906 error = geterrno(ns.ns_status); 907 /* 908 * Can't check for stale fhandle and purge caches 909 * here because pages are held by nfs_getpage. 910 * Just mark the attribute cache as timed out 911 * and set RWRITEATTR to indicate that the file 912 * was modified with a WRITE operation. 913 */ 914 if (!error) { 915 count -= tsize; 916 base += tsize; 917 offset += tsize; 918 if (mi->mi_io_kstats) { 919 mutex_enter(&mi->mi_lock); 920 KSTAT_IO_PTR(mi->mi_io_kstats)-> 921 writes++; 922 KSTAT_IO_PTR(mi->mi_io_kstats)-> 923 nwritten += tsize; 924 mutex_exit(&mi->mi_lock); 925 } 926 lwp_stat_update(LWP_STAT_OUBLK, 1); 927 mutex_enter(&rp->r_statelock); 928 PURGE_ATTRCACHE_LOCKED(rp); 929 rp->r_flags |= RWRITEATTR; 930 mutex_exit(&rp->r_statelock); 931 } 932 } 933 } while (!error && count); 934 935 return (error); 936 } 937 938 /* 939 * Read from a file. Reads data in largest chunks our interface can handle. 940 */ 941 static int 942 nfsread(vnode_t *vp, caddr_t base, uint_t offset, 943 int count, size_t *residp, cred_t *cr) 944 { 945 mntinfo_t *mi; 946 struct nfsreadargs ra; 947 struct nfsrdresult rr; 948 int tsize; 949 int error; 950 int douprintf; 951 failinfo_t fi; 952 rnode_t *rp; 953 struct vattr va; 954 hrtime_t t; 955 956 rp = VTOR(vp); 957 mi = VTOMI(vp); 958 959 ASSERT(nfs_zone() == mi->mi_zone); 960 961 douprintf = 1; 962 963 ra.ra_fhandle = *VTOFH(vp); 964 965 fi.vp = vp; 966 fi.fhp = (caddr_t)&ra.ra_fhandle; 967 fi.copyproc = nfscopyfh; 968 fi.lookupproc = nfslookup; 969 fi.xattrdirproc = acl_getxattrdir2; 970 971 do { 972 if (mi->mi_io_kstats) { 973 mutex_enter(&mi->mi_lock); 974 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 975 mutex_exit(&mi->mi_lock); 976 } 977 978 do { 979 tsize = MIN(mi->mi_curread, count); 980 rr.rr_data = base; 981 ra.ra_offset = offset; 982 ra.ra_totcount = tsize; 983 ra.ra_count = tsize; 984 ra.ra_data = base; 985 t = gethrtime(); 986 error = rfs2call(mi, RFS_READ, 987 xdr_readargs, (caddr_t)&ra, 988 xdr_rdresult, (caddr_t)&rr, cr, 989 &douprintf, &rr.rr_status, 0, &fi); 990 } while (error == ENFS_TRYAGAIN); 991 992 if (mi->mi_io_kstats) { 993 mutex_enter(&mi->mi_lock); 994 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 995 mutex_exit(&mi->mi_lock); 996 } 997 998 if (!error) { 999 error = geterrno(rr.rr_status); 1000 if (!error) { 1001 count -= rr.rr_count; 1002 base += rr.rr_count; 1003 offset += rr.rr_count; 1004 if (mi->mi_io_kstats) { 1005 mutex_enter(&mi->mi_lock); 1006 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 1007 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 1008 rr.rr_count; 1009 mutex_exit(&mi->mi_lock); 1010 } 1011 lwp_stat_update(LWP_STAT_INBLK, 1); 1012 } 1013 } 1014 } while (!error && count && rr.rr_count == tsize); 1015 1016 *residp = count; 1017 1018 if (!error) { 1019 /* 1020 * Since no error occurred, we have the current 1021 * attributes and we need to do a cache check and then 1022 * potentially update the cached attributes. We can't 1023 * use the normal attribute check and cache mechanisms 1024 * because they might cause a cache flush which would 1025 * deadlock. Instead, we just check the cache to see 1026 * if the attributes have changed. If it is, then we 1027 * just mark the attributes as out of date. The next 1028 * time that the attributes are checked, they will be 1029 * out of date, new attributes will be fetched, and 1030 * the page cache will be flushed. If the attributes 1031 * weren't changed, then we just update the cached 1032 * attributes with these attributes. 1033 */ 1034 /* 1035 * If NFS_ACL is supported on the server, then the 1036 * attributes returned by server may have minimal 1037 * permissions sometimes denying access to users having 1038 * proper access. To get the proper attributes, mark 1039 * the attributes as expired so that they will be 1040 * regotten via the NFS_ACL GETATTR2 procedure. 1041 */ 1042 error = nattr_to_vattr(vp, &rr.rr_attr, &va); 1043 mutex_enter(&rp->r_statelock); 1044 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) || 1045 (mi->mi_flags & MI_ACL)) { 1046 mutex_exit(&rp->r_statelock); 1047 PURGE_ATTRCACHE(vp); 1048 } else { 1049 if (rp->r_mtime <= t) { 1050 nfs_attrcache_va(vp, &va); 1051 } 1052 mutex_exit(&rp->r_statelock); 1053 } 1054 } 1055 1056 return (error); 1057 } 1058 1059 /* ARGSUSED */ 1060 static int 1061 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp, 1062 caller_context_t *ct) 1063 { 1064 1065 if (nfs_zone() != VTOMI(vp)->mi_zone) 1066 return (EIO); 1067 switch (cmd) { 1068 case _FIODIRECTIO: 1069 return (nfs_directio(vp, (int)arg, cr)); 1070 default: 1071 return (ENOTTY); 1072 } 1073 } 1074 1075 /* ARGSUSED */ 1076 static int 1077 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1078 caller_context_t *ct) 1079 { 1080 int error; 1081 rnode_t *rp; 1082 1083 if (nfs_zone() != VTOMI(vp)->mi_zone) 1084 return (EIO); 1085 /* 1086 * If it has been specified that the return value will 1087 * just be used as a hint, and we are only being asked 1088 * for size, fsid or rdevid, then return the client's 1089 * notion of these values without checking to make sure 1090 * that the attribute cache is up to date. 1091 * The whole point is to avoid an over the wire GETATTR 1092 * call. 1093 */ 1094 rp = VTOR(vp); 1095 if (flags & ATTR_HINT) { 1096 if (vap->va_mask == 1097 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) { 1098 mutex_enter(&rp->r_statelock); 1099 if (vap->va_mask | AT_SIZE) 1100 vap->va_size = rp->r_size; 1101 if (vap->va_mask | AT_FSID) 1102 vap->va_fsid = rp->r_attr.va_fsid; 1103 if (vap->va_mask | AT_RDEV) 1104 vap->va_rdev = rp->r_attr.va_rdev; 1105 mutex_exit(&rp->r_statelock); 1106 return (0); 1107 } 1108 } 1109 1110 /* 1111 * Only need to flush pages if asking for the mtime 1112 * and if there any dirty pages or any outstanding 1113 * asynchronous (write) requests for this file. 1114 */ 1115 if (vap->va_mask & AT_MTIME) { 1116 if (vn_has_cached_data(vp) && 1117 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) { 1118 mutex_enter(&rp->r_statelock); 1119 rp->r_gcount++; 1120 mutex_exit(&rp->r_statelock); 1121 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1122 mutex_enter(&rp->r_statelock); 1123 if (error && (error == ENOSPC || error == EDQUOT)) { 1124 if (!rp->r_error) 1125 rp->r_error = error; 1126 } 1127 if (--rp->r_gcount == 0) 1128 cv_broadcast(&rp->r_cv); 1129 mutex_exit(&rp->r_statelock); 1130 } 1131 } 1132 1133 return (nfsgetattr(vp, vap, cr)); 1134 } 1135 1136 /*ARGSUSED4*/ 1137 static int 1138 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr, 1139 caller_context_t *ct) 1140 { 1141 int error; 1142 uint_t mask; 1143 struct vattr va; 1144 1145 mask = vap->va_mask; 1146 1147 if (mask & AT_NOSET) 1148 return (EINVAL); 1149 1150 if ((mask & AT_SIZE) && 1151 vap->va_type == VREG && 1152 vap->va_size > MAXOFF32_T) 1153 return (EFBIG); 1154 1155 if (nfs_zone() != VTOMI(vp)->mi_zone) 1156 return (EIO); 1157 1158 va.va_mask = AT_UID | AT_MODE; 1159 1160 error = nfsgetattr(vp, &va, cr); 1161 if (error) 1162 return (error); 1163 1164 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx, 1165 vp); 1166 1167 if (error) 1168 return (error); 1169 1170 return (nfssetattr(vp, vap, flags, cr)); 1171 } 1172 1173 static int 1174 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr) 1175 { 1176 int error; 1177 uint_t mask; 1178 struct nfssaargs args; 1179 struct nfsattrstat ns; 1180 int douprintf; 1181 rnode_t *rp; 1182 struct vattr va; 1183 mode_t omode; 1184 mntinfo_t *mi; 1185 vsecattr_t *vsp; 1186 hrtime_t t; 1187 1188 mask = vap->va_mask; 1189 1190 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 1191 1192 rp = VTOR(vp); 1193 1194 /* 1195 * Only need to flush pages if there are any pages and 1196 * if the file is marked as dirty in some fashion. The 1197 * file must be flushed so that we can accurately 1198 * determine the size of the file and the cached data 1199 * after the SETATTR returns. A file is considered to 1200 * be dirty if it is either marked with RDIRTY, has 1201 * outstanding i/o's active, or is mmap'd. In this 1202 * last case, we can't tell whether there are dirty 1203 * pages, so we flush just to be sure. 1204 */ 1205 if (vn_has_cached_data(vp) && 1206 ((rp->r_flags & RDIRTY) || 1207 rp->r_count > 0 || 1208 rp->r_mapcnt > 0)) { 1209 ASSERT(vp->v_type != VCHR); 1210 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL); 1211 if (error && (error == ENOSPC || error == EDQUOT)) { 1212 mutex_enter(&rp->r_statelock); 1213 if (!rp->r_error) 1214 rp->r_error = error; 1215 mutex_exit(&rp->r_statelock); 1216 } 1217 } 1218 1219 /* 1220 * If the system call was utime(2) or utimes(2) and the 1221 * application did not specify the times, then set the 1222 * mtime nanosecond field to 1 billion. This will get 1223 * translated from 1 billion nanoseconds to 1 million 1224 * microseconds in the over the wire request. The 1225 * server will use 1 million in the microsecond field 1226 * to tell whether both the mtime and atime should be 1227 * set to the server's current time. 1228 * 1229 * This is an overload of the protocol and should be 1230 * documented in the NFS Version 2 protocol specification. 1231 */ 1232 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) { 1233 vap->va_mtime.tv_nsec = 1000000000; 1234 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) && 1235 NFS_TIME_T_OK(vap->va_atime.tv_sec)) { 1236 error = vattr_to_sattr(vap, &args.saa_sa); 1237 } else { 1238 /* 1239 * Use server times. vap time values will not be used. 1240 * To ensure no time overflow, make sure vap has 1241 * valid values, but retain the original values. 1242 */ 1243 timestruc_t mtime = vap->va_mtime; 1244 timestruc_t atime = vap->va_atime; 1245 time_t now; 1246 1247 now = gethrestime_sec(); 1248 if (NFS_TIME_T_OK(now)) { 1249 /* Just in case server does not know of this */ 1250 vap->va_mtime.tv_sec = now; 1251 vap->va_atime.tv_sec = now; 1252 } else { 1253 vap->va_mtime.tv_sec = 0; 1254 vap->va_atime.tv_sec = 0; 1255 } 1256 error = vattr_to_sattr(vap, &args.saa_sa); 1257 /* set vap times back on */ 1258 vap->va_mtime = mtime; 1259 vap->va_atime = atime; 1260 } 1261 } else { 1262 /* Either do not set times or use the client specified times */ 1263 error = vattr_to_sattr(vap, &args.saa_sa); 1264 } 1265 if (error) { 1266 /* req time field(s) overflow - return immediately */ 1267 return (error); 1268 } 1269 args.saa_fh = *VTOFH(vp); 1270 1271 va.va_mask = AT_MODE; 1272 error = nfsgetattr(vp, &va, cr); 1273 if (error) 1274 return (error); 1275 omode = va.va_mode; 1276 1277 mi = VTOMI(vp); 1278 1279 douprintf = 1; 1280 1281 t = gethrtime(); 1282 1283 error = rfs2call(mi, RFS_SETATTR, 1284 xdr_saargs, (caddr_t)&args, 1285 xdr_attrstat, (caddr_t)&ns, cr, 1286 &douprintf, &ns.ns_status, 0, NULL); 1287 1288 /* 1289 * Purge the access cache and ACL cache if changing either the 1290 * owner of the file, the group owner, or the mode. These may 1291 * change the access permissions of the file, so purge old 1292 * information and start over again. 1293 */ 1294 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) { 1295 (void) nfs_access_purge_rp(rp); 1296 if (rp->r_secattr != NULL) { 1297 mutex_enter(&rp->r_statelock); 1298 vsp = rp->r_secattr; 1299 rp->r_secattr = NULL; 1300 mutex_exit(&rp->r_statelock); 1301 if (vsp != NULL) 1302 nfs_acl_free(vsp); 1303 } 1304 } 1305 1306 if (!error) { 1307 error = geterrno(ns.ns_status); 1308 if (!error) { 1309 /* 1310 * If changing the size of the file, invalidate 1311 * any local cached data which is no longer part 1312 * of the file. We also possibly invalidate the 1313 * last page in the file. We could use 1314 * pvn_vpzero(), but this would mark the page as 1315 * modified and require it to be written back to 1316 * the server for no particularly good reason. 1317 * This way, if we access it, then we bring it 1318 * back in. A read should be cheaper than a 1319 * write. 1320 */ 1321 if (mask & AT_SIZE) { 1322 nfs_invalidate_pages(vp, 1323 (vap->va_size & PAGEMASK), cr); 1324 } 1325 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr); 1326 /* 1327 * If NFS_ACL is supported on the server, then the 1328 * attributes returned by server may have minimal 1329 * permissions sometimes denying access to users having 1330 * proper access. To get the proper attributes, mark 1331 * the attributes as expired so that they will be 1332 * regotten via the NFS_ACL GETATTR2 procedure. 1333 */ 1334 if (mi->mi_flags & MI_ACL) { 1335 PURGE_ATTRCACHE(vp); 1336 } 1337 /* 1338 * This next check attempts to deal with NFS 1339 * servers which can not handle increasing 1340 * the size of the file via setattr. Most 1341 * of these servers do not return an error, 1342 * but do not change the size of the file. 1343 * Hence, this check and then attempt to set 1344 * the file size by writing 1 byte at the 1345 * offset of the end of the file that we need. 1346 */ 1347 if ((mask & AT_SIZE) && 1348 ns.ns_attr.na_size < (uint32_t)vap->va_size) { 1349 char zb = '\0'; 1350 1351 error = nfswrite(vp, &zb, 1352 vap->va_size - sizeof (zb), 1353 sizeof (zb), cr); 1354 } 1355 /* 1356 * Some servers will change the mode to clear the setuid 1357 * and setgid bits when changing the uid or gid. The 1358 * client needs to compensate appropriately. 1359 */ 1360 if (mask & (AT_UID | AT_GID)) { 1361 int terror; 1362 1363 va.va_mask = AT_MODE; 1364 terror = nfsgetattr(vp, &va, cr); 1365 if (!terror && 1366 (((mask & AT_MODE) && 1367 va.va_mode != vap->va_mode) || 1368 (!(mask & AT_MODE) && 1369 va.va_mode != omode))) { 1370 va.va_mask = AT_MODE; 1371 if (mask & AT_MODE) 1372 va.va_mode = vap->va_mode; 1373 else 1374 va.va_mode = omode; 1375 (void) nfssetattr(vp, &va, 0, cr); 1376 } 1377 } 1378 } else { 1379 PURGE_ATTRCACHE(vp); 1380 PURGE_STALE_FH(error, vp, cr); 1381 } 1382 } else { 1383 PURGE_ATTRCACHE(vp); 1384 } 1385 1386 return (error); 1387 } 1388 1389 static int 1390 nfs_accessx(void *vp, int mode, cred_t *cr) 1391 { 1392 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone); 1393 return (nfs_access(vp, mode, 0, cr, NULL)); 1394 } 1395 1396 /* ARGSUSED */ 1397 static int 1398 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct) 1399 { 1400 struct vattr va; 1401 int error; 1402 mntinfo_t *mi; 1403 int shift = 0; 1404 1405 mi = VTOMI(vp); 1406 1407 if (nfs_zone() != mi->mi_zone) 1408 return (EIO); 1409 if (mi->mi_flags & MI_ACL) { 1410 error = acl_access2(vp, mode, flags, cr); 1411 if (mi->mi_flags & MI_ACL) 1412 return (error); 1413 } 1414 1415 va.va_mask = AT_MODE | AT_UID | AT_GID; 1416 error = nfsgetattr(vp, &va, cr); 1417 if (error) 1418 return (error); 1419 1420 /* 1421 * Disallow write attempts on read-only 1422 * file systems, unless the file is a 1423 * device node. 1424 */ 1425 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp)) 1426 return (EROFS); 1427 1428 /* 1429 * Disallow attempts to access mandatory lock files. 1430 */ 1431 if ((mode & (VWRITE | VREAD | VEXEC)) && 1432 MANDLOCK(vp, va.va_mode)) 1433 return (EACCES); 1434 1435 /* 1436 * Access check is based on only 1437 * one of owner, group, public. 1438 * If not owner, then check group. 1439 * If not a member of the group, 1440 * then check public access. 1441 */ 1442 if (crgetuid(cr) != va.va_uid) { 1443 shift += 3; 1444 if (!groupmember(va.va_gid, cr)) 1445 shift += 3; 1446 } 1447 1448 return (secpolicy_vnode_access2(cr, vp, va.va_uid, 1449 va.va_mode << shift, mode)); 1450 } 1451 1452 static int nfs_do_symlink_cache = 1; 1453 1454 /* ARGSUSED */ 1455 static int 1456 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct) 1457 { 1458 int error; 1459 struct nfsrdlnres rl; 1460 rnode_t *rp; 1461 int douprintf; 1462 failinfo_t fi; 1463 1464 /* 1465 * We want to be consistent with UFS semantics so we will return 1466 * EINVAL instead of ENXIO. This violates the XNFS spec and 1467 * the RFC 1094, which are wrong any way. BUGID 1138002. 1468 */ 1469 if (vp->v_type != VLNK) 1470 return (EINVAL); 1471 1472 if (nfs_zone() != VTOMI(vp)->mi_zone) 1473 return (EIO); 1474 1475 rp = VTOR(vp); 1476 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) { 1477 error = nfs_validate_caches(vp, cr); 1478 if (error) 1479 return (error); 1480 mutex_enter(&rp->r_statelock); 1481 if (rp->r_symlink.contents != NULL) { 1482 error = uiomove(rp->r_symlink.contents, 1483 rp->r_symlink.len, UIO_READ, uiop); 1484 mutex_exit(&rp->r_statelock); 1485 return (error); 1486 } 1487 mutex_exit(&rp->r_statelock); 1488 } 1489 1490 1491 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP); 1492 1493 fi.vp = vp; 1494 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1495 fi.copyproc = nfscopyfh; 1496 fi.lookupproc = nfslookup; 1497 fi.xattrdirproc = acl_getxattrdir2; 1498 1499 douprintf = 1; 1500 1501 error = rfs2call(VTOMI(vp), RFS_READLINK, 1502 xdr_readlink, (caddr_t)VTOFH(vp), 1503 xdr_rdlnres, (caddr_t)&rl, cr, 1504 &douprintf, &rl.rl_status, 0, &fi); 1505 1506 if (error) { 1507 1508 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1509 return (error); 1510 } 1511 1512 error = geterrno(rl.rl_status); 1513 if (!error) { 1514 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop); 1515 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) { 1516 mutex_enter(&rp->r_statelock); 1517 if (rp->r_symlink.contents == NULL) { 1518 rp->r_symlink.contents = rl.rl_data; 1519 rp->r_symlink.len = (int)rl.rl_count; 1520 rp->r_symlink.size = NFS_MAXPATHLEN; 1521 mutex_exit(&rp->r_statelock); 1522 } else { 1523 mutex_exit(&rp->r_statelock); 1524 1525 kmem_free((void *)rl.rl_data, 1526 NFS_MAXPATHLEN); 1527 } 1528 } else { 1529 1530 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1531 } 1532 } else { 1533 PURGE_STALE_FH(error, vp, cr); 1534 1535 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN); 1536 } 1537 1538 /* 1539 * Conform to UFS semantics (see comment above) 1540 */ 1541 return (error == ENXIO ? EINVAL : error); 1542 } 1543 1544 /* 1545 * Flush local dirty pages to stable storage on the server. 1546 * 1547 * If FNODSYNC is specified, then there is nothing to do because 1548 * metadata changes are not cached on the client before being 1549 * sent to the server. 1550 */ 1551 /* ARGSUSED */ 1552 static int 1553 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 1554 { 1555 int error; 1556 1557 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp)) 1558 return (0); 1559 1560 if (nfs_zone() != VTOMI(vp)->mi_zone) 1561 return (EIO); 1562 1563 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 1564 if (!error) 1565 error = VTOR(vp)->r_error; 1566 return (error); 1567 } 1568 1569 1570 /* 1571 * Weirdness: if the file was removed or the target of a rename 1572 * operation while it was open, it got renamed instead. Here we 1573 * remove the renamed file. 1574 */ 1575 /* ARGSUSED */ 1576 static void 1577 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1578 { 1579 rnode_t *rp; 1580 1581 ASSERT(vp != DNLC_NO_VNODE); 1582 1583 /* 1584 * If this is coming from the wrong zone, we let someone in the right 1585 * zone take care of it asynchronously. We can get here due to 1586 * VN_RELE() being called from pageout() or fsflush(). This call may 1587 * potentially turn into an expensive no-op if, for instance, v_count 1588 * gets incremented in the meantime, but it's still correct. 1589 */ 1590 if (nfs_zone() != VTOMI(vp)->mi_zone) { 1591 nfs_async_inactive(vp, cr, nfs_inactive); 1592 return; 1593 } 1594 1595 rp = VTOR(vp); 1596 redo: 1597 if (rp->r_unldvp != NULL) { 1598 /* 1599 * Save the vnode pointer for the directory where the 1600 * unlinked-open file got renamed, then set it to NULL 1601 * to prevent another thread from getting here before 1602 * we're done with the remove. While we have the 1603 * statelock, make local copies of the pertinent rnode 1604 * fields. If we weren't to do this in an atomic way, the 1605 * the unl* fields could become inconsistent with respect 1606 * to each other due to a race condition between this 1607 * code and nfs_remove(). See bug report 1034328. 1608 */ 1609 mutex_enter(&rp->r_statelock); 1610 if (rp->r_unldvp != NULL) { 1611 vnode_t *unldvp; 1612 char *unlname; 1613 cred_t *unlcred; 1614 struct nfsdiropargs da; 1615 enum nfsstat status; 1616 int douprintf; 1617 int error; 1618 1619 unldvp = rp->r_unldvp; 1620 rp->r_unldvp = NULL; 1621 unlname = rp->r_unlname; 1622 rp->r_unlname = NULL; 1623 unlcred = rp->r_unlcred; 1624 rp->r_unlcred = NULL; 1625 mutex_exit(&rp->r_statelock); 1626 1627 /* 1628 * If there are any dirty pages left, then flush 1629 * them. This is unfortunate because they just 1630 * may get thrown away during the remove operation, 1631 * but we have to do this for correctness. 1632 */ 1633 if (vn_has_cached_data(vp) && 1634 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 1635 ASSERT(vp->v_type != VCHR); 1636 error = nfs_putpage(vp, (offset_t)0, 0, 0, 1637 cr, ct); 1638 if (error) { 1639 mutex_enter(&rp->r_statelock); 1640 if (!rp->r_error) 1641 rp->r_error = error; 1642 mutex_exit(&rp->r_statelock); 1643 } 1644 } 1645 1646 /* 1647 * Do the remove operation on the renamed file 1648 */ 1649 setdiropargs(&da, unlname, unldvp); 1650 1651 douprintf = 1; 1652 1653 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE, 1654 xdr_diropargs, (caddr_t)&da, 1655 xdr_enum, (caddr_t)&status, unlcred, 1656 &douprintf, &status, 0, NULL); 1657 1658 if (HAVE_RDDIR_CACHE(VTOR(unldvp))) 1659 nfs_purge_rddir_cache(unldvp); 1660 PURGE_ATTRCACHE(unldvp); 1661 1662 /* 1663 * Release stuff held for the remove 1664 */ 1665 VN_RELE(unldvp); 1666 kmem_free(unlname, MAXNAMELEN); 1667 crfree(unlcred); 1668 goto redo; 1669 } 1670 mutex_exit(&rp->r_statelock); 1671 } 1672 1673 rp_addfree(rp, cr); 1674 } 1675 1676 /* 1677 * Remote file system operations having to do with directory manipulation. 1678 */ 1679 1680 /* ARGSUSED */ 1681 static int 1682 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1683 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1684 int *direntflags, pathname_t *realpnp) 1685 { 1686 int error; 1687 vnode_t *vp; 1688 vnode_t *avp = NULL; 1689 rnode_t *drp; 1690 1691 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1692 return (EPERM); 1693 1694 drp = VTOR(dvp); 1695 1696 /* 1697 * Are we looking up extended attributes? If so, "dvp" is 1698 * the file or directory for which we want attributes, and 1699 * we need a lookup of the hidden attribute directory 1700 * before we lookup the rest of the path. 1701 */ 1702 if (flags & LOOKUP_XATTR) { 1703 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0); 1704 mntinfo_t *mi; 1705 1706 mi = VTOMI(dvp); 1707 if (!(mi->mi_flags & MI_EXTATTR)) 1708 return (EINVAL); 1709 1710 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) 1711 return (EINTR); 1712 1713 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr); 1714 if (avp == NULL) 1715 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0); 1716 else 1717 error = 0; 1718 1719 nfs_rw_exit(&drp->r_rwlock); 1720 1721 if (error) { 1722 if (mi->mi_flags & MI_EXTATTR) 1723 return (error); 1724 return (EINVAL); 1725 } 1726 dvp = avp; 1727 drp = VTOR(dvp); 1728 } 1729 1730 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) { 1731 error = EINTR; 1732 goto out; 1733 } 1734 1735 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0); 1736 1737 nfs_rw_exit(&drp->r_rwlock); 1738 1739 /* 1740 * If vnode is a device, create special vnode. 1741 */ 1742 if (!error && IS_DEVVP(*vpp)) { 1743 vp = *vpp; 1744 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 1745 VN_RELE(vp); 1746 } 1747 1748 out: 1749 if (avp != NULL) 1750 VN_RELE(avp); 1751 1752 return (error); 1753 } 1754 1755 static int nfs_lookup_neg_cache = 1; 1756 1757 #ifdef DEBUG 1758 static int nfs_lookup_dnlc_hits = 0; 1759 static int nfs_lookup_dnlc_misses = 0; 1760 static int nfs_lookup_dnlc_neg_hits = 0; 1761 static int nfs_lookup_dnlc_disappears = 0; 1762 static int nfs_lookup_dnlc_lookups = 0; 1763 #endif 1764 1765 /* ARGSUSED */ 1766 int 1767 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1768 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags) 1769 { 1770 int error; 1771 1772 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1773 1774 /* 1775 * If lookup is for "", just return dvp. Don't need 1776 * to send it over the wire, look it up in the dnlc, 1777 * or perform any access checks. 1778 */ 1779 if (*nm == '\0') { 1780 VN_HOLD(dvp); 1781 *vpp = dvp; 1782 return (0); 1783 } 1784 1785 /* 1786 * Can't do lookups in non-directories. 1787 */ 1788 if (dvp->v_type != VDIR) 1789 return (ENOTDIR); 1790 1791 /* 1792 * If we're called with RFSCALL_SOFT, it's important that 1793 * the only rfscall is one we make directly; if we permit 1794 * an access call because we're looking up "." or validating 1795 * a dnlc hit, we'll deadlock because that rfscall will not 1796 * have the RFSCALL_SOFT set. 1797 */ 1798 if (rfscall_flags & RFSCALL_SOFT) 1799 goto callit; 1800 1801 /* 1802 * If lookup is for ".", just return dvp. Don't need 1803 * to send it over the wire or look it up in the dnlc, 1804 * just need to check access. 1805 */ 1806 if (strcmp(nm, ".") == 0) { 1807 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1808 if (error) 1809 return (error); 1810 VN_HOLD(dvp); 1811 *vpp = dvp; 1812 return (0); 1813 } 1814 1815 /* 1816 * Lookup this name in the DNLC. If there was a valid entry, 1817 * then return the results of the lookup. 1818 */ 1819 error = nfslookup_dnlc(dvp, nm, vpp, cr); 1820 if (error || *vpp != NULL) 1821 return (error); 1822 1823 callit: 1824 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags); 1825 1826 return (error); 1827 } 1828 1829 static int 1830 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr) 1831 { 1832 int error; 1833 vnode_t *vp; 1834 1835 ASSERT(*nm != '\0'); 1836 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1837 1838 /* 1839 * Lookup this name in the DNLC. If successful, then validate 1840 * the caches and then recheck the DNLC. The DNLC is rechecked 1841 * just in case this entry got invalidated during the call 1842 * to nfs_validate_caches. 1843 * 1844 * An assumption is being made that it is safe to say that a 1845 * file exists which may not on the server. Any operations to 1846 * the server will fail with ESTALE. 1847 */ 1848 #ifdef DEBUG 1849 nfs_lookup_dnlc_lookups++; 1850 #endif 1851 vp = dnlc_lookup(dvp, nm); 1852 if (vp != NULL) { 1853 VN_RELE(vp); 1854 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) { 1855 PURGE_ATTRCACHE(dvp); 1856 } 1857 error = nfs_validate_caches(dvp, cr); 1858 if (error) 1859 return (error); 1860 vp = dnlc_lookup(dvp, nm); 1861 if (vp != NULL) { 1862 error = nfs_access(dvp, VEXEC, 0, cr, NULL); 1863 if (error) { 1864 VN_RELE(vp); 1865 return (error); 1866 } 1867 if (vp == DNLC_NO_VNODE) { 1868 VN_RELE(vp); 1869 #ifdef DEBUG 1870 nfs_lookup_dnlc_neg_hits++; 1871 #endif 1872 return (ENOENT); 1873 } 1874 *vpp = vp; 1875 #ifdef DEBUG 1876 nfs_lookup_dnlc_hits++; 1877 #endif 1878 return (0); 1879 } 1880 #ifdef DEBUG 1881 nfs_lookup_dnlc_disappears++; 1882 #endif 1883 } 1884 #ifdef DEBUG 1885 else 1886 nfs_lookup_dnlc_misses++; 1887 #endif 1888 1889 *vpp = NULL; 1890 1891 return (0); 1892 } 1893 1894 static int 1895 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, 1896 int rfscall_flags) 1897 { 1898 int error; 1899 struct nfsdiropargs da; 1900 struct nfsdiropres dr; 1901 int douprintf; 1902 failinfo_t fi; 1903 hrtime_t t; 1904 1905 ASSERT(*nm != '\0'); 1906 ASSERT(dvp->v_type == VDIR); 1907 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone); 1908 1909 setdiropargs(&da, nm, dvp); 1910 1911 fi.vp = dvp; 1912 fi.fhp = NULL; /* no need to update, filehandle not copied */ 1913 fi.copyproc = nfscopyfh; 1914 fi.lookupproc = nfslookup; 1915 fi.xattrdirproc = acl_getxattrdir2; 1916 1917 douprintf = 1; 1918 1919 t = gethrtime(); 1920 1921 error = rfs2call(VTOMI(dvp), RFS_LOOKUP, 1922 xdr_diropargs, (caddr_t)&da, 1923 xdr_diropres, (caddr_t)&dr, cr, 1924 &douprintf, &dr.dr_status, rfscall_flags, &fi); 1925 1926 if (!error) { 1927 error = geterrno(dr.dr_status); 1928 if (!error) { 1929 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 1930 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm); 1931 /* 1932 * If NFS_ACL is supported on the server, then the 1933 * attributes returned by server may have minimal 1934 * permissions sometimes denying access to users having 1935 * proper access. To get the proper attributes, mark 1936 * the attributes as expired so that they will be 1937 * regotten via the NFS_ACL GETATTR2 procedure. 1938 */ 1939 if (VTOMI(*vpp)->mi_flags & MI_ACL) { 1940 PURGE_ATTRCACHE(*vpp); 1941 } 1942 if (!(rfscall_flags & RFSCALL_SOFT)) 1943 dnlc_update(dvp, nm, *vpp); 1944 } else { 1945 PURGE_STALE_FH(error, dvp, cr); 1946 if (error == ENOENT && nfs_lookup_neg_cache) 1947 dnlc_enter(dvp, nm, DNLC_NO_VNODE); 1948 } 1949 } 1950 1951 return (error); 1952 } 1953 1954 /* ARGSUSED */ 1955 static int 1956 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive, 1957 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct, 1958 vsecattr_t *vsecp) 1959 { 1960 int error; 1961 struct nfscreatargs args; 1962 struct nfsdiropres dr; 1963 int douprintf; 1964 vnode_t *vp; 1965 rnode_t *rp; 1966 struct vattr vattr; 1967 rnode_t *drp; 1968 vnode_t *tempvp; 1969 hrtime_t t; 1970 1971 drp = VTOR(dvp); 1972 1973 if (nfs_zone() != VTOMI(dvp)->mi_zone) 1974 return (EPERM); 1975 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 1976 return (EINTR); 1977 1978 /* 1979 * We make a copy of the attributes because the caller does not 1980 * expect us to change what va points to. 1981 */ 1982 vattr = *va; 1983 1984 /* 1985 * If the pathname is "", just use dvp. Don't need 1986 * to send it over the wire, look it up in the dnlc, 1987 * or perform any access checks. 1988 */ 1989 if (*nm == '\0') { 1990 error = 0; 1991 VN_HOLD(dvp); 1992 vp = dvp; 1993 /* 1994 * If the pathname is ".", just use dvp. Don't need 1995 * to send it over the wire or look it up in the dnlc, 1996 * just need to check access. 1997 */ 1998 } else if (strcmp(nm, ".") == 0) { 1999 error = nfs_access(dvp, VEXEC, 0, cr, ct); 2000 if (error) { 2001 nfs_rw_exit(&drp->r_rwlock); 2002 return (error); 2003 } 2004 VN_HOLD(dvp); 2005 vp = dvp; 2006 /* 2007 * We need to go over the wire, just to be sure whether the 2008 * file exists or not. Using the DNLC can be dangerous in 2009 * this case when making a decision regarding existence. 2010 */ 2011 } else { 2012 error = nfslookup_otw(dvp, nm, &vp, cr, 0); 2013 } 2014 if (!error) { 2015 if (exclusive == EXCL) 2016 error = EEXIST; 2017 else if (vp->v_type == VDIR && (mode & VWRITE)) 2018 error = EISDIR; 2019 else { 2020 /* 2021 * If vnode is a device, create special vnode. 2022 */ 2023 if (IS_DEVVP(vp)) { 2024 tempvp = vp; 2025 vp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2026 VN_RELE(tempvp); 2027 } 2028 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) { 2029 if ((vattr.va_mask & AT_SIZE) && 2030 vp->v_type == VREG) { 2031 vattr.va_mask = AT_SIZE; 2032 error = nfssetattr(vp, &vattr, 0, cr); 2033 } 2034 } 2035 } 2036 nfs_rw_exit(&drp->r_rwlock); 2037 if (error) { 2038 VN_RELE(vp); 2039 } else { 2040 /* 2041 * existing file got truncated, notify. 2042 */ 2043 vnevent_create(vp, ct); 2044 *vpp = vp; 2045 } 2046 return (error); 2047 } 2048 2049 ASSERT(vattr.va_mask & AT_TYPE); 2050 if (vattr.va_type == VREG) { 2051 ASSERT(vattr.va_mask & AT_MODE); 2052 if (MANDMODE(vattr.va_mode)) { 2053 nfs_rw_exit(&drp->r_rwlock); 2054 return (EACCES); 2055 } 2056 } 2057 2058 dnlc_remove(dvp, nm); 2059 2060 setdiropargs(&args.ca_da, nm, dvp); 2061 2062 /* 2063 * Decide what the group-id of the created file should be. 2064 * Set it in attribute list as advisory...then do a setattr 2065 * if the server didn't get it right the first time. 2066 */ 2067 error = setdirgid(dvp, &vattr.va_gid, cr); 2068 if (error) { 2069 nfs_rw_exit(&drp->r_rwlock); 2070 return (error); 2071 } 2072 vattr.va_mask |= AT_GID; 2073 2074 /* 2075 * This is a completely gross hack to make mknod 2076 * work over the wire until we can wack the protocol 2077 */ 2078 #define IFCHR 0020000 /* character special */ 2079 #define IFBLK 0060000 /* block special */ 2080 #define IFSOCK 0140000 /* socket */ 2081 2082 /* 2083 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x 2084 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18 2085 * bits in the minor number where 4.x supports 8 bits. If the 5.x 2086 * minor/major numbers <= 8 bits long, compress the device 2087 * number before sending it. Otherwise, the 4.x server will not 2088 * create the device with the correct device number and nothing can be 2089 * done about this. 2090 */ 2091 if (vattr.va_type == VCHR || vattr.va_type == VBLK) { 2092 dev_t d = vattr.va_rdev; 2093 dev32_t dev32; 2094 2095 if (vattr.va_type == VCHR) 2096 vattr.va_mode |= IFCHR; 2097 else 2098 vattr.va_mode |= IFBLK; 2099 2100 (void) cmpldev(&dev32, d); 2101 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN)) 2102 vattr.va_size = (u_offset_t)dev32; 2103 else 2104 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d); 2105 2106 vattr.va_mask |= AT_MODE|AT_SIZE; 2107 } else if (vattr.va_type == VFIFO) { 2108 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */ 2109 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */ 2110 vattr.va_mask |= AT_MODE|AT_SIZE; 2111 } else if (vattr.va_type == VSOCK) { 2112 vattr.va_mode |= IFSOCK; 2113 /* 2114 * To avoid triggering bugs in the servers set AT_SIZE 2115 * (all other RFS_CREATE calls set this). 2116 */ 2117 vattr.va_size = 0; 2118 vattr.va_mask |= AT_MODE|AT_SIZE; 2119 } 2120 2121 args.ca_sa = &args.ca_sa_buf; 2122 error = vattr_to_sattr(&vattr, args.ca_sa); 2123 if (error) { 2124 /* req time field(s) overflow - return immediately */ 2125 nfs_rw_exit(&drp->r_rwlock); 2126 return (error); 2127 } 2128 2129 douprintf = 1; 2130 2131 t = gethrtime(); 2132 2133 error = rfs2call(VTOMI(dvp), RFS_CREATE, 2134 xdr_creatargs, (caddr_t)&args, 2135 xdr_diropres, (caddr_t)&dr, cr, 2136 &douprintf, &dr.dr_status, 0, NULL); 2137 2138 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2139 2140 if (!error) { 2141 error = geterrno(dr.dr_status); 2142 if (!error) { 2143 if (HAVE_RDDIR_CACHE(drp)) 2144 nfs_purge_rddir_cache(dvp); 2145 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2146 dvp->v_vfsp, t, cr, NULL, NULL); 2147 /* 2148 * If NFS_ACL is supported on the server, then the 2149 * attributes returned by server may have minimal 2150 * permissions sometimes denying access to users having 2151 * proper access. To get the proper attributes, mark 2152 * the attributes as expired so that they will be 2153 * regotten via the NFS_ACL GETATTR2 procedure. 2154 */ 2155 if (VTOMI(vp)->mi_flags & MI_ACL) { 2156 PURGE_ATTRCACHE(vp); 2157 } 2158 dnlc_update(dvp, nm, vp); 2159 rp = VTOR(vp); 2160 if (vattr.va_size == 0) { 2161 mutex_enter(&rp->r_statelock); 2162 rp->r_size = 0; 2163 mutex_exit(&rp->r_statelock); 2164 if (vn_has_cached_data(vp)) { 2165 ASSERT(vp->v_type != VCHR); 2166 nfs_invalidate_pages(vp, 2167 (u_offset_t)0, cr); 2168 } 2169 } 2170 2171 /* 2172 * Make sure the gid was set correctly. 2173 * If not, try to set it (but don't lose 2174 * any sleep over it). 2175 */ 2176 if (vattr.va_gid != rp->r_attr.va_gid) { 2177 vattr.va_mask = AT_GID; 2178 (void) nfssetattr(vp, &vattr, 0, cr); 2179 } 2180 2181 /* 2182 * If vnode is a device create special vnode 2183 */ 2184 if (IS_DEVVP(vp)) { 2185 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr); 2186 VN_RELE(vp); 2187 } else 2188 *vpp = vp; 2189 } else { 2190 PURGE_STALE_FH(error, dvp, cr); 2191 } 2192 } 2193 2194 nfs_rw_exit(&drp->r_rwlock); 2195 2196 return (error); 2197 } 2198 2199 /* 2200 * Weirdness: if the vnode to be removed is open 2201 * we rename it instead of removing it and nfs_inactive 2202 * will remove the new name. 2203 */ 2204 /* ARGSUSED */ 2205 static int 2206 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags) 2207 { 2208 int error; 2209 struct nfsdiropargs da; 2210 enum nfsstat status; 2211 vnode_t *vp; 2212 char *tmpname; 2213 int douprintf; 2214 rnode_t *rp; 2215 rnode_t *drp; 2216 2217 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2218 return (EPERM); 2219 drp = VTOR(dvp); 2220 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2221 return (EINTR); 2222 2223 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2224 if (error) { 2225 nfs_rw_exit(&drp->r_rwlock); 2226 return (error); 2227 } 2228 2229 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) { 2230 VN_RELE(vp); 2231 nfs_rw_exit(&drp->r_rwlock); 2232 return (EPERM); 2233 } 2234 2235 /* 2236 * First just remove the entry from the name cache, as it 2237 * is most likely the only entry for this vp. 2238 */ 2239 dnlc_remove(dvp, nm); 2240 2241 /* 2242 * If the file has a v_count > 1 then there may be more than one 2243 * entry in the name cache due multiple links or an open file, 2244 * but we don't have the real reference count so flush all 2245 * possible entries. 2246 */ 2247 if (vp->v_count > 1) 2248 dnlc_purge_vp(vp); 2249 2250 /* 2251 * Now we have the real reference count on the vnode 2252 */ 2253 rp = VTOR(vp); 2254 mutex_enter(&rp->r_statelock); 2255 if (vp->v_count > 1 && 2256 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) { 2257 mutex_exit(&rp->r_statelock); 2258 tmpname = newname(); 2259 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct); 2260 if (error) 2261 kmem_free(tmpname, MAXNAMELEN); 2262 else { 2263 mutex_enter(&rp->r_statelock); 2264 if (rp->r_unldvp == NULL) { 2265 VN_HOLD(dvp); 2266 rp->r_unldvp = dvp; 2267 if (rp->r_unlcred != NULL) 2268 crfree(rp->r_unlcred); 2269 crhold(cr); 2270 rp->r_unlcred = cr; 2271 rp->r_unlname = tmpname; 2272 } else { 2273 kmem_free(rp->r_unlname, MAXNAMELEN); 2274 rp->r_unlname = tmpname; 2275 } 2276 mutex_exit(&rp->r_statelock); 2277 } 2278 } else { 2279 mutex_exit(&rp->r_statelock); 2280 /* 2281 * We need to flush any dirty pages which happen to 2282 * be hanging around before removing the file. This 2283 * shouldn't happen very often and mostly on file 2284 * systems mounted "nocto". 2285 */ 2286 if (vn_has_cached_data(vp) && 2287 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) { 2288 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct); 2289 if (error && (error == ENOSPC || error == EDQUOT)) { 2290 mutex_enter(&rp->r_statelock); 2291 if (!rp->r_error) 2292 rp->r_error = error; 2293 mutex_exit(&rp->r_statelock); 2294 } 2295 } 2296 2297 setdiropargs(&da, nm, dvp); 2298 2299 douprintf = 1; 2300 2301 error = rfs2call(VTOMI(dvp), RFS_REMOVE, 2302 xdr_diropargs, (caddr_t)&da, 2303 xdr_enum, (caddr_t)&status, cr, 2304 &douprintf, &status, 0, NULL); 2305 2306 /* 2307 * The xattr dir may be gone after last attr is removed, 2308 * so flush it from dnlc. 2309 */ 2310 if (dvp->v_flag & V_XATTRDIR) 2311 dnlc_purge_vp(dvp); 2312 2313 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2314 PURGE_ATTRCACHE(vp); /* link count changed */ 2315 2316 if (!error) { 2317 error = geterrno(status); 2318 if (!error) { 2319 if (HAVE_RDDIR_CACHE(drp)) 2320 nfs_purge_rddir_cache(dvp); 2321 } else { 2322 PURGE_STALE_FH(error, dvp, cr); 2323 } 2324 } 2325 } 2326 2327 if (error == 0) { 2328 vnevent_remove(vp, dvp, nm, ct); 2329 } 2330 VN_RELE(vp); 2331 2332 nfs_rw_exit(&drp->r_rwlock); 2333 2334 return (error); 2335 } 2336 2337 /* ARGSUSED */ 2338 static int 2339 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr, 2340 caller_context_t *ct, int flags) 2341 { 2342 int error; 2343 struct nfslinkargs args; 2344 enum nfsstat status; 2345 vnode_t *realvp; 2346 int douprintf; 2347 rnode_t *tdrp; 2348 2349 if (nfs_zone() != VTOMI(tdvp)->mi_zone) 2350 return (EPERM); 2351 if (VOP_REALVP(svp, &realvp, ct) == 0) 2352 svp = realvp; 2353 2354 args.la_from = VTOFH(svp); 2355 setdiropargs(&args.la_to, tnm, tdvp); 2356 2357 tdrp = VTOR(tdvp); 2358 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp))) 2359 return (EINTR); 2360 2361 dnlc_remove(tdvp, tnm); 2362 2363 douprintf = 1; 2364 2365 error = rfs2call(VTOMI(svp), RFS_LINK, 2366 xdr_linkargs, (caddr_t)&args, 2367 xdr_enum, (caddr_t)&status, cr, 2368 &douprintf, &status, 0, NULL); 2369 2370 PURGE_ATTRCACHE(tdvp); /* mod time changed */ 2371 PURGE_ATTRCACHE(svp); /* link count changed */ 2372 2373 if (!error) { 2374 error = geterrno(status); 2375 if (!error) { 2376 if (HAVE_RDDIR_CACHE(tdrp)) 2377 nfs_purge_rddir_cache(tdvp); 2378 } 2379 } 2380 2381 nfs_rw_exit(&tdrp->r_rwlock); 2382 2383 if (!error) { 2384 /* 2385 * Notify the source file of this link operation. 2386 */ 2387 vnevent_link(svp, ct); 2388 } 2389 return (error); 2390 } 2391 2392 /* ARGSUSED */ 2393 static int 2394 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2395 caller_context_t *ct, int flags) 2396 { 2397 vnode_t *realvp; 2398 2399 if (nfs_zone() != VTOMI(odvp)->mi_zone) 2400 return (EPERM); 2401 if (VOP_REALVP(ndvp, &realvp, ct) == 0) 2402 ndvp = realvp; 2403 2404 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct)); 2405 } 2406 2407 /* 2408 * nfsrename does the real work of renaming in NFS Version 2. 2409 */ 2410 static int 2411 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr, 2412 caller_context_t *ct) 2413 { 2414 int error; 2415 enum nfsstat status; 2416 struct nfsrnmargs args; 2417 int douprintf; 2418 vnode_t *nvp = NULL; 2419 vnode_t *ovp = NULL; 2420 char *tmpname; 2421 rnode_t *rp; 2422 rnode_t *odrp; 2423 rnode_t *ndrp; 2424 2425 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone); 2426 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 || 2427 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0) 2428 return (EINVAL); 2429 2430 odrp = VTOR(odvp); 2431 ndrp = VTOR(ndvp); 2432 if ((intptr_t)odrp < (intptr_t)ndrp) { 2433 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) 2434 return (EINTR); 2435 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) { 2436 nfs_rw_exit(&odrp->r_rwlock); 2437 return (EINTR); 2438 } 2439 } else { 2440 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) 2441 return (EINTR); 2442 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) { 2443 nfs_rw_exit(&ndrp->r_rwlock); 2444 return (EINTR); 2445 } 2446 } 2447 2448 /* 2449 * Lookup the target file. If it exists, it needs to be 2450 * checked to see whether it is a mount point and whether 2451 * it is active (open). 2452 */ 2453 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0); 2454 if (!error) { 2455 /* 2456 * If this file has been mounted on, then just 2457 * return busy because renaming to it would remove 2458 * the mounted file system from the name space. 2459 */ 2460 if (vn_mountedvfs(nvp) != NULL) { 2461 VN_RELE(nvp); 2462 nfs_rw_exit(&odrp->r_rwlock); 2463 nfs_rw_exit(&ndrp->r_rwlock); 2464 return (EBUSY); 2465 } 2466 2467 /* 2468 * Purge the name cache of all references to this vnode 2469 * so that we can check the reference count to infer 2470 * whether it is active or not. 2471 */ 2472 /* 2473 * First just remove the entry from the name cache, as it 2474 * is most likely the only entry for this vp. 2475 */ 2476 dnlc_remove(ndvp, nnm); 2477 /* 2478 * If the file has a v_count > 1 then there may be more 2479 * than one entry in the name cache due multiple links 2480 * or an open file, but we don't have the real reference 2481 * count so flush all possible entries. 2482 */ 2483 if (nvp->v_count > 1) 2484 dnlc_purge_vp(nvp); 2485 2486 /* 2487 * If the vnode is active and is not a directory, 2488 * arrange to rename it to a 2489 * temporary file so that it will continue to be 2490 * accessible. This implements the "unlink-open-file" 2491 * semantics for the target of a rename operation. 2492 * Before doing this though, make sure that the 2493 * source and target files are not already the same. 2494 */ 2495 if (nvp->v_count > 1 && nvp->v_type != VDIR) { 2496 /* 2497 * Lookup the source name. 2498 */ 2499 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, 2500 cr, 0); 2501 2502 /* 2503 * The source name *should* already exist. 2504 */ 2505 if (error) { 2506 VN_RELE(nvp); 2507 nfs_rw_exit(&odrp->r_rwlock); 2508 nfs_rw_exit(&ndrp->r_rwlock); 2509 return (error); 2510 } 2511 2512 /* 2513 * Compare the two vnodes. If they are the same, 2514 * just release all held vnodes and return success. 2515 */ 2516 if (ovp == nvp) { 2517 VN_RELE(ovp); 2518 VN_RELE(nvp); 2519 nfs_rw_exit(&odrp->r_rwlock); 2520 nfs_rw_exit(&ndrp->r_rwlock); 2521 return (0); 2522 } 2523 2524 /* 2525 * Can't mix and match directories and non- 2526 * directories in rename operations. We already 2527 * know that the target is not a directory. If 2528 * the source is a directory, return an error. 2529 */ 2530 if (ovp->v_type == VDIR) { 2531 VN_RELE(ovp); 2532 VN_RELE(nvp); 2533 nfs_rw_exit(&odrp->r_rwlock); 2534 nfs_rw_exit(&ndrp->r_rwlock); 2535 return (ENOTDIR); 2536 } 2537 2538 /* 2539 * The target file exists, is not the same as 2540 * the source file, and is active. Link it 2541 * to a temporary filename to avoid having 2542 * the server removing the file completely. 2543 */ 2544 tmpname = newname(); 2545 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0); 2546 if (error == EOPNOTSUPP) { 2547 error = nfs_rename(ndvp, nnm, ndvp, tmpname, 2548 cr, NULL, 0); 2549 } 2550 if (error) { 2551 kmem_free(tmpname, MAXNAMELEN); 2552 VN_RELE(ovp); 2553 VN_RELE(nvp); 2554 nfs_rw_exit(&odrp->r_rwlock); 2555 nfs_rw_exit(&ndrp->r_rwlock); 2556 return (error); 2557 } 2558 rp = VTOR(nvp); 2559 mutex_enter(&rp->r_statelock); 2560 if (rp->r_unldvp == NULL) { 2561 VN_HOLD(ndvp); 2562 rp->r_unldvp = ndvp; 2563 if (rp->r_unlcred != NULL) 2564 crfree(rp->r_unlcred); 2565 crhold(cr); 2566 rp->r_unlcred = cr; 2567 rp->r_unlname = tmpname; 2568 } else { 2569 kmem_free(rp->r_unlname, MAXNAMELEN); 2570 rp->r_unlname = tmpname; 2571 } 2572 mutex_exit(&rp->r_statelock); 2573 } 2574 } 2575 2576 if (ovp == NULL) { 2577 /* 2578 * When renaming directories to be a subdirectory of a 2579 * different parent, the dnlc entry for ".." will no 2580 * longer be valid, so it must be removed. 2581 * 2582 * We do a lookup here to determine whether we are renaming 2583 * a directory and we need to check if we are renaming 2584 * an unlinked file. This might have already been done 2585 * in previous code, so we check ovp == NULL to avoid 2586 * doing it twice. 2587 */ 2588 2589 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0); 2590 2591 /* 2592 * The source name *should* already exist. 2593 */ 2594 if (error) { 2595 nfs_rw_exit(&odrp->r_rwlock); 2596 nfs_rw_exit(&ndrp->r_rwlock); 2597 if (nvp) { 2598 VN_RELE(nvp); 2599 } 2600 return (error); 2601 } 2602 ASSERT(ovp != NULL); 2603 } 2604 2605 dnlc_remove(odvp, onm); 2606 dnlc_remove(ndvp, nnm); 2607 2608 setdiropargs(&args.rna_from, onm, odvp); 2609 setdiropargs(&args.rna_to, nnm, ndvp); 2610 2611 douprintf = 1; 2612 2613 error = rfs2call(VTOMI(odvp), RFS_RENAME, 2614 xdr_rnmargs, (caddr_t)&args, 2615 xdr_enum, (caddr_t)&status, cr, 2616 &douprintf, &status, 0, NULL); 2617 2618 PURGE_ATTRCACHE(odvp); /* mod time changed */ 2619 PURGE_ATTRCACHE(ndvp); /* mod time changed */ 2620 2621 if (!error) { 2622 error = geterrno(status); 2623 if (!error) { 2624 if (HAVE_RDDIR_CACHE(odrp)) 2625 nfs_purge_rddir_cache(odvp); 2626 if (HAVE_RDDIR_CACHE(ndrp)) 2627 nfs_purge_rddir_cache(ndvp); 2628 /* 2629 * when renaming directories to be a subdirectory of a 2630 * different parent, the dnlc entry for ".." will no 2631 * longer be valid, so it must be removed 2632 */ 2633 rp = VTOR(ovp); 2634 if (ndvp != odvp) { 2635 if (ovp->v_type == VDIR) { 2636 dnlc_remove(ovp, ".."); 2637 if (HAVE_RDDIR_CACHE(rp)) 2638 nfs_purge_rddir_cache(ovp); 2639 } 2640 } 2641 2642 /* 2643 * If we are renaming the unlinked file, update the 2644 * r_unldvp and r_unlname as needed. 2645 */ 2646 mutex_enter(&rp->r_statelock); 2647 if (rp->r_unldvp != NULL) { 2648 if (strcmp(rp->r_unlname, onm) == 0) { 2649 (void) strncpy(rp->r_unlname, 2650 nnm, MAXNAMELEN); 2651 rp->r_unlname[MAXNAMELEN - 1] = '\0'; 2652 2653 if (ndvp != rp->r_unldvp) { 2654 VN_RELE(rp->r_unldvp); 2655 rp->r_unldvp = ndvp; 2656 VN_HOLD(ndvp); 2657 } 2658 } 2659 } 2660 mutex_exit(&rp->r_statelock); 2661 } else { 2662 /* 2663 * System V defines rename to return EEXIST, not 2664 * ENOTEMPTY if the target directory is not empty. 2665 * Over the wire, the error is NFSERR_ENOTEMPTY 2666 * which geterrno maps to ENOTEMPTY. 2667 */ 2668 if (error == ENOTEMPTY) 2669 error = EEXIST; 2670 } 2671 } 2672 2673 if (error == 0) { 2674 if (nvp) 2675 vnevent_rename_dest(nvp, ndvp, nnm, ct); 2676 2677 if (odvp != ndvp) 2678 vnevent_rename_dest_dir(ndvp, ct); 2679 2680 ASSERT(ovp != NULL); 2681 vnevent_rename_src(ovp, odvp, onm, ct); 2682 } 2683 2684 if (nvp) { 2685 VN_RELE(nvp); 2686 } 2687 VN_RELE(ovp); 2688 2689 nfs_rw_exit(&odrp->r_rwlock); 2690 nfs_rw_exit(&ndrp->r_rwlock); 2691 2692 return (error); 2693 } 2694 2695 /* ARGSUSED */ 2696 static int 2697 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr, 2698 caller_context_t *ct, int flags, vsecattr_t *vsecp) 2699 { 2700 int error; 2701 struct nfscreatargs args; 2702 struct nfsdiropres dr; 2703 int douprintf; 2704 rnode_t *drp; 2705 hrtime_t t; 2706 2707 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2708 return (EPERM); 2709 2710 setdiropargs(&args.ca_da, nm, dvp); 2711 2712 /* 2713 * Decide what the group-id and set-gid bit of the created directory 2714 * should be. May have to do a setattr to get the gid right. 2715 */ 2716 error = setdirgid(dvp, &va->va_gid, cr); 2717 if (error) 2718 return (error); 2719 error = setdirmode(dvp, &va->va_mode, cr); 2720 if (error) 2721 return (error); 2722 va->va_mask |= AT_MODE|AT_GID; 2723 2724 args.ca_sa = &args.ca_sa_buf; 2725 error = vattr_to_sattr(va, args.ca_sa); 2726 if (error) { 2727 /* req time field(s) overflow - return immediately */ 2728 return (error); 2729 } 2730 2731 drp = VTOR(dvp); 2732 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2733 return (EINTR); 2734 2735 dnlc_remove(dvp, nm); 2736 2737 douprintf = 1; 2738 2739 t = gethrtime(); 2740 2741 error = rfs2call(VTOMI(dvp), RFS_MKDIR, 2742 xdr_creatargs, (caddr_t)&args, 2743 xdr_diropres, (caddr_t)&dr, cr, 2744 &douprintf, &dr.dr_status, 0, NULL); 2745 2746 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2747 2748 if (!error) { 2749 error = geterrno(dr.dr_status); 2750 if (!error) { 2751 if (HAVE_RDDIR_CACHE(drp)) 2752 nfs_purge_rddir_cache(dvp); 2753 /* 2754 * The attributes returned by RFS_MKDIR can not 2755 * be depended upon, so mark the attribute cache 2756 * as purged. A subsequent GETATTR will get the 2757 * correct attributes from the server. 2758 */ 2759 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr, 2760 dvp->v_vfsp, t, cr, NULL, NULL); 2761 PURGE_ATTRCACHE(*vpp); 2762 dnlc_update(dvp, nm, *vpp); 2763 2764 /* 2765 * Make sure the gid was set correctly. 2766 * If not, try to set it (but don't lose 2767 * any sleep over it). 2768 */ 2769 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) { 2770 va->va_mask = AT_GID; 2771 (void) nfssetattr(*vpp, va, 0, cr); 2772 } 2773 } else { 2774 PURGE_STALE_FH(error, dvp, cr); 2775 } 2776 } 2777 2778 nfs_rw_exit(&drp->r_rwlock); 2779 2780 return (error); 2781 } 2782 2783 /* ARGSUSED */ 2784 static int 2785 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr, 2786 caller_context_t *ct, int flags) 2787 { 2788 int error; 2789 enum nfsstat status; 2790 struct nfsdiropargs da; 2791 vnode_t *vp; 2792 int douprintf; 2793 rnode_t *drp; 2794 2795 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2796 return (EPERM); 2797 drp = VTOR(dvp); 2798 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2799 return (EINTR); 2800 2801 /* 2802 * Attempt to prevent a rmdir(".") from succeeding. 2803 */ 2804 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0); 2805 if (error) { 2806 nfs_rw_exit(&drp->r_rwlock); 2807 return (error); 2808 } 2809 2810 if (vp == cdir) { 2811 VN_RELE(vp); 2812 nfs_rw_exit(&drp->r_rwlock); 2813 return (EINVAL); 2814 } 2815 2816 setdiropargs(&da, nm, dvp); 2817 2818 /* 2819 * First just remove the entry from the name cache, as it 2820 * is most likely an entry for this vp. 2821 */ 2822 dnlc_remove(dvp, nm); 2823 2824 /* 2825 * If there vnode reference count is greater than one, then 2826 * there may be additional references in the DNLC which will 2827 * need to be purged. First, trying removing the entry for 2828 * the parent directory and see if that removes the additional 2829 * reference(s). If that doesn't do it, then use dnlc_purge_vp 2830 * to completely remove any references to the directory which 2831 * might still exist in the DNLC. 2832 */ 2833 if (vp->v_count > 1) { 2834 dnlc_remove(vp, ".."); 2835 if (vp->v_count > 1) 2836 dnlc_purge_vp(vp); 2837 } 2838 2839 douprintf = 1; 2840 2841 error = rfs2call(VTOMI(dvp), RFS_RMDIR, 2842 xdr_diropargs, (caddr_t)&da, 2843 xdr_enum, (caddr_t)&status, cr, 2844 &douprintf, &status, 0, NULL); 2845 2846 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2847 2848 if (error) { 2849 VN_RELE(vp); 2850 nfs_rw_exit(&drp->r_rwlock); 2851 return (error); 2852 } 2853 2854 error = geterrno(status); 2855 if (!error) { 2856 if (HAVE_RDDIR_CACHE(drp)) 2857 nfs_purge_rddir_cache(dvp); 2858 if (HAVE_RDDIR_CACHE(VTOR(vp))) 2859 nfs_purge_rddir_cache(vp); 2860 } else { 2861 PURGE_STALE_FH(error, dvp, cr); 2862 /* 2863 * System V defines rmdir to return EEXIST, not 2864 * ENOTEMPTY if the directory is not empty. Over 2865 * the wire, the error is NFSERR_ENOTEMPTY which 2866 * geterrno maps to ENOTEMPTY. 2867 */ 2868 if (error == ENOTEMPTY) 2869 error = EEXIST; 2870 } 2871 2872 if (error == 0) { 2873 vnevent_rmdir(vp, dvp, nm, ct); 2874 } 2875 VN_RELE(vp); 2876 2877 nfs_rw_exit(&drp->r_rwlock); 2878 2879 return (error); 2880 } 2881 2882 /* ARGSUSED */ 2883 static int 2884 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr, 2885 caller_context_t *ct, int flags) 2886 { 2887 int error; 2888 struct nfsslargs args; 2889 enum nfsstat status; 2890 int douprintf; 2891 rnode_t *drp; 2892 2893 if (nfs_zone() != VTOMI(dvp)->mi_zone) 2894 return (EPERM); 2895 setdiropargs(&args.sla_from, lnm, dvp); 2896 args.sla_sa = &args.sla_sa_buf; 2897 error = vattr_to_sattr(tva, args.sla_sa); 2898 if (error) { 2899 /* req time field(s) overflow - return immediately */ 2900 return (error); 2901 } 2902 args.sla_tnm = tnm; 2903 2904 drp = VTOR(dvp); 2905 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp))) 2906 return (EINTR); 2907 2908 dnlc_remove(dvp, lnm); 2909 2910 douprintf = 1; 2911 2912 error = rfs2call(VTOMI(dvp), RFS_SYMLINK, 2913 xdr_slargs, (caddr_t)&args, 2914 xdr_enum, (caddr_t)&status, cr, 2915 &douprintf, &status, 0, NULL); 2916 2917 PURGE_ATTRCACHE(dvp); /* mod time changed */ 2918 2919 if (!error) { 2920 error = geterrno(status); 2921 if (!error) { 2922 if (HAVE_RDDIR_CACHE(drp)) 2923 nfs_purge_rddir_cache(dvp); 2924 } else { 2925 PURGE_STALE_FH(error, dvp, cr); 2926 } 2927 } 2928 2929 nfs_rw_exit(&drp->r_rwlock); 2930 2931 return (error); 2932 } 2933 2934 #ifdef DEBUG 2935 static int nfs_readdir_cache_hits = 0; 2936 static int nfs_readdir_cache_shorts = 0; 2937 static int nfs_readdir_cache_waits = 0; 2938 static int nfs_readdir_cache_misses = 0; 2939 static int nfs_readdir_readahead = 0; 2940 #endif 2941 2942 static int nfs_shrinkreaddir = 0; 2943 2944 /* 2945 * Read directory entries. 2946 * There are some weird things to look out for here. The uio_offset 2947 * field is either 0 or it is the offset returned from a previous 2948 * readdir. It is an opaque value used by the server to find the 2949 * correct directory block to read. The count field is the number 2950 * of blocks to read on the server. This is advisory only, the server 2951 * may return only one block's worth of entries. Entries may be compressed 2952 * on the server. 2953 */ 2954 /* ARGSUSED */ 2955 static int 2956 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp, 2957 caller_context_t *ct, int flags) 2958 { 2959 int error; 2960 size_t count; 2961 rnode_t *rp; 2962 rddir_cache *rdc; 2963 rddir_cache *nrdc; 2964 rddir_cache *rrdc; 2965 #ifdef DEBUG 2966 int missed; 2967 #endif 2968 rddir_cache srdc; 2969 avl_index_t where; 2970 2971 rp = VTOR(vp); 2972 2973 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER)); 2974 if (nfs_zone() != VTOMI(vp)->mi_zone) 2975 return (EIO); 2976 /* 2977 * Make sure that the directory cache is valid. 2978 */ 2979 if (HAVE_RDDIR_CACHE(rp)) { 2980 if (nfs_disable_rddir_cache) { 2981 /* 2982 * Setting nfs_disable_rddir_cache in /etc/system 2983 * allows interoperability with servers that do not 2984 * properly update the attributes of directories. 2985 * Any cached information gets purged before an 2986 * access is made to it. 2987 */ 2988 nfs_purge_rddir_cache(vp); 2989 } else { 2990 error = nfs_validate_caches(vp, cr); 2991 if (error) 2992 return (error); 2993 } 2994 } 2995 2996 /* 2997 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an 2998 * RFS_READDIR request with rda_count set to more than 0x400. So 2999 * we reduce the request size here purely for compatibility. 3000 * 3001 * In general, this is no longer required. However, if a server 3002 * is discovered which can not handle requests larger than 1024, 3003 * nfs_shrinkreaddir can be set to 1 to enable this backwards 3004 * compatibility. 3005 * 3006 * In any case, the request size is limited to NFS_MAXDATA bytes. 3007 */ 3008 count = MIN(uiop->uio_iov->iov_len, 3009 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA); 3010 3011 nrdc = NULL; 3012 #ifdef DEBUG 3013 missed = 0; 3014 #endif 3015 top: 3016 /* 3017 * Short circuit last readdir which always returns 0 bytes. 3018 * This can be done after the directory has been read through 3019 * completely at least once. This will set r_direof which 3020 * can be used to find the value of the last cookie. 3021 */ 3022 mutex_enter(&rp->r_statelock); 3023 if (rp->r_direof != NULL && 3024 uiop->uio_offset == rp->r_direof->nfs_ncookie) { 3025 mutex_exit(&rp->r_statelock); 3026 #ifdef DEBUG 3027 nfs_readdir_cache_shorts++; 3028 #endif 3029 if (eofp) 3030 *eofp = 1; 3031 if (nrdc != NULL) 3032 rddir_cache_rele(nrdc); 3033 return (0); 3034 } 3035 /* 3036 * Look for a cache entry. Cache entries are identified 3037 * by the NFS cookie value and the byte count requested. 3038 */ 3039 srdc.nfs_cookie = uiop->uio_offset; 3040 srdc.buflen = count; 3041 rdc = avl_find(&rp->r_dir, &srdc, &where); 3042 if (rdc != NULL) { 3043 rddir_cache_hold(rdc); 3044 /* 3045 * If the cache entry is in the process of being 3046 * filled in, wait until this completes. The 3047 * RDDIRWAIT bit is set to indicate that someone 3048 * is waiting and then the thread currently 3049 * filling the entry is done, it should do a 3050 * cv_broadcast to wakeup all of the threads 3051 * waiting for it to finish. 3052 */ 3053 if (rdc->flags & RDDIR) { 3054 nfs_rw_exit(&rp->r_rwlock); 3055 rdc->flags |= RDDIRWAIT; 3056 #ifdef DEBUG 3057 nfs_readdir_cache_waits++; 3058 #endif 3059 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) { 3060 /* 3061 * We got interrupted, probably 3062 * the user typed ^C or an alarm 3063 * fired. We free the new entry 3064 * if we allocated one. 3065 */ 3066 mutex_exit(&rp->r_statelock); 3067 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3068 RW_READER, FALSE); 3069 rddir_cache_rele(rdc); 3070 if (nrdc != NULL) 3071 rddir_cache_rele(nrdc); 3072 return (EINTR); 3073 } 3074 mutex_exit(&rp->r_statelock); 3075 (void) nfs_rw_enter_sig(&rp->r_rwlock, 3076 RW_READER, FALSE); 3077 rddir_cache_rele(rdc); 3078 goto top; 3079 } 3080 /* 3081 * Check to see if a readdir is required to 3082 * fill the entry. If so, mark this entry 3083 * as being filled, remove our reference, 3084 * and branch to the code to fill the entry. 3085 */ 3086 if (rdc->flags & RDDIRREQ) { 3087 rdc->flags &= ~RDDIRREQ; 3088 rdc->flags |= RDDIR; 3089 if (nrdc != NULL) 3090 rddir_cache_rele(nrdc); 3091 nrdc = rdc; 3092 mutex_exit(&rp->r_statelock); 3093 goto bottom; 3094 } 3095 #ifdef DEBUG 3096 if (!missed) 3097 nfs_readdir_cache_hits++; 3098 #endif 3099 /* 3100 * If an error occurred while attempting 3101 * to fill the cache entry, just return it. 3102 */ 3103 if (rdc->error) { 3104 error = rdc->error; 3105 mutex_exit(&rp->r_statelock); 3106 rddir_cache_rele(rdc); 3107 if (nrdc != NULL) 3108 rddir_cache_rele(nrdc); 3109 return (error); 3110 } 3111 3112 /* 3113 * The cache entry is complete and good, 3114 * copyout the dirent structs to the calling 3115 * thread. 3116 */ 3117 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop); 3118 3119 /* 3120 * If no error occurred during the copyout, 3121 * update the offset in the uio struct to 3122 * contain the value of the next cookie 3123 * and set the eof value appropriately. 3124 */ 3125 if (!error) { 3126 uiop->uio_offset = rdc->nfs_ncookie; 3127 if (eofp) 3128 *eofp = rdc->eof; 3129 } 3130 3131 /* 3132 * Decide whether to do readahead. Don't if 3133 * have already read to the end of directory. 3134 */ 3135 if (rdc->eof) { 3136 rp->r_direof = rdc; 3137 mutex_exit(&rp->r_statelock); 3138 rddir_cache_rele(rdc); 3139 if (nrdc != NULL) 3140 rddir_cache_rele(nrdc); 3141 return (error); 3142 } 3143 3144 /* 3145 * Check to see whether we found an entry 3146 * for the readahead. If so, we don't need 3147 * to do anything further, so free the new 3148 * entry if one was allocated. Otherwise, 3149 * allocate a new entry, add it to the cache, 3150 * and then initiate an asynchronous readdir 3151 * operation to fill it. 3152 */ 3153 srdc.nfs_cookie = rdc->nfs_ncookie; 3154 srdc.buflen = count; 3155 rrdc = avl_find(&rp->r_dir, &srdc, &where); 3156 if (rrdc != NULL) { 3157 if (nrdc != NULL) 3158 rddir_cache_rele(nrdc); 3159 } else { 3160 if (nrdc != NULL) 3161 rrdc = nrdc; 3162 else { 3163 rrdc = rddir_cache_alloc(KM_NOSLEEP); 3164 } 3165 if (rrdc != NULL) { 3166 rrdc->nfs_cookie = rdc->nfs_ncookie; 3167 rrdc->buflen = count; 3168 avl_insert(&rp->r_dir, rrdc, where); 3169 rddir_cache_hold(rrdc); 3170 mutex_exit(&rp->r_statelock); 3171 rddir_cache_rele(rdc); 3172 #ifdef DEBUG 3173 nfs_readdir_readahead++; 3174 #endif 3175 nfs_async_readdir(vp, rrdc, cr, nfsreaddir); 3176 return (error); 3177 } 3178 } 3179 3180 mutex_exit(&rp->r_statelock); 3181 rddir_cache_rele(rdc); 3182 return (error); 3183 } 3184 3185 /* 3186 * Didn't find an entry in the cache. Construct a new empty 3187 * entry and link it into the cache. Other processes attempting 3188 * to access this entry will need to wait until it is filled in. 3189 * 3190 * Since kmem_alloc may block, another pass through the cache 3191 * will need to be taken to make sure that another process 3192 * hasn't already added an entry to the cache for this request. 3193 */ 3194 if (nrdc == NULL) { 3195 mutex_exit(&rp->r_statelock); 3196 nrdc = rddir_cache_alloc(KM_SLEEP); 3197 nrdc->nfs_cookie = uiop->uio_offset; 3198 nrdc->buflen = count; 3199 goto top; 3200 } 3201 3202 /* 3203 * Add this entry to the cache. 3204 */ 3205 avl_insert(&rp->r_dir, nrdc, where); 3206 rddir_cache_hold(nrdc); 3207 mutex_exit(&rp->r_statelock); 3208 3209 bottom: 3210 #ifdef DEBUG 3211 missed = 1; 3212 nfs_readdir_cache_misses++; 3213 #endif 3214 /* 3215 * Do the readdir. 3216 */ 3217 error = nfsreaddir(vp, nrdc, cr); 3218 3219 /* 3220 * If this operation failed, just return the error which occurred. 3221 */ 3222 if (error != 0) 3223 return (error); 3224 3225 /* 3226 * Since the RPC operation will have taken sometime and blocked 3227 * this process, another pass through the cache will need to be 3228 * taken to find the correct cache entry. It is possible that 3229 * the correct cache entry will not be there (although one was 3230 * added) because the directory changed during the RPC operation 3231 * and the readdir cache was flushed. In this case, just start 3232 * over. It is hoped that this will not happen too often... :-) 3233 */ 3234 nrdc = NULL; 3235 goto top; 3236 /* NOTREACHED */ 3237 } 3238 3239 static int 3240 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr) 3241 { 3242 int error; 3243 struct nfsrddirargs rda; 3244 struct nfsrddirres rd; 3245 rnode_t *rp; 3246 mntinfo_t *mi; 3247 uint_t count; 3248 int douprintf; 3249 failinfo_t fi, *fip; 3250 3251 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3252 count = rdc->buflen; 3253 3254 rp = VTOR(vp); 3255 mi = VTOMI(vp); 3256 3257 rda.rda_fh = *VTOFH(vp); 3258 rda.rda_offset = rdc->nfs_cookie; 3259 3260 /* 3261 * NFS client failover support 3262 * suppress failover unless we have a zero cookie 3263 */ 3264 if (rdc->nfs_cookie == (off_t)0) { 3265 fi.vp = vp; 3266 fi.fhp = (caddr_t)&rda.rda_fh; 3267 fi.copyproc = nfscopyfh; 3268 fi.lookupproc = nfslookup; 3269 fi.xattrdirproc = acl_getxattrdir2; 3270 fip = &fi; 3271 } else { 3272 fip = NULL; 3273 } 3274 3275 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3276 rd.rd_size = count; 3277 rd.rd_offset = rda.rda_offset; 3278 3279 douprintf = 1; 3280 3281 if (mi->mi_io_kstats) { 3282 mutex_enter(&mi->mi_lock); 3283 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats)); 3284 mutex_exit(&mi->mi_lock); 3285 } 3286 3287 do { 3288 rda.rda_count = MIN(count, mi->mi_curread); 3289 error = rfs2call(mi, RFS_READDIR, 3290 xdr_rddirargs, (caddr_t)&rda, 3291 xdr_getrddirres, (caddr_t)&rd, cr, 3292 &douprintf, &rd.rd_status, 0, fip); 3293 } while (error == ENFS_TRYAGAIN); 3294 3295 if (mi->mi_io_kstats) { 3296 mutex_enter(&mi->mi_lock); 3297 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats)); 3298 mutex_exit(&mi->mi_lock); 3299 } 3300 3301 /* 3302 * Since we are actually doing a READDIR RPC, we must have 3303 * exclusive access to the cache entry being filled. Thus, 3304 * it is safe to update all fields except for the flags 3305 * field. The r_statelock in the rnode must be held to 3306 * prevent two different threads from simultaneously 3307 * attempting to update the flags field. This can happen 3308 * if we are turning off RDDIR and the other thread is 3309 * trying to set RDDIRWAIT. 3310 */ 3311 ASSERT(rdc->flags & RDDIR); 3312 if (!error) { 3313 error = geterrno(rd.rd_status); 3314 if (!error) { 3315 rdc->nfs_ncookie = rd.rd_offset; 3316 rdc->eof = rd.rd_eof ? 1 : 0; 3317 rdc->entlen = rd.rd_size; 3318 ASSERT(rdc->entlen <= rdc->buflen); 3319 #ifdef DEBUG 3320 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, 3321 KM_SLEEP); 3322 #else 3323 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP); 3324 #endif 3325 bcopy(rd.rd_entries, rdc->entries, rdc->entlen); 3326 rdc->error = 0; 3327 if (mi->mi_io_kstats) { 3328 mutex_enter(&mi->mi_lock); 3329 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++; 3330 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += 3331 rd.rd_size; 3332 mutex_exit(&mi->mi_lock); 3333 } 3334 } else { 3335 PURGE_STALE_FH(error, vp, cr); 3336 } 3337 } 3338 if (error) { 3339 rdc->entries = NULL; 3340 rdc->error = error; 3341 } 3342 kmem_free(rd.rd_entries, rdc->buflen); 3343 3344 mutex_enter(&rp->r_statelock); 3345 rdc->flags &= ~RDDIR; 3346 if (rdc->flags & RDDIRWAIT) { 3347 rdc->flags &= ~RDDIRWAIT; 3348 cv_broadcast(&rdc->cv); 3349 } 3350 if (error) 3351 rdc->flags |= RDDIRREQ; 3352 mutex_exit(&rp->r_statelock); 3353 3354 rddir_cache_rele(rdc); 3355 3356 return (error); 3357 } 3358 3359 #ifdef DEBUG 3360 static int nfs_bio_do_stop = 0; 3361 #endif 3362 3363 static int 3364 nfs_bio(struct buf *bp, cred_t *cr) 3365 { 3366 rnode_t *rp = VTOR(bp->b_vp); 3367 int count; 3368 int error; 3369 cred_t *cred; 3370 uint_t offset; 3371 3372 DTRACE_IO1(start, struct buf *, bp); 3373 3374 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone); 3375 offset = dbtob(bp->b_blkno); 3376 3377 if (bp->b_flags & B_READ) { 3378 mutex_enter(&rp->r_statelock); 3379 if (rp->r_cred != NULL) { 3380 cred = rp->r_cred; 3381 crhold(cred); 3382 } else { 3383 rp->r_cred = cr; 3384 crhold(cr); 3385 cred = cr; 3386 crhold(cred); 3387 } 3388 mutex_exit(&rp->r_statelock); 3389 read_again: 3390 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr, 3391 offset, bp->b_bcount, &bp->b_resid, cred); 3392 3393 crfree(cred); 3394 if (!error) { 3395 if (bp->b_resid) { 3396 /* 3397 * Didn't get it all because we hit EOF, 3398 * zero all the memory beyond the EOF. 3399 */ 3400 /* bzero(rdaddr + */ 3401 bzero(bp->b_un.b_addr + 3402 bp->b_bcount - bp->b_resid, bp->b_resid); 3403 } 3404 mutex_enter(&rp->r_statelock); 3405 if (bp->b_resid == bp->b_bcount && 3406 offset >= rp->r_size) { 3407 /* 3408 * We didn't read anything at all as we are 3409 * past EOF. Return an error indicator back 3410 * but don't destroy the pages (yet). 3411 */ 3412 error = NFS_EOF; 3413 } 3414 mutex_exit(&rp->r_statelock); 3415 } else if (error == EACCES) { 3416 mutex_enter(&rp->r_statelock); 3417 if (cred != cr) { 3418 if (rp->r_cred != NULL) 3419 crfree(rp->r_cred); 3420 rp->r_cred = cr; 3421 crhold(cr); 3422 cred = cr; 3423 crhold(cred); 3424 mutex_exit(&rp->r_statelock); 3425 goto read_again; 3426 } 3427 mutex_exit(&rp->r_statelock); 3428 } 3429 } else { 3430 if (!(rp->r_flags & RSTALE)) { 3431 mutex_enter(&rp->r_statelock); 3432 if (rp->r_cred != NULL) { 3433 cred = rp->r_cred; 3434 crhold(cred); 3435 } else { 3436 rp->r_cred = cr; 3437 crhold(cr); 3438 cred = cr; 3439 crhold(cred); 3440 } 3441 mutex_exit(&rp->r_statelock); 3442 write_again: 3443 mutex_enter(&rp->r_statelock); 3444 count = MIN(bp->b_bcount, rp->r_size - offset); 3445 mutex_exit(&rp->r_statelock); 3446 if (count < 0) 3447 cmn_err(CE_PANIC, "nfs_bio: write count < 0"); 3448 #ifdef DEBUG 3449 if (count == 0) { 3450 zcmn_err(getzoneid(), CE_WARN, 3451 "nfs_bio: zero length write at %d", 3452 offset); 3453 nfs_printfhandle(&rp->r_fh); 3454 if (nfs_bio_do_stop) 3455 debug_enter("nfs_bio"); 3456 } 3457 #endif 3458 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset, 3459 count, cred); 3460 if (error == EACCES) { 3461 mutex_enter(&rp->r_statelock); 3462 if (cred != cr) { 3463 if (rp->r_cred != NULL) 3464 crfree(rp->r_cred); 3465 rp->r_cred = cr; 3466 crhold(cr); 3467 crfree(cred); 3468 cred = cr; 3469 crhold(cred); 3470 mutex_exit(&rp->r_statelock); 3471 goto write_again; 3472 } 3473 mutex_exit(&rp->r_statelock); 3474 } 3475 bp->b_error = error; 3476 if (error && error != EINTR) { 3477 /* 3478 * Don't print EDQUOT errors on the console. 3479 * Don't print asynchronous EACCES errors. 3480 * Don't print EFBIG errors. 3481 * Print all other write errors. 3482 */ 3483 if (error != EDQUOT && error != EFBIG && 3484 (error != EACCES || 3485 !(bp->b_flags & B_ASYNC))) 3486 nfs_write_error(bp->b_vp, error, cred); 3487 /* 3488 * Update r_error and r_flags as appropriate. 3489 * If the error was ESTALE, then mark the 3490 * rnode as not being writeable and save 3491 * the error status. Otherwise, save any 3492 * errors which occur from asynchronous 3493 * page invalidations. Any errors occurring 3494 * from other operations should be saved 3495 * by the caller. 3496 */ 3497 mutex_enter(&rp->r_statelock); 3498 if (error == ESTALE) { 3499 rp->r_flags |= RSTALE; 3500 if (!rp->r_error) 3501 rp->r_error = error; 3502 } else if (!rp->r_error && 3503 (bp->b_flags & 3504 (B_INVAL|B_FORCE|B_ASYNC)) == 3505 (B_INVAL|B_FORCE|B_ASYNC)) { 3506 rp->r_error = error; 3507 } 3508 mutex_exit(&rp->r_statelock); 3509 } 3510 crfree(cred); 3511 } else { 3512 error = rp->r_error; 3513 /* 3514 * A close may have cleared r_error, if so, 3515 * propagate ESTALE error return properly 3516 */ 3517 if (error == 0) 3518 error = ESTALE; 3519 } 3520 } 3521 3522 if (error != 0 && error != NFS_EOF) 3523 bp->b_flags |= B_ERROR; 3524 3525 DTRACE_IO1(done, struct buf *, bp); 3526 3527 return (error); 3528 } 3529 3530 /* ARGSUSED */ 3531 static int 3532 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3533 { 3534 struct nfs_fid *fp; 3535 rnode_t *rp; 3536 3537 rp = VTOR(vp); 3538 3539 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) { 3540 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short); 3541 return (ENOSPC); 3542 } 3543 fp = (struct nfs_fid *)fidp; 3544 fp->nf_pad = 0; 3545 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short); 3546 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE); 3547 return (0); 3548 } 3549 3550 /* ARGSUSED2 */ 3551 static int 3552 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3553 { 3554 rnode_t *rp = VTOR(vp); 3555 3556 if (!write_lock) { 3557 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3558 return (V_WRITELOCK_FALSE); 3559 } 3560 3561 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) { 3562 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE); 3563 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp)) 3564 return (V_WRITELOCK_FALSE); 3565 nfs_rw_exit(&rp->r_rwlock); 3566 } 3567 3568 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE); 3569 return (V_WRITELOCK_TRUE); 3570 } 3571 3572 /* ARGSUSED */ 3573 static void 3574 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp) 3575 { 3576 rnode_t *rp = VTOR(vp); 3577 3578 nfs_rw_exit(&rp->r_rwlock); 3579 } 3580 3581 /* ARGSUSED */ 3582 static int 3583 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct) 3584 { 3585 3586 /* 3587 * Because we stuff the readdir cookie into the offset field 3588 * someone may attempt to do an lseek with the cookie which 3589 * we want to succeed. 3590 */ 3591 if (vp->v_type == VDIR) 3592 return (0); 3593 if (*noffp < 0 || *noffp > MAXOFF32_T) 3594 return (EINVAL); 3595 return (0); 3596 } 3597 3598 /* 3599 * number of NFS_MAXDATA blocks to read ahead 3600 * optimized for 100 base-T. 3601 */ 3602 static int nfs_nra = 4; 3603 3604 #ifdef DEBUG 3605 static int nfs_lostpage = 0; /* number of times we lost original page */ 3606 #endif 3607 3608 /* 3609 * Return all the pages from [off..off+len) in file 3610 */ 3611 /* ARGSUSED */ 3612 static int 3613 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3614 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3615 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3616 { 3617 rnode_t *rp; 3618 int error; 3619 mntinfo_t *mi; 3620 3621 if (vp->v_flag & VNOMAP) 3622 return (ENOSYS); 3623 3624 ASSERT(off <= MAXOFF32_T); 3625 if (nfs_zone() != VTOMI(vp)->mi_zone) 3626 return (EIO); 3627 if (protp != NULL) 3628 *protp = PROT_ALL; 3629 3630 /* 3631 * Now valididate that the caches are up to date. 3632 */ 3633 error = nfs_validate_caches(vp, cr); 3634 if (error) 3635 return (error); 3636 3637 rp = VTOR(vp); 3638 mi = VTOMI(vp); 3639 retry: 3640 mutex_enter(&rp->r_statelock); 3641 3642 /* 3643 * Don't create dirty pages faster than they 3644 * can be cleaned so that the system doesn't 3645 * get imbalanced. If the async queue is 3646 * maxed out, then wait for it to drain before 3647 * creating more dirty pages. Also, wait for 3648 * any threads doing pagewalks in the vop_getattr 3649 * entry points so that they don't block for 3650 * long periods. 3651 */ 3652 if (rw == S_CREATE) { 3653 while ((mi->mi_max_threads != 0 && 3654 rp->r_awcount > 2 * mi->mi_max_threads) || 3655 rp->r_gcount > 0) 3656 cv_wait(&rp->r_cv, &rp->r_statelock); 3657 } 3658 3659 /* 3660 * If we are getting called as a side effect of an nfs_write() 3661 * operation the local file size might not be extended yet. 3662 * In this case we want to be able to return pages of zeroes. 3663 */ 3664 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) { 3665 mutex_exit(&rp->r_statelock); 3666 return (EFAULT); /* beyond EOF */ 3667 } 3668 3669 mutex_exit(&rp->r_statelock); 3670 3671 if (len <= PAGESIZE) { 3672 error = nfs_getapage(vp, off, len, protp, pl, plsz, 3673 seg, addr, rw, cr); 3674 } else { 3675 error = pvn_getpages(nfs_getapage, vp, off, len, protp, 3676 pl, plsz, seg, addr, rw, cr); 3677 } 3678 3679 switch (error) { 3680 case NFS_EOF: 3681 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr); 3682 goto retry; 3683 case ESTALE: 3684 PURGE_STALE_FH(error, vp, cr); 3685 } 3686 3687 return (error); 3688 } 3689 3690 /* 3691 * Called from pvn_getpages or nfs_getpage to get a particular page. 3692 */ 3693 /* ARGSUSED */ 3694 static int 3695 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp, 3696 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3697 enum seg_rw rw, cred_t *cr) 3698 { 3699 rnode_t *rp; 3700 uint_t bsize; 3701 struct buf *bp; 3702 page_t *pp; 3703 u_offset_t lbn; 3704 u_offset_t io_off; 3705 u_offset_t blkoff; 3706 u_offset_t rablkoff; 3707 size_t io_len; 3708 uint_t blksize; 3709 int error; 3710 int readahead; 3711 int readahead_issued = 0; 3712 int ra_window; /* readahead window */ 3713 page_t *pagefound; 3714 3715 if (nfs_zone() != VTOMI(vp)->mi_zone) 3716 return (EIO); 3717 rp = VTOR(vp); 3718 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3719 3720 reread: 3721 bp = NULL; 3722 pp = NULL; 3723 pagefound = NULL; 3724 3725 if (pl != NULL) 3726 pl[0] = NULL; 3727 3728 error = 0; 3729 lbn = off / bsize; 3730 blkoff = lbn * bsize; 3731 3732 /* 3733 * Queueing up the readahead before doing the synchronous read 3734 * results in a significant increase in read throughput because 3735 * of the increased parallelism between the async threads and 3736 * the process context. 3737 */ 3738 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 && 3739 rw != S_CREATE && 3740 !(vp->v_flag & VNOCACHE)) { 3741 mutex_enter(&rp->r_statelock); 3742 3743 /* 3744 * Calculate the number of readaheads to do. 3745 * a) No readaheads at offset = 0. 3746 * b) Do maximum(nfs_nra) readaheads when the readahead 3747 * window is closed. 3748 * c) Do readaheads between 1 to (nfs_nra - 1) depending 3749 * upon how far the readahead window is open or close. 3750 * d) No readaheads if rp->r_nextr is not within the scope 3751 * of the readahead window (random i/o). 3752 */ 3753 3754 if (off == 0) 3755 readahead = 0; 3756 else if (blkoff == rp->r_nextr) 3757 readahead = nfs_nra; 3758 else if (rp->r_nextr > blkoff && 3759 ((ra_window = (rp->r_nextr - blkoff) / bsize) 3760 <= (nfs_nra - 1))) 3761 readahead = nfs_nra - ra_window; 3762 else 3763 readahead = 0; 3764 3765 rablkoff = rp->r_nextr; 3766 while (readahead > 0 && rablkoff + bsize < rp->r_size) { 3767 mutex_exit(&rp->r_statelock); 3768 if (nfs_async_readahead(vp, rablkoff + bsize, 3769 addr + (rablkoff + bsize - off), seg, cr, 3770 nfs_readahead) < 0) { 3771 mutex_enter(&rp->r_statelock); 3772 break; 3773 } 3774 readahead--; 3775 rablkoff += bsize; 3776 /* 3777 * Indicate that we did a readahead so 3778 * readahead offset is not updated 3779 * by the synchronous read below. 3780 */ 3781 readahead_issued = 1; 3782 mutex_enter(&rp->r_statelock); 3783 /* 3784 * set readahead offset to 3785 * offset of last async readahead 3786 * request. 3787 */ 3788 rp->r_nextr = rablkoff; 3789 } 3790 mutex_exit(&rp->r_statelock); 3791 } 3792 3793 again: 3794 if ((pagefound = page_exists(vp, off)) == NULL) { 3795 if (pl == NULL) { 3796 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr, 3797 nfs_readahead); 3798 } else if (rw == S_CREATE) { 3799 /* 3800 * Block for this page is not allocated, or the offset 3801 * is beyond the current allocation size, or we're 3802 * allocating a swap slot and the page was not found, 3803 * so allocate it and return a zero page. 3804 */ 3805 if ((pp = page_create_va(vp, off, 3806 PAGESIZE, PG_WAIT, seg, addr)) == NULL) 3807 cmn_err(CE_PANIC, "nfs_getapage: page_create"); 3808 io_len = PAGESIZE; 3809 mutex_enter(&rp->r_statelock); 3810 rp->r_nextr = off + PAGESIZE; 3811 mutex_exit(&rp->r_statelock); 3812 } else { 3813 /* 3814 * Need to go to server to get a BLOCK, exception to 3815 * that being while reading at offset = 0 or doing 3816 * random i/o, in that case read only a PAGE. 3817 */ 3818 mutex_enter(&rp->r_statelock); 3819 if (blkoff < rp->r_size && 3820 blkoff + bsize >= rp->r_size) { 3821 /* 3822 * If only a block or less is left in 3823 * the file, read all that is remaining. 3824 */ 3825 if (rp->r_size <= off) { 3826 /* 3827 * Trying to access beyond EOF, 3828 * set up to get at least one page. 3829 */ 3830 blksize = off + PAGESIZE - blkoff; 3831 } else 3832 blksize = rp->r_size - blkoff; 3833 } else if ((off == 0) || 3834 (off != rp->r_nextr && !readahead_issued)) { 3835 blksize = PAGESIZE; 3836 blkoff = off; /* block = page here */ 3837 } else 3838 blksize = bsize; 3839 mutex_exit(&rp->r_statelock); 3840 3841 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3842 &io_len, blkoff, blksize, 0); 3843 3844 /* 3845 * Some other thread has entered the page, 3846 * so just use it. 3847 */ 3848 if (pp == NULL) 3849 goto again; 3850 3851 /* 3852 * Now round the request size up to page boundaries. 3853 * This ensures that the entire page will be 3854 * initialized to zeroes if EOF is encountered. 3855 */ 3856 io_len = ptob(btopr(io_len)); 3857 3858 bp = pageio_setup(pp, io_len, vp, B_READ); 3859 ASSERT(bp != NULL); 3860 3861 /* 3862 * pageio_setup should have set b_addr to 0. This 3863 * is correct since we want to do I/O on a page 3864 * boundary. bp_mapin will use this addr to calculate 3865 * an offset, and then set b_addr to the kernel virtual 3866 * address it allocated for us. 3867 */ 3868 ASSERT(bp->b_un.b_addr == 0); 3869 3870 bp->b_edev = 0; 3871 bp->b_dev = 0; 3872 bp->b_lblkno = lbtodb(io_off); 3873 bp->b_file = vp; 3874 bp->b_offset = (offset_t)off; 3875 bp_mapin(bp); 3876 3877 /* 3878 * If doing a write beyond what we believe is EOF, 3879 * don't bother trying to read the pages from the 3880 * server, we'll just zero the pages here. We 3881 * don't check that the rw flag is S_WRITE here 3882 * because some implementations may attempt a 3883 * read access to the buffer before copying data. 3884 */ 3885 mutex_enter(&rp->r_statelock); 3886 if (io_off >= rp->r_size && seg == segkmap) { 3887 mutex_exit(&rp->r_statelock); 3888 bzero(bp->b_un.b_addr, io_len); 3889 } else { 3890 mutex_exit(&rp->r_statelock); 3891 error = nfs_bio(bp, cr); 3892 } 3893 3894 /* 3895 * Unmap the buffer before freeing it. 3896 */ 3897 bp_mapout(bp); 3898 pageio_done(bp); 3899 3900 if (error == NFS_EOF) { 3901 /* 3902 * If doing a write system call just return 3903 * zeroed pages, else user tried to get pages 3904 * beyond EOF, return error. We don't check 3905 * that the rw flag is S_WRITE here because 3906 * some implementations may attempt a read 3907 * access to the buffer before copying data. 3908 */ 3909 if (seg == segkmap) 3910 error = 0; 3911 else 3912 error = EFAULT; 3913 } 3914 3915 if (!readahead_issued && !error) { 3916 mutex_enter(&rp->r_statelock); 3917 rp->r_nextr = io_off + io_len; 3918 mutex_exit(&rp->r_statelock); 3919 } 3920 } 3921 } 3922 3923 out: 3924 if (pl == NULL) 3925 return (error); 3926 3927 if (error) { 3928 if (pp != NULL) 3929 pvn_read_done(pp, B_ERROR); 3930 return (error); 3931 } 3932 3933 if (pagefound) { 3934 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED); 3935 3936 /* 3937 * Page exists in the cache, acquire the appropriate lock. 3938 * If this fails, start all over again. 3939 */ 3940 if ((pp = page_lookup(vp, off, se)) == NULL) { 3941 #ifdef DEBUG 3942 nfs_lostpage++; 3943 #endif 3944 goto reread; 3945 } 3946 pl[0] = pp; 3947 pl[1] = NULL; 3948 return (0); 3949 } 3950 3951 if (pp != NULL) 3952 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3953 3954 return (error); 3955 } 3956 3957 static void 3958 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg, 3959 cred_t *cr) 3960 { 3961 int error; 3962 page_t *pp; 3963 u_offset_t io_off; 3964 size_t io_len; 3965 struct buf *bp; 3966 uint_t bsize, blksize; 3967 rnode_t *rp = VTOR(vp); 3968 3969 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 3970 3971 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 3972 3973 mutex_enter(&rp->r_statelock); 3974 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) { 3975 /* 3976 * If less than a block left in file read less 3977 * than a block. 3978 */ 3979 blksize = rp->r_size - blkoff; 3980 } else 3981 blksize = bsize; 3982 mutex_exit(&rp->r_statelock); 3983 3984 pp = pvn_read_kluster(vp, blkoff, segkmap, addr, 3985 &io_off, &io_len, blkoff, blksize, 1); 3986 /* 3987 * The isra flag passed to the kluster function is 1, we may have 3988 * gotten a return value of NULL for a variety of reasons (# of free 3989 * pages < minfree, someone entered the page on the vnode etc). In all 3990 * cases, we want to punt on the readahead. 3991 */ 3992 if (pp == NULL) 3993 return; 3994 3995 /* 3996 * Now round the request size up to page boundaries. 3997 * This ensures that the entire page will be 3998 * initialized to zeroes if EOF is encountered. 3999 */ 4000 io_len = ptob(btopr(io_len)); 4001 4002 bp = pageio_setup(pp, io_len, vp, B_READ); 4003 ASSERT(bp != NULL); 4004 4005 /* 4006 * pageio_setup should have set b_addr to 0. This is correct since 4007 * we want to do I/O on a page boundary. bp_mapin() will use this addr 4008 * to calculate an offset, and then set b_addr to the kernel virtual 4009 * address it allocated for us. 4010 */ 4011 ASSERT(bp->b_un.b_addr == 0); 4012 4013 bp->b_edev = 0; 4014 bp->b_dev = 0; 4015 bp->b_lblkno = lbtodb(io_off); 4016 bp->b_file = vp; 4017 bp->b_offset = (offset_t)blkoff; 4018 bp_mapin(bp); 4019 4020 /* 4021 * If doing a write beyond what we believe is EOF, don't bother trying 4022 * to read the pages from the server, we'll just zero the pages here. 4023 * We don't check that the rw flag is S_WRITE here because some 4024 * implementations may attempt a read access to the buffer before 4025 * copying data. 4026 */ 4027 mutex_enter(&rp->r_statelock); 4028 if (io_off >= rp->r_size && seg == segkmap) { 4029 mutex_exit(&rp->r_statelock); 4030 bzero(bp->b_un.b_addr, io_len); 4031 error = 0; 4032 } else { 4033 mutex_exit(&rp->r_statelock); 4034 error = nfs_bio(bp, cr); 4035 if (error == NFS_EOF) 4036 error = 0; 4037 } 4038 4039 /* 4040 * Unmap the buffer before freeing it. 4041 */ 4042 bp_mapout(bp); 4043 pageio_done(bp); 4044 4045 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ); 4046 4047 /* 4048 * In case of error set readahead offset 4049 * to the lowest offset. 4050 * pvn_read_done() calls VN_DISPOSE to destroy the pages 4051 */ 4052 if (error && rp->r_nextr > io_off) { 4053 mutex_enter(&rp->r_statelock); 4054 if (rp->r_nextr > io_off) 4055 rp->r_nextr = io_off; 4056 mutex_exit(&rp->r_statelock); 4057 } 4058 } 4059 4060 /* 4061 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE} 4062 * If len == 0, do from off to EOF. 4063 * 4064 * The normal cases should be len == 0 && off == 0 (entire vp list), 4065 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE 4066 * (from pageout). 4067 */ 4068 /* ARGSUSED */ 4069 static int 4070 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4071 caller_context_t *ct) 4072 { 4073 int error; 4074 rnode_t *rp; 4075 4076 ASSERT(cr != NULL); 4077 4078 /* 4079 * XXX - Why should this check be made here? 4080 */ 4081 if (vp->v_flag & VNOMAP) 4082 return (ENOSYS); 4083 4084 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp)) 4085 return (0); 4086 4087 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone) 4088 return (EIO); 4089 ASSERT(off <= MAXOFF32_T); 4090 4091 rp = VTOR(vp); 4092 mutex_enter(&rp->r_statelock); 4093 rp->r_count++; 4094 mutex_exit(&rp->r_statelock); 4095 error = nfs_putpages(vp, off, len, flags, cr); 4096 mutex_enter(&rp->r_statelock); 4097 rp->r_count--; 4098 cv_broadcast(&rp->r_cv); 4099 mutex_exit(&rp->r_statelock); 4100 4101 return (error); 4102 } 4103 4104 /* 4105 * Write out a single page, possibly klustering adjacent dirty pages. 4106 */ 4107 int 4108 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 4109 int flags, cred_t *cr) 4110 { 4111 u_offset_t io_off; 4112 u_offset_t lbn_off; 4113 u_offset_t lbn; 4114 size_t io_len; 4115 uint_t bsize; 4116 int error; 4117 rnode_t *rp; 4118 4119 ASSERT(!vn_is_readonly(vp)); 4120 ASSERT(pp != NULL); 4121 ASSERT(cr != NULL); 4122 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone); 4123 4124 rp = VTOR(vp); 4125 ASSERT(rp->r_count > 0); 4126 4127 ASSERT(pp->p_offset <= MAXOFF32_T); 4128 4129 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE); 4130 lbn = pp->p_offset / bsize; 4131 lbn_off = lbn * bsize; 4132 4133 /* 4134 * Find a kluster that fits in one block, or in 4135 * one page if pages are bigger than blocks. If 4136 * there is less file space allocated than a whole 4137 * page, we'll shorten the i/o request below. 4138 */ 4139 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off, 4140 roundup(bsize, PAGESIZE), flags); 4141 4142 /* 4143 * pvn_write_kluster shouldn't have returned a page with offset 4144 * behind the original page we were given. Verify that. 4145 */ 4146 ASSERT((pp->p_offset / bsize) >= lbn); 4147 4148 /* 4149 * Now pp will have the list of kept dirty pages marked for 4150 * write back. It will also handle invalidation and freeing 4151 * of pages that are not dirty. Check for page length rounding 4152 * problems. 4153 */ 4154 if (io_off + io_len > lbn_off + bsize) { 4155 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE); 4156 io_len = lbn_off + bsize - io_off; 4157 } 4158 /* 4159 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4160 * consistent value of r_size. RMODINPROGRESS is set in writerp(). 4161 * When RMODINPROGRESS is set it indicates that a uiomove() is in 4162 * progress and the r_size has not been made consistent with the 4163 * new size of the file. When the uiomove() completes the r_size is 4164 * updated and the RMODINPROGRESS flag is cleared. 4165 * 4166 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a 4167 * consistent value of r_size. Without this handshaking, it is 4168 * possible that nfs(3)_bio() picks up the old value of r_size 4169 * before the uiomove() in writerp() completes. This will result 4170 * in the write through nfs(3)_bio() being dropped. 4171 * 4172 * More precisely, there is a window between the time the uiomove() 4173 * completes and the time the r_size is updated. If a VOP_PUTPAGE() 4174 * operation intervenes in this window, the page will be picked up, 4175 * because it is dirty (it will be unlocked, unless it was 4176 * pagecreate'd). When the page is picked up as dirty, the dirty 4177 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is 4178 * checked. This will still be the old size. Therefore the page will 4179 * not be written out. When segmap_release() calls VOP_PUTPAGE(), 4180 * the page will be found to be clean and the write will be dropped. 4181 */ 4182 if (rp->r_flags & RMODINPROGRESS) { 4183 mutex_enter(&rp->r_statelock); 4184 if ((rp->r_flags & RMODINPROGRESS) && 4185 rp->r_modaddr + MAXBSIZE > io_off && 4186 rp->r_modaddr < io_off + io_len) { 4187 page_t *plist; 4188 /* 4189 * A write is in progress for this region of the file. 4190 * If we did not detect RMODINPROGRESS here then this 4191 * path through nfs_putapage() would eventually go to 4192 * nfs(3)_bio() and may not write out all of the data 4193 * in the pages. We end up losing data. So we decide 4194 * to set the modified bit on each page in the page 4195 * list and mark the rnode with RDIRTY. This write 4196 * will be restarted at some later time. 4197 */ 4198 plist = pp; 4199 while (plist != NULL) { 4200 pp = plist; 4201 page_sub(&plist, pp); 4202 hat_setmod(pp); 4203 page_io_unlock(pp); 4204 page_unlock(pp); 4205 } 4206 rp->r_flags |= RDIRTY; 4207 mutex_exit(&rp->r_statelock); 4208 if (offp) 4209 *offp = io_off; 4210 if (lenp) 4211 *lenp = io_len; 4212 return (0); 4213 } 4214 mutex_exit(&rp->r_statelock); 4215 } 4216 4217 if (flags & B_ASYNC) { 4218 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr, 4219 nfs_sync_putapage); 4220 } else 4221 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr); 4222 4223 if (offp) 4224 *offp = io_off; 4225 if (lenp) 4226 *lenp = io_len; 4227 return (error); 4228 } 4229 4230 static int 4231 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4232 int flags, cred_t *cr) 4233 { 4234 int error; 4235 rnode_t *rp; 4236 4237 flags |= B_WRITE; 4238 4239 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4240 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4241 4242 rp = VTOR(vp); 4243 4244 if ((error == ENOSPC || error == EDQUOT || error == EACCES) && 4245 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) { 4246 if (!(rp->r_flags & ROUTOFSPACE)) { 4247 mutex_enter(&rp->r_statelock); 4248 rp->r_flags |= ROUTOFSPACE; 4249 mutex_exit(&rp->r_statelock); 4250 } 4251 flags |= B_ERROR; 4252 pvn_write_done(pp, flags); 4253 /* 4254 * If this was not an async thread, then try again to 4255 * write out the pages, but this time, also destroy 4256 * them whether or not the write is successful. This 4257 * will prevent memory from filling up with these 4258 * pages and destroying them is the only alternative 4259 * if they can't be written out. 4260 * 4261 * Don't do this if this is an async thread because 4262 * when the pages are unlocked in pvn_write_done, 4263 * some other thread could have come along, locked 4264 * them, and queued for an async thread. It would be 4265 * possible for all of the async threads to be tied 4266 * up waiting to lock the pages again and they would 4267 * all already be locked and waiting for an async 4268 * thread to handle them. Deadlock. 4269 */ 4270 if (!(flags & B_ASYNC)) { 4271 error = nfs_putpage(vp, io_off, io_len, 4272 B_INVAL | B_FORCE, cr, NULL); 4273 } 4274 } else { 4275 if (error) 4276 flags |= B_ERROR; 4277 else if (rp->r_flags & ROUTOFSPACE) { 4278 mutex_enter(&rp->r_statelock); 4279 rp->r_flags &= ~ROUTOFSPACE; 4280 mutex_exit(&rp->r_statelock); 4281 } 4282 pvn_write_done(pp, flags); 4283 } 4284 4285 return (error); 4286 } 4287 4288 /* ARGSUSED */ 4289 static int 4290 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4291 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4292 caller_context_t *ct) 4293 { 4294 struct segvn_crargs vn_a; 4295 int error; 4296 rnode_t *rp; 4297 struct vattr va; 4298 4299 if (nfs_zone() != VTOMI(vp)->mi_zone) 4300 return (EIO); 4301 4302 if (vp->v_flag & VNOMAP) 4303 return (ENOSYS); 4304 4305 if (off > MAXOFF32_T) 4306 return (EFBIG); 4307 4308 if (off < 0 || off + len < 0) 4309 return (ENXIO); 4310 4311 if (vp->v_type != VREG) 4312 return (ENODEV); 4313 4314 /* 4315 * If there is cached data and if close-to-open consistency 4316 * checking is not turned off and if the file system is not 4317 * mounted readonly, then force an over the wire getattr. 4318 * Otherwise, just invoke nfsgetattr to get a copy of the 4319 * attributes. The attribute cache will be used unless it 4320 * is timed out and if it is, then an over the wire getattr 4321 * will be issued. 4322 */ 4323 va.va_mask = AT_ALL; 4324 if (vn_has_cached_data(vp) && 4325 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp)) 4326 error = nfs_getattr_otw(vp, &va, cr); 4327 else 4328 error = nfsgetattr(vp, &va, cr); 4329 if (error) 4330 return (error); 4331 4332 /* 4333 * Check to see if the vnode is currently marked as not cachable. 4334 * This means portions of the file are locked (through VOP_FRLOCK). 4335 * In this case the map request must be refused. We use 4336 * rp->r_lkserlock to avoid a race with concurrent lock requests. 4337 */ 4338 rp = VTOR(vp); 4339 4340 /* 4341 * Atomically increment r_inmap after acquiring r_rwlock. The 4342 * idea here is to acquire r_rwlock to block read/write and 4343 * not to protect r_inmap. r_inmap will inform nfs_read/write() 4344 * that we are in nfs_map(). Now, r_rwlock is acquired in order 4345 * and we can prevent the deadlock that would have occurred 4346 * when nfs_addmap() would have acquired it out of order. 4347 * 4348 * Since we are not protecting r_inmap by any lock, we do not 4349 * hold any lock when we decrement it. We atomically decrement 4350 * r_inmap after we release r_lkserlock. 4351 */ 4352 4353 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp))) 4354 return (EINTR); 4355 atomic_add_int(&rp->r_inmap, 1); 4356 nfs_rw_exit(&rp->r_rwlock); 4357 4358 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) { 4359 atomic_add_int(&rp->r_inmap, -1); 4360 return (EINTR); 4361 } 4362 if (vp->v_flag & VNOCACHE) { 4363 error = EAGAIN; 4364 goto done; 4365 } 4366 4367 /* 4368 * Don't allow concurrent locks and mapping if mandatory locking is 4369 * enabled. 4370 */ 4371 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) && 4372 MANDLOCK(vp, va.va_mode)) { 4373 error = EAGAIN; 4374 goto done; 4375 } 4376 4377 as_rangelock(as); 4378 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4379 if (error != 0) { 4380 as_rangeunlock(as); 4381 goto done; 4382 } 4383 4384 vn_a.vp = vp; 4385 vn_a.offset = off; 4386 vn_a.type = (flags & MAP_TYPE); 4387 vn_a.prot = (uchar_t)prot; 4388 vn_a.maxprot = (uchar_t)maxprot; 4389 vn_a.flags = (flags & ~MAP_TYPE); 4390 vn_a.cred = cr; 4391 vn_a.amp = NULL; 4392 vn_a.szc = 0; 4393 vn_a.lgrp_mem_policy_flags = 0; 4394 4395 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4396 as_rangeunlock(as); 4397 4398 done: 4399 nfs_rw_exit(&rp->r_lkserlock); 4400 atomic_add_int(&rp->r_inmap, -1); 4401 return (error); 4402 } 4403 4404 /* ARGSUSED */ 4405 static int 4406 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4407 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4408 caller_context_t *ct) 4409 { 4410 rnode_t *rp; 4411 4412 if (vp->v_flag & VNOMAP) 4413 return (ENOSYS); 4414 if (nfs_zone() != VTOMI(vp)->mi_zone) 4415 return (EIO); 4416 4417 rp = VTOR(vp); 4418 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len)); 4419 4420 return (0); 4421 } 4422 4423 /* ARGSUSED */ 4424 static int 4425 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset, 4426 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct) 4427 { 4428 netobj lm_fh; 4429 int rc; 4430 u_offset_t start, end; 4431 rnode_t *rp; 4432 int error = 0, intr = INTR(vp); 4433 4434 /* check for valid cmd parameter */ 4435 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW) 4436 return (EINVAL); 4437 if (nfs_zone() != VTOMI(vp)->mi_zone) 4438 return (EIO); 4439 4440 /* Verify l_type. */ 4441 switch (bfp->l_type) { 4442 case F_RDLCK: 4443 if (cmd != F_GETLK && !(flag & FREAD)) 4444 return (EBADF); 4445 break; 4446 case F_WRLCK: 4447 if (cmd != F_GETLK && !(flag & FWRITE)) 4448 return (EBADF); 4449 break; 4450 case F_UNLCK: 4451 intr = 0; 4452 break; 4453 4454 default: 4455 return (EINVAL); 4456 } 4457 4458 /* check the validity of the lock range */ 4459 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset)) 4460 return (rc); 4461 if (rc = flk_check_lock_data(start, end, MAXOFF32_T)) 4462 return (rc); 4463 4464 /* 4465 * If the filesystem is mounted using local locking, pass the 4466 * request off to the local locking code. 4467 */ 4468 if (VTOMI(vp)->mi_flags & MI_LLOCK) { 4469 if (offset > MAXOFF32_T) 4470 return (EFBIG); 4471 if (cmd == F_SETLK || cmd == F_SETLKW) { 4472 /* 4473 * For complete safety, we should be holding 4474 * r_lkserlock. However, we can't call 4475 * lm_safelock and then fs_frlock while 4476 * holding r_lkserlock, so just invoke 4477 * lm_safelock and expect that this will 4478 * catch enough of the cases. 4479 */ 4480 if (!lm_safelock(vp, bfp, cr)) 4481 return (EAGAIN); 4482 } 4483 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4484 } 4485 4486 rp = VTOR(vp); 4487 4488 /* 4489 * Check whether the given lock request can proceed, given the 4490 * current file mappings. 4491 */ 4492 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) 4493 return (EINTR); 4494 if (cmd == F_SETLK || cmd == F_SETLKW) { 4495 if (!lm_safelock(vp, bfp, cr)) { 4496 rc = EAGAIN; 4497 goto done; 4498 } 4499 } 4500 4501 /* 4502 * Flush the cache after waiting for async I/O to finish. For new 4503 * locks, this is so that the process gets the latest bits from the 4504 * server. For unlocks, this is so that other clients see the 4505 * latest bits once the file has been unlocked. If currently dirty 4506 * pages can't be flushed, then don't allow a lock to be set. But 4507 * allow unlocks to succeed, to avoid having orphan locks on the 4508 * server. 4509 */ 4510 if (cmd != F_GETLK) { 4511 mutex_enter(&rp->r_statelock); 4512 while (rp->r_count > 0) { 4513 if (intr) { 4514 klwp_t *lwp = ttolwp(curthread); 4515 4516 if (lwp != NULL) 4517 lwp->lwp_nostop++; 4518 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock) 4519 == 0) { 4520 if (lwp != NULL) 4521 lwp->lwp_nostop--; 4522 rc = EINTR; 4523 break; 4524 } 4525 if (lwp != NULL) 4526 lwp->lwp_nostop--; 4527 } else 4528 cv_wait(&rp->r_cv, &rp->r_statelock); 4529 } 4530 mutex_exit(&rp->r_statelock); 4531 if (rc != 0) 4532 goto done; 4533 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct); 4534 if (error) { 4535 if (error == ENOSPC || error == EDQUOT) { 4536 mutex_enter(&rp->r_statelock); 4537 if (!rp->r_error) 4538 rp->r_error = error; 4539 mutex_exit(&rp->r_statelock); 4540 } 4541 if (bfp->l_type != F_UNLCK) { 4542 rc = ENOLCK; 4543 goto done; 4544 } 4545 } 4546 } 4547 4548 lm_fh.n_len = sizeof (fhandle_t); 4549 lm_fh.n_bytes = (char *)VTOFH(vp); 4550 4551 /* 4552 * Call the lock manager to do the real work of contacting 4553 * the server and obtaining the lock. 4554 */ 4555 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp); 4556 4557 if (rc == 0) 4558 nfs_lockcompletion(vp, cmd); 4559 4560 done: 4561 nfs_rw_exit(&rp->r_lkserlock); 4562 return (rc); 4563 } 4564 4565 /* 4566 * Free storage space associated with the specified vnode. The portion 4567 * to be freed is specified by bfp->l_start and bfp->l_len (already 4568 * normalized to a "whence" of 0). 4569 * 4570 * This is an experimental facility whose continued existence is not 4571 * guaranteed. Currently, we only support the special case 4572 * of l_len == 0, meaning free to end of file. 4573 */ 4574 /* ARGSUSED */ 4575 static int 4576 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, 4577 offset_t offset, cred_t *cr, caller_context_t *ct) 4578 { 4579 int error; 4580 4581 ASSERT(vp->v_type == VREG); 4582 if (cmd != F_FREESP) 4583 return (EINVAL); 4584 4585 if (offset > MAXOFF32_T) 4586 return (EFBIG); 4587 4588 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) || 4589 (bfp->l_len > MAXOFF32_T)) 4590 return (EFBIG); 4591 4592 if (nfs_zone() != VTOMI(vp)->mi_zone) 4593 return (EIO); 4594 4595 error = convoff(vp, bfp, 0, offset); 4596 if (!error) { 4597 ASSERT(bfp->l_start >= 0); 4598 if (bfp->l_len == 0) { 4599 struct vattr va; 4600 4601 /* 4602 * ftruncate should not change the ctime and 4603 * mtime if we truncate the file to its 4604 * previous size. 4605 */ 4606 va.va_mask = AT_SIZE; 4607 error = nfsgetattr(vp, &va, cr); 4608 if (error || va.va_size == bfp->l_start) 4609 return (error); 4610 va.va_mask = AT_SIZE; 4611 va.va_size = bfp->l_start; 4612 error = nfssetattr(vp, &va, 0, cr); 4613 } else 4614 error = EINVAL; 4615 } 4616 4617 return (error); 4618 } 4619 4620 /* ARGSUSED */ 4621 static int 4622 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct) 4623 { 4624 4625 return (EINVAL); 4626 } 4627 4628 /* 4629 * Setup and add an address space callback to do the work of the delmap call. 4630 * The callback will (and must be) deleted in the actual callback function. 4631 * 4632 * This is done in order to take care of the problem that we have with holding 4633 * the address space's a_lock for a long period of time (e.g. if the NFS server 4634 * is down). Callbacks will be executed in the address space code while the 4635 * a_lock is not held. Holding the address space's a_lock causes things such 4636 * as ps and fork to hang because they are trying to acquire this lock as well. 4637 */ 4638 /* ARGSUSED */ 4639 static int 4640 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4641 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4642 caller_context_t *ct) 4643 { 4644 int caller_found; 4645 int error; 4646 rnode_t *rp; 4647 nfs_delmap_args_t *dmapp; 4648 nfs_delmapcall_t *delmap_call; 4649 4650 if (vp->v_flag & VNOMAP) 4651 return (ENOSYS); 4652 /* 4653 * A process may not change zones if it has NFS pages mmap'ed 4654 * in, so we can't legitimately get here from the wrong zone. 4655 */ 4656 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4657 4658 rp = VTOR(vp); 4659 4660 /* 4661 * The way that the address space of this process deletes its mapping 4662 * of this file is via the following call chains: 4663 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4664 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap() 4665 * 4666 * With the use of address space callbacks we are allowed to drop the 4667 * address space lock, a_lock, while executing the NFS operations that 4668 * need to go over the wire. Returning EAGAIN to the caller of this 4669 * function is what drives the execution of the callback that we add 4670 * below. The callback will be executed by the address space code 4671 * after dropping the a_lock. When the callback is finished, since 4672 * we dropped the a_lock, it must be re-acquired and segvn_unmap() 4673 * is called again on the same segment to finish the rest of the work 4674 * that needs to happen during unmapping. 4675 * 4676 * This action of calling back into the segment driver causes 4677 * nfs_delmap() to get called again, but since the callback was 4678 * already executed at this point, it already did the work and there 4679 * is nothing left for us to do. 4680 * 4681 * To Summarize: 4682 * - The first time nfs_delmap is called by the current thread is when 4683 * we add the caller associated with this delmap to the delmap caller 4684 * list, add the callback, and return EAGAIN. 4685 * - The second time in this call chain when nfs_delmap is called we 4686 * will find this caller in the delmap caller list and realize there 4687 * is no more work to do thus removing this caller from the list and 4688 * returning the error that was set in the callback execution. 4689 */ 4690 caller_found = nfs_find_and_delete_delmapcall(rp, &error); 4691 if (caller_found) { 4692 /* 4693 * 'error' is from the actual delmap operations. To avoid 4694 * hangs, we need to handle the return of EAGAIN differently 4695 * since this is what drives the callback execution. 4696 * In this case, we don't want to return EAGAIN and do the 4697 * callback execution because there are none to execute. 4698 */ 4699 if (error == EAGAIN) 4700 return (0); 4701 else 4702 return (error); 4703 } 4704 4705 /* current caller was not in the list */ 4706 delmap_call = nfs_init_delmapcall(); 4707 4708 mutex_enter(&rp->r_statelock); 4709 list_insert_tail(&rp->r_indelmap, delmap_call); 4710 mutex_exit(&rp->r_statelock); 4711 4712 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP); 4713 4714 dmapp->vp = vp; 4715 dmapp->off = off; 4716 dmapp->addr = addr; 4717 dmapp->len = len; 4718 dmapp->prot = prot; 4719 dmapp->maxprot = maxprot; 4720 dmapp->flags = flags; 4721 dmapp->cr = cr; 4722 dmapp->caller = delmap_call; 4723 4724 error = as_add_callback(as, nfs_delmap_callback, dmapp, 4725 AS_UNMAP_EVENT, addr, len, KM_SLEEP); 4726 4727 return (error ? error : EAGAIN); 4728 } 4729 4730 /* 4731 * Remove some pages from an mmap'd vnode. Just update the 4732 * count of pages. If doing close-to-open, then flush all 4733 * of the pages associated with this file. Otherwise, start 4734 * an asynchronous page flush to write out any dirty pages. 4735 * This will also associate a credential with the rnode which 4736 * can be used to write the pages. 4737 */ 4738 /* ARGSUSED */ 4739 static void 4740 nfs_delmap_callback(struct as *as, void *arg, uint_t event) 4741 { 4742 int error; 4743 rnode_t *rp; 4744 mntinfo_t *mi; 4745 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg; 4746 4747 rp = VTOR(dmapp->vp); 4748 mi = VTOMI(dmapp->vp); 4749 4750 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len)); 4751 ASSERT(rp->r_mapcnt >= 0); 4752 4753 /* 4754 * Initiate a page flush if there are pages, the file system 4755 * was not mounted readonly, the segment was mapped shared, and 4756 * the pages themselves were writeable. 4757 */ 4758 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) && 4759 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) { 4760 mutex_enter(&rp->r_statelock); 4761 rp->r_flags |= RDIRTY; 4762 mutex_exit(&rp->r_statelock); 4763 /* 4764 * If this is a cross-zone access a sync putpage won't work, so 4765 * the best we can do is try an async putpage. That seems 4766 * better than something more draconian such as discarding the 4767 * dirty pages. 4768 */ 4769 if ((mi->mi_flags & MI_NOCTO) || 4770 nfs_zone() != mi->mi_zone) 4771 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4772 B_ASYNC, dmapp->cr, NULL); 4773 else 4774 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4775 0, dmapp->cr, NULL); 4776 if (!error) { 4777 mutex_enter(&rp->r_statelock); 4778 error = rp->r_error; 4779 rp->r_error = 0; 4780 mutex_exit(&rp->r_statelock); 4781 } 4782 } else 4783 error = 0; 4784 4785 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) 4786 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len, 4787 B_INVAL, dmapp->cr, NULL); 4788 4789 dmapp->caller->error = error; 4790 (void) as_delete_callback(as, arg); 4791 kmem_free(dmapp, sizeof (nfs_delmap_args_t)); 4792 } 4793 4794 /* ARGSUSED */ 4795 static int 4796 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4797 caller_context_t *ct) 4798 { 4799 int error = 0; 4800 4801 if (nfs_zone() != VTOMI(vp)->mi_zone) 4802 return (EIO); 4803 /* 4804 * This looks a little weird because it's written in a general 4805 * manner but we make little use of cases. If cntl() ever gets 4806 * widely used, the outer switch will make more sense. 4807 */ 4808 4809 switch (cmd) { 4810 4811 /* 4812 * Large file spec - need to base answer new query with 4813 * hardcoded constant based on the protocol. 4814 */ 4815 case _PC_FILESIZEBITS: 4816 *valp = 32; 4817 return (0); 4818 4819 case _PC_LINK_MAX: 4820 case _PC_NAME_MAX: 4821 case _PC_PATH_MAX: 4822 case _PC_SYMLINK_MAX: 4823 case _PC_CHOWN_RESTRICTED: 4824 case _PC_NO_TRUNC: { 4825 mntinfo_t *mi; 4826 struct pathcnf *pc; 4827 4828 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL) 4829 return (EINVAL); 4830 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */ 4831 switch (cmd) { 4832 case _PC_LINK_MAX: 4833 *valp = pc->pc_link_max; 4834 break; 4835 case _PC_NAME_MAX: 4836 *valp = pc->pc_name_max; 4837 break; 4838 case _PC_PATH_MAX: 4839 case _PC_SYMLINK_MAX: 4840 *valp = pc->pc_path_max; 4841 break; 4842 case _PC_CHOWN_RESTRICTED: 4843 /* 4844 * if we got here, error is really a boolean which 4845 * indicates whether cmd is set or not. 4846 */ 4847 *valp = error ? 1 : 0; /* see above */ 4848 error = 0; 4849 break; 4850 case _PC_NO_TRUNC: 4851 /* 4852 * if we got here, error is really a boolean which 4853 * indicates whether cmd is set or not. 4854 */ 4855 *valp = error ? 1 : 0; /* see above */ 4856 error = 0; 4857 break; 4858 } 4859 return (error ? EINVAL : 0); 4860 } 4861 4862 case _PC_XATTR_EXISTS: 4863 *valp = 0; 4864 if (vp->v_vfsp->vfs_flag & VFS_XATTR) { 4865 vnode_t *avp; 4866 rnode_t *rp; 4867 mntinfo_t *mi = VTOMI(vp); 4868 4869 if (!(mi->mi_flags & MI_EXTATTR)) 4870 return (0); 4871 4872 rp = VTOR(vp); 4873 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, 4874 INTR(vp))) 4875 return (EINTR); 4876 4877 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr); 4878 if (error || avp == NULL) 4879 error = acl_getxattrdir2(vp, &avp, 0, cr, 0); 4880 4881 nfs_rw_exit(&rp->r_rwlock); 4882 4883 if (error == 0 && avp != NULL) { 4884 error = do_xattr_exists_check(avp, valp, cr); 4885 VN_RELE(avp); 4886 } 4887 } 4888 return (error ? EINVAL : 0); 4889 4890 case _PC_ACL_ENABLED: 4891 *valp = _ACL_ACLENT_ENABLED; 4892 return (0); 4893 4894 default: 4895 return (EINVAL); 4896 } 4897 } 4898 4899 /* 4900 * Called by async thread to do synchronous pageio. Do the i/o, wait 4901 * for it to complete, and cleanup the page list when done. 4902 */ 4903 static int 4904 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4905 int flags, cred_t *cr) 4906 { 4907 int error; 4908 4909 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone); 4910 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4911 if (flags & B_READ) 4912 pvn_read_done(pp, (error ? B_ERROR : 0) | flags); 4913 else 4914 pvn_write_done(pp, (error ? B_ERROR : 0) | flags); 4915 return (error); 4916 } 4917 4918 /* ARGSUSED */ 4919 static int 4920 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len, 4921 int flags, cred_t *cr, caller_context_t *ct) 4922 { 4923 int error; 4924 rnode_t *rp; 4925 4926 if (pp == NULL) 4927 return (EINVAL); 4928 4929 if (io_off > MAXOFF32_T) 4930 return (EFBIG); 4931 if (nfs_zone() != VTOMI(vp)->mi_zone) 4932 return (EIO); 4933 rp = VTOR(vp); 4934 mutex_enter(&rp->r_statelock); 4935 rp->r_count++; 4936 mutex_exit(&rp->r_statelock); 4937 4938 if (flags & B_ASYNC) { 4939 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr, 4940 nfs_sync_pageio); 4941 } else 4942 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr); 4943 mutex_enter(&rp->r_statelock); 4944 rp->r_count--; 4945 cv_broadcast(&rp->r_cv); 4946 mutex_exit(&rp->r_statelock); 4947 return (error); 4948 } 4949 4950 /* ARGSUSED */ 4951 static int 4952 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4953 caller_context_t *ct) 4954 { 4955 int error; 4956 mntinfo_t *mi; 4957 4958 mi = VTOMI(vp); 4959 4960 if (nfs_zone() != mi->mi_zone) 4961 return (EIO); 4962 if (mi->mi_flags & MI_ACL) { 4963 error = acl_setacl2(vp, vsecattr, flag, cr); 4964 if (mi->mi_flags & MI_ACL) 4965 return (error); 4966 } 4967 4968 return (ENOSYS); 4969 } 4970 4971 /* ARGSUSED */ 4972 static int 4973 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr, 4974 caller_context_t *ct) 4975 { 4976 int error; 4977 mntinfo_t *mi; 4978 4979 mi = VTOMI(vp); 4980 4981 if (nfs_zone() != mi->mi_zone) 4982 return (EIO); 4983 if (mi->mi_flags & MI_ACL) { 4984 error = acl_getacl2(vp, vsecattr, flag, cr); 4985 if (mi->mi_flags & MI_ACL) 4986 return (error); 4987 } 4988 4989 return (fs_fab_acl(vp, vsecattr, flag, cr, ct)); 4990 } 4991 4992 /* ARGSUSED */ 4993 static int 4994 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr, 4995 caller_context_t *ct) 4996 { 4997 int error; 4998 struct shrlock nshr; 4999 struct nfs_owner nfs_owner; 5000 netobj lm_fh; 5001 5002 if (nfs_zone() != VTOMI(vp)->mi_zone) 5003 return (EIO); 5004 5005 /* 5006 * check for valid cmd parameter 5007 */ 5008 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS) 5009 return (EINVAL); 5010 5011 /* 5012 * Check access permissions 5013 */ 5014 if (cmd == F_SHARE && 5015 (((shr->s_access & F_RDACC) && !(flag & FREAD)) || 5016 ((shr->s_access & F_WRACC) && !(flag & FWRITE)))) 5017 return (EBADF); 5018 5019 /* 5020 * If the filesystem is mounted using local locking, pass the 5021 * request off to the local share code. 5022 */ 5023 if (VTOMI(vp)->mi_flags & MI_LLOCK) 5024 return (fs_shrlock(vp, cmd, shr, flag, cr, ct)); 5025 5026 switch (cmd) { 5027 case F_SHARE: 5028 case F_UNSHARE: 5029 lm_fh.n_len = sizeof (fhandle_t); 5030 lm_fh.n_bytes = (char *)VTOFH(vp); 5031 5032 /* 5033 * If passed an owner that is too large to fit in an 5034 * nfs_owner it is likely a recursive call from the 5035 * lock manager client and pass it straight through. If 5036 * it is not a nfs_owner then simply return an error. 5037 */ 5038 if (shr->s_own_len > sizeof (nfs_owner.lowner)) { 5039 if (((struct nfs_owner *)shr->s_owner)->magic != 5040 NFS_OWNER_MAGIC) 5041 return (EINVAL); 5042 5043 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) { 5044 error = set_errno(error); 5045 } 5046 return (error); 5047 } 5048 /* 5049 * Remote share reservations owner is a combination of 5050 * a magic number, hostname, and the local owner 5051 */ 5052 bzero(&nfs_owner, sizeof (nfs_owner)); 5053 nfs_owner.magic = NFS_OWNER_MAGIC; 5054 (void) strncpy(nfs_owner.hname, uts_nodename(), 5055 sizeof (nfs_owner.hname)); 5056 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len); 5057 nshr.s_access = shr->s_access; 5058 nshr.s_deny = shr->s_deny; 5059 nshr.s_sysid = 0; 5060 nshr.s_pid = ttoproc(curthread)->p_pid; 5061 nshr.s_own_len = sizeof (nfs_owner); 5062 nshr.s_owner = (caddr_t)&nfs_owner; 5063 5064 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) { 5065 error = set_errno(error); 5066 } 5067 5068 break; 5069 5070 case F_HASREMOTELOCKS: 5071 /* 5072 * NFS client can't store remote locks itself 5073 */ 5074 shr->s_access = 0; 5075 error = 0; 5076 break; 5077 5078 default: 5079 error = EINVAL; 5080 break; 5081 } 5082 5083 return (error); 5084 } 5085