1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/systm.h> 35 #include <sys/cred.h> 36 #include <sys/proc.h> 37 #include <sys/user.h> 38 #include <sys/buf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/uio.h> 43 #include <sys/file.h> 44 #include <sys/stat.h> 45 #include <sys/errno.h> 46 #include <sys/socket.h> 47 #include <sys/sysmacros.h> 48 #include <sys/siginfo.h> 49 #include <sys/tiuser.h> 50 #include <sys/statvfs.h> 51 #include <sys/stream.h> 52 #include <sys/strsubr.h> 53 #include <sys/stropts.h> 54 #include <sys/timod.h> 55 #include <sys/t_kuser.h> 56 #include <sys/kmem.h> 57 #include <sys/kstat.h> 58 #include <sys/dirent.h> 59 #include <sys/cmn_err.h> 60 #include <sys/debug.h> 61 #include <sys/unistd.h> 62 #include <sys/vtrace.h> 63 #include <sys/mode.h> 64 #include <sys/acl.h> 65 #include <sys/sdt.h> 66 67 #include <rpc/types.h> 68 #include <rpc/auth.h> 69 #include <rpc/auth_unix.h> 70 #include <rpc/auth_des.h> 71 #include <rpc/svc.h> 72 #include <rpc/xdr.h> 73 #include <rpc/rpc_rdma.h> 74 75 #include <nfs/nfs.h> 76 #include <nfs/export.h> 77 #include <nfs/nfssys.h> 78 #include <nfs/nfs_clnt.h> 79 #include <nfs/nfs_acl.h> 80 #include <nfs/nfs_log.h> 81 #include <nfs/nfs_cmd.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #define MAXHOST 32 91 const char *kinet_ntop6(uchar_t *, char *, size_t); 92 93 /* 94 * Module linkage information. 95 */ 96 97 static struct modlmisc modlmisc = { 98 &mod_miscops, "NFS server module" 99 }; 100 101 static struct modlinkage modlinkage = { 102 MODREV_1, (void *)&modlmisc, NULL 103 }; 104 105 char _depends_on[] = "misc/klmmod"; 106 107 int 108 _init(void) 109 { 110 int status; 111 112 if ((status = nfs_srvinit()) != 0) { 113 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 114 return (status); 115 } 116 117 status = mod_install((struct modlinkage *)&modlinkage); 118 if (status != 0) { 119 /* 120 * Could not load module, cleanup previous 121 * initialization work. 122 */ 123 nfs_srvfini(); 124 } 125 126 /* 127 * Initialise some placeholders for nfssys() calls. These have 128 * to be declared by the nfs module, since that handles nfssys() 129 * calls - also used by NFS clients - but are provided by this 130 * nfssrv module. These also then serve as confirmation to the 131 * relevant code in nfs that nfssrv has been loaded, as they're 132 * initially NULL. 133 */ 134 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 135 nfs_srv_dss_func = rfs4_dss_setpaths; 136 137 /* setup DSS paths here; must be done before initial server startup */ 138 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 139 140 return (status); 141 } 142 143 int 144 _fini() 145 { 146 return (EBUSY); 147 } 148 149 int 150 _info(struct modinfo *modinfop) 151 { 152 return (mod_info(&modlinkage, modinfop)); 153 } 154 155 /* 156 * PUBLICFH_CHECK() checks if the dispatch routine supports 157 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 158 * incoming request is using the public filehandle. The check duplicates 159 * the exportmatch() call done in checkexport(), and we should consider 160 * modifying those routines to avoid the duplication. For now, we optimize 161 * by calling exportmatch() only after checking that the dispatch routine 162 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 163 * public (i.e., not the placeholder). 164 */ 165 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 166 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 167 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 168 (exi == exi_public && exportmatch(exi_root, \ 169 fsid, xfid)))) 170 171 static void nfs_srv_shutdown_all(int); 172 static void rfs4_server_start(int); 173 static void nullfree(void); 174 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 175 static void acl_dispatch(struct svc_req *, SVCXPRT *); 176 static void common_dispatch(struct svc_req *, SVCXPRT *, 177 rpcvers_t, rpcvers_t, char *, 178 struct rpc_disptable *); 179 static void hanfsv4_failover(void); 180 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 181 bool_t); 182 static char *client_name(struct svc_req *req); 183 static char *client_addr(struct svc_req *req, char *buf); 184 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 185 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 186 187 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 188 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 189 (nb)->len = (xprt)->xp_rtaddr.len; \ 190 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 191 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 192 } 193 194 /* 195 * Public Filehandle common nfs routines 196 */ 197 static int MCLpath(char **); 198 static void URLparse(char *); 199 200 /* 201 * NFS callout table. 202 * This table is used by svc_getreq() to dispatch a request with 203 * a given prog/vers pair to an appropriate service provider 204 * dispatch routine. 205 * 206 * NOTE: ordering is relied upon below when resetting the version min/max 207 * for NFS_PROGRAM. Careful, if this is ever changed. 208 */ 209 static SVC_CALLOUT __nfs_sc_clts[] = { 210 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 211 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 212 }; 213 214 static SVC_CALLOUT_TABLE nfs_sct_clts = { 215 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 216 __nfs_sc_clts 217 }; 218 219 static SVC_CALLOUT __nfs_sc_cots[] = { 220 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 221 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 222 }; 223 224 static SVC_CALLOUT_TABLE nfs_sct_cots = { 225 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 226 }; 227 228 static SVC_CALLOUT __nfs_sc_rdma[] = { 229 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 230 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 231 }; 232 233 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 234 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 235 }; 236 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 237 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 238 239 /* 240 * Used to track the state of the server so that initialization 241 * can be done properly. 242 */ 243 typedef enum { 244 NFS_SERVER_STOPPED, /* server state destroyed */ 245 NFS_SERVER_STOPPING, /* server state being destroyed */ 246 NFS_SERVER_RUNNING, 247 NFS_SERVER_QUIESCED, /* server state preserved */ 248 NFS_SERVER_OFFLINE /* server pool offline */ 249 } nfs_server_running_t; 250 251 static nfs_server_running_t nfs_server_upordown; 252 static kmutex_t nfs_server_upordown_lock; 253 static kcondvar_t nfs_server_upordown_cv; 254 255 /* 256 * DSS: distributed stable storage 257 * lists of all DSS paths: current, and before last warmstart 258 */ 259 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 260 261 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 262 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 263 264 /* 265 * RDMA wait variables. 266 */ 267 static kcondvar_t rdma_wait_cv; 268 static kmutex_t rdma_wait_mutex; 269 270 /* 271 * Will be called at the point the server pool is being unregistered 272 * from the pool list. From that point onwards, the pool is waiting 273 * to be drained and as such the server state is stale and pertains 274 * to the old instantiation of the NFS server pool. 275 */ 276 void 277 nfs_srv_offline(void) 278 { 279 mutex_enter(&nfs_server_upordown_lock); 280 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 281 nfs_server_upordown = NFS_SERVER_OFFLINE; 282 } 283 mutex_exit(&nfs_server_upordown_lock); 284 } 285 286 /* 287 * Will be called at the point the server pool is being destroyed so 288 * all transports have been closed and no service threads are in 289 * existence. 290 * 291 * If we quiesce the server, we're shutting it down without destroying the 292 * server state. This allows it to warm start subsequently. 293 */ 294 void 295 nfs_srv_stop_all(void) 296 { 297 int quiesce = 0; 298 nfs_srv_shutdown_all(quiesce); 299 } 300 301 /* 302 * This alternative shutdown routine can be requested via nfssys() 303 */ 304 void 305 nfs_srv_quiesce_all(void) 306 { 307 int quiesce = 1; 308 nfs_srv_shutdown_all(quiesce); 309 } 310 311 static void 312 nfs_srv_shutdown_all(int quiesce) { 313 mutex_enter(&nfs_server_upordown_lock); 314 if (quiesce) { 315 if (nfs_server_upordown == NFS_SERVER_RUNNING || 316 nfs_server_upordown == NFS_SERVER_OFFLINE) { 317 nfs_server_upordown = NFS_SERVER_QUIESCED; 318 cv_signal(&nfs_server_upordown_cv); 319 320 /* reset DSS state, for subsequent warm restart */ 321 rfs4_dss_numnewpaths = 0; 322 rfs4_dss_newpaths = NULL; 323 324 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 325 "NFSv4 state has been preserved"); 326 } 327 } else { 328 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 329 nfs_server_upordown = NFS_SERVER_STOPPING; 330 mutex_exit(&nfs_server_upordown_lock); 331 rfs4_state_fini(); 332 rfs4_fini_drc(nfs4_drc); 333 mutex_enter(&nfs_server_upordown_lock); 334 nfs_server_upordown = NFS_SERVER_STOPPED; 335 cv_signal(&nfs_server_upordown_cv); 336 } 337 } 338 mutex_exit(&nfs_server_upordown_lock); 339 } 340 341 static int 342 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 343 rpcvers_t versmin, rpcvers_t versmax) 344 { 345 struct strioctl strioc; 346 struct T_info_ack tinfo; 347 int error, retval; 348 349 /* 350 * Find out what type of transport this is. 351 */ 352 strioc.ic_cmd = TI_GETINFO; 353 strioc.ic_timout = -1; 354 strioc.ic_len = sizeof (tinfo); 355 strioc.ic_dp = (char *)&tinfo; 356 tinfo.PRIM_type = T_INFO_REQ; 357 358 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 359 CRED(), &retval); 360 if (error || retval) 361 return (error); 362 363 /* 364 * Based on our query of the transport type... 365 * 366 * Reset the min/max versions based on the caller's request 367 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 368 * And the second entry is the NFS_ACL_PROGRAM. 369 */ 370 switch (tinfo.SERV_type) { 371 case T_CLTS: 372 if (versmax == NFS_V4) 373 return (EINVAL); 374 __nfs_sc_clts[0].sc_versmin = versmin; 375 __nfs_sc_clts[0].sc_versmax = versmax; 376 __nfs_sc_clts[1].sc_versmin = versmin; 377 __nfs_sc_clts[1].sc_versmax = versmax; 378 *sctpp = &nfs_sct_clts; 379 break; 380 case T_COTS: 381 case T_COTS_ORD: 382 __nfs_sc_cots[0].sc_versmin = versmin; 383 __nfs_sc_cots[0].sc_versmax = versmax; 384 /* For the NFS_ACL program, check the max version */ 385 if (versmax > NFS_ACL_VERSMAX) 386 versmax = NFS_ACL_VERSMAX; 387 __nfs_sc_cots[1].sc_versmin = versmin; 388 __nfs_sc_cots[1].sc_versmax = versmax; 389 *sctpp = &nfs_sct_cots; 390 break; 391 default: 392 error = EINVAL; 393 } 394 395 return (error); 396 } 397 398 /* 399 * NFS Server system call. 400 * Does all of the work of running a NFS server. 401 * uap->fd is the fd of an open transport provider 402 */ 403 int 404 nfs_svc(struct nfs_svc_args *arg, model_t model) 405 { 406 file_t *fp; 407 SVCMASTERXPRT *xprt; 408 int error; 409 int readsize; 410 char buf[KNC_STRSIZE]; 411 size_t len; 412 STRUCT_HANDLE(nfs_svc_args, uap); 413 struct netbuf addrmask; 414 SVC_CALLOUT_TABLE *sctp = NULL; 415 416 #ifdef lint 417 model = model; /* STRUCT macros don't always refer to it */ 418 #endif 419 420 STRUCT_SET_HANDLE(uap, model, arg); 421 422 /* Check privileges in nfssys() */ 423 424 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 425 return (EBADF); 426 427 /* 428 * Set read buffer size to rsize 429 * and add room for RPC headers. 430 */ 431 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 432 if (readsize < RPC_MAXDATASIZE) 433 readsize = RPC_MAXDATASIZE; 434 435 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 436 KNC_STRSIZE, &len); 437 if (error) { 438 releasef(STRUCT_FGET(uap, fd)); 439 return (error); 440 } 441 442 addrmask.len = STRUCT_FGET(uap, addrmask.len); 443 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 444 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 445 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 446 addrmask.len); 447 if (error) { 448 releasef(STRUCT_FGET(uap, fd)); 449 kmem_free(addrmask.buf, addrmask.maxlen); 450 return (error); 451 } 452 453 nfs_versmin = STRUCT_FGET(uap, versmin); 454 nfs_versmax = STRUCT_FGET(uap, versmax); 455 456 /* Double check the vers min/max ranges */ 457 if ((nfs_versmin > nfs_versmax) || 458 (nfs_versmin < NFS_VERSMIN) || 459 (nfs_versmax > NFS_VERSMAX)) { 460 nfs_versmin = NFS_VERSMIN_DEFAULT; 461 nfs_versmax = NFS_VERSMAX_DEFAULT; 462 } 463 464 if (error = 465 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 466 releasef(STRUCT_FGET(uap, fd)); 467 kmem_free(addrmask.buf, addrmask.maxlen); 468 return (error); 469 } 470 471 /* Initialize nfsv4 server */ 472 if (nfs_versmax == (rpcvers_t)NFS_V4) 473 rfs4_server_start(STRUCT_FGET(uap, delegation)); 474 475 /* Create a transport handle. */ 476 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 477 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 478 479 if (error) 480 kmem_free(addrmask.buf, addrmask.maxlen); 481 482 releasef(STRUCT_FGET(uap, fd)); 483 484 /* HA-NFSv4: save the cluster nodeid */ 485 if (cluster_bootflags & CLUSTER_BOOTED) 486 lm_global_nlmid = clconf_get_nodeid(); 487 488 return (error); 489 } 490 491 static void 492 rfs4_server_start(int nfs4_srv_delegation) 493 { 494 /* 495 * Determine if the server has previously been "started" and 496 * if not, do the per instance initialization 497 */ 498 mutex_enter(&nfs_server_upordown_lock); 499 500 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 501 /* Do we need to stop and wait on the previous server? */ 502 while (nfs_server_upordown == NFS_SERVER_STOPPING || 503 nfs_server_upordown == NFS_SERVER_OFFLINE) 504 cv_wait(&nfs_server_upordown_cv, 505 &nfs_server_upordown_lock); 506 507 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 508 (void) svc_pool_control(NFS_SVCPOOL_ID, 509 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 510 (void) svc_pool_control(NFS_SVCPOOL_ID, 511 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 512 513 /* is this an nfsd warm start? */ 514 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 515 cmn_err(CE_NOTE, "nfs_server: " 516 "server was previously quiesced; " 517 "existing NFSv4 state will be re-used"); 518 519 /* 520 * HA-NFSv4: this is also the signal 521 * that a Resource Group failover has 522 * occurred. 523 */ 524 if (cluster_bootflags & CLUSTER_BOOTED) 525 hanfsv4_failover(); 526 } else { 527 /* cold start */ 528 rfs4_state_init(); 529 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 530 nfs4_drc_hash); 531 } 532 533 /* 534 * Check to see if delegation is to be 535 * enabled at the server 536 */ 537 if (nfs4_srv_delegation != FALSE) 538 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 539 540 nfs_server_upordown = NFS_SERVER_RUNNING; 541 } 542 cv_signal(&nfs_server_upordown_cv); 543 } 544 mutex_exit(&nfs_server_upordown_lock); 545 } 546 547 /* 548 * If RDMA device available, 549 * start RDMA listener. 550 */ 551 int 552 rdma_start(struct rdma_svc_args *rsa) 553 { 554 int error; 555 rdma_xprt_group_t started_rdma_xprts; 556 rdma_stat stat; 557 int svc_state = 0; 558 559 /* Double check the vers min/max ranges */ 560 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 561 (rsa->nfs_versmin < NFS_VERSMIN) || 562 (rsa->nfs_versmax > NFS_VERSMAX)) { 563 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 564 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 565 } 566 nfs_versmin = rsa->nfs_versmin; 567 nfs_versmax = rsa->nfs_versmax; 568 569 /* Set the versions in the callout table */ 570 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 571 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 572 /* For the NFS_ACL program, check the max version */ 573 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 574 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 575 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 576 else 577 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 578 579 /* Initialize nfsv4 server */ 580 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 581 rfs4_server_start(rsa->delegation); 582 583 started_rdma_xprts.rtg_count = 0; 584 started_rdma_xprts.rtg_listhead = NULL; 585 started_rdma_xprts.rtg_poolid = rsa->poolid; 586 587 restart: 588 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 589 &started_rdma_xprts); 590 591 svc_state = !error; 592 593 while (!error) { 594 595 /* 596 * wait till either interrupted by a signal on 597 * nfs service stop/restart or signalled by a 598 * rdma plugin attach/detatch. 599 */ 600 601 stat = rdma_kwait(); 602 603 /* 604 * stop services if running -- either on a HCA detach event 605 * or if the nfs service is stopped/restarted. 606 */ 607 608 if ((stat == RDMA_HCA_DETACH || stat == RDMA_INTR) && 609 svc_state) { 610 rdma_stop(&started_rdma_xprts); 611 svc_state = 0; 612 } 613 614 /* 615 * nfs service stop/restart, break out of the 616 * wait loop and return; 617 */ 618 if (stat == RDMA_INTR) 619 return (0); 620 621 /* 622 * restart stopped services on a HCA attach event 623 * (if not already running) 624 */ 625 626 if ((stat == RDMA_HCA_ATTACH) && (svc_state == 0)) 627 goto restart; 628 629 /* 630 * loop until a nfs service stop/restart 631 */ 632 } 633 634 return (error); 635 } 636 637 /* ARGSUSED */ 638 void 639 rpc_null(caddr_t *argp, caddr_t *resp) 640 { 641 } 642 643 /* ARGSUSED */ 644 void 645 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 646 struct svc_req *req, cred_t *cr) 647 { 648 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 649 cred_t *, cr, vnode_t *, NULL); 650 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 651 cred_t *, cr, vnode_t *, NULL); 652 } 653 654 /* ARGSUSED */ 655 static void 656 rfs_error(caddr_t *argp, caddr_t *resp) 657 { 658 /* return (EOPNOTSUPP); */ 659 } 660 661 static void 662 nullfree(void) 663 { 664 } 665 666 static char *rfscallnames_v2[] = { 667 "RFS2_NULL", 668 "RFS2_GETATTR", 669 "RFS2_SETATTR", 670 "RFS2_ROOT", 671 "RFS2_LOOKUP", 672 "RFS2_READLINK", 673 "RFS2_READ", 674 "RFS2_WRITECACHE", 675 "RFS2_WRITE", 676 "RFS2_CREATE", 677 "RFS2_REMOVE", 678 "RFS2_RENAME", 679 "RFS2_LINK", 680 "RFS2_SYMLINK", 681 "RFS2_MKDIR", 682 "RFS2_RMDIR", 683 "RFS2_READDIR", 684 "RFS2_STATFS" 685 }; 686 687 static struct rpcdisp rfsdisptab_v2[] = { 688 /* 689 * NFS VERSION 2 690 */ 691 692 /* RFS_NULL = 0 */ 693 {rpc_null, 694 xdr_void, NULL_xdrproc_t, 0, 695 xdr_void, NULL_xdrproc_t, 0, 696 nullfree, RPC_IDEMPOTENT, 697 0}, 698 699 /* RFS_GETATTR = 1 */ 700 {rfs_getattr, 701 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 702 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 703 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 704 rfs_getattr_getfh}, 705 706 /* RFS_SETATTR = 2 */ 707 {rfs_setattr, 708 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 709 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 710 nullfree, RPC_MAPRESP, 711 rfs_setattr_getfh}, 712 713 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 714 {rfs_error, 715 xdr_void, NULL_xdrproc_t, 0, 716 xdr_void, NULL_xdrproc_t, 0, 717 nullfree, RPC_IDEMPOTENT, 718 0}, 719 720 /* RFS_LOOKUP = 4 */ 721 {rfs_lookup, 722 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 723 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 724 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 725 rfs_lookup_getfh}, 726 727 /* RFS_READLINK = 5 */ 728 {rfs_readlink, 729 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 730 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 731 rfs_rlfree, RPC_IDEMPOTENT, 732 rfs_readlink_getfh}, 733 734 /* RFS_READ = 6 */ 735 {rfs_read, 736 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 737 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 738 rfs_rdfree, RPC_IDEMPOTENT, 739 rfs_read_getfh}, 740 741 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 742 {rfs_error, 743 xdr_void, NULL_xdrproc_t, 0, 744 xdr_void, NULL_xdrproc_t, 0, 745 nullfree, RPC_IDEMPOTENT, 746 0}, 747 748 /* RFS_WRITE = 8 */ 749 {rfs_write, 750 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 751 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 752 nullfree, RPC_MAPRESP, 753 rfs_write_getfh}, 754 755 /* RFS_CREATE = 9 */ 756 {rfs_create, 757 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 758 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 759 nullfree, RPC_MAPRESP, 760 rfs_create_getfh}, 761 762 /* RFS_REMOVE = 10 */ 763 {rfs_remove, 764 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 765 #ifdef _LITTLE_ENDIAN 766 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 767 #else 768 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 769 #endif 770 nullfree, RPC_MAPRESP, 771 rfs_remove_getfh}, 772 773 /* RFS_RENAME = 11 */ 774 {rfs_rename, 775 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 776 #ifdef _LITTLE_ENDIAN 777 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 778 #else 779 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 780 #endif 781 nullfree, RPC_MAPRESP, 782 rfs_rename_getfh}, 783 784 /* RFS_LINK = 12 */ 785 {rfs_link, 786 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 787 #ifdef _LITTLE_ENDIAN 788 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 789 #else 790 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 791 #endif 792 nullfree, RPC_MAPRESP, 793 rfs_link_getfh}, 794 795 /* RFS_SYMLINK = 13 */ 796 {rfs_symlink, 797 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 798 #ifdef _LITTLE_ENDIAN 799 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 800 #else 801 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 802 #endif 803 nullfree, RPC_MAPRESP, 804 rfs_symlink_getfh}, 805 806 /* RFS_MKDIR = 14 */ 807 {rfs_mkdir, 808 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 809 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 810 nullfree, RPC_MAPRESP, 811 rfs_mkdir_getfh}, 812 813 /* RFS_RMDIR = 15 */ 814 {rfs_rmdir, 815 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 816 #ifdef _LITTLE_ENDIAN 817 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 818 #else 819 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 820 #endif 821 nullfree, RPC_MAPRESP, 822 rfs_rmdir_getfh}, 823 824 /* RFS_READDIR = 16 */ 825 {rfs_readdir, 826 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 827 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 828 rfs_rddirfree, RPC_IDEMPOTENT, 829 rfs_readdir_getfh}, 830 831 /* RFS_STATFS = 17 */ 832 {rfs_statfs, 833 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 834 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 835 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 836 rfs_statfs_getfh}, 837 }; 838 839 static char *rfscallnames_v3[] = { 840 "RFS3_NULL", 841 "RFS3_GETATTR", 842 "RFS3_SETATTR", 843 "RFS3_LOOKUP", 844 "RFS3_ACCESS", 845 "RFS3_READLINK", 846 "RFS3_READ", 847 "RFS3_WRITE", 848 "RFS3_CREATE", 849 "RFS3_MKDIR", 850 "RFS3_SYMLINK", 851 "RFS3_MKNOD", 852 "RFS3_REMOVE", 853 "RFS3_RMDIR", 854 "RFS3_RENAME", 855 "RFS3_LINK", 856 "RFS3_READDIR", 857 "RFS3_READDIRPLUS", 858 "RFS3_FSSTAT", 859 "RFS3_FSINFO", 860 "RFS3_PATHCONF", 861 "RFS3_COMMIT" 862 }; 863 864 static struct rpcdisp rfsdisptab_v3[] = { 865 /* 866 * NFS VERSION 3 867 */ 868 869 /* RFS_NULL = 0 */ 870 {rpc_null_v3, 871 xdr_void, NULL_xdrproc_t, 0, 872 xdr_void, NULL_xdrproc_t, 0, 873 nullfree, RPC_IDEMPOTENT, 874 0}, 875 876 /* RFS3_GETATTR = 1 */ 877 {rfs3_getattr, 878 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 879 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 880 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 881 rfs3_getattr_getfh}, 882 883 /* RFS3_SETATTR = 2 */ 884 {rfs3_setattr, 885 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 886 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 887 nullfree, 0, 888 rfs3_setattr_getfh}, 889 890 /* RFS3_LOOKUP = 3 */ 891 {rfs3_lookup, 892 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 893 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 894 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 895 rfs3_lookup_getfh}, 896 897 /* RFS3_ACCESS = 4 */ 898 {rfs3_access, 899 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 900 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 901 nullfree, RPC_IDEMPOTENT, 902 rfs3_access_getfh}, 903 904 /* RFS3_READLINK = 5 */ 905 {rfs3_readlink, 906 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 907 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 908 rfs3_readlink_free, RPC_IDEMPOTENT, 909 rfs3_readlink_getfh}, 910 911 /* RFS3_READ = 6 */ 912 {rfs3_read, 913 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 914 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 915 rfs3_read_free, RPC_IDEMPOTENT, 916 rfs3_read_getfh}, 917 918 /* RFS3_WRITE = 7 */ 919 {rfs3_write, 920 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 921 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 922 nullfree, 0, 923 rfs3_write_getfh}, 924 925 /* RFS3_CREATE = 8 */ 926 {rfs3_create, 927 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 928 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 929 nullfree, 0, 930 rfs3_create_getfh}, 931 932 /* RFS3_MKDIR = 9 */ 933 {rfs3_mkdir, 934 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 935 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 936 nullfree, 0, 937 rfs3_mkdir_getfh}, 938 939 /* RFS3_SYMLINK = 10 */ 940 {rfs3_symlink, 941 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 942 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 943 nullfree, 0, 944 rfs3_symlink_getfh}, 945 946 /* RFS3_MKNOD = 11 */ 947 {rfs3_mknod, 948 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 949 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 950 nullfree, 0, 951 rfs3_mknod_getfh}, 952 953 /* RFS3_REMOVE = 12 */ 954 {rfs3_remove, 955 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 956 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 957 nullfree, 0, 958 rfs3_remove_getfh}, 959 960 /* RFS3_RMDIR = 13 */ 961 {rfs3_rmdir, 962 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 963 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 964 nullfree, 0, 965 rfs3_rmdir_getfh}, 966 967 /* RFS3_RENAME = 14 */ 968 {rfs3_rename, 969 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 970 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 971 nullfree, 0, 972 rfs3_rename_getfh}, 973 974 /* RFS3_LINK = 15 */ 975 {rfs3_link, 976 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 977 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 978 nullfree, 0, 979 rfs3_link_getfh}, 980 981 /* RFS3_READDIR = 16 */ 982 {rfs3_readdir, 983 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 984 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 985 rfs3_readdir_free, RPC_IDEMPOTENT, 986 rfs3_readdir_getfh}, 987 988 /* RFS3_READDIRPLUS = 17 */ 989 {rfs3_readdirplus, 990 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 991 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 992 rfs3_readdirplus_free, RPC_AVOIDWORK, 993 rfs3_readdirplus_getfh}, 994 995 /* RFS3_FSSTAT = 18 */ 996 {rfs3_fsstat, 997 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 998 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 999 nullfree, RPC_IDEMPOTENT, 1000 rfs3_fsstat_getfh}, 1001 1002 /* RFS3_FSINFO = 19 */ 1003 {rfs3_fsinfo, 1004 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 1005 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 1006 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 1007 rfs3_fsinfo_getfh}, 1008 1009 /* RFS3_PATHCONF = 20 */ 1010 {rfs3_pathconf, 1011 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 1012 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 1013 nullfree, RPC_IDEMPOTENT, 1014 rfs3_pathconf_getfh}, 1015 1016 /* RFS3_COMMIT = 21 */ 1017 {rfs3_commit, 1018 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 1019 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 1020 nullfree, RPC_IDEMPOTENT, 1021 rfs3_commit_getfh}, 1022 }; 1023 1024 static char *rfscallnames_v4[] = { 1025 "RFS4_NULL", 1026 "RFS4_COMPOUND", 1027 "RFS4_NULL", 1028 "RFS4_NULL", 1029 "RFS4_NULL", 1030 "RFS4_NULL", 1031 "RFS4_NULL", 1032 "RFS4_NULL", 1033 "RFS4_CREATE" 1034 }; 1035 1036 static struct rpcdisp rfsdisptab_v4[] = { 1037 /* 1038 * NFS VERSION 4 1039 */ 1040 1041 /* RFS_NULL = 0 */ 1042 {rpc_null, 1043 xdr_void, NULL_xdrproc_t, 0, 1044 xdr_void, NULL_xdrproc_t, 0, 1045 nullfree, RPC_IDEMPOTENT, 0}, 1046 1047 /* RFS4_compound = 1 */ 1048 {rfs4_compound, 1049 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1050 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1051 rfs4_compound_free, 0, 0}, 1052 }; 1053 1054 union rfs_args { 1055 /* 1056 * NFS VERSION 2 1057 */ 1058 1059 /* RFS_NULL = 0 */ 1060 1061 /* RFS_GETATTR = 1 */ 1062 fhandle_t nfs2_getattr_args; 1063 1064 /* RFS_SETATTR = 2 */ 1065 struct nfssaargs nfs2_setattr_args; 1066 1067 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1068 1069 /* RFS_LOOKUP = 4 */ 1070 struct nfsdiropargs nfs2_lookup_args; 1071 1072 /* RFS_READLINK = 5 */ 1073 fhandle_t nfs2_readlink_args; 1074 1075 /* RFS_READ = 6 */ 1076 struct nfsreadargs nfs2_read_args; 1077 1078 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1079 1080 /* RFS_WRITE = 8 */ 1081 struct nfswriteargs nfs2_write_args; 1082 1083 /* RFS_CREATE = 9 */ 1084 struct nfscreatargs nfs2_create_args; 1085 1086 /* RFS_REMOVE = 10 */ 1087 struct nfsdiropargs nfs2_remove_args; 1088 1089 /* RFS_RENAME = 11 */ 1090 struct nfsrnmargs nfs2_rename_args; 1091 1092 /* RFS_LINK = 12 */ 1093 struct nfslinkargs nfs2_link_args; 1094 1095 /* RFS_SYMLINK = 13 */ 1096 struct nfsslargs nfs2_symlink_args; 1097 1098 /* RFS_MKDIR = 14 */ 1099 struct nfscreatargs nfs2_mkdir_args; 1100 1101 /* RFS_RMDIR = 15 */ 1102 struct nfsdiropargs nfs2_rmdir_args; 1103 1104 /* RFS_READDIR = 16 */ 1105 struct nfsrddirargs nfs2_readdir_args; 1106 1107 /* RFS_STATFS = 17 */ 1108 fhandle_t nfs2_statfs_args; 1109 1110 /* 1111 * NFS VERSION 3 1112 */ 1113 1114 /* RFS_NULL = 0 */ 1115 1116 /* RFS3_GETATTR = 1 */ 1117 GETATTR3args nfs3_getattr_args; 1118 1119 /* RFS3_SETATTR = 2 */ 1120 SETATTR3args nfs3_setattr_args; 1121 1122 /* RFS3_LOOKUP = 3 */ 1123 LOOKUP3args nfs3_lookup_args; 1124 1125 /* RFS3_ACCESS = 4 */ 1126 ACCESS3args nfs3_access_args; 1127 1128 /* RFS3_READLINK = 5 */ 1129 READLINK3args nfs3_readlink_args; 1130 1131 /* RFS3_READ = 6 */ 1132 READ3args nfs3_read_args; 1133 1134 /* RFS3_WRITE = 7 */ 1135 WRITE3args nfs3_write_args; 1136 1137 /* RFS3_CREATE = 8 */ 1138 CREATE3args nfs3_create_args; 1139 1140 /* RFS3_MKDIR = 9 */ 1141 MKDIR3args nfs3_mkdir_args; 1142 1143 /* RFS3_SYMLINK = 10 */ 1144 SYMLINK3args nfs3_symlink_args; 1145 1146 /* RFS3_MKNOD = 11 */ 1147 MKNOD3args nfs3_mknod_args; 1148 1149 /* RFS3_REMOVE = 12 */ 1150 REMOVE3args nfs3_remove_args; 1151 1152 /* RFS3_RMDIR = 13 */ 1153 RMDIR3args nfs3_rmdir_args; 1154 1155 /* RFS3_RENAME = 14 */ 1156 RENAME3args nfs3_rename_args; 1157 1158 /* RFS3_LINK = 15 */ 1159 LINK3args nfs3_link_args; 1160 1161 /* RFS3_READDIR = 16 */ 1162 READDIR3args nfs3_readdir_args; 1163 1164 /* RFS3_READDIRPLUS = 17 */ 1165 READDIRPLUS3args nfs3_readdirplus_args; 1166 1167 /* RFS3_FSSTAT = 18 */ 1168 FSSTAT3args nfs3_fsstat_args; 1169 1170 /* RFS3_FSINFO = 19 */ 1171 FSINFO3args nfs3_fsinfo_args; 1172 1173 /* RFS3_PATHCONF = 20 */ 1174 PATHCONF3args nfs3_pathconf_args; 1175 1176 /* RFS3_COMMIT = 21 */ 1177 COMMIT3args nfs3_commit_args; 1178 1179 /* 1180 * NFS VERSION 4 1181 */ 1182 1183 /* RFS_NULL = 0 */ 1184 1185 /* COMPUND = 1 */ 1186 COMPOUND4args nfs4_compound_args; 1187 }; 1188 1189 union rfs_res { 1190 /* 1191 * NFS VERSION 2 1192 */ 1193 1194 /* RFS_NULL = 0 */ 1195 1196 /* RFS_GETATTR = 1 */ 1197 struct nfsattrstat nfs2_getattr_res; 1198 1199 /* RFS_SETATTR = 2 */ 1200 struct nfsattrstat nfs2_setattr_res; 1201 1202 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1203 1204 /* RFS_LOOKUP = 4 */ 1205 struct nfsdiropres nfs2_lookup_res; 1206 1207 /* RFS_READLINK = 5 */ 1208 struct nfsrdlnres nfs2_readlink_res; 1209 1210 /* RFS_READ = 6 */ 1211 struct nfsrdresult nfs2_read_res; 1212 1213 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1214 1215 /* RFS_WRITE = 8 */ 1216 struct nfsattrstat nfs2_write_res; 1217 1218 /* RFS_CREATE = 9 */ 1219 struct nfsdiropres nfs2_create_res; 1220 1221 /* RFS_REMOVE = 10 */ 1222 enum nfsstat nfs2_remove_res; 1223 1224 /* RFS_RENAME = 11 */ 1225 enum nfsstat nfs2_rename_res; 1226 1227 /* RFS_LINK = 12 */ 1228 enum nfsstat nfs2_link_res; 1229 1230 /* RFS_SYMLINK = 13 */ 1231 enum nfsstat nfs2_symlink_res; 1232 1233 /* RFS_MKDIR = 14 */ 1234 struct nfsdiropres nfs2_mkdir_res; 1235 1236 /* RFS_RMDIR = 15 */ 1237 enum nfsstat nfs2_rmdir_res; 1238 1239 /* RFS_READDIR = 16 */ 1240 struct nfsrddirres nfs2_readdir_res; 1241 1242 /* RFS_STATFS = 17 */ 1243 struct nfsstatfs nfs2_statfs_res; 1244 1245 /* 1246 * NFS VERSION 3 1247 */ 1248 1249 /* RFS_NULL = 0 */ 1250 1251 /* RFS3_GETATTR = 1 */ 1252 GETATTR3res nfs3_getattr_res; 1253 1254 /* RFS3_SETATTR = 2 */ 1255 SETATTR3res nfs3_setattr_res; 1256 1257 /* RFS3_LOOKUP = 3 */ 1258 LOOKUP3res nfs3_lookup_res; 1259 1260 /* RFS3_ACCESS = 4 */ 1261 ACCESS3res nfs3_access_res; 1262 1263 /* RFS3_READLINK = 5 */ 1264 READLINK3res nfs3_readlink_res; 1265 1266 /* RFS3_READ = 6 */ 1267 READ3res nfs3_read_res; 1268 1269 /* RFS3_WRITE = 7 */ 1270 WRITE3res nfs3_write_res; 1271 1272 /* RFS3_CREATE = 8 */ 1273 CREATE3res nfs3_create_res; 1274 1275 /* RFS3_MKDIR = 9 */ 1276 MKDIR3res nfs3_mkdir_res; 1277 1278 /* RFS3_SYMLINK = 10 */ 1279 SYMLINK3res nfs3_symlink_res; 1280 1281 /* RFS3_MKNOD = 11 */ 1282 MKNOD3res nfs3_mknod_res; 1283 1284 /* RFS3_REMOVE = 12 */ 1285 REMOVE3res nfs3_remove_res; 1286 1287 /* RFS3_RMDIR = 13 */ 1288 RMDIR3res nfs3_rmdir_res; 1289 1290 /* RFS3_RENAME = 14 */ 1291 RENAME3res nfs3_rename_res; 1292 1293 /* RFS3_LINK = 15 */ 1294 LINK3res nfs3_link_res; 1295 1296 /* RFS3_READDIR = 16 */ 1297 READDIR3res nfs3_readdir_res; 1298 1299 /* RFS3_READDIRPLUS = 17 */ 1300 READDIRPLUS3res nfs3_readdirplus_res; 1301 1302 /* RFS3_FSSTAT = 18 */ 1303 FSSTAT3res nfs3_fsstat_res; 1304 1305 /* RFS3_FSINFO = 19 */ 1306 FSINFO3res nfs3_fsinfo_res; 1307 1308 /* RFS3_PATHCONF = 20 */ 1309 PATHCONF3res nfs3_pathconf_res; 1310 1311 /* RFS3_COMMIT = 21 */ 1312 COMMIT3res nfs3_commit_res; 1313 1314 /* 1315 * NFS VERSION 4 1316 */ 1317 1318 /* RFS_NULL = 0 */ 1319 1320 /* RFS4_COMPOUND = 1 */ 1321 COMPOUND4res nfs4_compound_res; 1322 1323 }; 1324 1325 static struct rpc_disptable rfs_disptable[] = { 1326 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1327 rfscallnames_v2, 1328 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1329 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1330 rfscallnames_v3, 1331 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1332 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1333 rfscallnames_v4, 1334 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1335 }; 1336 1337 /* 1338 * If nfs_portmon is set, then clients are required to use privileged 1339 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1340 * 1341 * N.B.: this attempt to carry forward the already ill-conceived notion 1342 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1343 * is it transport-dependent, it's laughably easy to spoof. If you're 1344 * really interested in security, you must start with secure RPC instead. 1345 */ 1346 static int nfs_portmon = 0; 1347 1348 #ifdef DEBUG 1349 static int cred_hits = 0; 1350 static int cred_misses = 0; 1351 #endif 1352 1353 1354 #ifdef DEBUG 1355 /* 1356 * Debug code to allow disabling of rfs_dispatch() use of 1357 * fastxdrargs() and fastxdrres() calls for testing purposes. 1358 */ 1359 static int rfs_no_fast_xdrargs = 0; 1360 static int rfs_no_fast_xdrres = 0; 1361 #endif 1362 1363 union acl_args { 1364 /* 1365 * ACL VERSION 2 1366 */ 1367 1368 /* ACL2_NULL = 0 */ 1369 1370 /* ACL2_GETACL = 1 */ 1371 GETACL2args acl2_getacl_args; 1372 1373 /* ACL2_SETACL = 2 */ 1374 SETACL2args acl2_setacl_args; 1375 1376 /* ACL2_GETATTR = 3 */ 1377 GETATTR2args acl2_getattr_args; 1378 1379 /* ACL2_ACCESS = 4 */ 1380 ACCESS2args acl2_access_args; 1381 1382 /* ACL2_GETXATTRDIR = 5 */ 1383 GETXATTRDIR2args acl2_getxattrdir_args; 1384 1385 /* 1386 * ACL VERSION 3 1387 */ 1388 1389 /* ACL3_NULL = 0 */ 1390 1391 /* ACL3_GETACL = 1 */ 1392 GETACL3args acl3_getacl_args; 1393 1394 /* ACL3_SETACL = 2 */ 1395 SETACL3args acl3_setacl; 1396 1397 /* ACL3_GETXATTRDIR = 3 */ 1398 GETXATTRDIR3args acl3_getxattrdir_args; 1399 1400 }; 1401 1402 union acl_res { 1403 /* 1404 * ACL VERSION 2 1405 */ 1406 1407 /* ACL2_NULL = 0 */ 1408 1409 /* ACL2_GETACL = 1 */ 1410 GETACL2res acl2_getacl_res; 1411 1412 /* ACL2_SETACL = 2 */ 1413 SETACL2res acl2_setacl_res; 1414 1415 /* ACL2_GETATTR = 3 */ 1416 GETATTR2res acl2_getattr_res; 1417 1418 /* ACL2_ACCESS = 4 */ 1419 ACCESS2res acl2_access_res; 1420 1421 /* ACL2_GETXATTRDIR = 5 */ 1422 GETXATTRDIR2args acl2_getxattrdir_res; 1423 1424 /* 1425 * ACL VERSION 3 1426 */ 1427 1428 /* ACL3_NULL = 0 */ 1429 1430 /* ACL3_GETACL = 1 */ 1431 GETACL3res acl3_getacl_res; 1432 1433 /* ACL3_SETACL = 2 */ 1434 SETACL3res acl3_setacl_res; 1435 1436 /* ACL3_GETXATTRDIR = 3 */ 1437 GETXATTRDIR3res acl3_getxattrdir_res; 1438 1439 }; 1440 1441 static bool_t 1442 auth_tooweak(struct svc_req *req, char *res) 1443 { 1444 1445 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1446 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1447 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1448 return (TRUE); 1449 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1450 LOOKUP3res *resp = (LOOKUP3res *)res; 1451 if (resp->status == WNFSERR_CLNT_FLAVOR) 1452 return (TRUE); 1453 } 1454 return (FALSE); 1455 } 1456 1457 1458 static void 1459 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1460 rpcvers_t max_vers, char *pgmname, 1461 struct rpc_disptable *disptable) 1462 { 1463 int which; 1464 rpcvers_t vers; 1465 char *args; 1466 union { 1467 union rfs_args ra; 1468 union acl_args aa; 1469 } args_buf; 1470 char *res; 1471 union { 1472 union rfs_res rr; 1473 union acl_res ar; 1474 } res_buf; 1475 struct rpcdisp *disp = NULL; 1476 int dis_flags = 0; 1477 cred_t *cr; 1478 int error = 0; 1479 int anon_ok; 1480 struct exportinfo *exi = NULL; 1481 unsigned int nfslog_rec_id; 1482 int dupstat; 1483 struct dupreq *dr; 1484 int authres; 1485 bool_t publicfh_ok = FALSE; 1486 enum_t auth_flavor; 1487 bool_t dupcached = FALSE; 1488 struct netbuf nb; 1489 bool_t logging_enabled = FALSE; 1490 struct exportinfo *nfslog_exi = NULL; 1491 char **procnames; 1492 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1493 1494 vers = req->rq_vers; 1495 1496 if (vers < min_vers || vers > max_vers) { 1497 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1498 error++; 1499 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1500 goto done; 1501 } 1502 vers -= min_vers; 1503 1504 which = req->rq_proc; 1505 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1506 svcerr_noproc(req->rq_xprt); 1507 error++; 1508 goto done; 1509 } 1510 1511 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1512 1513 disp = &disptable[(int)vers].dis_table[which]; 1514 procnames = disptable[(int)vers].dis_procnames; 1515 1516 auth_flavor = req->rq_cred.oa_flavor; 1517 1518 /* 1519 * Deserialize into the args struct. 1520 */ 1521 args = (char *)&args_buf; 1522 1523 #ifdef DEBUG 1524 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1525 disp->dis_fastxdrargs == NULL_xdrproc_t || 1526 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1527 #else 1528 if ((auth_flavor == RPCSEC_GSS) || 1529 disp->dis_fastxdrargs == NULL_xdrproc_t || 1530 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1531 #endif 1532 { 1533 bzero(args, disp->dis_argsz); 1534 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1535 error++; 1536 /* 1537 * Check if we are outside our capabilities. 1538 */ 1539 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1540 goto done; 1541 1542 svcerr_decode(xprt); 1543 cmn_err(CE_NOTE, 1544 "Failed to decode arguments for %s version %u " 1545 "procedure %s client %s%s", 1546 pgmname, vers + min_vers, procnames[which], 1547 client_name(req), client_addr(req, cbuf)); 1548 goto done; 1549 } 1550 } 1551 1552 /* 1553 * If Version 4 use that specific dispatch function. 1554 */ 1555 if (req->rq_vers == 4) { 1556 error += rfs4_dispatch(disp, req, xprt, args); 1557 goto done; 1558 } 1559 1560 dis_flags = disp->dis_flags; 1561 1562 /* 1563 * Find export information and check authentication, 1564 * setting the credential if everything is ok. 1565 */ 1566 if (disp->dis_getfh != NULL) { 1567 void *fh; 1568 fsid_t *fsid; 1569 fid_t *fid, *xfid; 1570 fhandle_t *fh2; 1571 nfs_fh3 *fh3; 1572 1573 fh = (*disp->dis_getfh)(args); 1574 switch (req->rq_vers) { 1575 case NFS_VERSION: 1576 fh2 = (fhandle_t *)fh; 1577 fsid = &fh2->fh_fsid; 1578 fid = (fid_t *)&fh2->fh_len; 1579 xfid = (fid_t *)&fh2->fh_xlen; 1580 break; 1581 case NFS_V3: 1582 fh3 = (nfs_fh3 *)fh; 1583 fsid = &fh3->fh3_fsid; 1584 fid = FH3TOFIDP(fh3); 1585 xfid = FH3TOXFIDP(fh3); 1586 break; 1587 } 1588 1589 /* 1590 * Fix for bug 1038302 - corbin 1591 * There is a problem here if anonymous access is 1592 * disallowed. If the current request is part of the 1593 * client's mount process for the requested filesystem, 1594 * then it will carry root (uid 0) credentials on it, and 1595 * will be denied by checkauth if that client does not 1596 * have explicit root=0 permission. This will cause the 1597 * client's mount operation to fail. As a work-around, 1598 * we check here to see if the request is a getattr or 1599 * statfs operation on the exported vnode itself, and 1600 * pass a flag to checkauth with the result of this test. 1601 * 1602 * The filehandle refers to the mountpoint itself if 1603 * the fh_data and fh_xdata portions of the filehandle 1604 * are equal. 1605 * 1606 * Added anon_ok argument to checkauth(). 1607 */ 1608 1609 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1610 anon_ok = 1; 1611 else 1612 anon_ok = 0; 1613 1614 cr = xprt->xp_cred; 1615 ASSERT(cr != NULL); 1616 #ifdef DEBUG 1617 if (crgetref(cr) != 1) { 1618 crfree(cr); 1619 cr = crget(); 1620 xprt->xp_cred = cr; 1621 cred_misses++; 1622 } else 1623 cred_hits++; 1624 #else 1625 if (crgetref(cr) != 1) { 1626 crfree(cr); 1627 cr = crget(); 1628 xprt->xp_cred = cr; 1629 } 1630 #endif 1631 1632 exi = checkexport(fsid, xfid); 1633 1634 if (exi != NULL) { 1635 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1636 1637 /* 1638 * Don't allow non-V4 clients access 1639 * to pseudo exports 1640 */ 1641 if (PSEUDO(exi)) { 1642 svcerr_weakauth(xprt); 1643 error++; 1644 goto done; 1645 } 1646 1647 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1648 /* 1649 * authres > 0: authentication OK - proceed 1650 * authres == 0: authentication weak - return error 1651 * authres < 0: authentication timeout - drop 1652 */ 1653 if (authres <= 0) { 1654 if (authres == 0) { 1655 svcerr_weakauth(xprt); 1656 error++; 1657 } 1658 goto done; 1659 } 1660 1661 /* check to see if we might need charmap */ 1662 if (exi->exi_export.ex_flags & EX_CHARMAP) { 1663 struct sockaddr *ca; 1664 ca = (struct sockaddr *) 1665 svc_getrpccaller(req->rq_xprt)->buf; 1666 (void) nfscmd_charmap(exi, ca); 1667 } 1668 } 1669 } else 1670 cr = NULL; 1671 1672 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1673 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1674 if (res == NULL) 1675 res = (char *)&res_buf; 1676 } else 1677 res = (char *)&res_buf; 1678 1679 if (!(dis_flags & RPC_IDEMPOTENT)) { 1680 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1681 &dupcached); 1682 1683 switch (dupstat) { 1684 case DUP_ERROR: 1685 svcerr_systemerr(xprt); 1686 error++; 1687 goto done; 1688 /* NOTREACHED */ 1689 case DUP_INPROGRESS: 1690 if (res != (char *)&res_buf) 1691 SVC_FREERES(xprt); 1692 error++; 1693 goto done; 1694 /* NOTREACHED */ 1695 case DUP_NEW: 1696 case DUP_DROP: 1697 curthread->t_flag |= T_DONTPEND; 1698 1699 (*disp->dis_proc)(args, res, exi, req, cr); 1700 1701 curthread->t_flag &= ~T_DONTPEND; 1702 if (curthread->t_flag & T_WOULDBLOCK) { 1703 curthread->t_flag &= ~T_WOULDBLOCK; 1704 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1705 disp->dis_ressz, DUP_DROP); 1706 if (res != (char *)&res_buf) 1707 SVC_FREERES(xprt); 1708 error++; 1709 goto done; 1710 } 1711 if (dis_flags & RPC_AVOIDWORK) { 1712 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1713 disp->dis_ressz, DUP_DROP); 1714 } else { 1715 SVC_DUPDONE_EXT(xprt, dr, res, 1716 disp->dis_resfree == nullfree ? NULL : 1717 disp->dis_resfree, 1718 disp->dis_ressz, DUP_DONE); 1719 dupcached = TRUE; 1720 } 1721 break; 1722 case DUP_DONE: 1723 break; 1724 } 1725 1726 } else { 1727 curthread->t_flag |= T_DONTPEND; 1728 1729 (*disp->dis_proc)(args, res, exi, req, cr); 1730 1731 curthread->t_flag &= ~T_DONTPEND; 1732 if (curthread->t_flag & T_WOULDBLOCK) { 1733 curthread->t_flag &= ~T_WOULDBLOCK; 1734 if (res != (char *)&res_buf) 1735 SVC_FREERES(xprt); 1736 error++; 1737 goto done; 1738 } 1739 } 1740 1741 if (auth_tooweak(req, res)) { 1742 svcerr_weakauth(xprt); 1743 error++; 1744 goto done; 1745 } 1746 1747 /* 1748 * Check to see if logging has been enabled on the server. 1749 * If so, then obtain the export info struct to be used for 1750 * the later writing of the log record. This is done for 1751 * the case that a lookup is done across a non-logged public 1752 * file system. 1753 */ 1754 if (nfslog_buffer_list != NULL) { 1755 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1756 /* 1757 * Is logging enabled? 1758 */ 1759 logging_enabled = (nfslog_exi != NULL); 1760 1761 /* 1762 * Copy the netbuf for logging purposes, before it is 1763 * freed by svc_sendreply(). 1764 */ 1765 if (logging_enabled) { 1766 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1767 /* 1768 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1769 * res gets copied directly into the mbuf and 1770 * may be freed soon after the sendreply. So we 1771 * must copy it here to a safe place... 1772 */ 1773 if (res != (char *)&res_buf) { 1774 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1775 } 1776 } 1777 } 1778 1779 /* 1780 * Serialize and send results struct 1781 */ 1782 #ifdef DEBUG 1783 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1784 #else 1785 if (res != (char *)&res_buf) 1786 #endif 1787 { 1788 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1789 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1790 error++; 1791 } 1792 } else { 1793 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1794 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1795 error++; 1796 } 1797 } 1798 1799 /* 1800 * Log if needed 1801 */ 1802 if (logging_enabled) { 1803 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1804 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1805 exi_rele(nfslog_exi); 1806 kmem_free((&nb)->buf, (&nb)->len); 1807 } 1808 1809 /* 1810 * Free results struct. With the addition of NFS V4 we can 1811 * have non-idempotent procedures with functions. 1812 */ 1813 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1814 (*disp->dis_resfree)(res); 1815 } 1816 1817 done: 1818 /* 1819 * Free arguments struct 1820 */ 1821 if (disp) { 1822 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1823 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1824 error++; 1825 } 1826 } else { 1827 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1828 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1829 error++; 1830 } 1831 } 1832 1833 if (exi != NULL) 1834 exi_rele(exi); 1835 1836 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1837 1838 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1839 } 1840 1841 static void 1842 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1843 { 1844 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1845 "NFS", rfs_disptable); 1846 } 1847 1848 static char *aclcallnames_v2[] = { 1849 "ACL2_NULL", 1850 "ACL2_GETACL", 1851 "ACL2_SETACL", 1852 "ACL2_GETATTR", 1853 "ACL2_ACCESS", 1854 "ACL2_GETXATTRDIR" 1855 }; 1856 1857 static struct rpcdisp acldisptab_v2[] = { 1858 /* 1859 * ACL VERSION 2 1860 */ 1861 1862 /* ACL2_NULL = 0 */ 1863 {rpc_null, 1864 xdr_void, NULL_xdrproc_t, 0, 1865 xdr_void, NULL_xdrproc_t, 0, 1866 nullfree, RPC_IDEMPOTENT, 1867 0}, 1868 1869 /* ACL2_GETACL = 1 */ 1870 {acl2_getacl, 1871 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1872 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1873 acl2_getacl_free, RPC_IDEMPOTENT, 1874 acl2_getacl_getfh}, 1875 1876 /* ACL2_SETACL = 2 */ 1877 {acl2_setacl, 1878 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1879 #ifdef _LITTLE_ENDIAN 1880 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1881 #else 1882 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1883 #endif 1884 nullfree, RPC_MAPRESP, 1885 acl2_setacl_getfh}, 1886 1887 /* ACL2_GETATTR = 3 */ 1888 {acl2_getattr, 1889 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1890 #ifdef _LITTLE_ENDIAN 1891 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1892 #else 1893 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1894 #endif 1895 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1896 acl2_getattr_getfh}, 1897 1898 /* ACL2_ACCESS = 4 */ 1899 {acl2_access, 1900 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1901 #ifdef _LITTLE_ENDIAN 1902 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1903 #else 1904 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1905 #endif 1906 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1907 acl2_access_getfh}, 1908 1909 /* ACL2_GETXATTRDIR = 5 */ 1910 {acl2_getxattrdir, 1911 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1912 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1913 nullfree, RPC_IDEMPOTENT, 1914 acl2_getxattrdir_getfh}, 1915 }; 1916 1917 static char *aclcallnames_v3[] = { 1918 "ACL3_NULL", 1919 "ACL3_GETACL", 1920 "ACL3_SETACL", 1921 "ACL3_GETXATTRDIR" 1922 }; 1923 1924 static struct rpcdisp acldisptab_v3[] = { 1925 /* 1926 * ACL VERSION 3 1927 */ 1928 1929 /* ACL3_NULL = 0 */ 1930 {rpc_null, 1931 xdr_void, NULL_xdrproc_t, 0, 1932 xdr_void, NULL_xdrproc_t, 0, 1933 nullfree, RPC_IDEMPOTENT, 1934 0}, 1935 1936 /* ACL3_GETACL = 1 */ 1937 {acl3_getacl, 1938 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1939 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1940 acl3_getacl_free, RPC_IDEMPOTENT, 1941 acl3_getacl_getfh}, 1942 1943 /* ACL3_SETACL = 2 */ 1944 {acl3_setacl, 1945 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1946 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1947 nullfree, 0, 1948 acl3_setacl_getfh}, 1949 1950 /* ACL3_GETXATTRDIR = 3 */ 1951 {acl3_getxattrdir, 1952 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1953 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1954 nullfree, RPC_IDEMPOTENT, 1955 acl3_getxattrdir_getfh}, 1956 }; 1957 1958 static struct rpc_disptable acl_disptable[] = { 1959 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1960 aclcallnames_v2, 1961 &aclproccnt_v2_ptr, acldisptab_v2}, 1962 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1963 aclcallnames_v3, 1964 &aclproccnt_v3_ptr, acldisptab_v3}, 1965 }; 1966 1967 static void 1968 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1969 { 1970 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1971 "ACL", acl_disptable); 1972 } 1973 1974 int 1975 checkwin(int flavor, int window, struct svc_req *req) 1976 { 1977 struct authdes_cred *adc; 1978 1979 switch (flavor) { 1980 case AUTH_DES: 1981 adc = (struct authdes_cred *)req->rq_clntcred; 1982 if (adc->adc_fullname.window > window) 1983 return (0); 1984 break; 1985 1986 default: 1987 break; 1988 } 1989 return (1); 1990 } 1991 1992 1993 /* 1994 * checkauth() will check the access permission against the export 1995 * information. Then map root uid/gid to appropriate uid/gid. 1996 * 1997 * This routine is used by NFS V3 and V2 code. 1998 */ 1999 static int 2000 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 2001 bool_t publicfh_ok) 2002 { 2003 int i, nfsflavor, rpcflavor, stat, access; 2004 struct secinfo *secp; 2005 caddr_t principal; 2006 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 2007 int anon_res = 0; 2008 2009 /* 2010 * Check for privileged port number 2011 * N.B.: this assumes that we know the format of a netbuf. 2012 */ 2013 if (nfs_portmon) { 2014 struct sockaddr *ca; 2015 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2016 2017 if (ca == NULL) 2018 return (0); 2019 2020 if ((ca->sa_family == AF_INET && 2021 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 2022 IPPORT_RESERVED) || 2023 (ca->sa_family == AF_INET6 && 2024 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 2025 IPPORT_RESERVED)) { 2026 cmn_err(CE_NOTE, 2027 "nfs_server: client %s%ssent NFS request from " 2028 "unprivileged port", 2029 client_name(req), client_addr(req, buf)); 2030 return (0); 2031 } 2032 } 2033 2034 /* 2035 * return 1 on success or 0 on failure 2036 */ 2037 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 2038 2039 /* 2040 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 2041 * the credentials; below we map that to anonymous. 2042 */ 2043 if (!stat && nfsflavor != AUTH_UNIX) { 2044 cmn_err(CE_NOTE, 2045 "nfs_server: couldn't get unix cred for %s", 2046 client_name(req)); 2047 return (0); 2048 } 2049 2050 /* 2051 * Short circuit checkauth() on operations that support the 2052 * public filehandle, and if the request for that operation 2053 * is using the public filehandle. Note that we must call 2054 * sec_svc_getcred() first so that xp_cookie is set to the 2055 * right value. Normally xp_cookie is just the RPC flavor 2056 * of the the request, but in the case of RPCSEC_GSS it 2057 * could be a pseudo flavor. 2058 */ 2059 if (publicfh_ok) 2060 return (1); 2061 2062 rpcflavor = req->rq_cred.oa_flavor; 2063 /* 2064 * Check if the auth flavor is valid for this export 2065 */ 2066 access = nfsauth_access(exi, req); 2067 if (access & NFSAUTH_DROP) 2068 return (-1); /* drop the request */ 2069 2070 if (access & NFSAUTH_DENIED) { 2071 /* 2072 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2073 * probably due to the flavor not matching during the 2074 * the mount attempt. So map the flavor to AUTH_NONE 2075 * so that the credentials get mapped to the anonymous 2076 * user. 2077 */ 2078 if (anon_ok == 1) 2079 rpcflavor = AUTH_NONE; 2080 else 2081 return (0); /* deny access */ 2082 2083 } else if (access & NFSAUTH_MAPNONE) { 2084 /* 2085 * Access was granted even though the flavor mismatched 2086 * because AUTH_NONE was one of the exported flavors. 2087 */ 2088 rpcflavor = AUTH_NONE; 2089 2090 } else if (access & NFSAUTH_WRONGSEC) { 2091 /* 2092 * NFSAUTH_WRONGSEC is used for NFSv4. If we get here, 2093 * it means a client ignored the list of allowed flavors 2094 * returned via the MOUNT protocol. So we just disallow it! 2095 */ 2096 return (0); 2097 } 2098 2099 switch (rpcflavor) { 2100 case AUTH_NONE: 2101 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2102 exi->exi_export.ex_anon); 2103 (void) crsetgroups(cr, 0, NULL); 2104 break; 2105 2106 case AUTH_UNIX: 2107 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2108 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2109 exi->exi_export.ex_anon); 2110 (void) crsetgroups(cr, 0, NULL); 2111 } else if (!stat || crgetuid(cr) == 0 && 2112 access & NFSAUTH_ROOT) { 2113 /* 2114 * It is root, so apply rootid to get real UID 2115 * Find the secinfo structure. We should be able 2116 * to find it by the time we reach here. 2117 * nfsauth_access() has done the checking. 2118 */ 2119 secp = NULL; 2120 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2121 struct secinfo *sptr; 2122 sptr = &exi->exi_export.ex_secinfo[i]; 2123 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2124 secp = sptr; 2125 break; 2126 } 2127 } 2128 if (secp != NULL) { 2129 (void) crsetugid(cr, secp->s_rootid, 2130 secp->s_rootid); 2131 (void) crsetgroups(cr, 0, NULL); 2132 } 2133 } 2134 break; 2135 2136 case AUTH_DES: 2137 case RPCSEC_GSS: 2138 /* 2139 * Find the secinfo structure. We should be able 2140 * to find it by the time we reach here. 2141 * nfsauth_access() has done the checking. 2142 */ 2143 secp = NULL; 2144 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2145 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2146 nfsflavor) { 2147 secp = &exi->exi_export.ex_secinfo[i]; 2148 break; 2149 } 2150 } 2151 2152 if (!secp) { 2153 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2154 "no secinfo data for flavor %d", 2155 client_name(req), client_addr(req, buf), 2156 nfsflavor); 2157 return (0); 2158 } 2159 2160 if (!checkwin(rpcflavor, secp->s_window, req)) { 2161 cmn_err(CE_NOTE, 2162 "nfs_server: client %s%sused invalid " 2163 "auth window value", 2164 client_name(req), client_addr(req, buf)); 2165 return (0); 2166 } 2167 2168 /* 2169 * Map root principals listed in the share's root= list to root, 2170 * and map any others principals that were mapped to root by RPC 2171 * to anon. 2172 */ 2173 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2174 secp->s_rootcnt, secp->s_rootnames)) { 2175 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2176 return (1); 2177 2178 2179 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2180 2181 /* 2182 * NOTE: If and when kernel-land privilege tracing is 2183 * added this may have to be replaced with code that 2184 * retrieves root's supplementary groups (e.g., using 2185 * kgss_get_group_info(). In the meantime principals 2186 * mapped to uid 0 get all privileges, so setting cr's 2187 * supplementary groups for them does nothing. 2188 */ 2189 (void) crsetgroups(cr, 0, NULL); 2190 2191 return (1); 2192 } 2193 2194 /* 2195 * Not a root princ, or not in root list, map UID 0/nobody to 2196 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2197 * UID_NOBODY and GID_NOBODY, respectively.) 2198 */ 2199 if (crgetuid(cr) != 0 && 2200 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2201 return (1); 2202 2203 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2204 exi->exi_export.ex_anon); 2205 (void) crsetgroups(cr, 0, NULL); 2206 break; 2207 default: 2208 return (0); 2209 } /* switch on rpcflavor */ 2210 2211 /* 2212 * Even if anon access is disallowed via ex_anon == -1, we allow 2213 * this access if anon_ok is set. So set creds to the default 2214 * "nobody" id. 2215 */ 2216 if (anon_res != 0) { 2217 if (anon_ok == 0) { 2218 cmn_err(CE_NOTE, 2219 "nfs_server: client %s%ssent wrong " 2220 "authentication for %s", 2221 client_name(req), client_addr(req, buf), 2222 exi->exi_export.ex_path ? 2223 exi->exi_export.ex_path : "?"); 2224 return (0); 2225 } 2226 2227 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2228 return (0); 2229 } 2230 2231 return (1); 2232 } 2233 2234 /* 2235 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2236 * and 1 on success 2237 */ 2238 int 2239 checkauth4(struct compound_state *cs, struct svc_req *req) 2240 { 2241 int i, rpcflavor, access; 2242 struct secinfo *secp; 2243 char buf[MAXHOST + 1]; 2244 int anon_res = 0, nfsflavor; 2245 struct exportinfo *exi; 2246 cred_t *cr; 2247 caddr_t principal; 2248 2249 exi = cs->exi; 2250 cr = cs->cr; 2251 principal = cs->principal; 2252 nfsflavor = cs->nfsflavor; 2253 2254 ASSERT(cr != NULL); 2255 2256 rpcflavor = req->rq_cred.oa_flavor; 2257 cs->access &= ~CS_ACCESS_LIMITED; 2258 2259 /* 2260 * Check the access right per auth flavor on the vnode of 2261 * this export for the given request. 2262 */ 2263 access = nfsauth4_access(cs->exi, cs->vp, req); 2264 2265 if (access & NFSAUTH_WRONGSEC) 2266 return (-2); /* no access for this security flavor */ 2267 2268 if (access & NFSAUTH_DROP) 2269 return (-1); /* drop the request */ 2270 2271 if (access & NFSAUTH_DENIED) { 2272 2273 if (exi->exi_export.ex_seccnt > 0) 2274 return (0); /* deny access */ 2275 2276 } else if (access & NFSAUTH_LIMITED) { 2277 2278 cs->access |= CS_ACCESS_LIMITED; 2279 2280 } else if (access & NFSAUTH_MAPNONE) { 2281 /* 2282 * Access was granted even though the flavor mismatched 2283 * because AUTH_NONE was one of the exported flavors. 2284 */ 2285 rpcflavor = AUTH_NONE; 2286 } 2287 2288 /* 2289 * XXX probably need to redo some of it for nfsv4? 2290 * return 1 on success or 0 on failure 2291 */ 2292 2293 switch (rpcflavor) { 2294 case AUTH_NONE: 2295 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2296 exi->exi_export.ex_anon); 2297 (void) crsetgroups(cr, 0, NULL); 2298 break; 2299 2300 case AUTH_UNIX: 2301 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2302 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2303 exi->exi_export.ex_anon); 2304 (void) crsetgroups(cr, 0, NULL); 2305 } else if (crgetuid(cr) == 0 && access & NFSAUTH_ROOT) { 2306 /* 2307 * It is root, so apply rootid to get real UID 2308 * Find the secinfo structure. We should be able 2309 * to find it by the time we reach here. 2310 * nfsauth_access() has done the checking. 2311 */ 2312 secp = NULL; 2313 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2314 struct secinfo *sptr; 2315 sptr = &exi->exi_export.ex_secinfo[i]; 2316 if (sptr->s_secinfo.sc_nfsnum == nfsflavor) { 2317 secp = &exi->exi_export.ex_secinfo[i]; 2318 break; 2319 } 2320 } 2321 if (secp != NULL) { 2322 (void) crsetugid(cr, secp->s_rootid, 2323 secp->s_rootid); 2324 (void) crsetgroups(cr, 0, NULL); 2325 } 2326 } 2327 break; 2328 2329 default: 2330 /* 2331 * Find the secinfo structure. We should be able 2332 * to find it by the time we reach here. 2333 * nfsauth_access() has done the checking. 2334 */ 2335 secp = NULL; 2336 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2337 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2338 nfsflavor) { 2339 secp = &exi->exi_export.ex_secinfo[i]; 2340 break; 2341 } 2342 } 2343 2344 if (!secp) { 2345 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2346 "no secinfo data for flavor %d", 2347 client_name(req), client_addr(req, buf), 2348 nfsflavor); 2349 return (0); 2350 } 2351 2352 if (!checkwin(rpcflavor, secp->s_window, req)) { 2353 cmn_err(CE_NOTE, 2354 "nfs_server: client %s%sused invalid " 2355 "auth window value", 2356 client_name(req), client_addr(req, buf)); 2357 return (0); 2358 } 2359 2360 /* 2361 * Map root principals listed in the share's root= list to root, 2362 * and map any others principals that were mapped to root by RPC 2363 * to anon. If not going to anon, set to rootid (root_mapping). 2364 */ 2365 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2366 secp->s_rootcnt, secp->s_rootnames)) { 2367 if (crgetuid(cr) == 0 && secp->s_rootid == 0) 2368 return (1); 2369 2370 (void) crsetugid(cr, secp->s_rootid, secp->s_rootid); 2371 2372 /* 2373 * NOTE: If and when kernel-land privilege tracing is 2374 * added this may have to be replaced with code that 2375 * retrieves root's supplementary groups (e.g., using 2376 * kgss_get_group_info(). In the meantime principals 2377 * mapped to uid 0 get all privileges, so setting cr's 2378 * supplementary groups for them does nothing. 2379 */ 2380 (void) crsetgroups(cr, 0, NULL); 2381 2382 return (1); 2383 } 2384 2385 /* 2386 * Not a root princ, or not in root list, map UID 0/nobody to 2387 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2388 * UID_NOBODY and GID_NOBODY, respectively.) 2389 */ 2390 if (crgetuid(cr) != 0 && 2391 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2392 return (1); 2393 2394 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2395 exi->exi_export.ex_anon); 2396 (void) crsetgroups(cr, 0, NULL); 2397 break; 2398 } /* switch on rpcflavor */ 2399 2400 /* 2401 * Even if anon access is disallowed via ex_anon == -1, we allow 2402 * this access if anon_ok is set. So set creds to the default 2403 * "nobody" id. 2404 */ 2405 2406 if (anon_res != 0) { 2407 cmn_err(CE_NOTE, 2408 "nfs_server: client %s%ssent wrong " 2409 "authentication for %s", 2410 client_name(req), client_addr(req, buf), 2411 exi->exi_export.ex_path ? 2412 exi->exi_export.ex_path : "?"); 2413 return (0); 2414 } 2415 2416 return (1); 2417 } 2418 2419 2420 static char * 2421 client_name(struct svc_req *req) 2422 { 2423 char *hostname = NULL; 2424 2425 /* 2426 * If it's a Unix cred then use the 2427 * hostname from the credential. 2428 */ 2429 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2430 hostname = ((struct authunix_parms *) 2431 req->rq_clntcred)->aup_machname; 2432 } 2433 if (hostname == NULL) 2434 hostname = ""; 2435 2436 return (hostname); 2437 } 2438 2439 static char * 2440 client_addr(struct svc_req *req, char *buf) 2441 { 2442 struct sockaddr *ca; 2443 uchar_t *b; 2444 char *frontspace = ""; 2445 2446 /* 2447 * We assume we are called in tandem with client_name and the 2448 * format string looks like "...client %s%sblah blah..." 2449 * 2450 * If it's a Unix cred then client_name returned 2451 * a host name, so we need insert a space between host name 2452 * and IP address. 2453 */ 2454 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2455 frontspace = " "; 2456 2457 /* 2458 * Convert the caller's IP address to a dotted string 2459 */ 2460 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2461 2462 if (ca->sa_family == AF_INET) { 2463 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2464 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2465 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2466 } else if (ca->sa_family == AF_INET6) { 2467 struct sockaddr_in6 *sin6; 2468 sin6 = (struct sockaddr_in6 *)ca; 2469 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2470 buf, INET6_ADDRSTRLEN); 2471 2472 } else { 2473 2474 /* 2475 * No IP address to print. If there was a host name 2476 * printed, then we print a space. 2477 */ 2478 (void) sprintf(buf, frontspace); 2479 } 2480 2481 return (buf); 2482 } 2483 2484 /* 2485 * NFS Server initialization routine. This routine should only be called 2486 * once. It performs the following tasks: 2487 * - Call sub-initialization routines (localize access to variables) 2488 * - Initialize all locks 2489 * - initialize the version 3 write verifier 2490 */ 2491 int 2492 nfs_srvinit(void) 2493 { 2494 int error; 2495 2496 error = nfs_exportinit(); 2497 if (error != 0) 2498 return (error); 2499 error = rfs4_srvrinit(); 2500 if (error != 0) { 2501 nfs_exportfini(); 2502 return (error); 2503 } 2504 rfs_srvrinit(); 2505 rfs3_srvrinit(); 2506 nfsauth_init(); 2507 2508 /* Init the stuff to control start/stop */ 2509 nfs_server_upordown = NFS_SERVER_STOPPED; 2510 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2511 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2512 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2513 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2514 2515 return (0); 2516 } 2517 2518 /* 2519 * NFS Server finalization routine. This routine is called to cleanup the 2520 * initialization work previously performed if the NFS server module could 2521 * not be loaded correctly. 2522 */ 2523 void 2524 nfs_srvfini(void) 2525 { 2526 nfsauth_fini(); 2527 rfs3_srvrfini(); 2528 rfs_srvrfini(); 2529 nfs_exportfini(); 2530 2531 mutex_destroy(&nfs_server_upordown_lock); 2532 cv_destroy(&nfs_server_upordown_cv); 2533 mutex_destroy(&rdma_wait_mutex); 2534 cv_destroy(&rdma_wait_cv); 2535 } 2536 2537 /* 2538 * Set up an iovec array of up to cnt pointers. 2539 */ 2540 2541 void 2542 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2543 { 2544 while (m != NULL && cnt-- > 0) { 2545 iovp->iov_base = (caddr_t)m->b_rptr; 2546 iovp->iov_len = (m->b_wptr - m->b_rptr); 2547 iovp++; 2548 m = m->b_cont; 2549 } 2550 } 2551 2552 /* 2553 * Common code between NFS Version 2 and NFS Version 3 for the public 2554 * filehandle multicomponent lookups. 2555 */ 2556 2557 /* 2558 * Public filehandle evaluation of a multi-component lookup, following 2559 * symbolic links, if necessary. This may result in a vnode in another 2560 * filesystem, which is OK as long as the other filesystem is exported. 2561 * 2562 * Note that the exi will be set either to NULL or a new reference to the 2563 * exportinfo struct that corresponds to the vnode of the multi-component path. 2564 * It is the callers responsibility to release this reference. 2565 */ 2566 int 2567 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2568 struct exportinfo **exi, struct sec_ol *sec) 2569 { 2570 int pathflag; 2571 vnode_t *mc_dvp = NULL; 2572 vnode_t *realvp; 2573 int error; 2574 2575 *exi = NULL; 2576 2577 /* 2578 * check if the given path is a url or native path. Since p is 2579 * modified by MCLpath(), it may be empty after returning from 2580 * there, and should be checked. 2581 */ 2582 if ((pathflag = MCLpath(&p)) == -1) 2583 return (EIO); 2584 2585 /* 2586 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2587 * on in sec->sec_flags. This bit will later serve as an 2588 * indication in makefh_ol() or makefh3_ol() to overload the 2589 * filehandle to contain the sec modes used by the server for 2590 * the path. 2591 */ 2592 if (pathflag == SECURITY_QUERY) { 2593 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2594 sec->sec_flags |= SEC_QUERY; 2595 p++; 2596 if ((pathflag = MCLpath(&p)) == -1) 2597 return (EIO); 2598 } else { 2599 cmn_err(CE_NOTE, 2600 "nfs_server: invalid security index %d, " 2601 "violating WebNFS SNEGO protocol.", sec->sec_index); 2602 return (EIO); 2603 } 2604 } 2605 2606 if (p[0] == '\0') { 2607 error = ENOENT; 2608 goto publicfh_done; 2609 } 2610 2611 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2612 2613 /* 2614 * If name resolves to "/" we get EINVAL since we asked for 2615 * the vnode of the directory that the file is in. Try again 2616 * with NULL directory vnode. 2617 */ 2618 if (error == EINVAL) { 2619 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2620 if (!error) { 2621 ASSERT(*vpp != NULL); 2622 if ((*vpp)->v_type == VDIR) { 2623 VN_HOLD(*vpp); 2624 mc_dvp = *vpp; 2625 } else { 2626 /* 2627 * This should not happen, the filesystem is 2628 * in an inconsistent state. Fail the lookup 2629 * at this point. 2630 */ 2631 VN_RELE(*vpp); 2632 error = EINVAL; 2633 } 2634 } 2635 } 2636 2637 if (error) 2638 goto publicfh_done; 2639 2640 if (*vpp == NULL) { 2641 error = ENOENT; 2642 goto publicfh_done; 2643 } 2644 2645 ASSERT(mc_dvp != NULL); 2646 ASSERT(*vpp != NULL); 2647 2648 if ((*vpp)->v_type == VDIR) { 2649 do { 2650 /* 2651 * *vpp may be an AutoFS node, so we perform 2652 * a VOP_ACCESS() to trigger the mount of the intended 2653 * filesystem, so we can perform the lookup in the 2654 * intended filesystem. 2655 */ 2656 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2657 2658 /* 2659 * If vnode is covered, get the 2660 * the topmost vnode. 2661 */ 2662 if (vn_mountedvfs(*vpp) != NULL) { 2663 error = traverse(vpp); 2664 if (error) { 2665 VN_RELE(*vpp); 2666 goto publicfh_done; 2667 } 2668 } 2669 2670 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2671 realvp != *vpp) { 2672 /* 2673 * If realvp is different from *vpp 2674 * then release our reference on *vpp, so that 2675 * the export access check be performed on the 2676 * real filesystem instead. 2677 */ 2678 VN_HOLD(realvp); 2679 VN_RELE(*vpp); 2680 *vpp = realvp; 2681 } else { 2682 break; 2683 } 2684 /* LINTED */ 2685 } while (TRUE); 2686 2687 /* 2688 * Let nfs_vptexi() figure what the real parent is. 2689 */ 2690 VN_RELE(mc_dvp); 2691 mc_dvp = NULL; 2692 2693 } else { 2694 /* 2695 * If vnode is covered, get the 2696 * the topmost vnode. 2697 */ 2698 if (vn_mountedvfs(mc_dvp) != NULL) { 2699 error = traverse(&mc_dvp); 2700 if (error) { 2701 VN_RELE(*vpp); 2702 goto publicfh_done; 2703 } 2704 } 2705 2706 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2707 realvp != mc_dvp) { 2708 /* 2709 * *vpp is a file, obtain realvp of the parent 2710 * directory vnode. 2711 */ 2712 VN_HOLD(realvp); 2713 VN_RELE(mc_dvp); 2714 mc_dvp = realvp; 2715 } 2716 } 2717 2718 /* 2719 * The pathname may take us from the public filesystem to another. 2720 * If that's the case then just set the exportinfo to the new export 2721 * and build filehandle for it. Thanks to per-access checking there's 2722 * no security issues with doing this. If the client is not allowed 2723 * access to this new export then it will get an access error when it 2724 * tries to use the filehandle 2725 */ 2726 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2727 VN_RELE(*vpp); 2728 goto publicfh_done; 2729 } 2730 2731 /* 2732 * Not allowed access to pseudo exports. 2733 */ 2734 if (PSEUDO(*exi)) { 2735 error = ENOENT; 2736 VN_RELE(*vpp); 2737 goto publicfh_done; 2738 } 2739 2740 /* 2741 * Do a lookup for the index file. We know the index option doesn't 2742 * allow paths through handling in the share command, so mc_dvp will 2743 * be the parent for the index file vnode, if its present. Use 2744 * temporary pointers to preserve and reuse the vnode pointers of the 2745 * original directory in case there's no index file. Note that the 2746 * index file is a native path, and should not be interpreted by 2747 * the URL parser in rfs_pathname() 2748 */ 2749 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2750 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2751 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2752 2753 tmc_dvp = mc_dvp; 2754 mc_dvp = tvp = *vpp; 2755 2756 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2757 mc_dvp, cr, NATIVEPATH); 2758 2759 if (error == ENOENT) { 2760 *vpp = tvp; 2761 mc_dvp = tmc_dvp; 2762 error = 0; 2763 } else { /* ok or error other than ENOENT */ 2764 if (tmc_dvp) 2765 VN_RELE(tmc_dvp); 2766 if (error) 2767 goto publicfh_done; 2768 2769 /* 2770 * Found a valid vp for index "filename". Sanity check 2771 * for odd case where a directory is provided as index 2772 * option argument and leads us to another filesystem 2773 */ 2774 2775 /* Release the reference on the old exi value */ 2776 ASSERT(*exi != NULL); 2777 exi_rele(*exi); 2778 2779 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2780 VN_RELE(*vpp); 2781 goto publicfh_done; 2782 } 2783 } 2784 } 2785 2786 publicfh_done: 2787 if (mc_dvp) 2788 VN_RELE(mc_dvp); 2789 2790 return (error); 2791 } 2792 2793 /* 2794 * Evaluate a multi-component path 2795 */ 2796 int 2797 rfs_pathname( 2798 char *path, /* pathname to evaluate */ 2799 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2800 vnode_t **compvpp, /* ret for ptr to component vnode */ 2801 vnode_t *startdvp, /* starting vnode */ 2802 cred_t *cr, /* user's credential */ 2803 int pathflag) /* flag to identify path, e.g. URL */ 2804 { 2805 char namebuf[TYPICALMAXPATHLEN]; 2806 struct pathname pn; 2807 int error; 2808 2809 /* 2810 * If pathname starts with '/', then set startdvp to root. 2811 */ 2812 if (*path == '/') { 2813 while (*path == '/') 2814 path++; 2815 2816 startdvp = rootdir; 2817 } 2818 2819 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2820 if (error == 0) { 2821 /* 2822 * Call the URL parser for URL paths to modify the original 2823 * string to handle any '%' encoded characters that exist. 2824 * Done here to avoid an extra bcopy in the lookup. 2825 * We need to be careful about pathlen's. We know that 2826 * rfs_pathname() is called with a non-empty path. However, 2827 * it could be emptied due to the path simply being all /'s, 2828 * which is valid to proceed with the lookup, or due to the 2829 * URL parser finding an encoded null character at the 2830 * beginning of path which should not proceed with the lookup. 2831 */ 2832 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2833 URLparse(pn.pn_path); 2834 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2835 return (ENOENT); 2836 } 2837 VN_HOLD(startdvp); 2838 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2839 rootdir, startdvp, cr); 2840 } 2841 if (error == ENAMETOOLONG) { 2842 /* 2843 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2844 */ 2845 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2846 return (error); 2847 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2848 URLparse(pn.pn_path); 2849 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2850 pn_free(&pn); 2851 return (ENOENT); 2852 } 2853 } 2854 VN_HOLD(startdvp); 2855 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2856 rootdir, startdvp, cr); 2857 pn_free(&pn); 2858 } 2859 2860 return (error); 2861 } 2862 2863 /* 2864 * Adapt the multicomponent lookup path depending on the pathtype 2865 */ 2866 static int 2867 MCLpath(char **path) 2868 { 2869 unsigned char c = (unsigned char)**path; 2870 2871 /* 2872 * If the MCL path is between 0x20 and 0x7E (graphic printable 2873 * character of the US-ASCII coded character set), its a URL path, 2874 * per RFC 1738. 2875 */ 2876 if (c >= 0x20 && c <= 0x7E) 2877 return (URLPATH); 2878 2879 /* 2880 * If the first octet of the MCL path is not an ASCII character 2881 * then it must be interpreted as a tag value that describes the 2882 * format of the remaining octets of the MCL path. 2883 * 2884 * If the first octet of the MCL path is 0x81 it is a query 2885 * for the security info. 2886 */ 2887 switch (c) { 2888 case 0x80: /* native path, i.e. MCL via mount protocol */ 2889 (*path)++; 2890 return (NATIVEPATH); 2891 case 0x81: /* security query */ 2892 (*path)++; 2893 return (SECURITY_QUERY); 2894 default: 2895 return (-1); 2896 } 2897 } 2898 2899 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2900 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2901 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2902 2903 /* 2904 * The implementation of URLparse guarantees that the final string will 2905 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2906 * with its corresponding hexadecimal character. 2907 */ 2908 static void 2909 URLparse(char *str) 2910 { 2911 char *p, *q; 2912 2913 p = q = str; 2914 while (*p) { 2915 *q = *p; 2916 if (*p++ == '%') { 2917 if (*p) { 2918 *q = fromhex(*p) * 16; 2919 p++; 2920 if (*p) { 2921 *q += fromhex(*p); 2922 p++; 2923 } 2924 } 2925 } 2926 q++; 2927 } 2928 *q = '\0'; 2929 } 2930 2931 2932 /* 2933 * Get the export information for the lookup vnode, and verify its 2934 * useable. 2935 */ 2936 int 2937 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2938 struct exportinfo **exi) 2939 { 2940 int walk; 2941 int error = 0; 2942 2943 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2944 if (*exi == NULL) 2945 error = EACCES; 2946 else { 2947 /* 2948 * If nosub is set for this export then 2949 * a lookup relative to the public fh 2950 * must not terminate below the 2951 * exported directory. 2952 */ 2953 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2954 error = EACCES; 2955 } 2956 2957 return (error); 2958 } 2959 2960 /* 2961 * Do the main work of handling HA-NFSv4 Resource Group failover on 2962 * Sun Cluster. 2963 * We need to detect whether any RG admin paths have been added or removed, 2964 * and adjust resources accordingly. 2965 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2966 * order to scale, the list and array of paths need to be held in more 2967 * suitable data structures. 2968 */ 2969 static void 2970 hanfsv4_failover(void) 2971 { 2972 int i, start_grace, numadded_paths = 0; 2973 char **added_paths = NULL; 2974 rfs4_dss_path_t *dss_path; 2975 2976 /* 2977 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 2978 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 2979 * make the latter dynamically specified too, the following will 2980 * need to be adjusted. 2981 */ 2982 2983 /* 2984 * First, look for removed paths: RGs that have been failed-over 2985 * away from this node. 2986 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 2987 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 2988 * from nfsd. If not, that RG path has been removed. 2989 * 2990 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 2991 * any duplicates. 2992 */ 2993 dss_path = rfs4_dss_pathlist; 2994 do { 2995 int found = 0; 2996 char *path = dss_path->path; 2997 2998 /* used only for non-HA so may not be removed */ 2999 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3000 dss_path = dss_path->next; 3001 continue; 3002 } 3003 3004 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3005 int cmpret; 3006 char *newpath = rfs4_dss_newpaths[i]; 3007 3008 /* 3009 * Since nfsd has sorted rfs4_dss_newpaths for us, 3010 * once the return from strcmp is negative we know 3011 * we've passed the point where "path" should be, 3012 * and can stop searching: "path" has been removed. 3013 */ 3014 cmpret = strcmp(path, newpath); 3015 if (cmpret < 0) 3016 break; 3017 if (cmpret == 0) { 3018 found = 1; 3019 break; 3020 } 3021 } 3022 3023 if (found == 0) { 3024 unsigned index = dss_path->index; 3025 rfs4_servinst_t *sip = dss_path->sip; 3026 rfs4_dss_path_t *path_next = dss_path->next; 3027 3028 /* 3029 * This path has been removed. 3030 * We must clear out the servinst reference to 3031 * it, since it's now owned by another 3032 * node: we should not attempt to touch it. 3033 */ 3034 ASSERT(dss_path == sip->dss_paths[index]); 3035 sip->dss_paths[index] = NULL; 3036 3037 /* remove from "currently-serving" list, and destroy */ 3038 remque(dss_path); 3039 /* allow for NUL */ 3040 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 3041 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 3042 3043 dss_path = path_next; 3044 } else { 3045 /* path was found; not removed */ 3046 dss_path = dss_path->next; 3047 } 3048 } while (dss_path != rfs4_dss_pathlist); 3049 3050 /* 3051 * Now, look for added paths: RGs that have been failed-over 3052 * to this node. 3053 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 3054 * for each path, check if it is on the "currently-serving" 3055 * rfs4_dss_pathlist. If not, that RG path has been added. 3056 * 3057 * Note: we don't do duplicate detection here; nfsd does that for us. 3058 * 3059 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 3060 * an upper bound for the size needed for added_paths[numadded_paths]. 3061 */ 3062 3063 /* probably more space than we need, but guaranteed to be enough */ 3064 if (rfs4_dss_numnewpaths > 0) { 3065 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 3066 added_paths = kmem_zalloc(sz, KM_SLEEP); 3067 } 3068 3069 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 3070 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 3071 int found = 0; 3072 char *newpath = rfs4_dss_newpaths[i]; 3073 3074 dss_path = rfs4_dss_pathlist; 3075 do { 3076 char *path = dss_path->path; 3077 3078 /* used only for non-HA */ 3079 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 3080 dss_path = dss_path->next; 3081 continue; 3082 } 3083 3084 if (strncmp(path, newpath, strlen(path)) == 0) { 3085 found = 1; 3086 break; 3087 } 3088 3089 dss_path = dss_path->next; 3090 } while (dss_path != rfs4_dss_pathlist); 3091 3092 if (found == 0) { 3093 added_paths[numadded_paths] = newpath; 3094 numadded_paths++; 3095 } 3096 } 3097 3098 /* did we find any added paths? */ 3099 if (numadded_paths > 0) { 3100 /* create a new server instance, and start its grace period */ 3101 start_grace = 1; 3102 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3103 3104 /* read in the stable storage state from these paths */ 3105 rfs4_dss_readstate(numadded_paths, added_paths); 3106 3107 /* 3108 * Multiple failovers during a grace period will cause 3109 * clients of the same resource group to be partitioned 3110 * into different server instances, with different 3111 * grace periods. Since clients of the same resource 3112 * group must be subject to the same grace period, 3113 * we need to reset all currently active grace periods. 3114 */ 3115 rfs4_grace_reset_all(); 3116 } 3117 3118 if (rfs4_dss_numnewpaths > 0) 3119 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3120 } 3121