1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/proc.h> 39 #include <sys/user.h> 40 #include <sys/buf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/stat.h> 47 #include <sys/errno.h> 48 #include <sys/socket.h> 49 #include <sys/sysmacros.h> 50 #include <sys/siginfo.h> 51 #include <sys/tiuser.h> 52 #include <sys/statvfs.h> 53 #include <sys/stream.h> 54 #include <sys/strsubr.h> 55 #include <sys/stropts.h> 56 #include <sys/timod.h> 57 #include <sys/t_kuser.h> 58 #include <sys/kmem.h> 59 #include <sys/kstat.h> 60 #include <sys/dirent.h> 61 #include <sys/cmn_err.h> 62 #include <sys/debug.h> 63 #include <sys/unistd.h> 64 #include <sys/vtrace.h> 65 #include <sys/mode.h> 66 #include <sys/acl.h> 67 #include <sys/sdt.h> 68 69 #include <rpc/types.h> 70 #include <rpc/auth.h> 71 #include <rpc/auth_unix.h> 72 #include <rpc/auth_des.h> 73 #include <rpc/svc.h> 74 #include <rpc/xdr.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/export.h> 78 #include <nfs/nfssys.h> 79 #include <nfs/nfs_clnt.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/nfs_log.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #define MAXHOST 32 91 const char *kinet_ntop6(uchar_t *, char *, size_t); 92 93 /* 94 * Module linkage information. 95 */ 96 97 static struct modlmisc modlmisc = { 98 &mod_miscops, "NFS server module" 99 }; 100 101 static struct modlinkage modlinkage = { 102 MODREV_1, (void *)&modlmisc, NULL 103 }; 104 105 char _depends_on[] = "misc/klmmod"; 106 107 int 108 _init(void) 109 { 110 int status; 111 112 if ((status = nfs_srvinit()) != 0) { 113 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 114 return (status); 115 } 116 117 status = mod_install((struct modlinkage *)&modlinkage); 118 if (status != 0) { 119 /* 120 * Could not load module, cleanup previous 121 * initialization work. 122 */ 123 nfs_srvfini(); 124 } 125 126 /* 127 * Initialise some placeholders for nfssys() calls. These have 128 * to be declared by the nfs module, since that handles nfssys() 129 * calls - also used by NFS clients - but are provided by this 130 * nfssrv module. These also then serve as confirmation to the 131 * relevant code in nfs that nfssrv has been loaded, as they're 132 * initially NULL. 133 */ 134 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 135 nfs_srv_dss_func = rfs4_dss_setpaths; 136 137 /* setup DSS paths here; must be done before initial server startup */ 138 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 139 140 return (status); 141 } 142 143 int 144 _fini() 145 { 146 return (EBUSY); 147 } 148 149 int 150 _info(struct modinfo *modinfop) 151 { 152 return (mod_info(&modlinkage, modinfop)); 153 } 154 155 /* 156 * PUBLICFH_CHECK() checks if the dispatch routine supports 157 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 158 * incoming request is using the public filehandle. The check duplicates 159 * the exportmatch() call done in checkexport(), and we should consider 160 * modifying those routines to avoid the duplication. For now, we optimize 161 * by calling exportmatch() only after checking that the dispatch routine 162 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 163 * public (i.e., not the placeholder). 164 */ 165 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 166 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 167 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 168 (exi == exi_public && exportmatch(exi_root, \ 169 fsid, xfid)))) 170 171 static void nfs_srv_shutdown_all(int); 172 static void rfs4_server_start(int); 173 static void nullfree(void); 174 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 175 static void acl_dispatch(struct svc_req *, SVCXPRT *); 176 static void common_dispatch(struct svc_req *, SVCXPRT *, 177 rpcvers_t, rpcvers_t, char *, 178 struct rpc_disptable *); 179 static void hanfsv4_failover(void); 180 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 181 bool_t); 182 static char *client_name(struct svc_req *req); 183 static char *client_addr(struct svc_req *req, char *buf); 184 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 185 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 186 187 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 188 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 189 (nb)->len = (xprt)->xp_rtaddr.len; \ 190 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 191 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 192 } 193 194 /* 195 * Public Filehandle common nfs routines 196 */ 197 static int MCLpath(char **); 198 static void URLparse(char *); 199 200 /* 201 * NFS callout table. 202 * This table is used by svc_getreq() to dispatch a request with 203 * a given prog/vers pair to an appropriate service provider 204 * dispatch routine. 205 * 206 * NOTE: ordering is relied upon below when resetting the version min/max 207 * for NFS_PROGRAM. Careful, if this is ever changed. 208 */ 209 static SVC_CALLOUT __nfs_sc_clts[] = { 210 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 211 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 212 }; 213 214 static SVC_CALLOUT_TABLE nfs_sct_clts = { 215 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 216 __nfs_sc_clts 217 }; 218 219 static SVC_CALLOUT __nfs_sc_cots[] = { 220 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 221 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 222 }; 223 224 static SVC_CALLOUT_TABLE nfs_sct_cots = { 225 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 226 }; 227 228 static SVC_CALLOUT __nfs_sc_rdma[] = { 229 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 230 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 231 }; 232 233 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 234 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 235 }; 236 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 237 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 238 239 /* 240 * Used to track the state of the server so that initialization 241 * can be done properly. 242 */ 243 typedef enum { 244 NFS_SERVER_STOPPED, /* server state destroyed */ 245 NFS_SERVER_STOPPING, /* server state being destroyed */ 246 NFS_SERVER_RUNNING, 247 NFS_SERVER_QUIESCED, /* server state preserved */ 248 NFS_SERVER_OFFLINE /* server pool offline */ 249 } nfs_server_running_t; 250 251 static nfs_server_running_t nfs_server_upordown; 252 static kmutex_t nfs_server_upordown_lock; 253 static kcondvar_t nfs_server_upordown_cv; 254 255 /* 256 * DSS: distributed stable storage 257 * lists of all DSS paths: current, and before last warmstart 258 */ 259 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 260 261 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 262 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 263 264 /* 265 * RDMA wait variables. 266 */ 267 static kcondvar_t rdma_wait_cv; 268 static kmutex_t rdma_wait_mutex; 269 270 /* 271 * Will be called at the point the server pool is being unregistered 272 * from the pool list. From that point onwards, the pool is waiting 273 * to be drained and as such the server state is stale and pertains 274 * to the old instantiation of the NFS server pool. 275 */ 276 void 277 nfs_srv_offline(void) 278 { 279 mutex_enter(&nfs_server_upordown_lock); 280 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 281 nfs_server_upordown = NFS_SERVER_OFFLINE; 282 } 283 mutex_exit(&nfs_server_upordown_lock); 284 } 285 286 /* 287 * Will be called at the point the server pool is being destroyed so 288 * all transports have been closed and no service threads are in 289 * existence. 290 * 291 * If we quiesce the server, we're shutting it down without destroying the 292 * server state. This allows it to warm start subsequently. 293 */ 294 void 295 nfs_srv_stop_all(void) 296 { 297 int quiesce = 0; 298 nfs_srv_shutdown_all(quiesce); 299 } 300 301 /* 302 * This alternative shutdown routine can be requested via nfssys() 303 */ 304 void 305 nfs_srv_quiesce_all(void) 306 { 307 int quiesce = 1; 308 nfs_srv_shutdown_all(quiesce); 309 } 310 311 static void 312 nfs_srv_shutdown_all(int quiesce) { 313 mutex_enter(&nfs_server_upordown_lock); 314 if (quiesce) { 315 if (nfs_server_upordown == NFS_SERVER_RUNNING || 316 nfs_server_upordown == NFS_SERVER_OFFLINE) { 317 nfs_server_upordown = NFS_SERVER_QUIESCED; 318 cv_signal(&nfs_server_upordown_cv); 319 320 /* reset DSS state, for subsequent warm restart */ 321 rfs4_dss_numnewpaths = 0; 322 rfs4_dss_newpaths = NULL; 323 324 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 325 "NFSv4 state has been preserved"); 326 } 327 } else { 328 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 329 nfs_server_upordown = NFS_SERVER_STOPPING; 330 mutex_exit(&nfs_server_upordown_lock); 331 rfs4_state_fini(); 332 rfs4_fini_drc(nfs4_drc); 333 mutex_enter(&nfs_server_upordown_lock); 334 nfs_server_upordown = NFS_SERVER_STOPPED; 335 cv_signal(&nfs_server_upordown_cv); 336 } 337 } 338 mutex_exit(&nfs_server_upordown_lock); 339 } 340 341 static int 342 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 343 rpcvers_t versmin, rpcvers_t versmax) 344 { 345 struct strioctl strioc; 346 struct T_info_ack tinfo; 347 int error, retval; 348 349 /* 350 * Find out what type of transport this is. 351 */ 352 strioc.ic_cmd = TI_GETINFO; 353 strioc.ic_timout = -1; 354 strioc.ic_len = sizeof (tinfo); 355 strioc.ic_dp = (char *)&tinfo; 356 tinfo.PRIM_type = T_INFO_REQ; 357 358 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 359 CRED(), &retval); 360 if (error || retval) 361 return (error); 362 363 /* 364 * Based on our query of the transport type... 365 * 366 * Reset the min/max versions based on the caller's request 367 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 368 * And the second entry is the NFS_ACL_PROGRAM. 369 */ 370 switch (tinfo.SERV_type) { 371 case T_CLTS: 372 if (versmax == NFS_V4) 373 return (EINVAL); 374 __nfs_sc_clts[0].sc_versmin = versmin; 375 __nfs_sc_clts[0].sc_versmax = versmax; 376 __nfs_sc_clts[1].sc_versmin = versmin; 377 __nfs_sc_clts[1].sc_versmax = versmax; 378 *sctpp = &nfs_sct_clts; 379 break; 380 case T_COTS: 381 case T_COTS_ORD: 382 __nfs_sc_cots[0].sc_versmin = versmin; 383 __nfs_sc_cots[0].sc_versmax = versmax; 384 /* For the NFS_ACL program, check the max version */ 385 if (versmax > NFS_ACL_VERSMAX) 386 versmax = NFS_ACL_VERSMAX; 387 __nfs_sc_cots[1].sc_versmin = versmin; 388 __nfs_sc_cots[1].sc_versmax = versmax; 389 *sctpp = &nfs_sct_cots; 390 break; 391 default: 392 error = EINVAL; 393 } 394 395 return (error); 396 } 397 398 /* 399 * NFS Server system call. 400 * Does all of the work of running a NFS server. 401 * uap->fd is the fd of an open transport provider 402 */ 403 int 404 nfs_svc(struct nfs_svc_args *arg, model_t model) 405 { 406 file_t *fp; 407 SVCMASTERXPRT *xprt; 408 int error; 409 int readsize; 410 char buf[KNC_STRSIZE]; 411 size_t len; 412 STRUCT_HANDLE(nfs_svc_args, uap); 413 struct netbuf addrmask; 414 SVC_CALLOUT_TABLE *sctp = NULL; 415 416 #ifdef lint 417 model = model; /* STRUCT macros don't always refer to it */ 418 #endif 419 420 STRUCT_SET_HANDLE(uap, model, arg); 421 422 /* Check privileges in nfssys() */ 423 424 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 425 return (EBADF); 426 427 /* 428 * Set read buffer size to rsize 429 * and add room for RPC headers. 430 */ 431 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 432 if (readsize < RPC_MAXDATASIZE) 433 readsize = RPC_MAXDATASIZE; 434 435 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 436 KNC_STRSIZE, &len); 437 if (error) { 438 releasef(STRUCT_FGET(uap, fd)); 439 return (error); 440 } 441 442 addrmask.len = STRUCT_FGET(uap, addrmask.len); 443 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 444 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 445 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 446 addrmask.len); 447 if (error) { 448 releasef(STRUCT_FGET(uap, fd)); 449 kmem_free(addrmask.buf, addrmask.maxlen); 450 return (error); 451 } 452 453 nfs_versmin = STRUCT_FGET(uap, versmin); 454 nfs_versmax = STRUCT_FGET(uap, versmax); 455 456 /* Double check the vers min/max ranges */ 457 if ((nfs_versmin > nfs_versmax) || 458 (nfs_versmin < NFS_VERSMIN) || 459 (nfs_versmax > NFS_VERSMAX)) { 460 nfs_versmin = NFS_VERSMIN_DEFAULT; 461 nfs_versmax = NFS_VERSMAX_DEFAULT; 462 } 463 464 if (error = 465 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 466 releasef(STRUCT_FGET(uap, fd)); 467 kmem_free(addrmask.buf, addrmask.maxlen); 468 return (error); 469 } 470 471 /* Initialize nfsv4 server */ 472 if (nfs_versmax == (rpcvers_t)NFS_V4) 473 rfs4_server_start(STRUCT_FGET(uap, delegation)); 474 475 /* Create a transport handle. */ 476 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 477 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 478 479 if (error) 480 kmem_free(addrmask.buf, addrmask.maxlen); 481 482 releasef(STRUCT_FGET(uap, fd)); 483 484 /* HA-NFSv4: save the cluster nodeid */ 485 if (cluster_bootflags & CLUSTER_BOOTED) 486 lm_global_nlmid = clconf_get_nodeid(); 487 488 return (error); 489 } 490 491 static void 492 rfs4_server_start(int nfs4_srv_delegation) 493 { 494 /* 495 * Determine if the server has previously been "started" and 496 * if not, do the per instance initialization 497 */ 498 mutex_enter(&nfs_server_upordown_lock); 499 500 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 501 /* Do we need to stop and wait on the previous server? */ 502 while (nfs_server_upordown == NFS_SERVER_STOPPING || 503 nfs_server_upordown == NFS_SERVER_OFFLINE) 504 cv_wait(&nfs_server_upordown_cv, 505 &nfs_server_upordown_lock); 506 507 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 508 (void) svc_pool_control(NFS_SVCPOOL_ID, 509 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 510 (void) svc_pool_control(NFS_SVCPOOL_ID, 511 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 512 513 /* is this an nfsd warm start? */ 514 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 515 cmn_err(CE_NOTE, "nfs_server: " 516 "server was previously quiesced; " 517 "existing NFSv4 state will be re-used"); 518 519 /* 520 * HA-NFSv4: this is also the signal 521 * that a Resource Group failover has 522 * occurred. 523 */ 524 if (cluster_bootflags & CLUSTER_BOOTED) 525 hanfsv4_failover(); 526 } else { 527 /* cold start */ 528 rfs4_state_init(); 529 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 530 nfs4_drc_hash); 531 } 532 533 /* 534 * Check to see if delegation is to be 535 * enabled at the server 536 */ 537 if (nfs4_srv_delegation != FALSE) 538 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 539 540 nfs_server_upordown = NFS_SERVER_RUNNING; 541 } 542 cv_signal(&nfs_server_upordown_cv); 543 } 544 mutex_exit(&nfs_server_upordown_lock); 545 } 546 547 /* 548 * If RDMA device available, 549 * start RDMA listener. 550 */ 551 int 552 rdma_start(struct rdma_svc_args *rsa) 553 { 554 int error; 555 rdma_xprt_group_t started_rdma_xprts; 556 557 /* Double check the vers min/max ranges */ 558 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 559 (rsa->nfs_versmin < NFS_VERSMIN) || 560 (rsa->nfs_versmax > NFS_VERSMAX)) { 561 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 562 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 563 } 564 nfs_versmin = rsa->nfs_versmin; 565 nfs_versmax = rsa->nfs_versmax; 566 567 /* Set the versions in the callout table */ 568 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 569 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 570 /* For the NFS_ACL program, check the max version */ 571 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 572 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 573 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 574 else 575 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 576 577 /* Initialize nfsv4 server */ 578 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 579 rfs4_server_start(rsa->delegation); 580 581 started_rdma_xprts.rtg_count = 0; 582 started_rdma_xprts.rtg_listhead = NULL; 583 started_rdma_xprts.rtg_poolid = rsa->poolid; 584 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 585 &started_rdma_xprts); 586 587 if (error == 0) { 588 mutex_enter(&rdma_wait_mutex); 589 if (!cv_wait_sig(&rdma_wait_cv, &rdma_wait_mutex)) { 590 rdma_stop(started_rdma_xprts); 591 } 592 mutex_exit(&rdma_wait_mutex); 593 } 594 595 return (error); 596 } 597 598 /* ARGSUSED */ 599 void 600 rpc_null(caddr_t *argp, caddr_t *resp) 601 { 602 } 603 604 /* ARGSUSED */ 605 void 606 rpc_null_v3(caddr_t *argp, caddr_t *resp, struct exportinfo *exi, 607 struct svc_req *req, cred_t *cr) 608 { 609 DTRACE_NFSV3_3(op__null__start, struct svc_req *, req, 610 cred_t *, cr, vnode_t *, NULL); 611 DTRACE_NFSV3_3(op__null__done, struct svc_req *, req, 612 cred_t *, cr, vnode_t *, NULL); 613 } 614 615 /* ARGSUSED */ 616 static void 617 rfs_error(caddr_t *argp, caddr_t *resp) 618 { 619 /* return (EOPNOTSUPP); */ 620 } 621 622 static void 623 nullfree(void) 624 { 625 } 626 627 static char *rfscallnames_v2[] = { 628 "RFS2_NULL", 629 "RFS2_GETATTR", 630 "RFS2_SETATTR", 631 "RFS2_ROOT", 632 "RFS2_LOOKUP", 633 "RFS2_READLINK", 634 "RFS2_READ", 635 "RFS2_WRITECACHE", 636 "RFS2_WRITE", 637 "RFS2_CREATE", 638 "RFS2_REMOVE", 639 "RFS2_RENAME", 640 "RFS2_LINK", 641 "RFS2_SYMLINK", 642 "RFS2_MKDIR", 643 "RFS2_RMDIR", 644 "RFS2_READDIR", 645 "RFS2_STATFS" 646 }; 647 648 static struct rpcdisp rfsdisptab_v2[] = { 649 /* 650 * NFS VERSION 2 651 */ 652 653 /* RFS_NULL = 0 */ 654 {rpc_null, 655 xdr_void, NULL_xdrproc_t, 0, 656 xdr_void, NULL_xdrproc_t, 0, 657 nullfree, RPC_IDEMPOTENT, 658 0}, 659 660 /* RFS_GETATTR = 1 */ 661 {rfs_getattr, 662 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 663 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 664 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 665 rfs_getattr_getfh}, 666 667 /* RFS_SETATTR = 2 */ 668 {rfs_setattr, 669 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 670 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 671 nullfree, RPC_MAPRESP, 672 rfs_setattr_getfh}, 673 674 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 675 {rfs_error, 676 xdr_void, NULL_xdrproc_t, 0, 677 xdr_void, NULL_xdrproc_t, 0, 678 nullfree, RPC_IDEMPOTENT, 679 0}, 680 681 /* RFS_LOOKUP = 4 */ 682 {rfs_lookup, 683 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 684 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 685 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 686 rfs_lookup_getfh}, 687 688 /* RFS_READLINK = 5 */ 689 {rfs_readlink, 690 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 691 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 692 rfs_rlfree, RPC_IDEMPOTENT, 693 rfs_readlink_getfh}, 694 695 /* RFS_READ = 6 */ 696 {rfs_read, 697 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 698 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 699 rfs_rdfree, RPC_IDEMPOTENT, 700 rfs_read_getfh}, 701 702 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 703 {rfs_error, 704 xdr_void, NULL_xdrproc_t, 0, 705 xdr_void, NULL_xdrproc_t, 0, 706 nullfree, RPC_IDEMPOTENT, 707 0}, 708 709 /* RFS_WRITE = 8 */ 710 {rfs_write, 711 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 712 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 713 nullfree, RPC_MAPRESP, 714 rfs_write_getfh}, 715 716 /* RFS_CREATE = 9 */ 717 {rfs_create, 718 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 719 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 720 nullfree, RPC_MAPRESP, 721 rfs_create_getfh}, 722 723 /* RFS_REMOVE = 10 */ 724 {rfs_remove, 725 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 726 #ifdef _LITTLE_ENDIAN 727 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 728 #else 729 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 730 #endif 731 nullfree, RPC_MAPRESP, 732 rfs_remove_getfh}, 733 734 /* RFS_RENAME = 11 */ 735 {rfs_rename, 736 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 737 #ifdef _LITTLE_ENDIAN 738 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 739 #else 740 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 741 #endif 742 nullfree, RPC_MAPRESP, 743 rfs_rename_getfh}, 744 745 /* RFS_LINK = 12 */ 746 {rfs_link, 747 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 748 #ifdef _LITTLE_ENDIAN 749 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 750 #else 751 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 752 #endif 753 nullfree, RPC_MAPRESP, 754 rfs_link_getfh}, 755 756 /* RFS_SYMLINK = 13 */ 757 {rfs_symlink, 758 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 759 #ifdef _LITTLE_ENDIAN 760 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 761 #else 762 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 763 #endif 764 nullfree, RPC_MAPRESP, 765 rfs_symlink_getfh}, 766 767 /* RFS_MKDIR = 14 */ 768 {rfs_mkdir, 769 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 770 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 771 nullfree, RPC_MAPRESP, 772 rfs_mkdir_getfh}, 773 774 /* RFS_RMDIR = 15 */ 775 {rfs_rmdir, 776 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 777 #ifdef _LITTLE_ENDIAN 778 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 779 #else 780 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 781 #endif 782 nullfree, RPC_MAPRESP, 783 rfs_rmdir_getfh}, 784 785 /* RFS_READDIR = 16 */ 786 {rfs_readdir, 787 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 788 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 789 rfs_rddirfree, RPC_IDEMPOTENT, 790 rfs_readdir_getfh}, 791 792 /* RFS_STATFS = 17 */ 793 {rfs_statfs, 794 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 795 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 796 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 797 rfs_statfs_getfh}, 798 }; 799 800 static char *rfscallnames_v3[] = { 801 "RFS3_NULL", 802 "RFS3_GETATTR", 803 "RFS3_SETATTR", 804 "RFS3_LOOKUP", 805 "RFS3_ACCESS", 806 "RFS3_READLINK", 807 "RFS3_READ", 808 "RFS3_WRITE", 809 "RFS3_CREATE", 810 "RFS3_MKDIR", 811 "RFS3_SYMLINK", 812 "RFS3_MKNOD", 813 "RFS3_REMOVE", 814 "RFS3_RMDIR", 815 "RFS3_RENAME", 816 "RFS3_LINK", 817 "RFS3_READDIR", 818 "RFS3_READDIRPLUS", 819 "RFS3_FSSTAT", 820 "RFS3_FSINFO", 821 "RFS3_PATHCONF", 822 "RFS3_COMMIT" 823 }; 824 825 static struct rpcdisp rfsdisptab_v3[] = { 826 /* 827 * NFS VERSION 3 828 */ 829 830 /* RFS_NULL = 0 */ 831 {rpc_null_v3, 832 xdr_void, NULL_xdrproc_t, 0, 833 xdr_void, NULL_xdrproc_t, 0, 834 nullfree, RPC_IDEMPOTENT, 835 0}, 836 837 /* RFS3_GETATTR = 1 */ 838 {rfs3_getattr, 839 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 840 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 841 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 842 rfs3_getattr_getfh}, 843 844 /* RFS3_SETATTR = 2 */ 845 {rfs3_setattr, 846 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 847 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 848 nullfree, 0, 849 rfs3_setattr_getfh}, 850 851 /* RFS3_LOOKUP = 3 */ 852 {rfs3_lookup, 853 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 854 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 855 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 856 rfs3_lookup_getfh}, 857 858 /* RFS3_ACCESS = 4 */ 859 {rfs3_access, 860 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 861 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 862 nullfree, RPC_IDEMPOTENT, 863 rfs3_access_getfh}, 864 865 /* RFS3_READLINK = 5 */ 866 {rfs3_readlink, 867 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 868 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 869 rfs3_readlink_free, RPC_IDEMPOTENT, 870 rfs3_readlink_getfh}, 871 872 /* RFS3_READ = 6 */ 873 {rfs3_read, 874 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 875 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 876 rfs3_read_free, RPC_IDEMPOTENT, 877 rfs3_read_getfh}, 878 879 /* RFS3_WRITE = 7 */ 880 {rfs3_write, 881 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 882 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 883 nullfree, 0, 884 rfs3_write_getfh}, 885 886 /* RFS3_CREATE = 8 */ 887 {rfs3_create, 888 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 889 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 890 nullfree, 0, 891 rfs3_create_getfh}, 892 893 /* RFS3_MKDIR = 9 */ 894 {rfs3_mkdir, 895 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 896 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 897 nullfree, 0, 898 rfs3_mkdir_getfh}, 899 900 /* RFS3_SYMLINK = 10 */ 901 {rfs3_symlink, 902 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 903 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 904 nullfree, 0, 905 rfs3_symlink_getfh}, 906 907 /* RFS3_MKNOD = 11 */ 908 {rfs3_mknod, 909 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 910 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 911 nullfree, 0, 912 rfs3_mknod_getfh}, 913 914 /* RFS3_REMOVE = 12 */ 915 {rfs3_remove, 916 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 917 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 918 nullfree, 0, 919 rfs3_remove_getfh}, 920 921 /* RFS3_RMDIR = 13 */ 922 {rfs3_rmdir, 923 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 924 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 925 nullfree, 0, 926 rfs3_rmdir_getfh}, 927 928 /* RFS3_RENAME = 14 */ 929 {rfs3_rename, 930 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 931 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 932 nullfree, 0, 933 rfs3_rename_getfh}, 934 935 /* RFS3_LINK = 15 */ 936 {rfs3_link, 937 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 938 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 939 nullfree, 0, 940 rfs3_link_getfh}, 941 942 /* RFS3_READDIR = 16 */ 943 {rfs3_readdir, 944 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 945 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 946 rfs3_readdir_free, RPC_IDEMPOTENT, 947 rfs3_readdir_getfh}, 948 949 /* RFS3_READDIRPLUS = 17 */ 950 {rfs3_readdirplus, 951 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 952 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 953 rfs3_readdirplus_free, RPC_AVOIDWORK, 954 rfs3_readdirplus_getfh}, 955 956 /* RFS3_FSSTAT = 18 */ 957 {rfs3_fsstat, 958 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 959 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 960 nullfree, RPC_IDEMPOTENT, 961 rfs3_fsstat_getfh}, 962 963 /* RFS3_FSINFO = 19 */ 964 {rfs3_fsinfo, 965 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 966 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 967 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 968 rfs3_fsinfo_getfh}, 969 970 /* RFS3_PATHCONF = 20 */ 971 {rfs3_pathconf, 972 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 973 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 974 nullfree, RPC_IDEMPOTENT, 975 rfs3_pathconf_getfh}, 976 977 /* RFS3_COMMIT = 21 */ 978 {rfs3_commit, 979 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 980 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 981 nullfree, RPC_IDEMPOTENT, 982 rfs3_commit_getfh}, 983 }; 984 985 static char *rfscallnames_v4[] = { 986 "RFS4_NULL", 987 "RFS4_COMPOUND", 988 "RFS4_NULL", 989 "RFS4_NULL", 990 "RFS4_NULL", 991 "RFS4_NULL", 992 "RFS4_NULL", 993 "RFS4_NULL", 994 "RFS4_CREATE" 995 }; 996 997 static struct rpcdisp rfsdisptab_v4[] = { 998 /* 999 * NFS VERSION 4 1000 */ 1001 1002 /* RFS_NULL = 0 */ 1003 {rpc_null, 1004 xdr_void, NULL_xdrproc_t, 0, 1005 xdr_void, NULL_xdrproc_t, 0, 1006 nullfree, RPC_IDEMPOTENT, 0}, 1007 1008 /* RFS4_compound = 1 */ 1009 {rfs4_compound, 1010 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1011 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1012 rfs4_compound_free, 0, 0}, 1013 }; 1014 1015 union rfs_args { 1016 /* 1017 * NFS VERSION 2 1018 */ 1019 1020 /* RFS_NULL = 0 */ 1021 1022 /* RFS_GETATTR = 1 */ 1023 fhandle_t nfs2_getattr_args; 1024 1025 /* RFS_SETATTR = 2 */ 1026 struct nfssaargs nfs2_setattr_args; 1027 1028 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1029 1030 /* RFS_LOOKUP = 4 */ 1031 struct nfsdiropargs nfs2_lookup_args; 1032 1033 /* RFS_READLINK = 5 */ 1034 fhandle_t nfs2_readlink_args; 1035 1036 /* RFS_READ = 6 */ 1037 struct nfsreadargs nfs2_read_args; 1038 1039 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1040 1041 /* RFS_WRITE = 8 */ 1042 struct nfswriteargs nfs2_write_args; 1043 1044 /* RFS_CREATE = 9 */ 1045 struct nfscreatargs nfs2_create_args; 1046 1047 /* RFS_REMOVE = 10 */ 1048 struct nfsdiropargs nfs2_remove_args; 1049 1050 /* RFS_RENAME = 11 */ 1051 struct nfsrnmargs nfs2_rename_args; 1052 1053 /* RFS_LINK = 12 */ 1054 struct nfslinkargs nfs2_link_args; 1055 1056 /* RFS_SYMLINK = 13 */ 1057 struct nfsslargs nfs2_symlink_args; 1058 1059 /* RFS_MKDIR = 14 */ 1060 struct nfscreatargs nfs2_mkdir_args; 1061 1062 /* RFS_RMDIR = 15 */ 1063 struct nfsdiropargs nfs2_rmdir_args; 1064 1065 /* RFS_READDIR = 16 */ 1066 struct nfsrddirargs nfs2_readdir_args; 1067 1068 /* RFS_STATFS = 17 */ 1069 fhandle_t nfs2_statfs_args; 1070 1071 /* 1072 * NFS VERSION 3 1073 */ 1074 1075 /* RFS_NULL = 0 */ 1076 1077 /* RFS3_GETATTR = 1 */ 1078 GETATTR3args nfs3_getattr_args; 1079 1080 /* RFS3_SETATTR = 2 */ 1081 SETATTR3args nfs3_setattr_args; 1082 1083 /* RFS3_LOOKUP = 3 */ 1084 LOOKUP3args nfs3_lookup_args; 1085 1086 /* RFS3_ACCESS = 4 */ 1087 ACCESS3args nfs3_access_args; 1088 1089 /* RFS3_READLINK = 5 */ 1090 READLINK3args nfs3_readlink_args; 1091 1092 /* RFS3_READ = 6 */ 1093 READ3args nfs3_read_args; 1094 1095 /* RFS3_WRITE = 7 */ 1096 WRITE3args nfs3_write_args; 1097 1098 /* RFS3_CREATE = 8 */ 1099 CREATE3args nfs3_create_args; 1100 1101 /* RFS3_MKDIR = 9 */ 1102 MKDIR3args nfs3_mkdir_args; 1103 1104 /* RFS3_SYMLINK = 10 */ 1105 SYMLINK3args nfs3_symlink_args; 1106 1107 /* RFS3_MKNOD = 11 */ 1108 MKNOD3args nfs3_mknod_args; 1109 1110 /* RFS3_REMOVE = 12 */ 1111 REMOVE3args nfs3_remove_args; 1112 1113 /* RFS3_RMDIR = 13 */ 1114 RMDIR3args nfs3_rmdir_args; 1115 1116 /* RFS3_RENAME = 14 */ 1117 RENAME3args nfs3_rename_args; 1118 1119 /* RFS3_LINK = 15 */ 1120 LINK3args nfs3_link_args; 1121 1122 /* RFS3_READDIR = 16 */ 1123 READDIR3args nfs3_readdir_args; 1124 1125 /* RFS3_READDIRPLUS = 17 */ 1126 READDIRPLUS3args nfs3_readdirplus_args; 1127 1128 /* RFS3_FSSTAT = 18 */ 1129 FSSTAT3args nfs3_fsstat_args; 1130 1131 /* RFS3_FSINFO = 19 */ 1132 FSINFO3args nfs3_fsinfo_args; 1133 1134 /* RFS3_PATHCONF = 20 */ 1135 PATHCONF3args nfs3_pathconf_args; 1136 1137 /* RFS3_COMMIT = 21 */ 1138 COMMIT3args nfs3_commit_args; 1139 1140 /* 1141 * NFS VERSION 4 1142 */ 1143 1144 /* RFS_NULL = 0 */ 1145 1146 /* COMPUND = 1 */ 1147 COMPOUND4args nfs4_compound_args; 1148 }; 1149 1150 union rfs_res { 1151 /* 1152 * NFS VERSION 2 1153 */ 1154 1155 /* RFS_NULL = 0 */ 1156 1157 /* RFS_GETATTR = 1 */ 1158 struct nfsattrstat nfs2_getattr_res; 1159 1160 /* RFS_SETATTR = 2 */ 1161 struct nfsattrstat nfs2_setattr_res; 1162 1163 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1164 1165 /* RFS_LOOKUP = 4 */ 1166 struct nfsdiropres nfs2_lookup_res; 1167 1168 /* RFS_READLINK = 5 */ 1169 struct nfsrdlnres nfs2_readlink_res; 1170 1171 /* RFS_READ = 6 */ 1172 struct nfsrdresult nfs2_read_res; 1173 1174 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1175 1176 /* RFS_WRITE = 8 */ 1177 struct nfsattrstat nfs2_write_res; 1178 1179 /* RFS_CREATE = 9 */ 1180 struct nfsdiropres nfs2_create_res; 1181 1182 /* RFS_REMOVE = 10 */ 1183 enum nfsstat nfs2_remove_res; 1184 1185 /* RFS_RENAME = 11 */ 1186 enum nfsstat nfs2_rename_res; 1187 1188 /* RFS_LINK = 12 */ 1189 enum nfsstat nfs2_link_res; 1190 1191 /* RFS_SYMLINK = 13 */ 1192 enum nfsstat nfs2_symlink_res; 1193 1194 /* RFS_MKDIR = 14 */ 1195 struct nfsdiropres nfs2_mkdir_res; 1196 1197 /* RFS_RMDIR = 15 */ 1198 enum nfsstat nfs2_rmdir_res; 1199 1200 /* RFS_READDIR = 16 */ 1201 struct nfsrddirres nfs2_readdir_res; 1202 1203 /* RFS_STATFS = 17 */ 1204 struct nfsstatfs nfs2_statfs_res; 1205 1206 /* 1207 * NFS VERSION 3 1208 */ 1209 1210 /* RFS_NULL = 0 */ 1211 1212 /* RFS3_GETATTR = 1 */ 1213 GETATTR3res nfs3_getattr_res; 1214 1215 /* RFS3_SETATTR = 2 */ 1216 SETATTR3res nfs3_setattr_res; 1217 1218 /* RFS3_LOOKUP = 3 */ 1219 LOOKUP3res nfs3_lookup_res; 1220 1221 /* RFS3_ACCESS = 4 */ 1222 ACCESS3res nfs3_access_res; 1223 1224 /* RFS3_READLINK = 5 */ 1225 READLINK3res nfs3_readlink_res; 1226 1227 /* RFS3_READ = 6 */ 1228 READ3res nfs3_read_res; 1229 1230 /* RFS3_WRITE = 7 */ 1231 WRITE3res nfs3_write_res; 1232 1233 /* RFS3_CREATE = 8 */ 1234 CREATE3res nfs3_create_res; 1235 1236 /* RFS3_MKDIR = 9 */ 1237 MKDIR3res nfs3_mkdir_res; 1238 1239 /* RFS3_SYMLINK = 10 */ 1240 SYMLINK3res nfs3_symlink_res; 1241 1242 /* RFS3_MKNOD = 11 */ 1243 MKNOD3res nfs3_mknod_res; 1244 1245 /* RFS3_REMOVE = 12 */ 1246 REMOVE3res nfs3_remove_res; 1247 1248 /* RFS3_RMDIR = 13 */ 1249 RMDIR3res nfs3_rmdir_res; 1250 1251 /* RFS3_RENAME = 14 */ 1252 RENAME3res nfs3_rename_res; 1253 1254 /* RFS3_LINK = 15 */ 1255 LINK3res nfs3_link_res; 1256 1257 /* RFS3_READDIR = 16 */ 1258 READDIR3res nfs3_readdir_res; 1259 1260 /* RFS3_READDIRPLUS = 17 */ 1261 READDIRPLUS3res nfs3_readdirplus_res; 1262 1263 /* RFS3_FSSTAT = 18 */ 1264 FSSTAT3res nfs3_fsstat_res; 1265 1266 /* RFS3_FSINFO = 19 */ 1267 FSINFO3res nfs3_fsinfo_res; 1268 1269 /* RFS3_PATHCONF = 20 */ 1270 PATHCONF3res nfs3_pathconf_res; 1271 1272 /* RFS3_COMMIT = 21 */ 1273 COMMIT3res nfs3_commit_res; 1274 1275 /* 1276 * NFS VERSION 4 1277 */ 1278 1279 /* RFS_NULL = 0 */ 1280 1281 /* RFS4_COMPOUND = 1 */ 1282 COMPOUND4res nfs4_compound_res; 1283 1284 }; 1285 1286 static struct rpc_disptable rfs_disptable[] = { 1287 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1288 rfscallnames_v2, 1289 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1290 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1291 rfscallnames_v3, 1292 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1293 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1294 rfscallnames_v4, 1295 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1296 }; 1297 1298 /* 1299 * If nfs_portmon is set, then clients are required to use privileged 1300 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1301 * 1302 * N.B.: this attempt to carry forward the already ill-conceived notion 1303 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1304 * is it transport-dependent, it's laughably easy to spoof. If you're 1305 * really interested in security, you must start with secure RPC instead. 1306 */ 1307 static int nfs_portmon = 0; 1308 1309 #ifdef DEBUG 1310 static int cred_hits = 0; 1311 static int cred_misses = 0; 1312 #endif 1313 1314 1315 #ifdef DEBUG 1316 /* 1317 * Debug code to allow disabling of rfs_dispatch() use of 1318 * fastxdrargs() and fastxdrres() calls for testing purposes. 1319 */ 1320 static int rfs_no_fast_xdrargs = 0; 1321 static int rfs_no_fast_xdrres = 0; 1322 #endif 1323 1324 union acl_args { 1325 /* 1326 * ACL VERSION 2 1327 */ 1328 1329 /* ACL2_NULL = 0 */ 1330 1331 /* ACL2_GETACL = 1 */ 1332 GETACL2args acl2_getacl_args; 1333 1334 /* ACL2_SETACL = 2 */ 1335 SETACL2args acl2_setacl_args; 1336 1337 /* ACL2_GETATTR = 3 */ 1338 GETATTR2args acl2_getattr_args; 1339 1340 /* ACL2_ACCESS = 4 */ 1341 ACCESS2args acl2_access_args; 1342 1343 /* ACL2_GETXATTRDIR = 5 */ 1344 GETXATTRDIR2args acl2_getxattrdir_args; 1345 1346 /* 1347 * ACL VERSION 3 1348 */ 1349 1350 /* ACL3_NULL = 0 */ 1351 1352 /* ACL3_GETACL = 1 */ 1353 GETACL3args acl3_getacl_args; 1354 1355 /* ACL3_SETACL = 2 */ 1356 SETACL3args acl3_setacl; 1357 1358 /* ACL3_GETXATTRDIR = 3 */ 1359 GETXATTRDIR3args acl3_getxattrdir_args; 1360 1361 }; 1362 1363 union acl_res { 1364 /* 1365 * ACL VERSION 2 1366 */ 1367 1368 /* ACL2_NULL = 0 */ 1369 1370 /* ACL2_GETACL = 1 */ 1371 GETACL2res acl2_getacl_res; 1372 1373 /* ACL2_SETACL = 2 */ 1374 SETACL2res acl2_setacl_res; 1375 1376 /* ACL2_GETATTR = 3 */ 1377 GETATTR2res acl2_getattr_res; 1378 1379 /* ACL2_ACCESS = 4 */ 1380 ACCESS2res acl2_access_res; 1381 1382 /* ACL2_GETXATTRDIR = 5 */ 1383 GETXATTRDIR2args acl2_getxattrdir_res; 1384 1385 /* 1386 * ACL VERSION 3 1387 */ 1388 1389 /* ACL3_NULL = 0 */ 1390 1391 /* ACL3_GETACL = 1 */ 1392 GETACL3res acl3_getacl_res; 1393 1394 /* ACL3_SETACL = 2 */ 1395 SETACL3res acl3_setacl_res; 1396 1397 /* ACL3_GETXATTRDIR = 3 */ 1398 GETXATTRDIR3res acl3_getxattrdir_res; 1399 1400 }; 1401 1402 static bool_t 1403 auth_tooweak(struct svc_req *req, char *res) 1404 { 1405 1406 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1407 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1408 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1409 return (TRUE); 1410 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1411 LOOKUP3res *resp = (LOOKUP3res *)res; 1412 if (resp->status == WNFSERR_CLNT_FLAVOR) 1413 return (TRUE); 1414 } 1415 return (FALSE); 1416 } 1417 1418 1419 static void 1420 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1421 rpcvers_t max_vers, char *pgmname, 1422 struct rpc_disptable *disptable) 1423 { 1424 int which; 1425 rpcvers_t vers; 1426 char *args; 1427 union { 1428 union rfs_args ra; 1429 union acl_args aa; 1430 } args_buf; 1431 char *res; 1432 union { 1433 union rfs_res rr; 1434 union acl_res ar; 1435 } res_buf; 1436 struct rpcdisp *disp = NULL; 1437 int dis_flags = 0; 1438 cred_t *cr; 1439 int error = 0; 1440 int anon_ok; 1441 struct exportinfo *exi = NULL; 1442 unsigned int nfslog_rec_id; 1443 int dupstat; 1444 struct dupreq *dr; 1445 int authres; 1446 bool_t publicfh_ok = FALSE; 1447 enum_t auth_flavor; 1448 bool_t dupcached = FALSE; 1449 struct netbuf nb; 1450 bool_t logging_enabled = FALSE; 1451 struct exportinfo *nfslog_exi = NULL; 1452 char **procnames; 1453 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1454 1455 vers = req->rq_vers; 1456 1457 if (vers < min_vers || vers > max_vers) { 1458 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1459 error++; 1460 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1461 goto done; 1462 } 1463 vers -= min_vers; 1464 1465 which = req->rq_proc; 1466 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1467 svcerr_noproc(req->rq_xprt); 1468 error++; 1469 goto done; 1470 } 1471 1472 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1473 1474 disp = &disptable[(int)vers].dis_table[which]; 1475 procnames = disptable[(int)vers].dis_procnames; 1476 1477 auth_flavor = req->rq_cred.oa_flavor; 1478 1479 /* 1480 * Deserialize into the args struct. 1481 */ 1482 args = (char *)&args_buf; 1483 1484 #ifdef DEBUG 1485 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1486 disp->dis_fastxdrargs == NULL_xdrproc_t || 1487 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1488 #else 1489 if ((auth_flavor == RPCSEC_GSS) || 1490 disp->dis_fastxdrargs == NULL_xdrproc_t || 1491 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1492 #endif 1493 { 1494 bzero(args, disp->dis_argsz); 1495 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1496 error++; 1497 /* 1498 * Check if we are outside our capabilities. 1499 */ 1500 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1501 goto done; 1502 1503 svcerr_decode(xprt); 1504 cmn_err(CE_NOTE, 1505 "Failed to decode arguments for %s version %u " 1506 "procedure %s client %s%s", 1507 pgmname, vers + min_vers, procnames[which], 1508 client_name(req), client_addr(req, cbuf)); 1509 goto done; 1510 } 1511 } 1512 1513 /* 1514 * If Version 4 use that specific dispatch function. 1515 */ 1516 if (req->rq_vers == 4) { 1517 error += rfs4_dispatch(disp, req, xprt, args); 1518 goto done; 1519 } 1520 1521 dis_flags = disp->dis_flags; 1522 1523 /* 1524 * Find export information and check authentication, 1525 * setting the credential if everything is ok. 1526 */ 1527 if (disp->dis_getfh != NULL) { 1528 void *fh; 1529 fsid_t *fsid; 1530 fid_t *fid, *xfid; 1531 fhandle_t *fh2; 1532 nfs_fh3 *fh3; 1533 1534 fh = (*disp->dis_getfh)(args); 1535 switch (req->rq_vers) { 1536 case NFS_VERSION: 1537 fh2 = (fhandle_t *)fh; 1538 fsid = &fh2->fh_fsid; 1539 fid = (fid_t *)&fh2->fh_len; 1540 xfid = (fid_t *)&fh2->fh_xlen; 1541 break; 1542 case NFS_V3: 1543 fh3 = (nfs_fh3 *)fh; 1544 fsid = &fh3->fh3_fsid; 1545 fid = FH3TOFIDP(fh3); 1546 xfid = FH3TOXFIDP(fh3); 1547 break; 1548 } 1549 1550 /* 1551 * Fix for bug 1038302 - corbin 1552 * There is a problem here if anonymous access is 1553 * disallowed. If the current request is part of the 1554 * client's mount process for the requested filesystem, 1555 * then it will carry root (uid 0) credentials on it, and 1556 * will be denied by checkauth if that client does not 1557 * have explicit root=0 permission. This will cause the 1558 * client's mount operation to fail. As a work-around, 1559 * we check here to see if the request is a getattr or 1560 * statfs operation on the exported vnode itself, and 1561 * pass a flag to checkauth with the result of this test. 1562 * 1563 * The filehandle refers to the mountpoint itself if 1564 * the fh_data and fh_xdata portions of the filehandle 1565 * are equal. 1566 * 1567 * Added anon_ok argument to checkauth(). 1568 */ 1569 1570 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1571 anon_ok = 1; 1572 else 1573 anon_ok = 0; 1574 1575 cr = xprt->xp_cred; 1576 ASSERT(cr != NULL); 1577 #ifdef DEBUG 1578 if (crgetref(cr) != 1) { 1579 crfree(cr); 1580 cr = crget(); 1581 xprt->xp_cred = cr; 1582 cred_misses++; 1583 } else 1584 cred_hits++; 1585 #else 1586 if (crgetref(cr) != 1) { 1587 crfree(cr); 1588 cr = crget(); 1589 xprt->xp_cred = cr; 1590 } 1591 #endif 1592 1593 exi = checkexport(fsid, xfid); 1594 1595 if (exi != NULL) { 1596 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1597 1598 /* 1599 * Don't allow non-V4 clients access 1600 * to pseudo exports 1601 */ 1602 if (PSEUDO(exi)) { 1603 svcerr_weakauth(xprt); 1604 error++; 1605 goto done; 1606 } 1607 1608 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1609 /* 1610 * authres > 0: authentication OK - proceed 1611 * authres == 0: authentication weak - return error 1612 * authres < 0: authentication timeout - drop 1613 */ 1614 if (authres <= 0) { 1615 if (authres == 0) { 1616 svcerr_weakauth(xprt); 1617 error++; 1618 } 1619 goto done; 1620 } 1621 } 1622 } else 1623 cr = NULL; 1624 1625 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1626 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1627 if (res == NULL) 1628 res = (char *)&res_buf; 1629 } else 1630 res = (char *)&res_buf; 1631 1632 if (!(dis_flags & RPC_IDEMPOTENT)) { 1633 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1634 &dupcached); 1635 1636 switch (dupstat) { 1637 case DUP_ERROR: 1638 svcerr_systemerr(xprt); 1639 error++; 1640 goto done; 1641 /* NOTREACHED */ 1642 case DUP_INPROGRESS: 1643 if (res != (char *)&res_buf) 1644 SVC_FREERES(xprt); 1645 error++; 1646 goto done; 1647 /* NOTREACHED */ 1648 case DUP_NEW: 1649 case DUP_DROP: 1650 curthread->t_flag |= T_DONTPEND; 1651 1652 (*disp->dis_proc)(args, res, exi, req, cr); 1653 1654 curthread->t_flag &= ~T_DONTPEND; 1655 if (curthread->t_flag & T_WOULDBLOCK) { 1656 curthread->t_flag &= ~T_WOULDBLOCK; 1657 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1658 disp->dis_ressz, DUP_DROP); 1659 if (res != (char *)&res_buf) 1660 SVC_FREERES(xprt); 1661 error++; 1662 goto done; 1663 } 1664 if (dis_flags & RPC_AVOIDWORK) { 1665 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1666 disp->dis_ressz, DUP_DROP); 1667 } else { 1668 SVC_DUPDONE_EXT(xprt, dr, res, 1669 disp->dis_resfree == nullfree ? NULL : 1670 disp->dis_resfree, 1671 disp->dis_ressz, DUP_DONE); 1672 dupcached = TRUE; 1673 } 1674 break; 1675 case DUP_DONE: 1676 break; 1677 } 1678 1679 } else { 1680 curthread->t_flag |= T_DONTPEND; 1681 1682 (*disp->dis_proc)(args, res, exi, req, cr); 1683 1684 curthread->t_flag &= ~T_DONTPEND; 1685 if (curthread->t_flag & T_WOULDBLOCK) { 1686 curthread->t_flag &= ~T_WOULDBLOCK; 1687 if (res != (char *)&res_buf) 1688 SVC_FREERES(xprt); 1689 error++; 1690 goto done; 1691 } 1692 } 1693 1694 if (auth_tooweak(req, res)) { 1695 svcerr_weakauth(xprt); 1696 error++; 1697 goto done; 1698 } 1699 1700 /* 1701 * Check to see if logging has been enabled on the server. 1702 * If so, then obtain the export info struct to be used for 1703 * the later writing of the log record. This is done for 1704 * the case that a lookup is done across a non-logged public 1705 * file system. 1706 */ 1707 if (nfslog_buffer_list != NULL) { 1708 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1709 /* 1710 * Is logging enabled? 1711 */ 1712 logging_enabled = (nfslog_exi != NULL); 1713 1714 /* 1715 * Copy the netbuf for logging purposes, before it is 1716 * freed by svc_sendreply(). 1717 */ 1718 if (logging_enabled) { 1719 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1720 /* 1721 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1722 * res gets copied directly into the mbuf and 1723 * may be freed soon after the sendreply. So we 1724 * must copy it here to a safe place... 1725 */ 1726 if (res != (char *)&res_buf) { 1727 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1728 } 1729 } 1730 } 1731 1732 /* 1733 * Serialize and send results struct 1734 */ 1735 #ifdef DEBUG 1736 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1737 #else 1738 if (res != (char *)&res_buf) 1739 #endif 1740 { 1741 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1742 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1743 error++; 1744 } 1745 } else { 1746 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1747 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1748 error++; 1749 } 1750 } 1751 1752 /* 1753 * Log if needed 1754 */ 1755 if (logging_enabled) { 1756 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1757 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1758 exi_rele(nfslog_exi); 1759 kmem_free((&nb)->buf, (&nb)->len); 1760 } 1761 1762 /* 1763 * Free results struct. With the addition of NFS V4 we can 1764 * have non-idempotent procedures with functions. 1765 */ 1766 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1767 (*disp->dis_resfree)(res); 1768 } 1769 1770 done: 1771 /* 1772 * Free arguments struct 1773 */ 1774 if (disp) { 1775 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1776 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1777 error++; 1778 } 1779 } else { 1780 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1781 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1782 error++; 1783 } 1784 } 1785 1786 if (exi != NULL) 1787 exi_rele(exi); 1788 1789 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1790 1791 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1792 } 1793 1794 static void 1795 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1796 { 1797 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1798 "NFS", rfs_disptable); 1799 } 1800 1801 static char *aclcallnames_v2[] = { 1802 "ACL2_NULL", 1803 "ACL2_GETACL", 1804 "ACL2_SETACL", 1805 "ACL2_GETATTR", 1806 "ACL2_ACCESS", 1807 "ACL2_GETXATTRDIR" 1808 }; 1809 1810 static struct rpcdisp acldisptab_v2[] = { 1811 /* 1812 * ACL VERSION 2 1813 */ 1814 1815 /* ACL2_NULL = 0 */ 1816 {rpc_null, 1817 xdr_void, NULL_xdrproc_t, 0, 1818 xdr_void, NULL_xdrproc_t, 0, 1819 nullfree, RPC_IDEMPOTENT, 1820 0}, 1821 1822 /* ACL2_GETACL = 1 */ 1823 {acl2_getacl, 1824 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1825 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1826 acl2_getacl_free, RPC_IDEMPOTENT, 1827 acl2_getacl_getfh}, 1828 1829 /* ACL2_SETACL = 2 */ 1830 {acl2_setacl, 1831 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1832 #ifdef _LITTLE_ENDIAN 1833 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1834 #else 1835 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1836 #endif 1837 nullfree, RPC_MAPRESP, 1838 acl2_setacl_getfh}, 1839 1840 /* ACL2_GETATTR = 3 */ 1841 {acl2_getattr, 1842 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1843 #ifdef _LITTLE_ENDIAN 1844 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1845 #else 1846 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1847 #endif 1848 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1849 acl2_getattr_getfh}, 1850 1851 /* ACL2_ACCESS = 4 */ 1852 {acl2_access, 1853 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1854 #ifdef _LITTLE_ENDIAN 1855 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1856 #else 1857 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1858 #endif 1859 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1860 acl2_access_getfh}, 1861 1862 /* ACL2_GETXATTRDIR = 5 */ 1863 {acl2_getxattrdir, 1864 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1865 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1866 nullfree, RPC_IDEMPOTENT, 1867 acl2_getxattrdir_getfh}, 1868 }; 1869 1870 static char *aclcallnames_v3[] = { 1871 "ACL3_NULL", 1872 "ACL3_GETACL", 1873 "ACL3_SETACL", 1874 "ACL3_GETXATTRDIR" 1875 }; 1876 1877 static struct rpcdisp acldisptab_v3[] = { 1878 /* 1879 * ACL VERSION 3 1880 */ 1881 1882 /* ACL3_NULL = 0 */ 1883 {rpc_null, 1884 xdr_void, NULL_xdrproc_t, 0, 1885 xdr_void, NULL_xdrproc_t, 0, 1886 nullfree, RPC_IDEMPOTENT, 1887 0}, 1888 1889 /* ACL3_GETACL = 1 */ 1890 {acl3_getacl, 1891 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1892 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1893 acl3_getacl_free, RPC_IDEMPOTENT, 1894 acl3_getacl_getfh}, 1895 1896 /* ACL3_SETACL = 2 */ 1897 {acl3_setacl, 1898 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1899 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1900 nullfree, 0, 1901 acl3_setacl_getfh}, 1902 1903 /* ACL3_GETXATTRDIR = 3 */ 1904 {acl3_getxattrdir, 1905 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1906 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1907 nullfree, RPC_IDEMPOTENT, 1908 acl3_getxattrdir_getfh}, 1909 }; 1910 1911 static struct rpc_disptable acl_disptable[] = { 1912 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1913 aclcallnames_v2, 1914 &aclproccnt_v2_ptr, acldisptab_v2}, 1915 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1916 aclcallnames_v3, 1917 &aclproccnt_v3_ptr, acldisptab_v3}, 1918 }; 1919 1920 static void 1921 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1922 { 1923 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1924 "ACL", acl_disptable); 1925 } 1926 1927 int 1928 checkwin(int flavor, int window, struct svc_req *req) 1929 { 1930 struct authdes_cred *adc; 1931 1932 switch (flavor) { 1933 case AUTH_DES: 1934 adc = (struct authdes_cred *)req->rq_clntcred; 1935 if (adc->adc_fullname.window > window) 1936 return (0); 1937 break; 1938 1939 default: 1940 break; 1941 } 1942 return (1); 1943 } 1944 1945 1946 /* 1947 * checkauth() will check the access permission against the export 1948 * information. Then map root uid/gid to appropriate uid/gid. 1949 * 1950 * This routine is used by NFS V3 and V2 code. 1951 */ 1952 static int 1953 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 1954 bool_t publicfh_ok) 1955 { 1956 int i, nfsflavor, rpcflavor, stat, access; 1957 struct secinfo *secp; 1958 caddr_t principal; 1959 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1960 int anon_res = 0; 1961 1962 /* 1963 * Check for privileged port number 1964 * N.B.: this assumes that we know the format of a netbuf. 1965 */ 1966 if (nfs_portmon) { 1967 struct sockaddr *ca; 1968 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 1969 1970 if (ca == NULL) 1971 return (0); 1972 1973 if ((ca->sa_family == AF_INET && 1974 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 1975 IPPORT_RESERVED) || 1976 (ca->sa_family == AF_INET6 && 1977 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 1978 IPPORT_RESERVED)) { 1979 cmn_err(CE_NOTE, 1980 "nfs_server: client %s%ssent NFS request from " 1981 "unprivileged port", 1982 client_name(req), client_addr(req, buf)); 1983 return (0); 1984 } 1985 } 1986 1987 /* 1988 * return 1 on success or 0 on failure 1989 */ 1990 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 1991 1992 /* 1993 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 1994 * the credentials; below we map that to anonymous. 1995 */ 1996 if (!stat && nfsflavor != AUTH_UNIX) { 1997 cmn_err(CE_NOTE, 1998 "nfs_server: couldn't get unix cred for %s", 1999 client_name(req)); 2000 return (0); 2001 } 2002 2003 /* 2004 * Short circuit checkauth() on operations that support the 2005 * public filehandle, and if the request for that operation 2006 * is using the public filehandle. Note that we must call 2007 * sec_svc_getcred() first so that xp_cookie is set to the 2008 * right value. Normally xp_cookie is just the RPC flavor 2009 * of the the request, but in the case of RPCSEC_GSS it 2010 * could be a pseudo flavor. 2011 */ 2012 if (publicfh_ok) 2013 return (1); 2014 2015 rpcflavor = req->rq_cred.oa_flavor; 2016 /* 2017 * Check if the auth flavor is valid for this export 2018 */ 2019 access = nfsauth_access(exi, req); 2020 if (access & NFSAUTH_DROP) 2021 return (-1); /* drop the request */ 2022 2023 if (access & NFSAUTH_DENIED) { 2024 /* 2025 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2026 * probably due to the flavor not matching during the 2027 * the mount attempt. So map the flavor to AUTH_NONE 2028 * so that the credentials get mapped to the anonymous 2029 * user. 2030 */ 2031 if (anon_ok == 1) 2032 rpcflavor = AUTH_NONE; 2033 else 2034 return (0); /* deny access */ 2035 2036 } else if (access & NFSAUTH_MAPNONE) { 2037 /* 2038 * Access was granted even though the flavor mismatched 2039 * because AUTH_NONE was one of the exported flavors. 2040 */ 2041 rpcflavor = AUTH_NONE; 2042 2043 } else if (access & NFSAUTH_WRONGSEC) { 2044 /* 2045 * NFSAUTH_WRONGSEC is used for NFSv4. Since V2/V3 already 2046 * negotiates the security flavor thru MOUNT protocol, the 2047 * only way it can get NFSAUTH_WRONGSEC here is from 2048 * NFS_ACL for V4. This could be for a limited view, so 2049 * map it to RO access. V4 lookup/readdir will take care 2050 * of the limited view portion. 2051 */ 2052 access |= NFSAUTH_RO; 2053 access &= ~NFSAUTH_WRONGSEC; 2054 } 2055 2056 switch (rpcflavor) { 2057 case AUTH_NONE: 2058 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2059 exi->exi_export.ex_anon); 2060 (void) crsetgroups(cr, 0, NULL); 2061 break; 2062 2063 case AUTH_UNIX: 2064 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2065 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2066 exi->exi_export.ex_anon); 2067 (void) crsetgroups(cr, 0, NULL); 2068 } 2069 break; 2070 2071 case AUTH_DES: 2072 case RPCSEC_GSS: 2073 /* 2074 * Find the secinfo structure. We should be able 2075 * to find it by the time we reach here. 2076 * nfsauth_access() has done the checking. 2077 */ 2078 secp = NULL; 2079 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2080 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2081 nfsflavor) { 2082 secp = &exi->exi_export.ex_secinfo[i]; 2083 break; 2084 } 2085 } 2086 2087 if (!secp) { 2088 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2089 "no secinfo data for flavor %d", 2090 client_name(req), client_addr(req, buf), 2091 nfsflavor); 2092 return (0); 2093 } 2094 2095 if (!checkwin(rpcflavor, secp->s_window, req)) { 2096 cmn_err(CE_NOTE, 2097 "nfs_server: client %s%sused invalid " 2098 "auth window value", 2099 client_name(req), client_addr(req, buf)); 2100 return (0); 2101 } 2102 2103 /* 2104 * Map root principals listed in the share's root= list to root, 2105 * and map any others principals that were mapped to root by RPC 2106 * to anon. 2107 */ 2108 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2109 secp->s_rootcnt, secp->s_rootnames)) { 2110 if (crgetuid(cr) == 0) 2111 return (1); 2112 2113 (void) crsetugid(cr, 0, 0); 2114 2115 /* 2116 * NOTE: If and when kernel-land privilege tracing is 2117 * added this may have to be replaced with code that 2118 * retrieves root's supplementary groups (e.g., using 2119 * kgss_get_group_info(). In the meantime principals 2120 * mapped to uid 0 get all privileges, so setting cr's 2121 * supplementary groups for them does nothing. 2122 */ 2123 (void) crsetgroups(cr, 0, NULL); 2124 2125 return (1); 2126 } 2127 2128 /* 2129 * Not a root princ, or not in root list, map UID 0/nobody to 2130 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2131 * UID_NOBODY and GID_NOBODY, respectively.) 2132 */ 2133 if (crgetuid(cr) != 0 && 2134 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2135 return (1); 2136 2137 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2138 exi->exi_export.ex_anon); 2139 (void) crsetgroups(cr, 0, NULL); 2140 break; 2141 default: 2142 return (0); 2143 } /* switch on rpcflavor */ 2144 2145 /* 2146 * Even if anon access is disallowed via ex_anon == -1, we allow 2147 * this access if anon_ok is set. So set creds to the default 2148 * "nobody" id. 2149 */ 2150 if (anon_res != 0) { 2151 if (anon_ok == 0) { 2152 cmn_err(CE_NOTE, 2153 "nfs_server: client %s%ssent wrong " 2154 "authentication for %s", 2155 client_name(req), client_addr(req, buf), 2156 exi->exi_export.ex_path ? 2157 exi->exi_export.ex_path : "?"); 2158 return (0); 2159 } 2160 2161 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2162 return (0); 2163 } 2164 2165 return (1); 2166 } 2167 2168 /* 2169 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2170 * and 1 on success 2171 */ 2172 int 2173 checkauth4(struct compound_state *cs, struct svc_req *req) 2174 { 2175 int i, rpcflavor, access; 2176 struct secinfo *secp; 2177 char buf[MAXHOST + 1]; 2178 int anon_res = 0, nfsflavor; 2179 struct exportinfo *exi; 2180 cred_t *cr; 2181 caddr_t principal; 2182 2183 exi = cs->exi; 2184 cr = cs->cr; 2185 principal = cs->principal; 2186 nfsflavor = cs->nfsflavor; 2187 2188 ASSERT(cr != NULL); 2189 2190 rpcflavor = req->rq_cred.oa_flavor; 2191 cs->access &= ~CS_ACCESS_LIMITED; 2192 2193 /* 2194 * Check the access right per auth flavor on the vnode of 2195 * this export for the given request. 2196 */ 2197 access = nfsauth4_access(cs->exi, cs->vp, req); 2198 2199 if (access & NFSAUTH_WRONGSEC) 2200 return (-2); /* no access for this security flavor */ 2201 2202 if (access & NFSAUTH_DROP) 2203 return (-1); /* drop the request */ 2204 2205 if (access & NFSAUTH_DENIED) { 2206 2207 if (exi->exi_export.ex_seccnt > 0) 2208 return (0); /* deny access */ 2209 2210 } else if (access & NFSAUTH_LIMITED) { 2211 2212 cs->access |= CS_ACCESS_LIMITED; 2213 2214 } else if (access & NFSAUTH_MAPNONE) { 2215 /* 2216 * Access was granted even though the flavor mismatched 2217 * because AUTH_NONE was one of the exported flavors. 2218 */ 2219 rpcflavor = AUTH_NONE; 2220 } 2221 2222 /* 2223 * XXX probably need to redo some of it for nfsv4? 2224 * return 1 on success or 0 on failure 2225 */ 2226 2227 switch (rpcflavor) { 2228 case AUTH_NONE: 2229 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2230 exi->exi_export.ex_anon); 2231 (void) crsetgroups(cr, 0, NULL); 2232 break; 2233 2234 case AUTH_UNIX: 2235 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2236 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2237 exi->exi_export.ex_anon); 2238 (void) crsetgroups(cr, 0, NULL); 2239 } 2240 break; 2241 2242 default: 2243 /* 2244 * Find the secinfo structure. We should be able 2245 * to find it by the time we reach here. 2246 * nfsauth_access() has done the checking. 2247 */ 2248 secp = NULL; 2249 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2250 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2251 nfsflavor) { 2252 secp = &exi->exi_export.ex_secinfo[i]; 2253 break; 2254 } 2255 } 2256 2257 if (!secp) { 2258 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2259 "no secinfo data for flavor %d", 2260 client_name(req), client_addr(req, buf), 2261 nfsflavor); 2262 return (0); 2263 } 2264 2265 if (!checkwin(rpcflavor, secp->s_window, req)) { 2266 cmn_err(CE_NOTE, 2267 "nfs_server: client %s%sused invalid " 2268 "auth window value", 2269 client_name(req), client_addr(req, buf)); 2270 return (0); 2271 } 2272 2273 /* 2274 * Map root principals listed in the share's root= list to root, 2275 * and map any others principals that were mapped to root by RPC 2276 * to anon. 2277 */ 2278 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2279 secp->s_rootcnt, secp->s_rootnames)) { 2280 if (crgetuid(cr) == 0) 2281 return (1); 2282 2283 (void) crsetugid(cr, 0, 0); 2284 2285 /* 2286 * NOTE: If and when kernel-land privilege tracing is 2287 * added this may have to be replaced with code that 2288 * retrieves root's supplementary groups (e.g., using 2289 * kgss_get_group_info(). In the meantime principals 2290 * mapped to uid 0 get all privileges, so setting cr's 2291 * supplementary groups for them does nothing. 2292 */ 2293 (void) crsetgroups(cr, 0, NULL); 2294 2295 return (1); 2296 } 2297 2298 /* 2299 * Not a root princ, or not in root list, map UID 0/nobody to 2300 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2301 * UID_NOBODY and GID_NOBODY, respectively.) 2302 */ 2303 if (crgetuid(cr) != 0 && 2304 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2305 return (1); 2306 2307 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2308 exi->exi_export.ex_anon); 2309 (void) crsetgroups(cr, 0, NULL); 2310 break; 2311 } /* switch on rpcflavor */ 2312 2313 /* 2314 * Even if anon access is disallowed via ex_anon == -1, we allow 2315 * this access if anon_ok is set. So set creds to the default 2316 * "nobody" id. 2317 */ 2318 2319 if (anon_res != 0) { 2320 cmn_err(CE_NOTE, 2321 "nfs_server: client %s%ssent wrong " 2322 "authentication for %s", 2323 client_name(req), client_addr(req, buf), 2324 exi->exi_export.ex_path ? 2325 exi->exi_export.ex_path : "?"); 2326 return (0); 2327 } 2328 2329 return (1); 2330 } 2331 2332 2333 static char * 2334 client_name(struct svc_req *req) 2335 { 2336 char *hostname = NULL; 2337 2338 /* 2339 * If it's a Unix cred then use the 2340 * hostname from the credential. 2341 */ 2342 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2343 hostname = ((struct authunix_parms *) 2344 req->rq_clntcred)->aup_machname; 2345 } 2346 if (hostname == NULL) 2347 hostname = ""; 2348 2349 return (hostname); 2350 } 2351 2352 static char * 2353 client_addr(struct svc_req *req, char *buf) 2354 { 2355 struct sockaddr *ca; 2356 uchar_t *b; 2357 char *frontspace = ""; 2358 2359 /* 2360 * We assume we are called in tandem with client_name and the 2361 * format string looks like "...client %s%sblah blah..." 2362 * 2363 * If it's a Unix cred then client_name returned 2364 * a host name, so we need insert a space between host name 2365 * and IP address. 2366 */ 2367 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2368 frontspace = " "; 2369 2370 /* 2371 * Convert the caller's IP address to a dotted string 2372 */ 2373 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2374 2375 if (ca->sa_family == AF_INET) { 2376 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2377 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2378 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2379 } else if (ca->sa_family == AF_INET6) { 2380 struct sockaddr_in6 *sin6; 2381 sin6 = (struct sockaddr_in6 *)ca; 2382 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2383 buf, INET6_ADDRSTRLEN); 2384 2385 } else { 2386 2387 /* 2388 * No IP address to print. If there was a host name 2389 * printed, then we print a space. 2390 */ 2391 (void) sprintf(buf, frontspace); 2392 } 2393 2394 return (buf); 2395 } 2396 2397 /* 2398 * NFS Server initialization routine. This routine should only be called 2399 * once. It performs the following tasks: 2400 * - Call sub-initialization routines (localize access to variables) 2401 * - Initialize all locks 2402 * - initialize the version 3 write verifier 2403 */ 2404 int 2405 nfs_srvinit(void) 2406 { 2407 int error; 2408 2409 error = nfs_exportinit(); 2410 if (error != 0) 2411 return (error); 2412 error = rfs4_srvrinit(); 2413 if (error != 0) { 2414 nfs_exportfini(); 2415 return (error); 2416 } 2417 rfs_srvrinit(); 2418 rfs3_srvrinit(); 2419 nfsauth_init(); 2420 2421 /* Init the stuff to control start/stop */ 2422 nfs_server_upordown = NFS_SERVER_STOPPED; 2423 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2424 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2425 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2426 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2427 2428 return (0); 2429 } 2430 2431 /* 2432 * NFS Server finalization routine. This routine is called to cleanup the 2433 * initialization work previously performed if the NFS server module could 2434 * not be loaded correctly. 2435 */ 2436 void 2437 nfs_srvfini(void) 2438 { 2439 nfsauth_fini(); 2440 rfs3_srvrfini(); 2441 rfs_srvrfini(); 2442 nfs_exportfini(); 2443 2444 mutex_destroy(&nfs_server_upordown_lock); 2445 cv_destroy(&nfs_server_upordown_cv); 2446 mutex_destroy(&rdma_wait_mutex); 2447 cv_destroy(&rdma_wait_cv); 2448 } 2449 2450 /* 2451 * Set up an iovec array of up to cnt pointers. 2452 */ 2453 2454 void 2455 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2456 { 2457 while (m != NULL && cnt-- > 0) { 2458 iovp->iov_base = (caddr_t)m->b_rptr; 2459 iovp->iov_len = (m->b_wptr - m->b_rptr); 2460 iovp++; 2461 m = m->b_cont; 2462 } 2463 } 2464 2465 /* 2466 * Common code between NFS Version 2 and NFS Version 3 for the public 2467 * filehandle multicomponent lookups. 2468 */ 2469 2470 /* 2471 * Public filehandle evaluation of a multi-component lookup, following 2472 * symbolic links, if necessary. This may result in a vnode in another 2473 * filesystem, which is OK as long as the other filesystem is exported. 2474 * 2475 * Note that the exi will be set either to NULL or a new reference to the 2476 * exportinfo struct that corresponds to the vnode of the multi-component path. 2477 * It is the callers responsibility to release this reference. 2478 */ 2479 int 2480 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2481 struct exportinfo **exi, struct sec_ol *sec) 2482 { 2483 int pathflag; 2484 vnode_t *mc_dvp = NULL; 2485 vnode_t *realvp; 2486 int error; 2487 2488 *exi = NULL; 2489 2490 /* 2491 * check if the given path is a url or native path. Since p is 2492 * modified by MCLpath(), it may be empty after returning from 2493 * there, and should be checked. 2494 */ 2495 if ((pathflag = MCLpath(&p)) == -1) 2496 return (EIO); 2497 2498 /* 2499 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2500 * on in sec->sec_flags. This bit will later serve as an 2501 * indication in makefh_ol() or makefh3_ol() to overload the 2502 * filehandle to contain the sec modes used by the server for 2503 * the path. 2504 */ 2505 if (pathflag == SECURITY_QUERY) { 2506 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2507 sec->sec_flags |= SEC_QUERY; 2508 p++; 2509 if ((pathflag = MCLpath(&p)) == -1) 2510 return (EIO); 2511 } else { 2512 cmn_err(CE_NOTE, 2513 "nfs_server: invalid security index %d, " 2514 "violating WebNFS SNEGO protocol.", sec->sec_index); 2515 return (EIO); 2516 } 2517 } 2518 2519 if (p[0] == '\0') { 2520 error = ENOENT; 2521 goto publicfh_done; 2522 } 2523 2524 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2525 2526 /* 2527 * If name resolves to "/" we get EINVAL since we asked for 2528 * the vnode of the directory that the file is in. Try again 2529 * with NULL directory vnode. 2530 */ 2531 if (error == EINVAL) { 2532 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2533 if (!error) { 2534 ASSERT(*vpp != NULL); 2535 if ((*vpp)->v_type == VDIR) { 2536 VN_HOLD(*vpp); 2537 mc_dvp = *vpp; 2538 } else { 2539 /* 2540 * This should not happen, the filesystem is 2541 * in an inconsistent state. Fail the lookup 2542 * at this point. 2543 */ 2544 VN_RELE(*vpp); 2545 error = EINVAL; 2546 } 2547 } 2548 } 2549 2550 if (error) 2551 goto publicfh_done; 2552 2553 if (*vpp == NULL) { 2554 error = ENOENT; 2555 goto publicfh_done; 2556 } 2557 2558 ASSERT(mc_dvp != NULL); 2559 ASSERT(*vpp != NULL); 2560 2561 if ((*vpp)->v_type == VDIR) { 2562 do { 2563 /* 2564 * *vpp may be an AutoFS node, so we perform 2565 * a VOP_ACCESS() to trigger the mount of the intended 2566 * filesystem, so we can perform the lookup in the 2567 * intended filesystem. 2568 */ 2569 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2570 2571 /* 2572 * If vnode is covered, get the 2573 * the topmost vnode. 2574 */ 2575 if (vn_mountedvfs(*vpp) != NULL) { 2576 error = traverse(vpp); 2577 if (error) { 2578 VN_RELE(*vpp); 2579 goto publicfh_done; 2580 } 2581 } 2582 2583 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2584 realvp != *vpp) { 2585 /* 2586 * If realvp is different from *vpp 2587 * then release our reference on *vpp, so that 2588 * the export access check be performed on the 2589 * real filesystem instead. 2590 */ 2591 VN_HOLD(realvp); 2592 VN_RELE(*vpp); 2593 *vpp = realvp; 2594 } else 2595 break; 2596 /* LINTED */ 2597 } while (TRUE); 2598 2599 /* 2600 * Let nfs_vptexi() figure what the real parent is. 2601 */ 2602 VN_RELE(mc_dvp); 2603 mc_dvp = NULL; 2604 2605 } else { 2606 /* 2607 * If vnode is covered, get the 2608 * the topmost vnode. 2609 */ 2610 if (vn_mountedvfs(mc_dvp) != NULL) { 2611 error = traverse(&mc_dvp); 2612 if (error) { 2613 VN_RELE(*vpp); 2614 goto publicfh_done; 2615 } 2616 } 2617 2618 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2619 realvp != mc_dvp) { 2620 /* 2621 * *vpp is a file, obtain realvp of the parent 2622 * directory vnode. 2623 */ 2624 VN_HOLD(realvp); 2625 VN_RELE(mc_dvp); 2626 mc_dvp = realvp; 2627 } 2628 } 2629 2630 /* 2631 * The pathname may take us from the public filesystem to another. 2632 * If that's the case then just set the exportinfo to the new export 2633 * and build filehandle for it. Thanks to per-access checking there's 2634 * no security issues with doing this. If the client is not allowed 2635 * access to this new export then it will get an access error when it 2636 * tries to use the filehandle 2637 */ 2638 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2639 VN_RELE(*vpp); 2640 goto publicfh_done; 2641 } 2642 2643 /* 2644 * Not allowed access to pseudo exports. 2645 */ 2646 if (PSEUDO(*exi)) { 2647 error = ENOENT; 2648 VN_RELE(*vpp); 2649 goto publicfh_done; 2650 } 2651 2652 /* 2653 * Do a lookup for the index file. We know the index option doesn't 2654 * allow paths through handling in the share command, so mc_dvp will 2655 * be the parent for the index file vnode, if its present. Use 2656 * temporary pointers to preserve and reuse the vnode pointers of the 2657 * original directory in case there's no index file. Note that the 2658 * index file is a native path, and should not be interpreted by 2659 * the URL parser in rfs_pathname() 2660 */ 2661 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2662 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2663 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2664 2665 tmc_dvp = mc_dvp; 2666 mc_dvp = tvp = *vpp; 2667 2668 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2669 mc_dvp, cr, NATIVEPATH); 2670 2671 if (error == ENOENT) { 2672 *vpp = tvp; 2673 mc_dvp = tmc_dvp; 2674 error = 0; 2675 } else { /* ok or error other than ENOENT */ 2676 if (tmc_dvp) 2677 VN_RELE(tmc_dvp); 2678 if (error) 2679 goto publicfh_done; 2680 2681 /* 2682 * Found a valid vp for index "filename". Sanity check 2683 * for odd case where a directory is provided as index 2684 * option argument and leads us to another filesystem 2685 */ 2686 2687 /* Release the reference on the old exi value */ 2688 ASSERT(*exi != NULL); 2689 exi_rele(*exi); 2690 2691 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2692 VN_RELE(*vpp); 2693 goto publicfh_done; 2694 } 2695 } 2696 } 2697 2698 publicfh_done: 2699 if (mc_dvp) 2700 VN_RELE(mc_dvp); 2701 2702 return (error); 2703 } 2704 2705 /* 2706 * Evaluate a multi-component path 2707 */ 2708 int 2709 rfs_pathname( 2710 char *path, /* pathname to evaluate */ 2711 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2712 vnode_t **compvpp, /* ret for ptr to component vnode */ 2713 vnode_t *startdvp, /* starting vnode */ 2714 cred_t *cr, /* user's credential */ 2715 int pathflag) /* flag to identify path, e.g. URL */ 2716 { 2717 char namebuf[TYPICALMAXPATHLEN]; 2718 struct pathname pn; 2719 int error; 2720 2721 /* 2722 * If pathname starts with '/', then set startdvp to root. 2723 */ 2724 if (*path == '/') { 2725 while (*path == '/') 2726 path++; 2727 2728 startdvp = rootdir; 2729 } 2730 2731 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2732 if (error == 0) { 2733 /* 2734 * Call the URL parser for URL paths to modify the original 2735 * string to handle any '%' encoded characters that exist. 2736 * Done here to avoid an extra bcopy in the lookup. 2737 * We need to be careful about pathlen's. We know that 2738 * rfs_pathname() is called with a non-empty path. However, 2739 * it could be emptied due to the path simply being all /'s, 2740 * which is valid to proceed with the lookup, or due to the 2741 * URL parser finding an encoded null character at the 2742 * beginning of path which should not proceed with the lookup. 2743 */ 2744 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2745 URLparse(pn.pn_path); 2746 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2747 return (ENOENT); 2748 } 2749 VN_HOLD(startdvp); 2750 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2751 rootdir, startdvp, cr); 2752 } 2753 if (error == ENAMETOOLONG) { 2754 /* 2755 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2756 */ 2757 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2758 return (error); 2759 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2760 URLparse(pn.pn_path); 2761 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2762 pn_free(&pn); 2763 return (ENOENT); 2764 } 2765 } 2766 VN_HOLD(startdvp); 2767 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2768 rootdir, startdvp, cr); 2769 pn_free(&pn); 2770 } 2771 2772 return (error); 2773 } 2774 2775 /* 2776 * Adapt the multicomponent lookup path depending on the pathtype 2777 */ 2778 static int 2779 MCLpath(char **path) 2780 { 2781 unsigned char c = (unsigned char)**path; 2782 2783 /* 2784 * If the MCL path is between 0x20 and 0x7E (graphic printable 2785 * character of the US-ASCII coded character set), its a URL path, 2786 * per RFC 1738. 2787 */ 2788 if (c >= 0x20 && c <= 0x7E) 2789 return (URLPATH); 2790 2791 /* 2792 * If the first octet of the MCL path is not an ASCII character 2793 * then it must be interpreted as a tag value that describes the 2794 * format of the remaining octets of the MCL path. 2795 * 2796 * If the first octet of the MCL path is 0x81 it is a query 2797 * for the security info. 2798 */ 2799 switch (c) { 2800 case 0x80: /* native path, i.e. MCL via mount protocol */ 2801 (*path)++; 2802 return (NATIVEPATH); 2803 case 0x81: /* security query */ 2804 (*path)++; 2805 return (SECURITY_QUERY); 2806 default: 2807 return (-1); 2808 } 2809 } 2810 2811 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2812 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2813 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2814 2815 /* 2816 * The implementation of URLparse guarantees that the final string will 2817 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2818 * with its corresponding hexadecimal character. 2819 */ 2820 static void 2821 URLparse(char *str) 2822 { 2823 char *p, *q; 2824 2825 p = q = str; 2826 while (*p) { 2827 *q = *p; 2828 if (*p++ == '%') { 2829 if (*p) { 2830 *q = fromhex(*p) * 16; 2831 p++; 2832 if (*p) { 2833 *q += fromhex(*p); 2834 p++; 2835 } 2836 } 2837 } 2838 q++; 2839 } 2840 *q = '\0'; 2841 } 2842 2843 2844 /* 2845 * Get the export information for the lookup vnode, and verify its 2846 * useable. 2847 */ 2848 int 2849 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2850 struct exportinfo **exi) 2851 { 2852 int walk; 2853 int error = 0; 2854 2855 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2856 if (*exi == NULL) 2857 error = EACCES; 2858 else { 2859 /* 2860 * If nosub is set for this export then 2861 * a lookup relative to the public fh 2862 * must not terminate below the 2863 * exported directory. 2864 */ 2865 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2866 error = EACCES; 2867 } 2868 2869 return (error); 2870 } 2871 2872 /* 2873 * Do the main work of handling HA-NFSv4 Resource Group failover on 2874 * Sun Cluster. 2875 * We need to detect whether any RG admin paths have been added or removed, 2876 * and adjust resources accordingly. 2877 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2878 * order to scale, the list and array of paths need to be held in more 2879 * suitable data structures. 2880 */ 2881 static void 2882 hanfsv4_failover(void) 2883 { 2884 int i, start_grace, numadded_paths = 0; 2885 char **added_paths = NULL; 2886 rfs4_dss_path_t *dss_path; 2887 2888 /* 2889 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 2890 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 2891 * make the latter dynamically specified too, the following will 2892 * need to be adjusted. 2893 */ 2894 2895 /* 2896 * First, look for removed paths: RGs that have been failed-over 2897 * away from this node. 2898 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 2899 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 2900 * from nfsd. If not, that RG path has been removed. 2901 * 2902 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 2903 * any duplicates. 2904 */ 2905 dss_path = rfs4_dss_pathlist; 2906 do { 2907 int found = 0; 2908 char *path = dss_path->path; 2909 2910 /* used only for non-HA so may not be removed */ 2911 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2912 dss_path = dss_path->next; 2913 continue; 2914 } 2915 2916 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2917 int cmpret; 2918 char *newpath = rfs4_dss_newpaths[i]; 2919 2920 /* 2921 * Since nfsd has sorted rfs4_dss_newpaths for us, 2922 * once the return from strcmp is negative we know 2923 * we've passed the point where "path" should be, 2924 * and can stop searching: "path" has been removed. 2925 */ 2926 cmpret = strcmp(path, newpath); 2927 if (cmpret < 0) 2928 break; 2929 if (cmpret == 0) { 2930 found = 1; 2931 break; 2932 } 2933 } 2934 2935 if (found == 0) { 2936 unsigned index = dss_path->index; 2937 rfs4_servinst_t *sip = dss_path->sip; 2938 rfs4_dss_path_t *path_next = dss_path->next; 2939 2940 /* 2941 * This path has been removed. 2942 * We must clear out the servinst reference to 2943 * it, since it's now owned by another 2944 * node: we should not attempt to touch it. 2945 */ 2946 ASSERT(dss_path == sip->dss_paths[index]); 2947 sip->dss_paths[index] = NULL; 2948 2949 /* remove from "currently-serving" list, and destroy */ 2950 remque(dss_path); 2951 /* allow for NUL */ 2952 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 2953 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 2954 2955 dss_path = path_next; 2956 } else { 2957 /* path was found; not removed */ 2958 dss_path = dss_path->next; 2959 } 2960 } while (dss_path != rfs4_dss_pathlist); 2961 2962 /* 2963 * Now, look for added paths: RGs that have been failed-over 2964 * to this node. 2965 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 2966 * for each path, check if it is on the "currently-serving" 2967 * rfs4_dss_pathlist. If not, that RG path has been added. 2968 * 2969 * Note: we don't do duplicate detection here; nfsd does that for us. 2970 * 2971 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 2972 * an upper bound for the size needed for added_paths[numadded_paths]. 2973 */ 2974 2975 /* probably more space than we need, but guaranteed to be enough */ 2976 if (rfs4_dss_numnewpaths > 0) { 2977 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 2978 added_paths = kmem_zalloc(sz, KM_SLEEP); 2979 } 2980 2981 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 2982 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2983 int found = 0; 2984 char *newpath = rfs4_dss_newpaths[i]; 2985 2986 dss_path = rfs4_dss_pathlist; 2987 do { 2988 char *path = dss_path->path; 2989 2990 /* used only for non-HA */ 2991 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2992 dss_path = dss_path->next; 2993 continue; 2994 } 2995 2996 if (strncmp(path, newpath, strlen(path)) == 0) { 2997 found = 1; 2998 break; 2999 } 3000 3001 dss_path = dss_path->next; 3002 } while (dss_path != rfs4_dss_pathlist); 3003 3004 if (found == 0) { 3005 added_paths[numadded_paths] = newpath; 3006 numadded_paths++; 3007 } 3008 } 3009 3010 /* did we find any added paths? */ 3011 if (numadded_paths > 0) { 3012 /* create a new server instance, and start its grace period */ 3013 start_grace = 1; 3014 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3015 3016 /* read in the stable storage state from these paths */ 3017 rfs4_dss_readstate(numadded_paths, added_paths); 3018 3019 /* 3020 * Multiple failovers during a grace period will cause 3021 * clients of the same resource group to be partitioned 3022 * into different server instances, with different 3023 * grace periods. Since clients of the same resource 3024 * group must be subject to the same grace period, 3025 * we need to reset all currently active grace periods. 3026 */ 3027 rfs4_grace_reset_all(); 3028 } 3029 3030 if (rfs4_dss_numnewpaths > 0) 3031 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3032 } 3033