1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T. 28 * All rights reserved. 29 * Use is subject to license terms. 30 */ 31 32 #pragma ident "%Z%%M% %I% %E% SMI" 33 34 #include <sys/param.h> 35 #include <sys/types.h> 36 #include <sys/systm.h> 37 #include <sys/cred.h> 38 #include <sys/proc.h> 39 #include <sys/user.h> 40 #include <sys/buf.h> 41 #include <sys/vfs.h> 42 #include <sys/vnode.h> 43 #include <sys/pathname.h> 44 #include <sys/uio.h> 45 #include <sys/file.h> 46 #include <sys/stat.h> 47 #include <sys/errno.h> 48 #include <sys/socket.h> 49 #include <sys/sysmacros.h> 50 #include <sys/siginfo.h> 51 #include <sys/tiuser.h> 52 #include <sys/statvfs.h> 53 #include <sys/stream.h> 54 #include <sys/strsubr.h> 55 #include <sys/stropts.h> 56 #include <sys/timod.h> 57 #include <sys/t_kuser.h> 58 #include <sys/kmem.h> 59 #include <sys/kstat.h> 60 #include <sys/dirent.h> 61 #include <sys/cmn_err.h> 62 #include <sys/debug.h> 63 #include <sys/unistd.h> 64 #include <sys/vtrace.h> 65 #include <sys/mode.h> 66 #include <sys/acl.h> 67 #include <sys/sdt.h> 68 69 #include <rpc/types.h> 70 #include <rpc/auth.h> 71 #include <rpc/auth_unix.h> 72 #include <rpc/auth_des.h> 73 #include <rpc/svc.h> 74 #include <rpc/xdr.h> 75 76 #include <nfs/nfs.h> 77 #include <nfs/export.h> 78 #include <nfs/nfssys.h> 79 #include <nfs/nfs_clnt.h> 80 #include <nfs/nfs_acl.h> 81 #include <nfs/nfs_log.h> 82 #include <nfs/lm.h> 83 #include <nfs/nfs_dispatch.h> 84 #include <nfs/nfs4_drc.h> 85 86 #include <sys/modctl.h> 87 #include <sys/cladm.h> 88 #include <sys/clconf.h> 89 90 #define MAXHOST 32 91 const char *kinet_ntop6(uchar_t *, char *, size_t); 92 93 /* 94 * Module linkage information. 95 */ 96 97 static struct modlmisc modlmisc = { 98 &mod_miscops, "NFS server module" 99 }; 100 101 static struct modlinkage modlinkage = { 102 MODREV_1, (void *)&modlmisc, NULL 103 }; 104 105 char _depends_on[] = "misc/klmmod"; 106 107 int 108 _init(void) 109 { 110 int status; 111 112 if ((status = nfs_srvinit()) != 0) { 113 cmn_err(CE_WARN, "_init: nfs_srvinit failed"); 114 return (status); 115 } 116 117 status = mod_install((struct modlinkage *)&modlinkage); 118 if (status != 0) { 119 /* 120 * Could not load module, cleanup previous 121 * initialization work. 122 */ 123 nfs_srvfini(); 124 } 125 126 /* 127 * Initialise some placeholders for nfssys() calls. These have 128 * to be declared by the nfs module, since that handles nfssys() 129 * calls - also used by NFS clients - but are provided by this 130 * nfssrv module. These also then serve as confirmation to the 131 * relevant code in nfs that nfssrv has been loaded, as they're 132 * initially NULL. 133 */ 134 nfs_srv_quiesce_func = nfs_srv_quiesce_all; 135 nfs_srv_dss_func = rfs4_dss_setpaths; 136 137 /* setup DSS paths here; must be done before initial server startup */ 138 rfs4_dss_paths = rfs4_dss_oldpaths = NULL; 139 140 return (status); 141 } 142 143 int 144 _fini() 145 { 146 return (EBUSY); 147 } 148 149 int 150 _info(struct modinfo *modinfop) 151 { 152 return (mod_info(&modlinkage, modinfop)); 153 } 154 155 /* 156 * PUBLICFH_CHECK() checks if the dispatch routine supports 157 * RPC_PUBLICFH_OK, if the filesystem is exported public, and if the 158 * incoming request is using the public filehandle. The check duplicates 159 * the exportmatch() call done in checkexport(), and we should consider 160 * modifying those routines to avoid the duplication. For now, we optimize 161 * by calling exportmatch() only after checking that the dispatch routine 162 * supports RPC_PUBLICFH_OK, and if the filesystem is explicitly exported 163 * public (i.e., not the placeholder). 164 */ 165 #define PUBLICFH_CHECK(disp, exi, fsid, xfid) \ 166 ((disp->dis_flags & RPC_PUBLICFH_OK) && \ 167 ((exi->exi_export.ex_flags & EX_PUBLIC) || \ 168 (exi == exi_public && exportmatch(exi_root, \ 169 fsid, xfid)))) 170 171 static void nfs_srv_shutdown_all(int); 172 static void rfs4_server_start(int); 173 static void nullfree(void); 174 static void rfs_dispatch(struct svc_req *, SVCXPRT *); 175 static void acl_dispatch(struct svc_req *, SVCXPRT *); 176 static void common_dispatch(struct svc_req *, SVCXPRT *, 177 rpcvers_t, rpcvers_t, char *, 178 struct rpc_disptable *); 179 static void hanfsv4_failover(void); 180 static int checkauth(struct exportinfo *, struct svc_req *, cred_t *, int, 181 bool_t); 182 static char *client_name(struct svc_req *req); 183 static char *client_addr(struct svc_req *req, char *buf); 184 extern int sec_svc_getcred(struct svc_req *, cred_t *cr, char **, int *); 185 extern bool_t sec_svc_inrootlist(int, caddr_t, int, caddr_t *); 186 187 #define NFSLOG_COPY_NETBUF(exi, xprt, nb) { \ 188 (nb)->maxlen = (xprt)->xp_rtaddr.maxlen; \ 189 (nb)->len = (xprt)->xp_rtaddr.len; \ 190 (nb)->buf = kmem_alloc((nb)->len, KM_SLEEP); \ 191 bcopy((xprt)->xp_rtaddr.buf, (nb)->buf, (nb)->len); \ 192 } 193 194 /* 195 * Public Filehandle common nfs routines 196 */ 197 static int MCLpath(char **); 198 static void URLparse(char *); 199 200 /* 201 * NFS callout table. 202 * This table is used by svc_getreq() to dispatch a request with 203 * a given prog/vers pair to an appropriate service provider 204 * dispatch routine. 205 * 206 * NOTE: ordering is relied upon below when resetting the version min/max 207 * for NFS_PROGRAM. Careful, if this is ever changed. 208 */ 209 static SVC_CALLOUT __nfs_sc_clts[] = { 210 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 211 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 212 }; 213 214 static SVC_CALLOUT_TABLE nfs_sct_clts = { 215 sizeof (__nfs_sc_clts) / sizeof (__nfs_sc_clts[0]), FALSE, 216 __nfs_sc_clts 217 }; 218 219 static SVC_CALLOUT __nfs_sc_cots[] = { 220 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 221 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 222 }; 223 224 static SVC_CALLOUT_TABLE nfs_sct_cots = { 225 sizeof (__nfs_sc_cots) / sizeof (__nfs_sc_cots[0]), FALSE, __nfs_sc_cots 226 }; 227 228 static SVC_CALLOUT __nfs_sc_rdma[] = { 229 { NFS_PROGRAM, NFS_VERSMIN, NFS_VERSMAX, rfs_dispatch }, 230 { NFS_ACL_PROGRAM, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, acl_dispatch } 231 }; 232 233 static SVC_CALLOUT_TABLE nfs_sct_rdma = { 234 sizeof (__nfs_sc_rdma) / sizeof (__nfs_sc_rdma[0]), FALSE, __nfs_sc_rdma 235 }; 236 rpcvers_t nfs_versmin = NFS_VERSMIN_DEFAULT; 237 rpcvers_t nfs_versmax = NFS_VERSMAX_DEFAULT; 238 239 /* 240 * Used to track the state of the server so that initialization 241 * can be done properly. 242 */ 243 typedef enum { 244 NFS_SERVER_STOPPED, /* server state destroyed */ 245 NFS_SERVER_STOPPING, /* server state being destroyed */ 246 NFS_SERVER_RUNNING, 247 NFS_SERVER_QUIESCED, /* server state preserved */ 248 NFS_SERVER_OFFLINE /* server pool offline */ 249 } nfs_server_running_t; 250 251 static nfs_server_running_t nfs_server_upordown; 252 static kmutex_t nfs_server_upordown_lock; 253 static kcondvar_t nfs_server_upordown_cv; 254 255 /* 256 * DSS: distributed stable storage 257 * lists of all DSS paths: current, and before last warmstart 258 */ 259 nvlist_t *rfs4_dss_paths, *rfs4_dss_oldpaths; 260 261 int rfs4_dispatch(struct rpcdisp *, struct svc_req *, SVCXPRT *, char *); 262 bool_t rfs4_minorvers_mismatch(struct svc_req *, SVCXPRT *, void *); 263 264 /* 265 * RDMA wait variables. 266 */ 267 static kcondvar_t rdma_wait_cv; 268 static kmutex_t rdma_wait_mutex; 269 270 /* 271 * Will be called at the point the server pool is being unregistered 272 * from the pool list. From that point onwards, the pool is waiting 273 * to be drained and as such the server state is stale and pertains 274 * to the old instantiation of the NFS server pool. 275 */ 276 void 277 nfs_srv_offline(void) 278 { 279 mutex_enter(&nfs_server_upordown_lock); 280 if (nfs_server_upordown == NFS_SERVER_RUNNING) { 281 nfs_server_upordown = NFS_SERVER_OFFLINE; 282 } 283 mutex_exit(&nfs_server_upordown_lock); 284 } 285 286 /* 287 * Will be called at the point the server pool is being destroyed so 288 * all transports have been closed and no service threads are in 289 * existence. 290 * 291 * If we quiesce the server, we're shutting it down without destroying the 292 * server state. This allows it to warm start subsequently. 293 */ 294 void 295 nfs_srv_stop_all(void) 296 { 297 int quiesce = 0; 298 nfs_srv_shutdown_all(quiesce); 299 } 300 301 /* 302 * This alternative shutdown routine can be requested via nfssys() 303 */ 304 void 305 nfs_srv_quiesce_all(void) 306 { 307 int quiesce = 1; 308 nfs_srv_shutdown_all(quiesce); 309 } 310 311 static void 312 nfs_srv_shutdown_all(int quiesce) { 313 mutex_enter(&nfs_server_upordown_lock); 314 if (quiesce) { 315 if (nfs_server_upordown == NFS_SERVER_RUNNING || 316 nfs_server_upordown == NFS_SERVER_OFFLINE) { 317 nfs_server_upordown = NFS_SERVER_QUIESCED; 318 cv_signal(&nfs_server_upordown_cv); 319 320 /* reset DSS state, for subsequent warm restart */ 321 rfs4_dss_numnewpaths = 0; 322 rfs4_dss_newpaths = NULL; 323 324 cmn_err(CE_NOTE, "nfs_server: server is now quiesced; " 325 "NFSv4 state has been preserved"); 326 } 327 } else { 328 if (nfs_server_upordown == NFS_SERVER_OFFLINE) { 329 nfs_server_upordown = NFS_SERVER_STOPPING; 330 mutex_exit(&nfs_server_upordown_lock); 331 rfs4_state_fini(); 332 rfs4_fini_drc(nfs4_drc); 333 mutex_enter(&nfs_server_upordown_lock); 334 nfs_server_upordown = NFS_SERVER_STOPPED; 335 cv_signal(&nfs_server_upordown_cv); 336 } 337 } 338 mutex_exit(&nfs_server_upordown_lock); 339 } 340 341 static int 342 nfs_srv_set_sc_versions(struct file *fp, SVC_CALLOUT_TABLE **sctpp, 343 rpcvers_t versmin, rpcvers_t versmax) 344 { 345 struct strioctl strioc; 346 struct T_info_ack tinfo; 347 int error, retval; 348 349 /* 350 * Find out what type of transport this is. 351 */ 352 strioc.ic_cmd = TI_GETINFO; 353 strioc.ic_timout = -1; 354 strioc.ic_len = sizeof (tinfo); 355 strioc.ic_dp = (char *)&tinfo; 356 tinfo.PRIM_type = T_INFO_REQ; 357 358 error = strioctl(fp->f_vnode, I_STR, (intptr_t)&strioc, 0, K_TO_K, 359 CRED(), &retval); 360 if (error || retval) 361 return (error); 362 363 /* 364 * Based on our query of the transport type... 365 * 366 * Reset the min/max versions based on the caller's request 367 * NOTE: This assumes that NFS_PROGRAM is first in the array!! 368 * And the second entry is the NFS_ACL_PROGRAM. 369 */ 370 switch (tinfo.SERV_type) { 371 case T_CLTS: 372 if (versmax == NFS_V4) 373 return (EINVAL); 374 __nfs_sc_clts[0].sc_versmin = versmin; 375 __nfs_sc_clts[0].sc_versmax = versmax; 376 __nfs_sc_clts[1].sc_versmin = versmin; 377 __nfs_sc_clts[1].sc_versmax = versmax; 378 *sctpp = &nfs_sct_clts; 379 break; 380 case T_COTS: 381 case T_COTS_ORD: 382 __nfs_sc_cots[0].sc_versmin = versmin; 383 __nfs_sc_cots[0].sc_versmax = versmax; 384 /* For the NFS_ACL program, check the max version */ 385 if (versmax > NFS_ACL_VERSMAX) 386 versmax = NFS_ACL_VERSMAX; 387 __nfs_sc_cots[1].sc_versmin = versmin; 388 __nfs_sc_cots[1].sc_versmax = versmax; 389 *sctpp = &nfs_sct_cots; 390 break; 391 default: 392 error = EINVAL; 393 } 394 395 return (error); 396 } 397 398 /* 399 * NFS Server system call. 400 * Does all of the work of running a NFS server. 401 * uap->fd is the fd of an open transport provider 402 */ 403 int 404 nfs_svc(struct nfs_svc_args *arg, model_t model) 405 { 406 file_t *fp; 407 SVCMASTERXPRT *xprt; 408 int error; 409 int readsize; 410 char buf[KNC_STRSIZE]; 411 size_t len; 412 STRUCT_HANDLE(nfs_svc_args, uap); 413 struct netbuf addrmask; 414 SVC_CALLOUT_TABLE *sctp = NULL; 415 416 #ifdef lint 417 model = model; /* STRUCT macros don't always refer to it */ 418 #endif 419 420 STRUCT_SET_HANDLE(uap, model, arg); 421 422 /* Check privileges in nfssys() */ 423 424 if ((fp = getf(STRUCT_FGET(uap, fd))) == NULL) 425 return (EBADF); 426 427 /* 428 * Set read buffer size to rsize 429 * and add room for RPC headers. 430 */ 431 readsize = nfs3tsize() + (RPC_MAXDATASIZE - NFS_MAXDATA); 432 if (readsize < RPC_MAXDATASIZE) 433 readsize = RPC_MAXDATASIZE; 434 435 error = copyinstr((const char *)STRUCT_FGETP(uap, netid), buf, 436 KNC_STRSIZE, &len); 437 if (error) { 438 releasef(STRUCT_FGET(uap, fd)); 439 return (error); 440 } 441 442 addrmask.len = STRUCT_FGET(uap, addrmask.len); 443 addrmask.maxlen = STRUCT_FGET(uap, addrmask.maxlen); 444 addrmask.buf = kmem_alloc(addrmask.maxlen, KM_SLEEP); 445 error = copyin(STRUCT_FGETP(uap, addrmask.buf), addrmask.buf, 446 addrmask.len); 447 if (error) { 448 releasef(STRUCT_FGET(uap, fd)); 449 kmem_free(addrmask.buf, addrmask.maxlen); 450 return (error); 451 } 452 453 nfs_versmin = STRUCT_FGET(uap, versmin); 454 nfs_versmax = STRUCT_FGET(uap, versmax); 455 456 /* Double check the vers min/max ranges */ 457 if ((nfs_versmin > nfs_versmax) || 458 (nfs_versmin < NFS_VERSMIN) || 459 (nfs_versmax > NFS_VERSMAX)) { 460 nfs_versmin = NFS_VERSMIN_DEFAULT; 461 nfs_versmax = NFS_VERSMAX_DEFAULT; 462 } 463 464 if (error = 465 nfs_srv_set_sc_versions(fp, &sctp, nfs_versmin, nfs_versmax)) { 466 releasef(STRUCT_FGET(uap, fd)); 467 kmem_free(addrmask.buf, addrmask.maxlen); 468 return (error); 469 } 470 471 /* Initialize nfsv4 server */ 472 if (nfs_versmax == (rpcvers_t)NFS_V4) 473 rfs4_server_start(STRUCT_FGET(uap, delegation)); 474 475 /* Create a transport handle. */ 476 error = svc_tli_kcreate(fp, readsize, buf, &addrmask, &xprt, 477 sctp, NULL, NFS_SVCPOOL_ID, TRUE); 478 479 if (error) 480 kmem_free(addrmask.buf, addrmask.maxlen); 481 482 releasef(STRUCT_FGET(uap, fd)); 483 484 /* HA-NFSv4: save the cluster nodeid */ 485 if (cluster_bootflags & CLUSTER_BOOTED) 486 lm_global_nlmid = clconf_get_nodeid(); 487 488 return (error); 489 } 490 491 static void 492 rfs4_server_start(int nfs4_srv_delegation) 493 { 494 /* 495 * Determine if the server has previously been "started" and 496 * if not, do the per instance initialization 497 */ 498 mutex_enter(&nfs_server_upordown_lock); 499 500 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 501 /* Do we need to stop and wait on the previous server? */ 502 while (nfs_server_upordown == NFS_SERVER_STOPPING || 503 nfs_server_upordown == NFS_SERVER_OFFLINE) 504 cv_wait(&nfs_server_upordown_cv, 505 &nfs_server_upordown_lock); 506 507 if (nfs_server_upordown != NFS_SERVER_RUNNING) { 508 (void) svc_pool_control(NFS_SVCPOOL_ID, 509 SVCPSET_UNREGISTER_PROC, (void *)&nfs_srv_offline); 510 (void) svc_pool_control(NFS_SVCPOOL_ID, 511 SVCPSET_SHUTDOWN_PROC, (void *)&nfs_srv_stop_all); 512 513 /* is this an nfsd warm start? */ 514 if (nfs_server_upordown == NFS_SERVER_QUIESCED) { 515 cmn_err(CE_NOTE, "nfs_server: " 516 "server was previously quiesced; " 517 "existing NFSv4 state will be re-used"); 518 519 /* 520 * HA-NFSv4: this is also the signal 521 * that a Resource Group failover has 522 * occurred. 523 */ 524 if (cluster_bootflags & CLUSTER_BOOTED) 525 hanfsv4_failover(); 526 } else { 527 /* cold start */ 528 rfs4_state_init(); 529 nfs4_drc = rfs4_init_drc(nfs4_drc_max, 530 nfs4_drc_hash); 531 } 532 533 /* 534 * Check to see if delegation is to be 535 * enabled at the server 536 */ 537 if (nfs4_srv_delegation != FALSE) 538 rfs4_set_deleg_policy(SRV_NORMAL_DELEGATE); 539 540 nfs_server_upordown = NFS_SERVER_RUNNING; 541 } 542 cv_signal(&nfs_server_upordown_cv); 543 } 544 mutex_exit(&nfs_server_upordown_lock); 545 } 546 547 /* 548 * If RDMA device available, 549 * start RDMA listener. 550 */ 551 int 552 rdma_start(struct rdma_svc_args *rsa) 553 { 554 int error; 555 rdma_xprt_group_t started_rdma_xprts; 556 557 /* Double check the vers min/max ranges */ 558 if ((rsa->nfs_versmin > rsa->nfs_versmax) || 559 (rsa->nfs_versmin < NFS_VERSMIN) || 560 (rsa->nfs_versmax > NFS_VERSMAX)) { 561 rsa->nfs_versmin = NFS_VERSMIN_DEFAULT; 562 rsa->nfs_versmax = NFS_VERSMAX_DEFAULT; 563 } 564 nfs_versmin = rsa->nfs_versmin; 565 nfs_versmax = rsa->nfs_versmax; 566 567 /* Set the versions in the callout table */ 568 __nfs_sc_rdma[0].sc_versmin = rsa->nfs_versmin; 569 __nfs_sc_rdma[0].sc_versmax = rsa->nfs_versmax; 570 /* For the NFS_ACL program, check the max version */ 571 __nfs_sc_rdma[1].sc_versmin = rsa->nfs_versmin; 572 if (rsa->nfs_versmax > NFS_ACL_VERSMAX) 573 __nfs_sc_rdma[1].sc_versmax = NFS_ACL_VERSMAX; 574 else 575 __nfs_sc_rdma[1].sc_versmax = rsa->nfs_versmax; 576 577 /* Initialize nfsv4 server */ 578 if (rsa->nfs_versmax == (rpcvers_t)NFS_V4) 579 rfs4_server_start(rsa->delegation); 580 581 started_rdma_xprts.rtg_count = 0; 582 started_rdma_xprts.rtg_listhead = NULL; 583 started_rdma_xprts.rtg_poolid = rsa->poolid; 584 error = svc_rdma_kcreate(rsa->netid, &nfs_sct_rdma, rsa->poolid, 585 &started_rdma_xprts); 586 587 if (error == 0) { 588 mutex_enter(&rdma_wait_mutex); 589 if (!cv_wait_sig(&rdma_wait_cv, &rdma_wait_mutex)) { 590 rdma_stop(started_rdma_xprts); 591 } 592 mutex_exit(&rdma_wait_mutex); 593 } 594 595 return (error); 596 } 597 598 /* ARGSUSED */ 599 void 600 rpc_null(caddr_t *argp, caddr_t *resp) 601 { 602 } 603 604 /* ARGSUSED */ 605 static void 606 rfs_error(caddr_t *argp, caddr_t *resp) 607 { 608 /* return (EOPNOTSUPP); */ 609 } 610 611 static void 612 nullfree(void) 613 { 614 } 615 616 static char *rfscallnames_v2[] = { 617 "RFS2_NULL", 618 "RFS2_GETATTR", 619 "RFS2_SETATTR", 620 "RFS2_ROOT", 621 "RFS2_LOOKUP", 622 "RFS2_READLINK", 623 "RFS2_READ", 624 "RFS2_WRITECACHE", 625 "RFS2_WRITE", 626 "RFS2_CREATE", 627 "RFS2_REMOVE", 628 "RFS2_RENAME", 629 "RFS2_LINK", 630 "RFS2_SYMLINK", 631 "RFS2_MKDIR", 632 "RFS2_RMDIR", 633 "RFS2_READDIR", 634 "RFS2_STATFS" 635 }; 636 637 static struct rpcdisp rfsdisptab_v2[] = { 638 /* 639 * NFS VERSION 2 640 */ 641 642 /* RFS_NULL = 0 */ 643 {rpc_null, 644 xdr_void, NULL_xdrproc_t, 0, 645 xdr_void, NULL_xdrproc_t, 0, 646 nullfree, RPC_IDEMPOTENT, 647 0}, 648 649 /* RFS_GETATTR = 1 */ 650 {rfs_getattr, 651 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 652 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 653 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 654 rfs_getattr_getfh}, 655 656 /* RFS_SETATTR = 2 */ 657 {rfs_setattr, 658 xdr_saargs, NULL_xdrproc_t, sizeof (struct nfssaargs), 659 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 660 nullfree, RPC_MAPRESP, 661 rfs_setattr_getfh}, 662 663 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 664 {rfs_error, 665 xdr_void, NULL_xdrproc_t, 0, 666 xdr_void, NULL_xdrproc_t, 0, 667 nullfree, RPC_IDEMPOTENT, 668 0}, 669 670 /* RFS_LOOKUP = 4 */ 671 {rfs_lookup, 672 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 673 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 674 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP|RPC_PUBLICFH_OK, 675 rfs_lookup_getfh}, 676 677 /* RFS_READLINK = 5 */ 678 {rfs_readlink, 679 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 680 xdr_rdlnres, NULL_xdrproc_t, sizeof (struct nfsrdlnres), 681 rfs_rlfree, RPC_IDEMPOTENT, 682 rfs_readlink_getfh}, 683 684 /* RFS_READ = 6 */ 685 {rfs_read, 686 xdr_readargs, NULL_xdrproc_t, sizeof (struct nfsreadargs), 687 xdr_rdresult, NULL_xdrproc_t, sizeof (struct nfsrdresult), 688 rfs_rdfree, RPC_IDEMPOTENT, 689 rfs_read_getfh}, 690 691 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 692 {rfs_error, 693 xdr_void, NULL_xdrproc_t, 0, 694 xdr_void, NULL_xdrproc_t, 0, 695 nullfree, RPC_IDEMPOTENT, 696 0}, 697 698 /* RFS_WRITE = 8 */ 699 {rfs_write, 700 xdr_writeargs, NULL_xdrproc_t, sizeof (struct nfswriteargs), 701 xdr_attrstat, xdr_fastattrstat, sizeof (struct nfsattrstat), 702 nullfree, RPC_MAPRESP, 703 rfs_write_getfh}, 704 705 /* RFS_CREATE = 9 */ 706 {rfs_create, 707 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 708 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 709 nullfree, RPC_MAPRESP, 710 rfs_create_getfh}, 711 712 /* RFS_REMOVE = 10 */ 713 {rfs_remove, 714 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 715 #ifdef _LITTLE_ENDIAN 716 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 717 #else 718 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 719 #endif 720 nullfree, RPC_MAPRESP, 721 rfs_remove_getfh}, 722 723 /* RFS_RENAME = 11 */ 724 {rfs_rename, 725 xdr_rnmargs, NULL_xdrproc_t, sizeof (struct nfsrnmargs), 726 #ifdef _LITTLE_ENDIAN 727 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 728 #else 729 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 730 #endif 731 nullfree, RPC_MAPRESP, 732 rfs_rename_getfh}, 733 734 /* RFS_LINK = 12 */ 735 {rfs_link, 736 xdr_linkargs, NULL_xdrproc_t, sizeof (struct nfslinkargs), 737 #ifdef _LITTLE_ENDIAN 738 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 739 #else 740 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 741 #endif 742 nullfree, RPC_MAPRESP, 743 rfs_link_getfh}, 744 745 /* RFS_SYMLINK = 13 */ 746 {rfs_symlink, 747 xdr_slargs, NULL_xdrproc_t, sizeof (struct nfsslargs), 748 #ifdef _LITTLE_ENDIAN 749 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 750 #else 751 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 752 #endif 753 nullfree, RPC_MAPRESP, 754 rfs_symlink_getfh}, 755 756 /* RFS_MKDIR = 14 */ 757 {rfs_mkdir, 758 xdr_creatargs, NULL_xdrproc_t, sizeof (struct nfscreatargs), 759 xdr_diropres, xdr_fastdiropres, sizeof (struct nfsdiropres), 760 nullfree, RPC_MAPRESP, 761 rfs_mkdir_getfh}, 762 763 /* RFS_RMDIR = 15 */ 764 {rfs_rmdir, 765 xdr_diropargs, NULL_xdrproc_t, sizeof (struct nfsdiropargs), 766 #ifdef _LITTLE_ENDIAN 767 xdr_enum, xdr_fastenum, sizeof (enum nfsstat), 768 #else 769 xdr_enum, NULL_xdrproc_t, sizeof (enum nfsstat), 770 #endif 771 nullfree, RPC_MAPRESP, 772 rfs_rmdir_getfh}, 773 774 /* RFS_READDIR = 16 */ 775 {rfs_readdir, 776 xdr_rddirargs, NULL_xdrproc_t, sizeof (struct nfsrddirargs), 777 xdr_putrddirres, NULL_xdrproc_t, sizeof (struct nfsrddirres), 778 rfs_rddirfree, RPC_IDEMPOTENT, 779 rfs_readdir_getfh}, 780 781 /* RFS_STATFS = 17 */ 782 {rfs_statfs, 783 xdr_fhandle, xdr_fastfhandle, sizeof (fhandle_t), 784 xdr_statfs, xdr_faststatfs, sizeof (struct nfsstatfs), 785 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 786 rfs_statfs_getfh}, 787 }; 788 789 static char *rfscallnames_v3[] = { 790 "RFS3_NULL", 791 "RFS3_GETATTR", 792 "RFS3_SETATTR", 793 "RFS3_LOOKUP", 794 "RFS3_ACCESS", 795 "RFS3_READLINK", 796 "RFS3_READ", 797 "RFS3_WRITE", 798 "RFS3_CREATE", 799 "RFS3_MKDIR", 800 "RFS3_SYMLINK", 801 "RFS3_MKNOD", 802 "RFS3_REMOVE", 803 "RFS3_RMDIR", 804 "RFS3_RENAME", 805 "RFS3_LINK", 806 "RFS3_READDIR", 807 "RFS3_READDIRPLUS", 808 "RFS3_FSSTAT", 809 "RFS3_FSINFO", 810 "RFS3_PATHCONF", 811 "RFS3_COMMIT" 812 }; 813 814 static struct rpcdisp rfsdisptab_v3[] = { 815 /* 816 * NFS VERSION 3 817 */ 818 819 /* RFS_NULL = 0 */ 820 {rpc_null, 821 xdr_void, NULL_xdrproc_t, 0, 822 xdr_void, NULL_xdrproc_t, 0, 823 nullfree, RPC_IDEMPOTENT, 824 0}, 825 826 /* RFS3_GETATTR = 1 */ 827 {rfs3_getattr, 828 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (GETATTR3args), 829 xdr_GETATTR3res, NULL_xdrproc_t, sizeof (GETATTR3res), 830 nullfree, (RPC_IDEMPOTENT | RPC_ALLOWANON), 831 rfs3_getattr_getfh}, 832 833 /* RFS3_SETATTR = 2 */ 834 {rfs3_setattr, 835 xdr_SETATTR3args, NULL_xdrproc_t, sizeof (SETATTR3args), 836 xdr_SETATTR3res, NULL_xdrproc_t, sizeof (SETATTR3res), 837 nullfree, 0, 838 rfs3_setattr_getfh}, 839 840 /* RFS3_LOOKUP = 3 */ 841 {rfs3_lookup, 842 xdr_diropargs3, NULL_xdrproc_t, sizeof (LOOKUP3args), 843 xdr_LOOKUP3res, NULL_xdrproc_t, sizeof (LOOKUP3res), 844 nullfree, (RPC_IDEMPOTENT | RPC_PUBLICFH_OK), 845 rfs3_lookup_getfh}, 846 847 /* RFS3_ACCESS = 4 */ 848 {rfs3_access, 849 xdr_ACCESS3args, NULL_xdrproc_t, sizeof (ACCESS3args), 850 xdr_ACCESS3res, NULL_xdrproc_t, sizeof (ACCESS3res), 851 nullfree, RPC_IDEMPOTENT, 852 rfs3_access_getfh}, 853 854 /* RFS3_READLINK = 5 */ 855 {rfs3_readlink, 856 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (READLINK3args), 857 xdr_READLINK3res, NULL_xdrproc_t, sizeof (READLINK3res), 858 rfs3_readlink_free, RPC_IDEMPOTENT, 859 rfs3_readlink_getfh}, 860 861 /* RFS3_READ = 6 */ 862 {rfs3_read, 863 xdr_READ3args, NULL_xdrproc_t, sizeof (READ3args), 864 xdr_READ3res, NULL_xdrproc_t, sizeof (READ3res), 865 rfs3_read_free, RPC_IDEMPOTENT, 866 rfs3_read_getfh}, 867 868 /* RFS3_WRITE = 7 */ 869 {rfs3_write, 870 xdr_WRITE3args, NULL_xdrproc_t, sizeof (WRITE3args), 871 xdr_WRITE3res, NULL_xdrproc_t, sizeof (WRITE3res), 872 nullfree, 0, 873 rfs3_write_getfh}, 874 875 /* RFS3_CREATE = 8 */ 876 {rfs3_create, 877 xdr_CREATE3args, NULL_xdrproc_t, sizeof (CREATE3args), 878 xdr_CREATE3res, NULL_xdrproc_t, sizeof (CREATE3res), 879 nullfree, 0, 880 rfs3_create_getfh}, 881 882 /* RFS3_MKDIR = 9 */ 883 {rfs3_mkdir, 884 xdr_MKDIR3args, NULL_xdrproc_t, sizeof (MKDIR3args), 885 xdr_MKDIR3res, NULL_xdrproc_t, sizeof (MKDIR3res), 886 nullfree, 0, 887 rfs3_mkdir_getfh}, 888 889 /* RFS3_SYMLINK = 10 */ 890 {rfs3_symlink, 891 xdr_SYMLINK3args, NULL_xdrproc_t, sizeof (SYMLINK3args), 892 xdr_SYMLINK3res, NULL_xdrproc_t, sizeof (SYMLINK3res), 893 nullfree, 0, 894 rfs3_symlink_getfh}, 895 896 /* RFS3_MKNOD = 11 */ 897 {rfs3_mknod, 898 xdr_MKNOD3args, NULL_xdrproc_t, sizeof (MKNOD3args), 899 xdr_MKNOD3res, NULL_xdrproc_t, sizeof (MKNOD3res), 900 nullfree, 0, 901 rfs3_mknod_getfh}, 902 903 /* RFS3_REMOVE = 12 */ 904 {rfs3_remove, 905 xdr_diropargs3, NULL_xdrproc_t, sizeof (REMOVE3args), 906 xdr_REMOVE3res, NULL_xdrproc_t, sizeof (REMOVE3res), 907 nullfree, 0, 908 rfs3_remove_getfh}, 909 910 /* RFS3_RMDIR = 13 */ 911 {rfs3_rmdir, 912 xdr_diropargs3, NULL_xdrproc_t, sizeof (RMDIR3args), 913 xdr_RMDIR3res, NULL_xdrproc_t, sizeof (RMDIR3res), 914 nullfree, 0, 915 rfs3_rmdir_getfh}, 916 917 /* RFS3_RENAME = 14 */ 918 {rfs3_rename, 919 xdr_RENAME3args, NULL_xdrproc_t, sizeof (RENAME3args), 920 xdr_RENAME3res, NULL_xdrproc_t, sizeof (RENAME3res), 921 nullfree, 0, 922 rfs3_rename_getfh}, 923 924 /* RFS3_LINK = 15 */ 925 {rfs3_link, 926 xdr_LINK3args, NULL_xdrproc_t, sizeof (LINK3args), 927 xdr_LINK3res, NULL_xdrproc_t, sizeof (LINK3res), 928 nullfree, 0, 929 rfs3_link_getfh}, 930 931 /* RFS3_READDIR = 16 */ 932 {rfs3_readdir, 933 xdr_READDIR3args, NULL_xdrproc_t, sizeof (READDIR3args), 934 xdr_READDIR3res, NULL_xdrproc_t, sizeof (READDIR3res), 935 rfs3_readdir_free, RPC_IDEMPOTENT, 936 rfs3_readdir_getfh}, 937 938 /* RFS3_READDIRPLUS = 17 */ 939 {rfs3_readdirplus, 940 xdr_READDIRPLUS3args, NULL_xdrproc_t, sizeof (READDIRPLUS3args), 941 xdr_READDIRPLUS3res, NULL_xdrproc_t, sizeof (READDIRPLUS3res), 942 rfs3_readdirplus_free, RPC_AVOIDWORK, 943 rfs3_readdirplus_getfh}, 944 945 /* RFS3_FSSTAT = 18 */ 946 {rfs3_fsstat, 947 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSSTAT3args), 948 xdr_FSSTAT3res, NULL_xdrproc_t, sizeof (FSSTAT3res), 949 nullfree, RPC_IDEMPOTENT, 950 rfs3_fsstat_getfh}, 951 952 /* RFS3_FSINFO = 19 */ 953 {rfs3_fsinfo, 954 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (FSINFO3args), 955 xdr_FSINFO3res, NULL_xdrproc_t, sizeof (FSINFO3res), 956 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON, 957 rfs3_fsinfo_getfh}, 958 959 /* RFS3_PATHCONF = 20 */ 960 {rfs3_pathconf, 961 xdr_nfs_fh3_server, NULL_xdrproc_t, sizeof (PATHCONF3args), 962 xdr_PATHCONF3res, NULL_xdrproc_t, sizeof (PATHCONF3res), 963 nullfree, RPC_IDEMPOTENT, 964 rfs3_pathconf_getfh}, 965 966 /* RFS3_COMMIT = 21 */ 967 {rfs3_commit, 968 xdr_COMMIT3args, NULL_xdrproc_t, sizeof (COMMIT3args), 969 xdr_COMMIT3res, NULL_xdrproc_t, sizeof (COMMIT3res), 970 nullfree, RPC_IDEMPOTENT, 971 rfs3_commit_getfh}, 972 }; 973 974 static char *rfscallnames_v4[] = { 975 "RFS4_NULL", 976 "RFS4_COMPOUND", 977 "RFS4_NULL", 978 "RFS4_NULL", 979 "RFS4_NULL", 980 "RFS4_NULL", 981 "RFS4_NULL", 982 "RFS4_NULL", 983 "RFS4_CREATE" 984 }; 985 986 static struct rpcdisp rfsdisptab_v4[] = { 987 /* 988 * NFS VERSION 4 989 */ 990 991 /* RFS_NULL = 0 */ 992 {rpc_null, 993 xdr_void, NULL_xdrproc_t, 0, 994 xdr_void, NULL_xdrproc_t, 0, 995 nullfree, RPC_IDEMPOTENT, 0}, 996 997 /* RFS4_compound = 1 */ 998 {rfs4_compound, 999 xdr_COMPOUND4args_srv, NULL_xdrproc_t, sizeof (COMPOUND4args), 1000 xdr_COMPOUND4res_srv, NULL_xdrproc_t, sizeof (COMPOUND4res), 1001 rfs4_compound_free, 0, 0}, 1002 }; 1003 1004 union rfs_args { 1005 /* 1006 * NFS VERSION 2 1007 */ 1008 1009 /* RFS_NULL = 0 */ 1010 1011 /* RFS_GETATTR = 1 */ 1012 fhandle_t nfs2_getattr_args; 1013 1014 /* RFS_SETATTR = 2 */ 1015 struct nfssaargs nfs2_setattr_args; 1016 1017 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1018 1019 /* RFS_LOOKUP = 4 */ 1020 struct nfsdiropargs nfs2_lookup_args; 1021 1022 /* RFS_READLINK = 5 */ 1023 fhandle_t nfs2_readlink_args; 1024 1025 /* RFS_READ = 6 */ 1026 struct nfsreadargs nfs2_read_args; 1027 1028 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1029 1030 /* RFS_WRITE = 8 */ 1031 struct nfswriteargs nfs2_write_args; 1032 1033 /* RFS_CREATE = 9 */ 1034 struct nfscreatargs nfs2_create_args; 1035 1036 /* RFS_REMOVE = 10 */ 1037 struct nfsdiropargs nfs2_remove_args; 1038 1039 /* RFS_RENAME = 11 */ 1040 struct nfsrnmargs nfs2_rename_args; 1041 1042 /* RFS_LINK = 12 */ 1043 struct nfslinkargs nfs2_link_args; 1044 1045 /* RFS_SYMLINK = 13 */ 1046 struct nfsslargs nfs2_symlink_args; 1047 1048 /* RFS_MKDIR = 14 */ 1049 struct nfscreatargs nfs2_mkdir_args; 1050 1051 /* RFS_RMDIR = 15 */ 1052 struct nfsdiropargs nfs2_rmdir_args; 1053 1054 /* RFS_READDIR = 16 */ 1055 struct nfsrddirargs nfs2_readdir_args; 1056 1057 /* RFS_STATFS = 17 */ 1058 fhandle_t nfs2_statfs_args; 1059 1060 /* 1061 * NFS VERSION 3 1062 */ 1063 1064 /* RFS_NULL = 0 */ 1065 1066 /* RFS3_GETATTR = 1 */ 1067 GETATTR3args nfs3_getattr_args; 1068 1069 /* RFS3_SETATTR = 2 */ 1070 SETATTR3args nfs3_setattr_args; 1071 1072 /* RFS3_LOOKUP = 3 */ 1073 LOOKUP3args nfs3_lookup_args; 1074 1075 /* RFS3_ACCESS = 4 */ 1076 ACCESS3args nfs3_access_args; 1077 1078 /* RFS3_READLINK = 5 */ 1079 READLINK3args nfs3_readlink_args; 1080 1081 /* RFS3_READ = 6 */ 1082 READ3args nfs3_read_args; 1083 1084 /* RFS3_WRITE = 7 */ 1085 WRITE3args nfs3_write_args; 1086 1087 /* RFS3_CREATE = 8 */ 1088 CREATE3args nfs3_create_args; 1089 1090 /* RFS3_MKDIR = 9 */ 1091 MKDIR3args nfs3_mkdir_args; 1092 1093 /* RFS3_SYMLINK = 10 */ 1094 SYMLINK3args nfs3_symlink_args; 1095 1096 /* RFS3_MKNOD = 11 */ 1097 MKNOD3args nfs3_mknod_args; 1098 1099 /* RFS3_REMOVE = 12 */ 1100 REMOVE3args nfs3_remove_args; 1101 1102 /* RFS3_RMDIR = 13 */ 1103 RMDIR3args nfs3_rmdir_args; 1104 1105 /* RFS3_RENAME = 14 */ 1106 RENAME3args nfs3_rename_args; 1107 1108 /* RFS3_LINK = 15 */ 1109 LINK3args nfs3_link_args; 1110 1111 /* RFS3_READDIR = 16 */ 1112 READDIR3args nfs3_readdir_args; 1113 1114 /* RFS3_READDIRPLUS = 17 */ 1115 READDIRPLUS3args nfs3_readdirplus_args; 1116 1117 /* RFS3_FSSTAT = 18 */ 1118 FSSTAT3args nfs3_fsstat_args; 1119 1120 /* RFS3_FSINFO = 19 */ 1121 FSINFO3args nfs3_fsinfo_args; 1122 1123 /* RFS3_PATHCONF = 20 */ 1124 PATHCONF3args nfs3_pathconf_args; 1125 1126 /* RFS3_COMMIT = 21 */ 1127 COMMIT3args nfs3_commit_args; 1128 1129 /* 1130 * NFS VERSION 4 1131 */ 1132 1133 /* RFS_NULL = 0 */ 1134 1135 /* COMPUND = 1 */ 1136 COMPOUND4args nfs4_compound_args; 1137 }; 1138 1139 union rfs_res { 1140 /* 1141 * NFS VERSION 2 1142 */ 1143 1144 /* RFS_NULL = 0 */ 1145 1146 /* RFS_GETATTR = 1 */ 1147 struct nfsattrstat nfs2_getattr_res; 1148 1149 /* RFS_SETATTR = 2 */ 1150 struct nfsattrstat nfs2_setattr_res; 1151 1152 /* RFS_ROOT = 3 *** NO LONGER SUPPORTED *** */ 1153 1154 /* RFS_LOOKUP = 4 */ 1155 struct nfsdiropres nfs2_lookup_res; 1156 1157 /* RFS_READLINK = 5 */ 1158 struct nfsrdlnres nfs2_readlink_res; 1159 1160 /* RFS_READ = 6 */ 1161 struct nfsrdresult nfs2_read_res; 1162 1163 /* RFS_WRITECACHE = 7 *** NO LONGER SUPPORTED *** */ 1164 1165 /* RFS_WRITE = 8 */ 1166 struct nfsattrstat nfs2_write_res; 1167 1168 /* RFS_CREATE = 9 */ 1169 struct nfsdiropres nfs2_create_res; 1170 1171 /* RFS_REMOVE = 10 */ 1172 enum nfsstat nfs2_remove_res; 1173 1174 /* RFS_RENAME = 11 */ 1175 enum nfsstat nfs2_rename_res; 1176 1177 /* RFS_LINK = 12 */ 1178 enum nfsstat nfs2_link_res; 1179 1180 /* RFS_SYMLINK = 13 */ 1181 enum nfsstat nfs2_symlink_res; 1182 1183 /* RFS_MKDIR = 14 */ 1184 struct nfsdiropres nfs2_mkdir_res; 1185 1186 /* RFS_RMDIR = 15 */ 1187 enum nfsstat nfs2_rmdir_res; 1188 1189 /* RFS_READDIR = 16 */ 1190 struct nfsrddirres nfs2_readdir_res; 1191 1192 /* RFS_STATFS = 17 */ 1193 struct nfsstatfs nfs2_statfs_res; 1194 1195 /* 1196 * NFS VERSION 3 1197 */ 1198 1199 /* RFS_NULL = 0 */ 1200 1201 /* RFS3_GETATTR = 1 */ 1202 GETATTR3res nfs3_getattr_res; 1203 1204 /* RFS3_SETATTR = 2 */ 1205 SETATTR3res nfs3_setattr_res; 1206 1207 /* RFS3_LOOKUP = 3 */ 1208 LOOKUP3res nfs3_lookup_res; 1209 1210 /* RFS3_ACCESS = 4 */ 1211 ACCESS3res nfs3_access_res; 1212 1213 /* RFS3_READLINK = 5 */ 1214 READLINK3res nfs3_readlink_res; 1215 1216 /* RFS3_READ = 6 */ 1217 READ3res nfs3_read_res; 1218 1219 /* RFS3_WRITE = 7 */ 1220 WRITE3res nfs3_write_res; 1221 1222 /* RFS3_CREATE = 8 */ 1223 CREATE3res nfs3_create_res; 1224 1225 /* RFS3_MKDIR = 9 */ 1226 MKDIR3res nfs3_mkdir_res; 1227 1228 /* RFS3_SYMLINK = 10 */ 1229 SYMLINK3res nfs3_symlink_res; 1230 1231 /* RFS3_MKNOD = 11 */ 1232 MKNOD3res nfs3_mknod_res; 1233 1234 /* RFS3_REMOVE = 12 */ 1235 REMOVE3res nfs3_remove_res; 1236 1237 /* RFS3_RMDIR = 13 */ 1238 RMDIR3res nfs3_rmdir_res; 1239 1240 /* RFS3_RENAME = 14 */ 1241 RENAME3res nfs3_rename_res; 1242 1243 /* RFS3_LINK = 15 */ 1244 LINK3res nfs3_link_res; 1245 1246 /* RFS3_READDIR = 16 */ 1247 READDIR3res nfs3_readdir_res; 1248 1249 /* RFS3_READDIRPLUS = 17 */ 1250 READDIRPLUS3res nfs3_readdirplus_res; 1251 1252 /* RFS3_FSSTAT = 18 */ 1253 FSSTAT3res nfs3_fsstat_res; 1254 1255 /* RFS3_FSINFO = 19 */ 1256 FSINFO3res nfs3_fsinfo_res; 1257 1258 /* RFS3_PATHCONF = 20 */ 1259 PATHCONF3res nfs3_pathconf_res; 1260 1261 /* RFS3_COMMIT = 21 */ 1262 COMMIT3res nfs3_commit_res; 1263 1264 /* 1265 * NFS VERSION 4 1266 */ 1267 1268 /* RFS_NULL = 0 */ 1269 1270 /* RFS4_COMPOUND = 1 */ 1271 COMPOUND4res nfs4_compound_res; 1272 1273 }; 1274 1275 static struct rpc_disptable rfs_disptable[] = { 1276 {sizeof (rfsdisptab_v2) / sizeof (rfsdisptab_v2[0]), 1277 rfscallnames_v2, 1278 &rfsproccnt_v2_ptr, rfsdisptab_v2}, 1279 {sizeof (rfsdisptab_v3) / sizeof (rfsdisptab_v3[0]), 1280 rfscallnames_v3, 1281 &rfsproccnt_v3_ptr, rfsdisptab_v3}, 1282 {sizeof (rfsdisptab_v4) / sizeof (rfsdisptab_v4[0]), 1283 rfscallnames_v4, 1284 &rfsproccnt_v4_ptr, rfsdisptab_v4}, 1285 }; 1286 1287 /* 1288 * If nfs_portmon is set, then clients are required to use privileged 1289 * ports (ports < IPPORT_RESERVED) in order to get NFS services. 1290 * 1291 * N.B.: this attempt to carry forward the already ill-conceived notion 1292 * of privileged ports for TCP/UDP is really quite ineffectual. Not only 1293 * is it transport-dependent, it's laughably easy to spoof. If you're 1294 * really interested in security, you must start with secure RPC instead. 1295 */ 1296 static int nfs_portmon = 0; 1297 1298 #ifdef DEBUG 1299 static int cred_hits = 0; 1300 static int cred_misses = 0; 1301 #endif 1302 1303 1304 #ifdef DEBUG 1305 /* 1306 * Debug code to allow disabling of rfs_dispatch() use of 1307 * fastxdrargs() and fastxdrres() calls for testing purposes. 1308 */ 1309 static int rfs_no_fast_xdrargs = 0; 1310 static int rfs_no_fast_xdrres = 0; 1311 #endif 1312 1313 union acl_args { 1314 /* 1315 * ACL VERSION 2 1316 */ 1317 1318 /* ACL2_NULL = 0 */ 1319 1320 /* ACL2_GETACL = 1 */ 1321 GETACL2args acl2_getacl_args; 1322 1323 /* ACL2_SETACL = 2 */ 1324 SETACL2args acl2_setacl_args; 1325 1326 /* ACL2_GETATTR = 3 */ 1327 GETATTR2args acl2_getattr_args; 1328 1329 /* ACL2_ACCESS = 4 */ 1330 ACCESS2args acl2_access_args; 1331 1332 /* ACL2_GETXATTRDIR = 5 */ 1333 GETXATTRDIR2args acl2_getxattrdir_args; 1334 1335 /* 1336 * ACL VERSION 3 1337 */ 1338 1339 /* ACL3_NULL = 0 */ 1340 1341 /* ACL3_GETACL = 1 */ 1342 GETACL3args acl3_getacl_args; 1343 1344 /* ACL3_SETACL = 2 */ 1345 SETACL3args acl3_setacl; 1346 1347 /* ACL3_GETXATTRDIR = 3 */ 1348 GETXATTRDIR3args acl3_getxattrdir_args; 1349 1350 }; 1351 1352 union acl_res { 1353 /* 1354 * ACL VERSION 2 1355 */ 1356 1357 /* ACL2_NULL = 0 */ 1358 1359 /* ACL2_GETACL = 1 */ 1360 GETACL2res acl2_getacl_res; 1361 1362 /* ACL2_SETACL = 2 */ 1363 SETACL2res acl2_setacl_res; 1364 1365 /* ACL2_GETATTR = 3 */ 1366 GETATTR2res acl2_getattr_res; 1367 1368 /* ACL2_ACCESS = 4 */ 1369 ACCESS2res acl2_access_res; 1370 1371 /* ACL2_GETXATTRDIR = 5 */ 1372 GETXATTRDIR2args acl2_getxattrdir_res; 1373 1374 /* 1375 * ACL VERSION 3 1376 */ 1377 1378 /* ACL3_NULL = 0 */ 1379 1380 /* ACL3_GETACL = 1 */ 1381 GETACL3res acl3_getacl_res; 1382 1383 /* ACL3_SETACL = 2 */ 1384 SETACL3res acl3_setacl_res; 1385 1386 /* ACL3_GETXATTRDIR = 3 */ 1387 GETXATTRDIR3res acl3_getxattrdir_res; 1388 1389 }; 1390 1391 static bool_t 1392 auth_tooweak(struct svc_req *req, char *res) 1393 { 1394 1395 if (req->rq_vers == NFS_VERSION && req->rq_proc == RFS_LOOKUP) { 1396 struct nfsdiropres *dr = (struct nfsdiropres *)res; 1397 if (dr->dr_status == WNFSERR_CLNT_FLAVOR) 1398 return (TRUE); 1399 } else if (req->rq_vers == NFS_V3 && req->rq_proc == NFSPROC3_LOOKUP) { 1400 LOOKUP3res *resp = (LOOKUP3res *)res; 1401 if (resp->status == WNFSERR_CLNT_FLAVOR) 1402 return (TRUE); 1403 } 1404 return (FALSE); 1405 } 1406 1407 1408 static void 1409 common_dispatch(struct svc_req *req, SVCXPRT *xprt, rpcvers_t min_vers, 1410 rpcvers_t max_vers, char *pgmname, 1411 struct rpc_disptable *disptable) 1412 { 1413 int which; 1414 rpcvers_t vers; 1415 char *args; 1416 union { 1417 union rfs_args ra; 1418 union acl_args aa; 1419 } args_buf; 1420 char *res; 1421 union { 1422 union rfs_res rr; 1423 union acl_res ar; 1424 } res_buf; 1425 struct rpcdisp *disp = NULL; 1426 int dis_flags = 0; 1427 cred_t *cr; 1428 int error = 0; 1429 int anon_ok; 1430 struct exportinfo *exi = NULL; 1431 unsigned int nfslog_rec_id; 1432 int dupstat; 1433 struct dupreq *dr; 1434 int authres; 1435 bool_t publicfh_ok = FALSE; 1436 enum_t auth_flavor; 1437 bool_t dupcached = FALSE; 1438 struct netbuf nb; 1439 bool_t logging_enabled = FALSE; 1440 struct exportinfo *nfslog_exi = NULL; 1441 char **procnames; 1442 char cbuf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1443 1444 vers = req->rq_vers; 1445 1446 if (vers < min_vers || vers > max_vers) { 1447 svcerr_progvers(req->rq_xprt, min_vers, max_vers); 1448 error++; 1449 cmn_err(CE_NOTE, "%s: bad version number %u", pgmname, vers); 1450 goto done; 1451 } 1452 vers -= min_vers; 1453 1454 which = req->rq_proc; 1455 if (which < 0 || which >= disptable[(int)vers].dis_nprocs) { 1456 svcerr_noproc(req->rq_xprt); 1457 error++; 1458 goto done; 1459 } 1460 1461 (*(disptable[(int)vers].dis_proccntp))[which].value.ui64++; 1462 1463 disp = &disptable[(int)vers].dis_table[which]; 1464 procnames = disptable[(int)vers].dis_procnames; 1465 1466 auth_flavor = req->rq_cred.oa_flavor; 1467 1468 /* 1469 * Deserialize into the args struct. 1470 */ 1471 args = (char *)&args_buf; 1472 1473 #ifdef DEBUG 1474 if (rfs_no_fast_xdrargs || (auth_flavor == RPCSEC_GSS) || 1475 disp->dis_fastxdrargs == NULL_xdrproc_t || 1476 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1477 #else 1478 if ((auth_flavor == RPCSEC_GSS) || 1479 disp->dis_fastxdrargs == NULL_xdrproc_t || 1480 !SVC_GETARGS(xprt, disp->dis_fastxdrargs, (char *)&args)) 1481 #endif 1482 { 1483 bzero(args, disp->dis_argsz); 1484 if (!SVC_GETARGS(xprt, disp->dis_xdrargs, args)) { 1485 error++; 1486 /* 1487 * Check if we are outside our capabilities. 1488 */ 1489 if (rfs4_minorvers_mismatch(req, xprt, (void *)args)) 1490 goto done; 1491 1492 svcerr_decode(xprt); 1493 cmn_err(CE_NOTE, 1494 "Failed to decode arguments for %s version %u " 1495 "procedure %s client %s%s", 1496 pgmname, vers + min_vers, procnames[which], 1497 client_name(req), client_addr(req, cbuf)); 1498 goto done; 1499 } 1500 } 1501 1502 /* 1503 * If Version 4 use that specific dispatch function. 1504 */ 1505 if (req->rq_vers == 4) { 1506 error += rfs4_dispatch(disp, req, xprt, args); 1507 goto done; 1508 } 1509 1510 dis_flags = disp->dis_flags; 1511 1512 /* 1513 * Find export information and check authentication, 1514 * setting the credential if everything is ok. 1515 */ 1516 if (disp->dis_getfh != NULL) { 1517 void *fh; 1518 fsid_t *fsid; 1519 fid_t *fid, *xfid; 1520 fhandle_t *fh2; 1521 nfs_fh3 *fh3; 1522 1523 fh = (*disp->dis_getfh)(args); 1524 switch (req->rq_vers) { 1525 case NFS_VERSION: 1526 fh2 = (fhandle_t *)fh; 1527 fsid = &fh2->fh_fsid; 1528 fid = (fid_t *)&fh2->fh_len; 1529 xfid = (fid_t *)&fh2->fh_xlen; 1530 break; 1531 case NFS_V3: 1532 fh3 = (nfs_fh3 *)fh; 1533 fsid = &fh3->fh3_fsid; 1534 fid = FH3TOFIDP(fh3); 1535 xfid = FH3TOXFIDP(fh3); 1536 break; 1537 } 1538 1539 /* 1540 * Fix for bug 1038302 - corbin 1541 * There is a problem here if anonymous access is 1542 * disallowed. If the current request is part of the 1543 * client's mount process for the requested filesystem, 1544 * then it will carry root (uid 0) credentials on it, and 1545 * will be denied by checkauth if that client does not 1546 * have explicit root=0 permission. This will cause the 1547 * client's mount operation to fail. As a work-around, 1548 * we check here to see if the request is a getattr or 1549 * statfs operation on the exported vnode itself, and 1550 * pass a flag to checkauth with the result of this test. 1551 * 1552 * The filehandle refers to the mountpoint itself if 1553 * the fh_data and fh_xdata portions of the filehandle 1554 * are equal. 1555 * 1556 * Added anon_ok argument to checkauth(). 1557 */ 1558 1559 if ((dis_flags & RPC_ALLOWANON) && EQFID(fid, xfid)) 1560 anon_ok = 1; 1561 else 1562 anon_ok = 0; 1563 1564 cr = xprt->xp_cred; 1565 ASSERT(cr != NULL); 1566 #ifdef DEBUG 1567 if (crgetref(cr) != 1) { 1568 crfree(cr); 1569 cr = crget(); 1570 xprt->xp_cred = cr; 1571 cred_misses++; 1572 } else 1573 cred_hits++; 1574 #else 1575 if (crgetref(cr) != 1) { 1576 crfree(cr); 1577 cr = crget(); 1578 xprt->xp_cred = cr; 1579 } 1580 #endif 1581 1582 exi = checkexport(fsid, xfid); 1583 1584 if (exi != NULL) { 1585 publicfh_ok = PUBLICFH_CHECK(disp, exi, fsid, xfid); 1586 1587 /* 1588 * Don't allow non-V4 clients access 1589 * to pseudo exports 1590 */ 1591 if (PSEUDO(exi)) { 1592 svcerr_weakauth(xprt); 1593 error++; 1594 goto done; 1595 } 1596 1597 authres = checkauth(exi, req, cr, anon_ok, publicfh_ok); 1598 /* 1599 * authres > 0: authentication OK - proceed 1600 * authres == 0: authentication weak - return error 1601 * authres < 0: authentication timeout - drop 1602 */ 1603 if (authres <= 0) { 1604 if (authres == 0) { 1605 svcerr_weakauth(xprt); 1606 error++; 1607 } 1608 goto done; 1609 } 1610 } 1611 } else 1612 cr = NULL; 1613 1614 if ((dis_flags & RPC_MAPRESP) && (auth_flavor != RPCSEC_GSS)) { 1615 res = (char *)SVC_GETRES(xprt, disp->dis_ressz); 1616 if (res == NULL) 1617 res = (char *)&res_buf; 1618 } else 1619 res = (char *)&res_buf; 1620 1621 if (!(dis_flags & RPC_IDEMPOTENT)) { 1622 dupstat = SVC_DUP_EXT(xprt, req, res, disp->dis_ressz, &dr, 1623 &dupcached); 1624 1625 switch (dupstat) { 1626 case DUP_ERROR: 1627 svcerr_systemerr(xprt); 1628 error++; 1629 goto done; 1630 /* NOTREACHED */ 1631 case DUP_INPROGRESS: 1632 if (res != (char *)&res_buf) 1633 SVC_FREERES(xprt); 1634 error++; 1635 goto done; 1636 /* NOTREACHED */ 1637 case DUP_NEW: 1638 case DUP_DROP: 1639 curthread->t_flag |= T_DONTPEND; 1640 1641 (*disp->dis_proc)(args, res, exi, req, cr); 1642 1643 curthread->t_flag &= ~T_DONTPEND; 1644 if (curthread->t_flag & T_WOULDBLOCK) { 1645 curthread->t_flag &= ~T_WOULDBLOCK; 1646 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1647 disp->dis_ressz, DUP_DROP); 1648 if (res != (char *)&res_buf) 1649 SVC_FREERES(xprt); 1650 error++; 1651 goto done; 1652 } 1653 if (dis_flags & RPC_AVOIDWORK) { 1654 SVC_DUPDONE_EXT(xprt, dr, res, NULL, 1655 disp->dis_ressz, DUP_DROP); 1656 } else { 1657 SVC_DUPDONE_EXT(xprt, dr, res, 1658 disp->dis_resfree == nullfree ? NULL : 1659 disp->dis_resfree, 1660 disp->dis_ressz, DUP_DONE); 1661 dupcached = TRUE; 1662 } 1663 break; 1664 case DUP_DONE: 1665 break; 1666 } 1667 1668 } else { 1669 curthread->t_flag |= T_DONTPEND; 1670 1671 (*disp->dis_proc)(args, res, exi, req, cr); 1672 1673 curthread->t_flag &= ~T_DONTPEND; 1674 if (curthread->t_flag & T_WOULDBLOCK) { 1675 curthread->t_flag &= ~T_WOULDBLOCK; 1676 if (res != (char *)&res_buf) 1677 SVC_FREERES(xprt); 1678 error++; 1679 goto done; 1680 } 1681 } 1682 1683 if (auth_tooweak(req, res)) { 1684 svcerr_weakauth(xprt); 1685 error++; 1686 goto done; 1687 } 1688 1689 /* 1690 * Check to see if logging has been enabled on the server. 1691 * If so, then obtain the export info struct to be used for 1692 * the later writing of the log record. This is done for 1693 * the case that a lookup is done across a non-logged public 1694 * file system. 1695 */ 1696 if (nfslog_buffer_list != NULL) { 1697 nfslog_exi = nfslog_get_exi(exi, req, res, &nfslog_rec_id); 1698 /* 1699 * Is logging enabled? 1700 */ 1701 logging_enabled = (nfslog_exi != NULL); 1702 1703 /* 1704 * Copy the netbuf for logging purposes, before it is 1705 * freed by svc_sendreply(). 1706 */ 1707 if (logging_enabled) { 1708 NFSLOG_COPY_NETBUF(nfslog_exi, xprt, &nb); 1709 /* 1710 * If RPC_MAPRESP flag set (i.e. in V2 ops) the 1711 * res gets copied directly into the mbuf and 1712 * may be freed soon after the sendreply. So we 1713 * must copy it here to a safe place... 1714 */ 1715 if (res != (char *)&res_buf) { 1716 bcopy(res, (char *)&res_buf, disp->dis_ressz); 1717 } 1718 } 1719 } 1720 1721 /* 1722 * Serialize and send results struct 1723 */ 1724 #ifdef DEBUG 1725 if (rfs_no_fast_xdrres == 0 && res != (char *)&res_buf) 1726 #else 1727 if (res != (char *)&res_buf) 1728 #endif 1729 { 1730 if (!svc_sendreply(xprt, disp->dis_fastxdrres, res)) { 1731 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1732 error++; 1733 } 1734 } else { 1735 if (!svc_sendreply(xprt, disp->dis_xdrres, res)) { 1736 cmn_err(CE_NOTE, "%s: bad sendreply", pgmname); 1737 error++; 1738 } 1739 } 1740 1741 /* 1742 * Log if needed 1743 */ 1744 if (logging_enabled) { 1745 nfslog_write_record(nfslog_exi, req, args, (char *)&res_buf, 1746 cr, &nb, nfslog_rec_id, NFSLOG_ONE_BUFFER); 1747 exi_rele(nfslog_exi); 1748 kmem_free((&nb)->buf, (&nb)->len); 1749 } 1750 1751 /* 1752 * Free results struct. With the addition of NFS V4 we can 1753 * have non-idempotent procedures with functions. 1754 */ 1755 if (disp->dis_resfree != nullfree && dupcached == FALSE) { 1756 (*disp->dis_resfree)(res); 1757 } 1758 1759 done: 1760 /* 1761 * Free arguments struct 1762 */ 1763 if (disp) { 1764 if (!SVC_FREEARGS(xprt, disp->dis_xdrargs, args)) { 1765 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1766 error++; 1767 } 1768 } else { 1769 if (!SVC_FREEARGS(xprt, (xdrproc_t)0, (caddr_t)0)) { 1770 cmn_err(CE_NOTE, "%s: bad freeargs", pgmname); 1771 error++; 1772 } 1773 } 1774 1775 if (exi != NULL) 1776 exi_rele(exi); 1777 1778 global_svstat_ptr[req->rq_vers][NFS_BADCALLS].value.ui64 += error; 1779 1780 global_svstat_ptr[req->rq_vers][NFS_CALLS].value.ui64++; 1781 } 1782 1783 static void 1784 rfs_dispatch(struct svc_req *req, SVCXPRT *xprt) 1785 { 1786 common_dispatch(req, xprt, NFS_VERSMIN, NFS_VERSMAX, 1787 "NFS", rfs_disptable); 1788 } 1789 1790 static char *aclcallnames_v2[] = { 1791 "ACL2_NULL", 1792 "ACL2_GETACL", 1793 "ACL2_SETACL", 1794 "ACL2_GETATTR", 1795 "ACL2_ACCESS", 1796 "ACL2_GETXATTRDIR" 1797 }; 1798 1799 static struct rpcdisp acldisptab_v2[] = { 1800 /* 1801 * ACL VERSION 2 1802 */ 1803 1804 /* ACL2_NULL = 0 */ 1805 {rpc_null, 1806 xdr_void, NULL_xdrproc_t, 0, 1807 xdr_void, NULL_xdrproc_t, 0, 1808 nullfree, RPC_IDEMPOTENT, 1809 0}, 1810 1811 /* ACL2_GETACL = 1 */ 1812 {acl2_getacl, 1813 xdr_GETACL2args, xdr_fastGETACL2args, sizeof (GETACL2args), 1814 xdr_GETACL2res, NULL_xdrproc_t, sizeof (GETACL2res), 1815 acl2_getacl_free, RPC_IDEMPOTENT, 1816 acl2_getacl_getfh}, 1817 1818 /* ACL2_SETACL = 2 */ 1819 {acl2_setacl, 1820 xdr_SETACL2args, NULL_xdrproc_t, sizeof (SETACL2args), 1821 #ifdef _LITTLE_ENDIAN 1822 xdr_SETACL2res, xdr_fastSETACL2res, sizeof (SETACL2res), 1823 #else 1824 xdr_SETACL2res, NULL_xdrproc_t, sizeof (SETACL2res), 1825 #endif 1826 nullfree, RPC_MAPRESP, 1827 acl2_setacl_getfh}, 1828 1829 /* ACL2_GETATTR = 3 */ 1830 {acl2_getattr, 1831 xdr_GETATTR2args, xdr_fastGETATTR2args, sizeof (GETATTR2args), 1832 #ifdef _LITTLE_ENDIAN 1833 xdr_GETATTR2res, xdr_fastGETATTR2res, sizeof (GETATTR2res), 1834 #else 1835 xdr_GETATTR2res, NULL_xdrproc_t, sizeof (GETATTR2res), 1836 #endif 1837 nullfree, RPC_IDEMPOTENT|RPC_ALLOWANON|RPC_MAPRESP, 1838 acl2_getattr_getfh}, 1839 1840 /* ACL2_ACCESS = 4 */ 1841 {acl2_access, 1842 xdr_ACCESS2args, xdr_fastACCESS2args, sizeof (ACCESS2args), 1843 #ifdef _LITTLE_ENDIAN 1844 xdr_ACCESS2res, xdr_fastACCESS2res, sizeof (ACCESS2res), 1845 #else 1846 xdr_ACCESS2res, NULL_xdrproc_t, sizeof (ACCESS2res), 1847 #endif 1848 nullfree, RPC_IDEMPOTENT|RPC_MAPRESP, 1849 acl2_access_getfh}, 1850 1851 /* ACL2_GETXATTRDIR = 5 */ 1852 {acl2_getxattrdir, 1853 xdr_GETXATTRDIR2args, NULL_xdrproc_t, sizeof (GETXATTRDIR2args), 1854 xdr_GETXATTRDIR2res, NULL_xdrproc_t, sizeof (GETXATTRDIR2res), 1855 nullfree, RPC_IDEMPOTENT, 1856 acl2_getxattrdir_getfh}, 1857 }; 1858 1859 static char *aclcallnames_v3[] = { 1860 "ACL3_NULL", 1861 "ACL3_GETACL", 1862 "ACL3_SETACL", 1863 "ACL3_GETXATTRDIR" 1864 }; 1865 1866 static struct rpcdisp acldisptab_v3[] = { 1867 /* 1868 * ACL VERSION 3 1869 */ 1870 1871 /* ACL3_NULL = 0 */ 1872 {rpc_null, 1873 xdr_void, NULL_xdrproc_t, 0, 1874 xdr_void, NULL_xdrproc_t, 0, 1875 nullfree, RPC_IDEMPOTENT, 1876 0}, 1877 1878 /* ACL3_GETACL = 1 */ 1879 {acl3_getacl, 1880 xdr_GETACL3args, NULL_xdrproc_t, sizeof (GETACL3args), 1881 xdr_GETACL3res, NULL_xdrproc_t, sizeof (GETACL3res), 1882 acl3_getacl_free, RPC_IDEMPOTENT, 1883 acl3_getacl_getfh}, 1884 1885 /* ACL3_SETACL = 2 */ 1886 {acl3_setacl, 1887 xdr_SETACL3args, NULL_xdrproc_t, sizeof (SETACL3args), 1888 xdr_SETACL3res, NULL_xdrproc_t, sizeof (SETACL3res), 1889 nullfree, 0, 1890 acl3_setacl_getfh}, 1891 1892 /* ACL3_GETXATTRDIR = 3 */ 1893 {acl3_getxattrdir, 1894 xdr_GETXATTRDIR3args, NULL_xdrproc_t, sizeof (GETXATTRDIR3args), 1895 xdr_GETXATTRDIR3res, NULL_xdrproc_t, sizeof (GETXATTRDIR3res), 1896 nullfree, RPC_IDEMPOTENT, 1897 acl3_getxattrdir_getfh}, 1898 }; 1899 1900 static struct rpc_disptable acl_disptable[] = { 1901 {sizeof (acldisptab_v2) / sizeof (acldisptab_v2[0]), 1902 aclcallnames_v2, 1903 &aclproccnt_v2_ptr, acldisptab_v2}, 1904 {sizeof (acldisptab_v3) / sizeof (acldisptab_v3[0]), 1905 aclcallnames_v3, 1906 &aclproccnt_v3_ptr, acldisptab_v3}, 1907 }; 1908 1909 static void 1910 acl_dispatch(struct svc_req *req, SVCXPRT *xprt) 1911 { 1912 common_dispatch(req, xprt, NFS_ACL_VERSMIN, NFS_ACL_VERSMAX, 1913 "ACL", acl_disptable); 1914 } 1915 1916 int 1917 checkwin(int flavor, int window, struct svc_req *req) 1918 { 1919 struct authdes_cred *adc; 1920 1921 switch (flavor) { 1922 case AUTH_DES: 1923 adc = (struct authdes_cred *)req->rq_clntcred; 1924 if (adc->adc_fullname.window > window) 1925 return (0); 1926 break; 1927 1928 default: 1929 break; 1930 } 1931 return (1); 1932 } 1933 1934 1935 /* 1936 * checkauth() will check the access permission against the export 1937 * information. Then map root uid/gid to appropriate uid/gid. 1938 * 1939 * This routine is used by NFS V3 and V2 code. 1940 */ 1941 static int 1942 checkauth(struct exportinfo *exi, struct svc_req *req, cred_t *cr, int anon_ok, 1943 bool_t publicfh_ok) 1944 { 1945 int i, nfsflavor, rpcflavor, stat, access; 1946 struct secinfo *secp; 1947 caddr_t principal; 1948 char buf[INET6_ADDRSTRLEN]; /* to hold both IPv4 and IPv6 addr */ 1949 int anon_res = 0; 1950 1951 /* 1952 * Check for privileged port number 1953 * N.B.: this assumes that we know the format of a netbuf. 1954 */ 1955 if (nfs_portmon) { 1956 struct sockaddr *ca; 1957 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 1958 1959 if (ca == NULL) 1960 return (0); 1961 1962 if ((ca->sa_family == AF_INET && 1963 ntohs(((struct sockaddr_in *)ca)->sin_port) >= 1964 IPPORT_RESERVED) || 1965 (ca->sa_family == AF_INET6 && 1966 ntohs(((struct sockaddr_in6 *)ca)->sin6_port) >= 1967 IPPORT_RESERVED)) { 1968 cmn_err(CE_NOTE, 1969 "nfs_server: client %s%ssent NFS request from " 1970 "unprivileged port", 1971 client_name(req), client_addr(req, buf)); 1972 return (0); 1973 } 1974 } 1975 1976 /* 1977 * return 1 on success or 0 on failure 1978 */ 1979 stat = sec_svc_getcred(req, cr, &principal, &nfsflavor); 1980 1981 /* 1982 * A failed AUTH_UNIX svc_get_cred() implies we couldn't set 1983 * the credentials; below we map that to anonymous. 1984 */ 1985 if (!stat && nfsflavor != AUTH_UNIX) { 1986 cmn_err(CE_NOTE, 1987 "nfs_server: couldn't get unix cred for %s", 1988 client_name(req)); 1989 return (0); 1990 } 1991 1992 /* 1993 * Short circuit checkauth() on operations that support the 1994 * public filehandle, and if the request for that operation 1995 * is using the public filehandle. Note that we must call 1996 * sec_svc_getcred() first so that xp_cookie is set to the 1997 * right value. Normally xp_cookie is just the RPC flavor 1998 * of the the request, but in the case of RPCSEC_GSS it 1999 * could be a pseudo flavor. 2000 */ 2001 if (publicfh_ok) 2002 return (1); 2003 2004 rpcflavor = req->rq_cred.oa_flavor; 2005 /* 2006 * Check if the auth flavor is valid for this export 2007 */ 2008 access = nfsauth_access(exi, req); 2009 if (access & NFSAUTH_DROP) 2010 return (-1); /* drop the request */ 2011 2012 if (access & NFSAUTH_DENIED) { 2013 /* 2014 * If anon_ok == 1 and we got NFSAUTH_DENIED, it was 2015 * probably due to the flavor not matching during the 2016 * the mount attempt. So map the flavor to AUTH_NONE 2017 * so that the credentials get mapped to the anonymous 2018 * user. 2019 */ 2020 if (anon_ok == 1) 2021 rpcflavor = AUTH_NONE; 2022 else 2023 return (0); /* deny access */ 2024 2025 } else if (access & NFSAUTH_MAPNONE) { 2026 /* 2027 * Access was granted even though the flavor mismatched 2028 * because AUTH_NONE was one of the exported flavors. 2029 */ 2030 rpcflavor = AUTH_NONE; 2031 2032 } else if (access & NFSAUTH_WRONGSEC) { 2033 /* 2034 * NFSAUTH_WRONGSEC is used for NFSv4. Since V2/V3 already 2035 * negotiates the security flavor thru MOUNT protocol, the 2036 * only way it can get NFSAUTH_WRONGSEC here is from 2037 * NFS_ACL for V4. This could be for a limited view, so 2038 * map it to RO access. V4 lookup/readdir will take care 2039 * of the limited view portion. 2040 */ 2041 access |= NFSAUTH_RO; 2042 access &= ~NFSAUTH_WRONGSEC; 2043 } 2044 2045 switch (rpcflavor) { 2046 case AUTH_NONE: 2047 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2048 exi->exi_export.ex_anon); 2049 (void) crsetgroups(cr, 0, NULL); 2050 break; 2051 2052 case AUTH_UNIX: 2053 if (!stat || crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2054 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2055 exi->exi_export.ex_anon); 2056 (void) crsetgroups(cr, 0, NULL); 2057 } 2058 break; 2059 2060 case AUTH_DES: 2061 case RPCSEC_GSS: 2062 /* 2063 * Find the secinfo structure. We should be able 2064 * to find it by the time we reach here. 2065 * nfsauth_access() has done the checking. 2066 */ 2067 secp = NULL; 2068 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2069 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2070 nfsflavor) { 2071 secp = &exi->exi_export.ex_secinfo[i]; 2072 break; 2073 } 2074 } 2075 2076 if (!secp) { 2077 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2078 "no secinfo data for flavor %d", 2079 client_name(req), client_addr(req, buf), 2080 nfsflavor); 2081 return (0); 2082 } 2083 2084 if (!checkwin(rpcflavor, secp->s_window, req)) { 2085 cmn_err(CE_NOTE, 2086 "nfs_server: client %s%sused invalid " 2087 "auth window value", 2088 client_name(req), client_addr(req, buf)); 2089 return (0); 2090 } 2091 2092 /* 2093 * Map root principals listed in the share's root= list to root, 2094 * and map any others principals that were mapped to root by RPC 2095 * to anon. 2096 */ 2097 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2098 secp->s_rootcnt, secp->s_rootnames)) { 2099 if (crgetuid(cr) == 0) 2100 return (1); 2101 2102 (void) crsetugid(cr, 0, 0); 2103 2104 /* 2105 * NOTE: If and when kernel-land privilege tracing is 2106 * added this may have to be replaced with code that 2107 * retrieves root's supplementary groups (e.g., using 2108 * kgss_get_group_info(). In the meantime principals 2109 * mapped to uid 0 get all privileges, so setting cr's 2110 * supplementary groups for them does nothing. 2111 */ 2112 (void) crsetgroups(cr, 0, NULL); 2113 2114 return (1); 2115 } 2116 2117 /* 2118 * Not a root princ, or not in root list, map UID 0/nobody to 2119 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2120 * UID_NOBODY and GID_NOBODY, respectively.) 2121 */ 2122 if (crgetuid(cr) != 0 && 2123 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2124 return (1); 2125 2126 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2127 exi->exi_export.ex_anon); 2128 (void) crsetgroups(cr, 0, NULL); 2129 break; 2130 default: 2131 return (0); 2132 } /* switch on rpcflavor */ 2133 2134 /* 2135 * Even if anon access is disallowed via ex_anon == -1, we allow 2136 * this access if anon_ok is set. So set creds to the default 2137 * "nobody" id. 2138 */ 2139 if (anon_res != 0) { 2140 if (anon_ok == 0) { 2141 cmn_err(CE_NOTE, 2142 "nfs_server: client %s%ssent wrong " 2143 "authentication for %s", 2144 client_name(req), client_addr(req, buf), 2145 exi->exi_export.ex_path ? 2146 exi->exi_export.ex_path : "?"); 2147 return (0); 2148 } 2149 2150 if (crsetugid(cr, UID_NOBODY, GID_NOBODY) != 0) 2151 return (0); 2152 } 2153 2154 return (1); 2155 } 2156 2157 /* 2158 * returns 0 on failure, -1 on a drop, -2 on wrong security flavor, 2159 * and 1 on success 2160 */ 2161 int 2162 checkauth4(struct compound_state *cs, struct svc_req *req) 2163 { 2164 int i, rpcflavor, access; 2165 struct secinfo *secp; 2166 char buf[MAXHOST + 1]; 2167 int anon_res = 0, nfsflavor; 2168 struct exportinfo *exi; 2169 cred_t *cr; 2170 caddr_t principal; 2171 2172 exi = cs->exi; 2173 cr = cs->cr; 2174 principal = cs->principal; 2175 nfsflavor = cs->nfsflavor; 2176 2177 ASSERT(cr != NULL); 2178 2179 rpcflavor = req->rq_cred.oa_flavor; 2180 cs->access &= ~CS_ACCESS_LIMITED; 2181 2182 /* 2183 * Check the access right per auth flavor on the vnode of 2184 * this export for the given request. 2185 */ 2186 access = nfsauth4_access(cs->exi, cs->vp, req); 2187 2188 if (access & NFSAUTH_WRONGSEC) 2189 return (-2); /* no access for this security flavor */ 2190 2191 if (access & NFSAUTH_DROP) 2192 return (-1); /* drop the request */ 2193 2194 if (access & NFSAUTH_DENIED) { 2195 2196 if (exi->exi_export.ex_seccnt > 0) 2197 return (0); /* deny access */ 2198 2199 } else if (access & NFSAUTH_LIMITED) { 2200 2201 cs->access |= CS_ACCESS_LIMITED; 2202 2203 } else if (access & NFSAUTH_MAPNONE) { 2204 /* 2205 * Access was granted even though the flavor mismatched 2206 * because AUTH_NONE was one of the exported flavors. 2207 */ 2208 rpcflavor = AUTH_NONE; 2209 } 2210 2211 /* 2212 * XXX probably need to redo some of it for nfsv4? 2213 * return 1 on success or 0 on failure 2214 */ 2215 2216 switch (rpcflavor) { 2217 case AUTH_NONE: 2218 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2219 exi->exi_export.ex_anon); 2220 (void) crsetgroups(cr, 0, NULL); 2221 break; 2222 2223 case AUTH_UNIX: 2224 if (crgetuid(cr) == 0 && !(access & NFSAUTH_ROOT)) { 2225 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2226 exi->exi_export.ex_anon); 2227 (void) crsetgroups(cr, 0, NULL); 2228 } 2229 break; 2230 2231 default: 2232 /* 2233 * Find the secinfo structure. We should be able 2234 * to find it by the time we reach here. 2235 * nfsauth_access() has done the checking. 2236 */ 2237 secp = NULL; 2238 for (i = 0; i < exi->exi_export.ex_seccnt; i++) { 2239 if (exi->exi_export.ex_secinfo[i].s_secinfo.sc_nfsnum == 2240 nfsflavor) { 2241 secp = &exi->exi_export.ex_secinfo[i]; 2242 break; 2243 } 2244 } 2245 2246 if (!secp) { 2247 cmn_err(CE_NOTE, "nfs_server: client %s%shad " 2248 "no secinfo data for flavor %d", 2249 client_name(req), client_addr(req, buf), 2250 nfsflavor); 2251 return (0); 2252 } 2253 2254 if (!checkwin(rpcflavor, secp->s_window, req)) { 2255 cmn_err(CE_NOTE, 2256 "nfs_server: client %s%sused invalid " 2257 "auth window value", 2258 client_name(req), client_addr(req, buf)); 2259 return (0); 2260 } 2261 2262 /* 2263 * Map root principals listed in the share's root= list to root, 2264 * and map any others principals that were mapped to root by RPC 2265 * to anon. 2266 */ 2267 if (principal && sec_svc_inrootlist(rpcflavor, principal, 2268 secp->s_rootcnt, secp->s_rootnames)) { 2269 if (crgetuid(cr) == 0) 2270 return (1); 2271 2272 (void) crsetugid(cr, 0, 0); 2273 2274 /* 2275 * NOTE: If and when kernel-land privilege tracing is 2276 * added this may have to be replaced with code that 2277 * retrieves root's supplementary groups (e.g., using 2278 * kgss_get_group_info(). In the meantime principals 2279 * mapped to uid 0 get all privileges, so setting cr's 2280 * supplementary groups for them does nothing. 2281 */ 2282 (void) crsetgroups(cr, 0, NULL); 2283 2284 return (1); 2285 } 2286 2287 /* 2288 * Not a root princ, or not in root list, map UID 0/nobody to 2289 * the anon ID for the share. (RPC sets cr's UIDs and GIDs to 2290 * UID_NOBODY and GID_NOBODY, respectively.) 2291 */ 2292 if (crgetuid(cr) != 0 && 2293 (crgetuid(cr) != UID_NOBODY || crgetgid(cr) != GID_NOBODY)) 2294 return (1); 2295 2296 anon_res = crsetugid(cr, exi->exi_export.ex_anon, 2297 exi->exi_export.ex_anon); 2298 (void) crsetgroups(cr, 0, NULL); 2299 break; 2300 } /* switch on rpcflavor */ 2301 2302 /* 2303 * Even if anon access is disallowed via ex_anon == -1, we allow 2304 * this access if anon_ok is set. So set creds to the default 2305 * "nobody" id. 2306 */ 2307 2308 if (anon_res != 0) { 2309 cmn_err(CE_NOTE, 2310 "nfs_server: client %s%ssent wrong " 2311 "authentication for %s", 2312 client_name(req), client_addr(req, buf), 2313 exi->exi_export.ex_path ? 2314 exi->exi_export.ex_path : "?"); 2315 return (0); 2316 } 2317 2318 return (1); 2319 } 2320 2321 2322 static char * 2323 client_name(struct svc_req *req) 2324 { 2325 char *hostname = NULL; 2326 2327 /* 2328 * If it's a Unix cred then use the 2329 * hostname from the credential. 2330 */ 2331 if (req->rq_cred.oa_flavor == AUTH_UNIX) { 2332 hostname = ((struct authunix_parms *) 2333 req->rq_clntcred)->aup_machname; 2334 } 2335 if (hostname == NULL) 2336 hostname = ""; 2337 2338 return (hostname); 2339 } 2340 2341 static char * 2342 client_addr(struct svc_req *req, char *buf) 2343 { 2344 struct sockaddr *ca; 2345 uchar_t *b; 2346 char *frontspace = ""; 2347 2348 /* 2349 * We assume we are called in tandem with client_name and the 2350 * format string looks like "...client %s%sblah blah..." 2351 * 2352 * If it's a Unix cred then client_name returned 2353 * a host name, so we need insert a space between host name 2354 * and IP address. 2355 */ 2356 if (req->rq_cred.oa_flavor == AUTH_UNIX) 2357 frontspace = " "; 2358 2359 /* 2360 * Convert the caller's IP address to a dotted string 2361 */ 2362 ca = (struct sockaddr *)svc_getrpccaller(req->rq_xprt)->buf; 2363 2364 if (ca->sa_family == AF_INET) { 2365 b = (uchar_t *)&((struct sockaddr_in *)ca)->sin_addr; 2366 (void) sprintf(buf, "%s(%d.%d.%d.%d) ", frontspace, 2367 b[0] & 0xFF, b[1] & 0xFF, b[2] & 0xFF, b[3] & 0xFF); 2368 } else if (ca->sa_family == AF_INET6) { 2369 struct sockaddr_in6 *sin6; 2370 sin6 = (struct sockaddr_in6 *)ca; 2371 (void) kinet_ntop6((uchar_t *)&sin6->sin6_addr, 2372 buf, INET6_ADDRSTRLEN); 2373 2374 } else { 2375 2376 /* 2377 * No IP address to print. If there was a host name 2378 * printed, then we print a space. 2379 */ 2380 (void) sprintf(buf, frontspace); 2381 } 2382 2383 return (buf); 2384 } 2385 2386 /* 2387 * NFS Server initialization routine. This routine should only be called 2388 * once. It performs the following tasks: 2389 * - Call sub-initialization routines (localize access to variables) 2390 * - Initialize all locks 2391 * - initialize the version 3 write verifier 2392 */ 2393 int 2394 nfs_srvinit(void) 2395 { 2396 int error; 2397 2398 error = nfs_exportinit(); 2399 if (error != 0) 2400 return (error); 2401 error = rfs4_srvrinit(); 2402 if (error != 0) { 2403 nfs_exportfini(); 2404 return (error); 2405 } 2406 rfs_srvrinit(); 2407 rfs3_srvrinit(); 2408 nfsauth_init(); 2409 2410 /* Init the stuff to control start/stop */ 2411 nfs_server_upordown = NFS_SERVER_STOPPED; 2412 mutex_init(&nfs_server_upordown_lock, NULL, MUTEX_DEFAULT, NULL); 2413 cv_init(&nfs_server_upordown_cv, NULL, CV_DEFAULT, NULL); 2414 mutex_init(&rdma_wait_mutex, NULL, MUTEX_DEFAULT, NULL); 2415 cv_init(&rdma_wait_cv, NULL, CV_DEFAULT, NULL); 2416 2417 return (0); 2418 } 2419 2420 /* 2421 * NFS Server finalization routine. This routine is called to cleanup the 2422 * initialization work previously performed if the NFS server module could 2423 * not be loaded correctly. 2424 */ 2425 void 2426 nfs_srvfini(void) 2427 { 2428 nfsauth_fini(); 2429 rfs3_srvrfini(); 2430 rfs_srvrfini(); 2431 nfs_exportfini(); 2432 2433 mutex_destroy(&nfs_server_upordown_lock); 2434 cv_destroy(&nfs_server_upordown_cv); 2435 mutex_destroy(&rdma_wait_mutex); 2436 cv_destroy(&rdma_wait_cv); 2437 } 2438 2439 /* 2440 * Set up an iovec array of up to cnt pointers. 2441 */ 2442 2443 void 2444 mblk_to_iov(mblk_t *m, int cnt, struct iovec *iovp) 2445 { 2446 while (m != NULL && cnt-- > 0) { 2447 iovp->iov_base = (caddr_t)m->b_rptr; 2448 iovp->iov_len = (m->b_wptr - m->b_rptr); 2449 iovp++; 2450 m = m->b_cont; 2451 } 2452 } 2453 2454 /* 2455 * Common code between NFS Version 2 and NFS Version 3 for the public 2456 * filehandle multicomponent lookups. 2457 */ 2458 2459 /* 2460 * Public filehandle evaluation of a multi-component lookup, following 2461 * symbolic links, if necessary. This may result in a vnode in another 2462 * filesystem, which is OK as long as the other filesystem is exported. 2463 * 2464 * Note that the exi will be set either to NULL or a new reference to the 2465 * exportinfo struct that corresponds to the vnode of the multi-component path. 2466 * It is the callers responsibility to release this reference. 2467 */ 2468 int 2469 rfs_publicfh_mclookup(char *p, vnode_t *dvp, cred_t *cr, vnode_t **vpp, 2470 struct exportinfo **exi, struct sec_ol *sec) 2471 { 2472 int pathflag; 2473 vnode_t *mc_dvp = NULL; 2474 vnode_t *realvp; 2475 int error; 2476 2477 *exi = NULL; 2478 2479 /* 2480 * check if the given path is a url or native path. Since p is 2481 * modified by MCLpath(), it may be empty after returning from 2482 * there, and should be checked. 2483 */ 2484 if ((pathflag = MCLpath(&p)) == -1) 2485 return (EIO); 2486 2487 /* 2488 * If pathflag is SECURITY_QUERY, turn the SEC_QUERY bit 2489 * on in sec->sec_flags. This bit will later serve as an 2490 * indication in makefh_ol() or makefh3_ol() to overload the 2491 * filehandle to contain the sec modes used by the server for 2492 * the path. 2493 */ 2494 if (pathflag == SECURITY_QUERY) { 2495 if ((sec->sec_index = (uint_t)(*p)) > 0) { 2496 sec->sec_flags |= SEC_QUERY; 2497 p++; 2498 if ((pathflag = MCLpath(&p)) == -1) 2499 return (EIO); 2500 } else { 2501 cmn_err(CE_NOTE, 2502 "nfs_server: invalid security index %d, " 2503 "violating WebNFS SNEGO protocol.", sec->sec_index); 2504 return (EIO); 2505 } 2506 } 2507 2508 if (p[0] == '\0') { 2509 error = ENOENT; 2510 goto publicfh_done; 2511 } 2512 2513 error = rfs_pathname(p, &mc_dvp, vpp, dvp, cr, pathflag); 2514 2515 /* 2516 * If name resolves to "/" we get EINVAL since we asked for 2517 * the vnode of the directory that the file is in. Try again 2518 * with NULL directory vnode. 2519 */ 2520 if (error == EINVAL) { 2521 error = rfs_pathname(p, NULL, vpp, dvp, cr, pathflag); 2522 if (!error) { 2523 ASSERT(*vpp != NULL); 2524 if ((*vpp)->v_type == VDIR) { 2525 VN_HOLD(*vpp); 2526 mc_dvp = *vpp; 2527 } else { 2528 /* 2529 * This should not happen, the filesystem is 2530 * in an inconsistent state. Fail the lookup 2531 * at this point. 2532 */ 2533 VN_RELE(*vpp); 2534 error = EINVAL; 2535 } 2536 } 2537 } 2538 2539 if (error) 2540 goto publicfh_done; 2541 2542 if (*vpp == NULL) { 2543 error = ENOENT; 2544 goto publicfh_done; 2545 } 2546 2547 ASSERT(mc_dvp != NULL); 2548 ASSERT(*vpp != NULL); 2549 2550 if ((*vpp)->v_type == VDIR) { 2551 do { 2552 /* 2553 * *vpp may be an AutoFS node, so we perform 2554 * a VOP_ACCESS() to trigger the mount of the intended 2555 * filesystem, so we can perform the lookup in the 2556 * intended filesystem. 2557 */ 2558 (void) VOP_ACCESS(*vpp, 0, 0, cr, NULL); 2559 2560 /* 2561 * If vnode is covered, get the 2562 * the topmost vnode. 2563 */ 2564 if (vn_mountedvfs(*vpp) != NULL) { 2565 error = traverse(vpp); 2566 if (error) { 2567 VN_RELE(*vpp); 2568 goto publicfh_done; 2569 } 2570 } 2571 2572 if (VOP_REALVP(*vpp, &realvp, NULL) == 0 && 2573 realvp != *vpp) { 2574 /* 2575 * If realvp is different from *vpp 2576 * then release our reference on *vpp, so that 2577 * the export access check be performed on the 2578 * real filesystem instead. 2579 */ 2580 VN_HOLD(realvp); 2581 VN_RELE(*vpp); 2582 *vpp = realvp; 2583 } else 2584 break; 2585 /* LINTED */ 2586 } while (TRUE); 2587 2588 /* 2589 * Let nfs_vptexi() figure what the real parent is. 2590 */ 2591 VN_RELE(mc_dvp); 2592 mc_dvp = NULL; 2593 2594 } else { 2595 /* 2596 * If vnode is covered, get the 2597 * the topmost vnode. 2598 */ 2599 if (vn_mountedvfs(mc_dvp) != NULL) { 2600 error = traverse(&mc_dvp); 2601 if (error) { 2602 VN_RELE(*vpp); 2603 goto publicfh_done; 2604 } 2605 } 2606 2607 if (VOP_REALVP(mc_dvp, &realvp, NULL) == 0 && 2608 realvp != mc_dvp) { 2609 /* 2610 * *vpp is a file, obtain realvp of the parent 2611 * directory vnode. 2612 */ 2613 VN_HOLD(realvp); 2614 VN_RELE(mc_dvp); 2615 mc_dvp = realvp; 2616 } 2617 } 2618 2619 /* 2620 * The pathname may take us from the public filesystem to another. 2621 * If that's the case then just set the exportinfo to the new export 2622 * and build filehandle for it. Thanks to per-access checking there's 2623 * no security issues with doing this. If the client is not allowed 2624 * access to this new export then it will get an access error when it 2625 * tries to use the filehandle 2626 */ 2627 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2628 VN_RELE(*vpp); 2629 goto publicfh_done; 2630 } 2631 2632 /* 2633 * Not allowed access to pseudo exports. 2634 */ 2635 if (PSEUDO(*exi)) { 2636 error = ENOENT; 2637 VN_RELE(*vpp); 2638 goto publicfh_done; 2639 } 2640 2641 /* 2642 * Do a lookup for the index file. We know the index option doesn't 2643 * allow paths through handling in the share command, so mc_dvp will 2644 * be the parent for the index file vnode, if its present. Use 2645 * temporary pointers to preserve and reuse the vnode pointers of the 2646 * original directory in case there's no index file. Note that the 2647 * index file is a native path, and should not be interpreted by 2648 * the URL parser in rfs_pathname() 2649 */ 2650 if (((*exi)->exi_export.ex_flags & EX_INDEX) && 2651 ((*vpp)->v_type == VDIR) && (pathflag == URLPATH)) { 2652 vnode_t *tvp, *tmc_dvp; /* temporary vnode pointers */ 2653 2654 tmc_dvp = mc_dvp; 2655 mc_dvp = tvp = *vpp; 2656 2657 error = rfs_pathname((*exi)->exi_export.ex_index, NULL, vpp, 2658 mc_dvp, cr, NATIVEPATH); 2659 2660 if (error == ENOENT) { 2661 *vpp = tvp; 2662 mc_dvp = tmc_dvp; 2663 error = 0; 2664 } else { /* ok or error other than ENOENT */ 2665 if (tmc_dvp) 2666 VN_RELE(tmc_dvp); 2667 if (error) 2668 goto publicfh_done; 2669 2670 /* 2671 * Found a valid vp for index "filename". Sanity check 2672 * for odd case where a directory is provided as index 2673 * option argument and leads us to another filesystem 2674 */ 2675 2676 /* Release the reference on the old exi value */ 2677 ASSERT(*exi != NULL); 2678 exi_rele(*exi); 2679 2680 if (error = nfs_check_vpexi(mc_dvp, *vpp, kcred, exi)) { 2681 VN_RELE(*vpp); 2682 goto publicfh_done; 2683 } 2684 } 2685 } 2686 2687 publicfh_done: 2688 if (mc_dvp) 2689 VN_RELE(mc_dvp); 2690 2691 return (error); 2692 } 2693 2694 /* 2695 * Evaluate a multi-component path 2696 */ 2697 int 2698 rfs_pathname( 2699 char *path, /* pathname to evaluate */ 2700 vnode_t **dirvpp, /* ret for ptr to parent dir vnode */ 2701 vnode_t **compvpp, /* ret for ptr to component vnode */ 2702 vnode_t *startdvp, /* starting vnode */ 2703 cred_t *cr, /* user's credential */ 2704 int pathflag) /* flag to identify path, e.g. URL */ 2705 { 2706 char namebuf[TYPICALMAXPATHLEN]; 2707 struct pathname pn; 2708 int error; 2709 2710 /* 2711 * If pathname starts with '/', then set startdvp to root. 2712 */ 2713 if (*path == '/') { 2714 while (*path == '/') 2715 path++; 2716 2717 startdvp = rootdir; 2718 } 2719 2720 error = pn_get_buf(path, UIO_SYSSPACE, &pn, namebuf, sizeof (namebuf)); 2721 if (error == 0) { 2722 /* 2723 * Call the URL parser for URL paths to modify the original 2724 * string to handle any '%' encoded characters that exist. 2725 * Done here to avoid an extra bcopy in the lookup. 2726 * We need to be careful about pathlen's. We know that 2727 * rfs_pathname() is called with a non-empty path. However, 2728 * it could be emptied due to the path simply being all /'s, 2729 * which is valid to proceed with the lookup, or due to the 2730 * URL parser finding an encoded null character at the 2731 * beginning of path which should not proceed with the lookup. 2732 */ 2733 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2734 URLparse(pn.pn_path); 2735 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) 2736 return (ENOENT); 2737 } 2738 VN_HOLD(startdvp); 2739 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2740 rootdir, startdvp, cr); 2741 } 2742 if (error == ENAMETOOLONG) { 2743 /* 2744 * This thread used a pathname > TYPICALMAXPATHLEN bytes long. 2745 */ 2746 if (error = pn_get(path, UIO_SYSSPACE, &pn)) 2747 return (error); 2748 if (pn.pn_pathlen != 0 && pathflag == URLPATH) { 2749 URLparse(pn.pn_path); 2750 if ((pn.pn_pathlen = strlen(pn.pn_path)) == 0) { 2751 pn_free(&pn); 2752 return (ENOENT); 2753 } 2754 } 2755 VN_HOLD(startdvp); 2756 error = lookuppnvp(&pn, NULL, NO_FOLLOW, dirvpp, compvpp, 2757 rootdir, startdvp, cr); 2758 pn_free(&pn); 2759 } 2760 2761 return (error); 2762 } 2763 2764 /* 2765 * Adapt the multicomponent lookup path depending on the pathtype 2766 */ 2767 static int 2768 MCLpath(char **path) 2769 { 2770 unsigned char c = (unsigned char)**path; 2771 2772 /* 2773 * If the MCL path is between 0x20 and 0x7E (graphic printable 2774 * character of the US-ASCII coded character set), its a URL path, 2775 * per RFC 1738. 2776 */ 2777 if (c >= 0x20 && c <= 0x7E) 2778 return (URLPATH); 2779 2780 /* 2781 * If the first octet of the MCL path is not an ASCII character 2782 * then it must be interpreted as a tag value that describes the 2783 * format of the remaining octets of the MCL path. 2784 * 2785 * If the first octet of the MCL path is 0x81 it is a query 2786 * for the security info. 2787 */ 2788 switch (c) { 2789 case 0x80: /* native path, i.e. MCL via mount protocol */ 2790 (*path)++; 2791 return (NATIVEPATH); 2792 case 0x81: /* security query */ 2793 (*path)++; 2794 return (SECURITY_QUERY); 2795 default: 2796 return (-1); 2797 } 2798 } 2799 2800 #define fromhex(c) ((c >= '0' && c <= '9') ? (c - '0') : \ 2801 ((c >= 'A' && c <= 'F') ? (c - 'A' + 10) :\ 2802 ((c >= 'a' && c <= 'f') ? (c - 'a' + 10) : 0))) 2803 2804 /* 2805 * The implementation of URLparse guarantees that the final string will 2806 * fit in the original one. Replaces '%' occurrences followed by 2 characters 2807 * with its corresponding hexadecimal character. 2808 */ 2809 static void 2810 URLparse(char *str) 2811 { 2812 char *p, *q; 2813 2814 p = q = str; 2815 while (*p) { 2816 *q = *p; 2817 if (*p++ == '%') { 2818 if (*p) { 2819 *q = fromhex(*p) * 16; 2820 p++; 2821 if (*p) { 2822 *q += fromhex(*p); 2823 p++; 2824 } 2825 } 2826 } 2827 q++; 2828 } 2829 *q = '\0'; 2830 } 2831 2832 2833 /* 2834 * Get the export information for the lookup vnode, and verify its 2835 * useable. 2836 */ 2837 int 2838 nfs_check_vpexi(vnode_t *mc_dvp, vnode_t *vp, cred_t *cr, 2839 struct exportinfo **exi) 2840 { 2841 int walk; 2842 int error = 0; 2843 2844 *exi = nfs_vptoexi(mc_dvp, vp, cr, &walk, NULL, FALSE); 2845 if (*exi == NULL) 2846 error = EACCES; 2847 else { 2848 /* 2849 * If nosub is set for this export then 2850 * a lookup relative to the public fh 2851 * must not terminate below the 2852 * exported directory. 2853 */ 2854 if ((*exi)->exi_export.ex_flags & EX_NOSUB && walk > 0) 2855 error = EACCES; 2856 } 2857 2858 return (error); 2859 } 2860 2861 /* 2862 * Do the main work of handling HA-NFSv4 Resource Group failover on 2863 * Sun Cluster. 2864 * We need to detect whether any RG admin paths have been added or removed, 2865 * and adjust resources accordingly. 2866 * Currently we're using a very inefficient algorithm, ~ 2 * O(n**2). In 2867 * order to scale, the list and array of paths need to be held in more 2868 * suitable data structures. 2869 */ 2870 static void 2871 hanfsv4_failover(void) 2872 { 2873 int i, start_grace, numadded_paths = 0; 2874 char **added_paths = NULL; 2875 rfs4_dss_path_t *dss_path; 2876 2877 /* 2878 * Note: currently, rfs4_dss_pathlist cannot be NULL, since 2879 * it will always include an entry for NFS4_DSS_VAR_DIR. If we 2880 * make the latter dynamically specified too, the following will 2881 * need to be adjusted. 2882 */ 2883 2884 /* 2885 * First, look for removed paths: RGs that have been failed-over 2886 * away from this node. 2887 * Walk the "currently-serving" rfs4_dss_pathlist and, for each 2888 * path, check if it is on the "passed-in" rfs4_dss_newpaths array 2889 * from nfsd. If not, that RG path has been removed. 2890 * 2891 * Note that nfsd has sorted rfs4_dss_newpaths for us, and removed 2892 * any duplicates. 2893 */ 2894 dss_path = rfs4_dss_pathlist; 2895 do { 2896 int found = 0; 2897 char *path = dss_path->path; 2898 2899 /* used only for non-HA so may not be removed */ 2900 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2901 dss_path = dss_path->next; 2902 continue; 2903 } 2904 2905 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2906 int cmpret; 2907 char *newpath = rfs4_dss_newpaths[i]; 2908 2909 /* 2910 * Since nfsd has sorted rfs4_dss_newpaths for us, 2911 * once the return from strcmp is negative we know 2912 * we've passed the point where "path" should be, 2913 * and can stop searching: "path" has been removed. 2914 */ 2915 cmpret = strcmp(path, newpath); 2916 if (cmpret < 0) 2917 break; 2918 if (cmpret == 0) { 2919 found = 1; 2920 break; 2921 } 2922 } 2923 2924 if (found == 0) { 2925 unsigned index = dss_path->index; 2926 rfs4_servinst_t *sip = dss_path->sip; 2927 rfs4_dss_path_t *path_next = dss_path->next; 2928 2929 /* 2930 * This path has been removed. 2931 * We must clear out the servinst reference to 2932 * it, since it's now owned by another 2933 * node: we should not attempt to touch it. 2934 */ 2935 ASSERT(dss_path == sip->dss_paths[index]); 2936 sip->dss_paths[index] = NULL; 2937 2938 /* remove from "currently-serving" list, and destroy */ 2939 remque(dss_path); 2940 /* allow for NUL */ 2941 kmem_free(dss_path->path, strlen(dss_path->path) + 1); 2942 kmem_free(dss_path, sizeof (rfs4_dss_path_t)); 2943 2944 dss_path = path_next; 2945 } else { 2946 /* path was found; not removed */ 2947 dss_path = dss_path->next; 2948 } 2949 } while (dss_path != rfs4_dss_pathlist); 2950 2951 /* 2952 * Now, look for added paths: RGs that have been failed-over 2953 * to this node. 2954 * Walk the "passed-in" rfs4_dss_newpaths array from nfsd and, 2955 * for each path, check if it is on the "currently-serving" 2956 * rfs4_dss_pathlist. If not, that RG path has been added. 2957 * 2958 * Note: we don't do duplicate detection here; nfsd does that for us. 2959 * 2960 * Note: numadded_paths <= rfs4_dss_numnewpaths, which gives us 2961 * an upper bound for the size needed for added_paths[numadded_paths]. 2962 */ 2963 2964 /* probably more space than we need, but guaranteed to be enough */ 2965 if (rfs4_dss_numnewpaths > 0) { 2966 size_t sz = rfs4_dss_numnewpaths * sizeof (char *); 2967 added_paths = kmem_zalloc(sz, KM_SLEEP); 2968 } 2969 2970 /* walk the "passed-in" rfs4_dss_newpaths array from nfsd */ 2971 for (i = 0; i < rfs4_dss_numnewpaths; i++) { 2972 int found = 0; 2973 char *newpath = rfs4_dss_newpaths[i]; 2974 2975 dss_path = rfs4_dss_pathlist; 2976 do { 2977 char *path = dss_path->path; 2978 2979 /* used only for non-HA */ 2980 if (strcmp(path, NFS4_DSS_VAR_DIR) == 0) { 2981 dss_path = dss_path->next; 2982 continue; 2983 } 2984 2985 if (strncmp(path, newpath, strlen(path)) == 0) { 2986 found = 1; 2987 break; 2988 } 2989 2990 dss_path = dss_path->next; 2991 } while (dss_path != rfs4_dss_pathlist); 2992 2993 if (found == 0) { 2994 added_paths[numadded_paths] = newpath; 2995 numadded_paths++; 2996 } 2997 } 2998 2999 /* did we find any added paths? */ 3000 if (numadded_paths > 0) { 3001 /* create a new server instance, and start its grace period */ 3002 start_grace = 1; 3003 rfs4_servinst_create(start_grace, numadded_paths, added_paths); 3004 3005 /* read in the stable storage state from these paths */ 3006 rfs4_dss_readstate(numadded_paths, added_paths); 3007 3008 /* 3009 * Multiple failovers during a grace period will cause 3010 * clients of the same resource group to be partitioned 3011 * into different server instances, with different 3012 * grace periods. Since clients of the same resource 3013 * group must be subject to the same grace period, 3014 * we need to reset all currently active grace periods. 3015 */ 3016 rfs4_grace_reset_all(); 3017 } 3018 3019 if (rfs4_dss_numnewpaths > 0) 3020 kmem_free(added_paths, rfs4_dss_numnewpaths * sizeof (char *)); 3021 } 3022